Tutorial and User Manual

Version: 6.70
April 2005

© Dionex 2005
CHROMELEON Software
Individual License Agreement

This legal document is an agreement between you, the end user, and Dionex Corporation. The CHROMELEON Chromatography Management System is provided to you only on the condition that you agree to become bound by the terms of this agreement, which includes the software license and the software disclaimer warranty. If you do not agree to the terms of this agreement, promptly return the disk package(s) and the accompanying items (including printed materials and binders or other containers) to Dionex for a full refund.

INDIVIDUAL CHROMELEON LICENSE

1. **GRANT OF LICENSE** In exchange for the payment of the LICENSE FEE, Dionex grants the LICENSEE a non-exclusive right to use and display the CHROMELEON software (the "SOFTWARE") provided with this LICENSE in accordance with the terms and restrictions below. The LICENSEE is the end-user organization and its subsidiaries (excluding sub-contractors) billed by Dionex for this LICENSE. If the organization billed is not the end-user, the LICENSEE is the first end-user organization.

2. **OWNERSHIP OF THE SOFTWARE** The LICENSEE owns the magnetic or other physical media on which the SOFTWARE is originally or subsequently recorded, but Dionex retains title and ownership of all SOFTWARE recorded on such media, regardless of the form in which it is recorded. This license is not a sale of the SOFTWARE or any copy.

3. **COPY RESTRICTIONS** The SOFTWARE and all accompanying written materials are copyrighted, and may contain proprietary and confidential information of Dionex.

The LICENSEE may make one (1) copy of the original SOFTWARE diskettes provided with this LICENSE for backup purposes only. Any such copy automatically becomes the property of Dionex, and the LICENSEE must include the copyright notice and any confidentiality or proprietary legend with any such copy. The LICENSEE may copy the SOFTWARE from the original or backup diskettes to the computers used in accordance with the use restrictions below.
All other copying of the SOFTWARE and the accompanying materials is expressly forbidden. The LICENSEE may be held legally responsible for any copyright infringement that is caused or encouraged by the failure of the LICENSEE to abide by the terms of this license.

4. USE RESTRICTIONS Under this LICENSE, the LICENSEE may use the SOFTWARE on one (1) single-user computer, or one (1) terminal of a multi-user computer. The LICENSEE must purchase a CHROMELEON Data Processing License for each additional computer on which the SOFTWARE provided under this LICENSE is used.

The SOFTWARE may be stored on the computer's local mass storage device, on a network file server, or both, as long as the above use restrictions are satisfied.

The LICENSEE may not modify, adapt, translate, reverse engineer, decompile nor disassemble the SOFTWARE, nor create derivative works based on it. The LICENSEE may not merge the SOFTWARE with another program. The LICENSEE may not modify, adapt, translate, or create derivative works based on the written materials without prior consent from Dionex.

5. TRANSFER RESTRICTIONS The SOFTWARE is licensed only to the LICENSEE, and may not be transferred to anyone else without the prior written consent of Dionex. Any authorized transfer of the SOFTWARE shall be bound by the terms and conditions of this LICENSE.

6. TERMINATION This LICENSE is effective until terminated. It will terminate automatically without notice from Dionex if the LICENSEE fails to comply with any of its provisions. Upon termination, the LICENSEE shall destroy the written materials and all copies of the SOFTWARE. The LICENSEE may terminate this LICENSE by destroying all copies of the software and accompanying written materials.

7. UPDATE POLICY Dionex may (but is not obliged to) release updated versions of the SOFTWARE. One copy of any such versions will be provided to the LICENSEE at no additional charge for each registered SYSTEM that has a valid CHROMELEON Subscription Agreement ("SUBSCRIPTION") in effect at the time of the release. Any such software update that is provided under a SUBSCRIPTION may be used to collect data only on the one SYSTEM to which the SUBSCRIPTION applies. All terms of this LICENSE shall apply to any updates provided to the LICENSEE.
8. MISCELLANEOUS This LICENSE, including the disclaimer of warranty and limited warranty, is governed by the laws of the State of California, excluding its choice of law rules.

DISCLAIMER OF WARRANTY AND LIMITED WARRANTY

The SOFTWARE and the accompanying materials (including instructions for use) are provided "as is" without warranty of any kind. Further, Dionex does not warranty, guarantee, or make any representations regarding the use, or the results of the use, of the SOFTWARE or written materials in terms of correctness, accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the SOFTWARE is assumed by the LICENSEE.

Dionex warrants to the original LICENSEE that the disks on which the software is recorded are free from defects in material and workmanship under normal use and service for a period of 90 days from the date of delivery of this individual LICENSE as evidenced by a copy of the receipt.

The entire liability of Dionex and the exclusive remedy to the LICENSEE shall be, at the discretion of Dionex, either (a) return of the purchase price or (b) replacement of any defective disks that are returned to Dionex with a copy of the receipt. If failure of the disks has resulted from accident, abuse, or misapplication, Dionex shall have no responsibility to replace the disks or refund the purchase price. Any replacement disk shall be warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer.

THE ABOVE ARE THE ONLY WARRANTIES OF ANY KIND AND DIONEX HEREBY DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESSED OR IMPLIED, INCLUDING (BUT NOT LIMITED TO) THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, THAT ARE MADE BY DIONEX ON THIS PRODUCT. No oral or written information or advice given by Dionex, its dealers, distributors, agents, or employees shall create a warranty or in any way increase the scope of this warranty, and the LICENSEE may not rely on such information or advice.

NEITHER DIONEX NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION, PRODUCTION, OR DELIVERY OF THIS SOFTWARE SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF DIONEX HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN THE EVENT THAT ANY LIABILITY IS IMPOSED ON DIONEX, THE LIABILITY OF DIONEX TO THE LICENSEE OR ANY THIRD PARTY SHALL NOT EXCEED THE PURCHASE PRICE OF THE SOFTWARE.

Some states do not allow exclusion or limitation of the duration of the implied warranties or exclusion or limitation of liability for incidental or consequential damages, so that the above limitations may not apply to you. This warranty gives you specific legal rights, and you may have other rights, which vary from state to state.
Trademarks and Product Names

Below please find a list containing various trademarks and product names. All trademarks (™) and registered trademarks (®) belong to Dionex Corporation unless indicated otherwise. All other trademarks or registered trademarks are the property of their respective owners.

A
AAA-Direct™ Amino Acid Analysis System
AAA-Certified™
AAES™
Acclaim® columns
Acrodisk® (Gelman Sciences, Inc.)
Acurate™ Flow Splitter
Advanced Computer Interface (ACI)
Advanced Gradient Pump (AGP)
AD20 UV/Vis Absorbance Detector
AES® Atlas Electrolytic Suppressor
Alliance® (Waters Corp.)
AminoPac® Columns
AminoTrap™ Columns
AMMS®-ICE, AMMS-ICE II Anion MicroMembrane Suppressor
AnchorChips™ (Bruker BioSciences)
Anion Atlas® Electrolytic Suppressor
Anion Self-Regenerating Suppressor®
Anotop™ (Whatman)
AppliCard™
AQA™ Mass Spectrometer (Thermo Electron Corp.)
Abbreviations

ARC™ Automated Run Completion
Aroclor™ (Monsanto Corp.)
AS Autosampler
AS40, AS50 Automated Sampler
AS3500 Autosampler
ASE® 100, 200, or 300 Accelerated Solvent Extractor or Solvent Controller
ASI-100™, ASI-100T™, ASI-100P™, or ASI-100PT™ Automated Sample Injector
ASRN™ Anion Self-Regenerating Neutralizer
ASRS®, ASRS® II, or ASRS® ULTRA Anion Self-Regenerating Suppressor
Atlas® Suppressor
Auto OnGuard™ (but OnGuard®)
AutoASE® software
autoflex™ (Bruker BioSciences)
Autoion®
AutoNeutralization™ system or technology
AutoQ™
AutoRegen® System
AutoSelect™
AutoSuppression® device
AXIMA-QIT™ (Shimadzu Biotech)

B
BAKER INSTRA-ANALYZED® Acids (J. T. Baker)
Biodialyser™ (AmiKa, Inc.)
BioLC® System
BioPlus™ Columns
BioSelect™ (The Separations Group)
BorateTrap™ Column
<table>
<thead>
<tr>
<th>Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>CA Carbamate Analyzer</td>
</tr>
<tr>
<td>CAES® Cation Atlas® Electrolytic Suppressor</td>
</tr>
<tr>
<td>CarboPac™ MA1, PA1, PA10, PA-100 columns</td>
</tr>
<tr>
<td>Cation Atlas™ Electrolytic Suppressor</td>
</tr>
<tr>
<td>Cation MicroMembrane Suppressor®</td>
</tr>
<tr>
<td>Cation Self-Regenerating Suppressor®</td>
</tr>
<tr>
<td>CD20 Conductivity Detector</td>
</tr>
<tr>
<td>CD Builder™ (AppletWare, Inc.)</td>
</tr>
<tr>
<td>Chemraz® (Greene, Tweed & Co.)</td>
</tr>
<tr>
<td>ChromatoCritters™</td>
</tr>
<tr>
<td>CH-2 Column Heater</td>
</tr>
<tr>
<td>CHX650 Column Temperature Controller</td>
</tr>
<tr>
<td>CHROMELEON® Chromatography Management Software</td>
</tr>
<tr>
<td>CMD™ Carbohydrate Membrane Desalter</td>
</tr>
<tr>
<td>CMMS® Cation MicroMembrane Suppressor</td>
</tr>
<tr>
<td>Continuously Regenerating Anion Trap Column (CR-ATC)</td>
</tr>
<tr>
<td>Continuously Regenerating Cation Trap Column (CR-CTC)</td>
</tr>
<tr>
<td>CSRN™ Cation Self-Regenerating Neutralizer</td>
</tr>
<tr>
<td>CSRS®, CSRS® II, CSRS® ULTRA Cation Self-Regenerating Suppressor</td>
</tr>
<tr>
<td>CMMS® II Cation MicroMembrane Suppressor®</td>
</tr>
<tr>
<td>Cryptand columns</td>
</tr>
</tbody>
</table>

| **D** |
| DataDetective™ (AppletWare Inc.) |
| dBASE® (Borland International, Inc.) |
| Dequest® (Monsanto Corporation) |
| Dionex® |
DNAPac® column (for NucleoPac)
DNAPhor™ SB1.5 kB Sieving Buffer Kit (for NucleoPhor)
Dowex® (Dow Chemical Company)
DX-80 Ion Analyzer
DX-120 Ion Chromatograph
DX-320 Ion Chromatograph
DX-500 or DX-600 Ion Chromatography System or HPLC System
DX-800 Process Analyzer
DX-LAN™ Instrument Interface

E
ED40, ED50 Electrochemical Detector
EG40, EG50 Eluent Generator
Electrochrom
EluGen®
EO1 Eluent/Solvent Organizer

F
FAMOS™ Fully Automated Micro Autosampler
FastLoc™ (Thermo Electron Corp.)
Finnigan AQA™, Finnigan MSQ™
Flarefit®
FluoBoost Micro Fluorescence Flow Cell
Foxy® (Isco, Inc.)
FPLC® (Pharmacia LKB)
Freon® (E.I. du Pont de Nemours & Co.)
Fusica columns
Abbreviations

G
GM-2, GM-3, or GM-4 Eluent Gradient Mixers
GP40, GP50 Gradient Pump
GS50 Gradient Pump

H
HPICE® (mostly replaced by IonPac® ICE)
Hydromatrix™ (Varian Associates, Inc.)

I
ICE (ion-exclusion columns, e.g., ICE-AS6)
ICS-90, ICS-1000, ICS-1500, ICS-2000, ICS-2500
ICS-3000 Conductivity Detector
ICS-3000 Detector/Chromatography
ICS-3000 Dual Pump
ICS-3000 Electrochemical Detector
ICS-3000 Eluent Generator
ICS-3000 Single Pump
InkJet® (Hewlett-Packard)
IonPac® columns
IonPhor™ Electrolyte Buffers
IonSep® reagents
IP20 Isocratic Pump
Irganox® (Ciba)

J
Just Add Water
Abbreviations

K
Kalrez® (E.I. du Pont de Nemours & Co.)
KEL-F® (3M Corporation)

L
LANtastic® (Artisoft, Inc.)
LaserJet® (Hewlett-Packard Corporation)
LC5 Injection Module
LC10 Chromatography Organizer
LC20 Chromatography Enclosure
LC25, LC30 Chromatography Oven

M
Mascot® (Matrix Science Ltd.)
MassLynx™ (Micromass)
μ-Guard™ columns
μ-Dumper
μ-Fluidics
MetPac™ Reagents
MFC-1 (Metal-Free Column)
MICRO® (International Products Corp.)
Micro Precolumn
MicroBead™ resin
MicroInjection valve
MicroMembrane™ Suppressor
Millennium® (Waters Corp.)
Milli-Q® (Millipore)
MMS™ MicroMembrane™ Suppressor
Abbreviations

Monolithic capillary column
Mono Q® (Pharmacia LKB)
MonoStandard®
M Path™ (Thermo Electron Corp.)
MPIC® (Mobile Phase IC)
MRA™ Active Flow Splitter (Rheodyne)
MS-DOS® (Microsoft Corporation)
MSQ™ Mass Spectrometer (Thermo Electron Corp.)

N
Nano precolumn
N-EVAP® (Organomation Associates, Inc.)
NovaPak® (Waters Corp.)
NucleoPac (now DNAPac®)
NucleoPhor (now DNAPhor™)

O
OligoStandards™
OmniFLEX™ (Bruker BioSciences)
OmniPac® Columns
OnGuard®, OnGuard® II Sample Prep Station (but Auto OnGuard™)
Optima™ (Fisher Scientific)
ORBO™ (Supelco, Inc.)

P
P680 HPLC Pump
PaintJet® (Hewlett-Packard)
PC10 Postcolumn Pneumatic Controller
PC10 Reagent Delivery Module
PD40 Diode Array Detector
PDA-100 Photodiode Array Detector
PeakNet® Chromatography Workstation
Pentium® (Intel)
PepMap™
Pico-Buffer®
PicoView™ (New Objective, Inc.)
PolyVial™
PowerPoint® (Microsoft)
Probot™ Microfraction Collector
Process 450 (Datensystem für 8200er-Serie)
ProPac® Columns
ProteinChips® (Ciphergen)
Purification Suite™
PWA™ Purification Workflow Automation

Q
QSTAR® (Applied Biosystems)

R
Reacti-Therm™ (Pierce Chemical Company)
Reagent-Free™
Abbreviations

S
SC-CSRS®
SELDI ProteinChips® (Ciphergen)
Self-Contained Cation Self-Regenerating Suppressor
SelectaPore™ Columns (The Separations Group)
Self-Regenerating Suppressor®
SEQUEST® (University of Washington, Seattle, USA)
Series 600 SFC and SFC/GC Systems
SFE-723 Supercritical Fluid Extractor
SFM™ Sample and Fraction Manager
SmartFlow™
SP10 AutoNeutralization™ System
SpeedVac™ (Savant Corp.)
SRC SRS Controller
SRN™ Self-Regenerating Neutralizer
SRS® Self-Regenerating Suppressor
Summit® HPLC System
SUPELCOSIL™, Supelguard™ (Supelco, Inc.)
Superba columns
Superose® (Pharmacia)
Supor® (Pall Corporation)
SupraPur® (EM Industries, Inc.)
Switchos™ Microcolumn Switching Device

T
TAC-1 (Trace Anion Concentrator)
TCC-1 (Trace Cation Concentrator)
TCC-100 (Thermostatted Column Compartment)
Abbreviations

Teflon®, Tefzel® (E.I. du Pont de Nemours & Co.)
ThermoFlare™
Thermos Column Oven
Triton® X-100 (Rohm & Haas)
TurboVap® (Zymark Corporation)
Tween® 20 (Atlas Chemical Co.)

U
UCI-100 or UCI-50 Universal Chromatography Interface
UI20 Universal Interface
ultraflex (Bruker BioSciences)
UltiChrom™ software
UltiMate™
Ultrex® (J.T. Baker)
UV-Booster
UVD 170S/170U UV/Vis Detector
UVD 340S/340U Photodiode Array Detector
U-Z View™ Capillary Flow Cell

V
Vespel® (E.I. du Pont de Nemours & Co.)
VHP™ (The Separations Group, Inc.)
Vortex-Genie® (Scientific Industries, Inc)
Voyager™ (Applied Biosystems)
Vydac® columns (The Separations Group, Inc.)
Abbreviations

W
Windows® 2000/XP (Microsoft Corporation)
Windows NT® (Microsoft Corporation)
Wonderware InTouch® (Wonderware Corporation)

Z
Zitex® (Norton Chemplast)
Zorbax® (E.I. du Pont de Nemours & Co.)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>Automated Purification System</td>
</tr>
<tr>
<td>ARC</td>
<td>Automated Run Completion</td>
</tr>
<tr>
<td>AIA</td>
<td>Analytical Instrument Association</td>
</tr>
<tr>
<td>BCD</td>
<td>Binary-Coded Decimal Code</td>
</tr>
<tr>
<td>BOOTP</td>
<td>Bootstrap Protocol (Internet protocol)</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disk</td>
</tr>
<tr>
<td>CDS</td>
<td>Chromatography Data System</td>
</tr>
<tr>
<td>CE</td>
<td>Capillary Electrophoresis</td>
</tr>
<tr>
<td>CM</td>
<td>Chromeleon® Chromatography Management System</td>
</tr>
<tr>
<td>CMB</td>
<td>Backup container/file (file extension)</td>
</tr>
<tr>
<td>CMS</td>
<td>Chromatography Management System</td>
</tr>
<tr>
<td>CS</td>
<td>Cluster Server</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Communication Protocol</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Server</td>
</tr>
<tr>
<td>DX</td>
<td>Dionex</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>GLP</td>
<td>Good Laboratory Practice</td>
</tr>
<tr>
<td>GMP</td>
<td>Good Manufacturing Practice</td>
</tr>
<tr>
<td>GPIB</td>
<td>General Purpose Interface Bus</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IC</td>
<td>Ion Chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IPC</td>
<td>Chromeleon Instruments Server or Instruments PC</td>
</tr>
<tr>
<td>IQ</td>
<td>Installation Qualification</td>
</tr>
<tr>
<td>ISTD</td>
<td>Internal Standard</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LIB</td>
<td>UV Spectra Library (file extension)</td>
</tr>
<tr>
<td>LIC</td>
<td>Chromeleon License Server</td>
</tr>
<tr>
<td>LIMS</td>
<td>Laboratory Information Management System</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of Detection</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control address (unique address of each network interface card)</td>
</tr>
<tr>
<td>MRA</td>
<td>Mass Rate Attenuation (Flow Splitter)</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometer</td>
</tr>
<tr>
<td>MSV</td>
<td>Motorized switching valve</td>
</tr>
<tr>
<td>NFP</td>
<td>Network Failure Protection</td>
</tr>
<tr>
<td>ODBC</td>
<td>Microsoft Open Database Connectivity</td>
</tr>
<tr>
<td>OQ</td>
<td>Operational Qualification</td>
</tr>
<tr>
<td>PAN</td>
<td>Control Panel for chromatographic system control (file extension)</td>
</tr>
<tr>
<td>PDA</td>
<td>Photodiode Array Detector</td>
</tr>
<tr>
<td>PGM</td>
<td>Control program for chromatographic system control (file extension)</td>
</tr>
<tr>
<td>PN</td>
<td>PeakNet® Chromatography Management System</td>
</tr>
<tr>
<td>PPA</td>
<td>Peak Purity Analysis</td>
</tr>
<tr>
<td>PPI</td>
<td>Peak Purity Index</td>
</tr>
<tr>
<td>PQ</td>
<td>Performance Qualification</td>
</tr>
<tr>
<td>PWA</td>
<td>Purification Workflow Automation</td>
</tr>
<tr>
<td>QNT</td>
<td>Quantification method for signal interpretation and evaluation (file extension)</td>
</tr>
</tbody>
</table>
Abbreviations

QRF ➢ Query file (file extension)

RDF ➢ Report Definition File; includes the layout definition for the report and export (file extension)

RPC Remote Procedure Call

RSD Relative Standard Deviation

SDK Software Development Kit for Chromeleon

SEQ ➢ Sequence; that is, the sequence of samples plus the corresponding files (file extension)

SFM ➢ Sample and Fraction Manager (in the Administrator Help section)

SIM Selected Ion Monitoring (MS channel for specific masses)

SOR Signed Off Results (File) = signed sequence

SQL Structured Query Language (computer language)

SSM Safety and Solvent Monitor

SST ➢ System Suitability Test

TCP/IP Transmission Control Protocol/Internet Protocol (class of Internet protocols)

TIC Total Ion Current (MS channel for the entire mass range or a part thereof)

TTL Transistor-Transistor Logic

UDP User Datagram Protocol (IP communication protocol)

UDC ➢ User-Defined Column

USB Universal Serial Bus

VCD ➢ Virtual Channel Driver (driver for virtual devices)

WSP Workspace; that is, the definition of a screen layout (file extension)

For a list of the ➢ Institutes and Institutions for Industry Standards, refer to the Glossary section.
Table of Contents

Chromeleon - Tutorial ... T-1

Table of Contents ... T-2

Sequence - Flow Chart ... T-4

I. Starting Chromeleon ... T-5

II. The Browser .. T-9

III. Online Help ... T-13

 1. Context-sensitive Online Help .. T-13

 2. Systematic Online Help .. T-14

IV. Control .. T-17

 1a) The Control Panel ... T-17

 1b) Connecting a Control Panel to a Timebase T-19

 1c) Using the Control Panel .. T-22

 2. The Control File (PGM File) .. T-26

 3. The Program Wizard .. T-27

 4. Editing the Control File .. T-38
V. The Analysis ... T-39
 1. The Sample List (Sequence) T-39
 2. Starting the Analysis .. T-47

VI. Quantification Method (QNT File) T-51
 1. Detecting Peaks (Detection Tab) T-53
 2. Graphical Input of Detection Parameters T-58
 3. Automatically Generating the Peak Table T-60
 4. Identifying Peaks (Peak Table Tab) T-62
 5. Quantifying Substances (Amount Table/Peak Table Tabs)...... T-63
 6. Defining the Calibration Mode and Calibration Type T-67

VII. Data Analysis ... T-71
 1. The Integration Window ... T-74
 2. Modifying the Chromatogram T-76
 3. Report Tables .. T-77
 4. Modifying a Report Table ... T-79
 5. Saving Changes .. T-80
Table of Contents

VIII. Printing Results .. T-81
 1. Creating a Print Template (Printer Layout) T-81
 2. Printing ... T-83

IX. Special Functions .. T-87
 1. Installing Datasources.. T-87
 2. Finding Samples (Query) ... T-90
 3. Backup and Restore .. T-91
 4. Signing Sequences Electronically T-93
 5. Modifying a Control Panel T-98
 6. Internal and External Standards T-100
 7. Spectra Library Screening T-101
 8. Defining the Workspace ... T-103

Addendum: Keyboard Shortcuts/Short Glossary T-105

Datasource and Database .. T-108
Raw Data ... T-109
Sequence ... T-109
(Chromatography) Server .. T-110
Timebase ... T-111
Welcome to Chromeleon, the innovative chromatography management system.
Use this tutorial to become familiar with Chromeleon.
Learn how to

- Start the program
- Perform an analysis
- Reprocess your data

For an overview of the topics, refer to the Table of Contents.

 diffé Tip:

The arrow (➔) references topics in the Tutorial.
There are no references between the Tutorial and the User and/or Administrator Manual.
Starting Chromeleon: If your computer is running under Windows, you can start Chromeleon by clicking Start > Programs > Chromeleon on the task bar.

Managing Data: Chromeleon allows you to manage data in folders and directories similar to Microsoft Windows. The tool that helps you to handle your chromatography data is the Browser.

Online Help: The Tutorial can only deal with selected aspects of Chromeleon. For more information, refer to Online Help and/or to the User Manual.

Controlling your HPLC system: Make sure that your chromatography or CE instruments are correctly connected to the PC via a serial port. If the instruments are connected correctly, you can operate the pump, autosampler, detector, etc. from a Control Panel on your PC. In addition, you can create a Control File (PGM File) to control your system automatically.

Analyzing Samples: Can you control your instruments from the PC? If you can, you can start the chromatographic analysis. To use all functions provided by Chromeleon, we recommend that you create a Sample List (Sequence) first:

Use the Sequence Wizard to include the samples to process in the sample list. The wizard guides you in defining the number of samples, the order of sample processing, the injection volumes, the sample type (analysis or standard), and the location where Chromeleon finds information about how to perform the analysis.
V. (Cont'd)

To make this information available to Chromeleon, create the corresponding files (PGM File, QNT File, see below) and enter a program and a method name.

When you have created the sample list, you can start the Analysis. The resulting data is automatically saved.

VI. Quantifying: The Quantification Method (QNT Method) allows you to minimize the reprocessing effort for single chromatograms. The QNT Method defines the detection parameters, the peak identification, and the calibration of the substances in several samples.

VII. Data Analysis: You can display the result of a chromatographic analysis on the screen. Data Analysis allows you to manually change integration limits directly in the single chromatogram or to re-evaluate samples based on new parameters ("offline.")

VIII. Printing Results: You can print your analysis data immediately after data acquisition or at any time later. For perfect adjustment to your personal requirements, create your own report templates in the Printer Layout, define your own result variables, or embed your company logo.

IX. Managing Data (Special Functions): In addition to the basic functions, the Chromeleon provides various special functions. For example, you can search samples according to defined criteria (query), backup and restore data, electronically sign sequences, and search spectra. For more information, refer to Special Functions.

For an overview of the most important steps in Chromeleon, see Sequence - Flow Chart.
START
Sample Analysis

Create a sequence

Can you use an existing sequence?

yes
Save the sequence under a new name (File>Save as)

no
Create a new sequence using the Sequence Wizard (sec. V.1a)

Can you use existing files (PGM, QNT, RDF) for the sequence?

yes
Copy the PGM and RDF files and the QNT method to the sequence

no
Create a PGM file (using the PGM Wizard - sec. IV.3) and a new QNT method (sec. VI)

Do you want to edit the sequence?

yes
Edit the sequence in the Browser (sec. V.10)

no
Start the new sequence (sec. V.2)

Examine the data in-screen in the report. Is re-integration necessary?

no
Print (sec. VIII) or Sign (sec. IX.4) FINISH

yes
Re-integrate single chromatograms, if necessary (sec. VII.2)

Edit an existing QNT method or create a new one and save it under a new name (sec. V.9)
Objectives of this chapter:

- To make you familiar with the basics of a client/server software
- To start the client and server programs

Chromeleon is a client/server program, operable under Windows 2000 and Windows XP. The two independent program parts, the client and the server, allow you to operate the program from different PCs on a network:

Server: The server PC is directly connected to the different modules of the chromatography systems. The server communicates with the individual modules of a \(\text{Timebase} \) and controls them actively. You usually perform only two actions in the server program: you start and stop the server. In the client program, you specify which control actions the server shall perform.

Client: The client program allows you to work offline, i.e., to perform certain tasks independent from the server, for example, creating sequences, processing data, searching single spectra in a spectra library, etc. The client can be installed locally. In this case, the client and server programs can be installed on the same PC that is connected to the chromatography system. This is typical for a single-site installation (one timebase only).

In addition, remote client PCs can be connected to the chromatography server on the company network. You can then perform client functions on a PC that is not connected directly to the chromatography system but to the server PC on the network.
A characteristic of client/server systems is that certain processes are performed on the client, while others run on the server. The cooperation between the client and the server is crucial to the full functionality of the program.

Since the client and the Server are independent programs, you have to start them separately.

Starting the Client Program

- Click Start > Programs > Chromeleon to start the Chromeleon client.

- If User Management was created and enabled during installation, a logon dialog box appears. In this case, enter your user ID and personal password.

Starting the Server Program

If you do not only want to view data but control an entire chromatography system and perform your own analyses, start the Server Monitor program. The server controls all connected instruments and allows direct instrument operation and control via the PC.

- Select Server Monitor to start the Server Monitor program. The Chromeleon icon appears on the Windows task bar next to the Windows system clock.

During installation, Chromeleon usually creates a link in the Autostart group and the corresponding icon is displayed. You can also configure the program in such a way that it starts whenever the computer is started.

- Move the mouse cursor to the icon. You will see the quick info message: **CHROMELEON Server is not running**.

- Open the context menu (right-click) and select **Start Server** (or double-click the icon and click **Start**). The icon can have different colors. Gray coloring indicates that the server is running idle.

- Both, the client program and the server program are active now. The client control panel allows direct access to all instruments that are connected to the server.

Note:

The instruments of a system are combined in a common **Timebase**. Instruments and timebases are installed and configured in the Server Configuration program. Since your Dionex Service Representative usually performs this task during the initial installation of Chromeleon, the Tutorial does not provide more information about this.
II. The Browser

The Browser window loads automatically whenever Chromeleon is started.

Opening the Browser

- Click the Browser icon ![Browser Icon] to open the Browser window or to display it on top.

Browser Appearance and Functions

The Browser, which is the "control room" of Chromeleon, serves for data management, storage, and retrieval. The Browser's appearance and functions are similar to the Windows Explorer.

⚠️ Caution:

Although the Browser is very similar to the Windows Explorer, you should not confuse these two windows! Do not use the Windows Explorer for operations within the Chromeleon datasources! Usually, your administrator will prohibit these operations!

The left window section shows a tree structure with different levels. The right window section shows detailed information about the currently selected item.
The **Datasources**, for example, `ComputerName_local []`, are the top level of the structure and serve to store data and results.

- Click the + or - character next to a datasource to expand or collapse the corresponding directory structure (yellow folders).

The lowest levels contain the **Sequences** (blue folders: [] created by the user. During installation, one directory is created. The directory name corresponds to the name of the timebase. The timebase contains a sequence that stores manually acquired data. Thus, it is called **manual**.

- Select a **directory** to display its subdirectories in the right window section.
- Select a **sequence** to view files and samples contained in the sequence.

When you click a sequence, the upper part of the right windows displays the files contained in the sequence. The different icons indicate the file types:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>File Extension</th>
<th>File Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*.pgm</td>
<td>Control file or PGM File</td>
</tr>
<tr>
<td></td>
<td>*.qnt</td>
<td>Quantification method</td>
</tr>
<tr>
<td></td>
<td>*.rdf</td>
<td>Report template or report definition</td>
</tr>
<tr>
<td></td>
<td>*.pan</td>
<td>Control panel</td>
</tr>
</tbody>
</table>

The lower part of the right window displays the sample list showing the individual samples of the sequence. The different icons indicate up to seven different sample types:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unknown</td>
<td>Unknown sample</td>
</tr>
<tr>
<td></td>
<td>Blank Run</td>
<td>Blank</td>
</tr>
<tr>
<td></td>
<td>Validation</td>
<td>Validation sample</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>Standard sample</td>
</tr>
<tr>
<td></td>
<td>Matrix</td>
<td>Matrix blank sample</td>
</tr>
<tr>
<td></td>
<td>Spiked</td>
<td>Spiked sample</td>
</tr>
<tr>
<td></td>
<td>Unspiked</td>
<td>Unspiked sample</td>
</tr>
</tbody>
</table>
Opening Files
Double-click to open a file name in the Browser. Chromeleon loads the appropriate chromatographic environment according to the file type:

- Double-click a control file (PGM File) to open the PGM Editor.
- Double-click a quantification method (QNT File) to open the QNT editor.
- Double-click a PAN file to open a control panel.
- Double-click a report template (report definition file = RDF) to open the Printer Layout.

Opening Samples
When opening samples, consider the following (independent of the file type):

- If raw data exist for several channels of a processed sample (Status = finished, multiple, or interrupted), double-clicking the sample opens one channel only (for example, a UV channel at a wavelength of 254 nm).
- Right-click a sample (here: sample1) and select Open from the context menu. A submenu is opened on which Chromeleon lists all channels that exist for this sample:
If you record four different channels of a sample with a diode array detector when you process the sample (as was in this example), a separate chromatogram will be available for each channel (here: 3DFIELD and UV_VIS-1 to UV_VIS-4).

- Select the channel or the chromatogram to display.

The highlighted channel (here: UV_VIS-1) is used as the "preferred channel." The preferred channel automatically opens when you double-click a sample. Select Preferences on the File menu, and then specify which channel Chromeleon shall use as the preferred channel.

Moving and Copying Items

Different ways are available to move or copy a subdirectory, sequence, or file:

- Left mouse button: Use this button to move or copy the element according to the settings made for the Left mouse button Drag/Drop behavior on the Browser tab page (click Preferences on the File menu).

- Right mouse button: Use this button to move or copy the element as desired.

- Keyboard shortcut: Use keyboard shortcuts to perform the desired action, for example, <Crtl> <C>, to copy the element or <Crtl> <V> to paste the element.
III. Online Help

There may be issues and questions that are not discussed in this Tutorial. In this case, refer to the User Manual and the online Help for more information. You can access online Help anywhere in the program:

- **Context-sensitive Help** answers your questions that may occur at the current cursor position.
- **Systematic Help** allows you to
 - Select an interesting topic on the Contents tab page
 - Search the index for any required information
 - Search for specific words and phrases in help topics by searching the entire text of the help system.

1. Context-sensitive Online Help

Access to the online Help depends on your current cursor position. Usually, a window opens from which you can access systematic online Help. In other cases, a popup window opens providing a short context-sensitive description and links for access to related topics.

Help via the Context Menu

Right-click to open the context menu:

Select **How to ...** to display detailed information about actions that can be performed at the current cursor position. Select **What's this?** for a description of the selected item, command, etc. In some cases, **What's this?** topics provide information that is more general. Usually, links are available for specific information.
Help via the Help Button and Icon

First, click the icon on the toolbar to display a question mark appended to the cursor, and then click the item of interest for specific information.

In some cases, a Help button is available instead of the context menu or the question mark. Click Help to display information about the current screen.

In some windows in which you can enter parameters and variables, such as in the QNT Editor, click Explain Param. or Explain Variable for information about your selection.

Help via the F1 Key

In addition, you can always press the F1 key. This help information corresponds to the context-sensitive help information that is available via the question mark cursor or the Help button.

2. Systematic Online Help

Select Index on the Help menu for an overview of the topics that are available in the online Help. The help window provides the following tabs:

- Contents
- Index
- Find

Contents Tab

Topic titles are marked by a page symbol with a blue question mark. Double-click to open the topic.
III. Online Help

Index Tab

The Index tab page enables you to find a specific term by searching the index entries. Type the first few letters of the word you are looking for in the first field until the desired term appears in the second field. Click the index entry you want, and then click Display to open the desired topic. If several topics are found, the Topics Found window opens. Select an entry and then click Display.

Find Tab

The Find tab page enables you to search for specific words and phrases in help topics by searching the entire text of the help system. (The query is not limited to the index entries.) First, Chromeleon generates a list that contains every word from the online Help file. You can then search the resulting list for a specific term. The procedure is similar to searching for a specific term on the Index tab page.
The query finds all topics that contain the entered word(s). That is why the Topics Found list is far more extensive than the one found when searching the index. To narrow the search, you can select matching words in the second field:
Objectives of this chapter:
- To describe the purpose and functions of a control panel
- To connect the devices to Chromeleon, using a control panel
- To display the current chromatogram

1a) The Control Panel

A control panel (often just called panel) allows you to control an entire chromatography system from your PC. The system may consist of one or several analytical instruments that are installed under the same timebase. The control panel comprises the different elements required to control your system and to display the current chromatogram.

The above image shows a control panel for controlling the basic functions of a pump, an autosampler, and a two-channel UV detector. On the right, you see the detector signal.

Chromeleon includes more than a hundred default control panels that cover most applications. Although it is possible to change the existing panels, you rarely have to do so. For more information, see Modifying a Control Panel in the Special Functions section.
Opening a Default Control Panel

From the Browser

- Open the Dionex Templates > Panels directory and select the control panel that corresponds to your system.
- Double-click to open the panel.

From the File or context Menu

- Select Open on the File or context menu.
• In the **Open** dialog box, select **Control Panel** in the **Object of type** field.

• In the **Look in** field, select the local **Datasource** of the system. This datasource is automatically saved on your computer during the Chromeleon installation. The datasource is named `<NAME_LOCAL>`, wherein `<NAME>` is the computer name. If the **Look In** field contains further datasources, you can also search here for an appropriate control panel.

• Open the **Dionex Templates > Panels** directory and select one of the default control panels (*.pan).

• Double-click to open the panel.

As soon as a control panel has been opened, Chromeleon tries to connect to the **Timebase** that is linked to this control panel.

If the connection cannot be established, the control elements are grayed and an error message is displayed. In this case, connect the control panel to the timebase as described in the next topic (see below).

1b) Connecting a Control Panel to a Timebase

When a control panel is open, you can connect to any Chromeleon timebase at any time. However, verify that the server on which the timebase is installed has been started as described in **Starting Chromeleon**.

• Select **Connect to Timebase** on the **Control** menu to create and/or to change the timebase assignment.

• In the dialog box that opens, determine the **Server** and the **Timebase** to which you want to connect the control panel.
If the server is started locally on your computer, click the + character to open the My Computer submenu. If the server is running, the names of all timebases that are installed on the respective server will be displayed. If the server is not running, a corresponding message will appear. In this case, start the server first and then select a timebase, for example, HPLC. The Computer field will automatically show your PC, that is, the name that was specified during the Windows installation. The Protocol field shows the entry My Computer.

If your PC is connected to other computers via a network or modem, you can also access a server that was not started on your local computer, but on another PC. To do so, select the network protocol under Protocol. (Access to other computers and timebases is usually via the Internet TCP/IP protocol.) Open the Network Neighborhood to browse for the required timebase.

Chromeleon remembers the servers accessed on other computers. These servers are listed under Favorites.

As soon as you complete the dialog, Chromeleon tries to access the selected timebase. If communication fails, this may be due to several reasons.
Possible Problems when Connecting to a Timebase

Cannot connect to timebase "..."

⇒ The error message indicates that the corresponding server is not running, that the selected timebase does not exist on this server, or that a wrong communication protocol has been selected.

• Start the server as described in Starting Chromeleon or select the required timebase or protocol.

Tip:
Chromeleon can communicate via various network protocols such as IPX, TCP/IP, or NetBEUI. Communication between two stations is possible only if the same (!) network protocol is installed and selected. Generally, it is sufficient to install the corresponding Microsoft ("IPX/SPX-compatible protocol"; "NetBEUI"; "TCP/IP") or Novell ("Novell IPX ODI Protocol") network protocols via Settings > Control Panel > Network > Configuration. The protocol that is actually used depends on the current network installation. Please contact your network administrator.

This timebase contains no device/object named "..."

⇒ The control panel tries to access an instrument (or a function of this instrument) that is not part of the current installation environment. The control panel and installation environment do not match. Load the appropriate control panel or change the existing configuration of the timebase in the Server Configuration program. For more information, refer to the online Help and/or the User Manual.

Device is not remote.

⇒ The control panel tries to access an instrument that is currently not ready for operation. Check whether all instruments listed in the configuration are actually connected to the server PC and that they are turned on. It may be necessary to restart the instrument to ensure proper functionality.
The connection is established correctly (no error message), but the controls are inactive.

⇒ The **Monitor Only** mode is enabled. It is not possible to actively operate the control panel. The **Monitor Only** mode is always enabled when the selected timebase is already controlled by a different workstation. Disable the **Monitor Only** mode on the **Control** menu. You can now actively control the timebase. (This is indicated by the controls on the control panel.) Simultaneously, the previously controlling workstation loses the control rights and is in **Monitor Only** mode.

⚠️ **Tip:**

*Have a look at the **Audit Trail** entries. They often provide useful information that helps you to correct the error.*

1c) Using the Control Panel

As soon as a control panel is correctly connected to a timebase, you can operate the individual instruments of this timebase using the controls provided on the panel.

Depending on the control panel that is currently defined as default, various active and passive controls and display elements (**Lamp**, ... **Signal Plot**) are available for controlling instruments and displaying system functions. You can change the appearance of the controls (size, shape, and color).
For example, the above control panel allows you to control an HPLC system that consists of a pump, an autosampler, a UV detector, and a fluorescence detector. In this example, all modules except the fluorescence detector are connected. Different buttons are available for issuing control commands such as Inject+Acq.On (for injection and data acquisition), autozero, etc. In addition, the current protocol data (Audit Trail) are displayed. After data acquisition has been started, the current chromatogram is displayed in the signal plot.

The control panel is usually configured during installation. We recommend storing the control panels in the directory of the corresponding timebase. (You cannot store them in the Dionex Templates directory because this directory is read-only).

Online-Toolbar: The basic commands such as the pump flow control, the inject command, or the start of the data acquisition are available on a separate toolbar. The toolbar is only active when a control panel is open.
The functions of the single buttons are as follows (from left to right):

- **Flow...**: Define the flow and gradient composition and start the flow
- **Inject...**
- **Acquisition on/off**: Start and stop data acquisition
- **Stop Flow**: Stop the flow, interrupt data acquisition, and hold the sample
- **Hold**: Freeze the solvent composition and hold data acquisition and the sample
- **Continue**: Continue the flow, gradient, and sample
- **Edit Batch**: Edit the order in which the samples are processed
- **Start/Stop Batch**

However, how does the system know that moving a slider should change the pump flow, and not the oven temperature? In addition to changing the size, color, and shape of each control, you can also change its functionality. These assignments are preset for the controls provided on the standard control panels. Although you can adapt them to your requirements, this is seldom required. For more information, see ➔ *Modifying a Control Panel* in the Special Functions section.

Manual Sample Processing/Starting the Analysis

If the panel is connected to the corresponding timebase, you can use the Online toolbar to start sample analysis:

- Open the control panel and connect to the desired timebase.

- Select **Flow...** on the Control menu (or click the icon on the Online toolbar). Enter the flow rate and the solvent composition the pump shall deliver. The pump immediately adjusts to the selected settings.

- Select **Inject...** on the Control menu (or click the ▶ icon on the Online toolbar). Specify the position from which to draw the solvent and the quantity (in µl) you want to draw and inject. This command, too, is executed immediately. Injection is performed directly after the command is issued.

- Select **Acquisition On** on the Control menu (or click the ⬤ icon on the Online toolbar). Define the signals to record and click OK to start data acquisition. Chromeleon records the data supplied by the detector.
IV. Control

You can also execute these commands directly from the control panel if your panel supports the corresponding option.

- To finish data acquisition and to complete the analysis, select **Acquisition Off** on the **Control** menu or click the **Acquisition on/off** icon again on the **Online** toolbar.

If your control panel is connected to a timebase on the local server, the recorded data is usually saved to the **Manual** sequence in the `<Timebase Name>` directory of the local datasource. This sequence is automatically generated during installation; it contains one sample only.

Note:

*With each new manual sample processing, the existing data is overwritten by the data of the newly analyzed sample (default setting). However, using the **Save to sequence** command, you may also save the data to any other sequence after data acquisition. Use this type of sample processing only for test runs etc.!!*

You will usually want to analyze several samples automatically one after another. To do so, you have to define both the order in which the different samples shall be processed and the commands that are required at the respective time. In Chromeleon, the processing information is contained in a ➔**Sample List (Sequence)**. The information about the command order is part of a ➔**Control File (PGM File)**.
2. The Control File (PGM File)

Objectives of this chapter:
- To describe the definition and purpose of the program
- To introduce the Program Wizard that guides you through program creation
- To describe the functions for program reprocessing

The different commands instruct the single instruments of a chromatography system to perform specific tasks. Enter the commands via the controls on the control panel or by clicking the corresponding buttons (for more information, see the Control Panel section).

For automatic and synchronized operation, the single commands must be listed in a file. When starting the file, the listed commands are executed consecutively, observing the relative time differences. This type of file is called control file or PGM File.

Control File Properties

For a very simple control file, the PGM Editor could look like this, for example:
In the **Command** view, the various commands of the PGM File are listed on the right below the **Title** line. The commands are assigned to the corresponding retention time. For information about how to create a program, refer to the following sections.

3. The Program Wizard

Creating a Program

We recommend that you use the Chromeleon Program Wizard to create a basic program structure and thus, avoid syntax errors when you enter the commands.

- Verify that the server is running. If the server is not running, start the server as described in ➔ *Starting Chromeleon*.
- Select **New** on the **File** menu.
- Select **Program File** from the list and click **OK** to start the Program Wizard.

![Program Wizard Image]

Depending on the installed instruments, the Program Wizard provides various steps. Below please find an example describing the different steps required to create a program for a typical HPLC timebase that contains the following devices:

- P680 Pump
- ASI-100 Autosampler (without cooling option) or AS50 Autosampler
- TCC-100 Thermostatted Column Compartment
- UVD340U Photodiode Array Detector

For more information about the wizard pages, press the F1 key or click the **Help** button. Click **Back** or **Next** to toggle between the pages.
Step 1: Timebase and Server

Determine the server and the timebase to be used:

- If the server was started locally, click the + character to display the items under My Computer, and then select a timebase. Select My Computer in the Protocol field. If you want to access a server that was not started on your computer but on a remote PC, click the + character to display the items under Network Neighborhood, and then select the appropriate timebase. In this case, you also have to select a network protocol in the Protocol field. For more information, press the F1 key.

Clicking Next takes you to the next wizard page. Click Finish to generate a program with the settings selected on the different wizard pages.
Step 2: ColumnOven Options (here: Dionex TCC-100)

Set the nominal temperature and the upper and lower temperature limits:

- Use Temperature Control
 - Temperature: [50.0...85.0 °C]
 - Lower Limit: 50.0 °C
 - Upper Limit: 85.0 °C

- Equilibration Time: 0.5 [0.0...30.0 min]
- Ready Temp Delta: 1.0 [0.0...5.0 °C]

Leak Detection:
- Humidity Leak Sensitivity: Standard
- Gas Leak Sensitivity: Standard

Column:
- MSV Position: A
- Active Column: Column_A
- Link MSV position changes and active column changes

Step 3: Pump Options (here: Dionex P680)

Define how to operate the pump:

- From the Type drop-down list, select Isocratic to deliver a constant solvent composition. If more than one solvent is used, the Start field determines the solvent composition in percent (for example: B = 45%, C = 0%, D = 5%). %A is calculated by the system from the portions of B, C, and D. Enter the flow rate in the Start field under Total Flow.
If you select Ramp instead of Isocratic, use the Start and End input fields to set the start and end time of the gradient ramp. You can also select a Multi-Step Gradient. In this case, clicking Next opens an additional wizard page.

Step 3a: Flow Gradient Options (here: Dionex P680)

If you selected Multi-Step Gradient from the Type drop-down list, use this wizard page to specify the desired gradient by entering the:

- Retention time
- Flow
- Solvent composition

Tip:

Before you enter a multi-step gradient, determine the flow rate and the start composition for the solvent on the previous wizard page. This facilitates the entry.
To append lines to the table, place the cursor in the last line of the table and press the arrow down key on the keyboard. The window will show the graphical representation of your gradient. A blue line indicates the flow, while the area represents the gradient composition. The following example shows a gradient at a flow rate of 1 ml/min, with a constant 5% D during the entire gradient. The portion of solvent B changes according to the entries made in the %B column.

Note:

If you have a Dionex GP40, GP50, or GS50 pump installed, you can program curved or linear gradients. The default is Curve 5, that is, a linear gradient. Curves 1 to 4 result in a convex gradient. Use curves 6 to 9 for a concave gradient.
Step 4: Sampler Options (here: Dionex ASI-100)

Determine the autosampler options:

- **Dispense Speed**: Enter the speed with which the injection shall be performed.
- **Draw Speed**: Enter the speed with which the syringe is filled.
- **Sample Height**: Enter the height at which the sample is drawn, measured from the vial bottom to the needle tip.
- **Syringe Delay**: Enter the time that the needle will remain in the vial after loading.

- Determine the speed for the needle movements:
 - **Up/Down Speed**: Enter the speed for moving the needle up and down.
 - **Radial Speed**: Enter the speed for moving the needle radially.

- Select the **Synchronize injection with pump** check box to synchronize injection with the pump cycle.
Or else: Steps 4 + 4a: Sampler Options (here: Dionex AS50)

If you have an AS50 autosampler installed, use this wizard page to define the autosampler options that do not change during the program:

- If you have the respective option installed, define the **Column Temperature** and the **Tray Temperature**. Select the **Wait for stable temperature** check box to wait before the injection until the temperature is stable.
- In the **Cycle Time** field, enter the time between two injections.
- In the **Syringe Speed** field, define the speed for drawing the sample.
- In the **Sample Needle Height** field, define how deep the needle will dip into the vial, that is, the position from which the sample is drawn.
- In the **Cut Volume** field, enter the sample volume that is finally dispensed into the waste.
- In the **Flush Volume** field, specify the volume for flushing the injection port.
Also, define the different AS50 sample preparation steps:

Note:

In the example, the different functions have been entered one after the other. A “real” application would look different, of course.

- First, select a function in the **Function** column. Seven different functions are available.
- Determine the desired parameters. (For example, for the **Dispense** function these are the **Source**, the **Volume**, and the **Destination** parameters.)
- Click **Insert** to enter the sample preparation step. To delete an existing sample preparation step, select the respective step and click **Delete**.
Step 5: Acquisition Options (here: esp. Dionex UVD 340U)

Determine the signals to be recorded during sample processing.

- Select the signals. Under **Acquisition Time**, specify how long the individual sample shall be analyzed.

For a photodiode array detector, for example, an entire 3D field and the **UV_VIS_1** and **UV_VIS_2** channels are recorded for 10 minutes (From 0.000 min to 10.000 min). 0.000 means that data acquisition starts immediately after injection (t = 0.000 min).

Define the signal parameters for each signal selected in step 4.

- Depending on the signal type, you must set various parameters (for example, **Excitation Wavelength** for the fluorescence detector). In the case of a UV detector, specify the wavelength, the bandwidth, and the step used for recording (for example: Wavelength = 225nm, Bandwidth = 1nm, Step = Auto, Average = On (selected)).
• In case of ECD channels, specify the **Data Collection Rate** (= number of collected data points per second) and the **SRS Current** (= suppressor current).

• In addition, enter the temperature compensation factor and the cell temperature as desired.
Step 7: Completing and Saving the Program

- Click **Finish** to complete the Program Wizard. In addition to your input, the complete program displayed in the PGM Editor also includes commands that are automatically added by Chromeleon, such as the **Inject** and **End** commands. These commands are required to execute the file. When these commands are missing, the program can be executed in exceptions only. The complete program could look as follows:

![PGM Editor screenshot](image)

```
Pressure.LowerLimit = 10
Pressure.UpperLimit = 250
%A.Equate = "%A"
%L.Equate = "%L"
UV_VIS_1.Wavelength = 254
UV_VIS_1.Bandwidth = 1
UV_VIS_1.Step = 0.00
UV_VIS_1.Average = On
UV_VIS_1.RetWavelength = 660
UV_VIS_1.RetBandwidth = 1
Flow = 1.000
%N = 20.0

0.000 UV.Autozero
Wait Ready
Inject
UV_VIS_1.AcqOn
10.000 UV_VIS_1.AcqOff
End
```

- You can edit a program later, as necessary. If you enter invalid commands, Chromeleon recognizes them and marks the respective line in red color (**Glow** instead of **Flow** in the above example). For more information about the error, refer to the status bar.

- Select **Save as** on the **File** menu to save the PGM File under a descriptive name.
4. Editing the Control File

You can edit each line directly via the keyboard. Make sure that the control file is connected to a timebase. If it is not, Chromeleon cannot perform the Ready Check and input via the F8 key (see below) is not supported.

- To open the PGM File, select Open on the File menu or double-click the corresponding file name directly in the Browser.
- Verify that your server is running. If the server is not running, start the server as described in Starting Chromeleon.
- Select Connect to Timebase on the Control menu.

Note:

If the timebase to which the program is connected is not available, select Connect to Timebase on the Control menu to connect the program to a different timebase.

You can now edit the program. Instead of overwriting the command syntax directly in the PGM File, we recommend to proceed as follows:

- Move the mouse cursor in the line to edit and press <F8 key>. Chromeleon opens the Commands dialog box for the currently selected command. You can now edit the input by selecting defined values, without having to worry about the correct command syntax.
- Save the edited PGM File using the Save as command.
V. The Analysis

1. The Sample List (Sequence)

Objectives of this chapter:

- To describe the definition and purpose of a sequence
- To introduce the Sequence Wizard that guides you through sequence creation
- To describe the functions for sequence reprocessing
- To automate the analysis by using a sample batch

To allow a chromatographic system to process several samples one after another without interruption, you have to define the order and the program to be used for sample processing. Chromeleon stores this information in a sequence.

Blue folders mark sequences in the left Browser pane (see "Isocratic" in the following picture). When you click a sequence, the right pane displays all files and samples contained in the sequence. The upper right Browser pane is reserved for files that are required for sample processing. The lower section lists all samples of the selected sequence. This section is referred to as Sample List.
Sample List Contents

The sample list forms the basis for sample processing. It lists the samples intended for processing (one line corresponds to one sample) and indicates how processing is or was performed (contents of individual columns).

<table>
<thead>
<tr>
<th>No.</th>
<th>Number of the sample in the sequence.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Sample name. The symbol indicates the sample type.</td>
</tr>
<tr>
<td>Type</td>
<td>Sample type.</td>
</tr>
<tr>
<td>Unknown</td>
<td>unknown sample (symbol in front of the sample name: 🌍)</td>
</tr>
<tr>
<td>Standard</td>
<td>calibration sample (.ToDateTime)</td>
</tr>
<tr>
<td>Validate</td>
<td>sample for validating the calibration (🗺️)</td>
</tr>
<tr>
<td>Blank</td>
<td>blank value (usually without injection) (Ḱ)</td>
</tr>
<tr>
<td>Matrix</td>
<td>blank value of the sample matrix (🚀)</td>
</tr>
<tr>
<td>Spiked</td>
<td>spiked sample (🚀)</td>
</tr>
<tr>
<td>Unspiked</td>
<td>unspiked sample (🚀)</td>
</tr>
<tr>
<td>Position</td>
<td>Sample position in the autosampler.</td>
</tr>
<tr>
<td>Inj. Vol.</td>
<td>Injection volume in µl</td>
</tr>
<tr>
<td>Program</td>
<td>➔ Control File (PGM File)</td>
</tr>
<tr>
<td>Method</td>
<td>➔ Quantification Method File (QNT Method)</td>
</tr>
<tr>
<td>Status</td>
<td>Sample status</td>
</tr>
<tr>
<td>Single</td>
<td>The sample has not yet been processed.</td>
</tr>
<tr>
<td>Multiple</td>
<td>The sample can be analyzed several times (the old sample will be overwritten).</td>
</tr>
<tr>
<td>Finished</td>
<td>The sample has already been processed.</td>
</tr>
<tr>
<td>Running</td>
<td>The sample is currently being processed (green background).</td>
</tr>
<tr>
<td>Interrupted</td>
<td>The sample was interrupted during processing.</td>
</tr>
<tr>
<td>Inj. Date/Time</td>
<td>Injection date and time</td>
</tr>
<tr>
<td>Weight</td>
<td>Sample weight</td>
</tr>
<tr>
<td>Dil. Factor</td>
<td>Dilution factor</td>
</tr>
<tr>
<td>ISTD Amount</td>
<td>Amount (quantity or concentration) of the used internal standard</td>
</tr>
</tbody>
</table>

Samples are always processed in the order of their appearance in the sample list.
1.a) Creating a New Sequence

The easiest way to create a new sequence is to use the Sequence Wizard. As an alternative, you may as well save an existing sequence under a new name and then modify the sequence as desired.

Start the Sequence Wizard to create the basic structure of a sample list.

Starting the Sequence Wizard

- Select **New** on the **File** menu.
- From the list, select **Sequence (using Wizard)**.
- Click **OK** to start the Sequence Wizard.

A sequence is created in **five steps**: Each step is performed on a separate page. For each page, detailed information is available via the F1 key or the **Help** button. Click **Back** or **Next** to toggle between the pages.

Step 1

Specify the timebase on which the sequence to be created shall run. Select a timebase in the right window section. The corresponding entries for **Computer** and **Protocol** are automatically made.
Step 2
Create all unknown samples to be processed.
- Select **Use Template**.
- Enter a sample name and complete the name using the arrow key to add, for example, #n. This is to number the samples consecutively, for example, sample#n. If you want to inject several times from the same vial, it may make sense to use the position number (#p) and the injection number (#r) as well (see the example above).
- Enter the number of injections (Injections per Vial).
- Specify the position of the first sample (Start position).
- Specify the sample volume to inject (Injection Volume).
- Click **Apply** to display the result of your input in the sample list (Sequence Preview). If the result requires editing, for example, because the injection volume should vary or individual vials are not positioned consecutively, you can change the information manually in the Browser after closing the Sequence Wizard. The Rack Preview displays the positions of the samples in the rack.

Step 3

Create all standard samples to process.
• Proceed as described in step 2. In addition, specify any number of standards (Variation:) that shall be analyzed after a specified number of samples (after each).

Step 4
Determine how to process, evaluate, and print the sequence.

• Enter the name and the directory of the PGM File and the QNT File to be used in the Program and Quantification Method fields. Or else, click Browse... and navigate to the desired file. If you have not generated a new PGM File or QNT File before, you can leave these fields empty for now.

• For ion chromatography systems, you can select an application template instead. This template provides the appropriate PGM and QNT files. First, specify the suppressor type you are using:
• For HPLC, IC, and GC sequences, select the DEFAULT.RDF report template in the **Preferred Report** field. The template is provided in the **REPORT** directory of the local database. The **Preferred Channel** field determines the channel for which data are displayed.

Note:

You can leave the **Quantification Method**, **Preferred Report**, and **Preferred Channel** fields empty here. Any input is optional only.
Step 5
Specify the name for the sequence to create and where to save it.

- Enter any name in the **Sequence Name** field and select, for example, the local data `<USERNAME_LOCAL>` from the **Datasource** field. Generate a separate sequence directory by specifying a directory name in the **Directory** field (you can also create a new directory).

Tip:

Do not use special characters (such as an umlaut) in sequence and directory names as this may cause problems in Novell networks!

- On the last Wizard page, click **Done** to complete your input.
1. b) Editing an Existing Sequence

After you have clicked Done, Chromeleon generates a sequence based on the entered information. The sequence is displayed in the Browser. As mentioned before, the sequence is a basic structure that needs to be adjusted to special requirements.

For example, if you wish to inject different volumes, you can edit the sequence later accordingly. Or else, if you have not specified the PGM and/or QNT file in step 4 of the Sequence Wizard, you can select this file later. Edit the sequence afterward in the Browser.

- In the sample list, change individual fields directly via the keyboard or open an edit box by pressing the F8 key.
- You may add additional samples. (Select Append Sample or Insert Sample on the context menu. Or else, place the cursor in the last line, and then press the arrow down key.)
- Of course, you can also copy and paste or delete samples via the corresponding commands on the context menu.

