UltiNateTM

Capillary- and Nano HPLC Systems

Operational Qualification and Performance Qualification

Operating Instructions P/N 163960

www.lcpackings.com

The material included in this manual is provided to assist authorized personnel in performing operation qualification (OQ) and performance qualification (PQ) on the LC Packings UltiMate Capillary and Nano HPLC system. It is assumed that the individual using this manual has sufficient training in the use of analytical instrumentation and is aware of the potential hazards including (but not limited to) electrical hazards, chemical solvent hazards, exposure to UV radiation and the exposure to pressurized solvents.

All information in this manual is subject to change without notice and does not represent a commitment on the part of LC Packings, BV.

[©] October 2004, LC Packings, BV - A Dionex Company. All rights reserved. No part of this manual may be reproduced or transmitted in any form or by any means without the written permission of LC Packings, BV.

The following are Registered Trademarks of LC Packings - A Dionex Company: Probot, μ Carrier, UltiMate, UltiChrom, FAMOS, Thermos, Switchos, Acurate, UZ-View, UV-Booster, FluoBoost, Pepmap, μ -Dumper, μ -Fluidics, Fusica, Nano Series, Pico Series, μ -Guard, μ -Precolumn, Nano-Precolumn.

Dionex[™] is a Trademark of Dionex Corporation.

CHROMELEON[®] is a Registered Trademark of the Dionex Corporation.

Analyst[®] is a Registered Trademark of Applied Biosystems/MDS Sciex.

HyStar[™] is a Trademark of Bruker-Daltonics Group.

MassLynx[™] is a Trademark of Waters[®] Corporation.

Xcalibur[®] is a Registered Trademark of ThermoFinnigan.

Windows[®] is a Registered Trademark of Microsoft Corporation.

PEEK[™] polymer is a Trademark of Victrex plc.

Other product names or company names mentioned herein may be the trademarks of their respective owners.

Printed in the Netherlands.

The Danger sign, Warning sign and the Caution sign shown below are included in various locations in this manual or in the manuals provided with the instruments which are to be tested. These signs provide the following information:

Danger: The information in a danger statement relates to a procedure, practice condition or action that if not done correctly or adhered to could lead to personal injury or loss of life.

VARNING Warning: The information in a warning statement relates to a procedure, practice, condition or action that if not done correctly or adhered to could lead to severe injury and/or damage or destruction to parts or all of the equipment.

Caution: The information in a caution statement relates to a condition that could lead to damage to equipment and/or lead to invalid analytical results.

Note: The information in a note statement relates to important information that should be read and understood before continuing.

Safety Precautions

Note: The following precautions should be followed to minimize the possibility of personal injury and/or damage to property.

The operator should follow all safety precautions, warnings, etc provided with the instruments, in addition, please note the items presented below:

- 1. All components of the system should be plugged into a common power line that is directly connected to a true ground.
- 2. Repair or replace faulty power cords and all communication cables.
- 3. If a leak occurs, turn off power to the instrument and remedy the situation immediately.
- 4. If the mobile phase includes volatile or flammable solvents, avoid open flames and sparks.
- 5. Many organic solvents and buffers are toxic. Make certain that you know the toxicological properties of all mobile phases that you are using.
- 6. The toxicological properties of many samples may not be well known. If you have any doubt about a sample, treat it as if it contained a potentially harmful substance.
- 7. Wear protective eye goggles when handling mobile phases or operating the instrument. An eye wash facility and a sink should be close to the unit. If any mobile phase splash on the eyes or skin, wash the affected area and seek medical attention.
- 8. Dispose of all waste mobile phase in an environmentally safe manner that is consistent with all local regulations. Do not allow flammable and/or toxic solvents to accumulate. Follow a regulated, approved waste disposal program. Never dispose flammable and/or toxic solvents through the municipal sewage system
- 9. Wear protective eye goggles when handling fused silica tubing (i.e. installation, cutting etc.)
- 10. If a buffer is used as a part of the mobile phase, flush the system with several volumes of a methanol/water (50/50) solution before it is shut down. This will prevent salt buildup inside the unit.
- 11. Do not use the instrument in ways other than those indicated in the instructions given in this manual.

¹⁶ Warning: The OQ/PQ kit (P/N163932) contains a chemical or chemicals known to the State of California to cause cancer and/or birth defects or other reproductive harm. For additional information, consult the product Material Safety Data Sheet (MSDS).

Table of Contents

	Warnin	gs	3
	Safety	Precautions	3
CHAPTER	1		
-		Introduction	7
	1.1	The Purpose of OQ/PQ	7
	1.2	Defining the Limits	7
	1.3	General Notes and Recommendations	8
	1.4	How this Manual is structured	8
	1.5	For Additional Information	8
CHAPTER	2		
		Requirements for a Successful OQ/PQ	9
	2.1	Overview	9
	2.2	Checks and Acceptance Limits	10
CHAPTER	3		
		Process	13
	3.1	Required Materials	13
	3.2	Preparations	15
	3.2.1 3.2.2	CHROMELEON® Setup System Setup	15 18
	3.3	Performing the Checks	21
	3.4	Evaluating the Tests	22
	3.4.1	Repeating Tests	22
CHAPTER	4		
		Test Procedures	23
	4.1	Overview	23
	4.2	Lamp Intensity of the UV Detector	24
	4.2.1	Performing the Lamp Intensity Test	24
	4.3	Wavelength Check	25
	4.3.1	Performing the Test	25
	4.4	Flow Cell Check	26
	4.4.1	Performing the Intensity Test of the Flow Cell	26
	4.5	UltiMate Fluid Path Test	27
	4.5.1	Performing the Test	27
	4.6	Baseline Noise and Drift Test of the UV Detector and Oven Test	28
	4.6.1 4.6.2 4.6.3	Theory of the Noise and Drift Calculation of CHROMELEON Oven accuracy	28 29 29

	4.6.4	Performing the UV Detector Drift and Noise Test and the Oven Test.	. 30
	4.7	Linearity of the UV Detector	. 31
	4.7.1	Performing the UV Detector Linearity Test	. 32
	4.8	Reproducibility of the Injection Volume	. 33
	4.8.1	Performing the Test	. 33
	4.9	Linearity of the injection	. 34
	4.9.1	Performing the Test	. 34
	4.10	Gradient Accuracy	.35
	4.10.	1 Performing the Test	.37
	4.11	Switchos Fluid Path Check	. 38 20
	4.11.	Switches Eleve Pote and Pressure Stability Test	20
	4.12	1 Performing the test	. 39 20
	4.12.	Switches Valve Position Check	. 39
	4.13	1 Performing the Test	.40 10
	4.73.	Completing and Printing the OO/PO Report	A1
	4.14 <i>A 1A</i>	1 Result of the Gradient Accuracy Test	<u></u>
	4.14.	2 Completing the Cover Page and Printing	.42
CHAPTER	5		
		Troubleshooting	43
	5.1	Overview	.43
	5.2	Sample and Mobile Phase Considerations	.43
	5.3	Probable Causes and Solutions	.44
CHAPTER	6		
		CHROMELEON [®] Listings	45
	6.1	Overview	. 45
	6.2	Wavelength Check (NAN Configuration)	.46
	6.3	Noise and Drift Test (NAN Configuration)	.47
	6.4	UV Linearity (NAN Configuration)	.49
	6.5	Autosampler Reproducibility (NAN Configuration)	. 51
	6.6	Autosampler Injection Linearity (NAN Configuration)	. 53
	6.7	Gradient Accuracy Test (NAN Configuration)	. 55
	6.8	Switchos Pump Test (NAN Configuration)	. 57
	6.9	Stop Flow	. 59

CHAPTER 1 Introduction

1.1 The Purpose of OQ/PQ

An increasing number of standards and official regulations require that the end user is able to provide evidence that the instrumentation used for analytical work is working in a satisfactory manner. In the same manner, quality management according to ISO 9000 (and similar standards) requires that the user monitor and document the ability of the equipment to obtain valid data on a periodic basis. This manual provides a detailed series of procedures to perform these Operational Qualification (OQ) and Performance Qualification (PQ) protocols on the LC Packings UltiMate system components.

The validation procedures described herein are designed to demonstrate that the instrument was working in an acceptable manner using the standards provided on the day of validation. It is likely that the instrument performance will vary over time due to small changes in the various components in the instrument and the validation protocol should be performed on a periodic basis. The frequency of validation is dependent on the level of usage of the system and the degree of tolerance that is acceptable for the system.

1.2 Defining the Limits

According to 'The development and application of guidance on equipment qualification of analytical instruments' of P. Bedson and M. Sargent [Accred. Qual. Assur. (1996) 1: 265 - 274] the following definitions apply:

- Operational Qualification (OQ) The purpose of the Operational Qualification is to demonstrate and document that an analytical system functions according to its specifications when specific environmental conditions are taken into account. In this specification, the supplier must define exactly the conditions that must be observed for the measurement.
- **Performance Qualification (PQ)** The purpose of the Performance Qualification is to demonstrate and document that an analytical system is capable of accurately measuring the concentration of one or more compounds in a standard sample.

To simplify the overall qualification protocol, the same procedures can be used for both OQ and PQ, but the tolerances used for Performance Qualification are less restrictive than those used for Operational Qualification.

1.3 General Notes and Recommendations

- After the validation of the different modules, a cytochrome C separation should be performed according to the LC Packings factory qualification protocol (as described in the user's manual).
- For Ultimate Dual Gradient system configurations, the gradient accuracy test (Section 4.10) must be performed on both pumps.
- Channel C & D should only be tested on customer request.
- If the customer ordered a system with two configurations (e.g. a NAN configuration and a CAP upgrade kit), the OQ/PQ should be performed for the system configuration that the customer will be using on a routine basis.
- If required, test any other configuration according to the factory qualification protocol (cytochrome C digest separation).
- After the instrument has been validated via the protocols described in this document, the analyst should perform a validation of the assay with standards of the compounds of interest.

1.4 How this Manual is structured

This manual describes the Operation and Performance Qualification for the LC Packings UltiMate Systems in its different configurations (including the FAMOS Microautosampler and the Switchos Advanced Microcolumn Switching Unit) and provides the following information:

Chapter 2: *Requirements for a Successful OQ/PQ* provides an overview of the parameters to be tested, a short description of the tests and lists the required acceptance limits for OQ and the recommended limits for PQ.

Chapter 3: *Process* lists all required materials, standards and solvents that are necessary to perform the OQ/PQ test procedures. In addition, it describes how to prepare CHROMELEON and the UltiMate system to perform the tests.

Chapter 4: *Test Procedures* provides step-by-step instructions about how to perform and evaluate the various OQ/PQ tests.

Chapter 5: *Troubleshooting* discusses how the operator can determine the cause of a difficulty in the performing of the OQ/PQ.

Chapter 6: *CHROMELEON® Listings* provides the listings of all CHROMELEON programs used to perform the QQ/PQ test procedures on an UltiMate system in NAN configuration.

1.5 For Additional Information

For more detailed information about the operation, maintenance or troubleshooting of the instruments of the UltiMate system or how to use the CHROMELEON software package, please refer to the documentation provided with these products and to the online help of CHROMELEON (F1 key).