Note:

If you did not specify a control file when you created a sequence (Step 4 of the Sequence Wizard), the Program column cells on the sample list are empty! In this case, copy the required PGM File to the sequence directory. For each sample, select the PGM File to be used for processing.

2. Starting the Analysis

Analyzing one sample can be performed manually. For several samples, automatic sample processing is recommended. This requires a PGM File, a Sequence, and a Quantification Method (if possible).

Automatic Sample Processing

You can start automatic sample processing as soon as the chromatographic conditions, the samples to process, and their order have been defined during sequence creation.

Automatic sample processing is also called Online Batch or Batch Processing.
• Open a Control Panel. Select **Edit** on the **Batch** menu. Or else, click the following icon on the **Online** toolbar:

![Image]

On **Batch List** tab page, click **Add** to open the **Browse** dialog box. Under **Object of Type**, select **Sequence** from the drop-down list box. Select a sequence in your datasource and click **Open**.

This action enters the path and the name of the sequence in the Batch dialog box. If a sequence contains a sufficient number of samples, sample processing is possible around the clock. Instead of listing all samples in one sequence, you can create several sequences. In this case, enter all required sequence names in the Batch List.

• Repeat adding sequences until all required sequences are listed in the display field.

The order of the listed sequences determines the order of sample processing: When starting a batch, samples 1 to n of the first sequence are analyzed, followed by samples 1 to n of the second sequence, etc.

• Select a sequence and change the processing order by clicking the **Move Up** and **Move Down** buttons.
• Click **Ready Check** to check whether automatic sample processing (batch) is possible; i.e., Chromeleon checks whether all devices to be used are ready for use (turned on, connected, lamp switched on, etc.) In addition, this action verifies that all data are available and the memory capacity is sufficient.

• Click **Start** to start the analysis.

As soon as the online batch starts, all samples of the sequence(s) that have the status **Single** and **Multiple** (depending on the setting those with the status **Interrupted** as well) are analyzed in the listed order. During a running batch, the currently processed sequence is labeled with a green triangle in the batch list.
VI. Quantification Method (QNT File)

Objectives of this chapter:
- To define a method for peak detection and recognition, quantification, and evaluation
- To use this method for many samples and sequence and thus, save time

Introduction
After a chromatogram has been recorded, you need to integrate and assign the peaks first before you can quantify them. It would be a time-consuming task to do this in the report for each single sample. That is why all these steps are combined and saved in the QNT Method. Nevertheless, it is possible to edit a single sample in the report later. However, the better the QNT Method evaluates your samples, the less effort will be necessary for reprocessing the samples.

Strictly speaking, the QNT File is required after the analysis only. However, we recommend creating the file earlier. This allows you to follow and evaluate the course of the analysis.

Creating a Quantification Method
- Select New on the File menu.
- Select Method File as file type and click OK to create a new method.
The QNT File Window

The QNT File window contains various worksheets (General, Detection, Peak Table, Amount Table, Peak Tracking, MS Tracking, Calibration, Spectra Library Screening, SST, and MS). Open the required worksheet by clicking the respective tab on the lower window bar.

To create a simple evaluation method, it is sufficient to enter the Peak Table settings.

Creating a Peak Table

The peak table allows you to recognize peaks (= Detecting Peaks), assigning names to the peaks in a chromatogram (= Identifying Substances), and converting the determined peak areas into substance amounts (= Quantifying Substances and Defining the Calibration Mode and Calibration Type). The required information is usually entered before the analysis.
VI. Quantification Method (QNT File)

Saving the QNT File

Use the **Save as** command to save the quantification method under a separate name.

Editing the QNT File

When the QNT File is edited, all changes will be implemented immediately in all involved components (only if the **Auto Recalibrate** check box has been selected on the **General** tab page).

If you have opened a channel of a specific sample (see: ➔ The Browser - Appearance and Functions (Part b)) and you see the corresponding chromatogram, this representation is updated immediately after changing the QNT File. The same applies to the representation of numerical values as they appear in any report.

⚠ **Caution:**

*If you have not specified a quantification method when creating a sequence (Step 4 of the ➔ Sequence Wizard), the **Method** column cells in the sample list will be empty! Enter the name of the desired QNT File for each of the samples. To evaluate all samples of a sequence with the same QNT File, select the QNT File for the first sample, and then copy the entry for all entries using the F9 key.*

1. Detecting Peaks (Detection Tab)

Before peaks can be identified and quantified, they have to be detected. Based on default values for the peak recognition algorithm, Chromeleon is able to detect even the smallest peaks. Normally, however, you will not be interested in these small peaks so that you may want to include certain filters to exclude them from being displayed. This and other detection tasks are defined on the **Detection** tab page.
Double-click the default parameter (Minimum Area = 0.001 \{Signal\} min) to open the Edit detection parameter dialog box:

![Edit detection parameter dialog box]

Frequently used Detection Parameter

Minimum Area

Usually, the **Minimum Area** default parameter will be sufficient as filter. **Minimum Area** defines the area threshold, below which peaks are not identified during peak detection or integration. In HPLC-UV, 1.000 mAU* min usually is an appropriate value. Set the parameter to the desired value and click **OK** to accept the changes. This action usually suppresses the small peaks that are of no interest:
To add more detection parameters, select the **Lines** command, and then select **Append Lines**. You can also use the **Minimum Height**, **Minimum Width**, **Maximum Peak Height**, and **Maximum Width** detection parameters as additional filters.

Tip:

Changing the **Minimum Area**, **Minimum Height**, or **Minimum Width** parameters influences the baseline; changing the **Maximum Area Reject** or **Maximum Height Reject** parameter does not. If you change the **Maximum Area Reject** or **Maximum Height Reject** parameters, it may happen that the corresponding peaks are no longer displayed.

Inhibit Integration

Use the **Inhibit Integration** detection parameter to disable peak integration. If the parameter is set to **On**, peak detection is disabled. This may be useful for disabling the integration of injection peaks. Negative injection peaks may cause an undesired baseline; for example the **Water Dip** peak in ion chromatography. Enable the **Inhibit Integration** detection parameter to avoid this effect.
If the value is set to On before the first peak to be inhibited, peak detection is disabled until the parameter is disabled (Off), i.e., no peaks are recognized. The chromatogram is drawn on the screen but it is not integrated in this area.

Inhibit Integration can be used to inhibit the injection peak by enabling the parameter at the start time of the chromatogram and by disabling it shortly after the void time. (In the above example, the retention time of the negative peak is 2.513 min.)

If the first peak follows shortly after the negative water peak and if the retention times of the separate chromatograms show considerable fluctuations it may be difficult to set the end time for Inhibit Integration exactly. If the end time is set too early or too late, the first peak may not be integrated as desired.

In this case, use the **Void Volume Treatment** parameter instead. If the peak start is still set too early, use the **Fronting Sensitivity** parameter to remedy the situation.
VI. Quantification Method (QNT File) T-57

Note:

The Void Volume Treatment parameter only inhibits integration of the negative peak with the lowest signal value.

Detect Negative Peaks

The default setting is that negative peaks are not detected. Negative peaks, for example, the negative water peak in ion chromatography, may cause an undesired baseline. Enable the Detect Negative Peaks detection parameter to avoid this:
To detect a negative peak this switch must be activated before the peak start. To correct the baseline without labeling the peaks or including peaks in the peak list, select **Don't label**.

Note:

In the result report, the area of negative peaks is indicated as a positive value.

More Detection Parameters

Use the **Rider Threshold** and **Maximum Rider Ratio** detection parameters to define the peaks that shall be classified as riders. Use **Rider Skimming** to define how to divide a rider peak from the main peak.

Besides, you can use the **Valley to Valley** parameter to enforce valley-to-valley integration, and the **Fronting Sensitivity Factor** or **Tailing Sensitivity Factor parameters** to influence the determination of the peak start and peak end.

2. Graphical Input of Detection Parameters

Click the detection parameter tool to display the position of the detection parameters in the chromatogram.

This is especially useful if you want to change the position of detection parameters or graphically insert additional parameters. Use the **Detection Parameter Tool** to change the position of detection parameters. Open the tool by selecting the respective command on the context menu or by clicking the icon. In the chromatogram, the parameters are marked by a dotted line at which the abbreviation for the parameter and the respective parameter value is indicated. For example, the figure below shows the values for the Rider Threshold (in short: RidThd), Rider Skimming (RidSki), and Maximum Rider Ratio (RidRat) at 1.000 min. Position the mouse on a detection parameter in the chromatogram to activate the detection parameter tool so that you can move this parameter via the left mouse button.
To insert a detection parameter at the position of the mouse cursor, select **Detection Parameters** on the context menu:

For example, this setting enforces valley-to-valley integration as from the selected time.

You can also enter detection parameters graphically by holding down the right mouse button and selecting a chromatogram area. The context menu provides the following options:

- Set Averaged Baseline Start and Set Average Baseline End
- Set Background Subtraction Range
- Set Minimum Area
- Set Minimum Height
- Set Minimum Width
- Set Peak Slice & Sensitivity
- Set Inhibit Integration Range
Tip:
You can undo the graphical input of detection parameters. Click one of the QNT editor tables and select **Undo** on the **Edit** menu. (In the chromatogram itself, you can only undo changes that were made in currently open chromatograms.) In the **Detection** table of the QNT Editor, you may just as well delete the parameters that are no longer required.

3. Automatically Generating the Peak Table

You can create the peak table manually by entering the single peak names and retention times. However, generating the peak table automatically by using the **Autogenerate Peak Table** command considerably facilitates this task. (For more information, refer to ➔ Automatically generating the Peak Table.)

Select **Autogenerate Peak Table** on the context menu. Chromeleon automatically generates the peak table and enters the retention times of all peaks detected in the currently open chromatogram as set times in the QNT Method. You only have to complete the table by entering component names and altering the default window and other values as necessary. Peaks, which are not of interest, can be deleted from the table. These will consequently be excluded from the report if the **Including all not detected peaks of the peak table** parameter in the **Integration Report Properties** has been disabled. (To change the setting of this parameter, select **Table Properties** on the **Edit** or context menu.)
VI. Quantification Method (QNT File) T-61

During automatic table generation, the variables described below are set as follows:

- The **Peak Names** are constructed from the name of the QNT Method, for example, in the Anion Qnt method, detected peaks will be assigned the names Anion Qnt -1, Anion Qnt -2, Anion Qnt -3, etc.

- The **Window** values are entered as absolute values (indicated by the suffix A).

- No **Group**.

- The **Amount** values and the **Response** Factors are set to 1.0.

- The **Peak Type** is Auto (i.e., based on the peak, it is determined by Chromeleon).

- The entry in the **Comment** column is **Autogenerated**.

When you generate peak tables via the **Autogenerate Peak Table** from the **Edit** menu, all peaks in the chromatogram are usually enumerated (type Enumerate peaks of current chromatogram). However, you can also use the results of the spectra library screening (see **Spectra Library Screening**) for peak naming (type: Use spectra library screening results).
4. Identifying Peaks (Peak Table Tab)

The Peak Table is used to assign peak names to all peaks of interest in a chromatogram. Peaks are typically identified by the retention time. However, it is also possible to identify peaks by the corresponding spectra.

- Select the Peak Table tab to open the peak table.
- Enter the names of all peaks to be identified in the Peak Name column. Assign the expected retention time to each peak in the Ret.Time column (= nominal retention time (Tret)). (You can add additional lines using the Lines .../ Append Line commands on the context menu).

If a peak is detected at the specified time, the name is assigned automatically (fig. a). An additional tolerance range for peak detection is defined in the Window column (fig. b). The width corresponds to the double Window value. To determine the retention time area, this value is added or subtracted from the retention time. If a peak is detected in this range, it is identified even if the actual retention time does not correspond exactly to the entered nominal retention time (fig. c). If several peaks are detected within this range, the Chromeleon identifies the greatest, the first, or the nearest peak to the retention time (fig. d), depending on the extension of the Window parameter.
VI. Quantification Method (QNT File)

- In the **Window** column, enter, for example, **0.25 AG**, for each peak to identify the largest peak within a 30-second window. Time input is in industry minutes. For example, the value 1.00 corresponds to 60 s. The value 0.25 thus corresponds to 15 s, which means a window range of ±15 s. The setting **0.25AF** identifies the first peak; the setting **0.25AN** identifies the nearest peak to the set retention time.

5. Quantifying Substances (Amount Table and Peak Table Tabs)

You can use standard samples (sample type: Standard) to quantify unknown samples. To do so, you have to enter the known substance amount of these standard samples in the amount table together with the standard method. Enter this information in the **Amount** and **Standard** columns.

Amount Column

- Search the amount table for the name of the standard substance(s). If the required names are not listed, enter the names and the retention times as described **Identifying Peaks**.
- Move along the line to the **Amount** column.
- Enter the amount values of the substances (Substance A, Substance B, etc.).

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret.Time</th>
<th>Standard</th>
<th>Int.Type</th>
<th>Cal.Type</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Substance A</td>
<td>1.500 min</td>
<td>External</td>
<td>Area</td>
<td>Lin</td>
<td>12.00000</td>
</tr>
<tr>
<td>2</td>
<td>Substance B</td>
<td>2.600 min</td>
<td>External</td>
<td>Area</td>
<td>Lin</td>
<td>17.00000</td>
</tr>
</tbody>
</table>
Enter a concentration value, such as, $\mu g/\mu l$, or an absolute value, such as, μg. (Enter the used dimension in the Amount Interpretation section on the General tab.)

Multi-Point Calibration

Multi-point calibration can be achieved by

- Using different standards with different concentrations
- Injecting different volumes from a single sample vial

Different standards with different concentrations

If standards are available in various concentrations, i.e., in several vials, enter the concentrations of all substances to be calibrated in a separate Amount column. Do this for each vial from which injection is performed.

- To add additional Amount columns, select Columns.../Edit Amount Columns... on the context menu:

 ![Edit Amount Columns](image)

- Standard samples, validation samples, and spiked samples are available for this.

- Click New to create a new amount column. Enter any name of your choice.
VI. Quantification Method (QNT File) T-65

- Select **Unassigned** from the left list box and then move the desired sample to the new column. (For example, Sample 2 in the above image.)

- Enter the concentration value of the second vial in the new **Amount** column.

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret.Time</th>
<th>Window</th>
<th>Standard</th>
<th>Int.Type</th>
<th>Cal.Type</th>
<th>Amount Standard 1</th>
<th>Amount Standard 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Substance A</td>
<td>1.500 min</td>
<td>0.400 AO</td>
<td>External</td>
<td>Area</td>
<td>Lin</td>
<td>12.00000</td>
<td>48.00000</td>
</tr>
<tr>
<td>2</td>
<td>Substance B</td>
<td>2.600 min</td>
<td>0.400 AO</td>
<td>External</td>
<td>Area</td>
<td>Lin</td>
<td>17.00000</td>
<td>58.00000</td>
</tr>
</tbody>
</table>

Injecting different volumes from a single sample vial

If the range to calibrate does not contain several powers of ten, you can inject different volumes from the same vial. Chromeleon automatically considers the different volumes. In this case, you only need one **Amount** column, as the concentration is constant.

For this type of multi-point calibration, the decisive column of the sample list in the Browser is the **Inj. Vol.** column. The column could look as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Inj. Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard 1</td>
<td>Standard</td>
<td>RS9</td>
<td>5.00</td>
</tr>
<tr>
<td>2</td>
<td>Standard 2</td>
<td>Standard</td>
<td>RS9</td>
<td>10.00</td>
</tr>
<tr>
<td>3</td>
<td>Standard 3</td>
<td>Standard</td>
<td>RS9</td>
<td>20.00</td>
</tr>
<tr>
<td>4</td>
<td>Standard 4</td>
<td>Standard</td>
<td>RS9</td>
<td>40.00</td>
</tr>
<tr>
<td>5</td>
<td>Sample 1</td>
<td>Unknown</td>
<td>RA1</td>
<td>10.00</td>
</tr>
<tr>
<td>6</td>
<td>Sample 2</td>
<td>Unknown</td>
<td>RA2</td>
<td>10.00</td>
</tr>
</tbody>
</table>

If you enter the **Amount** as amount value (and not as concentration value), make sure that the amount corresponding to the reference injection volume is entered in the **Amount** column. The reference injection volume does not have to equal the actual injection volume, i.e., the injection volume specified in the sample list of the Browser. Enter the reference injection volume on the **General** tab page of the QNT Editor:
"Standard" Column

The standard method determines how a calibration is performed. A general distinction is made between calibrations based on external or internal standards.

An external standard refers to a calibration that is performed based on one or several standard samples (normal case). An internal standard is the known amount of a standard substance that is added to the unknown sample. (The Tutorial provides only a short description for this special case. For more information, see Internal and External Standard in the Special Functions section.)

- Make sure that the correct standard method for each peak to calibrate is entered in the Standard column (= External = default value).

For information about further calibration options (Internal or Internal/External), see the online Help or the User Manual (for example, in the Calibration section).

Further Columns

All other peak table columns determine how the determined area values are converted into the resulting substance amount values. Generally, the standard settings can be used. No changes are required.

Verify that the following default settings in your QNT Method are correct for your application:

- Calibration Type = Lin
- Integr. Type = Area
- Response Factor = 1,000
6. Defining the Calibration Mode and Calibration Type

The Quantifying Substances topic already described the basic elements of the calibration with Chromeleon. However, Chromeleon provides many more calibration functions. The complete description of these functions would go beyond the scope of this Tutorial. Nevertheless, the most important functions are described below.

Calibration Mode

The calibration mode allows you to define which standard samples shall be used for calibrating which unknown samples. Define the calibration mode on the General tab page. The following options are available:

- **Total** mode to use all standard samples for calibrating all unknown samples.
- **Fixed** mode to use certain standards (also from previous sequences) for calibrating all unknown samples.
- **Standard Addition** mode to analyze unknown spiked or unspiked samples.

For more information about the Group, Additional and Bracketed modes, see below:

<table>
<thead>
<tr>
<th>Group</th>
<th>Name</th>
<th>Pos</th>
<th>Add</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Standard 1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Standard 2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Sample 1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Sample 2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Standard 3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Standard 4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sample 3</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sample 4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Standard 5</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Standard 6</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calibration Type

The calibration type defines and weighs the calibration function to be used as necessary. Enter the calibration type on the Peak Table tab page of the QNT Editor:

- Press the F8 key in the Cal.Type column to open the Calibration Type for <Peakname> dialog box.

- In the Calibration Function section, select a calibration function for the current peak. This is usually the Linear or Linear with Offset function (if the calibration function does not pass the origin). However, quadratic and exponential functions and a polygon (Point-to-Point) through the calibration points are available as well.

- In the Weights section, define the weights for the single calibration points. If you selected No Weights, higher amounts/signal values are weighted more. Select 1/Amount or 1/Response for proportionate weighting of small and high amounts/signal values. Select 1/Amount^2 and 1/Response^2 to weight smaller values more than high values.
In the **Further Options** section, more options are available. Select **Average all response values for each calibration level before curve fitting** to average the calibration points of each calibration level before calculating the calibration curve. Select **Include point (0.0) for curve fitting** to include the origin as calibration point into the calibration if you selected a calibration function with offset. However, this does not mean that the calibration curve runs through the origin.

Special rules apply to calibrations that use the Standard Addition function. For more information, refer to the corresponding sections in the Chromeleon online Help.
VII. Data Analysis

Objectives of this chapter:

- To describe the chromatogram, calibration curve, and spectra views
- To display the sample results in report tables
- To evaluate and edit single chromatograms

Introduction

Chromeleon allows you to display sample data under various aspects. You can:

- Display a single chromatogram.
- Compare several chromatograms.
- Check the peak purity.
- Display calibration curves.
- Search single spectra in a spectra library.

Each action is performed in a separate window or pane. Each pane is intended for a specific task and has its own window arrangement and menu structure.

Data Representation

To display data, select the corresponding data first:

- In the Browser, click the sequence of interest.
- Open a sample in the sequence by double-clicking the sample name.
- The sample opens in the Integration window. The Integration window usually displays the chromatogram and the report table. Sometimes, only the chromatogram is opened. This depends on the report definition file (RDF):
Use the icons on the Method toolbar to quickly change from one view to another:

- **Integration** (opens the screen report and displays the results of the analysis)
- **PPA** (opens a window that displays the data of a diode array detector)
- **QNT-Editor** (opens the view for editing the quantification method)
- **Printer Layout** (opens the view for preparing the printout)
- **Signed Results** (opens the signed results for the current sample)
The following icons open an additional part window:

- **Show Report** (displays the report table)
- **Show Trend** (displays the trend plot--changes of variables are graphically displayed from sample to sample)
- **Show Chromatogram/Split Zoom** (displays the chromatogram in two panes: complete view and enlarged view)
- **Show Spectra** (displays the UV spectrum)
- **Show Calibration Curve** (displays the calibration curve)
- **Show Mass Spectra** (displays the mass spectrum)

Click the four icons on the very right to:

- Display the **Previous Chromatogram** or the **Next Chromatogram**
- Display the **Previous Channel** or the **Next Channel**

The **Integration** window is the most important window for data representation. For more information, see ➔*The Integration Window* below. For information about the ➔*QNT Editor* and the ➔*Printer Layout* windows, see the associated sections in this Tutorial.
1. The Integration Window

- To open a sample chromatogram, double-click the sample name in the Browser. In the easiest case, you will only see the chromatogram of the sample. For example:

 ![Chromatogram Example]

 - Select Decorations on the context menu to change the appearance of the chromatogram. You can change the captions, axis ratios, and coloring as well as the actual chromatogram representation (display of peak heights, additional chromatograms, or grid).

 - Double-click an individual peak to display its properties:

 ![Properties of Peak No. 4]

 - Component: None
 - Retention: 8.96 min
 - Width: 0.35 min
 - Peak Type: GMB
 - Height: 10.28 μS
 - Area: 2.30 μS/min
 - Amount: 20.096 μg/ml
VII. Data Analysis

- Select a peak and click on the corresponding icons to display the Spectra Plot and the Report.

If the analysis was performed with a diode array detector, the spectrum of the selected peak, for example, anthracene, is displayed on the top right; the lower section displays part of the integration report (four lines, the line with the currently selected peak is highlighted by a different background color). You can change the Spectra Plot window via the Decorations command as described above. Select Decorations to display the available options. This command also minimizes the spectrum in the chromatogram.

The displayed default report contains information about various parameters. Each worksheet has a number of default variables that are an integral part of the specific report type. For example, the integration report contains the Ret.Time, Area and Amount columns; the calibration report includes the Offset (c0), Slope (c1), and Curve (c2) columns, etc.

Double-click a peak name in a report window to change the selection of the current peak. Instead of anthracene, pyrene is highlighted by a different color. The spectra representation is updated as well.
2. Modifying the Chromatogram

In some cases, it may be useful to change the sample integration that was performed manually, for example, by moving peak delimiters. To do this, use the icons on the Integration toolbar:

Use the **Automatic Tool** to perform the most important actions. The shape of the mouse cursor indicates the performed action.

- Move left/right peak delimiter
- Change baseline point (left/right/center)
- Move baseline point (left/right/center)
- Move perpendicular line
- Move baseline segment
- Change retention window
- Move detection parameter
- Insert peak
- Display spectra
- Zoom out an area
- Action not possible

The action that can be performed at the current position is indicated on the status bar.

Example:

The mouse cursor changes its shape when it is near the blue peak delimiters. \(\text{[Left-click to change the integration limits of a peak by moving the peak delimiters.} \)

- It is not possible to "run over" another peak delimiter. After moving a peak delimiter, Chromeleon draws a new baseline between the peak start and the peak end. All peak properties such as area, width, substance amount etc. are recalculated. The integration report is immediately updated.

- Select **Save Manipulations** on the context or **Edit** menu to save the reprocessed results.

Similar to moving peak delimiters, you can perform other actions. For example, you can insert or delete peaks or change the baseline.
3. Report Tables

The default report (default.rdf) contains five tabs. The Integration tab mentioned above describes the general characteristics of the respective peaks in the current sample such as the Ret. Time, Area, and Amount columns or the concentration of the respective substance. The Calibration tab displays the calibration data of the current sample:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Fluoride</td>
<td>Lin</td>
<td>5</td>
<td>2.782</td>
<td>99.999</td>
<td>0.000</td>
<td>0.305</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>Chloride</td>
<td>Lin</td>
<td>6</td>
<td>4.456</td>
<td>99.999</td>
<td>0.000</td>
<td>0.207</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>Nitrate</td>
<td>Lin</td>
<td>5</td>
<td>2.177</td>
<td>99.995</td>
<td>0.000</td>
<td>0.225</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>Bromide</td>
<td>Lin</td>
<td>5</td>
<td>0.970</td>
<td>99.999</td>
<td>0.000</td>
<td>0.083</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>Nitrate</td>
<td>Lin</td>
<td>5</td>
<td>1.008</td>
<td>99.999</td>
<td>0.000</td>
<td>0.107</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>Phosphate</td>
<td>Lin</td>
<td>5</td>
<td>14.515</td>
<td>99.212</td>
<td>0.000</td>
<td>0.057</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>Sulfate</td>
<td>Lin</td>
<td>5</td>
<td>7.303</td>
<td>99.830</td>
<td>0.000</td>
<td>0.140</td>
<td>0.000</td>
</tr>
</tbody>
</table>

The Calibration tab page includes by default:

- The calibration type and the number of calibration points in the calibration curve
- The relative standard deviation (of the points from the calibration curve)
- The correlation coefficient (independent of the calibration curve)
- The calibration curve parameters (Offset, Slope, and Curve)

The Peak Analysis tab provides a summary of the characteristics of the single peaks such as the peak width, peak height, peak type, resolution, asymmetry, and the number of theoretical plates.

In contrast to the first three tabs, the summary includes all samples in the sequence:
The Summary always refers to the current peak. To display the summary for any other peak, click the corresponding peak in the chromatogram.

The last report tab (Audit Trail) displays the corresponding sample protocol:

It lists all commands sent to the corresponding timebase during the analysis including time and retention time.
4. Modifying a Report Table

The individual report sheets are designed such that they contain the most important peak and sample characteristics for most applications. Nevertheless, it may be possible that you do not need an existing column or that you want to add a new one.

- Double-click the column to be changed. The Properties Report Column dialog box is opened:

The report columns are listed under **Categories**. Under **Variables**, all result variables calculated and evaluated by Chromeleon are listed. Select a variable to display its properties (Formula, Header, Dimension, Format).

Header shows the text of the column header. **Dimension** shows the dimension name. **Format** defines the number of decimal places. Select the **Selected Channel** option to display the values of the current channel. Or else, select **Fixed Channel** to display the data of a specific channel independently of the representation in the integration window.
• Click **OK** to replace the selected column with the newly defined column.

• Select a column, and then select **Delete Column(s)** to remove the column.

Note:

These report options influence the on-screen representation only. In the Printer Layout, define the appearance of the printout!

5. Saving Changes

Select **Save Report Definition..** to save all changes within a report as a separate report definition file (RDF). The arrangement and the appearance of the individual report window sections are saved plus the variables to be displayed.

With each new start of Chromeleon, the report opens just as it was saved last. If you have created your own Report Definition Files (RDF), you can select a different appearance via **Load Report Definition.**

Keep in mind that each sequence is saved with a preferred profile. Upon opening a sample of the corresponding sequence, it is not the appearance of the window saved last that is used but the appearance of a specific report definition file (RDF). Proceed as follows to define a sequence for a preferred report:

• Select a sequence in the Browser and then select **Properties** on the context menu.

• Under **Preferred RDF File**, enter the name of the report definition to load.
1. Creating a Print Template (Printer Layout)

The Printer Layout window displays custom print templates. To open a print template for a specific sample:

- Double-click a sample name in the Browser. Chromeleon displays the chromatogram in the Integration plot window.
- Select Printer Layout on the View menu to change from the Integration plot to the Printer Layout.

Tip:
The Method toolbar allows you to quickly change from one view to another (for more information, see Data Analysis). Place the mouse cursor on an icon to read its label in the quick info field.

The image shows part of a report based on the default report template (DEFAULT.RDF):
The Integration, Calibration (Curr. Peak), Calibration (Batch), Peak Analysis, SST, Summary, and Audit Trail worksheets are part of the DEFAULT.RDF report template.

- Select one of the tabs on the window bottom to open the corresponding sheet of the report.

The appearance and the structure of the individual worksheets are very similar to Microsoft Excel spreadsheets. Each sheet consists of a large number of columns (256) and lines (16000) and thus is much larger than a single printed page. A worksheet can consist of many horizontally or vertically arranged printed pages. Chromatograms or tables that exceed one printed page are automatically printed on two or more pages. Define the order in which the pages are printed in the Page Setup (on the File menu).

Top To Bottom Left To Right

Editing an Existing DEFAULT.RDF Template

It is less effort to change an existing report template than to create a completely new one. Different templates, such as the DEFAULT.RDF and the DEFLTDAD.RDF templates, are available on the Chromeleon software CD. Copy any template you wish to use as the basis for a new template to a different and writable directory.

- Select Save Report Definition on the context or Workspace menu and save the template to a different and writable directory.

You can now edit and save the copied template. For information about how to proceed and the available options, see below. For more information about the individual steps, refer to How to ...: Actions in the Window Printer Layout section in the User Manual or the online Help.

- Select Layout Mode on the Edit menu.

- Select the worksheet you wish to edit or add an additional (empty) worksheet by selecting Insert Sheet on the Edit menu.

- Select Delete Sheet on the Edit menu to delete an unnecessary worksheet.

- Double-click a tab page to change its name, for example, Integration Special.
Select **Insert Row(s)/Column(s)** or **Delete Row(s)/Column(s)** to add or remove single rows or columns on the worksheet.

Select a field, a column, or an area, and select then **Clear ...** on the context menu to remove unnecessary information from the worksheet.

Having removed all unnecessary parts, you can fill cells, columns, or areas of the worksheet with new contents. You can either use the Windows clipboard (**copy & paste**) or the **Insert ...** command from the context menu. Follow the steps below:

- Select **Insert ...** to further specify the desired command, for example:
 - **Insert ... Chromatogram** inserts a chromatogram.
 - **Insert ... Calibration Plot** inserts a calibration curve.
 - **Insert ... Spectra Plot** inserts a UV spectrum, etc.

- Use the small cross to mark the area where to insert the desired element. The element is automatically inserted at the desired position.

- If you want to insert a report table or a single report variable, mark an empty field first. Then, use the corresponding command to insert the table or variable at the selected position.

- Report columns can be inserted only in existing tables.

- Select **Save Report Definition** on the context menu or the **Workspace** menu and save your changes.

2. Printing

Printing in Automatic Batch Operation

You can start printing the results during automatic sample processing (**Online Batch**). Make the corresponding settings in the **Batch** dialog box.

- Select **Reporting** on the **Batch** menu in the Browser or on a control panel.

- Enable the **Print/Export Report** check box to print or export the sample processing results.

- Select **Print each sample immediately** to start printing immediately after the sample has been analyzed. Select **Print when the entire batch has finished** to print all sample results after the entire sequence is completed.
To specify the report type and the extent of the printed output, click the Report Setup button. The Batch Report dialog box is opened:
Select a report template in the **Use Report Definition** field. The default report Chromeleon templates, i.e., DEFAULT.RDF and DEFLTDA.DRF, are available in the **Dionex Templates > Reports** directory.

- From the **With Selected Channel** field, select the channel to print, for example, UV_VIS.1. If the field remains empty, the preferred channel is printed (see *The Browser: Appearance and Function (Part b)*).

- Select the **Printout** option to print the sheets.

- The **Printer** field shows the name of the previously selected default printer. Select **Setup** to select another printer.

You have now specified the channel, the printer, and the report definition for the printed output. The Printer Layout allows you to determine the appearance of the report and to specify the information to be printed.

As described in detail in the *Creating a Print Template (Printer Layout)* topic, a report template contains several special sheets for different print data. The sheets included in the selected report template are listed in the **Selected sheets to be printed** field. The **Integration**, **Calibration (Curr.Peak)**, **Calibration (Batch)**, **Peak Analysis**, **Summary**, and **Audit Trail** sheets are included in the default report template.

- Under **Selected sheets to be printed**, select the worksheets of the report template you wish to print.

- Determine for each worksheet whether all samples or only samples of a specific type shall be printed.

- Select **Print for every sample** to print the results for each sample.

- Select **Print under certain conditions** to print the results only when a certain condition is met (for example, only for a specific sample type).

For example, if you want to print the **Calibration (Batch)** worksheet for the last standard sample only, select the **Print under certain conditions** option and then click **Conditions**. In the dialog box that opens, enable the **Last Sample in a List of Standards** check box.
Click **OK** to return to the **Batch Report** dialog box and define the other worksheets.

Click **Start** as described in **Starting the Analysis** to start sample processing.

Printing Samples

Of course, sample-processing results can also be printed independently of the online batch. This applies to all samples for which raw data are available. Chromeleon assigns **Finished** as sample status in the sample list. Proceed as follows to print the results of any samples.

- Open the **Browser** and select **Print Setup** on the **File** menu. Select a printer for printing the results and exit the dialog box by clicking **OK**.
- Select the name of a sequence to print the results of all included samples.
- If you only want to print specific samples of a sequence, select them one by one with the mouse. Simultaneously press the CTRL key and left-click to select several samples.
- Select **Batch Report...** on the **File** or context menu and determine how to print the report (see **Printing in Automatic Batch Operation**).
IX. Special Functions

In the previous chapters, the Tutorial described the basic Chromeleon functions. Most users for routine operation use these functions. In addition, Chromeleon provides many special functions that can save time for special operations. However, these functions will certainly not be relevant for all users.

Below please find a short introduction to the most important special functions and the actions they perform:

In the Browser:
- **Installing Datasources**
- **Finding Samples (Query)**
- **Backup and Restore**
- **Signing Sequences Electronically**

On the Control Panel:
- **Modifying a Control Panel**

In the QNT Editor:
- **Internal and External Standards**
- **Spectra Library Screening**

In addition:
- **Defining the Workspace**

1. Installing Datasources

Datasources represent the top level in the Browser. Each user can access at least one datasource that is the default datasource created during installation (<PC-NAME_LOCAL>). Creating additional datasources or accessing datasources on other computer in the network is often useful. Therefore, these options are supported as well. The section below describes how to create links to other datasources (For more information about how to create a new datasource,
refer to How to ...: Actions in the Browser/Setting up a Datasource in the User Manual and the online Help).

All steps required for setting up datasources start with the Datasources command on the File menu.

- Open the Browser and select Datasources.

The Datasource Manager shows all datasources that the client can currently access.

![Datasource Manager](image)

Connecting an Existing Datasource ("Connect")

If you know the directory in which the other datasource is located, you can connect to this datasource.

- Click the Connect button of the Datasource Manager to establish the connection.

- Select the format of the underlying database.
Usually, you will select Chromeleon datasources (Native Chromeleon Data Source). Other supported formats include default Microsoft Access databases (mdb container), SQL server, and Oracle databases.

- Select the appropriate datasource type and click OK.
- In the following dialog box, navigate to the network folder that houses the datasource.

- Select the folder and click Open.

Note:

If the folder and the datasource are located on a remote computer, the user of that computer must share the corresponding folder! If (s)he does, you can connect to the selected datasource. The name and the type icon of the datasource will appear in the Browser.
2. Finding Samples (Query)

You will often have to find samples according to defined problems. Instead of endlessly poring over old folders, you can use the query function of the Browser to do so easily, fast, and purposefully. Select **New** on the **File** menu to start the Query Wizard:

On the first query page, define whether to perform the query in the current datasource or in a fixed one. Also, define whether to search for sequence properties, sample properties, or any other properties of samples.

On the next pages, define in the **Data Field** the variable whose properties you want to find. Select an operator and define the value. The combo box next to the respective line allows you to enter a logical connective with another query property. Only after having entered **AND** or **OR**, you can enter another property:
The following query searches for all samples with
- Sample type = Matrix Blank and
- Whose comments start with Charge 123456 or

On the next page, enter the following settings in order to restrict the query to samples
- Containing an Anthracene peak or
- Containing more than 10 calibration points

3. Backup and Restore

In the course of time, large amounts of data will result, especially when PDA detectors are used, but also when a great number of sequences is recorded. To ensure that you can continue to store data on your hard disc, you have to delete some of your data from time to time. However, do not destroy these data permanently. They still have to be available for future use. Of course, you can save the respective sequences and datasource on your network as well.
However, Chromeleon provides the possibility to backup sequences, directories, or entire datasources and save these backup files (which can also be compressed), for example, on CD. Proceed as follows:

- Select the object to save.
- Select **Export/Backup** on the **File** menu and then, select **Backup**.
- Indicate where to save the backup file and define all further backup options:

 - Start the backup to create the backup file. The extension of the backup file is `cmb`.
 - You can then, for example, burn the backup file to a CD or attach it to an Email.

Data that were saved in this way can be used again via the **Restore** function. Select **Import/Restore** on the **File** menu, and then select **Restore**. Find the respective backup file and indicate where to restore it.
The Backup and Restore functions are an easy way to save large amounts of data in such a way that they can be quickly accessed later. Structure and cross-references remain intact. In addition, these functions facilitate exchanging data via E-mail.

4. Signing Sequences Electronically

Electronic Signature allows you to sign the results that have been generated from your Raw Data. This function is important aspect for quality assurance and GLP. When User Mode is enabled, you can sign and protect Sequence reports that have been accepted as correct. In this way, it is possible to review and reproduce the results at any time later.

Electronic Signature includes three steps:

- Submit
- Review
- Approve

Typically, the user who created the report signs and submits it. Afterward, for example, the laboratory manager reviews the report and signs it as well. Finally, the quality assurance manager approves the results.

Note:

Enable User Mode. If User Mode is disabled, electronic signature will not be possible. Besides, electronic signature is available only for user databases that have been created with a CmUser program version 6.10 or higher. Update your database if an error message notifies you that electronic signature will not be possible.

To sign a sequence proceed as follows:

- Click the sequence and select Submit Results (first signature step) on the context menu.

- Select the Report Definition file (RDF) to be used for displaying the sequence, select the channel for which you want to show the results, and select the report sheets to be signed:
The Check Signed Results dialog box appears. This dialog box allows you to check the report to be signed. Use the arrow keys to toggle between different sequence samples. For each sample, the tab pages for the selected report sheets are displayed. Click OK when you have finished checking the report.
The **Submit Signature** dialog box is opened. To sign the SOR file, enter your User ID and the signature password:

![Submit Signature dialog box](image)

- The extension of the newly created file is .SOR. The SOR file is stored in the signed sequence.
- In this way, the sequence and its samples are protected against changes.
- Select **Electronic Signature** on the **File** menu and then select **Verify** to have Chromeleon check the signed sequence report once again, i.e., the sequence, the corresponding files (pgm, qnt, rdf, sor), and the individual samples.

To view the signature status of a sequence, select the sequence and select **Properties** on the context menu. The **Signature** tab page indicates the status of the selected sequence:
You can only remove a signature if you are authorized by the corresponding privileges. Removing the signature also deletes the corresponding SOR File.
5. Modifying a Control Panel

Chromeleon includes more than a hundred default control panels for different devices and functions. If you do not find a control panel for your requirements, we recommend modifying the panel that is closest to your requirements. You can add further controls or change the functionality and appearance of existing ones.

Note:

If you cannot perform the following steps, you do not have the user privileges required for these actions. In this case, contact your system administrator.

Enabling the Layout Mode

- Enable **Layout Mode** on the context menu. You can modify the control panel only in the Layout Mode.

Adding a control

- Move the cursor on the Layout toolbar.
 - The Quick Info provides a brief description for the control on which the cursor is currently positioned.
 - Select a control by clicking. The corresponding object is now attached to the cursor.
 - Place the cursor on the location where to add the new object and left-click.

Functionality and appearance of the control

- Right-click the control for which you want to change the functionality and/or appearance.
- Select **Properties** to open the **Properties** dialog box.
Depending on the selected control, the Properties dialog box includes various tabs. For a slider, the Style tab looks as follows:

- Select the General, Color, or Style tab to change the appearance such as the color, the shape, or the caption of the control.
- Select the Link tab to determine the function and the instrument to be operated via the control.
• From the **Object** list, select the instrument itself. From the **Object Property** list, select the instrument's function. Instrument and function selection depend on the components installed with the timebase.

With the settings shown above, you can use a slider to control the pump flow rate.

6. Internal and External Standards

Substances in unknown samples are usually quantified using external standard samples. However, it is also possible to add a known amount of a standard substance (= internal standard, ISTD) to an unknown sample and then use this standard for calibration. Use the **Standard** column on the **Peak Table** tab page to specify whether you want to calibrate a substance using an external or internal standard.

• Press the F8 key to open the **Standard Method for <Peakname>** dialog box.

[Image of Standard Method for Fluoranthene dialog box]

• Select **External** to use external standard samples for calibration.

• Select **Internal** to use internal standard samples for calibration.

• If you use several sample preparation steps during which substance may be lost, correct this using the **Internal/External** method: Add to your unknown sample a known amount of a substance that originally was not part of the sample (= ISTD). Be sure that the chemical behavior of the substance is similar to the behavior of the substances to quantify.
During sample preparation, a corresponding amount of this standard substance will be lost as is for the substances to quantify. In this case, you can use the known internal standard in the Internal/External method to correct the external calibration. First, define a substance as internal standard (Use this peak as Internal Standard) and then use this substance as Associated ISTD Peak.

- If you did not add exactly the same amount of internal standard to all samples, select the Use sample amount as reference option. In this case, you have to enter the amount of internal standard that was added to the sample in the sample list of the Browser. This entry is then used for the calculation (instead of the entry made in the Amount column of the QNT editor).

For an example of the possible settings in the Standard column, see the image below:

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret. Time</th>
<th>Window</th>
<th>Standard</th>
<th>Int. Type</th>
<th>Cal. Type</th>
<th>Peak Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naphthalene</td>
<td>5.327 min</td>
<td>0.090 AO</td>
<td>STD Internal</td>
<td>Area</td>
<td>Lin</td>
<td>Auto</td>
</tr>
<tr>
<td>2</td>
<td>Phenanthrene</td>
<td>7.093 min</td>
<td>0.070 AO</td>
<td>Internal Naphthalene</td>
<td>Area</td>
<td>Lin</td>
<td>Auto</td>
</tr>
<tr>
<td>3</td>
<td>Anthracene</td>
<td>7.599 min</td>
<td>0.070 AO</td>
<td>Internal Naphthalene</td>
<td>Area</td>
<td>Lin</td>
<td>Auto</td>
</tr>
<tr>
<td>4</td>
<td>Fluoranthene</td>
<td>8.751 min</td>
<td>0.102 AO</td>
<td>STD Internal</td>
<td>Area</td>
<td>Lin</td>
<td>Auto</td>
</tr>
<tr>
<td>5</td>
<td>Pyrene</td>
<td>9.144 min</td>
<td>0.090 AO</td>
<td>STD Internal</td>
<td>Area</td>
<td>Lin</td>
<td>Auto</td>
</tr>
<tr>
<td>6</td>
<td>Dimethyl Fluoranthene</td>
<td>9.772 min</td>
<td>0.078 AO</td>
<td>Internal Naphthalene</td>
<td>Area</td>
<td>Lin</td>
<td>Auto</td>
</tr>
<tr>
<td>7</td>
<td>Chrysene</td>
<td>10.294 min</td>
<td>0.090 AO</td>
<td>Internal Naphthalene</td>
<td>Area</td>
<td>Lin</td>
<td>Auto</td>
</tr>
</tbody>
</table>

Dimethylfluoranthene and Chrysene are calibrated, using external standards. Naphthalene and Fluoranthene are used as internal standards with Naphthalene being used for internal calibrations and Fluoranthene for internal/external calibrations. Phenanthrene and Anthracene are calibrated, using Naphthalene as internal standard, whereas the internal/external method is used with Fluoranthene as internal standard to quantify Pyrene.

7. Spectra Library Screening

The Spectra Library Screening tab page of the QNT editor allows searching spectra libraries for reference spectra for the different peaks of the current chromatogram. As the chromatographic conditions considerably influence the spectra, we recommend filling your spectra library with spectra from chromatograms that were recorded under the same conditions as the current chromatogram.
Note:

To create a new library, select **New** on the **File** menu in the Browser and then copy the desired spectra in the spectra plot (Ctrl + C) and paste them into the library (Strg + V).

On the **Spectra Library Screening** tab page, select the spectra library in which to search for the reference spectra. In addition, enter the comparison criteria for the spectra search. Normally, the default values of the **Match Criterion** (Least Squares) and **Hit Threshold** (950) will be sufficient. However, you can also specify many additional search criteria.

Click **Apply** to start the spectra search. The retention spectrum of the actual peaks is compared to the reference spectrum that was found. To the top right of the spectra plot, the corresponding match factor is displayed.
The match factor indicates the correspondence of the two spectra. A value of 1000 indicates that the spectra are identical. If the match factor were 0, they would be completely different. If no corresponding spectrum is found based on the selected criteria, the following message appears: **No spectra library hits found!**

Note:

You can use the spectra library screening results for automatic peak table creation (see ➔Automatically Generating the Peak Table).

8. Defining the Workspace

Chromeleon allows you to save the window arrangement of any work situation, i.e., the combination of different windows, in a workspace.

This facilitates opening single files or windows and allows you to work in whatever work environment you prefer.

The information about the windows involved is stored in a WSP file. If you want to start working using a specific workspace, open the corresponding WSP file or generate it by storing the screen contents. The following commands are available on the **Workspace** menu:

- Select **Open Workspace** to open an existing workspace.
- Select **Save Workspace** to save the current workspace.
- Select **Save Workspace as** to save the current workspace with a new name.
- Select **Autosave Workspace** to always save the most recent workspace as the default workspace.

There is no restriction on the number of windows that can be saved with each workspace.

A useful workspace arrangement might combine, for example, the report, a control panel, and the Browser (refer to the picture).
Tip:

When Chromeleon is started, the most recently used workspace is loaded.
Quick Access Keys (Shortcut Keys)

Quick access keys and/or shortcut keys are provided for many operations, especially in online control:

<table>
<thead>
<tr>
<th>Action</th>
<th>Where</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC or right-click</td>
<td></td>
<td>Aborts the drag/move action.</td>
</tr>
<tr>
<td>F1</td>
<td></td>
<td>Opens the context-sensitive Help;</td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td>Enables the Edit mode.</td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td>After the Find command: Find Next.</td>
</tr>
<tr>
<td>F4</td>
<td>Chromatogram</td>
<td>Takes you to the next sample.</td>
</tr>
<tr>
<td>SHIFT+F4</td>
<td></td>
<td>Takes you to the previous sample.</td>
</tr>
<tr>
<td>Alt+F4</td>
<td></td>
<td>Exits Chromeleon.</td>
</tr>
<tr>
<td>F5</td>
<td></td>
<td>Updates all windows.</td>
</tr>
<tr>
<td>F6</td>
<td></td>
<td>Takes you to the next partial window.</td>
</tr>
<tr>
<td>SHIFT+F6</td>
<td></td>
<td>Takes you to the previous partial window.</td>
</tr>
<tr>
<td>F10</td>
<td></td>
<td>Takes you to the next channel.</td>
</tr>
<tr>
<td>SHIFT+F10</td>
<td></td>
<td>Takes you to the previous channel.</td>
</tr>
<tr>
<td>F7</td>
<td>Browser (F7 key only) +</td>
<td>Optimizes the column width.</td>
</tr>
<tr>
<td>SHIFT+F7</td>
<td>QNT Editor</td>
<td>Optimizes the line height.</td>
</tr>
<tr>
<td>F8</td>
<td></td>
<td>Opens an edit dialog box for the respective field.</td>
</tr>
<tr>
<td>F10 or ALT</td>
<td></td>
<td>Shows the hotkey underlines.</td>
</tr>
<tr>
<td>Action</td>
<td>Where</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>SHIFT+F5</td>
<td>Browser</td>
<td>Displays the chromatogram.</td>
</tr>
<tr>
<td>ALT+ENTER</td>
<td>Browser + Control Panels</td>
<td>Opens the associated Properties.</td>
</tr>
<tr>
<td>CTRL+TAB</td>
<td>Signal plot in the report and in the QNT Editor</td>
<td>Toggles between open windows.</td>
</tr>
<tr>
<td>CTRL+N</td>
<td>Report + Printer Layout</td>
<td>Allows zooming (the cursor becomes a zoom cursor).</td>
</tr>
<tr>
<td>CTRL+O</td>
<td></td>
<td>Creates a new file.</td>
</tr>
<tr>
<td>CTRL+S</td>
<td></td>
<td>Opens the file.</td>
</tr>
<tr>
<td>CTRL+R</td>
<td></td>
<td>Saves the file.</td>
</tr>
<tr>
<td>CTRL+P</td>
<td></td>
<td>Opens the batch report.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prints the selected object(s).</td>
</tr>
<tr>
<td>CTRL+Z</td>
<td></td>
<td>Undoes the previous action.</td>
</tr>
<tr>
<td>CTRL+Y</td>
<td></td>
<td>Repeats the previous action.</td>
</tr>
<tr>
<td>CTRL+X</td>
<td></td>
<td>Cuts the selected object(s).</td>
</tr>
<tr>
<td>CTRL+C</td>
<td></td>
<td>Copies the selected object(s).</td>
</tr>
<tr>
<td>CTRL+V</td>
<td></td>
<td>Pastes the selected object(s).</td>
</tr>
<tr>
<td>CTRL+F</td>
<td></td>
<td>Finds a string of characters.</td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td>Finds the next string of characters.</td>
</tr>
<tr>
<td>CTRL+H</td>
<td></td>
<td>Replaces the entry in the field.</td>
</tr>
<tr>
<td>F9</td>
<td></td>
<td>Fills the column and/or selected cell(s) with the first value of the selection.</td>
</tr>
<tr>
<td></td>
<td>Action</td>
<td>Where</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Edit</td>
<td>INSERT</td>
<td></td>
</tr>
<tr>
<td>(Cont’d)</td>
<td>DELETE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample List</td>
<td>CTRL+I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+A</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>CTRL+F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+Break</td>
<td>Break</td>
</tr>
<tr>
<td></td>
<td>Ctrl+A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ctrl+B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal plot</td>
<td>Double-click...</td>
<td>- Overview window</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Time axis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Signal axis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Plot range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(- or else:…)</td>
</tr>
<tr>
<td></td>
<td>SHIFT</td>
<td></td>
</tr>
<tr>
<td>Gauge/Silder</td>
<td>CTRL key</td>
<td>Press when dragging</td>
</tr>
<tr>
<td>Script Button</td>
<td>Click</td>
<td>Button</td>
</tr>
</tbody>
</table>
Datasource and Database

A database that is mounted to the Chromeleon client is referred to as a datasource. To mount a datasource, select **Mount Datasource** on the **File** menu in the Browser and then specify the format and location of the database.

During the initial installation of Chromeleon, a local default datasource is created on each client PC. In network operation, the datasource name is composed of the computer name and the extension **LOCAL** (<PC name>_local). On a local station that is not available on a network, the name stated under **Control Panel > Network > Identification** in the operating system is used. If no identification is entered, the datasource is named **DEFAULT_LOCAL**.
Chromeleon data is usually stored in an Access database, that is, in an MDB (Microsoft Data Base) container. The default datasource is based on an Access database, too. The ODBC capability of Chromeleon allows you to use various other formats (SQL, Oracle, etc.) as well. Both, Sample data and Sequence data are saved in a datasource, independently of the chosen format. You can save a database on a local hard disk or any other mass storage device.

Select New Directory on the File menu in the Browser to create individual subdirectories under a datasource. You can then use these directories to save Sequences and the corresponding data and programs.

If the datasource is located on a centralized network PC, all clients with the appropriate access rights, which have been assigned by the system administrator, can access the database. If the datasource is stored on a local hard disk, the corresponding client grants database access via the Windows File Sharing option. Chromeleon also allows you to lock datasources, directories, or sequences.

Raw Data

Raw data refers to all analog and digital data points that are digitally stored on a PC. That is why raw data exists for signals or channels only selected by the user before data acquisition.

The scope and accuracy of the stored raw data depends on the selected Sampling Rate, the Step, and the resolution of the detector signal.

Sequence

A sequence combines samples that belong together due to their origin or processing. The names of all samples belonging to one sequence are entered in the sample list (also called sequence table). Thus, a sequence is a container for various samples.

Theoretically, the number of samples is not limited, but use more than 100 sample entries in exceptions only. Create additional sequences to reduce the number of samples included in one sequence and thus to accelerate access to the individual samples. In this way, it is also easier for you to keep track of the processed samples.

The sequence table also defines how to process a sample. It includes information about the sample itself (name, injection volume, position, sample weight, dilution factor, etc.) and references chromatographic methods that specify the program (PGM File) to be performed for the analysis and the evaluation parameters to be used (QNT Method).
The entire data collected in connection with creating and processing a sequence is saved in the associated sequence. This also includes the raw data and protocol data recorded during the analysis.

Similar to \(\rightarrow \text{Datasources} \), sequences can be "locked." In this status, data and results are read-only. You cannot modify or extend them.

(Chromatography) Server

PCs connected to the components of a system via interfaces can be used as chromatography servers.

A chromatography server is automatically installed on the PC during installation. The chromatography server controls the data exchange between the chromatographic system and the PC. Upon starting, each server is capable of serving up to six controlled or 16 non-controlled systems (\(\rightarrow \text{Timebases} \)). The server receives the commands that have been entered on the control panel of a client PC and executes them at the specified time, for example, by transmitting them to the corresponding device driver of the HPLC system. The server also assumes this function in the opposite direction. Thus, the raw data of each system is stored at the location specified by the client and the entire system-relevant data is forwarded to the client.

Configure the server and install the timebase(s) in the Server Configuration program.

If the Chromeleon server and client software are located on the same PC, the installation is called a local installation or referred to as workstation. If they are not, the installation is called network installation.

\(\text{Tip:} \)

In case of manual data acquisition, \(\rightarrow \text{Raw Data} \) is always stored in the manual sequence of the timebase directory (if not otherwise defined). This directory is available only in the local datasource of a local installation. In the case of a batch, the user can decide where to store the data.
Timebase

All components that are combined in a chromatography system to enable the chromatographic separation and related in a time context with each other are assigned to the same timebase.

A timebase can be a very complex system. For example, it can consist of two pumps, one autosampler, one column oven, two detectors switched in series, and one fraction collector. However, an isolated gas chromatograph can also represent a timebase.

Any other system that is completely independent from the first one represents a new timebase. Administration of different timebases is on one or several Chromatography Servers.