CHAPTER 2

Requirements for a Successful **OQ/PQ**

2.1 Overview

The Operational Qualification (OQ) and Performance Qualification (PQ) procedures are system-specific procedures. The procedures provided with this document apply for the components of the LC Packings UltiMate Capillary HPLC system listed in TABLE 2-1:

TABLE 2-1	List of UltiMate System Components with available OQ/PQ Procedures

Instrument	Version	Option
UltiMate [Plus] Nano- and	Standard / Inert	- Flow Sensor
Capillary HPLC System (b)		- Without UV Detector (a)
		 Manual Injection Valve
UltiMate [Plus] Dual Gradient	Standard / Inert	- Flow Sensor(s)
Nano- and Capillary HPLC		
System (a) (b)		
FAMOS Well Plate	Standard / Inert	- Sample Cooling
Microautosampler		
FAMOS Carousel	Standard / Inert	- Sample Cooling
Microautosampler		
Switchos II Advanced	Standard / Inert	N/A
Microcolumn Switching Unit		

Notes:(a) If no UV Detector is installed, an extra detector is required to perform the OQ/PQ procedures.(b) For test procedures regarding the MIC versions of the UltiMate system, contact LCP.

Note: The OQ/PQ procedure are identical for LC Packings UltiMate and UltiMate <u>Plus</u> Capillary- and Nano HPLC Systems. When the LC Packings UltiMate system is mentioned, the reader should assume that the material applies to both systems.

Note: If the system does not include an UltiMate UV Detector, a standalone UltiMate UV Detector is required to perform the OQ/PQ procedures.

The instruments should be controlled by CHROMELEON[®] 6.6 SP1 or higher (previous versions will have compatibility problems with the CHROMELEON report file). All necessary CHROMELEON programs and sequences are provided on the CD ROM 'IQOQPQ on UltiMate[™] (Plus) Systems' (P/N 163935). If a different software package (e.g. Xcalibur[™], Analyst[™], HyStar[™], MassLynx[™], UltiChrom[™], etc.) is used to control the instruments, all programs will need to be prepared manually. Some limitations may apply due to different or limited control capabilities of these software packages.

2.2 Checks and Acceptance Limits

TABLE 2-2 lists all OQ/PQ test procedures that are to be performed in the order they must be performed. In most instances, it is necessary that a test is passed before the next test in the overall is attempted. As an example, if the 'Linearity of the UV Detector' test is failed (Section 4.7), the result of the 'Gradient Accuracy' test will be questionable (Section 4.10).

TABLE 2-2 List of OQ and PQ Test Procedures to be performed

Test Procedure	Performed	Section
Lamp Intensity of the UV Detector	Manually	4.2
Wavelength Check	CM Sequence	4.3
Flow Cell Check	Manually	4.4
UltiMate Fluid Path Test	Manually	4.5
Baseline Noise and Drift Test of the UV Detector	CM Sequence	4.6
Linearity of the UV Detector	CM Sequence	4.7
Reproducibility of the Injection Volume	CM Sequence	4.8
Linearity of the injection	CM Sequence	4.9
Gradient Accuracy	CM Sequence	4.10
Switchos Fluid Path Check	Manually	4.11
Switchos Flow Rate and Pressure Stability Test	CM Sequence	4.12
Switchos Valve Position Check	Manually	4.13

Note: According to GLP, a test procedure that failed needs to be repeated and all test procedures following the one that failed must be repeated.

TABLE 2-3 presents an overview of the parameters to be tested and a short description of the tests. In addition, it presents the required acceptance limits for OQ and the recommended limits for PQ.

Instrument	Parameter	Description	Limits (a)		
			00	PQ	
UltiMate UV Detector	Wavelength accuracy	External holmium filter is required.	± 2 nm	± 2 nm	
(Note: If the system does not include an UltiMate UV Detector, a standalone UltiMate UV Detector is required to perform the OQ/PQ test procedures).	Lamp Intensity (Section 4.2)	The dummy flow cell is installed and the lamp intensity is read from the detector SIGNALS screen.	0.4 < SIG < 0.9 0.1 < REF < 0.9	0.4 < SIG < 0.9 0.1 < REF < 0.9	
	Flow cell transmittance (Section 4.4) (b)	The flow cell is installed and filled with water. The transmittance of this flow cell is indicated by the 'SIG' value and is read from the detector SIGNALS screen.	> 15% of reference intensity	> 15% of reference intensity	
	Baseline drift (Section 4.6)	The drift and noise are recorded for 21 minutes at 254 nm with a	< 4000 µAU/hr	< 4000 µAU/hr	
	Baseline noise (Section 4.6)	flow cell (filled with mobile phase A).	< 50 μAU	< 50 μAU	
	Oven test (Section 4.6) (d)	An external thermometer is used to measure the oven temperature.	Accuracy +/- 1°C	Accuracy +/- 1°C	

TABLE 2-3 Overview of the OQ and PQ Test Procedures and Limits

Requirements for a Successful OQ/PQ

	1 to a solt a	laissticas of cofficient standards				
	Linearity (Section 4.7) (c)	Injections of catterne standards covering the linear range of the UV detector are injected and the peak height is measured. The regression coefficient of the resulting calibration curve indicates the linearity.	R ≥ 99.50% peak height	R ≥ 99.0% peak height		
UltiMate System (Single and Dual Gradient Version)	Gradient accuracy, step gradient (Section 4.10) (c)	A step gradient is performed and the UV trace recorded. The step intensity indicates the gradient accuracy. Channel A: water Channel B: water with 0.8 % acetone (NAN configuration) or 0.3% acetone (CAP configuration), respectively.	The range is defined by the 0% and 100% values. A relative deviation of 3% is allowed for each step (5%, 50%, 95%).	The range is defined by the 0% and 100% values. A relative deviation of 3% is allowed for each step (5%, 50%, 95%).		
	Gradient reproducibility (Section 4.10) (d)	A step gradient is programmed and measured 3 times. The reproducibility of the proportioning is evaluated.	For each step, the intensity of the signal is measured. The maximum %RSD allowed is 1%.	For each step, the intensity of the signal is measured. The maximum %RSD allowed is 1%.		
FAMOS (Well Plate / Carousel	Reproducibility of the injection (Section 4.8) (c) (d)	8 injections of a caffeine standard are analyzed. The relative standard deviation of the peak height is calculated.	Peak height RSD $\leq 1.5\%$	Peak height RSD ≤ 1.5%		
Version)	Linearity of the injection (Section 4.9) (d)	Partial loop injections of a caffeine standard are performed (from 0.05µl to 0.5µl). The regression coefficient of the resulting calibration curve indicates the linearity.	R ≥ 99.50% (calculated via peak area)	R ≥ 99.0% (calculated via peak area)		
Switchos	Switchos fluid path test (Section 4.11)	The flow rate is measured for all the channels.	The flow rate is at least 0.15 mL/min.	The flow rate is at least 0.15 mL/min.		
	Valve position test (Section 4.13)	The position and is switching of the valves is checked.	LED indication must correspond to the open channel on the valve.	LED indication must correspond to the open channel on the valve.		
	Switchos flow rate and pressure stability (Section 4.12) (d)	The Switchos pump is programmed to deliver a flow rate of 30 μ l/min. The output is connected to one of the valves with a restriction connected to port 2. During this program the valve is switched from position 1- 2 to 10-1. The backpressure must be stable and reduce to zero without restriction.	Flow rate must be $30 \pm 3 \ \mu L/min$ Pressure must be 18 ± 5 bars when restriction is in line and 0 bars otherwise.	Flow rate must be $30 \pm 3 \ \mu L/min$ Pressure must be 18 ± 5 bars when restriction is in line and 0 bars otherwise.		
Notes:	a) OQ limits w	vith optimum measuring conditions, re	ecommended PQ limi	ts.		
	b) The signal i flow cell.	ntensity should be $\ge 5\%$ of the refere	ence signal for a 30 r	mm UV Booster™		
	c) Up to maximum signal height of CAP = 250 mAU or NAN = 30 mAU .					
d) All tests are performed by using the sequences provided with the $IQ/OQ/PQ$ CD ROM.						

[This page intentionally left blank]

3.1 Required Materials

An OQ/PQ kit (P/N 163936) is available for performing the OQ/PQ on the UtliMate system, an OQ/PQ kit (P/N 163936) is available. In addition, parts from the standard instruments accessory kits are required. TABLE 3-1 list all accessories and standards, which are provided with the OQ/PQ kit:

TABLE 3-1	Parts	included	in	the	00/P0 Kit
	i uito	moluucu		the	

Item Description	Part Number	Note
UltiMate System - OQ/PQ Operating	163960	
CD BOM (IOOOPO on LiitiMate™ (Plus)	163935	
Systems'	100000	
Set of 9 samples (flame sealed amber	163932	Do NOT Freeze!
ampoule)		
Fused silica tubing I.D. 15 μ m ± 3 μ m/O.D.	163933	Restriction capillary, NAN
$375 \mu\text{m} \pm 10 \mu\text{m}, 3,2 \text{ meters}$		configurations only.
Fused silica tubing I.D. 30 μ m \pm 3 μ m/O.D.	163934	Restriction capillary, CAP
$375 \mu\text{m} \pm 10 \mu\text{m}$, 2,5 meters		configurations only.
Tubing set consisting of 130 μ m I.D. x	160180	
50 cm PEEK tubing		
Microtight Union, includes 2 fittings and 1	161497	Used to connect the
gauge plug		restriction capillary.
PEEK sleeves, precision cut and polished for	161405	Used to connect the
connections with Microtight Union (380 μ m		restriction capillary.
O.D.), 10 pieces		
PEEK sleeves, precision cut and polished for	161498	Used to connect the
connections with Microtight Union (280 μ m		restriction capillary.
O.D.), 10 pieces		
1/16" Valco Ferrule and Nut, stainless steel,	161103	Used with stainless steel
10 pc. (for 10-port valve)	4.00.400	systems only.
PEEK sleeves, precision cut and polished for	160493	Used with stainless steel
(260 um O D) E coch		systems only.
PEEK 1/16" Universal Eitting for Switches	161007	Llood with INERT systems
INERT 10 pc long bey put and ferrule with	101007	only
aroove		only.
Syringe adapter	160465	Flow rate (droplet) test.
Phillips-head screw M3 X 4 mm	163964	Used to install the
		temperature probe.
Toothed Lock Washer 3,2 mm x 6 mm	163275	Used to install the
		temperature probe.

TABLE 3-2 and TABLE 3-3 list accessories and standards that are necessary to perform the OQ/PQ test procedures (and which are <u>not</u> included in the OQ/PQ kit)

Item Description	Part Number (a)	Included in the Instrument's Accessory Kit			
Accessories					
UV Detector (b)	160008 or 162346 or 163653	No			
Dummy flow cell	162053	Yes			
UV flow cell	160015 (NAN) 160013 (CAP)	Yes			
Calibrator Cartridge	160061 (NAN) 160059 (CAP)	Yes			
Dual Calibrator Cartridge	161082 (NAN/NAN) 161084 (CAP/CAP) 161083 (CAP/NAN)	Yes			
P600 Precision Thermometer or equivalent	163961	No			
Special Thermocouple for P600 Precision Thermometer	163962	No			
Test Cell, Holmium Oxide Filter for UltiMate™ UV-Detector	163963	No			
Syringe adapter for Valco valve	160259	No			
Syringe of 250 μ L	163241	No			
Connecting tubing 30 μ m ID x 15 cm	160182	Yes			
Notes(a)P/N applicable depends on the system configuration.(b)If the system does not include a UV Detector, a standalone instrument is required to perform the OQ/PQ procedures.					