Create your timebase(s) in the Server Configuration program.
Index

A
- Amount Column T-63
- Approve ... T-93
- Audit Trail T-77
- Autogenerate Peak Table T-60

B
- Backup ... T-91
- Browser T-9, T-87, T-90, T-91
 - Appearance T-9
 - Functions T-9
 - Structure T-9, T-10

C
- Calibration T-77
 - Details T-67
 - Internal/External Standard T-100
- Changes ... T-71, T-80
- Chromatogram T-71, T-76
- Chromatography Server T-110
- Chromeleon T-1
- Client ... T-5
- Column ... T-63
 - Amount T-63 - T-66
 - Standard T-63, T-64, T-66
- Contents T-2
- Context-Sensitive Help T-13
- Control File T-26, T-27, T-38
 - Create T-27
 - Edit T-26, T-38
 - Program Wizard T-27, T-37
 - Properties T-26
- Control Panel T-17, T-19, T-22, T-98
 - Connect to Timebase T-21
 - Modify T-98

D
- Data .. T-91
 - Backup T-91 - T-93
 - Exchange T-91
 - Restore T-91 - T-93
 - Data Analysis T-71, T-74, T-76, T-79, T-80
- Database T-108
- Datatasource T-87, T-108
- DEFAULT RDF (Template) T-81
- Detect Peaks T-53, T-58
- Detection T-53, T-58
 - Peaks T-53 - T-58
 - QNT File T-53, T-58
- Detection Parameter T-58, T-60

E
- Edit .. T-53, T-58
- Electronic Signature T-93

F
- File
 - Copy .. T-12
 - Move T-12
 - Functions T-9
 - Basic T-9
 - Special T-87
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Help ..</td>
<td>T-13, T-14</td>
</tr>
<tr>
<td>Context-Sensitive</td>
<td>T-13, T-14</td>
</tr>
<tr>
<td>Online ..</td>
<td>T-13</td>
</tr>
<tr>
<td>Systematic Online Help</td>
<td>T-14</td>
</tr>
<tr>
<td>Hot Keys</td>
<td>T-105</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Identify ..</td>
<td>T-62</td>
</tr>
<tr>
<td>Integration Window</td>
<td>T-74</td>
</tr>
<tr>
<td>Interface ..</td>
<td>T-110</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Keyboard</td>
<td>T-105</td>
</tr>
<tr>
<td>Hot Keys</td>
<td>T-105</td>
</tr>
<tr>
<td>Shortcut Keys</td>
<td>T-105</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Library ..</td>
<td>T-101</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Method ..</td>
<td>T-67</td>
</tr>
<tr>
<td>Modify ...</td>
<td>T-71, T-76, T-98</td>
</tr>
<tr>
<td>Chromatogram</td>
<td>T-71, T-73, T-76</td>
</tr>
<tr>
<td>Control Panel</td>
<td>T-98</td>
</tr>
<tr>
<td>Report ...</td>
<td>T-71 - T-73, T-79, T-80</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Network ..</td>
<td>T-110</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>ODBC ...</td>
<td>T-108</td>
</tr>
<tr>
<td>Online Help</td>
<td>T-13, T-14</td>
</tr>
<tr>
<td>Context-Sensitive</td>
<td>T-13</td>
</tr>
<tr>
<td>Systematic</td>
<td>T-14</td>
</tr>
<tr>
<td>Overview ..</td>
<td>T-2</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Peak ...</td>
<td>T-53, T-62</td>
</tr>
<tr>
<td>Detection</td>
<td>T-53 - T-58</td>
</tr>
<tr>
<td>Graphical Input of Parameters</td>
<td>T-58</td>
</tr>
<tr>
<td>Identify ...</td>
<td>T-62, T-63</td>
</tr>
<tr>
<td>Peak Table</td>
<td>T-51, T-62</td>
</tr>
<tr>
<td>Autogenerate</td>
<td>T-60, T-61</td>
</tr>
<tr>
<td>Peak Identification</td>
<td>T-62</td>
</tr>
<tr>
<td>PGM File ..</td>
<td>T-26, T-38</td>
</tr>
<tr>
<td>Create ...</td>
<td>T-26</td>
</tr>
<tr>
<td>Edit ...</td>
<td>T-26, T-38</td>
</tr>
<tr>
<td>Properties</td>
<td>T-26</td>
</tr>
<tr>
<td>Port ..</td>
<td>T-110</td>
</tr>
<tr>
<td>Print Template</td>
<td>T-81</td>
</tr>
<tr>
<td>Printer Layout</td>
<td>T-81</td>
</tr>
<tr>
<td>Printing ..</td>
<td>T-83</td>
</tr>
<tr>
<td>Automatic Batch Operation</td>
<td>T-83</td>
</tr>
<tr>
<td>Results ..</td>
<td>T-83, T-85, T-86</td>
</tr>
<tr>
<td>Samples ..</td>
<td>T-85, T-86</td>
</tr>
<tr>
<td>with own Report Templates</td>
<td>T-83</td>
</tr>
<tr>
<td>Program Start</td>
<td>T-5</td>
</tr>
<tr>
<td>Program Wizard</td>
<td>T-27</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>QNT File ...</td>
<td>T-51</td>
</tr>
<tr>
<td>Autogenerate Peak Table</td>
<td>T-60</td>
</tr>
<tr>
<td>Calibration</td>
<td>T-63</td>
</tr>
<tr>
<td>Calibration Details</td>
<td>T-67</td>
</tr>
<tr>
<td>Create ...</td>
<td>T-51</td>
</tr>
<tr>
<td>Edit ...</td>
<td>T-54, T-58</td>
</tr>
<tr>
<td>Graphical Input of Parameters</td>
<td>T-58</td>
</tr>
<tr>
<td>Internal/External Standard</td>
<td>T-100</td>
</tr>
<tr>
<td>Peak Detection</td>
<td>T-53</td>
</tr>
<tr>
<td>Peak Identification</td>
<td>T-62</td>
</tr>
<tr>
<td>Spectra Library Screening</td>
<td>T-101</td>
</tr>
<tr>
<td>Substance Quantification</td>
<td>T-63</td>
</tr>
<tr>
<td>Window ..</td>
<td>T-52</td>
</tr>
<tr>
<td>QNT Method</td>
<td>T-51</td>
</tr>
<tr>
<td>Autogenerate Peak Table</td>
<td>T-60</td>
</tr>
<tr>
<td>Calibration Details</td>
<td>T-67</td>
</tr>
<tr>
<td>Create ...</td>
<td>T-51, T-52</td>
</tr>
<tr>
<td>Graphical Input of Parameters</td>
<td>T-58</td>
</tr>
</tbody>
</table>
Index

Internal/External Standard........ T-100
Peak Detection T-54 - T-56
Peak Identification T-62
Spectra Library Screening T-101
Substance Quantification T-63
Quantification Method T-51
Autogenerate Peak Table T-60
Calibration T-63
Calibration Details T-67
Create T-51
Graphical Input of Parameters ... T-58
Internal/External Standard T-100
Peak Detection T-53
Peak Identification T-62
Spectra Library Screening T-101
Substance Quantification T-63
Quantify T-63
Calibration T-64 - T-66
Calibration Details T-67
Substances T-63, T-64
Query T-90
Quick Access T-105

R

Raw Data T-109
RDF T-80, T-81
Report T-71, T-79
Modify T-79
Tables T-77
Report Definition T-80
Restore T-91
Review T-93

S

Sample T-90
Find T-90
Open T-11
Sample List T-39, T-109
Functions T-39
Open T-39
Sample Processing T-47
Automatic T-47, T-49
Manual T-47
Save (Changes) T-71, T-80
Sequence T-39, T-41, T-93, T-109
Edit T-47
Flow Chart T-4
Sign T-93, T-96
Sequence Wizard T-41
Server T-5, T-110
Shortcut Keys T-105
Signature T-93
Special Functions T-87
Spectra Library Screening T-101
Spectra T-101
Standard T-100
External T-100, T-101
Internal T-100, T-101
Start T-5, T-41, T-47
Analysis T-47, T-49
Sequence Wizard ... T-41, T-43, T-47
System T-5, T-6, T-7
Structure T-9
Submit T-93
Substance T-63
Substance (Quantify) T-63
Summary T-77
System T-5

T

Template T-81
Timebase T-111
Tutorial T-1, T-2

U

Use Control Panel T-22

V

View T-103

W

Workspace T-103
WSP File T-103
User Manual
Contents

Introduction .. 1
Using the User Help and Manual .. 1
The Administrator Help .. 1
The Online Help (Overview) ... 2
The User Help (Overview) .. 4
Activating Online Help ... 6

Overview, Operation, and Data Management .. 7

Chromeleon (Overview) ... 9
 - Chromeleon Windows .. 10
 - Chromeleon Features .. 12
 - Chromeleon Licenses ... 13
 - Timebase Class 1 License: Supported Devices ... 17
 - Timebase Class 2 License: Supported Devices ... 18
 - Timebase Class 3 License: Supported Devices ... 20
 - Installing Chromeleon ... 21

Components of a Chromatography System ... 23

 - Components of a Chromatography System ... 23
 - Chromatography Instruments .. 24
 - The Chromatography Data System .. 26
 - The PC .. 27
 - The Operating System .. 28
 - The Network .. 28
 - Local Client/Server Installation ... 29
 - Network Installation .. 30

Basic Operation ... 33

 - Operation via the Keyboard ... 33
 - Quick Access Keys (Shortcut Keys) .. 34
 - Operation via the Mouse ... 36
II Contents

Undo and Redo Commands...37
Starting the Program ..38
The Client User Interface ...39
The Windows...40
The Table Editor..42
Working with Several Windows ..42
User Profiles (Workspaces) ...43
Report Definitions...44
Create or Open Files, Windows, and Templates45
Printing...47

Control ...49
Control Requirements ..50
The Control Program ...50
 The SmartStart Wizard ...52
 The Control Program (Details) ..53
 The Program Wizard...54
The PGM Editor (Overview) ...55
 The Device Views ..56
 The Surveyor MSQ or Finnigan AQA Views57
 The Commands View ..58
 The Post-Acquisition Steps View ..62
 The Program Syntax (Experts Only) ...62
The Control Panel ...66
 Control Panel: Appearance..66
 Control Panel: Function ..67
 Control Panel: The Signal Plot ..68
 Control Panel: The Audit Trail ...68
 Control Panel: The Trend Plot ...69
The Panel Tabset ..70

Data Management ..73
Data (Overview)..73
The Browser ..74
 Common Features with the Windows Explorer75
 Differences from the Windows Explorer75
 Function ...77
<table>
<thead>
<tr>
<th>The Datasource</th>
<th>Data Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Acquisition with Detectors without Separate Drivers</td>
<td>Data Storage</td>
</tr>
<tr>
<td>Data Export</td>
<td>Backup</td>
</tr>
<tr>
<td>Raw Data</td>
<td>Raw Data Storage</td>
</tr>
<tr>
<td>Raw Data Compression</td>
<td>Restoring a Chromatogram from Raw Data</td>
</tr>
<tr>
<td>Raw Data Export</td>
<td>Raw Data Import</td>
</tr>
<tr>
<td>Raw Data Storage in Case of Power Failure</td>
<td>Audit Trails</td>
</tr>
<tr>
<td>Audit Trails</td>
<td>Samples and Sequences</td>
</tr>
<tr>
<td>The Daily Audit Trail</td>
<td>Sample Preparation</td>
</tr>
<tr>
<td>The Sample Audit Trail</td>
<td>Sample Processing</td>
</tr>
<tr>
<td>Samples and Sequences</td>
<td>Sample Definition</td>
</tr>
<tr>
<td>The Sample List (Sequence)</td>
<td>The Sequence Wizard</td>
</tr>
<tr>
<td>The Application Wizard</td>
<td>Automatic Batch Processing</td>
</tr>
<tr>
<td>Sample Evaluation</td>
<td>Electronic Signature</td>
</tr>
<tr>
<td>Theory of Calibration</td>
<td>Theory of Calibration</td>
</tr>
<tr>
<td>Calibration Principle</td>
<td>Calibration Types (Linear)</td>
</tr>
<tr>
<td>Calibration Types (Non-linear)</td>
<td>Using the Calibration Curve</td>
</tr>
<tr>
<td>Calculating the Calibration Curve</td>
<td>Standard Methods</td>
</tr>
</tbody>
</table>

| 77 | 81 | 82 | 83 | 84 | 85 | 85 | 86 | 88 | 89 | 90 | 90 | 91 | 92 | 93 | 94 | 95 | 95 | 95 | 96 | 97 | 99 | 100 | 100 | 102 | 103 | 105 | 106 | 108 | 109 | 111 | 113 | 113 |
Evaluation with Various Standard Methods 114
Evaluation with the Standard Addition Method 118
Implementation ... 120

Validation, AutoQ, and System Wellness 123
AutoQ Equipment Qualification.. 125
Instruments Operational and Performance Qualification 127
Operational and Performance Qualification (HPLC Systems) 128
Performance Qualification (PQ) for IC Systems 130
The System Suitability Test (SST) ... 130
System Wellness for IC Devices (Overview) 131
System Wellness for HPLC Devices (Overview) 133

Data Representation and Reprocessing 135
Data Representation and Reprocessing 135
Post-Acquisition Steps (PGM Editor) 136

The QNT Editor ... 139
The Quantification Method ... 139
The QNT Editor ... 140
Function of the QNT Editor... 142
The General Tab Page .. 143
Detection Parameters (Detection) ... 146
Peak Table, Amount Table, Peak Tracking, and MS Tracking 148
Calibration Settings (Calibration) ... 151
Spectra Library Screening .. 151
The System Suitability Test ... 151
Mass Spectra (MS, MS Tracking) .. 152
UV Spectra ... 152

Integration .. 153
The Integration Window ... 154
Opening a Sample .. 155
Operation .. 156
Manual Re-Integration ... 157
Chromatogram Comparison ... 158
Data Smoothing ... 160
Combination of Channels ... 162
Peak Ratio .. 162
Contents

- Restoring Backup Files ... 225
- Exporting and Transferring Data .. 227
- Exporting Data during or after a Batch 227
- Exporting Data from Different Samples to a Single File 229
- Transferring Sequences Automatically 230

- Signing Sequences Electronically ... 231
 - Individual Steps of Electronic Signature 234
 - Checking the Signature Status and Undoing the Signature 237

- Performing a Query ... 239
 - Entering the Sample Query Using the Wizard 240
 - Selecting Search Criteria for Samples and/or Sequences 242
 - Examples (Wizard) .. 246
 - Specifying the Sample Query Using the Dialog Box 247
 - Examples (Dialog Box) .. 249
 - Editing a Query in SQL Syntax .. 251
 - Saving and Performing a Query ... 252

- Answering Frequently Asked Questions on the Browser 253

- Importing PeakNet (Releases 4.3 Through 5.2) Method Files 255
- Importing PeakNet (Releases 4.3 Through 5.2) Data Files 257

- PeakNet (Releases 4.3 Through 5.2) Translation Tables 259
 - AS50 Setup and Timed Event Parameter Translation 260
 - Pump and Eluent Generator Setup and Timed Event Parameter Translation .. 261
 - AD20 Setup and Timed Event Parameter Translation 262
 - AD25 Setup and Timed Event Parameter Translation 263
 - CD20/CD25 Setup and Timed Event Parameter Translation 264
 - ED40/ED50 Setup and Timed Event Parameter Translation 265
 - IC20/IC25 Setup and Timed Event Parameter Translation 267
 - DX-120 Setup and Timed Event Parameter Translation 268
 - UI20 Setup and Timed Event Parameter Translation 269
 - Detector Component Table Parameter Translation 270

- Importing Agilent/HP ChemStation Data Files 273

- ChemStation Translation Tables .. 276
 - Translating ChemStation Sequences and Batches 276
 - Translating ChemStation Samples 278
 - Translating ChemStation Methods 279
 - Translating ChemStation Spectra Libraries 280
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrating the Chromatography System</td>
<td>281</td>
</tr>
<tr>
<td>- Selecting the Timebase</td>
<td>282</td>
</tr>
<tr>
<td>- Extracting the Equilibration Conditions</td>
<td>283</td>
</tr>
<tr>
<td>- Editing the Equilibration Conditions</td>
<td>284</td>
</tr>
<tr>
<td>- Starting Equilibration</td>
<td>285</td>
</tr>
<tr>
<td>Controlling Devices from the Control Panel</td>
<td>289</td>
</tr>
<tr>
<td>- Opening a Control Panel</td>
<td>289</td>
</tr>
<tr>
<td>- Connecting a Control Panel to a Chromatography Device</td>
<td>291</td>
</tr>
<tr>
<td>- Creating and Starting Sample Batches</td>
<td>293</td>
</tr>
<tr>
<td>- Modifying a Control Panel</td>
<td>296</td>
</tr>
<tr>
<td>- Modifying a Control</td>
<td>297</td>
</tr>
<tr>
<td>- Linking a Control to a Device</td>
<td>300</td>
</tr>
<tr>
<td>- Creating a Script Button</td>
<td>301</td>
</tr>
<tr>
<td>- Linking a Control to a Command</td>
<td>302</td>
</tr>
<tr>
<td>- Creating a Device Command Button</td>
<td>302</td>
</tr>
<tr>
<td>- Creating a Timebase Command Button</td>
<td>303</td>
</tr>
<tr>
<td>- Creating Hidden Windows</td>
<td>304</td>
</tr>
<tr>
<td>- Displaying Sample and Sequence Information</td>
<td>305</td>
</tr>
<tr>
<td>- Using and/or Recording Demo Data</td>
<td>306</td>
</tr>
<tr>
<td>- Answering Frequently Asked Questions</td>
<td>307</td>
</tr>
<tr>
<td>Controlling Devices from the Panel Tabset</td>
<td>309</td>
</tr>
<tr>
<td>- Opening a Default or Saved Panel Tabset</td>
<td>309</td>
</tr>
<tr>
<td>- Modifying a Panel Tabset</td>
<td>310</td>
</tr>
<tr>
<td>- Creating a New Panel Tabset</td>
<td>312</td>
</tr>
<tr>
<td>- Expanding, Splitting, or Resizing a Panel Tabset</td>
<td>313</td>
</tr>
<tr>
<td>- Using the Sequence Control Panel</td>
<td>315</td>
</tr>
<tr>
<td>Creating and Modifying Programs</td>
<td>317</td>
</tr>
<tr>
<td>- Automatically Creating a Program</td>
<td>318</td>
</tr>
<tr>
<td>- Defining Tandem Gradients (Summit x2)</td>
<td>319</td>
</tr>
<tr>
<td>- Setting the Bypass Mode Options (ASI-100)</td>
<td>321</td>
</tr>
<tr>
<td>- Editing PGM Files in the Device Views of the PGM Editor</td>
<td>323</td>
</tr>
<tr>
<td>- Manually Editing a PGM File in the Commands View</td>
<td>324</td>
</tr>
<tr>
<td>- Calculating in a Program</td>
<td>328</td>
</tr>
<tr>
<td>- Program Example</td>
<td>330</td>
</tr>
<tr>
<td>- Creating an Equilibration Program</td>
<td>332</td>
</tr>
<tr>
<td>- Creating a Shutdown Program</td>
<td>336</td>
</tr>
<tr>
<td>- Creating an Emergency Program</td>
<td>337</td>
</tr>
<tr>
<td>- Creating a Power Failure Program</td>
<td>338</td>
</tr>
</tbody>
</table>
Contents

Program with Variable Run Time..339
Creating a Tandem Program (including Bypass Mode)340
Converting Units ...343
Using User-defined Columns in a Program.........................344

Adding Post-Acquisition Steps ...347
Manual Injections with Templates..349

Performing Validation and Qualification351

Ensuring System Wellness ...352
 Opening a Wellness Control Panel....................................352
 Viewing and Restoring Calibration Data............................353
 Uploading ICS-1500/2000 Calibration Data.........................354
 Performing Device Calibrations......................................355
 Calibrating the Leak Detector ..356
 Calibrating the Pump Flow Rate.....................................356
 Calibrating the ICS-1000/1500/2000 Flow Rate....................357
 Calibrating the Pressure Transducer Offset......................358
 Calibrating the ICS-90 Pressure Transducer......................358
 Degas Calibration ...359
 Calibrating the ICS-1000/1500/2000 Degas Pump359
 Wavelength Calibration...360
 Calibrating the Conductivity Cell (CD20/25/25A, ED40/50/50A, IC20/25/25A) ..361
 Calibrating the ICS-90 Conductivity Cell362
 Calibrating the ICS-1000/1500/2000 Conductivity Cell363
 Calibrating the ICS-3000 Conductivity Detector Cell365
 Calibrating the ED40/50/50A pH Reference Electrode366
 Calibrating the ICS-3000 ED pH Reference Electrode367
 Entering the AS/AS50 Inject Port Volume367
 Performing Device Diagnostics368
 Testing the Leak Detector ...368
 Wavelength Verification ...369
 ICS-90 Pressure and Conductivity Diagnostics370
 Conductivity Verification (ICS-1000/1500/2000)370
 Entering Device Parameters ..371
 Applying a Sodium Correction ..371

Defining System Suitability Tests ...371
 SST Wizard: Overview and Start Conditions372
 SST Wizard: Sample and Test Conditions374
 SST Wizard: Other Wizard Pages376
 Modifying the System Suitability Test............................377
Contents

SST Example: Is the Amount in the Calibrated Range?377
SST Example: Amount Deviation on Reinjection379
Inserting SST Results in the Printer Layout..........................381

Integrating Chromatograms and Identifying Peaks383

Creating a Peak Table..383
Identifying Peaks...384
Identifying Peaks via Their UV Spectra (Peak Tracking)386
Identifying Peaks via Their Mass Spectra (MS Tracking)388
Defining Retention Times and Reference Peaks390
Defining the Retention Index and the Kovats Index391
Defining the QNT Method for Several Detectors392
Entering Reference Spectra (Reference Spectrum Column)393
Autogenerating the Peak Table ..395

Defining Detection Parameters ..397
Reducing the Number of Evaluated Peaks399
Excluding Certain Peaks...401
Inhibiting Peak Integration ..402
Modifying the Baseline...402
Modifying the Peak Recognition Algorithm403
Defining Peak Start or Peak End ..405
Defining Rider Peaks ..406
Defining the Area for PPA...407

Grouping Peaks ...407
Subtracting a Blank Run Sample ..408

Calibrating ...409
Selecting the Standard Method (Standard Column)...............410
Selecting the Calibration Function
(Cal.Type and Int. Type Columns)..411
Weighting and Averaging Calibration Points413
Entering Amount Values (Amount Column)414

Disabling Calibration Samples ..416

Calibration Examples ..417
Introduction and Example: 1 Standard and 1 Substance418
Several Standards with Several Substances Each420
Multiple-Point Calibration Using 1 Single Standard422
Calibrating Using Standards of an Old Sequence423
Standard Addition ...425
Calibrating Unstable Substances ...428
No Pure Substance - Known Relative Extinction Coefficient ..429
Calibrating with an Internal Standard Substance431
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensating Measurement Errors (Internal Calibration)</td>
</tr>
<tr>
<td>Internal Calibration: Calculation</td>
</tr>
<tr>
<td>Correcting Sample Preparation Errors</td>
</tr>
<tr>
<td>(Internal/External Calibration)</td>
</tr>
<tr>
<td>Using Different ISTD Amounts (Variable ISTD)</td>
</tr>
<tr>
<td>Calibrating without Standard Sample</td>
</tr>
<tr>
<td>Calibration Modes for External Calibration</td>
</tr>
<tr>
<td>Calibration Mode: Total</td>
</tr>
<tr>
<td>Calibration Mode: Additional</td>
</tr>
<tr>
<td>Calibration Mode: Group</td>
</tr>
<tr>
<td>Calibration Mode: Bracketed</td>
</tr>
<tr>
<td>Calibration Mode: Fixed</td>
</tr>
<tr>
<td>Entering the Concentration/Amount of the Validation Sample</td>
</tr>
<tr>
<td>Displaying Calibration Curves</td>
</tr>
<tr>
<td>Displaying Values</td>
</tr>
<tr>
<td>Indicating the Confidence Interval</td>
</tr>
<tr>
<td>Validating the Calibration Curve</td>
</tr>
<tr>
<td>Inverting Dependent and Independent Variables</td>
</tr>
<tr>
<td>Working with Chromatograms</td>
</tr>
<tr>
<td>Using Keyboard Shortcuts in the Chromatogram</td>
</tr>
<tr>
<td>Manual Re-Integration</td>
</tr>
<tr>
<td>Moving Peak Delimiters</td>
</tr>
<tr>
<td>Modifying the Baseline Manually</td>
</tr>
<tr>
<td>Inserting or Deleting Peaks</td>
</tr>
<tr>
<td>Splitting Peaks</td>
</tr>
<tr>
<td>Changing the Peak Type</td>
</tr>
<tr>
<td>Defining an Averaged Baseline</td>
</tr>
<tr>
<td>Manual Peak Assignment</td>
</tr>
<tr>
<td>Comparing Chromatograms</td>
</tr>
<tr>
<td>Selecting the Samples and Channels</td>
</tr>
<tr>
<td>Displaying Several Chromatograms</td>
</tr>
<tr>
<td>Mirroring Chromatograms</td>
</tr>
<tr>
<td>Normalizing Chromatograms</td>
</tr>
<tr>
<td>Printing Overlaid Chromatograms</td>
</tr>
<tr>
<td>Performing Data Smoothing</td>
</tr>
<tr>
<td>Copying a Channel</td>
</tr>
<tr>
<td>Combining Channels via Arithmetic Operations</td>
</tr>
<tr>
<td>Subtracting Background Spectra</td>
</tr>
</tbody>
</table>
Contents XI
Displaying Peak Information in a Separate Area................. 501
Moving a Retention Window Graphically.............................. 502
Defining Detection Parameters Graphically.......................... 504
Displaying and Using UV Spectra .. 507
 - Displaying Peak Spectra... 508
 - Displaying and Overlaying Single Spectra....................... 508
 - Processing UV Spectra... 509
 - Match Factor, Difference Spectra, 1st/2nd Derivatives........ 511
Creating and Using Spectra Libraries 512
 - Creating a New Library.. 512
 - Using Spectra Libraries.. 513
 - Comparing Spectra.. 514
Searching Reference Spectra... 516
 - Searching Single Reference Spectra............................... 516
 - Entering Criteria for the Spectra Library Screening............. 518
 - Starting Library Screening and Viewing the Results............ 521
 - Inserting Screening Results in Reports and Peak Labels....... 522
Analyzing the Peak Purity.. 525
 - Visual Check of Iso Line Plot.................................... 526
 - PPI and PPI Match Factor... 526
 - Normalized Spectra Overlay...................................... 527
 - Peak Inhibition via Virtual Channels......................... 528
 - Multiple Ratio... 529
Selecting the Optimum Integration Path................................. 530
Extracting/Exporting Spectra, Chromatograms, and 3D Fields........ 532
Answering Frequently Asked Questions................................... 533
Creating and Using Report Tables.. 535
 - Using Report Tables in the Screen Report....................... 535
 - Displaying a Report... 536
 - Defining the Contents of a Report............................... 536
 - Defining the Appearance of a Report............................. 537
 - Optimizing the Line Height....................................... 538
 - Saving a New Report Definition File......................... 539
 - Linking Report Variables.. 539
 - Calculating the Peak Variable "Amount"......................... 540
 - Adding and/or Renaming a Worksheet......................... 541
 - Displaying the Peak Summary.................................... 544
 - Displaying an Audit Trail.. 545
Contents

Creating a History Report .. 547
Displaying MS Reports .. 547
Selecting Other Special Reports ... 548
Setting Parameters for Variables ... 550
Creating Report Tables for the Printout 553
Inserting and Editing a Table in the Printer Layout 553
Inserting a Column into an Existing Table 555
Entering User-defined Formulas ... 556
Calculating the Amount Percentage (for Identified Peaks)............. 560
Calculating the Concentration Percentage 561
Calculating the Retention Time Difference of Two Channels 563
Creating Dynamic Columns that Contain Flexible Formulas 565
Creating Dynamic Links to Lines Other than the Current Line 567

Preparing the Printout.. 569
Opening and Editing the Printer Layout 570
Inserting a Chromatogram ... 571
Inserting a Trend, 3D Amperometry, or CV Plot 571
Inserting and Deleting Individual Variables 572
Inserting Text ... 573
Saving or Loading a Report Definition File 574
Specifying the Pages to be printed ... 574
Specifying the Printout .. 576
Printing the Results of a Single Sample 577
Printing the Results of a Sequence or a Sample Batch 579
Setting Print Area and Print Title(s) .. 581
Automatically Repeating the Output for the Selected Objects 581
Saving the Contents of a Report Definition File 586
Creating Charts ... 587
Changing the Page Format ... 588
Notes on the Page Setup .. 588
Answering Frequently Asked Questions 590

Analyzing 3D Amperometry Data ... 593
Displaying a Sample's 3D Amperometry Data 594
Selecting the Integrated or Raw 3D Amperometry View 594
Changing the 3D Amperometry Plot Scale 596
Viewing Chromatograms in the 3D Amperometry Window 599
Viewing I-t Plots in the 3D Amperometry Window 601
Editing Integration Intervals .. 602
Extracting a Chromatogram from 3D Amperometry Data 603
Exporting a Chromatogram, an I-t Plot, or 3D Amp. Data 605
Contents

Working with Cyclic Voltammetry Data ... 607
 □ Opening a Cyclic Voltammetry Data Plot .. 607
 □ Viewing Cyclic Voltammetry Data ... 609
 □ Copying Cyclic Voltammetry Plots ... 610

Using Mass Spectrometers... 611
 □ Creating an MS Program and Sequence .. 611
 □ Creating a PGM File for the MSQ ... 614
 □ Creating MSQ Channels with the MSQ PGM File 616
 □ Creating a PGM File for the aQa MS 619
 □ Creating aQa MS Channels with the aQa PGM File 621
 □ SIM Mass Lists for IC-MS ... 625
 □ Acquiring MS Data in MCA Mode ... 629
 □ Extracting Mass Traces Online ... 632
 □ Extracting Mass Traces Afterward ... 634
 □ Extracting a Temporary Mass Trace 636
 □ Showing Mass Spectra .. 637
 □ Minimizing the Noise of Mass Spectra 639
 □ Processing Mass Spectra .. 640
 □ Defining Further QNT Settings for MS 642

Collecting Fractions ... 643
 □ Setting up Fraction Collection .. 644
 □ Enabling Fraction Collection (General Options) 648
 □ Setting the Fraction Collection Options
 (Collection Device Options) .. 652
 □ Selecting the Channel for Fraction Collection
 (Channel Selection Options) ... 654
 □ Detecting the Peak Start, Peak Maximum, and Peak End
 (Peak Detection Options) .. 655
 □ Entering More Peak Detection Parameters 658
 □ Determining the Delay Time (Delay and Detector Offsets) 661
 □ Editing Signal-Dependent Fraction Collection Parameters .. 662
 □ Editing Signal-Independent Fraction Collection Parameters 665
 □ Defining the Reactions to Certain Events 668
 □ Program Example (One Detection Channel) 669
 □ Program Example (Two Detection Channels) 671
 □ Fraction Collection Control via an MS...................................... 674
 □ Fraction Collection Control via an MS for Different Samples ... 678
 □ Checking the Fraction Collection Status on the Control Panel 679
 □ Tracking Fraction Collection in the Chromatogram ... 682
 □ Tracking Fraction Collection in the Report 684
Contents

Collecting Fractions Automatically (Autopurification)
- Setting up Autopurification .. 688
- Creating PGM Files for Autopurification Samples 690
- Setting the General Parameters for the Dionex_Purification_Parameters Driver .. 690
- Setting the Safety Parameters .. 692
- Setting the Correction Parameters (Settings Panel) 693
- Using Triggers in Autopurification Programs 697
- Performing Autopurification .. 698
- Creating Preparation-Type Samples .. 699
- Using Optimized MS Threshold Values 701
- Creating Fraction-Type Samples .. 703
- Autopurification Samples in the Sample List 705
- Autopurification Samples in the Chromatogram 706
- Autopurification Samples in the Tray Views 708

Simulating Chromatograms
- Selecting the Analysis Parameters .. 711
- Viewing the Results Table ... 715
- Viewing the Resolution Response Surface 715
- Viewing the Virtual Chromatogram 717
- Selecting a Resolution Criterion ... 718
- Finding the Fastest Chromatogram 722
- Finding the Global Optimum .. 723
- Selecting the Column Quality Assurance Conditions 724
- Manually Selecting an Eluent Condition 724
- Saving and Reloading Virtual Column Settings 726
- Viewing the Eluent Composition ... 727
- Modeling Gradient Separations ... 727

Device Control

Device Control (Overview)

General Commands for Device Control
- System Commands ... 733
- General Commands ... 734
- General Device Commands ... 734
Contents

Commands for Controlling Dionex Devices

- Dionex Pumps .. 738
 - Dionex P680 HPLC Pump .. 740
 - Dionex DP/SP Pumps ... 743
 - Dionex LPG-3x00 Micro Pump ... 744
 - Dionex/LC Packings UltiMate Capillary/Nano HPLC Pump 746
 - Dionex/LC Packings UltiMate Pump: Columns ... 748
 - PP-150 Preparative HPLC Pump ... 749
 - Controlling Pumps without a Separate Device Driver 750

- Dionex Sample and Fraction Manager ... 752
 - Commands ... 752
 - Commands for Fraction Collection ... 755
 - Tips for Injection ... 757
 - Overlapping Areas ... 758
 - PGM File for Fraction Collection .. 760
 - Troubleshooting ... 764

- Dionex Autosamplers .. 765
 - ASI-100 Autosampler Series .. 766
 - AS/AS50 Autosamplers ... 770
 - WPS-3000 Well-Plate Micro Autosampler ... 774
 - WPS-3000: Commands for User-Defined Programs .. 781
 - FAMOS Capillary/Nano HPLC Autosamplers ... 783
 - FAMOS Autosampler: Sample Preparation ... 787
 - GINA 50 Autosamplers ... 789

- Dionex Flow Manager/Thermostatted Column Compartments 790
 - TCC-100 Thermostatted Column Compartment ... 791
 - TCC-100: Column ID Properties .. 794
 - FLM-3x00 Flow Manager and Column Compartment ... 797
 - FLM-3x00: Column ID Properties .. 801
 - FLM-3x00: Flow Splitter Commands .. 803

- Dionex Detectors .. 807
 - UVD 170/340 UV/PDA Detectors ... 808
 - PDA-100 Photodiode Array Detectors .. 811
 - AD20/AD25 Absorbance Detectors .. 813
 - UVD-3000 UV Detector ... 815
 - UltiMate Capillary/Nano HPLC UV Detectors .. 817
 - RF2000 Fluorescence Detector ... 818
 - RF2000: Excitation Wavelength ... 819
 - RF2000: Emission Wavelength ... 819
 - RF2000: Gain .. 820
 - RF2000: Response ... 820
Contents

Diagnostics: Cell Test ... 893
Diagnostics: Filter Test ... 894
Diagnostics: Intensity Test .. 895
Troubleshooting .. 896

1050 HPLC System:
UV Detector .. 898

6890/6850 GCs:
Commands and Tips ... 899
General ... 900
Injector .. 903
Inlet: General .. 906
Inlet: PurgedPacked/Cool On-Column EPC,ACI,PCM,Volatiles908
Inlet: Split/Splitless EPC, Gerstel PTV, PTV, CIS3, CIS4 909
Column .. 912
Detectors ... 914
ECD .. 917
FID and FPD .. 919
NPD (Nitrogen Phosphorous Detector) 921
TCD (Thermal Conductivity Detector) 923
u-ECD ... 924
Auxiliary Devices .. 925
Application .. 926
PGM File - Entering Pressure or Flow? 929

HP5890 GC:
Application .. 931

CTC Analytics: Commands and Tips ... 933
PAL Sampler Commands .. 933
PAL Samplers: Tips for Injection ... 937
PAL Samplers: PGM File for LC_Inject Mode 939
PAL Samplers: PGM File for Custom Inject Mode 940
PAL Samplers: Tips for Headspace Operation 941
PAL Samplers: PGM File for HS_Progr Inject Mode 944
PAL Samplers: Troubleshooting .. 945

Fisons AS800/TQ AS2000 Samplers: Commands and Tips 946
Program Example ... 948
Troubleshooting .. 949

Gilson: Commands and Tips ... 950
321 and 322 Pumps .. 950
333 and 334 Pumps .. 952
202 Fraction Collector (Ext.)/204 Fraction Collector 954
Injection Modes .. 955
156 UV/VIS Detector ... 956
Kontron (Bio-Tek): Commands and Tips ... 958
 465 Autosampler ... 958
 SFM25 Fluorescence Detector .. 959

Merck Hitachi: Commands and Tips .. 960
 LaChrom HPLC System: Tips .. 960
 Pumps: Program Example ... 960
 Autosamplers .. 962
 AS4000: Program Example ... 966

Perkin Elmer: Commands and Tips .. 969

Autosystem (XL) and Clarus 500 GCs:
 Commands and Tips ... 969
 General .. 970
 Sampler ... 972
 Inlet .. 973
 Column ... 975
 Detectors .. 978
 Changing the Syringe Type .. 980
 Split Valve Control for PSS and CAP Inlets 981
 Pressure and Flow Ramps ... 982
 Troubleshooting ... 984

TurboMatrix Headspace Sampler:
 Commands and Tips ... 986
 State ... 987
 Options .. 988
 Temperatures ... 990
 Time Programs ... 992
 Oven .. 993
 Pressure .. 993
 Single and Progressive Injection Modes 995
 Program Example .. 997
 MHE Mode .. 998
 Tips ... 1000

Rheodyne Valves: Commands and Tips 1004

Shimadzu HPLC Systems: Commands and Tips 1005

LC-10A and LC-2010 HPLC Systems:
 System Settings .. 1006
 Pump ... 1008
 Autosampler .. 1009
 Inject Synchronization ... 1012
 SIL-10ADvp Sample Preparation ... 1013
 Column Oven .. 1015
Contents

UV/VIS Detector ... 1016
General Tips ... 1019
LC-10A: Program Example for the Standard Injection Mode .. 1021
LC-10A: Program Example for the Reagent Injection Mode .. 1023
LC-10A: Program Example for the Dilution Injection Mode... 1025
Troubleshooting ... 1027

Shodex Refractive Index Detectors: Commands and Tips 1031

Thermo Finnigan/TQ/TSP: Commands and Tips 1033
Surveyor MSQ Mass Spectrometer 1034
Surveyor MSQ: Troubleshooting .. 1036
aQa Mass Spectrometer .. 1039
Trace and Focus GC Commands ... 1041
Trace GC: Application .. 1043
Trace GC: Setting the Temperature 1044
AS3000 and AI3000 Autosampler Commands 1045
AS3500/AS3000 Autosamplers: Sample Preparation 1046
UV1000 Detector .. 1054
UV2000 Detector .. 1055
UV3000 Detector .. 1056
Troubleshooting .. 1057
UV6000 PDA Detector ... 1059
UV6000 Detector: Troubleshooting 1061
FL2000 and FL3000 Fluorescence Detectors 1062
FL2000 and FL3000: Names in Firmware and Chromeleon .. 1066
FL2000 and FL3000: Troubleshooting 1067

Valco Valves: Commands and Tips .. 1068

Varian: Commands and Tips .. 1069

3800 GC:
General .. 1070
Sampler ... 1071
Injector ... 1076
Column ... 1079
Detectors ... 1080
Troubleshooting .. 1083

3400 and 3600 GCs:
3400 and 3600 GCs ... 1084
Names in Firmware and Chromeleon 1088
Detectors .. 1090
Detectors: Names in Firmware/Chromeleon 1092
Tips for Operation ... 1093
Troubleshooting .. 1095
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waters: Commands and Tips</td>
<td>1097</td>
</tr>
<tr>
<td>Alliance 2690/2695 HPLC Modules</td>
<td>1098</td>
</tr>
<tr>
<td>Alliance 2790/2795 HPLC Modules</td>
<td>1104</td>
</tr>
<tr>
<td>Alliance 2790/2795: HPLC System</td>
<td>1104</td>
</tr>
<tr>
<td>Alliance 2790/2795: Pump and Degasser</td>
<td>1106</td>
</tr>
<tr>
<td>Alliance 2790/2795: Injector</td>
<td>1110</td>
</tr>
<tr>
<td>Alliance 2790/2795: Column Heater/Sample Temp.Control</td>
<td>1114</td>
</tr>
<tr>
<td>Alliance 2790/2795: Overlapping Sample Preparation</td>
<td>1116</td>
</tr>
<tr>
<td>717plus Autosampler</td>
<td>1118</td>
</tr>
<tr>
<td>996 and 2996 PDA Detectors</td>
<td>1119</td>
</tr>
<tr>
<td>2487 UV Detector</td>
<td>1121</td>
</tr>
<tr>
<td>Instruments: Troubleshooting</td>
<td>1122</td>
</tr>
<tr>
<td>GPIB-Connected Devices: Troubleshooting</td>
<td>1125</td>
</tr>
</tbody>
</table>

Practical Tips for Device Control	1127
Pump and Flow Control	1128
Pump Commands	1129
Setting the Flow Rate	1131
Determining the Solvent Composition	1132
Determining a Gradient	1133
Determining Pressure and Pressure Limits	1136
Starting and Stopping the Pump Flow	1137
Holding the Pump Flow	1137
Recording the Pump Pressure	1137
Setting Automatic Pre-Compression Control (P580)	1139
Viewing Leak Sensor and Workload Status	1140
Peak Parking	1140
Splitting the Flow (Program Example)	1142
Autosampler Control	1143
Autosampler Commands (GINA 50)	1144
Autosampler Commands (ASI-100 Series)	1147
Autosampler Commands (AS/AS50)	1151
Examples for User-Defined WPS-3000 Programs	1157
Examples for User-Defined FAMOS Programs	1161
Injecting a Sample	1165
Setting Up Remote Injection	1167
Priming the Syringe (ASI-100 Series)	1170
Defining Sample Preparation Steps (AS/AS50)	1174
Entering Sample Preparation Vial Positions	1176
Overlapping Samples	1176
Injecting Two Samples Simultaneously	1177
Contents

- Sharing an Autosampler ... 1179
- Opening the AS/AS50 Door during Operation .. 1181
- Monitoring the Status of the AS/AS50 .. 1182

Detector Control .. 1183
- Detector Commands .. 1183
- Starting Data Acquisition ... 1185
- Defining Signals, Signal Parameters, Axis Decoration, etc. 1185
- Modifying Signal Parameters (Overview) ... 1186
- Modifying the Signal Parameters of a UV Channel 1187
- Modifying the Signal Parameters of a 3D Field 1188
- Determining Wavelength Switching ... 1188
- Determining the Optimum Emission Wavelength (RF2000) 1189
- Recording Fluorescence Spectra (RF2000) ... 1190
- Displaying the Signal Parameters of a Mass Channel 1192
- Defining a Waveform (Overview) .. 1193
- Defining a Waveform for an ED Electrochemical Detector 1194
- Defining a Waveform for an ICS-3000 Detector 1195
- Using the Reference Electrode with Alkaline Eluents 1198
- Selecting a Default Waveform for Integrated Amperometry 1200
- Correcting a Default Waveform for pH Dependence 1201
- Performing Cyclic Voltammetry .. 1202
- Defining Step and Average ... 1204
- Viewing or Resetting the Lamp Age ... 1205
- Controlling a Suppressor .. 1205
- Setting Atlas Suppressor Currents .. 1207
- Setting SRS Suppressor Currents ... 1208
- Setting SRS-MPIC Suppressor Currents ... 1211
- Controlling an MMS Suppressor .. 1213

IC Control ... 1214
- Controlling a DX-120 Ion Chromatograph .. 1214
- Controlling an ICS-1000/1500/2000 System .. 1215
- Controlling an ICS-90 Ion Chromatography System 1217
- Controlling the Eluent Generator Concentration 1219
- Monitoring the Eluent Generator Cartridge Lifetime 1221
- Monitoring the DX-120 Operating Status .. 1222
- Monitoring the ICS-1000/1500/2000 Operating Status 1223

GC and Temperature Control .. 1225
- Flow/Pressure Control for Gas Chromatographs 1225
- Determining a Gradient (GC) ... 1226
- Commands and Properties for Dual Operation (6890) 1227
- Injecting Two GC Samples Simultaneously (6890) 1228
| Contents |
|-----------------|-----------------|
| XXII | 1231 |
| Injecting Two GC Samples Simultaneously | 1231 |
| (7673 and 7683 Autosamplers) | 1231 |
| Temperature Control (On/Off) | 1232 |
| Controlling the Temperature | 1233 |
| Controlling the Column Temperature | 1235 |
| Component Controller Control | 1238 |
| Valve Control for CC81: Concentration | 1241 |
| Valve Control for CC82: Dilution | 1242 |
| Valve Control for CC83: Dilution with Reagent | 1243 |
| Valve Control for CC84: Concentration with Reagent | 1244 |
| Special Commands, Relay Control, and Miscellaneous | 1246 |
| Virtual Channel Commands | 1246 |
| Program Examples for Virtual Channels | 1248 |
| Trigger Commands | 1251 |
| Mixed Commands | 1255 |
| Relay, TTL, and Remote Input Commands | 1256 |
| Switching a Relay | 1257 |
| Device Successfully Connected | 1258 |
| The Ready Signal | 1258 |
| Determining the CRP Value | 1259 |

<table>
<thead>
<tr>
<th>Reference Information</th>
<th>1263</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Variables</td>
<td>1265</td>
</tr>
<tr>
<td>Control Commands</td>
<td>1295</td>
</tr>
<tr>
<td>QNT Parameters</td>
<td>1375</td>
</tr>
<tr>
<td>Detection Parameters</td>
<td>1423</td>
</tr>
<tr>
<td>Report Categories</td>
<td>1457</td>
</tr>
<tr>
<td>Glossary</td>
<td>A-1</td>
</tr>
<tr>
<td>Index</td>
<td>I-1</td>
</tr>
</tbody>
</table>
Using the User Help and Manual

• Although the User Help section of the Chromeleon online Help and the User Manual differ only slightly in content, they are intended for different situations.

• Refer to the User Help section in the Chromeleon online Help to look up the meaning of unknown terms or to learn how to use the application in a specific situation on-screen. The easiest and quickest way to access the online Help is to press the F1 Key. For more information, refer to Activating Online Help.

• Look up information in the User Manual to become familiar with the fundamental features and operating procedures of the system. Dionex recommends that you read the first two sections and look up unfamiliar terms in the glossary.

Note:

For more information about the contents and structure of the User Help and/or Manual, refer to The User Help (Overview).

In addition to the User Help section, the Chromeleon online Help includes an Administrator Help section. For more information, refer to The Administrator Help.

The Administrator Help

In addition to the User Help section, the Chromeleon online Help includes an Administrator Help section. The User Help section provides useful information for the Chromeleon end user. The Administrator Help section is intended for system administrators and Dionex Service.

For an overview of the topics described in the User Help section, refer to the Table of Contents.
The Administrator Help section provides information about the different Chromeleon management tools and the hardware installation procedures:

- **Software Installation and Communication**
- **Validation and Qualification**
- **Working with Files, Databases, and Networks**
- **Installing and Configuring Mass Spectrometers**
- **Configuring the Chromeleon Server**
- **Starting and Monitoring the Server, Setting Up the Server for Network Access**
- **21 CFR Part 11 and Electronic Signature**
- **Chromeleon User Management** (covering the User Manager (CmUser) and Security Activation Tool (CmSecure))
- **Hardware Installation.** This section includes among others the following topics:
 - **Installing Dionex Devices**
 - **Installing and Controlling Third-Party Devices**

The Online Help (Overview)

As with most Windows programs, the online Help features various windows and levels. These largely correspond to the various parts of the User Manual, such as the table of contents, main section, appendix, and index. In addition to the manual, the online Help provides many context-sensitive tips that open only from the respective program window.

The **Contents** tab provides an overview of the different Help sections. This information corresponds to the table of contents in the User Manual:
• Double-click a **book symbol** to display the topic titles.
• Double-click a **question mark symbol** to open the corresponding topic.
• The **Index** tab page enables you to find a specific term by searching the index entries.
• The **Find** tab page enables you to search for specific words and phrases in the Help topics by searching the entire text of the Help system.

The selected topic appears in a separate Help window. The window has a white background if the topic deals with questions regarding theory, installation, and operation. The background color is yellow if the topic provides tips that are more practical (**How to ...**). Both windows can be displayed simultaneously.

Tip:

Online Help is automatically displayed in the language (German or English) of the active language setting (see Windows Control Panel > Regional Options). The English version is loaded by default.
The User Help (Overview)

Note:

The structure of the User Manual mainly corresponds to the structure of the User Help section.

The User Help section in the Chromeleon online Help is divided into different sections. The Table of Contents provides an overview of the various topics.

When appropriate, there are references to related topics. These references are indicated as follows:

- **Jump term**: References technical terms in the Glossary.
- **Jump term**: References topics in the Reference Information section.
- **Shortcut link**: References topics in the Overview, Operation, and Data Management and How to …: sections. In addition, this link references related topics in the Administrator Help section.
- **CmUser link**: References topics in the Chromeleon User Management section of the Administrator Help section.
- **Installation link**: References topics in the Hardware Installation of the Administrator Help section.

1. **Section: General Information, Overview, Operation, and Data Management**

 This section describes the structure and functions of Chromeleon, as well as basic chromatographic facts and methods.

2. **Section: How to …:**

 The How to section provides helpful answers to frequently asked questions, such as:

 "How do I perform external calibrations?"

 "How do I generate program files?"

 "How do I re-integrate chromatograms manually?"
3. Section: Device Control
This section provides information about the commands supported for controlling Dionex and/or third-party devices, as well as practical tips for device control.

4. Section: Reference Information
This section describes commands, parameters, variables, and report categories in table form.

5. Section: Glossary and Index

Glossary
The glossary is an alphabetical list of chromatographic and program-related terms. Consult the glossary for the exact definition of
- A technical term; for example, Blank Run Subtraction.
- A command; for example, Draw.
- A parameter; for example, Skewness.

Index
Consult the index to locate information about a specific term. In the User Manual, ordinary page numbers refer to the first four manual sections, while page numbers preceded by the letter A refer to the glossary section; for example:

Command
 Reconnect….. A-93
 Wait ………A-147
 Wash........... A-147
Comment........... A-30
Communication 11; 21
Activating Online Help

There are several ways how you can access online Help:

➢ **F1 Key**

Press the F1 key to display context-sensitive information.

Select How to on the context menu to display detailed information about how to perform a particular task. Select What's this? to display a short description of the corresponding control or active window.

Help menu

Select ➢ Index on the Help menu to open the Chromeleon online Help. The Contents tab provides an overview of the different Help sections and topics. The Index tab displays an alphabetical list of terms that are explained in the Help. To find a specific term, enter the term of interest in the input field. The Find tab enables you to search for specific words and phrases in the Help topics by searching the entire text of the Help.

Select Using Help on the Help menu for more information about how to use the online Help.

Clicking this icon on the standard toolbar changes the appearance of the mouse pointer: a question mark is appended to the pointer. To display information about an on-screen item, click this icon, and then click the item of interest.

Click Help in a dialog box for more information about the dialog box.

Online Help topics often include links that jump to other Help topics. To ➢ jump to another Help topic, click the green underlined hyperlink or click a shortcut symbol.
Overview, Operation, and Data Management
Chromeleon (Overview)

Chromeleon is a modern Chromatography Management System that allows you to control and monitor chromatography installations and to backup, evaluate, and reprocess data. Chromeleon provides various sub-programs, making it very flexible and GLP conforming, and offering you numerous options for operating effectively and productively:

The sub-programs support the following functions:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chromeleon (Client)</td>
<td>Device control, data backup, reprocessing and evaluation, validation (user)</td>
</tr>
<tr>
<td></td>
<td>Installation Qualification</td>
<td>Verification and documentation of the installation (administrator)</td>
</tr>
<tr>
<td></td>
<td>Server Configuration</td>
<td>Device configuration (administrator)</td>
</tr>
<tr>
<td></td>
<td>Server Monitor</td>
<td>Interface between the installation and the Chromeleon Client (administrator)</td>
</tr>
</tbody>
</table>

The Server Configuration and Server Monitor programs allow you to create a client/server structure, thus adding to the networking capability of Chromeleon.
In addition, there are two User Management programs available to the administrator in the Chromel\CmUser directory:

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CmSecure.exe</td>
<td>Enabling and disabling User Management (administrator)</td>
</tr>
<tr>
<td>CmUser.exe</td>
<td>Installing User Management (administrator)</td>
</tr>
</tbody>
</table>

As a user, you will almost exclusively work with the Chromeleon Client program. The different windows support all required functions.

Also, refer to:
- Chromeleon Windows
- Chromeleon Features
- Chromeleon Licenses
- Installing Chromeleon

Chromeleon Windows

You can open the various windows of the Chromeleon **Client Program** via the associated icons or by double-clicking the respective directory:

Click an icon to open one of the following windows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Browser</td>
<td>Data administration and storage</td>
</tr>
<tr>
<td></td>
<td>Panel Tabset</td>
<td>Control of all configured devices</td>
</tr>
<tr>
<td></td>
<td>Integration</td>
<td>Chromatogram display and reprocessing</td>
</tr>
<tr>
<td></td>
<td>PPA</td>
<td>Peak Purity Analysis: 3D Field (only for PDA data)</td>
</tr>
<tr>
<td></td>
<td>3D Amperometry</td>
<td>3D amperometry data display and evaluation</td>
</tr>
<tr>
<td></td>
<td>QNT Editor</td>
<td>Quantification Method editing</td>
</tr>
<tr>
<td></td>
<td>Printer Layout</td>
<td>Printer Layout creation and/or modification</td>
</tr>
<tr>
<td></td>
<td>Signed Results</td>
<td>Electronically signed sequence (SOR File)</td>
</tr>
</tbody>
</table>
Double-click the associated file to open these windows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel</td>
<td>Control of a specific device or system</td>
</tr>
<tr>
<td></td>
<td>PGM Editor</td>
<td>Processing of a control file</td>
</tr>
<tr>
<td></td>
<td>Panel</td>
<td>Control of all configured devices</td>
</tr>
</tbody>
</table>

The **Integration** window and **QNT Editor** support different panes; click the associated icon on the **Method** toolbar:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Report</td>
<td>Display of various report tables</td>
</tr>
<tr>
<td></td>
<td>Trend Plot</td>
<td>Display of trends in data series</td>
</tr>
<tr>
<td></td>
<td>Spectrum</td>
<td>UV spectrum (only for PDA data)</td>
</tr>
<tr>
<td></td>
<td>Calibration Curve</td>
<td>Calibration curve</td>
</tr>
<tr>
<td></td>
<td>MS Spectrum</td>
<td>Mass Spectrum</td>
</tr>
</tbody>
</table>

For more information about the different windows, refer to:

- The Browser
- The Control Panel
- The Panel Tabset
- The QNT Editor
- The PGM Editor
- The Integration Window
- The Printer Layout
Chromeleon Features

Chromeleon supports a wide variety of features, including:

- Modern control technology via client/server architecture and Windows RPC technology. (For more information, refer to The Network.)
- Complete Network Installation.
- Separate User Manager (CmUser program) for user management (refer to Chromeleon User Management in the Administrator Help section).
- Query-based data access via an integrated Database.
- Connection to standard ODBC and/or SQL databases.
- Tele-service (remote maintenance).
- Freely definable workspace on the Control Panel.
- Mass Spectrometer control and MS data evaluation.
- Sample-Oriented Operation.
- Electronic Signature of sequences.
- Compliance with GLP through automated Instrument Qualification (IQ) and Operational Qualification (OQ), as well as Instrument OQ and Performance Qualification (PQ).

The user interface and operation correspond to the standard Windows requirements:

- Comprehensive Online Help.
- Easy operation based on Toolbars and assisting Wizards.
- Comprehensive context menus via the Right Mouse Button.
- Drag & Drop functionality (refer to How to ...: Creating and Managing Files and Data Moving and Copying Elements).
- Real Multi-Tasking and Multi- Threading.
In addition, the chromatographic interface features these special enhancements:

- Optical representation of the gradient profile.
- Online zooming beyond the current time.
- Grid in online window.
- Additional peak variables.
- Determination of reference wavelength for individual channels.
- Wavelength compensation via holmium oxide filter.
- Enhanced data compression and restoration of old data.
- Baseline subtraction can be undone at any time.
- Base area correction/base area recognition.

Chromeleon Licenses

Chromeleon can be configured to satisfy the requirements of many different applications. In addition to the basic software package, various options are available from Dionex.

The set of licensed capabilities for a Chromeleon station is controlled by means of a serial number and the corresponding license key. The serial number is coded on a software protection device that is installed locally, together with the license key, or managed by a License Server. (For more information, refer to Software Installation and Communication The Software License in the Administrator Help section.) Chromeleon can only be started with the full range of features if a protection device (such as a Dongle on the parallel or USB PC interface or a PAL on the A/D converter card) is detected, or if a license provided by the license server is detected.

For information about which Chromeleon licenses are available from Dionex, see the table below.

Tip:

To check the licenses after the installation, select About Chromeleon on the Help menu.
Server Features

Server License: The base server license enables control and data acquisition for instruments attached directly to the PC that has the license. The server must always be configured with one or more timebases; other server features are optional.

Timebases Class 1 to 3: Each Timebase license enables control of one chromatography system (defined as a set of instrument components that operate according to the same elapsed-time clock).

The timebase class determines which instruments can be controlled:

- Timebase Class 1 License: Supported Devices
- Timebase Class 2 License: Supported Devices
- Timebase Class 3 License: Supported Devices

Tip: All Dionex and LC Packings instruments are controlled by a Timebase Class 1 license.

The Timebase Class 2 and Timebase Class 3 licenses allow you to control additional chromatography instruments that are not supported by the Timebase Class 1 license. Please note:

<table>
<thead>
<tr>
<th>License</th>
<th>Also Supports Devices of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timebase Class 2</td>
<td>Timebase Class 1</td>
</tr>
<tr>
<td>Timebase Class 3</td>
<td>Timebase Classes 1 and 2</td>
</tr>
</tbody>
</table>

Up to six timebases can be configured on one server PC, of which up to four can be fully-controlled LC or IC systems. However, only two Timebase Class 2 or Timebase Class 3 licenses are allowed.

Multiple Network Control: This license enables the server's timebases to be controlled by other Chromeleon client stations across a network. In addition, this license supports the Online Transfer Agent (OTA) and Network Failure Protection (NFP). One separate license is required for each installed chromatography server.

MS Control: Additional license for a Mass Spectrometer on a chromatography server: enables MS control, digital data acquisition of a three-dimensional data field, and analysis of MS data. The MS Control license is required for spectra and channel acquisition. One license is needed on each chromatography server.

IC Control SE: Special low-cost control license for operating a single DX-120, ICS-90, or ICS-1000 stand-alone ion chromatography system. Also supports the AD25, AS50, and UCI modules.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-D Data Acquisition</td>
<td>Additional license that enables a chromatography server to acquire digital 3-D data from Photodiode Array Detectors and the ICS-3000 Electrochemical Detector (ED). For details, see the Additional Notes at the end of this topic.</td>
</tr>
<tr>
<td>ICS-2000 Gradient Generation</td>
<td>Additional license that enables electrolytic eluent gradient generation with the ICS-2000 Ion Chromatography System.</td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>Additional license that enables intelligent fraction collection based on up to two detector signals, with wizard-based setup and complete fraction reporting.</td>
</tr>
<tr>
<td>Purification</td>
<td>Additional license for Autopurification. (The Purification license includes the Fraction license.) The license supports control of automatic sample purification via the associated Post-Acquisition Steps, color-coded sample and fraction assignment, special chromatogram views, and sophisticated fraction collection algorithms with peak shoulder detection. More than two detection channels are allowed.</td>
</tr>
<tr>
<td>Control-Only</td>
<td>This license is for Chromeleon Xpress only. It enables full instrument control and monitoring, but does not allow storage of data channels.</td>
</tr>
</tbody>
</table>

Client Features

<table>
<thead>
<tr>
<th>Client License:</th>
<th>License for data reprocessing on a network PC without control. The license supports multitasking and reports from single- and multiple-point calibration with various fit models, integration, ratio test, user programs, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Control:</td>
<td>License that enables the Client to connect to local or remote Chromeleon servers for real-time system control and status monitoring. For control across networks, the Chromeleon servers must have the Multiple Network Control license.</td>
</tr>
</tbody>
</table>

Note: This license is available only with a Client License.

<table>
<thead>
<tr>
<th>Concurrent Clients:</th>
<th>Number of client sessions that can be used concurrently on a PC. A maximum of three Concurrent Clients can be established and licensed on one PC. For a License Server, the number of floating licenses allowed on one PC depends on the INI file (see Hardware Installation Installing the License Server in the Administrator Help section).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Publisher:</td>
<td>This license extends Chromeleon’s reporting capabilities by enabling use of custom formulas (written in standard Excel syntax) and custom charting. For more information, see Additional Functions.</td>
</tr>
</tbody>
</table>
GLP Compliance: This license supports additional capabilities required for GLP features:

- File History
- Electronic Signature
- User Management (see User Management: User Manager and Security Activation Tool)

Virtual Column: Additional license options for the Virtual Column IC Separation Simulator tool. The Isocratic license enables modeling of isocratic separations only; the Linear Gradient license enables modeling of isocratic and linear gradient separations. (The Linear Gradient license is sold only in a Virtual Column Complete package that also includes the Isocratic license.)

Xpress mode: Provides a simplified interface for operating and monitoring instruments. Does not provide any data review or data management functions.

SDK Features

ASAP: Additional license for the ASAP open-access option.

Analyzer: Additional license for controlling the DX-800 process analyzer.

Additional Notes about the 3-D Data Acquisition License

Each 3-D license applies to one chromatography server. A maximum of one 3-D photodiode array channel and one 3-D amperometry channel can be configured on a timebase. The total number of 3-D data channels one server can acquire simultaneously is limited by the computer performance. (No special client license is required for reviewing and processing acquired 3-D data.)

With photodiode array detectors, 3-D data provides spectral information that can be used for peak purity analysis and compound identification using spectral library matching. With the ICS-3000 ED, the 3-D option enables capabilities such as cyclic voltammetry and post-run adjustment of the waveform integration period. These types of 3-D data can be viewed in wireframe or iso-response projections, and chromatograms can be extracted from the 3-D data set.

For more information about 3-D amperometry data and the ICS-3000 ED, refer to How to: Analyzing 3-D Amperometry Data.
Timebase Class 1 License: Supported Devices

Tip:

To control the Dionex and/or LC Packings devices a Timebase Class 1 License is required.