TABLE 3-2 Accessories required for the OQ/PQ

TABLE 3-3	Standards a	and Solvents	for the	OQ/PQ

Item Description	P/N	Included in the Instrument's	
		Accessory Kit	OQ/PQ Kit
Caffeine in water standards: 0.25, 0.5, 1.0, 2.5, 5.0, 10.0, 20, 40, 60 μg/ml	163932	No	Yes
Cytochrome C Digest Test Sample	161089	Yes	No
Acetone (HPLC Grade)	N/A	No	No
Water (HPLC Gradient Grade)	N/A	No	No
Formic Acid (HPLC Grade)	N/A	No	No
Acetonitrile	N/A	No	No

3.2 Preparations

The system components that are included in the system configuration have to be prepared according to the following steps before starting the OQ/PQ procedure.

3.2.1 CHROMELEON[®] Setup

All CHROMELEON programs required to perform the OQ/PQ test procedures are provided as a CHROMELEON backup file on the CD ROM 'IQOQPQ on UltiMate[™] (Plus) Systems' (P/N 163935). Two folders are provided, one is for the Nano LC (NAN) and capillary LC (CAP) configurations. In addition, different CHROMELEON server configuration files are available.

It is assumed that the service engineer has basic knowledge of the UltiMate system and CHROMELEON software. Please refer for more detailed information about the installation and usage of the UltiMate system and CHROMELEON to the manuals provided along with the products. A detailed description of the tests is provided in Chapter 4.

3.2.1 A Restoring the Backup Files

Refer to the CHROMELEON on-line help (F1 key) for more information on how to restore backup files.

To prepare the PC and the CHROMELEON software for the OQ/PQ test procedures:

a) Restore the CHROMELEON backup file from the CD ROM. All programs and sequences are now available for the test procedures (FIGURE 3-1).

Chromeleon - [Guillaume Laptop\IQOQPQ_UltiMate	e\template\OQPQ v1 - Brows	er]	_ 2 ×
I File Edit View Workspace Qualification Batch Tools □ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Window Help		- 6 X
CORROY CORROY	Name	X Last Update Size P v1 19-Oct 44 15 07 52 19-Oct 44 14 50 50 19-Oct 44 12 15 20 17 KB 19-Oct 44 13 56 07 15 KB 12-Oct 04 13 56 07 15 KB 12-Oct 04 13 56 07 15 KB 12-Oct 04 13 56 07 15 KB 14-Oct 04 13 56 07 15 KB 14-Oct 04 13 56 07 15 KB 14-Oct 04 13 56 07 15 KB 15-Oct 04 13 56 07 15 KB 14-Oct 04 13 56 07 15 KB 14	

b) Copy the three server configuration files that are available on the same CD ROM into the **Chromel/Bin** directory of the computer.

c) Open the CHROMELEON Server Configuration. Load the server configuration file and check the COM port settings. Modify the configuration if necessary.

3.2.1 B Modifying Sequences and Programs

It is recommended that you do not modify the sequences provided on the CD ROM 'IQOQPQ on UltiMate[™] (Plus) Systems' (P/N 163935) unless it is absolutely necessary. Changing them may have an impact on the links with the report. However, it may be necessary to make modifications to correspond to the available hardware. If changes are made, take care that the sample names and numbers are not modified.

3.2.1.B.1 Choosing to perform OQ or PQ

The sequences required to perform the OQ/PQ on a Nano LC system have the extension '_NAN' in their names (e.g. XQ_6_Gradient Formation Test_NAN.seq). Sequences for a capillary LC system have the extension ' CAP' (FIGURE 3-2).

Name	∠ Title	Timebase
XQ_1_Wavelength Check_CAP.se	p	ULT_FMS
A XQ_2_UV Noise and Drift - Oven T	est_CAP.seq	ULT_FMS
XQ_3_UV Linearity_CAP.seq		ULT_FMS
Autosampler Reproducibility	/_CAP.seq	ULT_FMS
Autosampler Linearity_CAP	seq	ULT_FMS
A XQ_6_Gradient Formation Test_C/	AP.seq	ULT_FMS
PQ_OQ_LCP.rdf		

FIGURE 3-2 Modifying the Sequence Names

All sequence names start with the prefix 'XQ_'. Depending on the test that is to be performed, change 'XQ' to 'OQ' or 'PQ' (FIGURE 3-2). This will select the right limits for the report file. If you do not modify the name, the PQ limits will be selected.

3.2.1.B.2 Flow Sensor Support and CRP Value

All sequences are prepared to support the flow sensor option. If the system to be checked does not include the flow sensor, all relevant programs must be adjusted:

To change the programs for a using a fixed CRP value, identify the 'CRP' or 'CalibrateCRP' command in the program and remove the semicolon from the 'CRP' line and place it on the 'CalibrateCRP' line as presented below:

• Flow Sensor Support:

;CRP = 625 CalibrateCRP When = BeforeFirstSample

• Using a fixed CRP Value:

CRP = 625 ;CalibrateCRP When = BeforeFirstSample

3.2.1.B.3 FAMOS Cooling Option

All sequences are prepared to support the cooling option of the FAMOS. If the system to be checked does not include the cooling option, all relevant programs must be adjusted:

To change the programs for instruments for which do not have this option installed, identify the 'Sampler_TempCtrl' command and in the programs and add a semicolon to this line and the 3 following lines as presented below:

• FAMOS with Cooling Option:

;Commands for FAMOS with cooling option			
Sampler.TempCtrl =	On		
Sampler.Temperature.Nominal =	20.00		
Sampler.Temperature.LowerLimit =	5.00		
Sampler.Temperature.UpperLimit =	30.00		

• FAMOS without Cooling Option:

;Commands for FAMOS with cooling option			
;Sampler.TempCtrl =	On		
;Sampler.Temperature.Nominal =	20.00		
;Sampler.Temperature.LowerLimit =	5.00		
;Sampler.Temperature.UpperLimit =	30.00		

3.2.1.B.4 Oven Support

During the warm up sequence of the UV detector noise and drift test (Section 4.6) the oven accuracy is checked. If the current configuration does not include an oven, a different program must be used:

Depending on the test configuration (e.g. the Switchos is included or not),

- If the system includes an oven, run the 'warm up and oven test.pgm' (FIGURE 3-3).
- If the system does not include an oven, run the 'warm up.pgm' (FIGURE 3-3).

Nar	ne			/	Title	Timeba	se	Last Up	date
K	default.qnt						1	05-May-	04 14:48:3
2	Drift and Noise_CAP.pg	m				ULT_FN	//S	08-Oct-0	04 11:41:58
2	warm up and oven test.	pgm				ULT_FN	NS	19-Oct-0	04 15:26:10
2	warm up.pgm					ULT_FN	٨S	18-Oct-0	04 10:05:15
No	Name	Туре	Pol	lnj. Vol.	Program	Method	Status	Inj. I	Date/Time
1	System warm up	Blank	A1	1.00	warm up and ov	default	Single		
2	Drift and noise test	Blank	A2	1.00	Drift and Noise_	default	Single		

FIGURE 3-3 Selecting the proper Warm-up Program

3.2.1.B.5 Miscellaneous

The sequences for the test 4.10 and 4.12 include a stop flow method which reduces the time that the lamp is lit and minimizes solvent consumption. Select the status of these stop flow samples to 'single' (activated) or 'interrupted' (deactivated) to correspond to the test configuration (e.g. the Switchos is included or not).

3.2.1 C Report File

No changes should be made in the report file itself (PQ_OQ_LCP.rdf), except for the spreadsheets 'Specification' and 'Others tests'. These two spreadsheets allow entering of some test details (i.e. the serial numbers of the instruments) and the results of tests that were carried out manually (i.e. 4.2, 4.4, 4.5, 4.11, 4.13).

3.2.2 System Setup

The OQ/PQ procedure is similar for the different system configurations (e.g. NAN or CAP configuration). However, some parts are different and depend on the system configuration being tested (e.g. column, calibrator, connecting tubing, UV flow cell). Make sure that the system is configured properly. Please refer to the UltiMate user's manual for more information.

In addition, several test parameters used with the tests are different for the individual system configurations (e.g. flow rate, CRP value and injection volume). Refer to Section 3.2.1 and Chapter 6 for more details about how to setup CHROMELEON.

P

Note: Make certain that enough COM ports are available. For the Dual Gradient system with flow sensors, the FAMOS and the Switchos 9 COM ports are required (including the one required for the precision thermometer).

3.2.2 A UltiMate System

To prepare the UltiMate system for the OQ/PQ test procedures 4.4 to 4.10:

- a) Switch on the UV detector at least 1 hour before starting the tests to warm-up the instrument.
- b) Configure the system as required for the application (e.g. install the NAN calibrator cartridge and NAN connection tubing for a proper NAN setup).

Note: If the system does not include a UV Detector, a standalone instrument is required to perform the OQ/PQ procedures.

- c) Connect the appropriate restriction tubing to the port 6 of injection valve of the FAMOS Microautosampler ('column' port). Use P/N 163933 for the NAN configuration and P/N 163934 for the CAP configuration.
- d) Use the Microtight union and appropriate PEEK sleeves to connect the restriction tubing (360 μ m O.D.) to the flow cell inlet (280 μ m O.D.). Use P/N 161405 for the 360 μ m tubing and P/N 161498 for the 280 μ m tubing (e.g. for the flow cell).
- e) Prepare the solvents as presented in TABLE 3-4, and start helium sparging to degas the solvents. Thoroughly purge all channels.

TABLE 3-4	Required Solvents
-----------	--------------------------

Channel	Solvent
А	100% Water + 0.1% FA
В	99% Water + 0.1% FA + 0.8% acetone (NAN)
	99.5% Water + 0.1% FA + 0.3% acetone (CAP)
С	100% ACN + 0.1% FA (a)
D	100% Water + 0.1% FA
Note	a) The acetonitrile is used to perform a wash step during the FAMOS test procedure 4.8.

Caution: Older revisions of the UltiMate system may be equipped with the older type of the C and D solenoid valves (P/N160051). Due to their limited resistance against strong organic solvents, do not expose these valves to acetonitrile for a longer period than required to perform the wash cycle of test 4.8 (e.g. not longer than 4 h).

It is recommended that you perform the wash step separately and to use channel A or B on such systems. Alternatively, the system can be upgraded with the new valve type (P/N 162297). Refer to Service Information #036 for more details.

If an oven is included in the UltiMate system, install the temperature probe (P/N 163962) in the oven compartment using the supplied screw and washer (FIGURE 3-4) and connect the thermometer to a free COM port of the computer.

FIGURE 3-4 Installing the Temperature Probe

Note: Make certain that the low on battery indicator on the thermometer is not lit, because a weak battery may interrupt the sequence if serial communication is broken.

3.2.2 B FAMOS Microautosampler

To prepare the FAMOS Microautosampler for the OQ/PQ tests:

a) Position the caffeine standards of the OQ/PQ kit in the FAMOS sample rack as presented in TABLE 3-5.