<table>
<thead>
<tr>
<th>Manufacturer (See the Administrator Help section.)</th>
<th>Device (Driver Name)</th>
</tr>
</thead>
</table>
| Agilent (formerly HP) | 5890 Gas Chromatograph
6850 Gas Chromatograph
6890 Gas Chromatograph
7673A GC Autosampler (also for 7683 GC Autosampler)
1050 Autosampler
1050 Gradient Pump
1050 UV VWD Detector |
| CTC Analytics | CTC PAL Sampler for GC
CTC_A200S_Sampler |
| Dionex | All devices |
| Dostmann | Thermometer Series P500/P600 |
| Fisons | AS800 Autosampler
8000 Gas Chromatograph (+ Mega 2 GC)
A200S: see CTC_A200S_Sampler |
| Isco | Foxi 200 Fraction Collector
Foxy Jr. Fraction Collector |
| LC Packings (see Dionex) | All devices |
| Perkin Elmer | Autosystem(XL) Gas Chromatograph
TurboMatrix Headspace Sampler |
| Rheodyne | LabPro Valve
RV/EV Valve |
| Shodex | RI-101/102/104 RI Detector |
| ThermoFinnigan/ThermoQuest/TSP | ThermoFinnigan aQA MS
ThermoFinnigan MSQ MS
Thermoquest_AS2000
TQ Trace 2000 Gas Chromatograph
TSP AS3000/AS3500 Autosampler
Multi-Position Valve |
| Valco | Two-Position Valve |
Manufacturer
(See the Administrator Help section.) | Device (Driver Name)
---|---
Varian | 3400 Gas Chromatograph
| 3600 Gas Chromatograph
| 3800 Gas Chromatograph
Waters | 717 Plus Autosampler

Timebase Class 2 License: Supported Devices

Tip:

To control the Dionex and/or LC Packings devices a Timebase Class 1 License is required.

Manufacturer
(See the Administrator Help section.)	Device (Driver Name)
ABI	ABI_785A_UV_VIS_Detector
Agilent (formerly HP)	1100 HPLC System
Berthold	Berthold_LB_507_509
Bio-Rad	AS 100 Sampler
CTC Analytics	A200S Autosampler
Jetstream	Jetstream_2_Column_Oven
Knauer	2600 UV Detector
Kontron	360/560 Autosampler
420 Pump (also for 422 Pump)	
425 Gradient Former	
460 Autosampler	
465 Autosampler	
565 Autosampler	
Pumps 32X and 52X	
UV Detector 430	
UV Detector 432 (also for 332 UV Detector)	
UV Detector 535	
SFM 25 UV Detector	
CO200: see Jetstream_2_Column_Oven	
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Device (Driver Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kratos</td>
<td>Spectroflow 783 UV Detector</td>
</tr>
<tr>
<td>Linear Instruments (see ThermoFinnigan/ThermoQuest/TSP)</td>
<td>Linear 205 UV-Det.: see TSP UV2000/UVIS205 Detector</td>
</tr>
<tr>
<td>LKB (see Pharmacia)</td>
<td>Linear 206 UV-Det.: see TSP UV3000 Detector</td>
</tr>
<tr>
<td>Nelson/Perkin Elmer</td>
<td>2150 Pump</td>
</tr>
<tr>
<td>Pharmacia</td>
<td>Superrac 2211 Fraction Collector</td>
</tr>
<tr>
<td>Soma</td>
<td>941 Interface (also, for the 901 Interface)</td>
</tr>
<tr>
<td>Soma</td>
<td>950/960/970 Interface</td>
</tr>
<tr>
<td>Soma</td>
<td>2150 Pump</td>
</tr>
<tr>
<td>Soma</td>
<td>Superrac 2211 Fraction Collector</td>
</tr>
<tr>
<td>Soma</td>
<td>3710-178 Detector</td>
</tr>
<tr>
<td>Soma</td>
<td>3710 Detector (new)</td>
</tr>
<tr>
<td>ThermoFinnigan/ThermoQuest/TSP</td>
<td>TSP FL2000 Fluorescence Detector</td>
</tr>
<tr>
<td>ThermoFinnigan/ThermoQuest/TSP</td>
<td>TSP FL3000 Fluorescence Detector</td>
</tr>
<tr>
<td>ThermoFinnigan/ThermoQuest/TSP</td>
<td>TSP P2000 Pump</td>
</tr>
<tr>
<td>ThermoFinnigan/ThermoQuest/TSP</td>
<td>TSP P4000 Pump</td>
</tr>
<tr>
<td>ThermoFinnigan/ThermoQuest/TSP</td>
<td>TSP UV1000 Detector</td>
</tr>
<tr>
<td>ThermoFinnigan/ThermoQuest/TSP</td>
<td>TSP UV2000/UVIS205 Detector</td>
</tr>
<tr>
<td>ThermoFinnigan/ThermoQuest/TSP</td>
<td>TSP UV3000 Detector</td>
</tr>
<tr>
<td>ThermoFinnigan/ThermoQuest/TSP</td>
<td>TSP UV6000 PDA</td>
</tr>
<tr>
<td>Waters</td>
<td>2487 Detector</td>
</tr>
<tr>
<td>Waters</td>
<td>2690/2695 Separation Module</td>
</tr>
<tr>
<td>Waters</td>
<td>2790/2795 Separation Module</td>
</tr>
<tr>
<td>Waters</td>
<td>996/2996 PDA</td>
</tr>
</tbody>
</table>
Tip:

To control the Dionex and/or LC Packings devices a Timebase Class 1 License is required.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Device (Driver Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antec</td>
<td>Decade ECD</td>
</tr>
<tr>
<td>CTC Analytics</td>
<td>CTC PAL Sampler for LC</td>
</tr>
<tr>
<td>ESA</td>
<td>CouloChem II ECD</td>
</tr>
<tr>
<td>Gilson</td>
<td>116 UV Detector</td>
</tr>
<tr>
<td></td>
<td>117/118 UV Detector</td>
</tr>
<tr>
<td></td>
<td>119 UV Detector</td>
</tr>
<tr>
<td></td>
<td>152 UV Detector</td>
</tr>
<tr>
<td></td>
<td>201/202 Fraction Collector</td>
</tr>
<tr>
<td></td>
<td>202 Fraction Collector (ext.)</td>
</tr>
<tr>
<td></td>
<td>204 Fraction Collector</td>
</tr>
<tr>
<td></td>
<td>206 Fraction Collector</td>
</tr>
<tr>
<td></td>
<td>215 Liquid Handler</td>
</tr>
<tr>
<td></td>
<td>231 Autosampler (also used for the 231A autosampler)</td>
</tr>
<tr>
<td></td>
<td>231XL Autosampler</td>
</tr>
<tr>
<td></td>
<td>232 Bio Autosampler</td>
</tr>
<tr>
<td></td>
<td>234 Autoinjector</td>
</tr>
<tr>
<td></td>
<td>235 Autoinjector</td>
</tr>
<tr>
<td></td>
<td>302 Pump (also for 303 Pump)</td>
</tr>
<tr>
<td></td>
<td>305/306/307 Pump</td>
</tr>
<tr>
<td></td>
<td>333/334 Pump</td>
</tr>
<tr>
<td></td>
<td>Valve Modules: 817, 819, UVSM, and ValveMate XL Sampler Series (Extended): 221XL, 222XL, 231XL, 232XL, 233XL, and ASPEC XL</td>
</tr>
<tr>
<td>Jasco</td>
<td>980/1580 Pump</td>
</tr>
<tr>
<td></td>
<td>1520_Fluorescence_Detector</td>
</tr>
<tr>
<td></td>
<td>920_Fluorescence_Detector</td>
</tr>
<tr>
<td></td>
<td>970_UV_VIS_Detector</td>
</tr>
<tr>
<td></td>
<td>950/1555_Sampler</td>
</tr>
<tr>
<td></td>
<td>975/1575_UV_VIS_Detector</td>
</tr>
<tr>
<td></td>
<td>970_UV_VIS_Detector</td>
</tr>
</tbody>
</table>
Installing Chromeleon

Usually, Dionex Service or a network administrator installs the Chromeleon software. Therefore, refer to Software Installation and Communication in the Administrator Help section for a more detailed description of the installation procedure.
Components of a Chromatography System

Modern HPLC or IC systems consist of the following components (HPLC: High Pressure/Performance Liquid Chromatography; IC: Ion Chromatography):

- **a**: Reservoirs
- **b**: Pump
- **c**: Autosampler
- **d**: Column
- **e**: Detector flow cell
- **f**: Suppressor
- **g**: Fraction collector
- **h**: Computer control

The pump (b) draws up to four solvents from one or several reservoirs (a), mixes them as defined, and then directs this mixture through the system. The solution of interest (= the sample) is injected into this flow via an Autosampler (c) and separated into its individual fractions or substances on the column (d). Using a thermostatted column compartment can optimize the separation process. When a substance reaches the detector flow cell (e), a signal is produced that is proportional to the concentration of the substance. The signal whose profile corresponds to a Gaussian distribution is referred to as a peak. The exact quantity of each substance can be calculated by determining the peak area and by means of a previously acquired calibration curve (quantitative analysis).

In suppressed conductivity mode IC, a Suppressor is installed before the detector. As an option, a fraction collector (f) can be installed after the detector to distribute individual substances or fractions to different containers (g).
The peak area is determined by the chromatography data system that is installed on a PC. In addition, the data system

- Controls and monitors all connected chromatography instruments.
- Collects data and status messages.
- Enables quantitative and qualitative evaluation of the data, using
 - Photodiode Array Detectors
 - Mass Spectrometers.

The chromatography instruments communicate with the computer and the data system via special interfaces, such as the UCI Universal Chromatography Interface, via serial interfaces, or via additional cards, e.g., an A/D converter card.

If several PCs are connected via a network, the systems can be controlled from remote locations on the network. In addition, data can be managed centrally and/or retrieved from any workstation.

For more information about the components of a chromatography system, refer to:

- Chromatography Instruments
- The Chromatography Data System
- The PC
- The Operating System
- The Network

Chromatography Instruments

Chromeleon is especially designed to control and monitor the following Dionex devices:

- **Eluent Generator**: EG, EG40, or EG50
- **Micro Pump**: LPG-3x00
- **HPLC Pump**: P680
- **IC Pump**: DP, GP40, GP50, GS50, IP20, IP25, IS25, SP
- **Flow Manager**: FLM-3x00
- **Well-Plate Micro Autosampler**: WPS-3000
- **Autosamplers**: AS, ASI-100, AS50, AS3500
- **Autosampler and Fraction Collector**: SFM Sample and Fraction Manager
Components of a Chromatography System

- **Column Thermostats**: DC, TCC-100, LC25, LC30, AS50 Thermal Compartment
- **UV/VIS Detectors**
 - Single wavelength: AD20, AD25
 - Multiple wavelength: UVD 170U
 - Full-spectrum (PDA): UVD-3000, UVD 340U, PDA-100
- **Electrochemical Detectors**: CD, CD20, CD25, CD25A, ED, ED40, ED50, ED50A
- **Fluorescence Detector**: RF2000
- **Mass Spectrometer**: (Thermo Finnigan MSQ (also included in the Dionex APS) and aQa)
- **Refractive Index Detector**: Shodex RI-101
- **Instrument/PC Interfaces**: UI20 Universal Interface, UCI Universal Chromatography Interface
- **System Modules**: DX-120, IC20, IC25, IC25A, ICS-90, ICS-1000, ICS-1500, ICS-2000

The HPLC instruments are part of the UltiMate 3000, Summit, and APS (autopurification) system series. (Appropriate instrument control options may need to be purchased and installed in order to control these instruments.)

Third-party analytical instruments are also supported. See the following examples:

- **Gas Chromatographs**: Such as, the Agilent (or HP) 6890 GC
- **HPLC Systems**: Such as, the Agilent (or HP) 1100 HPLC System
- **HPLC Modules**: Such as, the Waters Alliance 2690 HPLC Module
- **Radioactivity Detectors**: Such as, the Berthold LB507A detector

Appropriate instrument control options may need to be purchased and installed in order to control these instruments.

For more installation information, refer to Hardware Installation Installing Dionex Devices in the Administrator Help section.
The Chromatography Data System

The data system is the control center of a modern chromatography system.

Tasks of a Data System

The data system

- Converts user input into time-precise control commands.
- Monitors the state of the connected chromatography instruments.
- Logs all user entries and modifications to the system.
- Saves and archives all data.
- Graphically represents data and allows you to check the system status and system results.
- Allows you to thoroughly check and evaluate data.

Components

- The basis for precise control and key component of the system is an Operating System that is capable of performing all operations in real time.
- The components of the chromatography system are installed and configured in the Server Configuration Program.
- Device Drivers and other drivers, for example, Virtual Channel Drivers, enable communication with the different instruments and device types. (For more information, refer to the related sections in Special Drivers in the Administrator Help section.)
- Each event (for example, execution of a command or appearance of an error message) is logged in the Audit Trail.
- Depending on the required scope of performance, Chromeleon supports various options. (For more information, refer to Chromeleon (Overview) Chromeleon Licenses.)
Chromeleon User Interface

- Chromeleon supports all typical Windows properties, such as menu structure, screen elements, and operation. A homogeneous, situation-related menu structure is as evident as the Windows technology, toolbars, and context-sensitive use of the right mouse button. (For more information, refer to \textit{The Client User Interface}.)

- Each user can save and activate a "personal" screen. (For more information, refer to \textit{User Profiles (Workspaces)}.)

- The user can modify the graphical representation of the online control windows to suit his/her specific needs. (For more information, refer to \textit{Control The Control Panel}.)

Operation

- Before starting Chromeleon (see \textit{Starting the Program}), verify that the hardware configuration is correct and that the PC is connected with the system and a datasource.

- In network operation (see \textit{The Network}), the client PC can control systems and datasources that are not directly connected with the PC.

- Various assistants, the \textit{Wizards}, facilitate operation of Chromeleon.

The PC

Overview of the minimum PC requirements

<table>
<thead>
<tr>
<th>Service Pack</th>
<th>Windows 2000</th>
<th>Windows XP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Pentium III 800</td>
<td>Pentium III 800</td>
</tr>
<tr>
<td>RAM</td>
<td>256 MB</td>
<td>256 MB</td>
</tr>
<tr>
<td>Hard Disk</td>
<td>20 GB</td>
<td>20 GB</td>
</tr>
<tr>
<td>Display</td>
<td>1024 x 768 x, minimum 256 colors</td>
<td></td>
</tr>
</tbody>
</table>

For better software performance, Dionex recommends a Pentium 4 with a CPU of at least 1 GHZ and 512 MB RAM. For applications with several windows and control panels, for example, in mass spectrometry, Dionex recommends using a higher screen resolution.
The Operating System

Chromeleon supports the following operating systems:

- Windows XP SP1
- Windows 2000 SP4

These operating systems are 32-bit Multi-Tasking operating systems, which means that several programs can be executed simultaneously. This is especially important for instrument control, data acquisition, and comfortable printer support.

Tip:

For more information, refer to Software Installation and Communication Chromeleon and Windows Operating Systems in the Administrator Help section.

The Network

The network capability of Chromeleon allows you to operate the data system within local and global networks, also referred to as LAN (Local Area Network) or WAN (Wide Area Network).

Chromeleon can be operated either locally in a single-user installation or on a network. This includes data transfer and remote operation via ISDN. The Chromeleon stations can be linked around the world (Wide Area Network).

To use all advantages and possibilities provided by network operation, such as centralized data storage, backup, and administration, shared access to methods and worldwide availability, safe and fast data exchange is essential.

Sometimes, even state-of-the-art networks have difficulty coping with the enormous amount of data. That is why client/server systems provide decisive advantages by specifically selecting transferred data.

Client/Server System

On a decentralized PC (client), RPC commands (Remote Procedure Calls) are used to start sub-programs on a central computer (Server or Chromatography Server). The server performs the actual "work." For example, the server searches for data in a database or runs an application.
The client only receives the search result or the status of the application. This means that the client provides the user interface while the actual operation is remotely performed on the server. Chromeleon, too, uses this "division of labor."

After starting Chromeleon on a local PC, the Client, the user can perform all server-independent tasks; for example, re-process raw data, create sequences, or search for individual spectra in a library.

If a chromatography Server is running, it is also possible to control and monitor the chromatography instruments connected to this server. Theoretically, each client connected to a running server via a Control Panel can do this. In practice, only the first client is allowed to control the instruments connected to the timebase. All other Chromeleon users can only monitor the system status.

Via device drivers, the server converts the control commands entered on the first client PC for the analytical instruments. Inversely, the server receives information from the system and forwards it to the appropriate locations. Thus, status information, such as the current flow rate, appears on all client PCs connected with this chromatography system. Raw data is automatically stored in the directory of a Datasource and the underlying database.

The installation type determines whether the client and the server are located on the same PC (local client/server installation) or on different PCs in a network (network installation). For more information, refer to:

- Local Client/Server Installation
- Network Installation

Local Client/Server Installation

The Client and the (Chromatography) Server are located on the same PC. They must be started separately.

The controlled instruments in the chromatography system can be connected with the PC, e.g., via RS-232 ports, a DX-LAN, or a USB (Universal Serial Bus) connection. Additional interface cards can supply a sufficient number of ports. Each chromatography server can control a maximum of six controlled Timebases (chromatography systems).
The data is saved on the local PC. During initial installation of Chromeleon, a local datasource is installed on each local computer.

If the PC is part of a local network (LAN = Local Area Network or WAN = Wide Area Network), data can also be saved externally. In the same way, external data can be used for data editing.

If the local PC is connected to a network, all options of a Network Installation are available.

Network Installation

The Client, the Chromatography Server, and the Datasource can be installed on different computers. They are connected via the network and the corresponding network server. Each chromatography server can operate up to six chromatography systems (Timebases).

The client, server, and datasource are independent units on the network.

On each PC, a server, client, and local datasource are set up during the installation of Chromeleon. Independently of this, each PC can act as "server only" or "client only." Theoretically, each client can access each datasource and each server. In practice, this may not be desirable for safety reasons.
Therefore, various options are available to restrict user access:

- The **Server Configuration** program allows you to define the extent of network operation for each **Server** and each timebase. A server can be made available for the entire network or for certain **Access Groups** only. The server can be locked either partly or completely. If the server is partly locked, for example, it is still possible to monitor the server, but control of the connected instruments is disabled. In this case, control is reserved for the local client. This distinction also applies to the timebases. If three timebases (TIME1, TIME2, and TIME3) are installed on a server, TIME1 could be completely shared, TIME2 could be excluded from network operation, and TIME3 could be shared for monitoring only.

- Datasources and/or their subdirectories can also be protected from undesired access. Depending on the location of the corresponding database (on the local hard disk or a network PC), the respective user or the network administrator decides (by "sharing" a directory) which data can be accessed and by whom. In addition, datasources shared in Windows can be locked in Chromeleon.

- In addition, access can be restricted via **Passwords** or the Chromeleon User Management. If the administrator has enabled access control (in the Security Activation Tool (CmSecure program)), the user must enter a password before being allowed to perform specific operations. The system administrator determines these operations in the User Manager (CmUser program). In this way, the administrator can deny controlling rights or prohibit "locking" of datasources.

- Besides, access is not possible if the appropriate license is missing. For example, if a server does not have a **Multiple Network Control** license and/or if the client does not have a **Server Control** license, the server cannot be controlled on the network.

Important data are often stored on central data server PCs. If, during data acquisition, the network connection is interrupted or the data server PC crashes, data acquisition should continue, nevertheless. All data that are relevant for the Chromeleon server are locally stored on the server's hard disk, thus ensuring that data acquisition will not be interrupted in case of a network failure (see **Network Failure Protection**).
In addition to allowing data exchange within a local area on a Windows, Novell, DEC, or UNIX network (LAN), it is possible to transfer data across huge distances (WAN) via ISDN. The basic requirement for any type of network operation is the availability of the corresponding network drivers for Windows 2000/XP.

Tip:

The *Administrator Help* section provides more information; refer to *How to ...: Working with Files, Databases, and Networks*:

- Sharing the Local Datasource on the Network
- Creating a Network Datasource
- Saving Chromatography Data on the Network
Basic Operation

Operation via the Keyboard

All commands and menu options are accessible from the keyboard. Press the ALT key to display the underlined access letters. To open a menu from the keyboard, press ALT and the underlined letter. To select a command or option on the menu, press another underlined letter. Alternatively, use the arrow keys to move to the desired option and then confirm your selection by pressing the Enter key.

Example: To left align several objects on a control panel, select Align on the Edit menu, and then select Left. Alternatively, hold down the ALT key and press A+L. Else, press ALT+E, and then select an option, using the down and right arrow keys. Confirm your selection by pressing <Enter>.

Important commands can also be accessed via shortcuts. The shortcuts are displayed next to commands and menu options. Enter the key combination to directly execute the corresponding function.

Example: Hold down the Control key and then press C (CTRL+C) to copy a selected item.

For a list of available shortcuts, refer to Operation Quick Access Keys (Shortcuts).
Quick Access Keys (Shortcut Keys)

Quick access keys and/or shortcut keys are provided for many operations, especially in online control:

<table>
<thead>
<tr>
<th>General</th>
<th>Action</th>
<th>Where</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC or right-click</td>
<td>F1</td>
<td></td>
<td>Aborts the drag/move action.</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td></td>
<td>Opens the context-sensitive Help; Enables the Edit mode.</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td></td>
<td>After the Find command: Find Next.</td>
</tr>
<tr>
<td></td>
<td>F4</td>
<td>Chromatogram</td>
<td>Takes you to the next sample.</td>
</tr>
<tr>
<td>SHIFT+F4</td>
<td></td>
<td></td>
<td>Takes you to the previous sample.</td>
</tr>
<tr>
<td></td>
<td>Alt+F4</td>
<td></td>
<td>Exits Chromeleon.</td>
</tr>
<tr>
<td></td>
<td>F5</td>
<td></td>
<td>Updates all windows.</td>
</tr>
<tr>
<td></td>
<td>F6</td>
<td></td>
<td>Takes you to the next partial window.</td>
</tr>
<tr>
<td></td>
<td>SHIFT+F6</td>
<td></td>
<td>Takes you to the previous partial window.</td>
</tr>
<tr>
<td></td>
<td>F10</td>
<td></td>
<td>Takes you to the next channel.</td>
</tr>
<tr>
<td></td>
<td>SHIFT+F10</td>
<td></td>
<td>Takes you to the previous channel.</td>
</tr>
<tr>
<td></td>
<td>F7</td>
<td>Browser (F7 key only) + QNT Editor</td>
<td>Optimizes the column width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optimizes the line height.</td>
</tr>
<tr>
<td></td>
<td>F8</td>
<td></td>
<td>Opens an edit dialog box for the respective field.</td>
</tr>
<tr>
<td></td>
<td>F10 or ALT</td>
<td></td>
<td>Shows the hotkey underlines.</td>
</tr>
<tr>
<td></td>
<td>SHIFT+F5</td>
<td>Browser</td>
<td>Displays the chromatogram.</td>
</tr>
<tr>
<td></td>
<td>ALT+ENTER</td>
<td>Browser + ➔ Control Panels</td>
<td>Opens the associated Properties.</td>
</tr>
<tr>
<td></td>
<td>CTRL+TAB</td>
<td></td>
<td>Toggles between open windows.</td>
</tr>
<tr>
<td></td>
<td>CTRL</td>
<td>Signal plot in the ➔ Report and in the QNT Editor</td>
<td>Allows zooming (the cursor becomes a zoom cursor).</td>
</tr>
<tr>
<td></td>
<td>CTRL+N</td>
<td></td>
<td>Creates a new file.</td>
</tr>
<tr>
<td></td>
<td>CTRL+O</td>
<td></td>
<td>Opens the file.</td>
</tr>
<tr>
<td></td>
<td>CTRL+S</td>
<td></td>
<td>Saves the file.</td>
</tr>
<tr>
<td></td>
<td>CTRL+R</td>
<td></td>
<td>Opens the batch report.</td>
</tr>
<tr>
<td></td>
<td>CTRL+P</td>
<td>Report + ➔ Printer Layout</td>
<td>Prints the selected object(s).</td>
</tr>
<tr>
<td>Action</td>
<td>Where</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>CTRL+Z</td>
<td>Undoes the previous action.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+Y</td>
<td>Repeats the previous action.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+X</td>
<td>Cuts the selected object(s).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+C</td>
<td>Copies the selected object(s).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+V</td>
<td>Pastes the selected object(s).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+F</td>
<td>Finds a string of characters.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>Finds the next string of characters.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+H</td>
<td>Replaces the entry in the field.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F9</td>
<td>Fills the column and/or selected cell(s) with the first value of the selection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INSERT</td>
<td>Inserts the selected object(s).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DELETE</td>
<td>Deletes the selected object(s).</td>
<td></td>
</tr>
<tr>
<td>Sample List</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+I</td>
<td>Inserts a sample.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+D</td>
<td>Deletes a sample.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+A</td>
<td>Adds a sample.</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRL+F</td>
<td>Changes the pump's settings</td>
<td>Changes the pump's settings</td>
</tr>
<tr>
<td></td>
<td>CTRL+I</td>
<td>Injects</td>
<td>Injects</td>
</tr>
<tr>
<td></td>
<td>CTRL+Break</td>
<td>Stops the pump.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Break</td>
<td>Turns on the Hold mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ctrl+A</td>
<td>Turns on data acquisition.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ctrl+B</td>
<td>Edits the batch.</td>
<td></td>
</tr>
<tr>
<td>Signal plot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Double-click...</td>
<td>- Overview window</td>
<td>Unzooms.</td>
</tr>
<tr>
<td></td>
<td># # # # #</td>
<td>- Time axis</td>
<td>Auto Plot Speed</td>
</tr>
<tr>
<td></td>
<td># # # # #</td>
<td>- Signal axis</td>
<td>Autoscale</td>
</tr>
<tr>
<td></td>
<td># # # # #</td>
<td>- Plot range</td>
<td>Signals...</td>
</tr>
<tr>
<td></td>
<td># # # # #</td>
<td>(- or else:…)</td>
<td>Axis/decoration</td>
</tr>
<tr>
<td></td>
<td>SHIFT</td>
<td>- when zooming</td>
<td>Retains the scale ratio between signal and value axis. (The shape of chromatograms is maintained.)</td>
</tr>
<tr>
<td>Gauge/Slider</td>
<td>CTRL key</td>
<td>Press when dragging</td>
<td>Toggles the Snap To Scale option.</td>
</tr>
<tr>
<td>Script Button</td>
<td>Click</td>
<td>Button</td>
<td>Indicates whether the program is still running. Stops the program upon confirmation.</td>
</tr>
</tbody>
</table>
Basic Operation

<table>
<thead>
<tr>
<th>Action</th>
<th>Where</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAB/ENTER</td>
<td></td>
<td>Sends the new value.</td>
</tr>
<tr>
<td>ESC</td>
<td></td>
<td>Aborts the input.</td>
</tr>
<tr>
<td>Layout Mode</td>
<td>On the selected panel</td>
<td></td>
</tr>
<tr>
<td>ALT + Click</td>
<td></td>
<td>Draws a selection frame on the control panel.</td>
</tr>
<tr>
<td>ALT + Drag</td>
<td></td>
<td>Temporarily toggles the Snap To Grid option.</td>
</tr>
<tr>
<td>ESC</td>
<td></td>
<td>Deselects all.</td>
</tr>
<tr>
<td>ARROW keys</td>
<td></td>
<td>Drags the selection pixel by pixel.</td>
</tr>
<tr>
<td>SHIFT + ARROW keys</td>
<td></td>
<td>Increases/reduces the selection pixel by pixel.</td>
</tr>
<tr>
<td>SHIFT+SELECT</td>
<td></td>
<td>Extends the selection.</td>
</tr>
<tr>
<td>CTRL+SELECT</td>
<td></td>
<td>Highlights the selected control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(the highlighted control is used in Align...).</td>
</tr>
<tr>
<td>CTRL+Drag</td>
<td></td>
<td>Copies controls.</td>
</tr>
<tr>
<td>Double-clicking</td>
<td>On the online signal plot on the control panel</td>
<td>Opens the Properties dialog box.</td>
</tr>
</tbody>
</table>

Especially in the chromatogram, many additional keys and key combinations are available. For more information, refer to How to ...: Working with Chromatograms Using Keyboard Keys in the Chromatogram.

Operation via the Mouse

Chromeleon supports all Windows-typical properties and capabilities of a two-button mouse.

The **left mouse button** allows you to select menus, commands, and icons. It also allows you to operate display and control elements and to modify windows (increase or reduce the window size, zoom, modify display and control elements, etc). Double-click the left mouse button (= left-click) to execute the selected function.

Hold down the SHIFT key and left-click to select several cells in a table. Left-click in the first cell, hold down the SHIFT key, and select a new cell. All cells between these two cells will be selected.
Hold down the CTRL key and left-click to select non-adjacent cells in a table. Left-click in the first cell, hold down the CTRL key, and then select a new cell. Hold down the CTRL key and repeat left-clicking until all required cells are selected.

Left-click an object and drag it to the desired position (**Drag and Drop**). This action allows you to move selected text or samples. To copy the corresponding object, hold down the CTRL key while performing the Drag and Drop operation.

The **right mouse button** (= right-click) allows you to open context-sensitive menus. Context-sensitive menus provide functions that are required or allowed in the current situation.

For more information, refer to your Windows manual.

Undo and Redo Commands

Chromeleon "remembers" the user's last modification:

- Select **Undo** on the **Edit** menu to cancel the last operation.
- Select **Redo** to cancel the Undo operation.
Starting the Program

Chromeleon runs on client PCs with Windows 2000 or Windows XP operating systems. To start Chromeleon:

- Click **Start** to open the **Start** menu. Point to **Programs** and wait until the submenus appear.
- Point to **Chromeleon**. Another submenu appears:

![Start Menu with Chromeleon Submenu]

Client

- Click **Chromeleon** to start the Chromeleon software so that you can begin with data evaluation.
- If Chromeleon has been installed with integrated access control, you must enter your user name and password for identification. If you have any questions regarding system access, please contact your system administrator.

Tip:

To control a chromatography system with Chromeleon, you must also start the Chromeleon server.
Server (Server Monitor)

Tip:
During installation, Chromeleon usually includes a link to the Server Monitor program in the Autostart group. Thus, the program is started when you start your computer. The Server Monitor icon appears on the taskbar.

- If the icon does not appear on the taskbar, click Start, point to Programs > Chromeleon, and select Server Monitor to start the Server Monitor Program. The Chromeleon icon will appear next to the Windows system clock on the Windows taskbar.
- Point to the icon. The Chromeleon Server is not running quick info message appears.
- Select Start Server on the context menu (or double-click the icon and then click Start). The color of the icon indicates the status of the server monitor. Gray coloring indicates that the server is running (the quick-info message reads: Chromeleon Server is running idle). You can now open a control panel and directly access the devices installed in the selected timebase. If the devices have been installed correctly, you can operate them online.

Tip:
Any problems occurring when controlling single instruments may be caused by an incorrect server configuration. Start the Server Configuration program to check the configuration.

The Client User Interface

The Chromeleon user interface supports all known Windows elements, such as menu bar, Toolbar, and Status Bar.
To display the toolbars listed below, select them on the **View > Toolbars** menu:

Standard Toolbar for various standard functions

Online Tools for using the control panel

Layout Tools for designing the control panel

Method Tools for selecting a method window

Integration Tools for the most important operations in the **Chromatogram**

For descriptive information about a toolbar, point to the related icon.

The space between the task bar and the status bar represents the workspace, allowing you to display the different **Windows** supported by Chromeleon.

The Windows

The appearance of the different windows can vary considerably. A window can have various window sections (panes) whose borders can be moved (a). If the window section is too small to display the entire information, use the scroll arrows or scroll bars to view the hidden area (b).
The window content depends on the type of the represented data. It is also possible to integrate table editors as a window section in a method window. For window sections with graphical representation, the coordinates of the mouse pointer appear on the status bar.

Window Types

In addition to the Browser and the control panels, Chromeleon supports the following method windows:

- QNT Editor (see *Data Representation and Reprocessing* The QNT Editor)
- Integration
- Peak-Purity-Analysis (PPA)
- 3D Amperometry
- Printer Layout
- Signed Results
- Virtual Column

Only one method window is enabled by default. To use several method windows simultaneously, select Preferences on the File menu of the Browser. On the Browser tab page, clear the Open only one method window check box. This allows you to open each window any number of times.
The Table Editor

Table editors serve to enter and represent various parameters and variables. For example, one table editor is available in the Browser. This editor allows you to list or edit single samples or sample data, or to display numerical results in a report. It also serves to determine integration, calibration, and peak table parameters.

- Appearance and use of all tables correspond to the Windows standard. Editing is by cell, column, or line.
- It is possible to move or hide selected columns and to make them visible again at the active cursor position. Adjust the column width by moving the left or right delimiter. Or else, select Optimum column width, e.g., on the View menu in the Browser.
- You can add additional lines or remove selected lines anywhere in the table.
- Most of the described functions are available on the context menu.
- You can change the font size. For example, select a smaller size to display more on-screen information.
- Press the F1 key for online Help information about a specific column.
- Press the F8 key to open an edit dialog box for a specific field. This prevents input of incorrect or invalid values and names.
- Press the F9 key to fill an entire column with the value of the current field. In this way, you can also extend logical rows of numbers. For example, if the input in the first three fields is 2, 4, and 6, the row is continued with 8, 10, 12, etc.

Working with Several Windows

Chromeleon not only supports working efficiently with several open windows, as is typical in Windows programs, but it also introduces what has become possible with object-oriented programming of applications and was not common before:

Data representation is always updated in all windows.

For the examples below, the sample chromatogram was integrated and analyzed, using specific detection parameters.
Example 1: If you correct the ⇒*Minimum Area* detection parameter in the QNT Method by entering a smaller value, the related chromatogram in the Integration window is immediately updated. Peaks with an area smaller than the minimum area are not considered for integration.

Example 2: Similarly, the result of a baseline that has been modified manually is displayed immediately in the Integration report window.

User Profiles (Workspaces)

Chromeleon allows you to save the window arrangement of any work situation, i.e., a combination of the different windows, in a workspace. This facilitates opening single files or windows and allows you to work in whatever work environment you prefer.

The information about the windows is stored in a WSP file. If you want to use a specific workspace when you start working, open the corresponding WSP file, or generate a new WSP file by storing the screen contents. The following commands are available on the *Workspace* menu:

- Select **Open Workspace** to open an existing workspace.
- Select **Save Workspace** to save the current workspace.
- Select **Save Workspace as** to save the current workspace with a new name.
- Select **Autosave Workspace** to always save the most recent workspace as the default workspace.

There is no restriction as to the number of windows that can be saved with each workspace. (Also, see *Basic Operation* [The Windows].)
A useful workspace arrangement might combine, for example, the report, a control panel, and the Browser:

The appearance of each window is stored in the related file. For example, the appearance of the on-screen report and the Printer Layout is stored in the Report Definition file.

Tip:

When Chromeleon is started, the most recently used workspace is loaded.

Report Definitions

The Report Definition File (RDF) comprises the current settings, such as, the names and scaling of axes, representation of chromatograms and spectra, display of additional information or auxiliary lines, font settings, styles, and sizes, as well as the column arrangement in a table. The report definition also determines how the screen contents (hardcopy) or online batch results are printed. (For more information, refer to Basic Operation \[Printing.\)
Unlike a workspace, a report definition can be used for individual windows. If no workspace is loaded, each new window is opened based on the most recently used report definition. If you have not yet stored a report definition file, the default Chromeleon RDF is used. The default report definition file (DEFAULT.RDF) is available in the Report directory.

- Select **Save Report Definition** on either the context or View menu to save the current settings.
- Select **Load Report Definition** on either the context or View menu to open a previously saved Report Definition File.

Create or Open Files, Windows, and Templates

There are several ways to open or create files, windows, and templates. Frequently, additional information is required, also.

For example, when you open a control panel, the control panel searches "its" timebase, i.e., the correct link between the client PC and a certain chromatography system (➢ Timebase) and each method window searches data from a specific ➢ Datasource.

Tips:

If problems arise, they mainly occur because timebases or datasources were renamed that were correctly installed before by Dionex Service.

Similar problems may occur if databases are located on a network PC to which you currently cannot connect or for which you do not have share authorization.

In this case, refer to How to …: Working with Files, Databases, and Networks ➢ Connecting a Datasource in the Administrator Help section.
Automatically Loading the Most Recent User Profile

Chromeleon automatically loads the most recently used workspace. If this is not possible, Chromeleon opens the Browser.

Opening Existing File Types and Windows

Select **Open** on the **File** menu, and then select the datasource and the directory containing the file to be opened and the file type. Refer to the online Help for more information about this dialog box.

Or else, double-click to open a file in the **Browser**.

Open Most Recent Files and Templates

The lower section of the **File** menu and the **Workspace** menu list the most recently used templates and files. Click to open a template or file. This is the simplest and quickest way to continue an interrupted task.

New

Select **New** on the **File** menu to receive a list of all possible file types and chromatographic operations.

- Select **Control Panel** to open a window from which you can control the chromatography devices of a specific timebase.

- Select **Sequence File (using Wizard)** to start the **Sequence Wizard**. The wizard guides you through the creation of a **Sequence**.

- Select **Sequence (from LIMS Worklist)** to include the data and **Sequence of a LIMS** in the **Worklist** format.

- Select **Program File** to start the **Program Wizard**. The wizard guides through the creation of a **Control Program** (PGM File). A **PGM File** includes all **Control Commands** that must be communicated to the different chromatography devices so that they can process a sample or a series of samples.

- Select **Method File** to create a new quantification method.

- Select **Spectra Library** to create a new spectra library.
Printing

The Chromeleon ➤ *Printer Layout* provides numerous options for the presentation of the results. Similar to a word processor, you can choose between printing the on-screen contents and printing based on defined templates.

Printing from the Browser

If you have selected one or several samples or sequences in the Browser, you can select **Batch Report** on the **File** menu to start the printout. Use the **Batch Report** dialog box to determine which ➤ *Report Definition File (RDF)* is used, which pages of the printer layout are printed, and for which sample type and channel the printout is performed. The single pages are created in the Printer Layout. (See **Data Representation and Reprocessing** ➤ *The Printer Layout* for more information.)

Note:

Click **Setup** in the Printer Layout to define the page format. (For more information, refer to **How to ...: Preparing the Printout** ➤ *Changing the Page Format.*)

Printing from an Online Batch

If several samples are processed in an automatic sample batch (➤ *Batch Processing*), you can determine which pages of the Printer Layout are printed. Printing can start either immediately after a sample has been processed or after the entire sequence has been processed.

Note:

The report template used for printing is stored with other settings (such as screen settings) in the Report Definition File (RDF). Future Chromeleon versions will save the screen and the print settings separately.
Printing the Screen Contents

To print the contents of the active window, select the related **Print** command. Select **Print Sequence** to print the current sample list from the Browser, with either the corresponding PGM File or QNT File. If a **PGM File** is open, you can print the required views by selecting the **Print** command. In the same way, you can print the selected pages of a **Quantification Method (QNT Method)** from the QNT Editor by selecting **Print QNT Method**.
Control (Overview)

Chromeleon supports controlling instruments from different HPLC, IC, and GC device manufacturers. The prerequisite is that the instrument to be controlled is installed and configured in Chromeleon. For more information, refer to Control Requirements.

In principle, there are two ways a sample is analyzed:

1. Automatic analysis of many samples in a sequence
2. Manual analysis of single samples

Automatically analyzing many samples in a sequence

If you want to process many samples one after the other, you have to determine in a Control Program how the single samples are to be analyzed.

First, use the SmartStart Wizard to create an equilibration program for preparing a Dionex Summit system for sample analysis.

The Program Wizard assists you in creating typical control programs. If you want to edit the program later, use the PGM Editor.

In addition, you have to determine in a Sequence in which order the samples are analyzed and which program is used. For more information, refer to The Sample List (Sequence).

Manually analyzing single samples

To create a new chromatographic method, you can control the instrument directly from the Control Panel, which means that the single devices and device functions are controlled directly and interactively from the control panel. (Also, see Basic Operation The Control Panel.)
Control Requirements

To control devices make sure that

- The appropriate Chromeleon License is available.
- The controlled instruments are correctly installed and configured in the Server Configuration program.

Tips:

Dionex Service or a network administrator usually performs installation. The Administrator Help section provides more information; refer to Hardware Installation:

- Installing Dionex Devices
- Installing and Controlling Third Party Devices
- A connection exists between the PC and the Chromatography Server.
- A connection has been established between the chromatography server and the chromatography system via a serial interface, a DX-LAN, or any other interface (TCP/IP, GPIB, USB). (For more information, refer to Software Installation, Communication, and Validation The Serial (RS-232) Interface and/or The DX-LAN in the Administrator Help section.)

The Control Program

Modern analytical laboratories usually analyze many samples. These samples are grouped in Sequences and processed with a chromatographic control Program. The control program is part of the PGM File. When creating a program, you include a list of commands and the times when the commands will be executed (relative to the time of injection). Chromeleon automatically adds the Inject and End commands. The Program is displayed in the Commands view of the PGM Editor:
Tip:

Dionex recommends always editing programs in the associated Device view. The Device view is easy to use and ensures correct command syntax. Use the Commands view only if the desired parameters are unavailable in the Device view.

When starting the program, all commands are executed precisely at the defined time.
For more information, refer to:

- The SmartStart Wizard
- The Control Program (Details)
- The Program Wizard
- The PGM Editor
- The Program Syntax

The SmartStart Wizard

Dionex recommends that you equilibrate the chromatography system with a special equilibration program before starting sample analysis. The SmartStart Wizard assists you in creating such a program for the Summit HPLC system and allows you to define the necessary equilibration steps. You may extract these steps from an existing program or use the current instrument settings, instead, and edit them if necessary.

The wizard includes the following steps:

1. **Select a Timebase** (if no timebase is selected in the current window)
2. **Extract the equilibration conditions**
3. **Edit the equilibration conditions**
4. **Start equilibration**

After the wizard is finished, Chromeleon generates an equilibration program and sample. Besides, a Control Panel is opened, displaying the progress of equilibration. The control panel contains one stripe for each device. In addition, the Start Batch on ...? dialog box is opened. The equilibration sequence is added at the top of the Batch list. When you start the batch, the system will be equilibrated first. When equilibration was successful, Chromeleon continues with processing any other sequences in the batch.

For more information about how to equilibrate the Dionex chromatography system with Chromeleon, refer to How to: Equilibrating the Chromatography System.
The Control Program (Details)

The control program, which is often referred to as the Program or PGM File, includes the user's list of time-precise Control Commands. The purpose of a control program is the automatic and repeated execution of specific routine tasks, such as processing samples automatically or conditioning a column by rinsing with various solvents. In addition, the control program allows monitoring certain parameters or limits, or triggering reactions when these limits are exceeded.

A Wizard (see Program Wizard) assists you in creating a program by automatically converting your entries into the appropriate Chromeleon program commands. In this way, you can create a program even if you do not know the command syntax.

To edit an existing program, double-click the program name in the Browser to open the program in the most recently used view of the PGM Editor (see Control The PGM Editor).

To edit the control settings for a device, click the associated device icon on the left pane. This view provides the corresponding pages of the Program Wizard. Enter new parameters or change existing parameters according to your requirements.

Tip:

Dionex recommends always editing programs in the associated Device view. The Device view is easy to use and ensures correct command syntax. Use the Commands view only if the desired parameters are unavailable in the device view.

Tip:

Similar to a control panel, you can edit a PGM File only if it is connected with a Timebase while the server is running. Therefore, verify that the server is running. Start the server in the Chromeleon Monitor Program if necessary. To connect the PGM File with a timebase, select Connect to Timebase on the Control menu.

If the PGM File is correctly connected with a timebase, icons for all devices in that timebase are provided, allowing you to access the associated PGM Wizard pages.
For more information about how to create a program, refer to The Program Wizard. For information about how to edit a program with the PGM Editor, refer to The PGM Editor.

For practical tips, refer to:

How to …: Creating and Modifying Programs Creating a Program
Device Control Practical Tips for Device Control (Overview)

The Program Wizard

The Program Wizard guides you through Program creation. To start the Program Wizard, select New on the File menu, and then select Program File.

The Program Wizard systematically collects all information required to generate a basic program. Each step provides a template, allowing you to enter or select data. It depends on the installation which steps are required. For a typical HPLC or IC timebase, the Program Wizard includes the following steps:

Step 1: Select a Timebase
Step 2: Select the tandem program (if a tandem timebase is installed)
Step 3: Select the temperature settings (if supported)
Step 4: Define a flow system
Step 5: Determine a gradient or ramp profile (optional)
Step 6: Define the tandem operation (if a tandem timebase is installed)
Step 7: Enter the autosampler settings (if supported)
Step 8: Determine channels and the duration of data acquisition
Step 9: Determine signal parameters for the individual channels
Step 10: Define the peak detection parameters for fraction collection (optional)
Step 11: Complete the Program Wizard
Chromeleon completes the information entered in steps 1 through 10 by adding the \texttt{⇒Inject} and \texttt{⇒End} commands, thus creating an operable program. The program is displayed in the Commands view of the PGM Editor. (For more information about the PGM Editor, refer to The PGM Editor.)

To edit the basic program, use the Device Views.

The PGM Editor (Overview)

The PGM Editor allows you to edit the control programs (\textit{PGM Files}). To open the different views of the PGM Editor, click the icons on the left pane (the shortcut bar):

<table>
<thead>
<tr>
<th>View*</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands</td>
<td></td>
<td>Displays the program (see The Commands View)</td>
</tr>
<tr>
<td>Post-acquisition steps</td>
<td></td>
<td>Determine the steps for data reprocessing (see The Post-Acquisition Steps View)</td>
</tr>
</tbody>
</table>

If the respective instrument is installed, the associated icon is available:

- **Surveyor MSQ or Finnigan AQA**
 - Enter or edit MSQ or AQA parameters (see Surveyor MSQ or Finnigan AQA Views)

- **Column Oven**
 - Enter or edit thermostat or GC oven parameters (see Device Views)

- **Pump**
 - Enter or edit pump parameters (see Device Views)

- **x2 Tandem Operations**
 - Enter or edit Tandem Operation parameters (see Device Views)

- **GC**
 - Enter or edit GC parameters (see Device Views)
<table>
<thead>
<tr>
<th>View*</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampler</td>
<td>![Sampler Icon]</td>
<td>Enter or edit autosampler or GC injector parameters (see Device Views)</td>
</tr>
<tr>
<td>UV</td>
<td>![UV Icon]</td>
<td>Enter or edit UV or GC detector parameters (see Device Views)</td>
</tr>
<tr>
<td>RI</td>
<td>![RI Icon]</td>
<td>Enter or edit refractive index detector parameters (see Device Views)</td>
</tr>
<tr>
<td>Emission</td>
<td>![Emission Icon]</td>
<td>Enter or edit fluorescence detector parameters (see Device Views)</td>
</tr>
<tr>
<td>Fraction</td>
<td>![Fraction Icon]</td>
<td>Enter or edit fraction collection parameters (see How to Collecting Fractions)</td>
</tr>
<tr>
<td>Collection</td>
<td>![Fraction Icon]</td>
<td></td>
</tr>
<tr>
<td>(FCA_Multi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay and State Devices</td>
<td>![Relay Icon]</td>
<td>Enter or edit relay and condition parameters (see Device Views)</td>
</tr>
</tbody>
</table>

Note:

The Device Name used in the Server Configuration program determines the Device Views name. For example, if you have named your pump HPLC Pump, the Device View is named HPLC Pump, also. (It is not named Pump, as stated in the above table.) The names in the table refer to the default names for Dionex devices, mass spectrometers, and GCs in the Server Configuration program.

The Device Views

The different device views in the PGM Editor provide a user-friendly way to edit an existing program at any time according to your requirements.

The device views contain the related pages of The Program Wizard. To modify existing commands or to enter new commands for a device, click the device icon on the left pane. In the device view, the respective page of the Program Wizard is re-opened.
Neither the device view nor the Program Wizard supports some of the special commands. Only use the Commands view to define these commands. For more information, refer to The Commands View.

Tip:
Dionex recommends always editing programs in the associated Device view. The Device view is easy to use and ensures correct command syntax. Use the Commands view only if the desired parameters are unavailable in the device view.

The Surveyor MSQ or Finnigan AQA Views

These views of the PGM Editor are part of Xcalibur. They allow you to specify the method used by the Surveyor MSQ or aQa mass spectrometer.

AQA: On the Ionization Mode tab page, specify the mode of ionization (Electrospray/APCI). On the Analysis tab page, specify the sensitivity and fine-tune the mass spectrometer.

Caution:
When using the Xcalibur method editor, disregard the Other detectors section and perform data acquisition as usual. Do not use this section for data acquisition with other detectors (such as the UV detector)!

On the Acquisition tab page, set the aQa-specific signal parameters for Mass Spectra acquisition.

Surveyor MSQ: The view displays the selected chromatogram, if available. Specify the Ionization Mode and, in the Full/SIM Scan Events section, specify the device parameters for mass spectra acquisition.

Tip:
These views of the PGM Editor are part of the Xcalibur program. The Xcalibur Help system provides detailed information about mass spectra acquisition. If you use an aQa mass spectrometer, open the Xcalibur Help system via the Help menu or by clicking Help. If you use the MSQ, first click the question mark (at the top right) and then click the option of interest to open the corresponding Help topic.

For more information about how to create an MS method, refer to How to …: Using Mass Spectrometers: Creating a PGM File for the aQa MS and/or Creating a PGM File for the MSQ.
The Commands View

The Commands view in the PGM Editor shows the actual program, listing the various commands in chronological order. To facilitate orientation within a program, control commands are in black, comments in green, and Triggers in blue.

Tip:

Dionex recommends always editing programs in the associated Device view (see Control/The PGM Editor The Device Views). The Device view is easy to use and ensures correct command syntax. Use the Commands view only if the desired parameters are unavailable in the Device view.

A control command starts with the time at which the command is executed. The time appears in Decimal Minutes, i.e., "2.500" means "2 minutes, 30 seconds". The actual program instruction, such as AcqOn/Off, appears after the time.

Note:

You can integrate control commands into a program or perform them separately either from the Online toolbar or via the script buttons on the control panels.

If the program instruction requires parameter input, enter the parameter(s) next in the text line. Use a point (".") to separate the parameter from the instruction. If several parameters are required, specify them in the following lines. Each parameter is identified by its parameter name, followed by "=" and the parameter value. Example:

2.500 Pressure.LowerLimit = 10
 Pressure.UpperLimit = 250

You may include any number of comment lines between the instruction lines. Start each comment line with a semicolon.
Note:

If you want to edit your program later in the Device views, Dionex recommends entering all comments right at the beginning of the program. In some cases, Chromeleon cannot assign comments to the associated commands when re-sorting. Thus, it may happen that some comments appear at the wrong position after you have edited the program in the Device views.

Tip:

By definition, the injection, i.e., the Inject command, is performed at retention time = 0. All preceding commands have negative times; all following instructions have positive times.

The advantage is that the PGM time corresponds to the retention time of data reduction, e.g., integration, and thus, avoids errors such as falsely interpreted gradient profiles. The times of the AcqOn and AcqOff commands similarly coincide with the time axis of the reduction method.

Select Command on the Control menu or press the F8 key to open a dialog box that assists you in editing the control commands. You can enter all instruction components (time, instruction, instrument, parameter, comment) separately. The system configuration determines which instructions and instruments are listed in the dialog box:
Note:

If the PGM File and the timebase are not connected correctly, the F8 box is not available and the program lines are displayed in gray.

The input procedure via the respective device icons or the F8 key prevents entering invalid command syntax. If Chromleon finds a command with unknown or incorrect syntax, the corresponding line appears red.

- Press <F4> or <SHIFT> + <F4> to browse through the errors and correct any invalid input.

When you edit a program file in the PGM Editor, the editor checks the validity of the instructions, also. You only have to enter the commands and their parameters and Chromleon takes care of the rest. This means that Chromleon:

- Arranges the lines in chronological order. (Select Sort by Retention Time on the Control menu.)
- Checks whether the input is valid. (Select Check on the Control menu.) For example:
 - Does the file contain at least one ⇒Inject command?
 - Is the first Inject command at time 0.000?
 - Does the file contain at least one Acquisition On command after the first inject? (If it does not, a warning appears)
 - Is a Acquisition Off command present for each Acquisition On command? (This input is compulsory.)
 - Are total and partial flow rates set at the beginning of the file (required for clearly defined gradients)?
 - Are the execution times of preceding instructions considered in the start times of program instructions? (If they are not considered, the start times in the program file do not coincide with the actual start time.)
 - Is the final instruction an end command?

Before a program is started, Chromleon performs a Ready Check to check the program for validity. In case of logical errors, for example, when Pressure.LowerLimit exceeds Pressure.UpperLimit, the program cannot start and a message appears, such as:
In case of errors, which may affect the course of the program without being critical, a warning appears. In this case, you can start the batch, nevertheless:

If you are familiar with the **Program Syntax**, you can change or extend your program directly from the keyboard. After editing, save the > PGM File by selecting **Save** on the **File Menu**.

For more information about how to create and/or edit a PGM File, refer to **Control**:

- The Control Program
- The Program Syntax
- The Program Wizard

For information about the different ⇒ **Control Commands**, refer to:

How to …: Creating and Modifying Programs ⇒ **Creating a Program**

Device Control ⇒ **Practical Tips for Device Control (Overview)**
The Post-Acquisition Steps View

Use the Post-acquisition steps view of the PGM Editor to define extraction and smoothing steps that are performed by the PGM File after data acquisition. In addition, you can copy existing channels or combine them using arithmetic operations. A new data channel is created for each step. The individual steps can be performed online after data acquisition, or offline of the chromatogram, UV spectrum, or mass spectrum.

Therefore, the Post-acquisition steps view is one of many data reprocessing tools in Chromeleon, but it is not part of the actual control. For more information, refer to Post-Acquisition Steps.

For more information about post-acquisition, refer to How to …: Creating and Modifying Programs Adding Post-Acquisition Steps.

The Program Syntax (Experts Only)

Tip:

Dionex recommends always editing programs in the associated Device view (see Control/The PGM Editor The Device Views). The Device view is easy to use and ensures correct command syntax. Use the Commands view only if the desired parameters are unavailable in the device view. To enter the commands, use the F8 dialog box as described in the Commands view (see Control/The PGM Editor Commands View).

Enter commands directly only if you know the correct syntax.

For uniform operation by different users, Control Commands are in English. The syntax for the Program commands is as follows:

Retention Time DeviceName.Command

or

Retention Time DeviceName.Property = Value

If you are not familiar with the syntax, use the Program Wizard and the different Device Views that guide you through program creation.

For a list of the general commands and the commands supported for Dionex and third-party devices, refer to Device Control (Overview).
Time (Retention Time)

The time appears at the beginning of the control command and determines when the command will be executed. The time is in Decimal Minutes, for example,

2.500

This input is optional. If no time is entered, the time specified in the previous program line will be used.

Device

Devices are all instruments, channels, relays, or remote inputs that are available in the active timebase. You can identify them in the F8 dialog box by the device icon (). Each Device has a number of commands and/or properties.

Various instruments can have the same commands or properties. Therefore, add the device name in front of the command to identify the instrument. The syntax is as follows:

```
Retention Time DeviceName.Command
```

or

```
Retention Time DeviceName.Property = Value
```

If no confusion occurs with other commands or properties, the device name can be omitted. For example, you can omit the device name in the Flow command when only one pump is installed. The syntax is as follows:

```
Retention Time Flow = Value
```

Command

In the F8 edit box, commands are marked by an exclamation mark (!). If a command exists for only one instrument, the name is sufficient for identification:

2.500 NeedleUp

The NeedleUp command exists only for the Dionex Autosampler GINA 50. In this case, the device name can be omitted. This is in contrast to:

2.500 UV_VIS_1.AcqOn
The ⇒AcqOn command is not unique if there is more than one channel in the system. To address a specific channel, you have to add the channel name to the command.

In addition, commands can be extended by additional parameters; for example:

2.500 ⇒Inject Position = 20, Volume = 30 or 2.500 Relay1.On Duration = 20

The possible command extensions and their order are predefined. They are listed in the F8 edit box. As confusion is impossible, you can also use the following syntax:

2.500 Inject 20, 30 or 2.500 Relay1.On 20

Device-Independent Control Commands

Commands that are independent from a device appear as main entries in the F8 box. These are, for example ⇒Branch, ⇒Log, ⇒Message, ⇒Protocol, ⇒Wait, ⇒Delay, ⇒Trigger, ⇒EndTrigger, and ⇒End.

For more information, refer to Practical Tips for Device Control

Trigger Commands

Mixed Commands

Property

Properties are distinguished by their value. An I/O icon (يفة) in the F8 edit box indicates that the value is predefined by the system. The (يفة) icon indicates that the values are freely selectable. A command string is also considered a property (يفة). For example:

2.500 UV.Lamp = On or 2.500 UV_VIS_1.Wavelength = 300 2.500 %A.Equate = "%A"

If a property reports an actual value (for example, Pressure (bar), %A (%), Signal (mAU), etc.), the icon looks as follows: (يفة). Properties related to the actual value are subordinate to it. For example, Chromeleon enables the output of the current system pressure (يفة pressure) and the definition of an upper and lower pressure limit (يفة UpperLimit and (يفة LowerLimit).
Solvent names are assigned in the same way. (\%B, Value, Equate). The syntax is as follows:

\begin{verbatim}
2.500 pressure.UpperLimit = 350
2.500 pressure.LowerLimit = 20
2.500 %B.Value = 30
2.500 %B.Equate = "Methanol"
\end{verbatim}

If the syntax is not clear, the device name must precede the command or property. For example:

\begin{verbatim}
2.500 UV_VIS_1.Signal.UpperLimit = 500
\end{verbatim}

Text, Names

Comments on the program or individual commands can be included before, after, or between individual commands. Comment lines always start with a semicolon ";" and appear green:

\begin{verbatim}
; The following program ...
\end{verbatim}

Text that appears on the screen due to a command (as with the \texttt{Protocol} and \texttt{Message} commands) and that is logged in the Audit Trail, must be entered in quotation marks:

\begin{verbatim}
2.500 Protocol "Test program"
\end{verbatim}

When you enter these commands in the F8 edit box, the quotation marks are added automatically.
The Control Panel

You can control the different devices of a timebase directly from a Control Panel (in short: panel; also referred to as online plot or online window). A control panel controls and monitors the chromatography instruments configured in a Timebase. With regard to appearance and function, it is a special type of window. In accordance with the Chromeleon philosophy, you are free to design its appearance in any way to meet your requirements. For more information, refer to:

Control Panel: Appearance
Control Panel: Function
Control Panel: The Signal Plot
Control Panel: The Audit Trail
Control Panel: The Trend Plot

Control Panel: Appearance

Control Panels do not have a uniform user interface. A combination of various default controls determines the appearance of the control panel.