Tray Position	Sample	
A2	0.25 µg/ml Caffeine	(CAP system only)
A3	0.5 µg/ml Caffeine	(CAP system only)
A4	1.0 µg/ml Caffeine	
A5	2.5 µg/ml Caffeine	
A6	5.0 µg/ml Caffeine	
A7	10.0 µg/ml Caffeine	
A8	20.0 µg/ml Caffeine	
B1	40.0 µg/ml Caffeine	(NAN system only)
B2	60.0 µg/ml Caffeine	(NAN system only)

TABLE 3-5Sample Positions in the Autosampler Rack

b) Use mobile phase A as the wash solvent (TABLE 3-4).

c) Degas the wash solvent. Helium sparging is strongly recommended.

d) Check that there is no air in the syringe and run a wash cycle on the instrument.

3.2.2 C Switchos Advanced Microcolumn Switching Unit

To prepare the Switchos Advanced Microcolumn Switching Unit for the OQ/PQ:

a) Prepare the Switchos with the following mobile phases

Solvent A:	0.1 % TFA in water
Solvent B:	0.1 % TFA in water
Solvent C:	0.1 % TFA in water
Solvent D:	0.1 % TFA in water.

- b) Connect a trap-column connecting tubing 30 μm ID x 15 cm (P/N 160182) to port 2 of switching valve A.
- c) Start helium sparging to degas the solvents.
- d) Thoroughly purge all channels as described in the user's manual of the instrument.

3.3 Performing the Checks

The OQ/PQ tests that need to be performed depend on the UltiMate system configuration. For a complete system (e.g. UltiMate, FAMOS and Switchos) all test procedures 4.2 to 4.13 must be performed. For different system configurations refer to TABLE 3-6.

Test	Description	Duration		Syster	n Config	guration	ľ
No.		(approx.)	UltiMate, FAMOS	UltiMate, FAMOS, Switchos	UltiMate without UV Detector (a)	UltiMate Dual Gradient (a)	UltiMate with Manual Injector (c)
	UltiMate and FAMOS test	S					
4.2	Lamp Intensity of the UV Detector	10 min	•	•	•	•	•
4.3	Wavelength Check	10 min	•	•	•	•	•
4.4	Flow Cell Check	10 min	•	•	•	•	•
4.5	UltiMate Fluid Path Test	15 min	•	•	•	•	٠
4.6	Baseline Noise and Drift Test of the UV Detector (d)	4 h	•	•	•	•	•
	Oven accuracy (e)		(•)	(•)	(●)	(●)	(●)
4.7	Linearity of the UV Detector	NAN: 64 min CAP: 32 min	•	•	•	•	•
4.8	Reproducibility of the Injection Volume	NAN: 72 min CAP: 36 min	•	•	•	•	
4.9	Linearity of the injection	NAN: 56 min CAP: 28 min	•	•	•	•	
4.10	Gradient Accuracy	NAN: 4.5 h CAP: 3 h	•	•	•	• • (b)	•
	Switchos Tests (if applicable)						
4.11	Switchos Fluid Path Check	15 min		•	•	•	
4.12	Switchos Flow Rate and Pressure Stability Test	15 min		•	•	•	
4.13	Switchos Valve Position Check	10 min		•	•	•	
Notes	 (a) Additional UV detector required. (b) The 'Gradient Accuracy Test' must be performed for both gradient pumps. Depending on the configuration, an additional CAP flow is required. (c) No FAMOS Microautosampler and no Switchos Unit included in the system configuration. 						

 TABLE 3-6
 Tests to be performed for the different System Configurations

d) Includes a wash cycle of the FAMOS injection valve.

(e) If included in the configuration.

TABLE 3-6 indicates the tests for the OQ and PQ procedure for different UltiMate system configurations. The time required to complete a test procedure is also indicated. The total time required for checking an entire system (e.g. UltiMate, FAMOS and Switchos) is approximately 13 hours. UltiMate Dual Gradient systems require that the test 4.10 must be performed for both gradient pumps. For the UltiMate Dual Gradient system the entire OQ/PQ requires approximately 17 hours.

For the OQ and PQ of UltiMate system configurations which does not include an UV detector or for the UltiMate Dual Gradient system, a standalone UV detector is required and all UV Detector related tests must be performed on this unit as described in this manual.

3.4 Evaluating the Tests

The templates provided with CD ROM 'IQOQPQ on UltiMate[™] (Plus) systems' and thus, all copies made from it for OQ and PQ are linked to the corresponding report. Do not change this report (except for items that are described in Section 4.14). In the report, many references link the separate data sheets. When lines or columns are inserted or deleted, the references are lost and thus, the calculations will be wrong!

To ensure that the data are correctly read and processed in the report, print the report as 'Batch Report' from the Browser. Select the sequence for which you want to print the report. Verify that 'no sample' is selected! Select 'Batch Report' on the 'File' menu and start printing by clicking 'OK'.)

For the system tests 4.3, 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 the pump- and (trap) columnpressure data is saved. These traces can be opened and reviewed from the CHROMELEON program.

For the tests 4.7, 4.8 and 4.9 it is essential to check the integration carefully. Manual integration of peaks may be required.

3.4.1 Repeating Tests

It may be necessary to repeat one or several tests. In this case, refer to Chapter 5 (Troubleshooting). This chapter describes problems due to which a check may have failed. According to GLP, a test which failed and all tests following the one which failed need to be repeated. Exception: there is no need to repeat UltiMate and FAMOS related tests if a Switchos test fails. The reason is that almost all checks require that the previous check be passed successfully. Example: If the UV detector linearity check fails, the results regarding the linearity of the injection volume are questionable because the detector linearity detector is a basic requirement for checking the injection volume.

Test Procedures

4.1 Overview

This section provides step-by-step instructions about how to perform and evaluate the various OQ/PQ tests. All tests, which must be performed and the order in which they must be performed are presented in TABLE 3-6. Tests which are not applicable for the current system configuration will be skipped (e.g. if the Switchos is missing in the current configuration, the tests 4.11 - 4.13 will not be performed).

The tests procedures 4.6 to 4.10 are using the same system setup as described in Section 3.2.2 A.

Testing of the UltiMate system and the FAMOS Microautosampler starts with a (manual) lamp check, followed by the automated wavelength check. After these tests are passed the condition of the flow cell and the fluid path are checked (again manually). From this point on the UltiMate and FAMOS the tests procedures 4.6 to 4.10 are automated. These automated tests are performed with the same system setup (Section 3.2.2 A).

Once all UltiMate system and FAMOS tests are performed, the Switchos unit will be tested (if included in the configuration).

4.2 Lamp Intensity of the UV Detector

The intensity of the UV lamp must be sufficient for correct detection sensitivity and baseline stability. If the lamp intensity is below the acceptance criteria, baseline instability problems may occur. For more information refer to the UltiMate service manual.

The absolute intensity of the lamp is not measured in this test, and deviations from lamp to lamp and from detector to detector are quite normal. The basic function of this test is to ensure that the output of the lamp is within an acceptable range.

4.2.1 Performing the Lamp Intensity Test

The lamp intensity values are presented in the SIGNAL screen of the SETUP menu.

To check the lamp intensity:

- a) Set the wavelength to 240 nm.
- b) Install the dummy cell and access the SIGNAL screen on the SETUP menu.

SIGNAL:	sig: 0.3485
 absorbtion 	ref: 0.1729

FIGURE 4-1 UV Detector SIGNAL Screen

- c) Monitor the signal value ('sig') and the reference value ('ref'). Both the signal and the reference values should be in the limits defined in TABLE 2-3.
- d) Fill in the appropriate field in the 'Other Tests' page of the QO/PQ report.

Note: If the values are not within the specifications, install a new lamp and perform the test again. If the values are still not within the specifications check/adjust the 'Integration Time' setting.

P

Note: This test must also be performed for <u>any</u> UV Detector that used for the OQ/PQ, even if it's not part of the UltiMate system.

4.3 Wavelength Check

The wavelength accuracy is measured by evaluating local maxima of absorbance on a holmium filter in the UV range. These results are compared with the ones provided on the certificate of the material.

4.3.1 Performing the Test

- a) Install the holmium filter (FIGURE 4-2) in the UV detector.
- b) Loosen the knurled screw (item 1, FIGURE 4-2) half a turn and pull the filter holder (item 2, FIGURE 4-2) out of the light path (just pull it out by 5 mm (0.2"), the filter holder remains in the filter body).
- c) Perform an autozero run. Either use the F8 key of CHROMELEON or press the 'Autozero' button of the UV detector.
- d) Place the filter back in its original position (all the way in the filter body), tighten the screw.
- e) Start the sequence 'XQ_1_Wavelength Check_NAN' (or '_CAP', respectively).
- f) Check the results in the CHROMELEON report. Verify that the reference values correspond to the values listed in the certificate provided with the holmium filter.

FIGURE 4-2 The Holmium Filter for the UV Detector

4.4 Flow Cell Check

The transmittance of the UV flow cell is important for proper detection sensitivity and baseline stability. The transmittance of the flow cell is read from the SIGNAL screen of the Setup menu of the UV detector (FIGURE 4-3).

SIGNAL:	sig: 0.1795
 absorbtion 	ref: 0.3429

FIGURE 4-3 UV Detector SIGNAL Screen

4.4.1 Performing the Intensity Test of the Flow Cell

To test the flow cell:

- a) Make certain that the flow cell to be tested is clean and flushed properly with mobile phase A.
- b) Set the wavelength to 240 nm.
- c) Access the SIGNAL screen on the SETUP menu.
- d) Monitor the Reference signal ('ref') and the Sample signal ('sig').
- e) Compare the result with the signal intensity limits presented TABLE 2-3 and fill in the appropriate field in the 'Other Tests' page of the QO/PQ report.

4.5 UltiMate Fluid Path Test

The UltiMate fluid path test is used to check the solenoids and the solvent delivery.

4.5.1 Performing the Test

- a) Fill each solvent bottle until the fluid level corresponds to the top of the UltiMate housing with the solvents specified in TABLE 3-4.
- b) Degas all solvents properly and purge all solvent channels.
- c) Disconnect the solvent inlet line from the pump head and connect the 250 μ l syringe (P/N 163241, the plunger should be removed) using an adapter (P/N 160259) as presented in FIGURE 4-4.

FIGURE 4-4 Placing the Syringe on the Solvent Inlet Line

- d) Enter the purge screen of the micro pump, set the flow rate to 0.0 ml/min and select channel A. The LED of channel A should be illuminated
- e) Measure the flow rate for one minute. The flow rate should be greater than 0.15 mL/min
- f) Repeat steps d) e) for solvent channels B, C and D.
- g) Switch off the pump. The flow should stop immediately.
- h) Verify the result with the limits presented in TABLE 2-3 and fill in the appropriate field in the 'Other Tests' page of the QO/PQ report.

4.6 Baseline Noise and Drift Test of the UV Detector and Oven Test

4.6.1 Drift and Noise

Note: This test must also be performed for <u>any</u> UV Detector that used for the OQ/PQ, even if it's not part of the UltiMate system.

Drift and baseline noise are important parameter for the UltiMate UV Detector. Increased baseline noise reduces the sensitivity considerably, as it is not possible to distinguish between low-level signals and noise. The baseline noise of the detector mainly depends on the lamp. There is a considerable increase in noise if an old lamp with poor light intensity is used or if the flow cell is dirty.

To minimize any effect from the flow cell, make sure that the measuring and ambient conditions are constant and that are no gas bubbles in the flow cell. In addition, it is very important that a new lamp has been burning for several hours. In the detector environment, avoid drafts and direct sunlight.