Control panels can include, for example:

- A slider to change the pump flow or any other variable parameter.
- A separate field to display status information, such as the running retention time.
- A "screen" LED to indicate whether the detector lamp is burning.
- A script button to execute the inject command.
- A signal plot to monitor the detector signal.
- The current 3D Field and Mass Spectrum.
- The current Trend Plot and 3D_Amp plot.
- The Audit Trail to track the execution of an operation.

You are free to determine the number of controls and their functionality to suit your needs. The functionality of the analytical instruments installed in the timebase determines which functions are available. For example, if the system includes a controllable column oven, the oven temperature can be controlled.
The system administrator assigns user-specific *Privileges in the *User Manager (CmUser program) to determine whether a user is authorized to create his or her personal user interface. The organization of the panel allows locking certain functions on the user interface or hiding irrelevant information.

You can save a new user interface as a separate file (*.pan). Each user who can access the directory containing the file can select and use the file by clicking *Open on the *File menu.

In addition, Chromeleon provides many default control panels, which cannot be modified by the user. These panels do not only cover all standard control functions but they can also be used easily and intuitively.

For more information about how to create a control panel, refer to *How to …: *Controlling Devices from the Control Panel.

Control Panel: Function

Control Panels allow you to control and monitor the different *Timebases. When you create a control panel, you specify which timebase shall be controlled from this panel. When you open the control panel, Chromeleon tries to connect to the specified timebase. A message appears if Chromeleon cannot connect to the timebase, for example, because it was renamed or because the related chromatography *Server is not running. In this case, change the assignment manually:

- Open the control panel by selecting *Open on the *File menu.
- Select *Connect to Timebase on the *Control menu. Enter the name of the timebase to be connected with the control panel or select a name from the list.

The new assignment is valid until you close the window. Save the window to have the current assignment available when you reopen the window the next time.

The status bar indicates the selected timebase.

Tip:

*Select *Integrate on the *View menu to display the report for the running sample from the control panel.*
Control Panel: The Signal Plot

The signal plot is an essential part of the Control Panel. The Signals of the channels, which have been selected by the user, appear online, i.e., during data acquisition.

Different commands are available on the context menu (right-click). They allow you to define how the signals are displayed:

- **Autoscale**: Each time when performed, Autoscale adjusts the scaling of the signal axis exactly to the open chromatogram or to a section thereof. You can perform the command either from the context menu or by double-clicking the signal axis.
- **Auto Autoscale**: Auto Autoscale automatically adjusts the scaling of the signal axis exactly to the open chromatogram or to a section thereof whenever the signal leaves the signal plot.
- **Auto Plot Speed**: Auto Plot Speed prolongs the time axis automatically by the period defined on the Axis/Decoration tab page when the end of the signal plot is reached.
- **Replot from Beginning**: When the signal reaches the right border of the signal plot, Replot from Beginning enlarges the window by the period defined on the Axis/Decoration tab page. Thus, the entire chromatogram is displayed, always.

Control Panel: The Audit Trail

The Audit Trail on a Control Panel logs all commands performed during sample processing and saves information regarding the entire system. This includes graphical and text information. Chromeleon classifies Control Commands, status information, and error messages.

When data acquisition is started, the Audit Trail reports the start time and all commands that are performed afterward (AcqOn/Off, Inject, etc.). Each event that appears in the Audit Trail is stored. Storage is very precise and comprehensive, allowing you to track how a sample was processed and which events occurred during sample processing. For more information, refer to Data Management Audit Trails.

For documentation purposes, the Sample Audit Trail is included in a report, by default. For more information, refer to How to ...: Creating and Using Report Tables Displaying an Audit Trail.
Control Panel: The Trend Plot

When included in a Control Panel, the Trend Plot provides the ability to monitor impending problems by viewing a plot of module-specific data.

Tip:

The Dionex Templates > Panels > Wellness directory of the local Datasource includes several examples of control panels with trend plots of module-specific data.

The following commands are available via the context menu (right-click to select a command). The commands allow you to define the appearance of the trend plot.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Size</td>
<td>Displays the full-size plot of all trend data.</td>
</tr>
<tr>
<td>Autoscale</td>
<td>Scales the trend plot for optimal fit of the (y) values.</td>
</tr>
<tr>
<td>Auto Autoscale</td>
<td>Automatically adjusts the scaling of the trend plot for optimal fit of the (y) values.</td>
</tr>
<tr>
<td>Unzoom</td>
<td>Restores the previous zoom position.</td>
</tr>
<tr>
<td>Flow Change Marks</td>
<td>Displays vertical solid lines on the trend plot to indicate a change in flow rate.</td>
</tr>
<tr>
<td>Eluent Change Marks</td>
<td>Displays vertical solid lines on the trend plot to indicate a change in eluent.</td>
</tr>
<tr>
<td>Module Change Marks</td>
<td>Displays vertical solid lines on the trend plot to indicate that different serial numbers were found in sample sets with the same device name.</td>
</tr>
<tr>
<td>Consumable Change Marks</td>
<td>Displays vertical solid lines on the trend plot to indicate a change in a consumable part (for example, a column or suppressor).</td>
</tr>
<tr>
<td>Calibration Marks</td>
<td>Displays vertical solid lines on the trend plot to indicate that calibration was performed.</td>
</tr>
</tbody>
</table>
Statistics From

Defines how statistics are calculated on the trend plot. Select one of these options:

- **All Data**: Statistics are calculated from all data points.
- **Data in Viewed Range**: Statistics are recalculated as soon as the currently viewed time axis changes.
- **Control Chart**: Statistics are calculated from the target and 1σ values entered on the Statistics tab page in the Trend Properties dialog box.

Trend Variable

Opens a dialog box in which you can select the properties of the plot, including the events, statistics, and data to display.

For information about how to add a trend plot to a control panel, refer to How to: [Modifying a Control Panel](#).

The Panel Tabset

A panel tabset provides a convenient interface for controlling and monitoring a **Timebase**. A panel tabset provides (on one window) a set of Chromeleon **Control Panels** for controlling the individual devices in the timebase and for performing system-wide functions (for example, creating and running sequences). To move from one control panel to another you click the corresponding tab. If multiple timebases are connected to a chromatography **Server**, the window is divided into panes, with each pane containing a panel tabset for one timebase.

The default set of control panels in a panel tabset typically includes one panel for each device in the timebase and one or more panels for system-wide controls. You can use these panels to perform the following tasks:

- Operate system instruments manually (direct control)
- Operate system instruments automatically (programmed control)
- Monitor instrument status
- View real-time data
- Collect and view the system event log (**Audit Trail**)
- Perform calibration and diagnostic functions (**System Wellness**)
Additional characteristics of the panel tabset:
- Clicking a panel highlights its border and makes it the active panel.
- Commands selected on the Chromeleon main menu apply to the active panel.
- You can expand a panel tabset (and thus hide the other tabsets), split the window to view all tabsets at one time, or change the width of a panel.
- You can add, delete, or rename individual panels within a panel tabset.

Tip:

To open a default panel tabset, click the icon on the standard toolbar.

Also, refer to How to …: Controlling Devices from the Panel Tabset.
Data Management

Data (Overview)

Input Data
For the analysis of a sample and for documentation and archiving purposes, various types of input data are required, which you have to determine or enter before you can start the analysis.

The required input includes, for example, the sample name, weight, injection volume, chromatographic conditions (solvent, flow, detection wavelength, connected devices, etc.), as well as the run time. Distinguish between:
- Data describing a sample (Sample Data),
- Data describing a sequence (Sequence Data, usually entered automatically), and
- Data describing the chromatographic treatment of a sample (Chromatographic Methods).

The user input is the basis for the analytical process.

Output Data
The data recorded during analysis is referred to as output data. Output data includes:
- Data provided by the analysis (analysis and/or Raw Data)
- Protocol data on the analysis (Audit Trail).

Due to this variety of data types, systematic data organization and storage is especially important (see Data Management Data Storage).
The Browser

The Browser, Chromeleon’s main tool for file management, lists all directories containing chromatographic data that you can access.

In the Browser, you can open, move, and/or delete chromatographic data. In addition, you can search various databases for specific data. To open and view a file in a separate window, select the file by its name.

⚠️ Caution:

Browser functions and structure are similar to the Windows Explorer. However, do not confuse the Browser with the Windows Explorer. Do not use the Windows Explorer for operations within Chromeleon Datasources. Administrators can prevent these operations by selecting the Protect Datasource Directory option on the General tab page (via the Properties option on the datasource context menu).

For more information, refer to:

- Common Features with the Windows Explorer
- Differences from the Windows Explorer
- Function
Common Features with the Windows Explorer

Similar to the Windows Explorer, the Browser window has two separate panes: The left pane shows the directory structure in which the directories and folders are arranged. Detailed information about the files and Sequences appears on the right. You can handle the Browser items in the same way as you handle the items in the Windows Explorer:

- On the left pane: Click the "+" sign beside a directory name to display the items underneath. Click the "-" sign to hide the items.
- On the left pane: Click a directory to view its contents on the right pane. Files and samples appear on the right pane, as well.
- On the right pane: Double-click a file to open the appropriate editor for the file. Double-click a sample to open the chromatogram.

A type-specific icon allows easy identification of the file types (sequence, PGM File, Quantification Method, etc.). Chromeleon automatically recognizes the Type (Sample Type) (standard sample, unknown sample) and/or the data format (e.g., 3D field) and displays the data in the appropriate chromatographic environment.

- To drag a subdirectory, sequence, or file to a different directory, select the item. When you drag the selected item while holding down the right mouse key, a context menu opens. Select an option to copy or move the item to the new location. When you drag the selected item while holding down the left mouse key, the action, which was defined as the default action (Ask, Copy, or Move), is performed.

Differences from the Windows Explorer

Structure

Only chromatographic data that is part of a Datasource is presented in the Browser. (For more information, refer to the Data Management section.)

The top-level item in the Browser hierarchy is the datasource. A datasource can be created only in the Browser; it is not a standard subdirectory in the Windows Explorer. A small icon indicates the type of data on which the datasource is based (e.g., Chromeleon data or GynkoSoft data). You can see only those datasources for which you have the appropriate access rights.
The directory structure underneath the datasource is similar to the directory structure in the Windows Explorer (yellow file icons), allowing you to organize the different Sequences in the datasource (identified by blue file icons). It is not possible to create a subdirectory underneath a sequence.

Operation
- Select a datasource, subdirectory, or sequence to display its contents on the right Browser pane.

For a datasource or subdirectory, you see the usual list of all directories and files. If you select a sequence, the right pane is divided horizontally into two panes, providing information about the general properties of the selected sequence (header) and listing all analysis and standard samples and their sample data (Sequence Editor).

⚠️ **Caution:**

It is possible to edit the sample data right here. For GynkoSoft users, this corresponds to the Sample (SMP) File. You can add additional samples to the sequence, modify existing sample data, or remove old samples. For more information about the sequence editor, refer to the Samples and Sequences section.

- To search for specific sequences, data, or samples, select Query on the context menu. It is possible to search several datasources simultaneously. A Query allows you to search both across several datasources and for specific properties, for example, "all samples starting with PAK."

Moving, deleting, or copying directories, data, and/or files is very similar to these actions in the Windows Explorer. (For more information, refer to The Browser Common Features with the Windows Explorer.) However, keep the following in mind:

⚠️ **Caution:**

Move, delete, or open chromatographic files only in the Browser. The reason is that, except for the visible results, processes are performed below the surface.
Function

In the Browser, you can:

- Set up `Datasources`, create subdirectories, copy or move files via `Drag & Drop`, or remove files with the `Cut` command.
- Select a `Sequence` on the left pane (blue folder icon) to display the contents, header, and sequence editor on the right pane.
- Double-click a sample name to display the associated chromatogram.
- Double-click a `PGM File` name to open the PGM Editor.
- Select a file and right-click for more functions.
- Select several files (as in the Windows Explorer) and right-click to perform a command for several files simultaneously.
- Select a file, right-click, and start a `Query` for several sequences and/or datasources. The result of the query, which means the different files or samples with at least one common feature, is displayed on the right pane.

The Datasource

Top-level directories in the directory structure of the `Browser` are referred to as `Datasources`. The tool for datasource handling is the Browser. Each datasource is based on a separate database. When setting up a datasource, a path to an existing database is entered or a new database is created.

- Select `Datasources` on the `File` menu to set up a datasource. For more information about the required steps, refer to How to ...:
 Working with Files, Databases, and Networks Setting up a Datasource in the Administrator Help section.

The Browser indicates only the name of the `datasource`, but not the name of the underlying `database`. The type and number of the datasources visible to the user determine which data that can be accessed by the user. The advantages are as follows:
• Users access all data in the same way. They do neither have to worry about the data’s actual storage location on the network nor do they have to enter the entire path. The location is specified when the datasource is created.

• Each user can take advantage of a database without having to deal with special database programs.

Database Formats of a Datasource

Chromeleon supports several database formats. In addition to the most frequently used Access database format (mdb container), Chromeleon’s ODBC Capability allows handling SQL (“Structured Query Language”) and database formats, such as Oracle and SQL servers. "Old" GynkoSoft directories ("drives") and third-party data can be displayed as if they were datasources with an underlying database. Different icons allow easy identification of GynkoSoft and Chromeleon:

When Chromeleon is installed, a default datasource is automatically created on each client PC. The datasource name is the computer name (assigned during the installation under Windows) plus _Local. In this way, each user has a separate datasource in which (s)he can store his/her "personal" results and data. For single systems and for users who do not have additional access rights on a network, this is the only way to store their data. The raw data of manually performed analyses are stored in this datasource, also. Therefore, do not delete the <PC NAME_Local> datasource.

Directory Structure of a Datasource

Each datasource can have any number of subdirectories organized in a hierarchical structure. To create a subdirectory, select the datasource in the Browser, and then select New Directory on the File menu. The data tree structure is similar to the MSDOS data tree.

⚠️ Caution:

Do not use special characters (such as the umlaut) for new directory names or sequences. This may cause problems in Novell networks!
Actions performed in the Browser, for example, creating datasources or directories, require complex operations below the user interface. They are different from actions in the Windows Explorer and therefore, they should not be performed from the Windows Explorer. The representation of directories and data differs considerably from the Windows Explorer, also.

See the image below for examples of datasources and their different directory structures:

![Browser Diagram]

The **SOURCE1** datasource has three subdirectories: LAB201, LAB202, and DYES. The **DYES** directory contains three Sequences: **SEQ1**, **SEQ2**, and **SEQ3**.

The default **PC Name_local** datasource has one subdirectory. The name of the subdirectory corresponds to the name of the timebase installed on this computer. The default sequence (named **manual**)) is located in this subdirectory.

When a sequence is selected, its “inner life” is visible on the right Browser pane: file structure (control Program), Quantification Method (QNT Method), Report Definition Files (RDFs), etc.), sequence information, and samples (standard samples, and unknown samples, etc.). For information, refer to **Data Management The Browser**. For information about the functions and significance of sequences, refer to the **Samples and Sequences** section; especially, refer to **The Sample List (Sequence)**.
Drag & Drop allows you to move subdirectories, sequences, and chromatographic methods both in a datasource and between datasources of different types. Note that the items are copied and that this may change the underlying database. If you want to actually move a sample, first copy the sample to the new location, and then delete the original sample in the Browser.

Caution:

Perform drag & drop operations only in the Browser. Performing these operations outside Chromeleon, for example, in the Windows Explorer, will result in the loss of data.

Locking Datasources, Directories, and Sequences

To protect data and results, you can lock datasources, directories, or sequences. It is not possible to modify Locked objects or any object under the locked one. For example, if a datasource is locked, all subdirectories and all sequences therein are locked as well. Locked objects are identified in the Browser by the red lock on the corresponding icon (🔒/_folder/_locked).
How To

- Select the object in the Browser.
- Select Properties on the context menu.
- Select the Locked check box.

To remove the lock, return to the Properties dialog box and clear the Locked check box.

Note:

Locking and sharing objects is subject to access control. (The Administrator Help section provides more information; refer to Software Installation and Communication Access Control.) Only users who have the corresponding privilege can lock and/or share objects.

In addition to locking datasources and directories by the Locked check box, access to these items can be controlled by adding them to Access Groups or removing them.

- Select the datasource or directory in the Browser.
- Select Properties on the context menu. On the Access Control tab page, define the Access Group assignment, using the Add and Remove buttons.

Only users who are members of an Access Group listed in the Access Groups are authorized to access datasources and directories.

Data Acquisition

Even the best method of Data Storage is only as good as the quality of the stored data. Therefore, data acquisition is a very important process, from the quality of the detector through all components participating in the data flow to data processing in Chromeleon.

A distinction has to be made between detectors supplying digital data and detectors supplying analog data. The best results are obtained with detectors that are capable of communicating digital signals via a serial interface. (The Administrator Help section provides more information; refer to Software Installation and Communication The Serial (RS-232) Interface.)
Detectors that supply analog signals have to rely on precise conversion of the signals. The product range available from Dionex includes an extremely sensitive and low-noise UCI Universal Chromatography Interface for converting analog signals to digital signals. The UCI guarantees highest precision with minimum noise.

The following terms are important for data acquisition: Data Collection Rate, Sampling Rate, and Step. However, sometimes it may be difficult to understand the relationship between these terms.

If the detector directly supplies digital data to the PC, this is referred to as Data Collection Rate. In contrast, the term Sampling Rate is used if an A/D converter, such as a UCI Universal Chromatography Interface, supplies the data. Both terms describe the number of data recorded per second.

Step describes the time interval between two data points. By default, the step is the reciprocal value of the data collection rate or the sampling rate. Nevertheless, it is possible to select a different step. There is nothing particular you need to observe if an A/D converter supplies the data. However, for detectors supplying digital data make sure to define the Step command after the Data Collection Rate command.

Data Acquisition with Detectors without Separate Drivers

In addition to the Device Drivers for controlling Dionex detectors, Chromeleon supports many drivers to control third-party detectors. For an overview of the different manufacturers whose devices can be controlled by Chromeleon, refer to Hardware Installation Installing and Controlling Third-Party Devices in the Administrator Help section.

In addition, it is also possible to acquire data using detectors for which separate device drivers are not available. In this case, install the Integrator Driver.

For information about how to install the device drivers, refer to How to ...: Configuring the Chromeleon Server Adding, Configuring, or Deleting Components in the Administrator Help section.
Data Storage

Intelligent data storage and organization is a prerequisite for fast and efficient access to specific data. That is why Chromeleon stores data and files in different locations. Databases and sequence directories, which are both part of the **Datasource**, are available for this.

Storing data in a database

Data that can be compared across sequences is stored and managed in a relational, **ODBC**-capable database. This applies to all **Sample** and **Sequence Data**. The advantages of this type of data management are comfortable integration in other applications, such as Excel, Access, dBase, etc., and efficient searching and sorting capabilities.

Therefore, you can perform, for example, a **Query** to find all samples processed on a certain day, created by a certain user, and/or having a certain name.

Storing data together with the sequence

The entire data describing the chromatographic treatment of a sample or recorded during the analysis is stored in a **Sequence**, including control files (**PGM File**), evaluation parameters (**QNT Method**), and the entire raw and protocol data (see **Data Management** **Raw Data Storage**).

History (Modification History)

For the datasources, you can enable the modification history (in short: **History**). This allows you to document all modifications together with the user name and the object name.

Objects can be samples, sequences or datasources, **Control Panels**, **Report Definition Files** (**RDFs**), **PGM Files** and/or **QNT** files, and modified chromatograms.

For more information, refer to **How to ...: Working with Files, Databases, and Networks** **Tracking File Modifications (History)** in the **Administrator Help** section.
Data Export

Chromeleon supports various data export options for communication with other programs:

1. You can export report pages from the Browser, by selecting Batch Report on the File menu. In the Export options section, select the Export check box. The Export Wizard is opened automatically (otherwise, click Export Settings to open the Export Wizard manually). Chromeleon supports the following formats for data export:
 a) ANDI/Chromatography - AIA (*.cdf)
 b) ASCII text format (*.txt)
 c) Excel file format (*.xls)
 d) Adobe Acrobat file format (*.pdf)
 e) Chromeleon Archive format (*.cmb = Backup files)

For more information, refer to How to …: Creating and Managing Files and Data Exporting Data During or After a Batch.

2. In the Printer Layout, you can open a dialog box that similar to the Export Wizard. First, enable the Layout Mode on the Edit menu. Then, select Batch Report Setup on the File menu to open the Batch Report Setup dialog box. Via the Printer Layout, you can export data from different samples in a single data file (refer to How to …: Creating and Managing Files and Data Exporting Data from Different Samples to a Single File).

3. You can also open the Export Wizard from a Control Panel. Select Reporting on the Batch menu and select the Print/Export Report check box.

4. In addition, you can export raw data in the AIA format. To do so, select Export/Backup on the File menu in the Browser, and then select ANDI/Chromatography (AIA). (Also, refer to Data Management Raw Data Export.)

5. If you wish to send Chromeleon data to another laboratory, for example, via e-mail, Dionex recommends that you perform a Backup first and then transmit the compressed data as *.cmb file, which is the Chromeleon archive format.
You can also start the Chromeleon export function from a separate program, using the command line under Start > Run or a DOS command prompt. For more information, refer to How to …: Working with Files, Databases, and Networks Using Chromeleon Data in an External Program in the Administrator Help section.

Backup

To avoid loss of data (for example, due to a defective hard disk), Dionex recommends that you back up your data to a different data medium at regular intervals, using the Backup command on the File menu in the Browser.

Backup data is compressed, which means that the data is "packed" and stored in a different location. For security reasons (GLP does not allow modification of backup data), direct access to the data is not possible. To unpack the data, select the Restore command on the File menu in the Browser.

The backup logs the files that are copied and issues warnings if an error occurs. The directory structure is maintained.

For more information, refer to How to …: Creating and Managing Files and Data:

- Creating Backup Files
- Restoring Backup Files

Raw Data

Data generated by the system is referred to as raw data. Data entered by the user is referred to as user data. The user is not allowed to change the raw data, e.g.:

- Sample data recorded on different channels (see Signal)
- Audit Trails
- Injection times (see Inj. Date/Time)
- History
In a narrower sense, all analog or digital values that are measured by a detector and stored digitally on the PC are referred to as raw data. Raw data exists only for signals or channels that were selected by the user before data acquisition.

The selected $\textit{Sampling Rate}$ and/or the $\Rightarrow \textit{Step}$ determine the extent and precision of the stored raw data.

For more information, refer to

- Raw Data Storage
- Raw Data Compression

Raw Data Storage

Saving detector signals in digital form is referred to as raw data storage. However, raw data storage also includes other important data, such as the analysis time, signal unit, number of data points, etc.

If a detector is equipped only with an analog output, the data must be converted into digital signals—a task performed by the A/D converter card.

Storage Procedure

With conventional data systems, an analog value is digitized at a fixed time interval, for example, every second, and stored with a defined accuracy. The number of values stored per second is referred to as the $\Rightarrow \textit{Sampling Rate}$. The inverse of the sampling rate (the time interval between two data points) is referred to as $\Rightarrow \textit{Step}$.

The higher the sampling rate is (i.e., the smaller the step is), the more data points are stored and the more exactly the original signal can be restored from the stored data. However, a higher sampling rate has higher memory requirements. Therefore, Chromeleon supports the $\textit{Step}=\text{Auto}$ setting. It is true that this setting requires high algorithmic resources in real time, but it provides the following advantages:

- Raw data files are as small as possible. Fewer data points would result in a loss of precision. If an analysis requires a conventional step width of 0.5 seconds, Chromeleon can typically acquire such chromatograms with an average step width (= chromatogram length divided by the number of data points) of 2 seconds. Thus, the compression factor is 4:1, making optimum use of the available storage capacity.
• Despite the minimal file size, maximum integration accuracy is ensured for the given chromatographic conditions, as the continuous signal is approximated to the optimum. Generally, each peak includes more data points than with conventional acquisition methods.

• The processing speed, for example, for peak detection, re-integration, graphical output, etc., is significantly higher due to the reduced number of data points.

Storage Location

Raw data is stored in the directory of the current sequence. A separate subdirectory is created for each channel specified during the installation of Chromeleon. An audit trail directory is created, also. The directories are not visible in the Browser.

The reason is that Chromeleon manages raw data automatically. The user does not need to access the raw data directly at any time.

You can view this type of data only in the Windows Explorer, but this is possible only if the datasources are not locked. Besides, the datasource names are not displayed in the Explorer. Therefore, you must follow the path to the corresponding sequence directory (see figure).
In the example, the **3dfield**, **Ext228nm**, **Uv_vis-1**, and **Uv_vis-2** channels were defined. An Audit Trail directory (**Audit_Tr**) is available, also. Click the "Plus" sign (+) beside a directory name to display the raw data of the corresponding channel.

A separate raw data file is created for each sample in a sequence, for which raw data of a specific channel was recorded.

⚠️ **Caution:**

Do not modify these directories! Operations outside Chromeleon are not permitted! Dionex recommends that you protect your datasource to prevent access from the Windows Explorer. Select Properties on the context or File menu of the datasource and then select the Protect Datasource Directory check box.

Raw Data Compression

Storing raw data automatically compresses the data. For the signal value, this is achieved by storing the difference to the next data point instead of storing each data point separately. The actual value is stored only at intervals. In this way, the compression can be increased by 50%. This effect is especially noticeable in the case of **3D Fields**.

The size of the raw data file of a 3D field increases with the number of recorded data points. These depend on the **Optical Resolution** of the detector, the field size (area between the upper and lower limit of the 3D field) as well as the selected **Sampling Rate**.

At a sampling rate of, for example, two spectra per second (step = 0.5) and an optical resolution of 2nm, this means that 2 x 60 x 70 = 8400 data points per minute must be recorded for the UV range from 200 to 340nm. As each absorption value is recorded with an accuracy of 25bits, a hard disk storage capacity of m x (N+1) x 4 = 70 x ((2x60)+1) x 4 = 33.88kByte per minute is required. The storage requirement for the 3D field of a "normal" (20-minute) chromatogram is thus 0.678 MByte!

However, by skillful data compression procedures, it is possible to reduce the required storage capacity by approximately 50-60%. This is possible by completely storing approximately each eighth spectrum. Of all other spectra, only the difference to the previous one is stored and is recalculated, when needed. This procedure is a good compromise between optimum data compression and the required time for restoring a 3D field.
Note:

The compression procedure is not destructive, that is, the complete data is stored. The 3D field thus contains the complete information provided by the detector. The data can be restored at any time.

Further, there are three ways to minimize storage capacity requirements:

- Limit the wavelength range to the necessary range.
- Reduce the sampling rate (step) so that no more than 10 to 20 spectra are below the narrowest peak, or select an automatic sampling rate (step).
- Use the possibilities of the ⇒Diode Bunching.

Restoring a Chromatogram from Raw Data

When restoring a chromatogram from the raw data, equidistant data points are joined with straight lines. A diagram "resembling" the recorded analog signal is thus created.

Clearly, the resemblance (and thus the precision of integration) is increased with an increasing sampling rate. However, a higher sampling rate requires more storage capacity. When using a fixed sampling rate, the sampling rate must be set so that a minimum of 10 datapoints is stored during the smallest peak in order to integrate the smallest peaks of a chromatogram (generally the earlier peaks) with the same precision as the larger peaks. This results, however, in huge data volumes especially in the case of wide peaks and long baseline sections.

Using a dynamic sampling rate can solve this problem. Chromeleon is capable of continuously optimizing the sampling rate during an analysis. That is few data points are stored during baseline sections, whereas many are stored below peaks. The local sampling rate is set according to the actual information volume such that the deviation between the resulting diagram and the actual analog signal is never greater (or smaller) than the actual noise component of the signal. This method ensures that neither too many nor too few data points are stored, but always the optimum. The ⇒Step values vary between 0.01 and 5 seconds (sampling rate: 0.2 to 100 Hz).
Raw Data Export

Chromeleon supports exporting raw data by conversion into AIA and ASCII formats. In addition, you can export raw data as Backup file (*.cmb). Select Export/Backup on the File menu in the Browser to export the data as an AIA or backup file.

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDI Cat. 2</td>
<td>Samples and peak variables are stored in the AIA format.</td>
</tr>
<tr>
<td>ANDII Cat. 1+2</td>
<td>In addition to samples and peak variables, the raw data of a chromatogram (each stored data point) is stored in the ANDI format.</td>
</tr>
<tr>
<td>Chromeleon backup (*.cmb):</td>
<td>All data of a Sequence or a Datasource are stored in the cmb format.</td>
</tr>
<tr>
<td>ASCII</td>
<td>Raw data may be exported in the ASCII format as well. Select Batch Report on the File or context menu. Click Export in the dialog box and then select the ASCII export format. All raw data from the channels selected for the actual sequence are stored in the ASCII format.</td>
</tr>
</tbody>
</table>

Tip: If you intend to export raw data to other applications or other computers, it may be necessary to use a fixed ⇒Step (= equidistant raw data storage) instead of a dynamic step.

It is also possible to export report data sheets in different formats (see Data Management ➕ Data Export).

Raw Data Import

Importing the following raw data is possible:

- ANDI data (*.cdf) (see ➔AIA)
- Agilent/HP ChemStation
- HP1100 LAS data
- ➔LIMS/➔Worklist data (*.wle)
- PeakNet (up to version 5.2) data
- Files in the Chromeleon archive format (*.cmb)
On the File menu of the Browser, select Import/Restore and the corresponding option. Select Restore to import Chromeleon Backup data.

In addition, it is possible to install databases from third-party chromatography data systems.

How To
- Open the Browser and select Datasource on the File menu.
- Follow the instructions described in How to …: Working with Files, Databases, and Networks Connecting a Datasource in the Administrator Help section.

For details on importing PeakNet 5.2 or earlier data files, refer to How to …: Creating and Managing Files and Data Importing PeakNet (Release 4.5 through 5.2) Data Files.

Raw Data Storage in Case of Power Failure

The raw data of a sample interrupted by a power failure is not lost, as a raw data autosave is performed continuously during sample processing. Autosave ensures that the raw data is stored on the hard disk in short intervals. The user can reduce the time intervals to approximately 30 seconds. In the case of a power failure, the maximum data loss is thus 30 seconds.

If a power failure interrupts the automatic sample batch, the Power Failure Protection and the power failure handling ensure that processing is continued at the same position after starting the system anew. In addition, you can run a power failure program before to reset the system to a defined state.

If processing is interrupted by warnings or error messages, it is possible to react with an appropriate Emergency Program. The system is then in a defined state that is recorded in the Audit Trail.

For information about how to develop appropriate programs for both cases, refer to How to …: Creating and Modifying Programs: Creating an Emergency Program and Creating a Power Failure Program.
Audit Trails

In addition to raw data, Chromeleon maintains an event log called the Audit Trail. An audit trail includes the following information:

Audit Trail entries for **Preconditions**:

- Device settings before a sample run, such as the temperature of a column oven.

Note:

These entries can be displayed only in the daily audit trail and in the sample audit trail.

Audit Trail entries for a sample run:

- System messages, such as
 - Restart of Chromeleon after booting the computer
 - Start of sample processing

- Warning

- Error

- Abort Error (batch or program is aborted)

- Next command in the batch

- Executed instruction. The color indicates the filter level. The message is displayed from this level on:
 - Green: Normal
 - Yellow: Advanced
 - Red: Expert

This color code is not yet valid for manual and triggered commands.

- Command executed manually from the control panel or the F8 box.

- Triggered command

- Fulfilled ⇒ Trigger condition

- ⇒ Protocol; comments program steps or describes chromatographic conditions

- ⇒ Message on the screen that must be confirmed by the user

- ⇒ Log (performed by either the user or the **Device Driver**).
• Each item is stored with the current time of the Chromeleon server PC. Information gathered while recording data and/or processing a sample batch contain the associated retention time, also.

• The Audit Trail information is stored continuously both over a whole workday and for the duration of processing a single file. Two different Audit Trails are available:

 - The Daily Audit Trail
 - The Sample Audit Trail

Audit trails can be displayed in the Browser (as daily or sample audit trails), on a control panel, or in a report or Printer Layout (only as sample log).

To define the extent and the type of the audit trail display, select the display filter (Normal, Advanced, Expert, and Error, or Warning) on the context menu. The Advanced and Expert display options are not available for audit trails created with Chromeleon 4.0 or lower.

In addition, you can select one of the following options on the context menu:

• Preconditions only to display only the conditions before a sample run
• Preconditions and Run to display all entries
• Run only to display only the entries for the sample run

The Daily Audit Trail

The daily Audit Trail records all events related to a specific timebase, thus facilitating compliance with GLP (Good Laboratory Practice). The information is displayed in the Audit Trail on the control panel (refer to The Control Panel The Audit Trail). The Daily Audit Trail also records the preconditions before the sample run.

When the Chromeleon Server is started, Chromeleon creates an AUDIT directory for the corresponding timebase in the server’s standard datasource. The server saves the daily audit trail for the timebase to this directory. The name under which the file is saved is the current date. For example, the audit trail file for March 5, 2005, is named 20050305.slg. A separate file is created for each day.
In the Browser, the daily audit trails are listed on the right pane with their names and the time of the last change. Double-click a file name to open the related audit trail in a separate window. The information in the file corresponds to the information in the audit trail section on the control panel. However, the file also includes the preconditions. It is also possible to print the daily audit trail.

Copy, move, rename, and delete daily audit trails in the Browser. The user rights required to perform these actions are defined in the User Manager (CmUser program).

Note:

Chromeleon generates a new file for each daily audit trail. Therefore, periodically transfer files that are no longer required to an external storage device.

Tip:

You can also open a daily audit trail from the panel tabset (refer to Control The Panel Tabset). Go to the Sequence Control panel and click Daily Audit Trail under System Maintenance.

In addition to the daily audit trail, a Sample Audit Trail exists for each sample.

The Sample Audit Trail

The sample audit trail contains all information that was recorded for the specific sample in the daily audit trail (see Audit Trails). The sample audit trail is part of the default reports. For more information, refer to How to …: Creating and Using Report Tables Displaying an Audit Trail.

To display a sample audit trail, select one of the following options:

- To view the audit trail information for the current sample, display a report in any method window and select the Audit Trail worksheet.

- To view the audit trail information for a specific sample, right-click the sample of interest in the Browser and select Audit Trail on the context menu.

If you do not find a specific entry in the sample audit trail, check the Daily Audit Trail.
Sample Preparation

Sample preparation is a major part of the chromatographic analysis. It can include simple procedures as weighing, solving, and diluting a sample, as well as more complicated physical (filtration, centrifugation etc.) and chemical separation procedures (liquid-liquid-extraction, fixed phase extraction). Generally, the careful performance contributes substantially to the quality and the reproducibility of chromatographic separations.

In addition, Chromeleon provides two correction factors: Sample Weight Factor (Weight) and Dilution Factor. They allow you both to use the "approximates weight" and to define dilution steps. Thus, they can be used to consider sample preparation during data evaluation.

Sample Processing

Sample processing includes three major steps:

- Sample definition (single samples and Sequence and/or Batch)
- Analytical procedure (manual or automatic control - PGM File)
- Evaluation (QNT Methods and reports)

The performance of each step depends on the methods that are used and the available instruments. The working environment could range from a fully automatic sample laboratory with large quantities of samples to single-user applications in a research lab. Easy and quick analysis procedures may be the focus in the first case, while special methods and parameters for peak recognition may have priority in the latter case. Thus, it is not surprising that functions crucial to one group of users may be irrelevant to others.

Keep this in mind when you read the information in the following sections.
Sample Definition

In Chromeleon, the term *sample* is defined as follows:

Each injection is defined as an individual "sample"!

Multiple injections from the same sample vial under similar conditions are considered several samples.

Defining a sample means the process of determining how much of a substance is injected from which vial and under which conditions, and which evaluation parameters are used. A distinction is made between a single sample and a sample series (= sequence).

Single Sample

A sample can be analyzed individually by entering all required information and user commands via the keyboard or the mouse.

For manual injections, click the *Inject* icon on the *Online* toolbar, enter the injection volume, and perform the injection via a hand-operated valve. If an ➤ *Autosampler* is available, determine the sample location via the ⇒ *Inject* command. Afterward, data acquisition is started (via the ⇒ *AcqOn/Off* command). When the end of the sample is reached, you may end data acquisition by clicking the *Acq Off* icon on the *Online* toolbar.

The recorded data is temporarily saved to the *manual* sequence of the default ➤ *Datasource* of the system. In network operation, this datasource is identified by the name of the computer with which the user is logged on to the ➤ *Network*.

When data acquisition has ended, you are prompted to enter the final storage location for the temporarily saved data.

Sequence/Batch

If several samples are to be processed successively, they are included in a sample list (sequence), together with the instrument control and evaluation information.

The samples are then processed automatically. (For more information, refer to ➤ *Batch*.)

For more information about how to create a sample list, refer to ➤ *The Sample List (Sequence)*.
The Sample List (Sequence)

The sample list is part of the Browser. (For information about the Browser, refer to Data Management [The Browser].) When you select a ➡ Sequence, the sample list is displayed on the lower right of the Browser window. One line corresponds to one sample. During the chromatographic analysis, the samples to be analyzed are processed from the top to the bottom of the sample list. Thus, the sample list also determines the order (= sequence) in which the analysis is performed.

The entire data collected for creating and processing a sequence, including the raw data and protocol data recorded during the analysis, is saved in the sequence directory of a ➡ Datasource or in the underlying database. This also includes the raw and protocol data recorded during the analysis:

A sample is characterized by various column entries. You may add or delete columns or change their order. In addition, you can use ➡ User-defined Columns and ➡ Sequence Report Columns and thus, adapt the appearance of the table according to your specific requirements. The layout is saved as well. Therefore, if you reedit the sequence later, the representation will correspond to the one of your last access. The order in which the samples appear in the table is identical to the order in which they are to be processed.
The entries are managed in a database; they are referred to as ➤Sample Data. For a short explanation of the columns, press the F1 key. For more information about the columns, refer to ➤Sample Variables.

Before each new analysis, you have to enter all samples to be processed and the characteristic sample data into the sample list. There are two options:

1. Manually change an existing sequence, and then save it under a new name.
2. Have Chromeleon create a new sequence automatically via the ➤Sequence Wizard.

For more information, refer to How to …: Creating and Managing Files and Data ➤Creating a Sample List.

In addition to "real" sample data (such as the sample name, the injection volume, the vial, and the sample type (unknown or standard)), the sample list also contains the Program File and Method columns. The entries made in these columns refer to specific ➤Chromatographic Methods determining the performance of the analysis. They include the control program (see Control ➤The Control Program) required for fully automatic control of analytical instruments as well as evaluation instructions (see The QNT Editor ➤The Quantification Method (QNT Editor)) determining the integration and calibration. In addition, the sample list can contain ➤User-defined Columns and ➤Sequence Report Columns.

The number of samples per sequence is virtually unlimited, but more than 100 samples should be an exception. The fewer samples are added to a sequence, that is, the more sequences are created, the faster single samples can be accessed and the easier it is for the user to keep track of the processed samples. Criteria for combining several samples in one sequence could be, for example, the same analysis conditions, the same origin, the samples of the same day, etc.
The Sequence Wizard

The Sequence Wizard helps you to quickly create a basic sample list consisting of analysis and standard samples. To open the Sequence Wizard, select New on the File menu in the Browser. Follow the steps below to create a Sequence:

- **Timebase**: Select the timebase.
- **Unknown Samples**: Generate the analysis samples.
- **Standard Samples**: Generate the standard samples.
- **Methods and Reporting**: Determine the PGM File and the analysis method.
- **Saving the Sequence**: Name and save the sequence.

Each step is performed on a separate wizard page. Clicking Back or Next takes you to the previous or next page.

In the last step, click Finish to save the sequence and close the wizard.

⚠️ **Caution**: Do not use special characters (such as the umlaut) for new directory names or sequences, as this may cause problems on Novell networks!

ℹ️ **Note**: The Timebase step is not included in Chromeleon Xpress. In addition, in the Methods and Reporting step, only a PGM file is selected.

ℹ️ **Note**: In future Chromeleon versions, it will be possible to include validation and/or blank run samples with the Sequence Wizard.

For information about how to create a sample list, refer to How to ...: Creating and Managing Files and Data Creating a Sample List.
The Application Wizard

The Application Wizard helps you to quickly generate a PGM File and a QNT Method for a Timebase, using parameters from either an application template or a Virtual Column template. You can then use the wizard to create a new Sequence, if desired.

To open the wizard, select Application Wizard on the Tools menu in the Browser. The Application Wizard includes the following steps:

- **Step 1**: Choose a timebase
- **Step 2**: Choose an application tool
- **Step 3**: Choose how program and method files are generated
- **Step 4**: Generate and store the files for the application

Each step is performed on a separate wizard page. Clicking <Back or Next> takes you to the previous or next page.

Note:

Steps 1 and 4 are not included in Chromeleon Xpress. In addition, method files are not created in Chromeleon Xpress.

Automatic Batch Processing

The enormous technical complexity of modern chromatography systems, the resulting high purchasing costs, and the constantly increasing number of samples in analysis laboratories make continuous operation a necessity. Thanks to Autosamplers, very efficient PCs, and modern data systems, this has become routine. The user merely provides "replenishment."

When the actual sample preparation is completed, the chromatographic conditions of processing, the samples to be processed and in which order must be communicated to Chromeleon. This is performed in the sample list. The result is stored as a Sequence.

Independently processing one or several sequences is known as Batch. To start processing, the following steps are required:
Starting the Automatic Batch

After data input is completed, the analytical process can be started in an online batch.

- Open a control panel and select Edit on the Batch menu. (This command is also available on the Batch menu in the Browser.)
- Enter the names of the sequences containing the samples to be analyzed.
- Perform a Ready Check.
- Start the analysis process by clicking Start.

Online Batch: During the chromatographic analysis of the batch

As soon as the online batch is started, all samples of the sequence with the status single or multiple are analyzed successively. If a sequence contains a sufficient number of samples, sample processing “around the clock” is possible.

Instead of including all samples in one sequence, they can be distributed among several sequences. Accordingly, more sequences are entered in the batch dialog.

This list is considered a batch; it is also referred to as online sample batch or online batch. The order of the sequences determines the order of processing: When starting the batch process, samples 1 to n of the first sequence, then samples 1 to n of the second sequence, etc. are analyzed.

Offline Batch: After the chromatographic analysis

The data acquisition results of the batch are saved with the individual samples. When the results are processed offline, e.g., printed, exported, signed, etc., after data acquisition is finished, a batch is called an offline batch.
Sample Evaluation

In spite of largely automated work processes and intelligent pre-settings, it is within the responsibility of each user to set the framework conditions for sample evaluation.

Calculations

Sample processing is performed based on a \texttt{PGM File} that was previously created and included in the sample list. Similar to this, the analysis results are calculated based on the evaluation method indicated in the sample list. The method itself is created in the QNT Editor (see Data Representation and Reprocessing \texttt{The QNT Editor}). For more information, refer to How to \texttt{Integrating Chromatograms and Identifying Peaks}.

Result Output

The result of sample processing can be represented in graphics and tables, either on the screen or in a printed output. Chromeleon provides method windows for generating this output. Use the Printer Layout to define templates standardized presentations of the sample results. For more information, refer to How to \texttt{Creating and Using Report Tables} and \texttt{Preparing the Printout}.

Overview of the Most Important Results in the Browser

To take an overview of the sequence results already in the sample list, add the desired \texttt{Sequence Report Columns} to the list. For more information, refer to How to \texttt{Creating and Managing Files and Data Creating a Sequence Report Column}.

For more information about the available method windows, refer to Data Representation and Reprocessing.
Electronic Signature

During the last decades, quality assurance and GLP have become increasingly important. Data verification is one of the key aspects. That is why it is especially important to ensure that Raw Data is not modified later. In addition, the results generated from this raw data must not be modified without authorization once they have been accepted. Contrary to a data system, printed records can ensure this in part only.

If User Mode is enabled, Chromeleon allows you to electronically sign the results generated from your raw data. This is an important aspect for quality assurance and GLP. Electronic Signature allows you to sign and to protect Sequence reports that have been accepted as correct and thus, to ‘freeze’ the current state of your results.

Note:

Electronic signature is only available for user databases that were created with a User Manager (CmUser) program version 6.10 or higher. Update your database if an error message notifies you that electronic signature is not supported.

Electronic signature includes three steps:
- Submit
- Review
- Approve

Typically, the user who created the report signs and submits it. Afterward, for example, the laboratory manager reviews the report and signs it as well. Finally, the quality assurance manager approves the results.

For information about how to sign reports electronically, refer to How to …: Creating and Managing Files and Data Signing Sequences Electronically.
Theory of Calibration

Calibration (Overview)

If the signal of a chromatography detector is proportional to the concentration of a substance in the flow cell, it is suitable for quantitative determination. This is a characteristic, for example, of the absorption supplied by a UV detector in the scope of the Lambert-Beer law.

The proportionality constant depends on the chemical quality of the substance of interest and on the physical properties of the used detector. For UV detectors these are mainly the optical wavelength and the spectral bandwidth. As integration programs can only determine the area (and height, respectively) below a peak, conversion into absolute amount or concentration units is possible only if a calibration was executed before the analysis.

For more information, refer to:
- Calibration Principle
- Calibration Types (Linear)
- Calibration Types (Non-linear)
- Using the Calibration Curve
- Calculating the Calibration Curve
- Standard Methods
- Evaluation with Various Standard Methods
- Evaluation with the Standard Addition Method
- Implementation

At the end of a calibration, Chromeleon creates calibration curves from the available calibration points for each calibrated substance. Representing and evaluating the curves is performed in the calibration curve method window (see Data Representation and Reprocessing The Calibration Curve).
Calibration Principle

The principle of the calibration is based on that one or several samples of known composition are analyzed by chromatography and a conversion factor amount (or concentration)/area is calculated from the detected areas below the individual peaks and the known amounts or concentrations. This factor can then be used to multiply the area of the respective peak of an unknown sample. The result is the corresponding amount of the substance (or concentration of the substance). However, this simple method will work only,

- If the relation between amount and area is strictly linear, i.e., if the Lambert Beer Law is applicable for UV detectors.
- If the area zero equals the amount zero, i.e., if the calibration line leads through the origin (no offset) and
- If matrix effects can be neglected

If the detector signal S is proportional to the concentration (K) of a dissolved substance, the proportionality factor c₁ applies:

\[S = c_1 \cdot K \]

Under certain conditions, the area F(x) corresponding to a certain amount (x) is proportional to the contained amount.

\[F(x) = c_1 \cdot x \]

If a sample of the substance A of known concentration (the standard or calibration sample) is analyzed chromatographically, the result is a specific ratio between the injected amount and the determined area value. The result can be graphically presented by entering the value pair in an amount/area diagram. In this diagram, each injection corresponds to one Calibration Point.

Ideally, all calibration points are located on a straight line, and there is a direct ratio between the amount and the determined area. The "conversion factor" corresponds to the slope of the calibration line (left fig. "ideal").
During each calibration, deviations from the ideal behavior might occur which are above all caused by weight and/or dilution errors. This causes scattering of calibration points. Therefore, the Gaussian method of the least squares (see Calculating the Calibration Curve) is used to calculate a regression line. This line is defined as the best approximation to the existing calibration points and, usually, it does not go through the origin (right fig. "real").

If the various calibration points are not located on a straight line, but show a parabola or exponential shape, the slope of the curve and the distance to the zero point (offset) describe the corresponding (approximate) curve (calibration curve). The basic mathematical function is referred to as Calibration Function; the coefficients are the calibration coefficients.

By selecting the Calibration Type peak table variable, the user decides whether a linear or a non-linear calibration curve is calculated from the existing calibration points. Distinguish between the following calibration types:

- Calibration Types (Linear)
- Calibration Types (Non-linear)
Calibration Types (Linear)

If one calibration sample of a standard substance is analyzed for calibration only, the user enters exactly one concentration value in the first Amount column on the Amount tab page of the QNT Editor the peak table. (For more information about the editor, refer to Data Representation and Reprocessing. The QNT Editor.) The result is exactly one Calibration Point. Connecting the calibration point with the origin then forms the calibration curve. It is described by the function derived from the Lambert Beer law:

$$F(x) = c_1 \cdot x$$

The slope of the line corresponds to the proportionality factor c_1 (leftmost image). c_1 is also called RF value.

If one calibration sample is analyzed several times, several points can be entered in the amount/area diagram. The points of one concentration are called replicates. With an increasing number of available replicates, the impact of imprecision decreases after averaging. In spite of several replicates, only one amount/area ratio is determined. This is referred to as multi-point calibration on one calibration level (center image).

The result is better secured if several concentrations are measured instead of one. Of course, several replicates can be used per concentration. As a result, calibration points at different concentrations are received in addition to the replicates of one concentration. This is called a multiple point calibration on several levels (for example, 3-level calibration (see the rightmost image)). The calibration curve does not necessarily have to go through the origin. The linear Calibration Function is therefore corrected by an offset.

$$F(x) = c_0 + c_1 \cdot x$$
Caution:
The decision whether a calibration type differing from the **linear** default is physically sensible, is within the responsibility of the user, not of Chromeleon!

Note:
If you calibrate using the **Standard Addition** method and if no calibration points are available with Amount = 0 (only **Spiked** samples), Chromeleon calibrates with an offset.

If calibration points with Amount = 0 are available (also **Unspiked** samples) and if you calibrate using the **Linear** calibration method, the calibration curve does not go through the origin. Instead, it is forced through the mean of all samples for which Amount = 0; i.e., all unspiked samples for this substance. Please note that the results may be different from those obtained by calibrating using the **Linear with Offset** calibration method.

Calibration Types (Non-linear)

In (the more general) case of a non-linear calibration, more terms are added to the linear **Calibration Function**.

Parabola-shaped curves are described as follows:

\[F(x) = c_1 \cdot x + c_2 \cdot x^2 \]
(Quadratic)

\[F(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 \]
(Quadratic with offset)

In some cases, especially in gas chromatography, there is cubic relationship:

\[F(x) = c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3 \]
(Cubic)

\[F(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3 \]
(Cubic with offset)

To calculate curves of this type, a minimum of two (quadratic), three (quadratic with offset or cubic), or four (cubic with offset) calibration samples must be available (for the quadratic relationship, see the leftmost picture).
Note:

If you calibrate using the Standard Addition method and if no calibration points with Amount = 0 are available (only Spiked samples), Chromeleon also calibrates with an offset when the Quadratic or Cubic calibration method is used.

If calibration points with Amount = 0 are available (also Unspiked samples) and if you calibrate using the Quadratic or Cubic calibration method, the calibration curve does not go through the origin. Instead, it is forced through the mean of all samples for which Amount = 0; i.e., all unspiked samples for this substance. Please note that the results may be different from those obtained by calibrating using the Quadratic with Offset or Cubic with Offset calibration method.

The power function is described as follows:

\[F(x) = c_0 \cdot x^{c_1} \]

To calculate curves of this type, a minimum of two calibration samples must be available (see the image in the center).

Note:

If you calibrate using the Standard Addition method and if you use the Exponential calibration function, the expected offset value is subtracted from all calibration points with positive amount values (i.e., from all Spiked Samples). Thus, the following formula applies:

\[F(x) = \tilde{c} + c_0 \cdot x^{c_1} \]
Distinguish between the following cases:

a) If no calibration points with Amount = 0 are available (only Spiked samples), the expected offset is calculated using the Linear with Offset method, i.e.:

\[\bar{c} = c_0 \]

b) If calibration points with Amount = 0 are available (also Unspiked samples), the expected offset is the average of all samples with Amount = 0.

If none of the above functions can be applied to the available Calibration Points, the calibration curve can be described as a polygon, that is, a linear interpolation between two adjacent calibration points (Point to Point). If several replicates of one calibration level are available, these are averaged before interpolation.

⚠️ Caution:

The decision whether a calibration type differing from the linear default is physically sensible is within the responsibility of the user.

A large number of replicates increases the precision and the reliability of the curve at this point (on the calibration level), but is not decisive for the entire curve. The more calibration levels are examined, that is, the more standards of different concentrations are measured, and the more precise is the area/amount allocation for a larger range. To be exact, the calibration is valid for the range of the calibration samples only and not beyond it.

Using the Calibration Curve

If the calibration coefficients are known, the amount value can be calculated for any area value by inserting the coefficients in the formula of the respective calibration type.

Within the range of the curve that is covered by the calibration points, it is possible to convert any peak area into the corresponding amount. This is shown in the following example:
Standard Sample

The user enters the amounts (x1 to x4) of the different standard samples and determines the *Calibration Function* by selecting the calibration type (here: linear with offset). Depending on the selected integration type, area values (F1 - F4) are established from the detected peaks. One area and one substance amount value form one calibration point. The positions of the calibration points determine the curve that Chromeleon calculates with an approximate method. The final course of the calibration curve is determined by the calibration coefficients (here: c0, c1).

\[
F = c_0 + c_1 \cdot x
\]

Unknown Sample (Analysis Sample)

In the case of an unknown sample, the previously calculated calibration coefficient and one or several area values are known. The area value is now a known parameter and is thus drawn in x-direction. In the diagram, the two axes must be exchanged for one another. As a result, the calibration function must be converted in its inverse function. This is also performed by Chromeleon. Now, the amount can be calculated by inserting the calibration coefficients and area values.

Furthermore, the exclusion of outliers, the different weighting of calibration points, and the formation of "averaged" calibration points from one calibration level, are alternative ways of how to calculate the calibration curve.
Calculating the Calibration Curve

Calculation of the calibration curve (Calibration Function) is based on the method of least squares. With a given calibration type (linear, linear with offset, etc.), the parameters of the calibration curve $F(a)$, that is, $c_0, c_1, c_2,$ and c_3 are determined so that the sum of the squared distances of all measured points becomes negligible. For this purpose, the following optimization problem is solved:

$$\sum_{i=1}^{n} w_i \cdot (x_i - F(a_i))^2 \rightarrow \min$$

$(x_i - F(a_i))$ refers to the distance of the x_i-value from the calibration curve $F(a)$, w_i is the selected weighting (see Weights, for example, $w_i=1$, $w_i=1/\text{Amount}$ or $w_i=1/\text{Amount}^2$) and x_i is the actual value.

The formula used for calculating the calibration curve depends on the Standard Method (External/Internal...). For information about these formulas, refer to Evaluation with Various Standard Methods.

Standard Methods

Calibrations can be based on external or Internal Standards ("ISTD"). External standard means that there is a separate standard sample. Using an internal standard means adding the standard to the unknown sample. This can be either before (External/Internal) or after (Internal) sample preparation.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>external</td>
<td>Default setting. Calibration is via one or several standard samples. Via the amount values entered in the Amount column, a ratio is established between the area and the amount. On this basis, the amount in samples of unknown concentration is determined via the peak area. With an increasing number of different amounts, the area/amount ratio (=calibration curve) can be determined more exactly. If different amounts are obtained by diluting the original substance, a Dilution Series is resulting. The amount of each concentration is entered in a separate amount column in the corresponding line of the amount table. If the calibration is performed with a single standard sample by injecting different volumes (Var.InjectVol.), only the amount of the original sample is stored in an amount column. Chromeleon calculates the remaining amount values (for the different injection volumes).</td>
</tr>
</tbody>
</table>
Choose a substance as *Internal Standard ("ISTD")* whose retention time behavior is similar to the behavior of the substances to be analyzed. Before the sample preparation, an internal standard is added to all samples (unknown and standard samples) in exactly the same amount so that the concentration is identical in all samples. For example, diluting the sample or performing a pre-column derivatization later will change the concentration of the internal standard. During calibration, the internal standard and the substances to be determined are calibrated.

In the pure internal standard method, calculation is via area and amount ratios instead of absolute areas and amounts. For this procedure, it is necessary to inject a constant amount of the *Internal Standard ("ISTD")*. The internal standard is added before the sample preparation. In a dilution series, the standard does not have to be diluted (*Const. Internal Standard*). Due to the equivalent amount of added internal standard, the same ISTD result should be achieved for all samples. Forming the ratio of ISTD values allows you to draw conclusions about the precision of the analysis and calculating the actual result.

Due to the intense experimental procedure, this type of calibration is rarely used in HPLC.

For examples of the different standard methods, refer to *How to ...*: [Calibrating](#).

Evaluation with Various Standard Methods

Below please find a description of how Chromeleon calculates calibration points, which form the basis for any calibration function \(F \). Please note that the formula used for the calculation depends on the selected *Standard Methods* (External, Internal/External (with/without var. ISTD), Internal (with/without var. ISTD)).

For evaluating unknown samples, that is, calculating the \(\Rightarrow \text{Amount} \) values, the inverted form of the corresponding *Calibration Function* \(F \) is used (\(\Rightarrow \text{inverted function} \ A \)). This means that the \(c_0, c_1, c_2, \) and \(c_3 \) calibration coefficients form function \(A \) that is inverted for amount calculation. The result is \(F(x) \).

Tip:

For the formulas for the Standard Addition method, refer to [Evaluation with the Standard Addition Method](#).
'External' Evaluation:

Calibration:
- \(Y(i,k) = \text{RESPONSE}(i,k) \)
- \(X(i,k) = \text{AMOUNT_NOMINAL}(i,k) \times \frac{\text{WEIGHT}(k)}{\text{DILFAC}(k)} \times \frac{\text{INJECTVOL}(k)}{\text{REFINJECT}} \)

Evaluation: Calculation of the Amount peak variable for peak i in the sample x
- \(\text{AMOUNT}(i,x) = \frac{\text{DILFAC}(x)}{\text{WEIGHT}(x)} \times \text{RSP-FACTOR}(i) \times F[\text{RESPONSE}(i,x)] \)

Description: see below.

'Internal' Evaluation:

Calibration:
- \(Y(i,k) = 100 \times \frac{\text{RESPONSE}(i,k)}{\text{RESPONSE}(\text{ISTD},k)} \)
- \(X(i,k) = \text{AMOUNT_NOMINAL}(i,k) \times \frac{\text{WEIGHT}(k)}{\text{DILFAC}(k)} \)

Evaluation: Calculation of the Amount peak variable for peak i in the sample x
- \(\text{AMOUNT}(i,x) = \frac{\text{DILFAC}(x)}{\text{WEIGHT}(x)} \times \text{RSP-FACTOR}(i) \times F[100 \times \frac{\text{RESPONSE}(i,x)}{\text{RESPONSE}(\text{ISTD},x)}] \)

The ISTD peak itself will not be evaluated!

Description: see below.