The detector baseline noise and drift test is performed at the following conditions:

- Flow cell installed (and filled with mobile phase A).
- $\lambda 1 = 254$ nm, $\lambda 2 = \lambda 3 = \lambda 4 = 0$ nm.
- Time Constant = 2 sec.
- Data Acquisition Rate = 1 Hz.
- Data Acquisition Length = 20 min.

FIGURE 4-5 shows a typical result from the noise and drift test.

FIGURE 4-5 Typical UV Detector Noise and Drift Result (254 nm)

4.6.2 Theory of the Noise and Drift Calculation of CHROMELEON

CHROMELEON calculates the results of the Noise and Drift test as follows:

- Signal Noise All data points recorded during a 60 seconds segment of a chromatogram form the basis for determining the noise value. CHROMELEON calculates a regression line using the method of least squares, then determines the maximum distance of two data points above and below the line. (When calculating the regression line, all data points are weighted with their corresponding step unless the step is equidistant.) Adding both values supplies the noise value. The noise intensity read in the report is the average noise calculated using 20 segments.
- **Drift** To compute the drift, a regression line is drawn through all data points. The slope of the regression line is the calculated drift. Therefore, to compute the drift, always select a baseline range in which no peaks occur.

4.6.3 Oven accuracy

The temperature in the Ultimate oven is monitored by the P600 Precision Thermometer $(P/N \ 163961)$. The readout of the built-in sensor is compared with the read-out of the thermometer.

FIGURE 4-6 Typical Result of the Oven Test

4.6.4 Performing the UV Detector Drift and Noise Test and the Oven Test

To perform the Drift and Noise Test:

- a) Install the flow cell and let the baseline stabilize.
- b) Install the appropriate connection tubing between the Ultimate and the FAMOS injection valve and connect the restriction capillary that is provided to the outlet of the flow cell as described in Section 3.2.2 A.
- c) Set the pump to the appropriate flow rate. Use 0.4 μ L/min for a NAN version and 4 μ L/min for CAP configuration and start the flow delivery of the UltiMate Micropump from the CHROMELEON control panel.
- d) If the system includes a flow sensor, perform a manual calibration of the CRP value at this point (e.g. use the F8 key) and execute the 'CalibrateCRP' command from the 'UltiMate_System/Pump/Pump_FlowSensor' menu. The CRP value should be close to 625 for NAN system or 50 for a CAP system, respectively. The CRP value should not vary by more than ± 10 %.
- e) After equilibration start the sequence 'XQ_2_UV_Noise and Drift Oven Test_NAN' (or '_CAP', respectively).
- f) Make certain to run the appropriate 'Warm up' program before (Section 3.2.1.B.3).
- g) Verify that all parameters meet the acceptance criteria (TABLE 2-3). Discard data if appropriate (Section 4.14).

Note: When a new lamp is installed, optimum performance is obtained after the lamp has been used for approximately 24 hours. If this test performed on a new lamp, the noise and drift levels will be larger than the specified values.

4.7 Linearity of the UV Detector

The detector linearity is measured by injecting the different caffeine standards of the OQ/PQ kit (P/N 16395) as presented in TABLE 3-5. The resulting peak height is used for the calculation. An example of an injection (0.2 μ L) of a caffeine standard of 20 μ g/mL onto a Nano UltiMate system is shown in FIGURE 4-7.

FIGURE 4-7 UV Trace of the Injection of Caffeine onto a Nano UltiMate System

An example of a calibration curve is shown in FIGURE 4-8.

FIGURE 4-8 Example of a Calibration Curve -Nano LC system, 99.93 % Correlation Coefficient

4.7.1 Performing the UV Detector Linearity Test

Depending on the system configuration, the 'UV Detector linearity_NAN' or 'UV Detector linearity_CAP' sequence is used to perform the detector linearity test. The detector linearity is determined at 272 nm using caffeine standard samples with different concentrations:

- CAP configuration: 0.25, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0 $\mu g/mL$
- NAN configuration: 1.0, 2.0, 5.0, 10.0 , 20.0, 40.0 and 60.0 $\mu g/mL$

Install the samples in their proper positions in the FAMOS autosampler rack (TABLE 3-5). TABLE 2-1 presents the conditions for the linearity test for the two different system configurations.

Parameter	Nano Configuration	Capillary Configuration
Detection wavelength	272 nm	272 nm
Run time	8 min	4 min
Flow rate	0.4 μL/min	4.0 μL/min
CRP	625	50
Injection loop	1.0 μL	1.0 μL
Injection type	Partial Loop Fill, 0.2 μ L	Partial Loop Fill, 0.5 μ L

TABLE 4-1 Experimental Conditions – UV Detector Linearity

To perform the UV Detector linearity test:

- a) Setup the UltiMate system and the FAMOS Microautosampler as discussed in Sections 3.2.2 A and 3.2.2 B.
- b) Start the flow delivery of the UltiMate Micropump from the CHROMELEON control panel.
- c) After equilibration, start the sequence 'XQ_3_UV_Linearity_NAN' (or '_CAP', respectively).

To evaluate the result of the 'UV Detector linearity Test':

- a) Use the quantization file 'caffeine.qnt'.
- b) Check the integration and correct if necessary.
- c) Verify that the correlation coefficient meets the acceptance criteria (TABLE 2-3).

4.8 Reproducibility of the Injection Volume

For the injection reproducibility 8 consecutive partial loop injections of a standard solution of caffeine (20.0 μ g/ml for NAN and 5.0 μ g/ml for CAP) are performed. The peak area is used for the calculation of the injection reproducibility.

4.8.1 Performing the Test

- a) Setup the UltiMate system and the FAMOS Microautosampler as discussed in Sections 3.2.2 A and 3.2.2 B.
- b) Start the flow delivery of the UltiMate Micropump from the CHROMELEON control panel.
- c) After equilibration start the sequence 'XQ_4_Autosampler Reproducibility_NAN' (or '_CAP', respectively).

Parameter	Nano Configuration	Capillary Configuration
Detection wavelength	272 nm	272 nm
Run time	8 min	4 min
Flow rate	0.4 μL/min	4.0 μL/min
CRP	625	50
Injection loop	1.0 μL	1.0 μL
Injection type	Partial Loop Fill, 0.2 µL	Partial Loop Fill, 0.5 μ L

TABLE 4-2 Experimental Conditions – Repro Injection Volume

To evaluate the result of the 'Reproducibility of the Injection Volumes Test':

- a) Use the quantization file 'caffeine.qnt'.
- b) Check the integration and correct if necessary.
- c) Calculate the correlation coefficient.
- d) Verify that the correlation coefficient meet the acceptance criteria (TABLE 2-3).

4.9 Linearity of the injection

The injection linearity is measured by injecting different amounts of the same caffeine standard. The resulting peak area is used for the calculations.

An example of a calibration curve is presented in FIGURE 4-9.

FIGURE 4-9 Example of a Calibration Curve -Nano LC system, 99.96 % Correlation Coefficient

4.9.1 Performing the Test

- a) Setup the UltiMate system and the FAMOS Microautosampler as discussed in Sections 3.2.2 A and 3.2.2 B.
- b) Start the flow delivery of the UltiMate Micropump from the CHROMELEN control panel.
- c) After equilibration start the sequence 'XQ_5_Autosampler Linearity_NAN' (or '_CAP', respectively).

Parameter	Nano Configuration	Capillary Configuration
Detection wavelength	272 nm	272 nm
Run time	8 min	4 min
Flow rate	0.4 μL/min	4.0 μL/min
CRP	625	50
Injection loop	1.0 μL	1.0 μL
Injection type	Partial Loop Fill, 0.2 μ L	Partial Loop Fill, 0.5 μ L

TABLE 4-3 Experimental Conditions – Repro Injection Volume

To evaluate the result of the 'Linearity of the Injection' Test:

- a) Use the quantization file 'caffeine.qnt'.
- b) Check the integration and correct if necessary.
- c) Calculate the correlation coefficient.
- d) Verify that the correlation coefficient meet the acceptance criteria (TABLE 2-3).

4.10 Gradient Accuracy

The gradient accuracy is tested by performing a step gradient. Water with a trace of acetone is mixed with pure water. Detection of the acetone is performed at 254 nm. Different gradient programs are used for the NAN and the CAP configurations (the NAN program lasts 80 minutes while the CAP program is 50 minutes).

Typical examples of the step gradient profiles are presented in FIGURE 4-10 (NAN configuration) and in FIGURE 4-11 (CAP configuration).

FIGURE 4-10 Typical Step Gradient Profile – NAN Configuration

FIGURE 4-11 Typical Step Gradient Profile – CAP Configuration

The steps (items a- d, FIGURE 4-10) are quantified by measuring the UV absorbance difference. The step delay (item e, FIGURE 4-10) represents response time of the gradient formation and indicates that the volume of the tubings are correct.

The programs used for the gradient accuracy tests are listed in TABLE 4-4 and TABLE 4-5.

Time	% A	% B	Wavelength
[min]			[nm]
0.00	100	0	254
10.00	100	0	Ш
10.01	95	5	Ш
20.00	95	5	Ш
20.01	50	50	Ш
30.00	50	50	Ш
30.01	5	95	Ш
40.00	5	95	Ш
40.01	0	100	Ш
50.00	0	100	Ш
50.01	100	0	Ш
80.00	100	0	Ш

TABLE 4-4 Program for the Gradient Accuracy Test on a NAN Configuration

TABLE 4-5Program for the Gradient Accuracy Test on a CAP Configuration

Time [min]	% A	%B	Wavelength [nm]
0.00	100	0	254
5.00	100	0	Ш
5.01	95	5	Ш
10.00	95	5	Ш
10.01	50	50	Ш
15.00	50	50	Ш
15.01	5	95	Ш
20.00	5	95	Ш
20.01	0	100	Ш
25.00	0	100	Ш
25.01	100	0	"
50.00	100	0	"

Experimental conditions for the step gradient test for nano- and capillary LC systems are listed in TABLE 4-6.

τΔRI E 4-6	Experimental	Conditions for	the 9	Sten	Gradient	Test
TADLE 4-0	Experimental	Conditions for	the .	Step	Glaulent	rest.

Parameter	Nano Configuration	Capillary Configuration		
Solvents	A: HPLC – Water	A: HPLC – Water		
	B: HPLC – Water with Acetone			
	C: 100% ACN + 0.1% FA (a)			
	D: 100% Water + 0.1% FA			
Acetone concentration of	0.8%	0.3%		
Solvent B				
Detection wavelength	254 nm	254 nm		
Run time	80 min	50 min		
Flow rate	0.4 μl/min	4.0 μl/min		
Note:	 a) The acetonitrile is used to perform a wash step during the FAMOS test procedure 4.8. 			

4.10.1 Performing the Test

- a) Setup the UltiMate system and the FAMOS Microautosampler as discussed in Sections 3.2.2 A and 3.2.2 B and TABLE 4-6. Degas the solvents properly.
- b) The four channels should be well flushed using the Purge function of the Micropump.
- c) Start the flow delivery of channel B from the CHROMELEON panel and monitor the baseline until it is stable.
- d) After equilibration start the sequence 'XQ_6_ Gradient Formation Test_NAN' (or '_CAP', respectively).

Note: If the maximum absorbance observed during this test is greater than the highest absorption monitored during the linearity test (4.7), dilute B (or D) with mobile phase A so that the signal remains on scale when this test is run.