'Internal' Evaluation (with variable ISTD):

Calibration:
- \(Y(i,k) = \text{AMOUNT_NOMINAL}(\text{ISTD}) \times \frac{\text{RESPONSE}(i,k)}{\text{RESPONSE}(\text{ISTD},k)} \)
- \(X(i,k) = \text{AMOUNT_NOMINAL}(i,k) \times \frac{\text{WEIGHT}(k)}{\text{DILFAC}(k)} \times \frac{\text{INJECTVOL}(k)}{\text{REFINJECT}} \)

Evaluation: Calculation of the Amount peak variable for peak i in sample x
Theory of Calibration

- \(\text{AMOUNT}(i,x) = \frac{\text{DILFAC}(x)}{\text{WEIGHT}(x)} \times \text{RSP-FACTOR}(i) \times \frac{\text{FACTOR}_{\text{IS}}(x)}{\text{RESPONSE}(i,x)/\text{RESPONSE}(\text{ISTD},x)} \)

The Internal Standard ("ISTD") peak itself is not evaluated!

Description: see below.

'Internal/External' Evaluation:

Calibration:

'External' calibration, including the ISTD peak! (Also, refer to 'External')

Evaluation: Calculation of the Amount peak variable for peak \(i \) in the sample \(x \)

- The ISTD peak itself is evaluated 'Externally'!
- \(\text{FACTOR}_{\text{IS}}(x) = \frac{\text{AMOUNT}_{\text{NOMINAL}}(\text{ISTD})}{\text{AMOUNT}(\text{ISTD},x)} \)
- \(\text{AMOUNT}(i,x) = \frac{\text{DILFAC}(x)}{\text{WEIGHT}(x)} \times \text{RSP-FACTOR}(i) \times \frac{\text{FACTOR}_{\text{IS}}(x)}{\text{RESPONSE}(i,x)} \)

Description: see below.

'Internal/External' Evaluation (with variable ISTD):

Calibration:

Calibration is 'External', including the ISTD peak! However, the nominal amount for the ISTD peak from the sample list (ISTD Amount) is used. The sample weight of the ISTD peak is not considered.

- \(Y(i,k) = \text{RESPONSE}(i,k) \)
- \(X(i,k) = \frac{\text{AMOUNT}_{\text{NOMINAL}}(i,k) \times \text{WEIGHT}(k)}{\text{DILFAC}(k)} \times \frac{\text{INJECTVOL}(k)}{\text{REFINJECT}} \)
- \(X(\text{ISTD},k) = \frac{\text{AMOUNT}_{\text{NOMINAL}}(\text{ISTD},k) \times \text{INJECTVOL}(k)}{\text{REFINJECT}} \times \frac{1}{\text{DILFAC}(k)} \)
Evaluation: Calculation of the Amount peak variable for peak i in the sample x

- The ISTD peak itself is evaluated 'Externally', but without Weight correction.

\[
\text{AMOUNT}_{\text{ISTD},x} = \text{DILFAC}(x) \times \text{RSP-FACTOR}(\text{ISTD}) \times F[\text{RESPONSE}(\text{ISTD},x)]
\]

- \(\text{FACTOR}_{\text{IS}}(x) = \text{AMOUNT}_{\text{NOMINAL}}(\text{ISTD},x)/\text{AMOUNT}(\text{ISTD},x)\)

- \(\text{AMOUNT}(i,x) = \text{DILFAC}(x)/\text{WEIGHT}(x) \times \text{RSP-FACTOR}(i) \times \text{FACTOR}_{\text{IS}}(x) \times F[\text{RESPONSE}(i,x)]\)

Description:

- **F:** Calibration function
- **X(i,k):** X-coordinate of a calibration point for peak i for the standard sample k
- **Y(i,k):** Y-coordinate of a calibration point for peak i for the standard sample k
- **k:** Calibration sample (standard)
- **x:** Unknown sample (analysis sample)
- **RESPONSE(i):** Reference variable (Int.Type; that is, Area, Height, CE-Area) of peak i in a sample
- **RESPONSE(ISTD):** Reference variable (Int.Type; that is, Area, Height, CE-Area) of the corresponding ISTD peak of a sample
- **AMOUNT_NOMINAL(i):** Amount of peak i from the amount table for the standard sample k
- **AMOUNT_NOMINAL(ISTD):** ISTD Amount for the sample k from the sample list
- **AMOUNT(i,k):** Calculated amount of the peak i for the sample k
- **WEIGHT:** Weight (Sample Weight Factor) for a sample
- **DILFAC:** Dil. Factor (Dilution Factor) for a sample
- **INJECTVOL:** Inj. Vol. (Injection Volume)
- **REFINJECT:** Injection volume of the first sample in a calibration series
- **RSP-FACTOR(i):** Response Factor of the peak i from the QNT amount table
Evaluation with the Standard Addition Method

For the Standard Addition method, calibration and evaluation are slightly different from "normal" calibration. One reason is that the original sample has a spiked amount = 0. Therefore, multiplication with factors is not possible.

Caution:

Only if the calibration curve is forced through the origin (i.e., in this case, through the calibration point of the original, unspiked sample), the amount of this sample corresponds to the negative intercept on the x-axis, i.e., to the average of all values based on this sample. For all other calibration types, the calculated amount of the original, unspiked sample may deviate from the negative intercept on the x-axis of the calibration curve.

'External' and 'Internal/External' Evaluation:

Calibration:

- \(Y(i,k) = \frac{\text{RESPONSE}(i,k)}{\text{DILFAC}(x)/\text{WEIGHT}(x) \times \text{INJECTVOL}(k)/\text{REFINJECT}} \)
- \(X(i,k) = \text{AMOUNT}_{\text{Nominal}}(i,k) \)

Evaluation: Calculation of the Amount peak variable for peak i in the sample x

- \(\text{AMOUNT}(i,x) = \text{RSP-FACTOR}(i) \times F[\text{RESPONSE}(i,x) \times \text{DILFAC}(x)/\text{WEIGHT}(x)] \)

Description: see Evaluation with Various Standard Methods.

'Internal' Evaluation:

Calibration:

- \(Y(i,k) = 100 \times \frac{\text{RESPONSE}(i,k)}{\text{RESPONSE}(\text{ISTD},k)} \)
- \(X(i,k) = \text{AMOUNT}_{\text{Nominal}}(i,k) \times \frac{\text{WEIGHT}(k)}{\text{DILFAC}(k)} \times \frac{\text{DILFAC}(x)/\text{WEIGHT}(x)}{} \)
Evaluation: Calculation of the Amount peak variable for peak i in the sample x

- \(\text{AMOUNT}(i,x) = \text{RSP-FACTOR}(i) \times F[100 \times \frac{\text{RESPONSE}(i,x)}{\text{RESPONSE}(\text{ISTD},x)} \times \frac{\text{DILFAC}(x)}{\text{WEIGHT}(x)}] \)

The ISTD peak itself will not be evaluated!

'Internal' Evaluation (with variable ISTD):

Calibration:

- \(Y(i,k) = \text{AMOUNT _ NOMINAL}(\text{ISTD}) \times \frac{\text{RESPONSE}(i,k)}{\text{RESPONSE}(\text{ISTD},k)} \times \frac{\text{DILFAC}(x)}{\text{WEIGHT}(x)} \times \frac{\text{NJECTVOL}(k)}{\text{REFINJECT}} \)
- \(X(i,k) = \text{AMOUNT _ NOMINAL}(i,k) \)

Evaluation: Calculation of the Amount peak variable for peak i in sample x

- \(\text{AMOUNT}(i,x) = \text{RSP-FACTOR}(i) \times F[\text{AMOUNT _ SOLL}(\text{ISTD}) \times \frac{\text{RESPONSE}(i,x)}{\text{RESPONSE}(\text{ISTD},x)} \times \frac{\text{DILFAC}(x)}{\text{WEIGHT}(x)}] \)

The **Internal Standard** ("ISTD") peak itself is not evaluated!

'Internal/External' Evaluation (with variable ISTD):

Calibration:

Calibration is 'External', including the ISTD peak! However, the nominal amount for the ISTD peak from the sample list (ISTD Amount) is used. The sample weight of the ISTD peak is not considered.

- \(Y(i,k) = \text{RESPONSE}(i,k) \times \frac{\text{DILFAC}(k)}{\text{WEIGHT}(k)} \times \frac{\text{REFINJECT}}{\text{NJECTVOL}(k)} \)
- \(X(i,k) = \text{AMOUNT _ NOMINAL}(i,k) \)
- \(Y(\text{ISTD},k) = \text{RESPONSE}(i,k) \times \text{DILFAC}(k) \times \frac{\text{REFINJECT}}{\text{NJECTVOL}(k)} \)
- \(X(\text{ISTD},k) = \text{AMOUNT _ NOMINAL}(\text{ISTD},k) \)
Evaluation: Calculation of the Amount peak variable for peak i in the sample x

- The ISTD peak itself is evaluated ‘Externally’, but without Weight correction.

\[
AMOUNT(ISTD,x) = RSP-FACTOR(ISTD) * F[RESPONSE(ISTD,x) * DILFAC(x)]
\]

- \(FACTOR_{IS}(x) = \frac{AMOUNT_{NOMINAL}(ISTD,x)}{AMOUNT(ISTD,x)} \)

- \(AMOUNT(i,x) = RSP-FACTOR(i) * FACTOR_{IS}(x) * F[RESPONSE(i,x) * DILFAC(x)/WEIGHT(x)] \)

Implementation

Follow the description below to implement and perform calibration:

Sample List

- Enter the available standard samples in the Sample List (Sequence), similar to unknown samples.

- To facilitate and automate the input, use the Sequence Wizard.

- Each sample in the sample list can be converted into a standard sample by assigning the Sample Type STD. Note that the position (line number) in the sample list determines the order of processing. If a standard sample is to be injected several times, a separate line is created in the sample list for each injection.

- In the Method column, specify the quantification method to be used for evaluating the sample.

- Input in the remaining fields of the sample list is analog to each unknown sample (Position, Injection Volume, etc.).

- For a detailed description of the procedure, refer to How to ...: Creating and Managing Files and Data Creating a Sample List.
Quantification Method (QNT Editor)

- Open the General tab page and check the current settings. Define the calibration⇒ Mode to be used.

- Enter the names and the retention times of the peaks to be determined on the Peak Table tab page. If a processed sample refers to a QNT File with an "empty" peak table, the peak table can be automatically filled with the retention times of the integrated peaks after the analysis by selecting the Autogenerate Peak Table command. Each peak contains a successively numbered default name.

- Enter the amount values of the standard substances in the amount columns.

- Determine the standard method, the calibration type, and the integration type to be used for the calibration.

- For more information, refer to How to …: Integrating Chromatograms and Identifying Peaks Creating a Peak Table.
Validation and Qualification

Analysis data from various workstations or laboratories can only be compared if it is possible to determine the quality of the results produced with a chromatography system.

Validation (Definition)

The process of ensuring that a system and its analysis procedures supply reproducible and reliable results is referred to as validation. This includes above all procedures regarding the planning, implementation, and documentation of an analytical method. Thus, validation is an integral part of GLP ("Good Laboratory Practice").

Qualification (Definition)

First, the manufacturer validates the single devices and the data system. During qualification, the user checks whether a device or data system works according to its specification. This includes procedures guaranteeing the optimum technical condition of instruments (hardware and firmware) and of computers (hardware and software). Thus, qualification, too, is an integral part of Good Laboratory Practice.

When is qualification necessary?

Instruments should be qualified before setting them into operation and at regular intervals thereafter; especially after exchanging worn-out parts, performing repair work, or replacing an instrument by a new one. Also, perform system qualification procedures after you have updated the software of your data system.

In addition, the data system itself should be qualified at least after an update. Installation Qualification and Operational Qualification are available for this. In addition, you can check the datasource performance (= datasource Performance Qualification (PQ)). Performing the different qualifications is usually the task of the system administrator.
For more information, refer to Validation and Qualification in the Administrator Help section.

Many instruments perform an automatic self-test upon startup to ensure optimum function. For example, for the Dionex UVD 340U Photodiode Array Detector, spectra calibration is performed automatically via the Holmium Oxide Filter whenever the detector is started.

When is validation necessary?
The analytical method and the PGM File should be validated before they are used in daily laboratory procedures. As modifying single parameters can already be of great importance, validation is also necessary in the daily routine. On the SST tab page of the QNT Editor (see Data Representation and Reprocessing The QNT Editor), define System Suitability Tests to check whether your analytical method and your program file are suitable for analyzing special samples.

How is validation performed?
The focus of an analysis procedure is on Calibration (see Theory of Calibration Calibration (Overview)). Within the scope of validation, it is then important to check whether calibration has been performed correctly. The precision, Limit of Detection, dynamic work range, and robustness of a procedure and the involved components have to be determined. The following features are available for this: Validation Samples, Blank Run Samples, Matrix Blank Samples, Confidence Interval/Range, averaging, normal distribution, outlier tests, detection of statistical and systematic errors, Correlation Coefficient, Standard Deviation, Relative Standard Deviation, etc.

Chromeleon provides numerous options to meet all GLP, qualification, and validation requirements. For more information, refer to:

AutoQ Equipment Qualification
The System Suitability Test (SST)
System Wellness for IC Devices (Overview)
System Wellness for HPLC Devices
AutoQ Equipment Qualification

Dionex AutoQ is a comprehensive range of user-friendly Chromeleon qualification tools. These tools help you quickly and easily perform qualification tasks that would otherwise be troublesome and time-consuming. In addition, they simplify compliance with qualification standards and qualification rules. AutoQ qualification tests are available for Chromeleon software and for several HPLC and IC systems. The following tasks can be automated with AutoQ test procedures.

For Chromeleon software:
- **Installation Qualification (IQ)**
- **Operational Qualification (OQ)**

For instruments:
- Installation Qualification (IQ)
- Operational Qualification (OQ)
- **Performance Qualification (PQ)**

What is unique about Dionex AutoQ?

Dionex AutoQ is a comprehensive suite of qualification procedures for instruments from several manufacturers. AutoQ is available for the following systems:
- **Dionex** IC modules and **Summit** HPLC modules
- **Agilent 1100 HPLC System** modules
- **Shimadzu LC10 and LC2010 HPLC** instruments
- **Shodex RI-101 HPLC Refraction Index Detector**
- **TSP HPLC modules**
- **Waters** HPLC modules (including the **Alliance 2690/2695** Systems and the 996/2996 PDAs)
Which standards and regulations does Dionex AutoQ help you to meet?
The following standards and regulations are important in a validated environment:
- Good Laboratory Practice (GLP)
- Current Good Manufacturing Practice (cGMP)
- 21 CFR Part 11
- ISO 9000

What are the benefits of AutoQ?
- Most AutoQ tests run automatically most of the time. Therefore, they require very little operator time. For example, it only takes about 30 minutes to prepare the Instrument OQ, after which Chromeleon runs the test automatically. In comparison, the conventional test routines used in many validated laboratories typically require a full day of the analyst's time.
- The high level of automation reduces the risk of errors and ensures comparable results.
- Chromeleon automatically documents the results. The reports created by the system include charts, calculations, and the single results (Passed/Failed).
- AutoQ is virtually identical for all instruments, regardless of the manufacturer. This means:
 - Considerable time savings for the creation and maintenance of SOPs (Standard Operating Procedures) for laboratories using instruments from different manufacturers.
 - Only one test procedure to learn and work with.
 - Test reports have the same format for all instruments.
 - All reports can be easily managed, saved, and stored as electronic documents, using Chromeleon electronic reports and Electronic Signatures.
• AutoQ instrument qualification tests can be adapted for use with instruments from other manufacturers.

Tip:

This requires advanced knowledge of report creation in Chromeleon.

• AutoQ qualification procedures are included in every Chromeleon software package.

Note:

Certified standard solutions, which are available from Dionex, are needed to run AutoQ qualification tests.

Instruments Operational and Performance Qualification

After the instruments of a chromatography system have been installed, Installation Qualification should be performed. Usually, the system administrator performs this check. Therefore, refer to **Validation and Qualification** ▶ Instruments Installation Qualification in the Administrator Help section for more information. Afterward, perform ▶ Operational and/or ▶ Performance Qualification for the instruments.

The **Qualification** menu in the Chromeleon Browser provides the following options: Instruments PQ and PQ Setup and Instruments OQ and OQ Setup. Select Instruments PQ (or Instruments OQ) to perform the performance (operational) qualification. Select PQ Setup (or OQ Setup) to create the templates required for performing the performance (operational) qualification. Usually, this is necessary only during the initial installation of the system or if the configuration has been changed.

Tip:

Only qualified Dionex service personnel should perform the Performance and Operational Qualification checks. For more information, please contact Dionex Service.

For information about performance qualification, refer to ▶ Operational and Performance Qualification for HPLC Systems and/or ▶ Performance Qualification (PQ) for IC Systems.

In addition, you can perform operational qualification for the ▶ UCI Universal Chromatography Interface. For more information, refer to the UCI Operational Qualification Operating Instructions.
Operational and Performance Qualification for HPLC Systems

Chromeleon provides a datasource with a master template in the Template directory on the Chromeleon software CD. This template is designed for Performance (Operational) Qualification in a standard HPLC configuration. In addition to various sequences, the template contains a Report Definition File (RDF) for OQ and PQ, providing the following pages:

SPECIFICATION: On the SPECIFICATION page, enter the system specifications (instruments, fluidics, and limits).

COLUMN OVEN: The COLUMN OVEN page indicates whether the column oven temperature corresponds to the selected temperature (within the specified limits).

INJ_REPRO_AND_RET_REPRO and ASI_100_REPRO_AND_RET_REPRO, respectively: On the INJ_REPRO_AND_RET_REPRO page, serves for checking the reproducibility of the injector and the retention time. If the result is within the specified limits, the Result column indicates OK.

INJ_CARRY_OVER: The INJ_CARRY_OVER page supplies a measure for the carry over in your system. If the result is within the specified limits, the Result column indicates OK.

INJ_LINEARITY: The INJ_LINEARITY page supplies a measure for the linearity of injection volume and peak area.

PUMP_GRADIENT: On the PUMP_GRADIENT page serves for checking the gradient precision. The limits of the Specification page are included. If the values are within the specified limits, the last column (Result) indicates OK. The Result of all tests column indicates Test passed.

PUMP_GRADIENT_REPRO: The PUMP_GRADIENT_REPRO page serves for checking the gradient reproducibility (with 3 repetitions in this example). The limits of the Specification page are included. If the values are within the specified limits, the last column (Result) indicates OK. The Result of all tests column indicates Test passed.

RI_NOISE_AND_DRIFT and RI_LINEARITY: These pages serve for evaluating the noise, drift, and linearity of the Shodex Refractive Index Detector.
DET_NOISE_AND_DRIFT: The DET_NOISE_AND_DRIFT page serves for checking whether noise and drift in your system correspond to the limits on the SPECIFICATION page. If the values are within the specified limits, the Result column indicates **OK**.

DET_WAVELENGTH: The DET_WAVELENGTH page supplies a measure for the wavelength precision of the corresponding detector.

DET_LINEARITY: The DET_LINEARITY page serves for checking the detector linearity. From five different injections at different concentrations, the correlation coefficient (supplied in %) between the peak height and the concentration is determined. If the value is above the specified limit, Test passed is returned as the result.

RF_DET_NOISE and RF_DET_WAVE: These pages evaluate the noise and the wavelength precision of the fluorescence detector.

Audit Trail: The Audit Trail page displays the audit trail for the analyzed sample.

⚠️ **Caution:**

Do not edit the report pages (except the Specification page), even if editing is possible! Chromeleon automatically reads the corresponding values. Within the report, individual data sheets are very often accessed via references. If you insert or delete lines and columns, these references will be lost. Thus, the calculations will be wrong!

The report **must** be printed as Batch Report from the browser to make sure that, in the report, the data are read in and processed correctly. Select the sequence for which to print the report. **Make sure that no sample is selected.** Select Batch Report on the **File** menu and click **OK** to start printing.

💡 **Tip:**

Enter the actual concentrations of the used standards in the Amount columns of the QNT File for evaluating the detector linearity.

For more information about Operational and Performance Qualification, refer to the Operational Qualification/Performance Qualification Operating Manual that is available from Dionex Service.
Performance Qualification (PQ) for IC Systems

Validation is becoming increasingly important to analytical laboratories. Documented evidence must be provided to demonstrate the integrity of data collected and validate the results obtained on laboratory instrumentation.

The Qualification menu in the Chromeleon Browser includes options for Instruments PQ and PQ Setup. Instruments PQ is used to perform the performance qualification. PQ Setup is used to generate the templates required for performing the performance qualification. (This is generally necessary only after a new installation or after changes to the configuration.) The Chromeleon CD provides a datasource with a master template in the PQ\Templates\PQ directory.

PQ should be performed at regular intervals after the initial installation and Operational Qualification (OQ). Dionex recommends performing PQ every six months. A qualified Dionex Service Representative should perform all tests, in accordance with the instructions in the IC System Operational and Performance Qualification User's Guide. The user's guide is included in the IC OQ/PQ Kit with Test Cells (P/N 057599) and the IC OQ/PQ Basic/Refill Kit (P/N 057608).

The PQ procedure used to qualify Dionex Ion Chromatography Systems meets the requirements established by the National Institute of Standards and Technology (NIST) and the American Society for Testing and Materials (ASTM). This PQ procedure provides qualification testing for ICS-3000, ICS-2500, ICS-2000, ICS-1500, ICS-1000, DX-600, DX-500, DX-320, DX-120, and BioLC systems.

The System Suitability Test (SST)

On the SST tab page in the QNT Editor (see Data Representation and Reprocessing The QNT Editor), define a System Suitability Test (SST) to check whether the quantification method and the PGM File are suitable for analyzing special samples. (For more information, refer to How to ...: Performing Validation and Qualification Defining System Suitability Tests.)

The System Suitability Test can already be performed while the chromatogram is recorded. The corresponding QNT Method needs to be available in the sample list (in the Browser). As Fail Action, select Abort Batch to automatically abort the sample Batch if a test condition is not met.
System Wellness for IC Devices (Overview)

What is System Wellness?
System Wellness monitors the overall "health" of a chromatographic system. It provides built-in diagnostic and calibration features that help prevent unscheduled system shutdowns and assure reliable operation of system devices. Calibration and diagnostic commands are available from Wellness control panels and Help topics are provided for performing the various tasks.

Supported Devices
For System Wellness support, a device must have a version of Moduleware installed that supports System Wellness. The following devices are supported:

<table>
<thead>
<tr>
<th>Device</th>
<th>Moduleware Version Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC Pumps</td>
<td></td>
</tr>
<tr>
<td>GP40/IP20</td>
<td>3.46 (or higher)</td>
</tr>
<tr>
<td>GP50/IP25</td>
<td>3.46 (or higher)</td>
</tr>
<tr>
<td>GS50/IS25</td>
<td>1.00 (or higher)</td>
</tr>
<tr>
<td>Detectors</td>
<td></td>
</tr>
<tr>
<td>AD25</td>
<td>1.02 (or higher)</td>
</tr>
<tr>
<td>CD</td>
<td>1.0.0 (or higher)</td>
</tr>
<tr>
<td>CD20/ED40</td>
<td>3.05 (or higher)</td>
</tr>
<tr>
<td>CD25/ED50</td>
<td>1.05 (or higher)</td>
</tr>
<tr>
<td>CD25A/ED50A</td>
<td>1.00 (or higher)</td>
</tr>
<tr>
<td>ED</td>
<td>1.0.0 (or higher)</td>
</tr>
<tr>
<td>PDA-100 (DX-LAN)</td>
<td>1.04 (or higher)</td>
</tr>
<tr>
<td>PDA-100 (USB)</td>
<td>1.0.0 (or higher)</td>
</tr>
<tr>
<td>Autosampler</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>2.0.0 (or higher)</td>
</tr>
<tr>
<td>AS50 (DX-LAN)</td>
<td>1.05 (or higher)</td>
</tr>
<tr>
<td>AS50 (USB)</td>
<td>1.00 (or higher)</td>
</tr>
<tr>
<td>Eluent Generator</td>
<td></td>
</tr>
<tr>
<td>EG40</td>
<td>2.23 (or higher)</td>
</tr>
<tr>
<td>EG50</td>
<td>2.26 (or higher)</td>
</tr>
</tbody>
</table>
System Modules

<table>
<thead>
<tr>
<th>Device</th>
<th>Moduleware Version Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC20</td>
<td>3.08 (or higher)</td>
</tr>
<tr>
<td>IC25</td>
<td>1.04 (or higher)</td>
</tr>
<tr>
<td>IC25A</td>
<td>1.00 (or higher)</td>
</tr>
<tr>
<td>ICS-90</td>
<td>1.00 (or higher)</td>
</tr>
<tr>
<td>ICS-1000</td>
<td>1.1.0 (or higher)</td>
</tr>
<tr>
<td>ICS-1500</td>
<td>1.1.0 (or higher)</td>
</tr>
<tr>
<td>ICS-2000</td>
<td>1.1.0 (or higher)</td>
</tr>
</tbody>
</table>

System Wellness Features

- System Wellness control panels, which allow easy access to diagnostic and calibration commands and data
- Download of current, previous, or factory calibration data
- Leak detector testing and calibration
- Wavelength verification and calibration for UV and PDA detectors
- Cell calibration for conductivity detectors
- pH calibration for amperometry detectors
- Warning when Flow = 0 while the detector lamp is burning. This is to prevent damage resulting from running the flow cell dry.
- Pressure offset and degas calibration for pumps
- Flow rate calibration for pumps
- Solvent and waste level monitoring

For instructions on setting up and using System Wellness features, refer to How to …: Performing Validation and Qualification Ensuring System Wellness.
System Wellness for HPLC Devices (Overview)

Chromeleon provides several system wellness features for the Summit HPLC modules.

Tip:
The user does not have to calibrate these modules because either they have been calibrated in the factory (e.g., the pump flow) or calibration is performed automatically (for example, for the UV detector via a Holmium Oxide Filter).

<table>
<thead>
<tr>
<th>Device</th>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P680</td>
<td>Leak detector</td>
<td>Reliable operation</td>
</tr>
<tr>
<td></td>
<td>Monitoring of piston seal tightness</td>
<td>Reliable operation</td>
</tr>
<tr>
<td></td>
<td>Pressure limits</td>
<td>Prolongs the life of HPLC columns, reliable operation</td>
</tr>
<tr>
<td></td>
<td>Total workload monitoring</td>
<td>Allows you to schedule the next service date.</td>
</tr>
<tr>
<td></td>
<td>Degasser vacuum level monitoring</td>
<td>Reliable operation</td>
</tr>
<tr>
<td></td>
<td>Active rear-seal wash system</td>
<td>Prolongs the life of the consumable parts</td>
</tr>
<tr>
<td></td>
<td>Monitoring of the liquid level for rear-seal washing</td>
<td>Reliable operation</td>
</tr>
<tr>
<td></td>
<td>Solvent and waste level monitoring</td>
<td>Reliable operation</td>
</tr>
<tr>
<td>ASI-100</td>
<td>Leak detector</td>
<td>Reliable operation</td>
</tr>
<tr>
<td></td>
<td>Injection counter</td>
<td>Allows you to schedule the next service date.</td>
</tr>
<tr>
<td></td>
<td>Needle seal wear monitoring</td>
<td>Allows you to schedule the next service date.</td>
</tr>
<tr>
<td></td>
<td>Rotor wear and stator wear monitoring for the internal motorized switching valve</td>
<td>Allows you to schedule the next service date.</td>
</tr>
<tr>
<td></td>
<td>Needle port wear monitoring</td>
<td>Allows you to schedule the next service date.</td>
</tr>
<tr>
<td></td>
<td>Synchronization of injection and pump cycle</td>
<td>Injection reproducibility</td>
</tr>
<tr>
<td>TCC-100</td>
<td>Gas and leak detectors</td>
<td>Reliable operation</td>
</tr>
<tr>
<td></td>
<td>Column identification features</td>
<td>Tracking and troubleshooting</td>
</tr>
<tr>
<td></td>
<td>Temperature limit monitoring</td>
<td>Tracking and troubleshooting</td>
</tr>
<tr>
<td>Device</td>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>UVD340U</td>
<td>Lamp ignition counter</td>
<td>Allows you to schedule the next replacement date</td>
</tr>
<tr>
<td></td>
<td>Lamp age monitoring</td>
<td>Allows you to schedule the next replacement date</td>
</tr>
<tr>
<td></td>
<td>Minimum lamp intensity monitoring</td>
<td>Reliable operation</td>
</tr>
<tr>
<td></td>
<td>Warning when Flow = 0 when the detector lamp is burning.</td>
<td>Avoids damage resulting from running the flow cell dry.</td>
</tr>
<tr>
<td>System</td>
<td>Documentation when new wear parts have been installed.</td>
<td>Tracking and troubleshooting</td>
</tr>
<tr>
<td></td>
<td>Documentation when the solvent has been changed</td>
<td>Tracking and troubleshooting</td>
</tr>
</tbody>
</table>
Data Representation and Reprocessing

Chromeleon allows you to represent your raw data under various aspects. It depends on the aspect of interest and on the type of data reprocessing you wish to perform, which window or pane is most appropriate. For example, you can reintegrate a chromatogram manually, compare several chromatograms, analyze the peak purity, calculate calibration curves, or search single spectra in a spectra library.

Each operation is displayed in a separate window. Each window is intended for one specific task and has its own window arrangement and menu structure.

Immediately after data acquisition, you can perform certain steps for data reprocessing. You can define these steps in the Program in the PGM Editor; see Post-Acquisition Steps.

You can perform all other steps of data reprocessing at any time. Use the following windows (or panes):

- The Quantification Method
- Integration
- Report Tables
- Calibration (Overview)
- The Printer Layout
- PPA: Peak Purity Analysis
- Spectra Libraries

After the raw data has been acquired, the Quantification Method determines how the data is evaluated. Thus, the QNT Editor with the Integration window is the most important window for data reprocessing.
If, after the analysis, the detection and peak table parameters chosen in the QNT Method prove to be inappropriate for the sample and/or sequence, you can change them in the QNT Editor at any time. You do not need to analyze the corresponding sample again.

All modifications are immediately and globally effective. All modified variables are immediately re-calculated and the new values are displayed on the screen. The modifications are finally accepted by selecting the Save or Save Manipulations command.

If the modified quantification method is saved, the results of all samples evaluated by this method will be adjusted.

Post-Acquisition Steps (PGM Editor)

Immediately after data acquisition, you can perform certain data reprocessing steps. You can use the Post-acquisition steps view to define these steps in the Program via the PGM Editor. (Also, refer to Control The PGM Editor.)

The following data reprocessing steps are available in the Post-acquisition view:

- Arithmetic combination of channels (arithmetic combination of 2D channels - see Combining Channels via Arithmetic Operations)
- Copy Channel (see Copying a Channel)
- Create Fraction Analysis Samples (see How to ...: Collecting Fractions Automatically (Autopurification) Creating Fraction-Type Samples)
- Create Purification Samples (see How to ...: Collecting Fractions Automatically (Autopurification) Creating Preparation-Type Samples)

Tip:

The Create Fraction Analysis Samples and Create Purification Samples options are part of Autopurification. They are visible only if the Purification license is installed and if a connection to the server exists. A connection exists if a PGM File is associated with a timebase, the server on which this timebase resides is running, and the client is connected to this server.
• **Extract ED channel** (for extracting an ED channel – only possible if 3D_Amp data is available)

• **Extract MS channel** (for extracting a Mass Trace - only possible if MS data is available; see How to ...: Using Mass Spectrometers Extracting Mass Traces Afterward)

• **Extract optimum integration path** (for extracting the Optimum Integration Path - only possible if a 3D field is available; see How to ...: Creating and Using Spectra Libraries Selecting the Optimum Integration Path)

• **Extract UV channel** (for extracting a UV channel - only possible if a 3D field is available; the procedure is similar to selecting the optimum integration path)

• **Smooth data** (for chromatogram Smoothing - see How to ...: Working with Chromatograms Performing Data Smoothing)

For more information, refer to How to ...: Creating and Modifying Programs Adding Post-Acquisition Steps.
The Quantification Method

In Chromeleon, all instructions and parameters representing the basis of calculation for the sample evaluation are included in the Quantification Method (QNT File). This refers for example to the following questions:

- Below which height, width, or area a peak will be ignored?
- Which course has the baseline?
- Which peaks are classified as \(\text{Riders} \)?
- What is the \(\Rightarrow \text{Amount} \) of the standard samples?
- Which \(\Rightarrow \text{Calibration Function} \) is used for creating a calibration curve?
- Which peaks are identified by name?

Before the actual analysis, these evaluation parameters are defined in the Quantification method (QNT File).

- Select \textbf{File > New > Method File} to generate a new QNT File.
- Alternatively, select a sequence in the Browser and double-click the corresponding QNT File to open it.
- To open the QNT Editor from a method file, click the \textbf{QNT Editor} icon \(\text{V} \) on the toolbar. This allows you to display the QNT File data of the current sample.

For more information about the QNT Editor, refer to \textit{The QNT Editor}.
The QNT Editor

The QNT Editor allows you to create a method for evaluating chromatographic results of different samples. The QNT Editor usually provides:

- The chromatogram of the current sample
- The calibration curve of the current peak
- Various tab pages:

![Image of QNT Editor interface]

Instead of the calibration curve, you can display the following items:

- **The Trend Plot** (refer to the Control section; similar functionality as the control panel)
- UV spectrum (if available)
- Mass Spectrum (if available)
In addition, you can include report tables in the tab pages.

The QNT Editor is divided in two window sections. The upper section serves for information purposes. To create a QNT File, use only the lower window section.

Upper Pane

The upper pane serves to display additional plots:

- Select **Show Chromatogram** or **Show Calibration Curve** on the **View** menu to enable or disable the display of the chromatogram and/or the calibration curve.
- Press F4 or SHIFT+F4 or select the **Next Chromatogram** or **Previous Chromatogram** option on the **File** menu to toggle between the chromatograms of the individual samples.
- Select the **Show Spectra** option to enable or disable the display of the spectrum of a single peak.

Lower Pane

The lower pane serves to determine the evaluation parameters.

- Select a specific tab to open a worksheet, similar to Microsoft Excel.
- You can freely select the names of the worksheets. Double-click the corresponding name, and enter a new name in the edit dialog box.

For more information, refer to [Function of the QNT Editor](#).

The following worksheets are available by default:

- **The General Tab Page**
- **Detection Parameters**
- **Peak Table, Amount Table, Peak Tracking, and MS Tracking**
- **Calibration Settings**
- **Spectra Library Screening**
- **System Suitability Test**
- **Mass Spectra**
- **UV Spectra**
If you do not need a special tab, select **Select Sheet** on the **View** menu. In the dialog box, clear the check box for the tab to hide. To rename a tab page, double-click the tab and enter a new name.

![Tip:]

*These topics describe the structure and functions of the individual worksheets. For detailed information about how to enter data, refer to **How to …**: [Integrating Chromatograms and Identifying Peaks.]*

Function of the QNT Editor

The QNT Editor allows you to define the quantification method (also referred to as QNT Method or method). The quantification method defines parameters for identifying the peaks within a chromatogram (assigning substances) and for calculating the amount/concentration from the recorded peak areas (calibration).

Peak Identification

Chromeleon supports two ways for identifying detected peaks, i.e., for assigning substance names.

 Generally, peaks are identified by their ⇒*Retention Times*. If a peak elutes within a defined time window, it is assigned the corresponding name, calibration function, etc.

 If many peaks elute in rapid succession or if their order is changed by varying chromatographic conditions (for example, pH value), identification by the *UV spectrum* or the ⇒*Mass Spectrum* is more reliable.

![Note:]

Peak identification by UV spectra requires use of a ⇒Photodiode Array Detector, such as the Dionex UVD 340 or PDA-100, and the appropriate software configuration.

For mass spectra acquisition, a ⇒Mass Spectrometer and the ⇒Xcalibur software are required in addition to the Chromeleon software.
Calibration

The peak table provides all information for the calibration. The Amount columns and the recorded peak areas are used to calculate the offset, slope, and curve parameters.

Tip:

With each new calibration, the results are automatically recalculated for the report as the integration programs update the peak table with the calibration constants and the recorded integration values.

To save you from having to determine the retention time of each peak manually, Chromeleon peak tables can be generated automatically. (For more information, refer to How to …: Integrating Chromatograms and Identifying Peaks Autogenerating the Peak Table.)

The General Tab Page

The General tab page contains global settings for the following worksheets: Peak Table ("Retention Time Settings"), Amount Table ("Amount Interpretation"), and Calibration ("Global Calibration Settings"). Enter a name for the current QNT File in the Title field. The name appears in the Browser and can be included in a Report when printing data of the QNT Editor. Click Unidentified Peaks to determine how to quantify unidentified peaks.
Retention Time Settings

- Select the **Use Recently Detected Ret. Times** check box to use the ⇒ *Retention Time* of the preceding sample to identify a peak via a retention time window (⇒ *Window*). You can also use the retention time of the last standard. Select Standard from the of last drop-down list. Click **Options…** to display more options. (For more information, refer to ⇒ *Use Recently Detected Retention Time*.) This function allows the system to automatically react to changing retention times that are, for example, due to column trends. If the option is disabled, the actually determined retention time listed in the peak table is used for identifying the peak.

- Use the **Peak retention time determination** section to specify how the retention time of peaks shall be determined: Select **Use absolute greatest signal value** to use the retention time of the greatest absolute signal value. Select **Use relative greatest signal value over the baseline** to use the retention time of the greatest relative signal value, i.e., of the largest distance to the baseline.

Dead/Delay time(s)

- Enter the ⇒ *Dead Time* in the **Dead Time** field. The dead time is used for calculating the ⇒ *Capacity Factor* k' and the ⇒ *Kovats Indexes*.

- Select the name of any further detector from the 2nd Detector and/or 3rd Detector drop-down list and enter the ⇒ *Delay Time* in the min field. (Also, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining the QNT Method for Several Detectors.)

Amount Interpretation

- For documentation purposes (exclusively), the physical dimension (amount or concentration) that is used for the amount values can be included in the field ⇒ *Dimension of Amounts*. Amount values are not automatically converted into concentration values or vice versa.

- In addition, the reference injection volume is defined on this page. Either select the injection volume of the first standard (Use inject volume of first standard) or enter any volume via Fixed.
Global Calibration Settings

- Use the **Mode** field to determine how the samples of a sequence are calibrated and on which **Calibration Mode** the calibration is based. For example, this allows you to calibrate certain samples as a group or to include calibration samples for samples that are analyzed later. For more information, refer to How to ...: Integrating Chromatograms and Identifying Peaks [Calibrating].

- When **Auto Recalibrate** is enabled, each modification within a chromatogram such as moving peak delimiters results in automatic recalculation of the **Calibration Coefficient** and all derived calibration data. Disable **Auto Recalibrate** in the peak table to include the c0, c1, c2, and/or c3 columns. Perform recalibration by clicking **Recalibrate**. You may enter the corresponding values manually, as well.

- **Curve Fitting** allows you to determine dependent and independent variables for calibration: Select **Normal** to accept normal evaluation and the axis settings of the calibration curve (x-axis = amount, y-axis = measured value). Select **Inverted** to use inverted evaluation and to invert the axes (x-axis = measured value, y-axis = amount). For more information, refer to How to ...: Calibrating Inverting Dependent and Independent Variables.

Blank Run & Matrix Blank Subtraction

In the Blank Run & Matrix Blank Subtraction section, determine whether the absorption values of a **Blank Run Sample** are considered (= subtracted) in the sample evaluation (= **Blank Run Subtraction**). You can also subtract the results of a single **Matrix Blank Sample**.

- Select **No Blank Run Subtraction** if no correction is to be performed.

- Select **Subtract Recent Blank Run Sample in Corresponding Sequence** to use a finished blank run sample of the current sequence for the subtraction. The chromatogram of the blank run sample is subtracted point by point from the active chromatogram.

- Select **Subtract a Fixed Sample** to perform the correction with any sample. Click **Browse** to search for the sample.
Select **Enable Matrix Blank Subtraction** to enable the subtraction of matrix blank samples. Contrary to the other options the resulting peak areas or peak heights are subtracted.

Also, refer to **How to …: Integrating Chromatograms and Identifying Peaks** Subtracting a Blank Run Sample.

Detection Parameters (Detection)

Detection parameters serve, for example, to recognize, classify, and suppress peaks as well as to determine the baseline.

The default values are normally suitable for optimum integration of 90% of all recorded chromatograms.

In critical cases (for example, with wavelength switching), the user can improve the integration results by modifying the parameters.

Detection parameters are time-dependent. Each parameter can be enabled, disabled, or changed in its value at a specific time. The time when the parameter shall change, the parameter name and its value are entered in the corresponding column of the first line. It is possible to change a parameter several times in succession.

Detection parameters are defined in the QNT Editor. You can either enter them in the table of the **Detection** tab page or define them graphically in the chromatogram.

In the example above, integration is inhibited (**Inhibit Integration** command) at the time \(t = 0.000 \) (On). After three minutes \((t = 3.000) \), integration is enabled again (Off). It is also stipulated that peaks with a minimum area of \(1 \times \text{Signal} \times \text{min} \) only are recognized as peaks.
The last defined value of each parameter is valid until the sample run is completed. After that, the parameters assume their preset (default) values.

If a parameter value changes at a specified time, this is referred to as event. You can have Chromeleon list these events in the report at the time of the change with a short description and the numerical value.

You are not required to enter the events in chronological order. Chromeleon sorts them in ascending order before saving them.

The meaning of the parameter table columns is as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Line number: The number is read-only.</td>
</tr>
<tr>
<td>Ret. Time [min]</td>
<td>Retention time in minutes. The allowed range is 0.000 - 999.999 minutes.</td>
</tr>
<tr>
<td>Param. Name</td>
<td>Parameter name: The dialog box lists all available parameters. To open the dialog box, press the F8 key or double-click the column.</td>
</tr>
<tr>
<td>Param. Value</td>
<td>Parameter value: The dialog box provides exact information about which values are allowed for the selected parameter.</td>
</tr>
<tr>
<td>Channel</td>
<td>Channel: Click the arrow or press the F8 to open the dialog box and select an option, i.e., either All Channels or one of the recorded channels.</td>
</tr>
</tbody>
</table>

Usually, the chromatogram and the report table are immediately updated when the detection parameters have been changed. However, you may disable this function by deselecting Autom. Re-Integerate on the View menu of the QNT Editor. If this option is disabled, save either the QNT Method or select Start Integration on the View menu to start re-integration with the new integration parameters.

Tip:

The setting for this option is saved in the corresponding Report Definition File.
For more information and examples, refer to How to ...: Integrating Chromatograms and Identifying Peaks and Defining Detection Parameters and ⇒Detection Parameters (Overview).

In many cases, it is easier to define the detection parameters graphically in the chromatogram. For more information, refer to How to ...: Working with Chromatograms and Defining Detection Parameters Graphically.

Peak Table, Amount Table, Peak Tracking, and MS Tracking

The peak table contains all parameters required to identify a peak and to determine the amounts of the substances serving as standards. The peak table contains a minimum of 26 columns (the Amount, C0, C1, and C2 columns are duplicated as required, depending on the number of different standards). By default, the peak table consists of four tabs: Peak Table, Amount Table, Peak Tracking, and MS Tracking. Individual columns and entire pages can be displayed and hidden.

The peak table is usually created manually; i.e., the user enters the names and retention times of the expected peaks. In addition, peaks serving as standard peaks must be labeled as such in the ⇒Standard column. The (known) concentration of a standard is indicated as the ⇒Amount in the Amount column. These values form the basis for any type of calibration.

Select Autogenerate Peak table on the Edit menu to automate peak table creation. There are two ways to create a peak table:

- Select Enumerate peaks of current chromatogram to include all peaks integrated in the current sample in the peak table. The peak name is the sequence name plus a consecutive number.

- Select Use Spectra Library Screening results to use reference spectra found via Spectra Library Screening for automatic peak table creation.

In both cases, the values in the Retention Time and Window columns are recalculated and default settings replace all other entries (see How to ...: Integrating Chromatograms and Identifying Peaks Autogenerating the Peak Table).
Caution:

All previous entries are overwritten. Thus, they are lost when you save the peak table or the QNT File!

For more information, refer to *How to …: Integrating Chromatograms and Identifying Peaks* Creating a Peak Table

Peak Identification/Peak Tracking and MS Tracking

Peak identification refers to the following procedure: A previously unknown peak is recognized due to peak-specific properties, such as the retention time or its UV spectrum, and is then labeled with a characteristic substance name.

Peaks are usually identified by their retention times. If you know the exact retention time of a peak, enter the retention time and the Substance name in the corresponding columns of the peak table. If a peak is detected at the specified time, the name is automatically assigned (Fig. a).

To ensure peak identification even if there are retention time fluctuations or neighboring peaks, use the ⇒Window peak table parameter to define a tolerance range (fig. b). If a peak is detected within the tolerance range, it is identified, even if the set (nominal) and the actual retention time do not match exactly (fig. c). If several peaks are detected within this range, Chromeleon identifies the "greatest," the "first," or the "nearest" peak, depending on the selected extension for the window parameter (fig. d).

The retention time value previously entered in the peak table is corrected accordingly!
Peaks can also be identified by the **UV spectrum**. You can use the Spectrum alone, or the spectrum and the retention time (**Spectrum and time**). This method requires a **Photodiode Array Detector**, such as the Dionex UVD 340U. For each peak, the substance spectrum is recorded and compared to the library spectra, using certain criteria (see How to ...: Integrating Chromatograms and Identifying Peaks ▶ Peak Tracking). If the spectra match, the peak is identified. This method is very reliable.

If you use a **Mass Spectrometer**, peak identification can be based on **Mass Spectra**. Use the **MS Tracking** tab page to select different options (see How to ...: Integrating Chromatograms and Identifying Peaks ▶ Identifying Peaks via Their Mass Spectra (MS Tracking)). This method is also very reliable.

Calibration/Amount Table

During calibration, the peak area of a known standard amount is determined. The result is used for calculating the amount of unknown samples via the area to amount ratio.

Enter the amount contained in the different substances. In addition, determine the calibration function and specify whether external and/or internal standards will be used.

This is performed via the **Amount**, **Standard**, **Cal.Type**, and **Integration Type** columns in the **Amount Table** and/or **Peak Table**. For a description of the columns and for details on the required column input, refer to How to ...: Calibrating:

▶ Entering Amount Values (Amount Column)
▶ Selecting the Standard Method (Standard Column)
▶ Selecting the Calibration Function (Cal. Type and Int. Type Columns)

Tip:

For background information about calibration, refer to Theory of Calibration ▶ Calibration (Overview). For information about how to perform calibration, refer to How to ...: Integrating Chromatograms and Identifying Peaks ▶ Calibrating.
Calibration Settings (Calibration)

In the simplest case of a chromatographic analysis, first one or several standard samples and then the unknown samples are analyzed. All samples of a sequence are evaluated based on the same standard samples. If the quality of the column changes between processing the first and the last sample, this will not be considered.

That is why Chromeleon allows sample evaluation via specific patterns or based on any selected standard samples. The settings are determined via the \textit{Calibration Mode} on the General tab page of the QNT Editor.

The \textbf{Calibration} tab page indicates which standard samples are used for calibrating the current sample. When you change from the current sample to another sample by pressing the F4 or SHIFT+F4 keys, the list of the displayed standard samples is updated.

If you notice that a specific standard sample falsifies your calibration results, you can disable this sample in the \textit{Enabled} column. The standard sample is then excluded from the calculation. The corresponding calibration points are then highlighted in the curve by a different color.

For more information, refer to How to …: Calibrating Disabling Calibration Samples.

Spectra Library Screening

To identify substances, spectra can be compared to library spectra. The spectra search can be performed via the \textbf{Spectra Library Screening} sheet of the QNT Editor. For more information about Spectra Library Screening, refer to How to …: Displaying and Using UV Spectra Searching Reference Spectra.

The System Suitability Test

The aim and objective of the \textit{System Suitability Test (SST)} is to ensure that the operational conditions required for a specific measurement are achieved. Specify the conditions for the SST on the \textbf{SST} tab page in the QNT Editor. For more information about System Suitability Testing, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining System Suitability Tests.
Mass Spectra (MS, MS Tracking)

If you have a Thermo Finnigan Mass Spectrometer installed, you can acquire mass spectra using Chromeleon. For more information about how to install the spectrometer and acquire data, refer to How to: Using Mass Spectrometers.

In HPLC MS, mass spectra especially serve for peak identification. Using mass spectra for identifying substances is via the MS Tracking tab page. For more information, refer to How to: Integrating Chromatograms and Identifying Peaks: Identifying Peaks via Their Mass Spectra.

As MS chromatograms normally show increased noise, you have to process Mass Spectra before you can use them. On the MS tab page, define the number of single peak spectra to be averaged. Also, define how many background spectra shall be aggregated into a total background spectrum that is then subtracted from the averaged peak spectrum. For more information, refer to How to: Using Mass Spectrometers: Processing Mass Spectra.

UV Spectra

On the UV tab page, you can process UV spectra before you use them. Define the number of single peak spectra to be averaged. Also, define how many background spectra shall be aggregated into a total background spectrum that is then subtracted from the averaged peak spectrum. For more information, refer to How to: Displaying and Using UV Spectra: Processing UV Spectra.
Integration (Overview)

The chromatographic process of converting peak areas below peaks in amount or concentration values is referred to as integration.

Amount and concentration values are calculated based on the calibration, which supplies the calibration curve and the Calibration Coefficient. (For more information about calibration, refer to Theory of Calibration Calibration (Overview).)

To calculate the amount concentration for a single peak area, the calibration coefficients are inserted in the Formula for Amount Calculation. Chromeleon automatically performs this process for all peaks found.

It depends on the Quantification Method (QNT File) specified for each sample before the analysis how many peaks are detected and whether at least part of these peaks can be identified. The results of the area calculation and peak identification processes are represented graphically in the Integration window (chromatogram) and as a table (Report) on the Integration plot.

For more information, refer to:

The Integration Window
Report Tables (Overview))
The Calibration Curve
The Integration Window

Chromatographic results are displayed in the Integration window. In addition, you can use the window to reprocess single chromatograms. Usually, the following items are displayed:

- The chromatogram of the current sample
- Various report tables

In addition, you may display:

- The calibration curve of the current peak (see the image above)
- The Trend Plot (refer to the Control section; similar functionality as in the control panel)
- UV spectrum (if available)
- Mass Spectrum (if available)
Settings in the Integration window are saved together with the Printer Layout in the Report Definition File (RDF).

For more information, refer to:

- Opening a Sample
- Operation
- Manual Re-Integration
- Chromatogram Comparison
- Data Smoothing
- Peak Ratio
- The UV Spectra Plot
- The Mass Spectra Plot

Opening a Sample

When you open a sample, this action automatically opens the integration method window and displays the sample chromatogram. There are three options:

- Select a sample and select Open on the File menu, or
- Double-click a sample of a specific sequence in the Browser, or
- Select a sample in the Browser, right-click to open the context menu, select Open, and then select a channel of the sample.

Samples are usually opened after they have been completely processed. However, you may open samples while they are being analyzed, that is, while they are in the Running Status, provided that a certain amount of data has already been acquired. Depending on the Step and other detector settings, the sample must have run for several minutes. There are two ways to open a running sample:

- In the Browser, using the different options described above, or
- On a Control Panel, by selecting Integrate on the View menu.
Modifying the Appearance

You can change the appearance of each chromatogram by enabling and disabling the display of various elements and by modifying them.

- Double-click a peak to display the Peak Properties.
- Draw a frame around the chromatogram section to be enlarged.
- Select Decoration on the View menu to modify the window background, the different axes, the layout of individual peaks as well as the color, shape, and size of their captions.
- Select Spectra Tool on the context menu (or click the corresponding icon on the Integration Toolbar) to display a spectrum from the chromatogram at time t. When the spectrum symbol is added to the mouse pointer, you can click anywhere to extract and display a spectrum on the spectra plot if the corresponding data exists. A minimized representation of the spectrum itself is displayed in the chromatogram. To overlay single spectra, hold down the SHIFT key and repeat the operation. Alternatively, select Overlay Spectra on the context menu. Hide Time Spectra will remove the overlaid spectra.

Opening Additional Window Sections

Select one of the following commands to display more window sections:

- Select Split Zoom on the View menu to split the window. By drawing a frame, you can zoom a window section. The left window shows the entire chromatogram and the frame; the right window displays the zoomed section. Use the mouse to move and position the frame in the left window section. The shape of the mouse pointer (➕) indicates that this mode is enabled. You can also draw a new frame at any time.
- Select Report on the View menu to display the integration report (see Report Tables The Integration Report).
- Select Show Spectra on the View menu to display the peak spectrum of the currently selected peak (see The Spectra Plot).
- Compare two chromatograms by enabling the display of an additional chromatogram (see Chromatogram Comparison).
Manual Re-Integration

Chromeleon largely automates sample integration. However, in special cases, the user may prefer to perform the changes manually. Chromeleon allows you to move peak delimiters manually, to insert and delete peaks, or to modify the baseline, etc.

Select the Automatic Tool on the context menu to perform these changes directly in the chromatogram. The shape of the mouse pointer indicates which operation can be performed.

- Move left or right peak delimiter
- Change baseline point (left/right/center)
- Move baseline point (left/right/center)
- Move baseline segment
- Move Detection Parameter
- Insert peak
- Zoom out an area
- Display UV spectrum
- Operation not possible

Select the individual commands such as Baseline Tool, Insert Peak Tool, or Zoom Tool, if you only need a specific scope of functions. For more information about the operations that can be performed, refer to How to …: Working with Chromatograms Manual Re-Integration.

Tip:

If manual modifications are performed, display the integration report to see the numerical results (see Report Tables The Integration Report).
Chromatogram Comparison

The most exact method to compare two or more samples or chromatograms is to compare their numerical results. However, in many cases, it may be sufficient to overlay the chromatograms. This is referred to as a chromatogram comparison.

What can be compared?

Chromatogram comparison always compares single channels. It is irrelevant whether these channels are from the same sample or from different samples. Theoretically, an unlimited number of chromatograms can be displayed simultaneously in Chromeleon.

However, the presentation becomes confusing when many chromatograms are displayed. That is why Chromeleon prompts the user to confirm that more than 20 chromatograms shall be displayed. This is to prevent that too many chromatograms are displayed due to an operator error, which may result in a decrease of system performance.

How are chromatograms compared and displayed?

To compare chromatograms, display them in the Integration window. One chromatogram is the active chromatogram. To make a chromatogram the active chromatogram, select it with the mouse. Only for the active chromatogram, additional information, such as the decoration, etc. is displayed. The names of all chromatograms displayed are indicated above the Integration window. The name of the active chromatogram is written in a different color. Click the name of any chromatogram to select it as the active chromatogram.

Select Decoration on the context menu to edit the appearance of the window and the active chromatogram.

How do I select the chromatograms or channels to be compared?

- Select one or several samples in the Browser and drag them into the open Integration window. Chromeleon automatically attempts to load the Channel of the current sample. If this is not possible, for example, because the channel does not exist, the system loads the default channel. The default channel is the first channel that appears in the list when you open a sample. (Select Open on the context menu in the Browser.)
• Select Add Overlay on the File menu to display a specific channel of any sample in an opened integration window.

• Select Open > All Channels to compare all channels of a single sample.

• Select Compare to compare a specific channel in several selected samples.

• Perform a query to specifically compare samples with certain properties.

• Hold down the CTRL key and click the Next Chromatogram icon to display the chromatogram of the next sample in addition.

• Hold down the CTRL key and click the Previous Chromatogram icon to display the chromatogram of the previous sample in addition.

• Hold down the CTRL key and click the Next Channel icon to display the next channel of the same sample in addition.

• Hold down the CTRL key and click the Previous Channel icon to display the previous channel of the same sample in addition.

For more information, refer to How to …: Working with Chromatograms Comparing Chromatograms.

Placing chromatograms and channels in relation to each other

External factors such as the flow rate, solvent, column quality, detector amplification, etc. considerably influence the appearance of the chromatogram.

As you cannot modify these conditions later, other ways must be used to perform the comparison as exact as possible. This is achieved by adapting the position and the size of a chromatogram to match another. Chromeleon provides several options. You can:

• Assign chromatograms an offset in x- and y-direction.

• Normalize the chromatogram time, i.e. you can overlay the chromatograms at a specific retention time.
• Normalize the peak height, i.e., you can adjust the height of a specific peak.
• Stretch and compress chromatograms.
• Subtract chromatograms from each other.

Select Decoration on the context menu of the active chromatogram and enter the settings in the Comparison tab page. For more information, refer to How to …: Working with Chromatograms Comparing Chromatograms.

Data Smoothing

Data smoothing applies a digital filter to sample data to reduce signal noise and helps improve chromatogram appearance and reproducibility of peak baselines. Data smoothing is performed in the integration window. (For MS chromatograms, data smoothing is defined in the PGM File or during Mass Trace extraction.) After smoothing, the smoothed chromatogram is displayed overlaid over the original chromatogram. The original sample data file is not altered and the smoothed data file is stored separately.

Filter Types

The Savitzky-Golay filter smoothes to least-squares fit, using a weighting function based on second-degree and third-degree polynomials. Savitzky-Golay smoothing is useful for reducing high-frequency noise of a data set that is continuous (such as a chromatogram) without significantly degrading the underlying signal.

The Moving Average (= Boxcar) filter is a simple algorithm that produces a set of output values in which each output value is equal to the average of n points centered around the corresponding input value, where n represents the filter size. Because the Moving Average filter equally weights each point, its ability to discriminate between noise and signal is limited.

The Olympic filter is very similar to the Moving Average filter, except that the maximum and minimum points of each input data set are rejected before the average is calculated. This provides better rejection of impulse noise (spikes) than the moving average filter.
In addition, the **Gaussian** filter is available for acquiring MS chromatograms and extracting a mass trace (in the Mass Spectra window). This filter applies the Gaussian distribution for chromatogram smoothing.

Filter Size

Filter size is the number of input data points used to generate each output data point. The filter size is an odd number between 5 and 999. Use a narrow filter size if desired peaks are narrow, and a wider filter size for wider peaks. As a rule of thumb, select a filter size that approximately equals the peak's half width. Note that too narrow a filter results in insufficient smoothing while too wide a filter can lead to distorted data.

Tip:

Distortion of data during data smoothing mainly affects the peak height. Therefore, it is generally better to evaluate smoothed chromatograms by area rather than height.

Iterations

If a filter is applied several times, by far the highest smoothing result (>95%) is achieved when the filter is applied the first time. Thus, normally a single smoothing step is sufficient. However, applying a narrower filter multiple times often provides improved noise reduction without the signal degradation that can occur when using a wider filter size. This requires additional processing time, however, so a wider filter size may be preferable if its results are acceptable.

For additional details, refer to How to …: Working with Chromatograms

Performing Data Smoothing.

For MS Chromatograms, refer to How to …: Using Mass Spectrometers

Extracting Mass Traces afterward.
Combination of Channels

Chromeleon allows you to combine two 2D channels using arithmetic operations. Each data point is created by combining the associated two data points from the existing channels (i.e., the data points at the corresponding time), using the desired operation. The resulting channel is a 2D channel, too.

Note:

If there is a data point for channel A at a specific time but not for channel B, the missing data point is calculated by linear interpolation. That is why the resulting chromatogram may be shorter than the two original chromatograms.

You can combine channels:

- In the chromatogram: The resulting channel is calculated immediately.
- As Post-Acquisition-Step in the PGM Editor: The resulting channel is calculated immediately after data acquisition is complete.

Arithmetic combinations are not restricted to chromatograms in the strict sense. They can be used for all 2D channels, except for temporary channels.

Peak Ratio

If the baseline-corrected signals of two channels (of the same sample!) are related to each other, a rectangular curve results. This curve is referred to as peak ratio. It is based on the observation that the ratio between two detector signals must be constant, as according to the Lambert-Beer law the detector signal (S) is always proportional (c1) to the concentration (K) of a dissolved substance.

\[S = c_1 \times K \]

If the quotient q is formed of the two channels, the substance concentration K is reduced. The quotient now only depends on the ratio of the two wavelengths, and not of the time.

\[q = \frac{S_1}{S_2} = \frac{c_1(\lambda_1)}{c_2(\lambda_2)} \]
If q is entered against the time, the (theoretical) result for each peak of the sample is a horizontal line of the height \(c_1(\lambda_1)/c_1(\lambda_2) \).

The baseline and the \(\Rightarrow \text{Peak Purity Threshold} \) parameter determine the width of the rectangle. The ratio is only formed where both (!) peaks have a baseline and where the intensity of both (!) peaks is above the defined peak purity threshold. Thus, the range to be actually overlaid (= width of the rectangle) is the intersection of the baseline and Peak Purity Threshold condition. The default Peak Purity Threshold value is 10% of the peak maximum. You can change this value in the QNT Editor.

The rectangle heights of two adjacent peaks differ if the corresponding peaks have different spectra and if the two wavelengths are selected so that the absorption quotient is significantly different.

Consider the following limitations and requirements:

- The detector may not drift.
- The correlation only applies to the linear range of the Lambert-Beer law (<2000 mAU).
- The solvent composition may not be altered (isocratic conditions).
- The solvent only slightly contributes to the absorption. Baseline correction allows you to eliminate the solvent absorption.

Note:

A peak ratio can only be formed with the signals of the same detector.

Forming the Peak Ratio

- In the Integration window, overlay two channels of the same sample, for example, by simultaneously clicking the Next/previous channel icon while pressing the CTRL key.
- Select Decoration on the context menu to open the Chromatogram Decoration dialog.
- Under Peak Decoration, select the Peak Ratio check box.

In addition to the two chromatograms, a rectangle curve should appear in a different color should appear in any place in the Integration window where two peaks are overlaid.
Result

A regular rectangle shape, as shown at 12.70min in the illustration, can serve as a criterion for evaluating the peak purity. The more the curve deviates from the rectangle shape, the higher is the probability that the overlaid peaks do not originate from the same substance. If the rectangle slightly overshoots on the right or on the left, this is tolerable due to the lower signal intensity at the peak start and the peak end.

Select the Peak Ratio Mean Value and RSD Peak Ratio report variables from the Peak Purity and Identification category to numerically express the result of the peak ratio.

The UV Spectra Plot

Overview

The Spectra Plot enables the display of UV spectra. The prerequisite for the spectra plot is that the corresponding raw data is available. Raw data is generated by recording a 3D field, using a Photodiode Array Detector. Open the spectra plot from the Integration method.

- To open the spectra plot window, select Show Spectra on the View menu or click the following icon.
The representation of a spectrum in the Spectra Plot is usually (height) normalized: The height of the spectrum is represented in percent. Thus, it is independent of the concentration (also, refer to \textit{Normalization}). As a default, normalization is by the greatest relative maximum within the spectrum.

Normalization allows you to objectively compare two spectra of different concentrations. If spectra of the same peak, but with different peak heights are overlaid, these will generally coincide despite the differences in concentration.

- Select Decorations on the View or context menu. On the Frame & Axes tab page, determine the type of normalization that shall be applied to the spectrum.

Normalized spectra representation allows you to perform the following tasks:

- Compare two spectra such as a standard and a sample
- Determine the number and position of minima and maxima, even with less distinct spectra at low concentrations
- Select an appropriate type of normalization
- Enable or disable baseline correction
- Determine exact integration limits by checking peak purity at various wavelengths and peak heights
- Identify components

Displaying Spectra of one Peak

- In the chromatogram plot, select the peak for which to display the peak spectrum (= spectrum in the peak maximum).

- If several peak heights were enabled on the Peak Spectra tab page in the Decoration dialog box of the spectra plot, the spectra of different peak heights are simultaneously displayed when you click the peak.
Displaying any Spectra of a Chromatogram
To extract any spectra of a chromatogram via mouse-click, follow the steps below:

- Select **Tools** on the context menu and enable **Spectra Tool** option or click the corresponding icon on the **Integration Toolbar**. A spectra symbol that is added to the mouse points indicates that the mode has been changed.

- Click anywhere in the chromatogram to display the corresponding spectrum.

- Repeat the operation while pressing the SHIFT key to overlay several spectra.

Displaying Spectra of Different Samples
To objectively compare spectra of different samples:

- Select **Decoration** on the context menu of the spectrum to open the **Decoration** dialog box and select the **Peak Spectra** tab page.

- Select the **Retention time spectrum of a fixed sample** option and click **Browse** to navigate to the desired sample.

- Alternatively, you may also use the retention time spectrum of the last standard (= **Retention time spectrum of recent standard**), the reference spectrum of the peak table (= **Reference spectrum in corresponding peak table**), or any spectra that was found during library screening (**Spectra library screening result**).

Match Factor, Difference Spectra, and 1st and 2nd Derivative of Spectra
As soon as two or more spectra are represented on the spectra plot, a frequent question is the similarity between the various spectra.

The similarity is indicated by the Match Factor, the formation of difference spectra or by representing the first or second derivative of a spectrum.

- Select **Decorations** on the **View** or context menu of the spectrum, and then select the **Show match** check box on the **Label** tab page. Chromeleon returns a value for each represented spectrum specifying the match degree relative to the main spectrum (0 = no match; 1000 = perfect match).
• On **Analysis** tab page, select whether the difference spectrum or the first or second derivative of a spectrum shall be displayed in a second window in addition to the actual spectra.

In the case of the match factor and the difference spectrum, the question which spectrum is considered a main spectrum is especially important, as this is the basis for the comparison and for all calculations.

The main spectrum is usually the peak spectrum extracted at the retention time. If there is no peak spectrum, distinguish the following cases: If you used the Spectra Tool to extract the single spectra from the chromatogram, the spectrum that was extracted first is the main spectrum. If the spectra were automatically extracted at different peak heights (see **Displaying Spectra of one Peak**), the spectrum with the "oldest" retention time is considered the main spectrum. When representing difference spectra, the **Difference to** entry indicates the basis for calculation.

Comparing a Spectrum with Spectra of an Existing Spectra Library

To clearly identify a spectrum, compare it to a reference spectrum stored in a Spectra Library.

• On the context menu, select **Library Search** to start the comparison.

 The Spectra Library window lists all library spectra with a minimum similarity to the (normalized) spectrum. For more information about how to perform library screening, refer to **How to ...: Displaying and Using UV Spectra**, Searching Single Reference Spectra.

If the spectra plot contains more than one starting spectrum, Chromeleon always uses the spectrum displayed first and then compares it to library spectra.

The Mass Spectra Plot

General

The Mass Spectra Plot enables the display of Mass Spectra. The prerequisite for opening the mass spectra plot is that the corresponding raw data recorded by a Mass Spectrometer are available. Open the mass spectra from the Integration method.

• To open the spectra plot, select **Show Mass Spectra** on the View menu or click the following icon.
The representation of a mass spectrum is height normalized: The height of the spectrum is represented in percent and thus independent of the concentration (also, refer to Normalization). As a default, this normalization is by the Base Peak of the spectrum.

Normalization allows you to objectively compare two spectra of different concentrations. If mass spectra of the same peak, but from different peak heights are overlaid, these will generally coincide despite the differences in concentration. Due to their higher information density, mass spectra are displayed in Chromeleon below each other, which is contrary to the display of UV spectra that are overlaid.

Displaying Mass Spectra of one Peak
- In the chromatogram plot, select the peak for which to display the mass spectrum (= spectrum in the peak maximum).
- If several peak heights were enabled on the Peak Spectra tab page in the Decoration dialog box of the mass spectra plot, the mass spectra from different peak heights are displayed simultaneously when you click a peak.

Displaying Mass Spectra of Different Samples
To objectively compare mass spectra of different samples:
- Select Decoration on the context menu of the spectrum to open the Decoration dialog box and select the Peak Spectra tab page.
- Select the Retention time spectrum of fixed sample option and click Browse to navigate to the desired sample.
- Alternatively, you may also use the retention time spectrum of the last standard (= Retention time spectrum of recent standard), the reference spectrum of the peak table (= Reference spectrum in corresponding peak table), or any spectra that was found during library screening (= Spectra library screening result).
The Autopurification Tray View

Chromeleon supports two Autopurification tray views: Inject Trays and Fraction Racks. To open the associated view and display the different samples and/or fractions, click the related button:

- opens the Inject Trays view, showing the analytical and preparative samples.
- opens Fraction Racks view, showing the tubes of the fractionated samples.

The default setting is that an overview of the single racks is displayed below the title line, also showing the racks that do not contain samples and/or fractions. The racks and their samples are displayed below this general overview. The samples and/or fractions are color-coded, based on their Type (Sample Type) and Status.

![Autopurification Tray View](image)
Report Tables (Overview)

The report (or on-screen report, to distinguish it from the Printer Layout that defines the printout) includes several graphics and tables for displaying all relevant sample data on the screen. The report is saved in the Report Definition File (RDF), together with the printer layout.

To open the report tables, either select Show Report on the View menu or click the following icon: . The report is usually displayed in the Integration window. However, you can also have the report tables displayed in the QNT Editor to directly check the effects of the changes made in the QNT Method. (For more information about the editor, refer to Data Representation and Reprocessing The QNT Editor.)

You can add, edit, or extend the individual report tables as required. Chromelion provides the following tables when you select Insert Report on the Table menu:

Result Tables

Peak Results

- These reports combine data of the current sample.

Calibration Report

- Displays all variables required for creating a calibration report.

Integration Report

- Displays all variables required for creating an integration report.

Sample Results

- These reports combine data of the entire sequence.

Calibration History

- Displays all variables documenting the course of the calibration.

Peak Summary

- Displays those variables for the entire sequence that are required for creating a peak summary.

SST Summary Report

- Documents the results of the System Suitability Test for the entire sequence.
<table>
<thead>
<tr>
<th>Report Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Trails</td>
</tr>
<tr>
<td>Audit Trail (Commands, SST, ...)</td>
</tr>
<tr>
<td>MS Instrument Info Report</td>
</tr>
<tr>
<td>MS Status Log Report</td>
</tr>
<tr>
<td>MS Tune Data Report</td>
</tr>
<tr>
<td>MS Instr. Method Report (XRaw)</td>
</tr>
<tr>
<td>Spectra Results</td>
</tr>
<tr>
<td>MS Raw Report</td>
</tr>
<tr>
<td>Fraction Collection Results</td>
</tr>
<tr>
<td>Fraction Report</td>
</tr>
<tr>
<td>Tube Report</td>
</tr>
<tr>
<td>QNT Tables</td>
</tr>
<tr>
<td>Detection Parameter</td>
</tr>
<tr>
<td>Peak Table</td>
</tr>
<tr>
<td>SST Table</td>
</tr>
<tr>
<td>PGM Tables</td>
</tr>
</tbody>
</table>
Miscellaneous Tables

- **Database Query**: Inserts any kind of database queries into the report.
- **History Report**: Displays all variables required for creating a History report.

Tip:
Select **Print** on the **File** menu to print chromatograms, spectra, report tables, etc. at any time. The pages defined in the Printer Layout will be printed. This also applies when you print from an on-screen report.

For more information about some of the reports mentioned above, refer to:
- The Integration Report
- The Calibration Report
- The Peak Summary Report
- The History Report
- Special Report Tables

For information about how to create a report, refer to **How to ...:**
- Creating and Using Report Tables.

The Integration Report

The Integration Report (or more precise, the Integration Report Table) is usually the first table of a report. For example, the `defltdad` Report Definition File (RDF) includes the following integration report tables:
- Integration
- Peak Purity
- Peak Analysis
Contents

- The integration report contains all relevant numeric data for the active sample, such as the retention time, peak area and height, amount, peak type, and other ⇒ Peak Variables.

- The individual columns contain variables of the ⇒ Peak Results report category. Nevertheless, you can add more columns from other ⇒ Report Categories.

- If the chromatogram is modified, for example, by manual re-integration of a peak, this is reflected immediately by the changed report data.

- Via the Windows clipboard, data of the report table can be integrated directly in other Windows applications.

- In the report, the values of different cells are added, subtracted, multiplied, or divided in the same way as in MS Excel. Enable Layout Mode on the Table menu.

Formatting

You can adapt the integration report to your requirements by selecting the corresponding format commands on the context or Table menu. (The format commands are only available after you have enabled Layout Mode on the Table menu.) For more information, refer to How to …: Creating and Using Report Tables.

The Calibration Report

The Calibration Report (or more precise, the Calibration Report Table) is very similar to the ⇒ Integration Report:

- Similar to the integration report, the calibration report displays data of the current sample. However, in the calibration report table, this data refers to the calibration of the current sample.

- The individual columns contain variables of the ⇒ Peak Calibration report category. Nevertheless, you can add more columns from other ⇒ Report Categories.
• The calibration report table allows you to understand changes made during the calibration (in the QNT Method).

For more information, refer to How to …: Creating and Using Report Tables.

The Peak Summary Report

Commonly used reports such as the Integration Report and the Calibration Report contain data of one sample only. In case of a chromatogram comparison, only the data of the selected (active) chromatogram is displayed.

Comparing peak data from different samples is possible via the (peak) Summary report table.

Sample Selection

• If one sample is selected and opened from the Browser, the peak summary is based on the corresponding Sequence.

• If several samples are selected in the Browser, these selected samples only will be part of the Summary report table.

• If a Query is started in the Browser, the search result forms the basis for the Summary. In this way, it is possible to compare peaks from different sequences.

Peak Selection

• Normally, no peak is selected in the chromatogram of the sample. The Peak Summary Report therefore contains no entries. All fields are marked n.a. (not available) or Div/0 (Division/0). Only when a peak is selected manually within a chromatogram, the Peak Summary Table receives entries. As soon as this is performed, this peak is searched in all previously selected samples. The search result is displayed in the Summary Report.

• For each Peak Summary column (!), it is possible to define whether the values of the currently selected (Selected Peak) or one specific peak (Fixed Peak) are displayed. Access these options by selecting Column Properties on the context menu.
If the currently selected peak is an identified peak, that is, if the peak is labeled with its name in the peak table, all involved samples are searched for this peak name. The corresponding values of all found peaks are displayed in the Summary.

If the currently selected peak is a non-identified peak, that is, if the peak is not labeled with its name in the peak table, a “fixed time window” (± 2.5% of the detected retention time) is calculated for this peak. This calculated time window appears in the header instead of the peak name. If two or more peaks are detected in the time window, the peak that is nearest to the specified retention time will be selected.

Creating a Summary

- Double-click one of the samples to open the Integration window.
- Display the Report and select the default Summary worksheet available Chromeleon. It contains a selection of the most important default Peak Variables. For each sample that is part of the Summary, a separate line is reserved in the report.
- If the default Summary Report is not available, a new worksheet can be defined. Proceed as described in: How to …: Creating and Using Report Tables Adding and/or Renaming a Worksheet.

As in all reports, the currently selected sample in the chromatogram window is highlighted in the Summary Table.

The History Report

The standard Report Definition Files (RDFs) include both, an Integration Report and a Calibration Report but no history report table. However, you can easily include the History Report table (see How to …: Creating and Using Report Tables Adding and/or Renaming a Worksheet).
Contents

- By default, the history report displays the History of the current sample. In order to display the histories of other objects, select Table Properties on the context menu and make your selection on the History Objects tab page.

- In addition, you can limit the displayed history as to time and/or certain actions and/or users.

Formatting

- You can sort the history report entries according to specific details, such as Time, Name, Version, etc.

- The history mode includes a special Layout Mode. Enable this mode on the Layout tab page by selecting the Design template mode check box.

Special Report Tables

The standard Report Definition Files (RDFs) include both, an Integration Report and a Calibration Report but none of these special reports. However, you can easily include them (see How to ...: Creating and Using Report Tables Adding and/or Renaming a Worksheet).

MS Reports

- **MS Instrument Info Report**: Information about the Mass Spectrometer.
- **MS Instrument Method Report**: MS method.
- **MS Raw Report**: Raw data of the current Mass Spectrum.
- **MS Status Log Report**: Mass spectrometer settings.
- **MS Tune Data Report**: Tune data of the Xcalibur raw data file.

Note:

If you do not have the MS Control option enabled on your PC, MS reports will not be displayed in the Insert Report dialog.
Other Special Report Tables

- **Database Query**: Results of a database query.
- **Detection Parameter Report**: Indicates the detection parameters.
- **Program Report**: Program of the current sample.
- **SST Report**: System Suitability Test.

Note:

All MS report tables as well as the **Database Query**, **Detection Parameter**, and **Program** report tables comprise only the default columns. It is not possible to add more columns.
The Calibration Curve

The Calibration Curve method window allows you to evaluate the calibration. For more information about the calibration, refer to Theory of Calibration (Overview).

- Open the window from a different method, for example, from the Integration window, by selecting Show Calibration Curve on the View menu.
- Or else, click the corresponding icon on the toolbar.

As described for the QNT Editor and Integration methods, various window sections can be displayed. The window arrangement usually comprises the Chromatogram, Calibration curve, and Report windows.
• Press F4 or SHIFT+F4 to change to the chromatogram of a different sample. Generally, all chromatograms of a sequence can be thus displayed on after the other.

• In the chromatogram, select the peak for which you want to display the calibration curve. The peak will be indicated by a different background color.

• The Calibration tab page of the Report window shows the most important calibration data, such as ⇒ Calibration Type, number of calibration points, ⇒ Relative Standard Deviation (Rel.Std.Dev), ⇒ Correlation Coefficients as well as the following calibration coefficients: ⇒ Offset (c0), ⇒ Slope (c1), ⇒ Curve (c2), and ⇒ Cubic Coefficient (C3). In addition, you can display, for example, the ⇒ Variance or ⇒ Standard Deviation (Std.Dev).

• Select Decoration on the context menu to change the colors and the captions of various window elements.

• Select Column Properties or Table Properties on the context menu to change the contents and the layout of the table. For more information, refer to How to …: Creating and Using Report Tables.

For more information about the calibration curve, refer to How to …: Displaying Calibration Curves.

Note:

We would like to point out that the default use of the report variables in the Integration, Calibration, and Peak Summary reports is not binding in Chromeleon. You can freely configure each of the three reports, use any variables, or rename the report as desired.
The Printer Layout (Overview)

The increasing number of samples makes printing analytical results a complex and time-consuming procedure, especially because results are not only required on hardcopy but in all types of presentations.

Chromeleon considers this and emphasizes flexible report generation that meets all your requirements. The Printer Layout is the appropriate tool for this.

With each Chromeleon installation, different Report Definition Files (RDFs) are stored in the Dionex Templates > Reports directory of the client PC.

- Click the icon on the Method toolbar to open the Printer Layout.

Note:

For more information about the printing options, refer to Basic Operation Printing.

The Printer Layout represents a type of folder for various worksheets. Each sheet describes one or several printed pages (size of the chromatogram, where to position it, columns included in the numerical report, results represented in a chart, what is included in headers and footers).

The Printer Layout is saved together with the (on-screen) report of the Integration Window in the Report Definition File. With an increasing number of worksheets in the Printer Layout of a Report Definition File, the printing possibilities increase as well. For example, if you want to print all samples of one sequence, it may be a good idea to present the results of a calibration sample differently from the unknown samples, and the lines of a PGM File or summary report in yet another way. Specify which sample or file type should be printed and the worksheet to be used.
The Printer Layout of the default.rdf report definition file contains, for example, the Integration, Calibration (Curr.Peak), Calibration (Batch), Peak Analysis, Summary, and Audit Trail worksheets. Thus, it covers all default requirements.

For more information, refer to:

- Appearance and Function
- Creating Your Own Templates and Worksheets
- Printing

For information about how to create a printer layout, refer to How to ...:

- Preparing the Printout. Also, refer to Specifying the Printout for printing your results.

Appearance and Function

Important features of the Printer Layout are:

- The appearance and the structure are similar to Microsoft Excel. The functional scope is similar to Excel as well. To enter formulas and to create diagrams, use the Report Publisher, which is a Chromeleon add-on product.
- Toggle between the individual sheets of a Printer Layout by clicking the tabs provided on the bottom of the window bottom.
- Double-click the name of a tab to change its name, for example, to change Integration to Integration Special.
- Each sheet consists of a large number of columns (256) and lines (16000).
- Select Insert Row(s)/Column(s) or Delete Row(s)/Column(s) to insert columns or to delete columns or lines on the worksheet.
- Single areas or cells of a worksheet can be "filled" using the Windows clipboard (Copy and Paste commands) or via the Insert command on the context menu. (For more information, refer to The Printer Layout Creating Templates and Worksheets.)
• If the **Layout Mode** is enabled on the **Edit** menu, **Chromeleon** objects are marked by a red triangle. Chromatograms, tables, calibration curves, etc., have a red triangle in all four corners. For cells with single variables, the red triangle appears only in the upper right corner of the cell.

Tip:

Note that you can place several report tables on a worksheet. The tables, however, must be positioned one below the other, not next to each other!

The worksheets that are virtually unrestricted in horizontal and vertical direction, allow creating page layouts larger that one printed page. Depending on the selected page size on the printer, one or several pages are required for printing this type of page layout. The worksheet is divided in many invisible horizontally and/or vertically positioned print pages.

If the user, for example, inserts a chromatogram that does not fit on one page, the rest is printed on a new page.
• Select **Page Setup** on the **File** menu to specify the order ("from left to right" or "top to bottom") in which to print the printed pages of a worksheet.

![Top To Bottom and Left To Right](image)

Creating Templates and Worksheets

In addition to the default report templates provided in the **Dionex Templates > REPORTS** directory, Chromeleon allows you to create your own templates:

• Click the ![icon](image) on the **Method** toolbar to open the **Printer Layout** from your currently selected view. Chromeleon automatically opens the report template of the current sequence. Select the **Load Report Definition** command on the context menu to open a specific report template.

Note:

*If only the default report templates are available in your system, save it under a new name via the **Save Report Definition** command. Afterward, you can edit the duplicate as follows:*

• Enable **Layout Mode** on the **Edit** menu to perform manual changes on the report template.

• Select the worksheet you wish to edit, or insert an additional (empty) worksheet via the **Insert Sheet** command (**Edit** menu).

• Select **Delete Sheet** on the **Edit** menu to delete a superfluous worksheet.

• Select **Insert** on the context menu to insert chromatograms, tables, diagrams, report variables, or other elements.
\textbf{Caution:}

Note that you can place several report tables on a worksheet. The tables, however, must be positioned one below the other, not next to each other!

Each element inserted in this way reserves a specific area on the worksheet. If a report template or a single worksheet serves as a print template, these areas are "filled" with the values or graphics of the current sample. It is also possible to determine whether the printed output includes data and chromatograms of all channels of a sample or only of one channel.

\textbf{Note:}

In addition to report variables that can be combined to form new functions via the four basic arithmetical operations (plus powers), it is possible to calculate additional functions known from Microsoft Excel. For a list of supported functions, refer to \textit{Additional Functions in the Glossary}.

For more information about how to create worksheets and report templates, refer to \textit{How to \ldots: Preparing the Printout}.

\textbf{Printing}

\textbf{From the Printer Layout}

The Printer Layout allows you to print the created report template at any time.

- Select \textbf{Print} on the \textbf{File} menu to start printing.
- Click \textbf{Preview} in the \textbf{Print} dialog box to preview the layout of the printed output.

The printed output uses the data of the current sample with the layout of the currently opened sheet.
From the Browser

You can print larger quantities of data, either single samples or even entire sample series, from the Browser:

- Use the mouse to select the samples to be printed. If you want to print all samples of one or several sequences, select the associated sequence(s).
- To print samples from several sequences, perform a Query.
- Afterward, select Batch Report on the context menu and select the Report Definition to be used for the printed output. In addition, select the channel to be printed and specify the printer.

In addition to the results, it is possible to print sample data, that is, the information in the sample list.

- Open a sample list and select Print Table on the context menu.
Peak Purity Analysis

PPA: Peak Purity Analysis

⚠️ Caution:

The basic requirement for using the PPA method is the availability of a Dionex Photodiode Array Detector. In this case, the data supplied by a detector can be "read" and viewed on any client PC. The most common method to relate chromatograms to spectra is the representation of data in a 3D Field in the method PPA. The 3D field is the default view in the iso-pixel plot representation.

Use one of the following methods to display a sample (for which you have the corresponding 3D raw data) in the method PPA:

- Select the sample in the Browser, and then select Open > 3DFIELD on the context menu.

--Or--

- Change from a different method to the PPA method. Click the PPA icon or select PPA on the View menu.

View and Operation

In the default view, the method window is divided in four sections. The 3D field window (A3) is the most important section. Select either Iso Pixel Plot or 3D plot (see 3D Field Presentation Modes).

The cross-wires that are freely positioned via the left mouse button or the arrow keys "extract" a chromatogram at a specific wavelength in horizontal orientation from the plot representation. In vertical orientation, a spectrum is extracted at the time t and is displayed above (A1) or next (A2) to the 3D field (A3). Select the Zoom function for a more detailed view.
The display of the window sections A1 and A2 can be enabled or disabled via the Show Chromatogram or Show Spectra options. Optionally, an additional numeric report (PPA report) can be displayed (Show Report). The line of the currently selected peak is highlighted by a different color.

In addition to the context menu commands that allow undoing a Zoom operation, restoring the original 3D field, selecting a different 3D representation, or displaying additional information such as the PPI Index, Match Factor, etc., there are additional operations that can be executed via the keyboard or a mouse-click.

- Double-click to open the 3D field Decorations dialog box.
- Right-click while the 3D field is redrawn to stop redrawing. This option is useful when the wrong zoom area was chosen.
- Double-click the time axis of the window to execute the Full Size command. In the wavelength scaling, the same operation performs the Autoscale command.
- Press the CTRL key to make the currently displayed spectrum in the spectra window "permanent," so that it is still displayed even when moving the cross-wires. The spectrum extracted via the cross-wires is displayed in addition. If the operation is performed several times, any number of individual spectra can be displayed in the spectra window.
• It is also possible to combine pressing the CTRL key and moving the cross-wires: Position the x-axis of the cross-wires on the required wavelength and press the CTRL key. Then move the y-axis over a peak in the chromatogram. The spectra window now shows all spectra within the covered range. This procedure can be performed for various peaks in a chromatogram. Release the CTRL key between the individual peaks to represent each peak in a different color. For each peak, a number of spectra can thus be displayed.

• If the y-axis of the cross-wires is located on a peak, the peak spectrum (= spectrum in the peak maximum) can be copied to the Windows clipboard via the Copy command. From there, the spectrum can be included in the spectra library. For this operation, approximately positioning the y-axis is sufficient.

• Select one of the Extract: commands to extract the active chromatogram, the optimum integration path, the current spectrum or the 3D field data and save the item under a separate name. For a description of the required steps, refer to How to: Displaying and Using UV Spectra Extracting Spectra, Chromatograms, 3D Field Data and Selecting the Optimum Integration Path.

\[\text{Note:}\]

Copying or printing a 3D plot is more time-consuming than copying or printing the Iso plot!

• Select Library Search on the context menu to search the spectra library for the displayed spectrum. For more information, refer to How to: Displaying and Using UV Spectra Searching Single Reference Spectra.

Function

Use the PPA method

• To analyze the peak purity (see How to: Displaying and Using UV Spectra Analyzing the Peak Purity).

• To assign peaks interactively via the spectrum.

• To extract chromatograms, spectra, and the optimum integration path.
• To visualize chromatograms for presentation and archiving purposes.
• To evaluate baseline effects.
• To check the Lambert-Beer linearity range.
• To perform quantitative analysis of overlapping peaks.

These methods are completed by various procedures and calculations for result interpretation and/or comparison. These include:

➢ **Baseline Correction of Spectra**
➢ **Blank Run Subtraction**
➢ **Normalization**
➢ **PPI: Peak Purity Index**
➢ **PPI: Match Factor**
Spectra Libraries

The Spectra Library pane allows you to compare \(\textit{Normalized}\) and single \(\textit{baseline-corrected}\) spectra with spectra from various libraries. There are three sections:

Spectra Table

The upper section lists all spectra that are contained in a \textit{Spectra Library}, as well as their data.
Spectra Plot
The spectra plot is displayed at the bottom left, underneath the table, showing the spectra of all substances selected in the spectra table.

Data Window
The bottom right section is reserved for data representation, showing important data related to the spectrum that is selected in the spectra table.

For more information about Spectra Libraries, refer to How to ...:
Displaying and Using UV Spectra:
- Creating and Using Spectra Libraries
- Creating a New Library
- Comparing Spectra
3D Amperometry

The 3D Amperometry Window

The 3D Amperometry window displays a sample's 3D Amp data, which is collected using an ICS-3000 ED electrochemical detector in integrated amperometry mode.

Use one of the following methods to display 3D amperometry data:

- Select the sample in the Browser and then select Open > 3D Amp from the context menu.

- If the sample is already open in another window (for example, the Integration window), select 3D Amperometry from the View menu or click the following icon on the Method toolbar.

Tip:

A real-time plot of the 3D amperometry data can be displayed online during a run. See How to: Controlling Devices from the Control Panel for more information.

The window is divided into several display areas:

- The main area in the lower right displays the raw 3D amperometry data.

- The area above the 3D data displays a chromatogram of selected data.

- The area to the left of the 3D data displays an I-t plot (current vs. waveform time) of selected data.
You can use several methods to select the data displayed on the plots:

- Drag the horizontal and vertical line cursors.
- Use the mouse to zoom into a selected area.
- Select a command (for example, Zoom to Integration Interval) from the View or context menu.

To select various plot options (for example, to switch from integrated to raw data view), select Decoration from the View or context menu.

For more information, refer to Display Areas and Data Selection. Also, refer to How to …: Analyzing 3D Amperometry Data.

Display Areas

The 3D Amperometry window displays three plots of the 3D_Amp data:

Chromatogram Plot

The chromatogram plot is generated either by retrieving one raw data point per Waveform from the selected 3D data (if raw data is displayed) or by calculating one integrated data point per waveform cycle from the selected 3D data (if integrated data is displayed). The x-axis is the retention time (min) and the y-axis is the response (nA for raw data or nC for integrated data).
The raw 3D amperometry data plot can be viewed as either an isoamperometric or a 3D (wire frame) plot. For both plot types, colors are used to represent the ranges of response values.

The isoamperometric view is the default view for the 3D raw data. This is a top-down view of the data (imagine you are looking down on the data from above the plot). The x-axis is the retention time (min) and the y-axis is the Waveform Period (ms). The z-axis, which is not visible on the plot, is the response (nA). Different levels of response are represented by different colors.

The 3D view projects the response values in the third-dimension, which allows you to see the height of responses and well as the color mappings. For this view, imagine you are standing in front and slightly to the left of the plot.
I-t Plot

The I-t plot is a plot of current (I) vs. waveform time (t). To better visualize this plot, imagine that a vertical slice of the 3D amperometry data is taken at retention time (T) and then the slice is laid flat. The left axis is the waveform period (ms) and the bottom axis is the current (nA). A waveform can optionally be overlaid on the plot. When the waveform is displayed, the top axis indicates the applied voltage (mV).

Also, refer to Data Selection and How to ... Analyzing 3D Amperometry Data.
Data Selection

The 3D Amperometry window provides the following data selection features:

- If integration is enabled, parallel horizontal line cursors on the 3D and I-t plots select the **Integration Interval**. You can move the integration interval by dragging the top line on either the 3D or I-t plot. You can also increase or decrease the width of the interval by dragging the bottom line. Changing the integration interval selects new data to be integrated. This generates a new chromatogram, which is displayed on the chromatogram plot.

Tip:

If multiple integration intervals are present, select the interval that you want to change by dragging the vertical retention time line cursor into the interval’s time range.

- If integration is disabled, a single horizontal line cursor on the 3D and I-t plots selects a waveform time slice. The selected waveform time determines which data points are used to plot the chromatogram. You can drag the cursor to select a different waveform time and generate a new chromatogram.
The vertical line cursor on the 3D and chromatogram plots selects a retention time slice. The selected retention time determines which data points are used to create the I-t plot. You can drag the cursor to select a different retention time and thus generate the corresponding I-t plot.
• The mouse can be used to zoom into an area of a plot. Point and drag to draw a frame around the area that you want to zoom into.

• The View and context menus also provide commands for selecting data.

Tip:

If multiple waveforms were applied during the run, or if additional integration intervals were added post-run, non-movable vertical markers (in green) designate where each waveform change occurs.

Also, refer to How to …: Analyzing 3D Amperometry Data.
How to ...:
Creating and Managing Files

Chromeleon allows you to record a huge number of chromatograms. To manage, copy, move, and/or delete the different files that are required for this task, Chromeleon provides a central tool for file management, the Browser (also, see Data Management The Browser). In the Browser, you can, e.g., create sample lists, save data in a datasource, search for this data later, and import data from other programs. For information about which actions you can perform in the Browser, refer to:

- Creating a Sample List (Sequence)
- Handling Files and Datasources
- Signing Sequences Electronically
- Performing a Query
- Importing PeakNet Method Files (Release 4.5 Through 5.2)
- Importing Agilent/HP ChemStation Data Files

For information about the actions that administrators can perform in the Browser, refer to How to …: Working with Files, Databases, and Networks in the Administrator Help section.

Caution:

Browser functions and structure are similar to the Windows Explorer. However, do not confuse the Browser with the Windows Explorer! Do not use the Windows Explorer for operations within Chromeleon datasources.

Creating a Sample List (Sequence)

There are two basic ways how to create a sample list. (see Samples and Sequences The Sample List (Sequence)):

1. Manually edit an existing sequence and save it under a different name.
2. Automatically create a sequence using the Sequence Wizard. (For information about the wizard, refer to Samples and Sequences The Sequence Wizard).
Manually creating a sample list

- In the Browser (see Data Management The Browser), select the sequence whose QNT and PGM Files you want to use for the new sequence, probably after having edited them. Select Save as on the File menu to save the sequence under a different name. Edit the new sequence as necessary.

- In the lower right Browser section, enter the names and the properties of the standard samples and the unknown samples to be analyzed:

 - Click a cell in the table and enter the new value or the name via the keyboard. To open a dialog box for assistance, press the F8 key.

 - In the Name column, enter a name for each sample to be analyzed.

 - In the Type column, select the sample type from the drop-down list (Unknown, Blank, Validate, Standard, Spiked, or Unspiked).

 - In the Pos. (sample position) and Inj. Vol. (injection volume) columns, type the autosampler position from which to inject and the substance volume.

 - In the Program and Method columns, determine the Chromatographic Methods to be used for the analysis.

 - In the Status (sample status) column, define how often a sample shall be processed. Select Single to process the sample only once. Select Multiple to process the sample several times.

- To analyze two unknown samples (Sample 1 and 2) on the basis of a 2-point calibration, the input can be as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos.</th>
<th>Inj. Vol.</th>
<th>Program</th>
<th>Method</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Std - 1 Inj</td>
<td>Standard</td>
<td>R99</td>
<td>10.00</td>
<td>Control 1</td>
<td>QNT 1</td>
<td>Single</td>
</tr>
<tr>
<td>2</td>
<td>Std - 2 Inj</td>
<td>Standard</td>
<td>R99</td>
<td>20.00</td>
<td>Control 1</td>
<td>QNT 1</td>
<td>Single</td>
</tr>
<tr>
<td>3</td>
<td>Sample 1</td>
<td>Unknown</td>
<td>R99</td>
<td>10.00</td>
<td>Control 1</td>
<td>QNT 1</td>
<td>Single</td>
</tr>
<tr>
<td>4</td>
<td>Sample 2</td>
<td>Unknown</td>
<td>R99</td>
<td>10.00</td>
<td>Control 1</td>
<td>QNT 1</td>
<td>Single</td>
</tr>
</tbody>
</table>

- It is not imperative that you fill the other columns, e.g., Weight (Sample Weight Factor), Dil. Factor (dilution factor) and Inj. Date/Time. Either they contain special parameters or the system fills them automatically after the analysis.
Creating and Managing Files

- If you are not sure which values or names to enter, select the cell and press the F8 key. An edit dialog box appears listing the allowed values and/or options. Enter the desired value or select an option. Clicking OK automatically updates the cell.

- Press the F1 key to display more information about the individual columns.

- Press the F9 key to fill all subsequent cells of a column with the same input.

- You can have Chromeleon generate a unique ID for each sample (see Using Globally Unique Sample Identifiers).

- To enter special values, create User-defined Columns (see Creating User-defined Columns).

- To take an overview of the most important results in the sample list after the samples have been analyzed, add Sequence Report Columns (see Creating a Sequence Report Column).

- To save the sequence under a new name, select Save As on the File menu. To save the sequence under the existing name, select Save.

- Check the sequence properties by pressing <ALT> + <ENTER>. Or else, select the sequence, and then select Properties on the context menu.

Automatically creating a sample list

- Use one of the following methods to open the Sequence Wizard:

 In the Browser, select New on the File menu. Select Sequence (using Wizard) from the list and click OK.

 In a panel tabset, click the Sequence Control tab. Under Create Application, click Create Sequence.

- Follow the instructions to create a basic sequence structure.

- Press the F1 key for more help.

For more information about the appearance of the sample list, refer to Displaying Sequence Columns. For information about the wizard, refer to Samples and Sequences The Sequence Wizard.
Using Globally Unique Sample Identifiers

Chromeleon supports the generation of unique 128-bit character strings, allowing you to clearly identify each sample. For new datasources, Chromeleon always generates a globally unique identifier (GUID). To use globally unique sample identifiers for existing datasources, follow the steps below:

- Select the datasource for which you want to enable unique sample identification.
- Select Properties on the context menu.
- On the General tab page, select the Use Globally Unique Sample IDs check box.

Note:
You can select the check box only if you have the CustomizeDS CmUser privilege.

Tip:
It is not possible to disable this feature once you have enabled it.
Chromeleon generates a GUID number for each sample in the datasource when the analysis is started:

<table>
<thead>
<tr>
<th>Status</th>
<th>Date/Time</th>
<th>GUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finished</td>
<td>22.02.2005 15:34:20</td>
<td>52f153a6-9de1-11d9-bcc2-0ee4375fbb2a</td>
</tr>
<tr>
<td>Finished</td>
<td>22.02.2005 15:38:42</td>
<td>0f8f3b6e-9ea5-11d9-bcc2-0ee4375fbb2a</td>
</tr>
<tr>
<td>Finished</td>
<td>22.02.2005 15:42:58</td>
<td>56476e46-93d1-11d9-bcc2-0ee4375fbb2a</td>
</tr>
<tr>
<td>Finished</td>
<td>22.02.2005 15:47:14</td>
<td>3x0fd8c0-90e1-11d9-bcc2-0ee4375fbb2a</td>
</tr>
<tr>
<td>Finished</td>
<td>22.02.2005 15:51:31</td>
<td>65c796e-90e1-11d9-bcc2-0ee4375fbb2a</td>
</tr>
<tr>
<td>Finished</td>
<td>22.02.2005 15:55:47</td>
<td>875c165-9ee2-11d9-bcc2-0ee4375fbb2a</td>
</tr>
<tr>
<td>Finished</td>
<td>22.02.2005 16:00:03</td>
<td>0805109-e-9ee3-11d9-bcc2-0ee4375fbb2a</td>
</tr>
<tr>
<td>Finished</td>
<td>22.02.2005 16:04:20</td>
<td>a143569-9ee3-11d9-bcc2-0ee4375fbb2a</td>
</tr>
<tr>
<td>Finished</td>
<td>22.02.2005 16:08:36</td>
<td>3976952-90e4-11d9-bcc2-0ee4375fbb2a</td>
</tr>
</tbody>
</table>

The column is hidden by default. To add the column to the sample list, select Display Column on the context menu. The related dialog box is opened. Select GUID on the Hidden columns list and click Add (or Add to End) to add the column to the Visible columns list.

Tips:

GUIDs are not generated during manual sample acquisition.

When you rerun a sample later, e.g., a sample with the status Multiple, Chromeleon generates a new GUID, overwriting the previous one.

Creating User-defined Columns

New columns can be created either in the sample list of the Browser (see Data Management The Browser) or in the peak table of the QNT Editor:

1. **a)** In the sample list of the Browser: Click the datasource for the sequence for which you want to create a new column. Select Properties on the context menu, and then click the User-defined Columns tab page.

2. **b)** In the peak table of the QNT Editor: On the context menu or Edit menu, select Columns, and then select Display User-defined Columns.
2. Select <New user-defined column> from the Columns list to enable the Properties section.

3. Type a caption for the new column in the Name input field.

Note:

When you enter the name, keep the following restrictions in mind:

- Use only characters, numbers, and the underscore. The first character must be a letter.
- Do not use the German "Umlaute" or "ß."
- Names starting with SEQ_ or SMP_ are not permitted.
- If the desired name is also an SQL keyword, Dionex recommends preceding it with an abbreviation of your company name (or some other agreed-upon text). For example, if the new caption is INTEGER, you might enter it as DXINTEGER, where DX stands for Dionex. This will prevent collisions with SQL keywords and help you instantly recognize user-defined columns.
- Several protected names, such as, Retention, Wavelength, Flow, etc., cannot be used as names for user-defined columns unless a prefix or suffix is added. Since it would be very time-consuming to check long lists of protected names before assigning a name, it is recommended in this case, also, that you use a company abbreviation as a prefix. For example, instead of "Flow," assign the name 'DX_Flow' to a user-defined column.
- Names of columns that have been deleted in the current 'dialog session' cannot be entered again. You must close and then re-open the dialog box before re-entering these names.

4. Specify the Value Type for the new column by selecting the corresponding option from the drop-down list:

- Integer (whole numbers)
- Floating point (numbers with a defined number of decimal places)
- Date
- Time
- Date and Time
- Enumeration (open the combo box to select an item from the list)
- String (any sequence of characters. Please note: Spaces at the end of the string are deleted.)

5. Type the **Dimension** for the values in the new column in the corresponding input field.

6. More specification fields may be displayed, depending on the selected value type.

Note:

The operating system restricts date input to the period of 1/2/1970 - 12/30/2037.

7. a) When creating a user-defined column in the sample list of the Browser, click **Append Column** to add the new column to the **Columns** list. Click **OK** to append the new column to the sample list.
 b) When creating a user-defined column in the peak table of the QNT Editor, click **Append Column** to append the new column to the peak table.

Any new column created in the sample list of the Browser applies to the entire **Datasource**; i.e., it becomes part of all **Sequences** in the datasource.

Tips:

Be careful when creating user-defined columns in the sample list of the Browser. Be sure not to assign the same column name twice in different datasources or on different computers that may communicate with each other. Otherwise, unless the column definitions are identical, problems may occur when you copy sequences or when you **Restore** backup files.

When you have entered or changed user-defined columns in the sample list, shut down and restart the **Server** to use the new and/or changed columns in the **PGM File**.

There are some restrictions on the deletion of user-defined columns. Chromeleon cannot delete user-defined columns unless they are empty. In addition, Chromeleon cannot delete user-defined columns in some database configurations, e.g., this is not allowed in Oracle, version 8.0, or MS SQL Server, version 6.5. In this case, use the Oracle or MS SQL
Server database tools to delete the column. For the corresponding database columns, refer to the SAMPLES database table. The column header corresponds to the name of the user-defined column in Chromeleon (without the preceding asterisk). Please note: Deleting a user-defined column in Oracle or MS SQL invalidates Electronic Signature for all sequences containing this column.

Note:

In a typical HPLC or IC configuration, it is possible to process at least 16 user-defined sample list columns in the program.

For two examples of how to use user-defined columns, refer to **How to ...** *Creating and Using Report Tables* Calculating the Concentration Percentage (in Relation to the Total Concentration).

New columns are added on the right-hand side of the table. However, you can also change the order of the columns afterward. For more information, refer to **Displaying Sequence Columns**.

If you still cannot display all the values you need, see **Creating a Sequence Report Column**.

Creating a Sequence Report Column

It often makes sense to have some sample results displayed in the sample list of a sequence. To do so, add sequence report columns to the sample list, in addition to the default columns and the User-defined Columns. Thus, the sequence report columns can provide an overview of the most important results of the single samples, already in the Browser.

Note:

You need the CustomizeColLayoutSEQ privilege to add sequence report columns while the User Mode is enabled.

To add a sequence report column:

- Click the sequence, and then select Properties on the context or File menu. The Properties dialog box appears.

- On the Report Columns tab page, the Report Columns list contains all existing sequence report columns:
Click **New** to open the **Create Sequence Report Columns** dialog box.

Tip:

You can also open this dialog box from the sample list. Select either **Report Columns** on the context menu or **Sequence Report Columns** on the **View** menu, and then select **New Report Column**.
First, select a report variable. All report variables of the different Report Categories are available for selection. Click the '...' button, and select a variable from the Categories and Variables lists.

Change the column name (Identifier) and the column header. (It is usually not necessary to change the unit (Dimension)).

Having selected a peak-specific variable, define the peak to which it refers. Select a Peak option.

In the same way, if you have selected a channel-specific variable, define the channel under Channel.

In addition, you can display the statistical values for the corresponding column. Select an option: Sum, Average Value, or Relative Standard Deviation.

In this way, you can create different sequence report columns and thus, display all required values in the sample list:
New columns are added on the right-hand side of the sample list. However, you can change the order of the columns afterward or hide any columns that are currently not required. For more information, refer to Displaying Sequence Columns.

Editing Sequence Report Columns

To edit report columns afterward:

- Select the column by clicking the column header.
- Select Report Columns on the context menu or select Sequence Report Columns on the View menu. Then, select Modify Report Column.
- The Modify Sequence Report Columns dialog box appears. The dialog box corresponds to the Create Sequence Report Columns (see above). Make your settings as required.

Tip:

You can also open this dialog box from the sample list by double-clicking the column header of the selected column.

Note:

Or else, you can also select the sequence, and then select Properties on the context menu. Click Modify on the Report Columns tab page or double-click the desired entry on the list to open the Modify Sequence Report Columns dialog box.
Deleting a Sequence Report Column

To delete a sequence report column:

- Select the sequence by clicking the column header.
- Select **Report Columns** on the context menu or select **Sequence Report Columns** on the **View** menu, and then select **Delete Report Column**.

Tip:

You can also select the entire column by clicking the column header and then pressing .

Note:

Or else, you can select the sequence and then select **Properties** on the context menu. On the **Report Columns** tab, select the column from the Report Columns list, and then click **Delete**. Alternatively, select an entry and press .

Undoing Changes

There are different ways to undo changes made for a sequence report column:

- On the sample list: Press <CTRL> + <Z> or select **Undo** on the **Edit** menu.
- On the **Report Columns** tab page of the **Properties of Sequence** dialog box: Click **Undo Changes**.

If the sequence report columns are not sufficient to display all the values you need, also see Creating User-defined Columns.
Displaying Sequence Columns

Chromeleon provides different options for displaying the single columns in the sample list. Use these options to create the sample list according to your requirements.

Displaying or Hiding Columns

Often, it is often not necessary to display all columns in the sample list. Therefore, you can hide any columns that are currently not required:

- In the sample list, select **Display Columns** on the context or **View** menu. In the **Display Columns** dialog box, select the columns you want to display and determine the order in which they shall appear:

![Display Columns dialog box](image)

Under **Visible Columns**, all columns are listed that are visible in the sample list. All columns that are currently hidden are listed under **Hidden Columns**.
A '#' character in front of the column name, e.g., #Area_Pyrene indicates that the column is a report column. If the name of the report column, i.e., its identifier, is different from the column header, the column header appears in parenthesis and brackets after the column name, e.g., #nPeaks ("#Peaks"). An asterisk (*) in front of the column name, e.g., *Temperature, indicates that this column is a User-defined Column.

- Under Visible Columns, select the columns you want to hide.
- Click <<Remove>> to remove these columns from the Visible Columns list.

In the same way, you can later add them again to the sample list. Select them in the Hidden Columns list, and then click >>Add>> or >>Add to End>>.

Note:

It is also possible to hide columns interactively. Left-click the right column separator. While clicking, push the column together completely. To display the column again, move the mouse pointer to the right of the column separator until the pointer changes it appearance. Left-click and drag the column separator to the right.

Changing the Order

You can also change the order in which the columns appear in the sample list:
- Select the column(s) to want to move.
- Move the column(s) to the desired position via the Move Up and Move Down buttons.

Note:

It is also possible to change the order interactively. Left-click and draw the column to the desired position.
Displaying Columns by Default

If the sample list includes many columns, not all of them can be displayed on the screen at the same time. Use the scroll bar to move to the left or right. However, you might want to see at least the most important columns by default.

Under Frozen Columns, define the number of leftmost columns to be displayed even if the scroll bar is at the utmost right.

Also, refer to:
- Creating a Sample List (Sequence)
- Creating User-Defined Columns
- Creating a Sequence Report Column

Handling Files and Datasources

Handling files and datasources includes managing, copying, moving, and/or deleting chromatographic data and files (see Moving and Copying Elements).

Chromeleon provides several ways to handle, store, and save the data collected during operation:

- Datasources on Removable Media
- Opening Audit Trails
- Creating Backup Files
- Restoring Backup Files
- Exporting Files
Moving and Copying Elements

Use Drag & Drop to move or copy various elements in the Browser; for example, directories, Sequences, samples, and individual files, such as PGM Files, QNT Methods, Audit Trails, etc.

Drag & Drop via the left mouse button

To move or copy an element, hold down the left mouse button and move the element to the target directory. To define the Drag & Drop behavior, select Preferences on the File menu, and then select a When dragging item between folders option:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ask</td>
<td>For each Drag & Drop action within a datasource, you are prompted to click a button. Click Copy or click Move.</td>
</tr>
<tr>
<td>Copy</td>
<td>For simple Drag & Drop actions, i.e., when you do not hold down any other key, the selected element is copied to the new position without being deleted at the original position.</td>
</tr>
</tbody>
</table>
| Move (As in the Windows Explorer) | There are two different cases:
Within a datasource: For simple Drag & Drop actions, the selected element is moved to the new position and deleted from the original position.
To a different datasource: The selected element is copied to the target position, but is not deleted from the original location. |

Independent of the selected setting, you can force the desired behavior for each Drag & Drop action by pressing an additional key:

- <CTRL> Copies the element.
- <SHIFT> Moves the element.

Tips:

If network failure occurs while a Move action is in progress, the elements either in the target directory or in the original directory will be incomplete. After rebooting your computer, check whether the elements were moved correctly. If they were not, complete the action as required.

If you cancel a Move action, all data copied so far will be deleted. This may take some time.

Sequences that are locked and signed can only be moved as a whole. Locked directories cannot be moved at all.
Drag & Drop via the right mouse button

Hold down the right mouse button and move an element to the target directory. When you release the mouse button, the context menu is opened:

```
Copy
Move
Cancel
```

Select an action (Copy, Move, or Cancel).

Copy elements via Copy & Paste

To copy the desired element, you can also select the Copy and Paste commands on the Edit or context menu or click the corresponding icons on the Standard toolbar. First, copy the element, and then paste it at the desired location. Or else, use the corresponding shortcuts:

- `<CTRL> <C>` = Copy
- `<CTRL> <V>` = Paste

Move elements via Cut & Paste

To move the selected element, you can also select the Cut and Paste commands on the Edit or context menu or click the corresponding icons on the Standard toolbar. First, cut the element and then paste it at the desired location. Or else, use the corresponding shortcuts:

- `<CTRL> <X>` = Cut
- `<CTRL> <V>` = Paste

Behavior if a file already exists in the target directory

If you move a file to a target directory in which a file with the same name already exists, a dialog appears. You are prompted to confirm overwriting the existing file. Click either Yes or Yes to all to confirm the action. Click No or No to all to cancel the move.

Tips:

If the Move action is later cancelled by the user or terminated due to an unforeseeable error, all data overwritten so far will be lost.
To overwrite a file, you need the corresponding Delete Privilege. For example, to overwrite a sequence, you need the DeleteSEQ privilege. The administrator can assign you this privilege in the User Manager (CmUser program). A Delete privilege is not required if you move a file (the file is no longer available at the original location after the move, i.e., it is "deleted" there).

Datasources on Removable Media

Datasources can be installed not only on the hard disk of the local PC or a network PC, but also on removable media, such as a disk drive, USB stick, or CD-ROM.

- Select **Mount Datasource** on the **File** menu. Chromeleon automatically displays the Windows drive letters of all removable media that are currently available.
- Select a drive. Or else, select **Browse** to navigate to the desired datasource.
- If Chromeleon finds an existing datasource on the selected media, the system automatically connects to this datasource, displaying it in the Browser in the same way as any other datasource.
- If Chromeleon does not find a datasource on the selected media, the user can install a new one on this drive. The datasource will receive the name of the drive.

Note:

You can easily copy datasources in Microsoft Access database format to a removable medium. Copy the DATA directory of the local datasource or the desired subdirectory of a network datasource to the corresponding removable medium.

Caution:

If you connected to a datasource on a removable medium via the **Mount Datasource** command, do not remove the medium until you have closed the connection. To do so, select the **Dismount Datasource** on the context menu. **If you do not close the connection correctly, data may be lost.**
Creating and Managing Files

Tip:
When storing access datasources on CD, DVD, or other read-only media, make sure that no Chromeleon server, Chromeleon client, or Online Transfer Agent (OTA) is connected to the datasource. In addition, remove any existing CM_local.ldb-File from the root directory of the datasource.

Opening Audit Trails

In the Browser, you can open two types of event logs (see Data Management - The Audit Trail):

Daily Audit Trails

Sample Audit Trails

In the Standard Datasource, the daily audit trails are listed in the AUDIT directory for the corresponding Timebase. Double-click to open a daily audit trail.

To display a sample audit trail, select the related sample. Select Open on the context menu, and then select Audit Trail. You can also display sample audit trails in the Report. Double-click to open the related sample and click the Audit Trail tab page.

Creating Backup Files

The Chromeleon Backup program allows you to create backup files, including all linked objects, for data storage and exchange.

In the Browser, select the objects to be archived, and then select Export/Backup on the File menu.

You can back up the following objects:

<table>
<thead>
<tr>
<th>Select a</th>
<th>To backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
<td>All subdirectories, including all files, sequences, etc.</td>
</tr>
<tr>
<td>Sequence</td>
<td>All samples and files included in the sequence (QNT File and Program File (PGM File)).</td>
</tr>
<tr>
<td>Sample</td>
<td>The sequence information (name, directory, title, etc.) and selected samples, as well as the PGM File and QNT File for these samples.</td>
</tr>
<tr>
<td>Other files</td>
<td>The related files.</td>
</tr>
</tbody>
</table>
To save samples found in a Query, select one of the following options:

<table>
<thead>
<tr>
<th>Select a</th>
<th>To save</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample (on the sample list in the Browser)</td>
<td>The sequence information (name, directory, title, etc.) and selected samples, as well as the PGM and QNT Files for these samples.</td>
</tr>
<tr>
<td>Sequence (on the sequence list in the Browser)</td>
<td>All samples of the selected sequence that are contained in the query.</td>
</tr>
<tr>
<td>Query (in the Browser)</td>
<td>All samples contained in the query.</td>
</tr>
</tbody>
</table>

⚠️ Caution:

When performing a backup for a query, back up the entire sequence and not only the samples found during the query if you want to delete the original data after the backup. Before deleting the original data, verify that the backup file contains all samples.

The following objects that are linked to the associated files are also copied for the backup:

<table>
<thead>
<tr>
<th>Object</th>
<th>Linked Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>Preferred Report Definition file (RDF)</td>
</tr>
<tr>
<td>Peak table</td>
<td>Calibration list for calibration mode = Fixed (General page of the QNT Editor)</td>
</tr>
<tr>
<td></td>
<td>Blank run sample for Blank Run Subtraction = Subtract a fixed sample (General page of the QNT Editor) and/or</td>
</tr>
<tr>
<td></td>
<td>If selected, spectra library for spectra library screening (Spectra Library Screening page of the QNT Editor)</td>
</tr>
<tr>
<td>Query</td>
<td>Preferred report definition file (RDF)</td>
</tr>
<tr>
<td>Samples</td>
<td>QNT File</td>
</tr>
<tr>
<td></td>
<td>PGM File</td>
</tr>
</tbody>
</table>

If a linked object is included in the selected objects list, it is treated as a normal object.
Select **Backup** to open the **Backup** dialog box:

![Backup dialog box](image)

For a description of the individual fields, refer to the online Help for the **Backup** dialog box.

Before starting the backup, Chromeleon determines the amount of storage space required. For hard disks and network drivers, Chromeleon checks whether sufficient storage capacity is available. If there is not enough space, an error message appears and you can cancel the backup procedure.

If you use removable media, Chromeleon displays the expected number of media. If you use data compression, the number of actually required media may differ from the displayed number.
You can monitor the procedure on the screen via a status bar that indicates the percentage of stored data already copied to the medium:

If the destination is a removable medium, you will be prompted when to change the medium.

To perform a backup, you must have the **Backup** privilege (see ➢ *Privileges (User Rights)*). The backup is logged in the file history. To stop the backup, click **Cancel**. The backup contains all objects stored up to this point.

You can delete the original objects after the backup has been performed. A dialog box appears and prompts you to confirm this action. If History Mode is enabled, a dialog box appears in which you can enter a comment for the history.

Backup files have the extension `.cmb`. For information about how to restore backup files, refer to **How to …: Creating and Managing Files and Data** ➢ *Restoring Backup Files*.
Restoring Backup Files

To restore backup files created via the Backup command, select Import/Restore on the File menu in the Browser, and then select Restore (also, refer to How to …: Creating and Managing Files and Data Creating Backup Files).

Tip:

As an alternative, you can select the backup file by double-clicking the file name in the Windows Explorer. Backup files are identified by their extension (*.cmb).

After having selected Import/Restore > Restore on the File menu, select the backup file you want to restore in the Windows Open dialog box. Chromeleon recognizes whether the file is stored on a removable medium, a hard disk, or a network drive.