- e) Verify that the results meet the acceptance criteria (TABLE 2-3).
- f) Repeat steps (a) and (h) for the Gradient Pump 2 of the UltiMate Dual Gradient system (if applicable).

4.11 Switchos Fluid Path Check

The Switchos path test is to check if the solvent selection valve close and open properly and if the resistance of the flow path is within the specifications.

4.11.1 Performing the test

To determine if all flow paths are within the specifications:

- a) Prepare the Switchos with the mobile phases listed in Section 4.12.1 and degas them properly. Purge all four channels.
- b) Disconnect the solvent inlet line from the pump head and connect the 250 μ l syringe (P/N 163241, the plunger should be removed) using an adapter (P/N 160259) as presented in FIGURE 4-12.

FIGURE 4-12 Placing the Syringe on the Solvent Inlet Line

- c) Set the flow rate to 0.00 mL/min and set the Switchos in LOCAL mode.
- d) Select solvent channel A by the **SSV** button on the rear. The LED 'A' should be illuminated.
- e) Measure the flow rate from the inlet tubing for one minute.
- f) Repeat steps d) and (e) for each solvent line.
- g) Verify that the results meet the acceptance criteria (TABLE 2-3) and fill in the appropriate field in the 'Other tests' page of the report.

4.12 Switchos Flow Rate and Pressure Stability Test

The Switchos is used for pre-concentration experiments. A stable loading flow is essential for the sample transport to the trap column. The flow rate and pressure stability are checked with a CHROMELEON program. A typical pressure profile for this test is presented in FIGURE 4-13.

FIGURE 4-13 Typical Pressure Profile of the Switchos Loading Pump

4.12.1 Performing the test

- a) Open the Helium shut-off valve on the bottle cap assembly and degas the solvent.
- b) The four channels should be well flushed using the Purge function of the pump.
- c) Connect a 30 μm I.D. tubing (P/N 160182) to port 2 of the Switchos valve A.
- d) Connect the Switchos output to the port 1 of the Switchos valve A using a 130 μm l.D. tubing (P/N 160180).
- e) Connect port 10 to waste using the same type of tubing.
- f) Start the Switchos pump from the panel.
- g) After equilibration start the sequence 'XQ_7_Switchos Pump Test_NAN' (or '_CAP', respectively).
- h) Measure the flow rate with a syringe and chronometer watch for 5 min
- i) Verify that the parameters meet the specifications presented in TABLE 2-3 and fill in the appropriate field in the 'Other Tests' page of the report. The result for the pressure stability test is on the 'Switchos' page of the report.

4.13 Switchos Valve Position Check

The proper functioning of the switching valves is checked in local control mode. The local/remote switch can be found on the back panel of the Switchos.

4.13.1 Performing the Test

- a) Put the Switchos in LOCAL mode.
- b) Switch valve A and valve B from position '1-2' to position '10-1' using the manual control button on the front panel.
- c) Connect a syringe adapter ((P/N 160259) to port 1 of valve A.
- d) Flush with a 250 μl syringe water through port 1 into port 10.
- e) Verify that the valve position corresponds to the LED indicator.

4.14 Completing and Printing the OQ/PQ Report

4.14.1 Result of the Gradient Accuracy Test

The observed delay time may be slightly different than the expected delay time indicated in (TABLE 4-7) because of small differences in the tubing size due to the manufacturing process. Due to this the calculated result of the 'Gradient Accuracy' test (Section 4.10) may be wrong and the system may not pass the test. In such a case the delay times should be checked and adjusted if necessary. This applies for the 5%, 50%, 95% and 100% steps or if the result is not within the specifications only.

TABLE 4-7	Predefined	Sten	Delay	Time
	ricucinicu	otop	Dulay	111110

Step	NAN	САР
5 %	17.0 18.0 min	8.0 9.0 min
50 %	27.0 28.0 min	13.0 14.0 min
95 %	37.0 38.0 min	18.0 19.0 min
100 %	47.0 48.0 min	23.0 24.0 min

To change the delay time:

- a) Open the UV-trace obtained for the third step gradient (out of 3)
- b) Measure the retention times corresponding to the middle of 5%, 50%, 95% and 100% steps.
- c) Select the report layout. Open the 'Pump Gradient' sheet and go to line 137.
- d) Make sure to modify the correct columns only (FIGURE 4-14):
 - D, E, F, G for capillary (CAP) configurations
 - J, K, L, M for nano (NAN) configurations

132										
133	Calculation of Gradi	entaccura	cy and -repr	roducibility:						
134										
135										
136										
137		Observed	Values for Pu	mp in capilla	ry mode			Observed Value	s for pump in r	nano mode
138	Name	Signal Step	Signal Step 5	Signal Step 50	Signal Step 95	Signal Step 100	Sig	Signal Step Start	Signal Step 5	Signal Step 50
140		mAU	mAU	mAU	mAU	mAU	m.A	mAU	mAU	mAU
141										
142		UV_VIS_1	UV_VIS_1	UV_VIS_1	UV_VIS_1	UV_VIS_1	UV	UV_VIS_1	UV_VIS_1	UV_VIS_1
143	Equilibration	0.006	-0.061	29.291	1.391	0.501	n.a	-0.065	29.291	1.201
144	Nan low pressure gradient	-0.088	-0.224	0.751	16.700	30.724	1	-0.243	0.751	17.003
145	Nan low pressure gradient	-0.073	-0.240	1.318	16.929	30.714	1	-0.259	1.318	17.242
146	Nan low pressure gradient	-0.086	-0.274	1.284	16.802	30.636	1	-0.286	1.284	17.128
147	stop	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a.	n.a.
148										
149										

Note: The first part is dedicated to cap LC and the other to Nano LC.

FIGURE 4-14 Section of the Report Table to be modified

e) Double click on each column to open the Properties Report Column box (FIGURE 4-15).

Categories:			Variables:		
General Sequence Sample Audit Trail		Channel Name	~	OK	
		Raw Data File Path Name Number of Peaks Select Peak Count Peaks If	=	Cancel	
Chromatogr	am		Sum Peak Results If		Customize
Detection Parameters Peak Results Peak Calibration Peak Table		Start Time (relative to Inject Time) End Time (relative to Inject Time) Signal Value Signal Dimension		1	
Peak Purity Ouantificatio	and Identification	~	Signal Noise Sample Rate	~	Explain Variable
Formula chm.sig_value("averag		e'', 8, 9)		Parameter	
Header	"Signal Step 5 "				
Dimension	chm.sig_dim				
Format	0.000				
Peak			Channel -		
© Select	ed Peak		@ Select	ted Chani	nel
C Excell	Deslate			a	
O Fixed I	reak(s).			Channel(s) 0 v _ v 10 _ 1

FIGURE 4-15 The Properties Report Column Box

- f) Check that the segment that is used for calculation is in the middle of the step.
- g) Modify the values in the 'Formula' field (FIGURE 4-15). Each segment used for the calculation is defined by a start and a stop time (e.g. in the example in FIGURE 4-15 starts at 8 minutes and ends at 9 minutes).
- h) Check that the test result is correct and save the report.

4.14.2 Completing the Cover Page and Printing

Some of the instrument parameters required for the report can not be completed automatically by CHROMELEON and require manual input (e.g. customer information, S/N of the FAMOS Microautosampler).

To complete the 'Basic Tests' page of the report:

- a) Open the report (PQ_OQ_LCP.rdf).
- b) Choose the 'Specifications' sheet.
- c) Select the 'Instruments' section and enter the missing information (e.g. S/N of the FAMOS, flow cell, thermometer, etc.).
- d) Select the 'Additional Information' section and enter the customer information (e.g. name, operator, position, etc.).
- e) Choose the 'Other Tests' sheet and enter the result of the manual tests (e.g. Section 4.2, 4.3, 4.4, etc.).
- f) Check the result of the Gradient Accuracy Test as described in Section 4.14.1.
- g) Save the report.
- h) Print the report using the 'Batch Report' option form the 'File' menu.

Troubleshooting

5.1 Overview

This section provides troubleshooting information which is related to the OQ/PQ procedures. More information about instrument specific troubleshooting (e.g. what do if an instrument performs not within its specifications) is provided in the documentation shipped with the instruments and in the service manuals available for the instruments.

5.2 Sample and Mobile Phase Considerations

To optimize performance of the system, we recommend that all samples and mobile phases are free of particulate matter. Samples and mobile phases should be filtered through a 0.22 μ m membrane filter. The filter should be checked to ensure that extractable materials are not present.

Caution: It is strongly recommend that only bottled HPLC grade water and HPLC grade solvent be used for these tests. If water from water purification systems is used, polymeric contamination may seriously damage the flow cell. This is especially true if sample preconcentration or 2D separations are performed. This polymeric contamination may also seriously damage the flow cell (e.g. coating of the capillary walls).

After you have finished using the system, flush the system with a water/methanol or water/acetonitrile mobile phase before shutting it down.

The solvents must be degassed via the He degassing technique described before. If other techniques are used (e.g. vacuum degassing) the performance of the system will be seriously degraded and the performance specifications will not be obtained.

Note: The pump head of the Micropump should be backflushed with iso-propanol/water (1:1). If crystalline materials are deposited in the pump head, irreversible damage to seals and or the piston may result; this will dramatically shorten the life of these components.

Caution: Older revisions of the UltiMate system may be equipped with the older type of the C and D solenoid valves (P/N160051). Due to their limited resistance against strong organic solvents, do not expose these valves to acetonitrile for a longer period than required to perform the wash cycle of test 4.8 (e.g. not longer than 4 h).

It is recommended that you perform the wash step separately and to use channel A or B on such systems. Alternatively, the system can be upgraded with the new valve type (P/N 162297). Refer to Service Information #036 for more details.

5.3 Probable Causes and Solutions

Test Procedure	Problem	Probable Cause	Solution
All	No enough COM ports available.	• -	Control Switchos valves by event outputs.
Lamp Intensity of the UV Detector (4.2)	Intensity values too low.	 Old lamp. Wrong wavelength. Integration time too low. 	Replace.Check/change.Check/adjust.
Wavelength Check (4.3)	Failed.	Filter not in the optical path.	Check filter position.
Flow Cell Check (4.4)	Intensity values too low.	See above (4.2).Dirty flow cell	See above (4.2).Clean/replace.
UltiMate Fluid Path Test (4.5)	Flow rate too low.	Solvent filter clogged.	Check/replace.
Baseline Noise and Drift Test of the UV Detector (4.6)	Drift too high.	Old lamp.	Replace.
Oven accuracy (4.6)	Temperature readout not within the specifications.	Temperature probe not properly installed.	 Install properly (e.g. use a 4 mm screw).
Linearity of the UV Detector (4.7)	Signal is out of range.	Acetone concentration too high.	Dilute with mobile phase A.
Reproducibility of the Injection Volume	'Ghost" peak before the caffeine peak.	 Contaminated injection valve 	 Extend wash step. Sonicate rotor and stator in CAN for 10 min.
(4.8) Linearity of the injection	Caffeine peak shows some 'spikes', improper integration.	• Air in the syringe.	 Check syringe speed and time constant (Chapter 6).
(4.9)		Air in the syringe.Air at the bottom of the sample vial.	Purge syringe,Remove air.
Gradient Accuracy	Considerable drift of the 95% to 100% B steps.	• No/too little formic acid in mobile phase A and B.	Check/replace solvents.
(4.10)	Result not within specification	Wrong delay time.Hardware.	 Check/modify. Check filter, valves, etc.
Switchos Fluid Path Check (4.11)	Flow rate too low.	• See above (4.5).	• See above (4.5).
Switchos Flow Rate and Pressure Stability Test (4.12)	Pulsation too high.	 Check valve not working properly. 	Clean/replace.
Switchos Valve Position Check (4.13)	Both position LEDs are illuminated at the same time.	 Improper initialization or faulty controller. 	See Service Information #043.

CHROMELEON[®] Listings

6.1 Overview

The CD ROM 'IQOQPQ on UltiMate[™] (Plus) Systems' (Version 1) provides ready-to-use CHROMELEON programs and sequences (FIGURE 6-1), which will allow easy control of the standard UltiMate system configurations. Please refer to Section 3.2.1 for modifications which may be necessary due to a different hardware configuration.

ile Edit View Workspace Qualification Batch Tools	s W	ndow Help				_
	1 18					
		News		ll ant lladate	0	
	^	Name	A	Last Opdate	SIZE	
- DGU_FM5_SVV_NAN-CAP VI		DGU_FMS_SW_NAN-CAP VI		19-Oct-04 16:07:52		
XQ_1_Wavelength Check_NAN				19-UCt-04 14:58:50		
XQ_2 OV NOSE and Drit - Oven rest_NAN		ULT EMS SW/ CARyd		19-Oct-04 14:58:53		
XQ_3_0V Lifedity_NAN		ILLT EMS SW NAN VI		19-Oct-04 14:59:02		
XQ_4_Autosampler Reproducibility_IVAN		00 PO DGU EMS SW pan		19-Oct-04 16:24:52	23 KB	
XQ_5_Autosampler Enteanty_NAN		OQ PQ ULT FMS SW.pan		19-Oct-04 12:15:20	17 KB	
VO_6_Cradient Formation Test Pump2_CAL	D	OQ PQ ULT FMS.pan		12-Oct-04 13:56:07	15 KB	
XQ_6_Gradient Formation Test Pump2_CAP	r.					
DIT ENC CAD VI						
VO 1 Wavelength Check CAP						
XQ_1_Wavelengui Check_CAP						
XQ_2_OV Noise and Drift - Oven rest_CAP						
XQ_5_0V Lifedity_CAP						
XQ_4_Autosampler Lipearthy CAP						
VO 6 Gradient Formation Test CAP						
ILT EMS NAN v1						
WAY VI						
2 VO 2 LIV Noise and Drift - Oven Test NAN						
2 VO 3 UV Linearthy NAN						
XO 4 Autosampler Reproducibility NAN						
XQ_1_/utosampler heproducibility_rutu						
XO 6 Gradient Formation Test NAN						
E III T EMS SW CAP v1						
Wavelength Check CAP						
XO 2 LIV Noise and Drift - Oven test CAP						
T XO 3 LIV Linearity CAP						
XQ 4 Autosampler Reproducibility CAP						
XO 5 Autosampler Linearity CAP						
XQ_6_Gradient Formation Test_CAP						
XO 7 Switchos Pump test CAP						
E ULT EMS SW NAN v1						
The XO 1 Wavelength Check NAN						
A XO 2 UV Noise and Drift - Oven Test NAN	=					
XO 3 UV Linearity NAN						
XO 4 Autosampler Reproducibility NAN						
XO 5 Autosampler Linearity NAN						
M XO 6 Gradient Formation Test NAN						
T XO 7 Switchos Pump Test NAN						

FIGURE 6-1 Available CHROMELEON Sequences for OQ/PQ

The following sections lists the CHROMELEON programs used to run a UltiMate system in NAN configuration with a flow sensor installed in conjunction with a FAMOS Well Plate Microautosampler (cooling option installed) and a Switchos Advanced Microcolumn Switching Unit.

6.2 Wavelength Check (NAN Configuration)

Sequence: XQ_1_Wavelength Check_NAN

;Program file for wavelength check ;System must be setup for Nano LC experiments ;Program version 08/10/2004

Sampler.TempCtrl =	Off
Oven.TempCtrl =	Off
pump.%A.Equate =	"100% water + 0.1% FA"
%B.Equate =	"Mob. phase A + 0.8% acetone"
%C.Equate =	"%C"
%D.Equate =	"%D"
Diameter =	75um
Length =	15cm
StationaryPhase =	C18 3um 100A
; No automatic CRP calibration!	
MasterPressure.LowerLimit =	0.0
MasterPressure.UpperLimit =	400.0
ColumnPressure.LowerLimit =	0.0
ColumnPressure.UpperLimit =	200.0
TrapColumnPressure.LowerLimit =	0.0
TrapColumnPressure.UpperLimit =	200.0
InjectMode =	FullLoop
LowDispersionMode =	Off
UseAirSegment =	Off
UseHeadSpace =	Off
SyringeSpeed =	Low
SyringeSpeedFactor =	0.1
SampleHeight =	4
FlushVolume =	5.0
WashVolume =	50
RinseBetweenReinjections =	Yes
Data_Collection_Rate =	2
pump.Flow =	0.000
%B =	0
%C =	0
%D =	0
;Settings for UV detector	
Data_Collection_Rate =	2
UV_VIS_1.Wavelength =	254
TimeConstant =	2.0

0.000 Wait

Inject Wavelength_Check UV_VIS_1.AcqOn UV.Ready and Pump.Ready and Pump_FlowSensor.Ready and Sampler.Ready

1.00 UV_VIS_1.AcqOff End

6.3 Noise and Drift Test (NAN Configuration)

	Sequence: XQ_2 UV Noise and Drift - Oven Test_NAN		
	Wait Program file for drift and noise test	Sampler.Ready	
	;System must be setup for Nano LC ex ;Program version 08/10/2004	periments	
	;Settings for restrictor (320cm, 15um I	D)	
	Diameter =	75um	
	Length =	15cm	
	StationaryPhase =	C18_3um_100A	
	;CRP =	625	
	CalibrateCRP	When = BeforeFirstSample	
	;ParkPercentage =	Disabled	
	;Pump limits settings		
	MasterPressure.LowerLimit =	0.0	
	MasterPressure.UpperLimit =	400.0	
	Pump.columnPressure.LowerLimit = 0 .	0	
	Pump.columnPressure.UpperLimit = 20	0.0	
	TrapColumnPressure.LowerLimit =	0.0	
	TrapColumnPressure.UpperLimit =	200.0	
	;Settings for UV detector	0	
		2	
	$UV_VIS_I.vvavelength =$	254	
	limeConstant =	2.0	
	;FAMOS settings	Sampler Peadu	
	vvalt InigetMede		
	injectivide =	Fulloop	
	Commanus for FAMOS with cooling of		
	Sampler Temporature Nominal –	20.00	
	Sampler Temperature Lowert imit –	5.00	
	Sampler Temperature Upper limit –	30.00	
		30.00	
	;Virtual channel settings	Formula – masteroressure value	
	pump_pressure.rvne =	Analog	
	column pressure Formula	Formula = numn columnnressure value	
	column pressure.Type =	Analog	
	/	C C	
	;Ultimate pump settings		
	Pump.%A.Equate =	"100% water + 0.1% FA"	
	Pump.%B.Equate =	"Mob. phase A + 0.8% acetone"	
	Pump.%C.Equate =	"%C"	
	Pump.%D.Equate =	"%D"	
	Pump.Flow =	0.4	
	%B =	0	
	%C =	0	
	%D =	0	
0.000	Wait	IN Roady and Pump Poody and Complet Poody	
0.000	wait	and pump_flowsensor.ready	
	Inject		

UV_VIS_1.AcqOn pump_pressure.AcqOn column_pressure.AcqOn

21.000 UV_VIS_1.AcqOff pump_pressure.AcqOff column_pressure.AcqOff

End

6.4 UV Linearity (NAN Configuration)

Sequence: XQ_3_UV Linearity_NAN		
Wait ;Program file for UV linearity test ;System must be setup for Nano LC ex	Sampler.Ready periments	
;Program version 08/10/2004		
;Settings for restrictor (320cm, 15um I Diameter = Length = StationaryPhase = ;CRP = CalibrateCRP ;ParkPercentage =	D) 75um 15cm C18_3um_100A 625 When = BeforeFirstSample Disabled	
;Pump limits settings MasterPressure.LowerLimit = MasterPressure.UpperLimit = Pump.columnPressure.LowerLimit = 0. Pump.columnPressure.UpperLimit = 20 TrapColumnPressure.LowerLimit = TrapColumnPressure.UpperLimit =	0.0 400.0 0 0.0 0.0 200.0	
;Settings for UV detector Data_Collection_Rate = UV_VIS_1.Wavelength = TimeConstant =	2 272 2	
<pre>;FAMOS settings Wait InjectMode = LowDispersionMode = UseAirSegment = UseHeadSpace = RinseBetweenReinjections = SyringeSpeed = SyringeSpeedFactor = SampleHeight = FlushVolume = ;Commands for FAMOS with cooling op ;Sampler.TempCtrl = ;Sampler.Temperature.Nominal = ;Sampler.Temperature.LowerLimit = ;Sampler.Temperature.UpperLimit = ;Virtual channel settings pump_pressure.Formula pump_pressure.Type =</pre>	Sampler.Ready Partial Off Off Off Yes Low 0.1 9 5.0 50 otion On 20.00 5.00 30.00 Formula = masterpressure.value Analog	
column_pressure.Formula column_pressure.Type =	Formula = pump.columnpressure.value Analog	
;Ultimate pump settings Pump.%A.Equate = Pump.%B.Equate = Pump.%C.Equate =	"100% water + 0.1% FA" "Mob. phase A + 0.8% acetone" "%C"	

CHROMELEON Listings

	Pump.%D.Equate = Pump.Flow = %B = %C = %D =	"%D" 0.4 0 0 0
0.000	UV.Autozero Wait Inject UV_VIS_1.AcqOn pump_pressure.AcqOn column_pressure.AcqOn	Sampler.Ready and UV.Ready and Pump.Ready and pump_flowsensor.ready
8.00	UV_VIS_1.AcqOff pump_pressure.AcqOff column_pressure.AcqOff	
	End	

6.5 Autosampler Reproducibility (NAN Configuration)

Sequence: XQ 4 Autosampler Reproducibility NAN Wait Sampler.Ready ;Program file for injection reproducibility test ;System must be setup for Nano LC experiments ;For this test time constant is 0.5 instead of 2.0 ;Program version 08/10/2004 ;Settings for restrictor (320cm, 15um ID) Diameter = 75um Length = 15cm StationaryPhase = C18 3um 100A ;CRP = 625 CalibrateCRP When = BeforeFirstSample ;ParkPercentage = Disabled ;Pump limits settings 0.0 MasterPressure.LowerLimit = 400.0 MasterPressure.UpperLimit = Pump.columnPressure.LowerLimit = 0.0Pump.columnPressure.UpperLimit = 200.0 TrapColumnPressure.LowerLimit = 0.0 TrapColumnPressure.UpperLimit = 200.0 ;Settings for UV detector 2 Data Collection Rate = UV VIS 1.Wavelength = 272 TimeConstant = 0.5 ;FAMOS settings Sampler.Ready Wait InjectMode = Partial LowDispersionMode = Off UseAirSegment = Off Off UseHeadSpace = RinseBetweenReinjections = Yes SyringeSpeed = Low SyringeSpeedFactor = 0.1 SampleHeight = 9 FlushVolume = 5.0 WashVolume = 50 ;Commands for FAMOS with cooling option ;Sampler.TempCtrl = On ;Sampler.Temperature.Nominal = 20.00 ;Sampler.Temperature.LowerLimit = 5.00 ;Sampler.Temperature.UpperLimit = 30.00 ;Virtual channel settings pump pressure.Formula Formula = masterpressure.value pump pressure.Type = Analog column pressure.Formula Formula = pump.columnpressure.value column pressure.Type =Analog

;Ultimate pump settings "100% water + 0.1% FA" Pump.%A.Equate =

CHROMELEON Listings

	Pump.%B.Equate = Pump.%C.Equate = Pump.%D.Equate = Pump.Flow = %B = %C = %D =	"Mob. phase A + 0.8% acetone" "%C" "%D" 0.4 0 0 0
0.000	UV.Autozero Wait Inject UV_VIS_1.AcqOn Pump_pressure.AcqOn Column_pressure.AcqOn	Sampler.Ready and UV.Ready and Pump.Ready and pump_flowsensor.ready
8.00	UV_VIS_1.AcqOff Pump_pressure.AcqOff Column_pressure.AcqOff	

End

6.6 Autosampler Injection Linearity (NAN Configuration)

Sequence: XQ 5 Autosampler Linearity NAN Wait Sampler.Ready ;Program file for injection linearity test ;System must be setup for Nano LC experiments ;For this test time constant is 0.5 instead of 2.0 ;Program version 08/10/2004 ;Settings for restrictor (320cm, 15um ID) Diameter = 75um Length = 15cm StationaryPhase = C18 3um 100A ;CRP = 625 CalibrateCRP When = BeforeFirstSample ;ParkPercentage = Disabled ;Pump limits settings 0.0 MasterPressure.LowerLimit = 400.0 MasterPressure.UpperLimit = Pump.columnPressure.LowerLimit = 0.0Pump.columnPressure.UpperLimit = 200.0 TrapColumnPressure.LowerLimit = 0.0 TrapColumnPressure.UpperLimit = 200.0 ;Settings for UV detector 2 Data Collection Rate = UV VIS 1.Wavelength = 272 0.5 TimeConstant = ;FAMOS settings Sampler.Ready Wait InjectMode = Partial LowDispersionMode = Off UseAirSegment = Off Off UseHeadSpace = RinseBetweenReinjections = Yes SyringeSpeed = Low SyringeSpeedFactor = 0.1 SampleHeight = 9 FlushVolume = 5.0 WashVolume = 50 ;Commands for FAMOS with cooling option ;Sampler.TempCtrl = On ;Sampler.Temperature.Nominal = 20.00 ;Sampler.Temperature.LowerLimit = 5.00 ;Sampler.Temperature.UpperLimit = 30.00 ;Virtual channel settings pump pressure.Formula Formula = masterpressure.value pump pressure.Type = Analog column pressure.Formula Formula = pump.columnpressure.value column pressure.Type = Analog ;Ultimate pump settings Pump.%A.Equate =

"100% water + 0.1% FA" "Mob. phase A + 0.8% acetone"

Pump.%B.Equate =

CHROMELEON Listings

	Pump.%C.Equate = Pump.%D.Equate = Pump.Flow = %B = %C = %D =	"%C" "%D" 0.4 0 0
0.000	UV.Autozero Wait Inject UV_VIS_1.AcqOn pump_pressure.AcqOn column_pressure.AcqOn	Sampler.Ready and UV.Ready and Pump.Ready
10.000	UV_VIS_1.AcqOff pump_pressure.AcqOff column_pressure.AcqOff	

End

6.7 Gradient Accuracy Test (NAN Configuration)

Sequence: XQ 6 Gradient Formation Test NAN Wait Sampler.Ready ;Program file for gradient formation test ;System must be setup for Nano LC experiments ;The time constant must be set to 0.5 instead of 2.0 ;Program version 08/10/2004 ;Settings for restrictor (320cm, 15um ID) Diameter = 75um Length = 15cm StationaryPhase = C18 3um 100A ;CRP = 625 CalibrateCRP When = BeforeFirstSample ;ParkPercentage = Disabled ;Pump limits settings MasterPressure.LowerLimit = 0.0 MasterPressure.UpperLimit = 400.0 ColumnPressure.LowerLimit = 0.0 ColumnPressure.UpperLimit = 200.0 TrapColumnPressure.LowerLimit = 0.0 200.0 TrapColumnPressure.UpperLimit = ;Settings for UV detector Data Collection Rate = 2 254 UV VIS 1.Wavelength = TimeConstant = 0.5 ;FAMOS settings InjectMode = Fullloop LowDispersionMode =Off UseAirSegment = Off UseHeadSpace =Off RinseBetweenReinjections = Yes SyringeSpeed = Low SyringeSpeedFactor = 0.1 SampleHeight = 4 FlushVolume = 5.0 WashVolume = 50 ;Commands for FAMOS with cooling option :Sampler.TempCtrl = On ;Sampler.Temperature.Nominal = 20.00 ;Sampler.Temperature.LowerLimit = 5.00 ;Sampler.Temperature.UpperLimit = 30.00 ;Virtual channel settings pump pressure.Formula Formula = masterpressure.value pump pressure.Type = Analog column pressure.Formula Formula = pump.columnpressure.value column pressure.Type = Analog ;Ultimate pump settings "100% water + 0.1% FA" pump.%A.Equate = %B.Equate =

%C.Equate =

CHROMELEON Listings

	%D.Equate =	"%D"
0.000	UV.Autozero pump.Flow = %B = %C = %D = Wait	0.400 100 0 0 UV.Ready and Pump.Ready and Pump_FlowSensor.Ready and Sampler.Ready
	UV_VIS_1.AcqOn Pump_pressure.AcqOn Column_pressure.AcqOn pump.Flow = %B = %C = %D =	0.400 100 0 0
7.000	%B =	100
7.010	%B =	0
30.000	UV_VIS_1.AcqOff Pump_pressure.AcqOff Column_pressure.AcqOff pump.Flow = %B = %C = %D =	0.400 0 0 0
	End	

End

6.8 Switchos Pump Test (NAN Configuration)

Sequence: XQ_7_Switchos Pump Test_NAN

Program:

;Program file for switchos pump stability test ;Program version 08/10/2004

;Settings for restrictor (320cm, 15um IE Diameter = Length = StationaryPhase = ;CRP = CalibrateCRP ;ParkPercentage =	D) 75um 15cm C18_3um_100A 625 When = BeforeFirstSample Disabled
;Pump limits settings	
MasterPressure.LowerLimit =	0.0
MasterPressure.UpperLimit =	400.0
ColumnPressure.LowerLimit =	0.0
ColumnPressure.UpperLimit =	200.0
TrapColumnPressure.LowerLimit =	0.0
TrapColumnPressure.UpperLimit =	200.0
:Settings for UV detector	
Data Collection Rate =	2
UV VIS 1. Wavelength =	254
TimeConstant =	2
-FAMOS asttings	
;FAMOS settings	Fullloop
Injectiviode =	Fullioop
LowDispersionivide =	
UseAirSegment =	
UseHeadSpace =	Uff
RinseBetweenReinjections =	res
SyringeSpeed =	LOW
SynngeSpeedFactor =	0.1
SampleHeight =	4
FlushVolume =	5.0
vashvolume =	50 tion
, Commanus for FAMOS with Cooling op	
,Sampler.Tempotit =	
;Sampler.Temperature.Nominal =	20.00
Sampler Temperature Upper imit =	3.00
,Sampler.remperature.opperLimit =	30.00
;Virtual channel settings	
pump_pressure.Formula	Formula = masterpressure.value
pump_pressure.Type =	Analog
column_pressure.Formula	Formula = pump.columnpressure.value
column pressure.Type =	Analog

Loading_Pump.TrapColumnPressure.UpperLimit = 400.0

Trap Column Pressure.Formula

Formula = Loading_Pump.TrapColumnPressure.value Trap_Column_Pressure.Type = Analog

Loading Pump.TrapColumnPressure.LowerLimit = 0.0

CHROMELEON Listings

	;Switchos pump settings Loading_Pump.%A.Equate =	"Pure water + 0.1% FA"
0.000	Loading_Pump.Flow = Wait inject Trap_Column_Processor AccOn	0.030 Loading_Pump.Ready
	Loading_Pump.Flow =	0.030
0.000	Valve_A.Position =	1_2
5.000	Valve_A.Position =	10_1
10.000	Valve_A.Position =	1_2
15.000	Trap_Column_Pressure.AcqOff Loading_Pump.Flow =	0.030
	End	

6.9 Stop Flow

Program:

Wait	Sampler.Ready
;Program file to stop the	flow and lamp at the end of experiments
;Disable the "stop" sampl	le when further experiments have to be carried out
;System must be setup for	or Nano LC experiments
Program version 08/10/2	2004

;Settings for restrictor (320cm, 15um IE Diameter = Length = StationaryPhase = CalibrateCRP	0) 75um 15cm C18_3um_100A When = BeforeFirstSample
:ParkPercentage =	025 Disabled
, and of contrage	
;Pump limits settings	
MasterPressure.LowerLimit =	0.0
MasterPressure.UpperLimit =	400.0
ColumnPressure.LowerLimit =	0.0
ColumnPressure.UpperLimit =	200.0
TrapColumnPressure.LowerLimit =	0.0
TrapColumnPressure.UpperLimit =	200.0
;Settings for UV detector	
Data_Collection_Rate =	2
UV_VIS_1.Wavelength =	254
TimeConstant =	2
;FAMOS settings	
InjectMode =	Fullloop
LowDispersionMode =	Off
UseAirSegment =	Off
UseHeadSpace =	Off
RinseBetweenReinjections =	Yes
SyringeSpeed =	Low
SyringeSpeedFactor =	0.1
SampleHeight =	4
FlushVolume =	5.0
WashVolume =	50
;Commands for FAMOS with cooling op	tion
;Sampler.TempCtrl =	On .
;Sampler.Temperature.Nominal =	20.00
;Sampler.Temperature.LowerLimit =	5.00
;Sampler.Temperature.UpperLimit =	30.00
;Virtual channel settings	
pump pressure.Formula	Formula = masterpressure.value
pump pressure.Type =	Analog
column_pressure.Formula	Formula = pump.columnpressure.value
column_pressure.Type =	Analog
;loading pump settings	
TrapColumnPressure.LowerLimit =	0.0
TrapColumnPressure.UpperLimit =	400.0

;Ultimate pump settings

	pump.%B.Equate = pump.%C.Equate = pump.%D.Equate =	"Mob. phase A + 0.8% acetone" "%C" "%D"
0.000	UV.Autozero	
	%B =	0
	%C =	0
	%D =	0
	Wait	UV.Ready and Pump.Ready and Sampler.Ready
	Inject	
	pump.Flow =	0.4
	%B =	0
	%C =	0
	%D =	0
4.000	pump.Flow =	0.000
	Loading Pump.Flow =	0.000
	%B =	0
	%C =	0
	%D =	0
5.000	Lamp =	Off
	End	