If the backup file is stored on removable media, you have to insert the first medium first because it includes the list of contents. Else, an error message appears Chromeleon displays the contents in the following dialog box:

![Restoring Backup Files Dialog Box](image-url)
For a description of the individual fields, refer to the online Help for the **Restore** dialog box.

The ➤Channels and ➤Linked Objects that are shared by all samples are listed in separate groups. The linked objects appear under the corresponding objects.

Select the channels and links to be restored from these groups. The default setting is that all channels are restored, but not the links.

The selected objects are restored, together with the raw data files of the selected channels, the audit trail files, and the history files. A dialog box similar to the Backup dialog box appears. If the backup is located on several removable media, you will be prompted when to insert the next medium.

If the directory for an object to be restored is missing, Chromeleon creates the directory. Links are always restored to the original location. Note that the related sequence and datasource must exist. However, missing directories will be created if necessary.

If the destination object already exists, you are prompted whether to overwrite it. Select one of the following options: **Yes**, **Yes to all**, **No**, **No to all**, and **Cancel**. For each restored object, the corresponding entry is logged in the history.

To restore an object, you must have the **Restore** privilege (see ➤**Privileges (User Rights)**). To overwrite an existing object, you must have both the **Restore** and **Copy** privileges for the object. To stop restoration, click **Cancel**.

Tip:

If you have created a backup file that contains a new feature, keep in mind that you cannot read this file with a Chromeleon version that does not support this feature. For example, this refers to:

- ➤Sequence Report Columns (available since Chromeleon 6.50)
- ➤Std. Add. Group and ➤Ref. Amount Set sample columns (available since Chromeleon 6.60)
- The ➤Trend Plot (available since Chromeleon 6.50)
Exporting and Transferring Data

Chromeleon provides various options for exporting data (see Data Management Data Export):

1. Data can be exported during or after a Batch, using the Export Wizard of the Batch Report.
2. Sequences can be transferred at a specified time, using the Online Transfer Agent (OTA).

For more information, refer to Exporting Data during or after a Batch and Transferring Sequences Automatically.

Exporting Data during or after a Batch

Select the sample(s) or sequence(s) to be exported:

- Select Batch Report on the File menu to open the Batch Report dialog box.

- To open the Export Wizard, select the Export check box in the Export options section. (If the check box is already selected, click Export Settings.)

![Export Wizard: Common Options](image)
• Click the "..." button in the Location field to specify where data is stored.

• Use the Directory formula field to automatically create additional folders under the existing location folders in the Windows Explorer. To facilitate finding your files, Dionex recommends using the same structure as in the Browser. Use the default \{seq.path\}\{seq.name\}.seq formula to create the same structure.

If you do not know the syntax, click the {...} button to enter the formula. For the \{seq.path\}\{seq.name\} formula, select Sequence from the Categories list, and then select Directory from the Variables list. Click OK to confirm your selection. Enter a backslash and return to the previous dialog box by clicking the {...} button again. Select Sequence from the Categories list and Name from the Variables list. Confirm your input by clicking OK.

• Use the File name formula field to enter a formula for the file name. Individual files are usually created for the corresponding samples. Therefore, \{smp.name\}, i.e., the sample name, is an appropriate entry if every sample has a specific name.

If you do not know the syntax, click the {...} button to enter the formula. For the \{smp.name\} formula, select Sample from the Categories list and Sample Name from the Variables list, and then click OK to confirm your selection.

The default entry is \{smp.number;04\}. The number of the corresponding sample is used for the file name. 04 indicates a four-digit number; i.e., this entry creates file names such as 0001.txt or 0053.txt.

• Under Export format(s), select an export format.

• Click Next to go to the next wizard page. Select the export options. Please note: The selected export option determines which wizard pages appear. For example, for the ASCII format, if you want to export raw data with the report, select the channel(s) first and then select the sheets to be exported.

Tip:
Before exporting a Summary page, verify (in the Printer Layout) that a peak was selected in the individual columns. If the setting is Selected Peak, no data will be exported because you did not select a peak in the Browser. Double-click the column to open the Properties Report Column dialog box. If necessary, select Fixed Peak(s) and specify the peak for which you want to export the data from the column.
Creating and Managing Files

- Click **Finish** to complete the **Export Wizard**, and then click **OK** to start exporting.

For more information, refer to:

- Exporting Data from Different Samples to a Single File
- Transferring Sequences Automatically

Exporting Data from Different Samples to a Single File

Use one page of the ➔ Printer Layout containing a peak summary table (which is usually the Summary page) to export data for a specified peak from different samples of a sequence to just one file. First, define the columns of interest:

- Enable the ➔ Layout Mode on the Edit menu.
- Double-click the header of the column of interest to open the **Report Column Properties** dialog box. Select a peak, and then select **Save Report Definition...** on the Workspace menu to save the Report Definition File (RDF).

Tip:

If the setting in the dialog box is Selected Peak, it is not possible to export any data. Although data is always exported from the Browser, it is not possible to select the peak there.

- Change to the Browser and follow the description in ➔ Exporting Data during or after a Batch. Use the following settings:
 - In the File name formula field, enter `{seq.name}`, i.e., the formula, for the sequence name; this generates a single file for the sequence without a superior directory.
 - Select **ASCII**, Excel, or PDF as the export format.
 - Select Summary or the corresponding page of the peak summary table as the report page to be exported.
 - Click **Finish** to complete the **Export Wizard**, and then click **OK** to start exporting.

For more information, refer to ➔ Transferring Sequences Automatically.
Transferring Sequences Automatically

Sequences found with a Query can be transferred at specified times, using the Online Transfer Agent (OTA).

Tip:

When the User Mode is enabled, you need administrator rights to be able to transfer sequences automatically.

In the Browser, select Preferences on the File menu. The Preferences dialog box is opened. The Online Transfer Agent tab page shows a Log File displaying errors, warnings, and information, as well as a list of the tasks to be executed.
• Double-click the **New Job** entry at the bottom of the list to enter a new job. The **Scheduler Job Type** dialog box is opened.

• Select **Transfer sequences selected by a query** to open the **New Scheduler Job** dialog box. The dialog box contains two tabs:

 • On the **Time Plan** tab page, define when, and how often, data will be transferred.

 • On the **Transfer** tab page, select the source and target of the transfer job to be executed by the **OTA**.

Tips:

During batch transfer, sequences in the destination directory may be overwritten if they have the same name as the sequences to be transferred. However, it is not possible to overwrite locked data, signed data, or sequences containing raw data. (Example: If you appended samples to a sequence that was already transferred, you have to delete the existing sequence in the destination directory manually before you can transfer the extended sequence.)

Sequences not containing raw data are overwritten; a warning does not appear before this operation nor are the **Privileges** (e.g., DeleteSEQ) checked.

For more information, refer to:

- Exporting Data during or after a Batch
- Exporting Data from Different Samples to a Single File

Signing Sequences Electronically

Electronic signature is an important tool for securing data within the scope of quality assurance and **GLP**. (For general information about electronic signature, see **Samples and Sequences** **Electronic Signature**.) In order to sign sequences electronically, the **User Mode** must be enabled and the logged-on user must have the corresponding signature **Privileges**; for example, **SignResults**. For more information, refer to **Chromeleon User Management** **Signature Privileges** in the Administrator Help section.
Tip:

Electronic Signature is available only for user databases that were created with a User Manager (CmUser) program version 6.10 or higher. If an error message notifies you that electronic signature is not possible, update your database.

You can sign a specific sequence only if you are authorized to do so. To check and/or edit authorization, open the Properties dialog box of the sequence from the context menu, and then click the Signature tab page:

If you have been authorized in the CmUser database to modify the signature requirements (ModifySignRequirements privilege), click Edit to edit the list of users authorized for each signature level.
If these conditions are met, `Sequences` can be signed in three steps:

- Submit
- Review
- Approve

The sequence's signature status determines which options are available on the context menu:

- **Submit Results** (for unsigned sequences)
- **Review Results** (for submitted sequences)
- **Approve Results** (for reviewed sequences)

You can also access these options by selecting **Electronic Signature** on the **File** menu or by clicking the following icon on the standard **Toolbar**:

The function of the button depends on the signature status.

For more information, refer to:

- Individual Steps of Electronic Signature
- Checking the Signature Status and Undoing the Signature
Individual Steps of Electronic Signature

The first step of electronic signature is the *Submit* process. (For general information about electronic signature, see *Samples and Sequences Electronic Signature.*) Click a ➤Sequence that has not yet been signed, and then select *Submit Results* as described in *Signing Sequences Electronically*.

Select the ➤*Report Definition File (RDF)* to be used for displaying the sequence, select the channel for which you want to show the results, and select the report sheets to be signed.

Tip:

The settings saved in the Report Definition File are used as defaults for the worksheets to be signed and for the respective conditions. For more information, refer to *How to …: Preparing the Printout ➤Specifying the Pages to be Printed*.

After you have selected the report definition file, the system writes the results to an ➤*SOR-File (Signed Off Results)*. You can monitor the procedure on the screen via a status bar that indicates the percentage of results already copied to the file.
Simultaneously, the pages of the report for the individual samples are frozen. Afterward, the **Check Signed Results** dialog box appears:

This dialog box allows you to check the report to be signed. Use the arrow keys to toggle between different sequence samples. For each sample, the tab pages for the selected report sheets are displayed. Click **OK** when you have finished checking the report. The **Submit Signature** dialog box appears.
To sign the SOR file, enter your User ID and the signature password:

![Submit Signature dialog box](image)

In the **Comment** field, you can enter additional information, such as any critical or doubtful points you noticed while creating the report.

When a sequence is open, the SOR file is displayed under the other sequence files in the top right Browser section. Double-click to open the SOR file:

![Signed Results: sor](image)

To review sequences that have been signed and submitted, select **Review Results**. You can monitor the process on the screen. The files and samples of the sequence that have already been reviewed are listed, as well as the result of the review. For the file or sample under review, the status bar indicates the percentage of completion:
(Reviewing the results is much faster than submitting the signature. Thus, the above dialog box may be visible only for a few seconds, especially with short sequences.) To approve a sequence, proceed in the same way.

Checking the Signature Status and Undoing the Signature

To check the signature status of a Sequence, select the sequence, and then select Properties on the context menu. The Properties dialog box is opened. Click the Signature tab page for information about the users authorized to sign, review, and/or approve the sequence. (For general information about electronic signature, refer to Samples and Sequences Electronic Signature.)
To check the sequence signature, select **Electronic Signature > Verify** on the **File** menu or click the following icon on the standard **Toolbar**:

Tip:

If you use the sample ⇒Types **Spiked** and/or **Unspiked**, please keep in mind that

- An **Electronic Signature created with Chromeleon 6.50 or earlier is invalid in Chromeleon 6.60 or higher.**

- An electronic signature created with Chromeleon 6.60 or later is invalid in Chromeleon 6.50 or earlier.
Manipulations attempted on the signed sequence or errors in the signature are identified during verification. To check the reports once again in such a case, you have to remove the signature first. To remove the signature you must have the **UndoSignResults** privilege. If you have this privilege, you can select **Electronic Signature > Undo Signature** on the **File** menu or click the following icon:

The corresponding **SOR-File (Signed Off Results)** is deleted as well.

Performing a Query

The term **Query** refers to the search for data based on specific search criteria. In Chromeleon, you can search for samples and the corresponding sequences based on freely selectable parameters. Either you can use very detailed criteria to search for one specific sample, or you can use criteria that are more general to search for a specific series of samples with the same properties.

⚠️ Caution:

Make sure that you back up the entire sequence and not only the samples found during the query if you want to delete the original data after the backup. Before deleting the original data, verify that the backup file contains all samples.

How To

- In the **Browser**, select **Query** on the context menu. Or else, select **New > Query (using the Wizard)** on the **File** menu. Either way, a **Wizard** guides in entering the required conditions.
- On the first wizard page, determine the **Datasource** in which the query is performed. Also, determine whether the query is performed for **Sequence properties** (**Sequences**) and/or sample properties (**Samples**), and/or other conditions (**Results**).
- Clicking **Next** takes you to the next wizard page(s). The pages that are opened depend on the properties selected on the first wizard page. Determine the desired search criteria.
Click **Finish** to open the **New Query Properties** dialog box, which provides four tab pages:

- Use the **General** tab page to select the datasource in which the query is performed.

- Use the **Native SQL** tab page to edit the SQL statements directly in the SQL syntax of the corresponding **ODBC** driver (contains translated Chromeleon statements).

- Use the **SQL** tab page to edit the search statement in an entry dialog box.

- Use the **Result Restrictions** tab page to limit the resulting sample list by more result queries.

For more information, refer to:

- Entering the Sample Query Using the Wizard
- Selecting Search Criteria for Samples and/or Sequences
- Examples (Wizard)
- Specifying the Sample Query Using the Dialog Box
- Examples (Dialog Box)
- Editing a Query in SQL Syntax
- Saving and Performing a Query

Entering the Sample Query Using the Wizard

On the first wizard page, determine the **Datasource** in which the **Query** is performed. Select either **Selected datasource** (the name of the currently selected datasource is indicated in brackets) or **Fixed datasource**, and then select a datasource from the drop-down list.

In addition, determine the **Field Type** for which the query is performed. Select:

- **Sequences and/or**
- Samples and/or
- Results (variables from the different **Report Categories**)
On the **Samples** and/or **Sequences** wizard page, click the **Data Field** input field and select the variable for which you want to perform the query from list. On the **Results** wizard page, either enter the desired formula manually or click the "..." button, and then select a formula from the **Edit Result Formula** dialog box.

Tip:

On the **Results** wizard page, you cannot access >User-defined Columns directly by clicking the ‘...’ button. For user-defined columns from the sample list of the Browser, select the **Samples** field type, and then select an entry from the **Data Field** field on the **Samples** wizard page. For user-defined columns from the peak table of the QNT Editor, select the **Results** field type, and then enter the formula directly in the **Formula** field on the **Results** wizard page. The syntax of the formula is as follows:

\[
\text{peak_tab.user_x}
\]

where \(x \) is the name of the user-defined column.

You can also search for samples with specified >Audit Trail properties. In this case, enter the formula for the desired Audit Trail variable. For example, to search samples that were recorded at a \(\Rightarrow \text{LampIntensity} \geq 500.000 \text{ counts/s} \), use the formula below:

\[
\text{AUDIT.LampIntensity}(0.0,\text{"forward"}) \geq 500000.
\]

Select an operator from the **Operator** field and enter the desired value in the **Value** field. For information about the operators, refer to **Selecting Search Criteria for Samples and/or Sequences**.

To connect one search criterion with another search criterion, select a logic connective from the rightmost combo box. The next entry line is enabled only after you selected either **AND** or **OR**.

Click **Finish** to complete the entries. The **New Query Properties** dialog box is opened. Use this dialog box to specify your query further (see **Specifying the Sample Query Using the Dialog Box**).

For examples of how to enter the query using the wizard, refer to **Examples (Wizard)**.
Selecting Search Criteria for Samples and/or Sequences

A Query allows you to search for samples and sequences, using a variety of sample or sequence properties. Enter the search criteria (see table) on the Query Wizard: Sequences and/or Samples pages. To further restrict the query, select the SQL tab page of the New Query Properties dialog box. This dialog box is opened automatically after you have clicked Finish. (You can also use this dialog box to edit an existing query. To reopen the dialog box (then called Properties of Query "xyz"), select the query in the Browser, and then select Properties on the context menu.) Click Edit/Insert to open the Edit Conditions dialog box. Select the criteria from the Field list box.

<table>
<thead>
<tr>
<th>Name</th>
<th>Search Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Name</td>
<td>⇒Name</td>
</tr>
<tr>
<td>Sample Number</td>
<td>⇒No.</td>
</tr>
<tr>
<td>Sample Type</td>
<td>⇒Type</td>
</tr>
<tr>
<td>Sample Status</td>
<td>⇒Status</td>
</tr>
<tr>
<td>Sample Comment</td>
<td>⇒Comment</td>
</tr>
<tr>
<td>Sample Replicate ID</td>
<td>⇒Replicate ID</td>
</tr>
<tr>
<td>Sample Inject Time</td>
<td>⇒Inj. Date/Time</td>
</tr>
<tr>
<td>Sample Dilution Factor</td>
<td>⇒Dil. Factor</td>
</tr>
<tr>
<td>Sample Weight</td>
<td>⇒Weight (Sample Weight Factor)</td>
</tr>
<tr>
<td>Sample Amount</td>
<td>⇒ISTD Amount</td>
</tr>
<tr>
<td>Sample Raw Data ID</td>
<td>Chromeleon sample ID.</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Sample ID assigned by the user</td>
</tr>
<tr>
<td>Sample Program Name</td>
<td>⇒Program used for sample processing</td>
</tr>
<tr>
<td>Sample Quantification Method</td>
<td>⇒Method used for sample evaluation</td>
</tr>
<tr>
<td>Sample Standard Addition Group</td>
<td>Standard Addition group for assigning Spiked Samples to unspiked unknown samples (see ⇒Std. Add. Group)</td>
</tr>
<tr>
<td>Sample Reference Amount Set</td>
<td>Reference amount ID for assigning standards, ⇒Validation Samples and/or spiked samples (see ⇒Ref. Amount Set)</td>
</tr>
<tr>
<td>Sample Auto Purification Type</td>
<td>⇒Autopurification type (also, see ⇒Auto Purif. Type)</td>
</tr>
<tr>
<td>Sample Auto Purification Reference</td>
<td>Autopurification ID assigned by Chromeleon (see ⇒Auto Purif. Ref)</td>
</tr>
<tr>
<td>Sample Auto Purification Fraction</td>
<td>Fraction ID assigned by Chromeleon (see ⇒Auto Purif. Frac)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Sample Tray</td>
<td></td>
</tr>
<tr>
<td>*Sample x</td>
<td>User-defined Column (column name)</td>
</tr>
<tr>
<td>Sequence Name</td>
<td></td>
</tr>
<tr>
<td>Sequence Title</td>
<td>Sequence</td>
</tr>
<tr>
<td>Sequence Preferred Channel</td>
<td></td>
</tr>
<tr>
<td>Sequence Preferred Report</td>
<td></td>
</tr>
<tr>
<td>Sequence Directory</td>
<td></td>
</tr>
<tr>
<td>Sequence Timebase</td>
<td>Timebase</td>
</tr>
<tr>
<td>Sequence Creation Date</td>
<td></td>
</tr>
<tr>
<td>Sequence Creation Operator</td>
<td></td>
</tr>
<tr>
<td>Sequence Last Update</td>
<td></td>
</tr>
<tr>
<td>Sequence Last Update Operator</td>
<td></td>
</tr>
<tr>
<td>Sequence Sign Status</td>
<td></td>
</tr>
<tr>
<td>Sequence Authorized Submit Users</td>
<td>Users authorized to submit the signed sequence</td>
</tr>
<tr>
<td>Sequence Submit User</td>
<td>User who submitted the signed sequence</td>
</tr>
<tr>
<td>Sequence Submit Date</td>
<td>Date when the signed sequence was submitted.</td>
</tr>
<tr>
<td>Sequence Authorized Review Users</td>
<td>Users authorized to review the signed sequence.</td>
</tr>
<tr>
<td>Sequence Review User</td>
<td>User who reviewed the signed sequence.</td>
</tr>
<tr>
<td>Sequence Review Date</td>
<td>Date when the signed sequence was reviewed.</td>
</tr>
<tr>
<td>Sequence Authorized Approved Users</td>
<td>Users authorized to approve the signed sequence.</td>
</tr>
<tr>
<td>Sequence Approve User</td>
<td>User who approved the signed sequence.</td>
</tr>
<tr>
<td>Sequence Approve Date</td>
<td>Date when the signed sequence was approved</td>
</tr>
</tbody>
</table>

There are four different groups of search criteria:

1. Text variables, such as, **Sample** or **Sequence Name**, **Sample ID**, etc.
2. Numerical variables, such as, **Sample Number**, etc.
3. Variables with specific values, such as, **Sample Type** or **Sample Status**, etc.
4. Time variables, such as, **Sample Inject Time**, **Sequence Creation Date**, etc.
These search parameters must be further specified. Different operators are available to link the search criterion with a comparative value. The search criterion determines which operators are available:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Searches all samples...</th>
<th>Available for group no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>whose property is identical to the specified character string.</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td><></td>
<td>whose property is not identical to the specified character string.</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>></td>
<td>whose property is larger than the specified character string.</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td><</td>
<td>whose property is smaller than the specified character string.</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>>=</td>
<td>whose property is larger than or equal to the specified character string.</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td><=</td>
<td>whose property is smaller than or equal to the specified character string.</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>contains</td>
<td>whose property contains the specified character string.</td>
<td>1</td>
</tr>
<tr>
<td>contains not</td>
<td>whose property does not contain the specified character string.</td>
<td>1</td>
</tr>
<tr>
<td>starts with</td>
<td>whose property starts with the specified character string.</td>
<td>1</td>
</tr>
<tr>
<td>does not start with</td>
<td>whose property does not start with the specified character string.</td>
<td>1</td>
</tr>
<tr>
<td>ends with</td>
<td>whose property ends with the specified character string.</td>
<td>1</td>
</tr>
<tr>
<td>does not end with</td>
<td>whose property does not end with the specified character string.</td>
<td>1</td>
</tr>
<tr>
<td>is like</td>
<td>whose property fulfills the specified wildcard condition.</td>
<td>1</td>
</tr>
<tr>
<td>is not like</td>
<td>whose property does not fulfill the specified wildcard condition.</td>
<td>1</td>
</tr>
<tr>
<td>is between</td>
<td>whose property is between two values.</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>is not between</td>
<td>whose property is not between two values.</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>during the previous</td>
<td>whose property was created during a specified time before the query.</td>
<td>4</td>
</tr>
<tr>
<td>is null</td>
<td>in which the variable does not exist.</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>is not null</td>
<td>in which the variable exists.</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>

If the operators >, <, >=, or <= are used for text variables, the alphabetical order is considered; for example: A<B.
Note:

All SQL-time queries containing a relative reference (= during the previous operator) are recalculated for each query.

Wildcards represent character strings. The following wildcards can be used for text variables when the operator is either "is like" or "is (not) like":

<table>
<thead>
<tr>
<th>Wildcard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Represents any character string with 0 or more characters.</td>
</tr>
<tr>
<td>_ (underscore)</td>
<td>Represents any single character.</td>
</tr>
<tr>
<td>[]</td>
<td>Represents a single character in a specified range; for example, [a-f].</td>
</tr>
<tr>
<td>[^]</td>
<td>Represents any character except the specified range.</td>
</tr>
</tbody>
</table>

When you have completed your entries, click Apply to start the query.

To restrict the query further, you can enter the desired restrictions on the Result Restrictions page of the Query Wizard. Else, you can select the Result Restrictions tab page of the New Query Properties (or Properties of Query "xyz") dialog box. Click Edit/Insert to open the Edit Conditions dialog box. Click the "…" button to open the Edit Result Formula dialog box and select a report variable (see ⇒Report Categories). The available logical operations depend on the selected sample and sequence properties.

Note:

Depending on the number of samples resulting from the SQL query, a result-type query may take some time. After approximately 3 seconds, a window is opened indicating the status of the result-type query (in percent of the samples to be tested). The user can use this window to stop the query. In this case, the result of the query includes only those samples of the SQL query that have passed the result test until then.

For examples of how to enter the query using the wizard, refer to Examples (Wizard).
Examples (Wizard)

Use the following SQL query to search for all samples for which
- The sample type is \textit{Matrix Blank} and
- The sample comment starts with \textit{Charge 123456} or
- The sample inject time is between 6/12/2003 and 7/12/2003:

```
CREATE TABLE Samples;
```

Use the following settings to restrict the \textit{Query} to samples that contain
- An Anthracene peak or
- More than 10 calibration points:

For more examples, refer to Examples (Dialog Box).
Specifying the Sample Query Using the Dialog Box

After you specified the *Query* in the Query *Wizard* and completed your entries by clicking *Finish*, the *New Query Properties* dialog box is opened. You can use this dialog box to specify the query further. You can also use this dialog box to edit an existing query later. In this case, the dialog box is named *Properties of Query "xyz."* To open the dialog box, select the query, and then select *Properties* on the context or *File* menu.

The dialog box provides the four tab pages:

- **General** tab page: Enter or edit the query title in the *Title* field. From the *Datasource* drop-down list, select the datasource for which the query is performed. If this field remains empty (default), the query is performed for the datasource in which the query is saved. The *Preferred RDF File* and *Preferred Channel* settings are used when a sample is opened or a batch report is started.

- **Native SQL** tab page: This tab page is read-only by default, providing information about the SQL statement sent to the ODBC driver. (Please note that the SQL statement is translated into the *SQL* syntax of the corresponding ODBC driver.) To edit the SQL statement manually, select the *Always use native SQL* check box.

 Caution:

 This edited SQL statement is used whenever the query is performed, as long as the *Always use native SQL* check box remains selected.

- **SQL** tab page: Use this tab page to edit the SQL condition(s) that the samples must fulfill. To open the *Edit Condition* dialog box, click *Edit > Insert*. Or else, place the mouse pointer in the list field and double-click the left mouse button or select *Edit Condition* on the context menu. Use this dialog box to add SQL conditions (select *Restrict Condition (AND)* or *Expand Condition (OR)*) or to change the existing condition (select *Change Condition*).

- **Result Restrictions** tab page: Use this tab page to specify the query further. You can change, restrict, or expand the query. Open the *Edit Condition* dialog box by clicking *Edit/Insert* and select *Change Condition, Restrict Condition (AND) or Expand Condition (OR)*.

 Enter a report variable in the *Formula* field. Click the ‘...’ button to open the *Edit Result Formula* dialog box and select a formula. (For more information about the report variables and their categories, refer to ⇒*Report Categories*).
Enter the desired operator. (For information about which SQL operators are supported, refer to How to ...: Creating and Managing Files and Data | Selecting Search Criteria for Samples and/or Sequences.) Finally, type the desired reference value in the Value field.

Tip:

It is not possible to access User-defined Columns by clicking the ‘...' button. Enter the formula for the user-defined column directly in the Formula field:

For user-defined columns from the sample list of the Browser, enter:

\[\text{smp.x} \]

where \(x \) is the name of the user-defined column.

For user-defined columns from the peak table of the QNT Editor, enter:

\[\text{peak_tab.user_x} \]

where \(x \) is the name of the user-defined column.

- After you have made the necessary entries, click Apply to start the search.

For examples of how to enter the query using the dialog box, refer to Examples (Dialog Box).
Examples (Dialog Box)

To search for all samples of the current day, set up the following SQL query in the Edit Condition dialog box of the SQL tab page. (For information about how to open this dialog box, refer to Specifying the Sample Query Using the Dialog Box.)

```
Samples.smp_inject_time >= CURRENT_INTERVAL '0' DAY.
```

To restrict the above search to the standard samples of the current day, reopen the Edit Condition dialog box and make the following settings:
The following SQL statements are listed on the SQL tab page:

\[
\text{Samples.smp_inject_time} \geq \text{CURRENT_INTERVAL} '0' \text{ DAY} \\
\text{AND Samples.smp_type} = 'S'
\]

To search for all samples in a Sequence named S7709, for which the Benzene peak or a peak of the PAK (PAH) peak group was identified, use the following SQL query:

Open the Edit Condition dialog box of the SQL tab page and enter the condition for the sequence name:

Change to the Result Restrictions tab page and click Edit/Insert to open the Edit Condition dialog box. Enter the condition for the Benzene peak:
Return to the **Edit Condition** dialog box and enter the condition for the peak of the **PAK** (PAH) group:

![Edit Condition dialog box](image)

With these settings, the following SQL statements are displayed:

On the **SQL** tab page:

```
Sequences.seq_name = 'S7709'
```

On the **Result Restrictions** tab page:

```
peak.name = 'Benzene'
OR peak.group = 'PAK'.
```

For examples about how to enter the query using the wizard, refer to [Examples (Wizard)](#).

Editing a Query in SQL Syntax

On the **Native SQL** tab page, the query created by Chromeleon is displayed in SQL syntax. (For information about how to open these tab pages, refer to [Specifying the Sample Query Using the Dialog Box](#).)

If you have a good knowledge of SQL, you can use the **Native SQL** tab page to specify your **Query** further. Select the **Always use native SQL** check box and modify the statement via the keyboard.
Tip:

If you have edited the SQL statement on the Native SQL tab page, this edited SQL statement is used whenever the query is performed, as long as the Always use native SQL check box remains selected. When you clear the check box, the current entries from the SQL and Result Restrictions tab pages are used, overwriting your SQL entries on the Native SQL tab page.

Saving and Performing a Query

Queries can be saved as a file in the datasource, similar to Sequence.

To create a query, select New on the File menu. In the New dialog box, select Query (using Wizard) from the list box to open the Query Wizard. After you have entered all conditions for the query, click Finish. The New Query Properties dialog box is opened. Click Save to save the conditions. The Save as dialog box is opened, indicating that the Object of type is Query. Enter the name under which the query is saved.

In the Browser, the Query is indicated by the following symbol: 📜.

If you select a query with the mouse, Chromeleon behaves in the same way as for a sequence: If you select the query in the left Browser pane, the query is performed immediately and the results are displayed in the right Browser pane. If you select the query in the right Browser pane, click Return or double-click the file to perform the query and to display the results.

To edit an existing query, select Properties on the File or context menu and edit the query as desired (see Specifying the Sample Query Using the Dialog Box).
Answering Frequently Asked Questions on the Browser

Question: What can I do when I can no longer copy data to the network datasource?

Answer: The reason is probably a communication error. Verify that the network connection still available. In rare cases, there might be a problem with the datasource. In this case, first disconnect the datasource using the Disconnect command in Chromeleon, and then reconnect the datasource. The Administrator Help section provides more information; refer to How to …: Working with Files, Databases, and Networks:

- Disconnecting a Datasource
- Connecting a Datasource

Question: I appended a sample to a running sequence. How can I make sure that the last sample is processed, too?

Answer: After appending the sample save the sequence by selecting Save on the File menu. Only then, the sample is part of the sequence and can be processed.

Question: Can I start a single sample from the Browser or the Control Panel?

Answer: No, you cannot. You have to start a batch. However, the batch may contain only one sequence with only one sample.

Question: Can I change the injection volume after the analysis is finished?

Answer: Yes, you can change the injection volume. But you must have the ModifyFinishedSample Privilege. (The system administrator assigns this privilege in the User Manager (CmUser program).)

Tip: Usually, you should not change the injection volume after the analysis. This would falsify the analysis result when an autosampler injected the sample(s). You should only change the injection volume after the analysis when you entered the wrong volume in case of manual injection of the sample.
Question: Where are programs (PGM Files), QNT Methods, and Report Definition Files (RDF) saved? Are they copied automatically to the sequence?

Answer: These files are not saved at a default location. When creating the files you have to determine where they should be saved. Programs and QNT Methods must also be saved to the sequence in which you want to use them. When saving an old sequence under a new name, using the Save as... command on the File menu, all files saved in the old sequence are also saved in the new sequence. The Status of the single samples is set to Single, i.e., the raw data is not saved in the new sequence.

Notes:

It may make sense to additionally save all programs to a Programs folder. Save the QNT Methods and RDF's in the same way.

When saving a file to more than one location, make sure that the content of the file is identical, in both locations.

Question: What happens with the files saved in a sequence when I copy the sequence using the Drag&Drop command?

Answer: The Drag&Drop operation corresponds to the Save as... command on the File menu. All files are copied together with the sequence.

Question: Is an Audit Trail recoded even if I lock the AUDIT directory?

Answer: Select the directory, and then select Properties on the context menu. On the Access Control tab page, select the Locked check box. In this way, the Audit Trail is still saved and a new Audit Trail will be created the next day, too. However, it is no longer possible to change the files in this directory or to copy files into this directory.

Question: How can I reduce the number of Workspaces displayed on the Workspace menu?

Answer: This operation is quite complex. Contact your system administrator for assistance. (Close the Chromeleon client and edit the information in the registry, using the RegEdit program. The path for accessing the information is: HKEY_CURRENT_USER\Software\Dionex\Chromeleon\Recent Workspaces.)

For tips to solve similar questions, also refer to How to ... Creating and Managing Files and Data and the related subtopics.
Importing PeakNet (Releases 4.3 Through 5.2) Method Files

Overview

In order to use Method files from PeakNet (releases 4.3 through 5.2) with Chromeleon, they must first be imported into Chromeleon.

When imported, the PeakNet 5 Method file is converted into a Chromeleon PGM File and/or Quantification Method (QNT Method). Converted PGM Files contain timed events and setup parameters for all modules included in the original PeakNet 5 Method. Converted QNT Files contain component names, retention times, reference peaks, tolerance, calibration options, groups, and level amounts for each detector in the PeakNet 5 Method.

PeakNet 5 Methods from the following modules can be imported: AS50, GP40/GP50, IP20/IP25, AD20, AD25, CD20/CD25, ED40/ED50, IC20/IC25, DX-120, and UI20. For Methods that were created with AI-450 software, only the QNT portion of the Method is converted.

Because of differences in the way that PeakNet 5 and Chromeleon function, some features available in a PeakNet 5 Method file are not imported into Chromeleon. These include:

- Replicate calibration information
- CE Method parameters
- High/low limit values
- Outlier rejection
- Linear weighting options

In addition, Chromeleon allows only a single component table per injection, whereas PeakNet 5 allows one table per detector. When the PeakNet 5 Method contains multiple detectors, the first detector is converted entirely; that is, information about every component and unknown peak is added to the peak table. Then, for the other detector(s), only unique components and unique unknown groups not present in the first detector's data are added to the table. This means that any reference component information for detectors other than the first detector may be lost.
How To

1. In the Browser, select a Datasource folder (not a sequence name).

2. Select Import/Restore on the File menu and then select PeakNet 5 and Method Files.

3. In the Import PeakNet 5 Method Files dialog box, navigate to the folder that contains the PeakNet 5 Method file(s) to be imported. These files are named with the .MET extension.

4. Select one or more of the Method files and click Add. The files appear in the Selected files list.

5. To convert the PeakNet 5 Method into a PGM File for Chromeleon, select the Program box. The PGM File is created in the folder shown next to the Program box. The default is the datasource folder currently selected in the Browser. To choose a different location, click the Browse button and select a location.

6. To convert the PeakNet 5 Method component table and calibration parameters into a Chromeleon QNT Method, select the QNT box. The QNT File is created in the folder shown next to the QNT box. The default is the datasource folder currently selected in the Browser. To choose a different location, click the Browse button and select a location.

7. Select the Inverted Curve Fitting check box to use inverted calibration (concentration or amount is plotted against measured values). Clear the check box for "normal" curve fitting (measured values are plotted against concentration or amount). See How to …: Calibrating Inverting Dependent and Independent Variables for details.

8. Click Import. The selected PGM and/or QNT Files are created. The new files have the same name as the PeakNet 5 Method file, but with PN5 appended and with PGM and QNT extensions. Once a Method file is converted, the file name is removed from the Selected files list.

Tip:

If the QNT option is selected, but the PeakNet 5 Method does not contain a detector module, an empty QNT Method file is created.

Also, refer to Importing PeakNet (Releases 4.3 Through 5.2) Data Files.
Importing PeakNet (Releases 4.3 Through 5.2) Data Files

Overview

In order to use data files from PeakNet (releases 4.3 through 5.2) with Chromeleon, the files must first be imported into Chromeleon.

When the PeakNet 5 data file is imported, a Sequence for Chromeleon is created. The sequence includes the raw data from the data file, the embedded PeakNet 5 Method (converted to a Chromeleon PGM File and Quantification Method (QNT Method), and additional information required to complete the sequence. If multiple data files are selected for import, they are grouped into one sequence.

If the PeakNet 5 data file contains multiple detectors, a separate sample line in the sequence is created for each detector (up to four).

How To

1. In the Browser, select a Datasource folder (not a sequence name).
2. Select Import/Restore on the File menu and then select PeakNet 5 and Data Files.
3. In the Import PeakNet 5 Data Files dialog box, navigate to the folder that contains the PeakNet 5 data file(s) to be imported. These files are named with a .DXD or .Dxx extension (where xx is 01 - 99).
4. Select one or more data files and click Add. The files appear in the Selected files list.
5. The selected data files will be imported into the folder shown in the PeakNet Folder box. The default is the datasource folder currently selected in the Browser. To import the data file(s) into a different location, click the Browse button and select a location.
6. In the Sequence Name box, enter a name for the sequence to be created from the imported data files.
7. Select the Inverted Curve Fitting check box to use inverted calibration (concentration or amount is plotted against measured values). Clear the check box for "normal" curve fitting (measured values are plotted against concentration or amount). See How to ...: Calibrating Inverting Dependent and Independent Variables for details.
8. Click **Import**. The selected PeakNet 5 data files are imported into Chromeleon.

The following files are created:

- One sequence, which contains a sample line for each PeakNet 5 data file selected for import. If any of the data files contained data from multiple detectors, separate sample lines are created for each detector's data.

- One PGM File and one QNT File for each sample in the sequence. The PGM and QNT Files are created from the PeakNet 5 Method embedded in the PeakNet 5 data file.

The PGM and QNT Files are named as follows: the Method file name from the PeakNet 5 data file is used, followed by a three-digit identifier that corresponds to the detector's position in the sequence, and then a pgm or qnt extension.

Example

In the Import PeakNet 5 Data Files dialog box, three data files are selected for import.

![Import PeakNet 5 Data Files dialog box](image)

After importing, the following sequence is created. Notice that, because the Bioamine.d04 data file contained data from two detectors, two sample lines were created in the sequence:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Inj. Vol</th>
<th>Program</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bigenic amino.d01.2ppmFBAO Unknown</td>
<td>0</td>
<td>10.0</td>
<td>calb001</td>
<td>calb001</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bigenic amino.d01.2ppmFBAO Unknown</td>
<td>0</td>
<td>10.0</td>
<td>calb002</td>
<td>calb002</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Level 2 Standard</td>
<td>Unknown</td>
<td>0</td>
<td>10.0</td>
<td>as14003</td>
<td>as14003</td>
</tr>
<tr>
<td>4</td>
<td>Diabetic IC Sample</td>
<td>Unknown</td>
<td>0</td>
<td>10.0</td>
<td>2ugars004</td>
<td>2ugars004</td>
</tr>
</tbody>
</table>
The following PGM and QNT Files were also created. These correspond to the programs and methods listed in the sequence:

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ug4ans004 pgm</td>
<td>PeakNet 5 Imported</td>
</tr>
<tr>
<td>8114000 pgm</td>
<td>PeakNet 5 Imported</td>
</tr>
<tr>
<td>cats501 pgm</td>
<td>PeakNet 5 Imported</td>
</tr>
<tr>
<td>cats600 pgm</td>
<td>PeakNet 5 Imported</td>
</tr>
<tr>
<td>2ug4ans004 qnt</td>
<td>PeakNet 5 Imported</td>
</tr>
<tr>
<td>8114000 qnt</td>
<td>PeakNet 5 Imported</td>
</tr>
<tr>
<td>cats501 qnt</td>
<td>PeakNet 5 Imported</td>
</tr>
<tr>
<td>cats600 qnt</td>
<td>PeakNet 5 Imported</td>
</tr>
</tbody>
</table>
```

Also, refer to Importing PeakNet (Releases 4.3 Through 5.2) Method Files

PeakNet (Releases 4.3 Through 5.2) Translation Tables

See the following topics for an explanation of how PeakNet (releases 4.3 through 5.2) setup and timed event Method parameters are translated to Chromeleon PGM File commands.

- AS50 Autosampler
- Pump Modules and Eluent Generator
- AD20 Detector
- AD25 Detector
- CD20/CD25 Detectors
- ED40/ED50 Detectors
- IC20/IC25 Systems
- DX-120 System
- UI20 Module

See Detector Component Table Translation for how PeakNet (releases 4.3 through 5.2) component table parameters are translated to Chromeleon QNT Method parameters.
AS50 Autosampler Setup and Timed Event Parameter Translation

<table>
<thead>
<tr>
<th>PeakNet (Releases 4.3 Through 5.2) Method Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL 1 (checked/unchecked)</td>
<td>Sampler_TTL_1.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 2 (checked/unchecked)</td>
<td>Sampler_TTL_2.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 1 (checked/unchecked)</td>
<td>Sampler_Relay_1.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 2 (checked/unchecked)</td>
<td>Sampler_Relay_2.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>CSV (A/B)</td>
<td>ColumnValve.State (=Col_A/Col_B)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Sample NeedleHeight</td>
<td>NeedleHeight</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Column Temperature</td>
<td>ColumnTemperature</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Tray Temperature</td>
<td>TrayTemperature</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Cycle Time</td>
<td>Cycle</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Valve (Load/Inject)</td>
<td>Load/Inject</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Pipet function (Source/Volume/Destination)</td>
<td>Pipet (SourceVial/Volume/ DestinationVial)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Mix function (Vial/Volume/Cycles)</td>
<td>Mix</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Flush function (Volume)</td>
<td>FlushSP (Volume)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Delay function (Delay Time)</td>
<td>DelaySP (Time)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Needle function (Height)</td>
<td>SetNeedleHeight (Height)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Dilute function</td>
<td>Dilute</td>
<td>Setup portion</td>
</tr>
<tr>
<td>(Concentrate Source/ Concentrate Volume/</td>
<td>(SourceVial/ ConcentrateVolume SourceReservoir/ DiluentVolume/ DestinationVial)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Diluent Source/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diluent Volume/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispense function</td>
<td>Dispense (SourceReservoir/Volume/ DestinationVial)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>(Source/Volume/Destination)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wait function</td>
<td>Wait (SamplePrep)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>PeakNet (Releases 4.3 Through 5.2) Method Parameter</td>
<td>Chromeleon PGM Command</td>
<td>Comment</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Wait for stable temperature (checked/unchecked)</td>
<td>WaitForTemperature (=True/False)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Syringe Speed always set to default value = 3</td>
<td></td>
<td>Setup portion</td>
</tr>
<tr>
<td>CutSegmentVolume always set to default value = 0</td>
<td></td>
<td>Setup portion</td>
</tr>
</tbody>
</table>

Output Labels: Not converted

Comments: Comments

Pump and Eluent Generator Setup and Timed Event Parameter Translation

Pump Modules Translation Table

<table>
<thead>
<tr>
<th>PeakNet (Releases 4.3 Through 5.2) Method Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oven Temperature</td>
<td>Temperature</td>
<td>Setup portion</td>
</tr>
<tr>
<td>High Pressure Limit</td>
<td>Pressure.UpperLimit</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Low Pressure Limit</td>
<td>Pressure.LowerLimit</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Eluent Label (A/B/C/D)</td>
<td>(%A/%B/%C/%D).Equate</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Eluent percentage (B/C/D)</td>
<td>%B/%C/%D</td>
<td>Timed portion</td>
</tr>
<tr>
<td>Inject (checked/unchecked)</td>
<td>InjectValve.State</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Column (checked/unchecked)</td>
<td>ColumnValve.State</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 1 (checked/unchecked)</td>
<td>Pump_TTL_1.State</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 2 (checked/unchecked)</td>
<td>Pump_TTL_2.State</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 1 (checked/unchecked)</td>
<td>Pump_Relay_1.State</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 2 (checked/unchecked)</td>
<td>Pump_Relay_2.State</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Flow (checked/unchecked)</td>
<td>Flow</td>
<td>Setup & timed portions</td>
</tr>
</tbody>
</table>
PeakNet (Releases 4.3 Through 5.2) Method Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluent percentage (%A)</td>
<td>Not converted</td>
<td>Calculated from %B, %C, and %D</td>
</tr>
<tr>
<td>Pump (On/Off)</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Curve</td>
<td>Curve</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Piston Size</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Pressure Units</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>

Eluent Generator Translation Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluent Concentration</td>
<td>Concentration</td>
<td>Timed portion</td>
</tr>
<tr>
<td>TTL 1 (checked/unchecked)</td>
<td>EluentGenerator_TTL_1.State (=0v/5v)</td>
<td>Timed portion</td>
</tr>
<tr>
<td>Offset Volume</td>
<td>Not converted</td>
<td>Set in Server Configuration instead</td>
</tr>
<tr>
<td>Curve</td>
<td>Curve</td>
<td></td>
</tr>
<tr>
<td>Eluent Label</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>TTL 1 Output</td>
<td>Not converted</td>
<td></td>
</tr>
</tbody>
</table>

AD20 Setup and Timed Event Parameter Translation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>Data_Collection_Rate</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Time</td>
<td>UV_VIS_1.AcqOff</td>
<td>Timed portion</td>
</tr>
<tr>
<td>TTL 1 (checked/unchecked)</td>
<td>UV_TTL_1.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 2 (checked/unchecked)</td>
<td>UV_TTL_2.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 1 (checked/unchecked)</td>
<td>UV_Relay_1.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
</tbody>
</table>
PeakNet (Release 4.3 Through 5.2) Method Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 2</td>
<td>UV_Relay_2.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Offset (checked)</td>
<td>Autozero</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Mark (checked)</td>
<td>UV_Analog_out.Mark</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Range</td>
<td>UV_Analog_out.Recorder_Range</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Wavelength</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Collection Begin</td>
<td>UV_VIS_1.AcqOn</td>
<td>Setup or timed portion</td>
</tr>
<tr>
<td>UV Lamp (Off/Low/High)</td>
<td>UV_Lamp (=Off/Low/High)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Visible Lamp</td>
<td>Visible_Lamp (=Off/Low/High)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Plot Scales</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Detector Units</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>X-Y Data</td>
<td>Not converted</td>
<td></td>
</tr>
</tbody>
</table>

AD25 Setup and Timed Event Parameter Translation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>Data_Collection_Rate</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Time</td>
<td>UV_VIS_1.AcqOff (at time=time of AcqOn + Time)</td>
<td>Timed portion</td>
</tr>
<tr>
<td>TTL 1 (checked/unchecked)</td>
<td>UV_TTL_1.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 2 (checked/unchecked)</td>
<td>UV_TTL_2.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 1 (checked/unchecked)</td>
<td>UV_Relay_1.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 2 (checked/unchecked)</td>
<td>UV_Relay_2.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Offset (checked)</td>
<td>Autozero</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Mark (checked)</td>
<td>UV_Analog_out.Mark</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Range</td>
<td>UV_Analog_out.Recorder_Range</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Wavelength</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Collection Begin</td>
<td>UV_VIS_1.AcqOn</td>
<td>Setup or timed portion</td>
</tr>
</tbody>
</table>
PeakNet (Releases 4.3 Through 5.2) Method Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV Lamp (On/Off)</td>
<td>UV_Lamp (=On/Off)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If =On, command</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Wait UV_Lamp_Ready" is added</td>
<td></td>
</tr>
<tr>
<td>Visible Lamp (On/Off)</td>
<td>Visible_Lamp (=On/Off)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Offset Level</td>
<td>UV_Analog_out.Offset_Level</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Calibration</td>
<td>Recorder_Calibration</td>
<td>Setup portion</td>
</tr>
<tr>
<td>(Off/Zero/Full Scale)</td>
<td>(AU/Zero/Full_Scale)</td>
<td></td>
</tr>
<tr>
<td>Polarity (Negative/Positive)</td>
<td>UV_Analog_Out.Polarity (=Negative/Positive)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Rise Time</td>
<td>Rise_Time</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Comment</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Labels</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Plot Scales</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>(Minimum/Maximum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Units</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>X-Y Data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CD20/CD25 Setup and Timed Event Parameter Translation

<table>
<thead>
<tr>
<th>PeakNet (Releases 4.3 Through 5.2) Method Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>Data_Collection_Rate</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Time</td>
<td>AcqOff</td>
<td>Timed portion</td>
</tr>
<tr>
<td>(at time=time of AcqOn + Time)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range (µS)</td>
<td>ECD_Analog_Out.Recorder_Range</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 1 (checked/unchecked)</td>
<td>ECD_TTL_1.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 2 (checked/unchecked)</td>
<td>ECD_TTL_2.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 1 (checked/unchecked)</td>
<td>ECD_Relay_1.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 2 (checked/unchecked)</td>
<td>ECD_Relay_2.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
</tbody>
</table>
PeakNet (Releases 4.3 Through 5.2) Method Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset (checked)</td>
<td>Autozero</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Mark (checked)</td>
<td>ECD_Analog_Out.Mark</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Temp. Comp.</td>
<td>Temperature_Compensation</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Cell Temp.</td>
<td>DS3_Temperature</td>
<td>Setup portion</td>
</tr>
<tr>
<td>SRS Current (Off/50/100/300/500 mA)</td>
<td>SRS_Current (=Off/50/100/300/500)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Collection Begin (checked)</td>
<td>AcqOn</td>
<td>Setup or timed portion</td>
</tr>
<tr>
<td>Plot Scales (Minimum/Maximum)</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Detector Units</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>X-Y Data</td>
<td>Not converted</td>
<td></td>
</tr>
</tbody>
</table>

ED40/ED50 Setup and Timed Event Parameter Translation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chromeleon PGM Command of Parameter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>Data_Collection_Rate</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Time</td>
<td>AcqOff (at time=time of AcqOn + Time)</td>
<td>Timed portion</td>
</tr>
<tr>
<td>Range (µS)</td>
<td>ECD_Analog_Out.Recorder_Range</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 1 (checked/unchecked)</td>
<td>ECD_TTL_1.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 2 (checked/unchecked)</td>
<td>ECD_TTL_2.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 1 (checked/unchecked)</td>
<td>ECD_Relay_1.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 2 (checked/unchecked)</td>
<td>ECD_Relay_2.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Offset (checked)</td>
<td>Autozero</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Mark (checked)</td>
<td>ECD_Analog_Out.Mark</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>PeakNet (Releases 4.3 Through 5.2) Method Parameter</td>
<td>Chromeleon PGM Command of Parameter</td>
<td>Comment</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Temp. Comp. (Setup portion.)</td>
<td>Temperature_Compensation</td>
<td>Only for ED40/ED50c (conductivity)</td>
</tr>
<tr>
<td>Cell Temp. (Setup portion.)</td>
<td>DS3_Temperature</td>
<td>Only for ED40/ED50c</td>
</tr>
<tr>
<td>SRS Current (Off/50/100/300/500 mA) (Setup portion.)</td>
<td>SRS_Current (Off/50/100/300/500)</td>
<td>Only for ED40/ED50c</td>
</tr>
<tr>
<td>Amperometry Cell (On/Off) (Setup portion.)</td>
<td>Cell (=On/Off)</td>
<td>Only for ED40/ED50d (DC amperometry) & ED40/ED50i (integrated amperometry)</td>
</tr>
<tr>
<td>Oven Temperature (enabled) (Setup portion.)</td>
<td>Oven_Temperature</td>
<td>Only for ED40/ED50d & ED40/ED50i</td>
</tr>
<tr>
<td>Voltage (Setup portion.)</td>
<td>DC_Voltage</td>
<td>Only for ED40/ED50d</td>
</tr>
<tr>
<td>Collection Begin (checked) (Setup or timed portion)</td>
<td>AcqOn</td>
<td></td>
</tr>
</tbody>
</table>

Plot Scales (Minimum/Maximum) | Not converted |
Detector Units | Not converted |
X-Y Data | Not converted |
IC20/IC25 Setup and Timed Event Parameter Translation

<table>
<thead>
<tr>
<th>PeakNet (Releases 4.3 Through 5.2) Method Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>Data_Collection_Rate</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Time</td>
<td>ECD_1.AcqOff</td>
<td>Timed portion</td>
</tr>
<tr>
<td>High Pressure Limit</td>
<td>Pressure.UpperLimit</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Low Pressure Limit</td>
<td>Pressure.LowerLimit</td>
<td>Setup portion</td>
</tr>
<tr>
<td>SRS Current (Off/50/100/300/500 mA)</td>
<td>SRS_Current (=Off/50/100/300/500)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Oven Temp.</td>
<td>DS3_Temperature</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Temp. Comp.</td>
<td>Temperature_Compensation</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Inject (checked/unchecked)</td>
<td>Pump.InjectValve.State (InjectPosition/LoadPosition)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 1 (checked/unchecked)</td>
<td>Pump_ECD_TTL_1.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 2 (checked/unchecked)</td>
<td>Pump_ECD_TTL_2.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 1 (checked/unchecked)</td>
<td>Pump_ECD_Relay_1.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Relay 2 (checked/unchecked)</td>
<td>Pump_ECD_Relay_2.State (=Closed/Open)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Offset (checked)</td>
<td>Autozero</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Mark (checked)</td>
<td>Mark</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Flow</td>
<td>Pump_ECD.Flow</td>
<td>Timed portion</td>
</tr>
<tr>
<td>Range</td>
<td>Recorder.Range</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Eluent (A/B)</td>
<td>Pump_ColumnValve.State (=Col_A/Col_B)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Collection Begin (checked)</td>
<td>ECD_1.AcqOn</td>
<td>Setup or timed portion</td>
</tr>
<tr>
<td>Pressure Units</td>
<td>Not converted</td>
<td>Set in Server Configuration instead</td>
</tr>
<tr>
<td>Piston Size</td>
<td>Not converted</td>
<td>Set in Server Configuration instead</td>
</tr>
<tr>
<td>Pump (On/Off)</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Labels</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Plot Scales (Minimum/Maximum)</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Detector Units</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>X-Y Data</td>
<td>Not converted</td>
<td></td>
</tr>
</tbody>
</table>
DX-120 Setup and Timed Event Parameter Translation

<table>
<thead>
<tr>
<th>PeakNet (Releases 4.3 Through 5.2) Method Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>Data_Collection_Rate</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Time</td>
<td>ECD_1.AcqOff</td>
<td>Setup portion</td>
</tr>
<tr>
<td></td>
<td>(at time=time of AcqOn + Time)</td>
<td>Timed portion</td>
</tr>
<tr>
<td>Pump (On/Off)</td>
<td>Pump (=On/Off)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Column (A/B)</td>
<td>Column (=A/B)</td>
<td>Setup portion</td>
</tr>
<tr>
<td></td>
<td>Wait RinseComplete command added</td>
<td>Only if System Mode is Column</td>
</tr>
<tr>
<td>Pressure (psi/MPa)</td>
<td>PressureUnit (=psi/MPa)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>SRS/Cell (On/Off)</td>
<td>SRS (=On/Off)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Eluent Pressure (On/Off)</td>
<td>EluentPressure (=On/Off)</td>
<td>Setup portion</td>
</tr>
<tr>
<td>Offset (checked)</td>
<td>Autozero</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Injection (checked/unchecked)</td>
<td>Pump_InjectValve.State</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td></td>
<td>(InjectPosition/LoadPosition)</td>
<td></td>
</tr>
<tr>
<td>TTL 1 (checked/unchecked)</td>
<td>ECD_TTL_1.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>TTL 2 (checked/unchecked)</td>
<td>ECD_TTL_2.State (=0v/5v)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Controlled AC (checked/unchecked)</td>
<td>ControlledAC (=On/Off)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td>Eluent (A/B)</td>
<td>Eluent (=A/B)</td>
<td>Setup & timed portions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only if System Mode is Eluent</td>
</tr>
<tr>
<td>Collection Begin (checked)</td>
<td>ECD_1.AcqOn</td>
<td>Setup or timed portion</td>
</tr>
<tr>
<td>System Mode</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>TTL Output Labels</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Plot Scales (Minimum/Maximum)</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>Detector Units</td>
<td>Not converted</td>
<td></td>
</tr>
<tr>
<td>X-Y Data</td>
<td>Not converted</td>
<td></td>
</tr>
</tbody>
</table>
UI20 Setup and Timed Event Parameter Translation

<table>
<thead>
<tr>
<th>PeakNet (Releases 4.3 Through 5.2) Method Parameter</th>
<th>Chromeleon PGM Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate (A&B)</td>
<td>Data_Collection_Rate</td>
<td>Setup portion</td>
</tr>
</tbody>
</table>
| Time (A&B) | Channel_A.AcqOff for Channel A
(at time= time of AcqOn + Time)
Channel_B.AcqOff for Channel B | Timed portion |
| TTL 1 (checked/unchecked) | Interface_TTL_1.State (=0v/5v) | Setup & timed portions |
| TTL 2 (checked/unchecked) | Interface_TTL_2.State (=0v/5v) | Setup & timed portions |
| TTL 3 (checked/unchecked) | Interface_TTL_3.State (=0v/5v) | Setup & timed portions |
| TTL 4 (checked/unchecked) | Interface_TTL_4.State (=0v/5v) | Setup & timed portions |
| Relay 1 (checked/unchecked) | Interface_Relay_1.State (=Closed/Open) | Setup & timed portions |
| Relay 2 (checked/unchecked) | Interface_Relay_2.State (=Closed/Open) | Setup & timed portions |
| Full Scale Voltage (mV) (10/100/1000/10000) | Full_Scale_Voltage (0.011/ 0.110/ 1.100/ 11.000) | Setup portion |
| Collection Begin (checked) | Channel_A.AcqOn for Channel A
Channel_B.AcqOn for Channel B | Setup or timed portion |
| Comment | Comments | |
| Labels | Not converted | |
| Plot Scales (Minimum/Maximum) | Not converted | |
| Units | Not converted | |
| X-Y Data | Not converted | |
| TTL Inputs | Not converted | |
| Trigger | Not converted | |
Detector Component Table Parameter Translation

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Chromeleon QNT Method Parameter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Time</td>
<td>Peak Name</td>
<td>Retention Time</td>
</tr>
<tr>
<td>Tolerance</td>
<td>Window</td>
<td>If Tolerance = time then Window options are set to Absolute and Greatest. If Tolerance = % then Window options are set to Relative and Greatest.</td>
</tr>
<tr>
<td>Reference Component</td>
<td>Retention Time Options</td>
<td>See Retention Time comments for rules.</td>
</tr>
<tr>
<td>Internal Standard Component</td>
<td>Standard</td>
<td>If global PN5 calibration options = External then all Chromeleon Standards = External. If Internal Standard Component = Internal Standard then "Use this peak as Internal Standard" option is set. If Internal Standard Component = <Component> then Internal Standard is set and Associated ISTD Peak is assigned.</td>
</tr>
<tr>
<td>Calibration Standards Level [1...32] Amounts</td>
<td>Amount column for each level</td>
<td>An amount column for each level labeled Std1, Std2, ... Stdn is inserted where n = total levels. The amounts for each peak in the table are filled in.</td>
</tr>
<tr>
<td>Check Standards Level [1...32] Amounts</td>
<td>Amount column for each level</td>
<td>An amount column for each level labeled CStd1, CStd2, ... CStdn is inserted where n = total levels. The amounts for each peak in the table are filled in.</td>
</tr>
<tr>
<td>PeakNet Releases 4.3 Through 5.2 Component Table Parameter</td>
<td>Chromeleon QNT Method Parameter</td>
<td>Comment</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Curve Fit Type</td>
<td>Calibration Type</td>
<td>If Cubic in PN5 then set to quadratic. - PN5 Fit Linear/quadratic with Origin = Force is Linear/quadratic in Chromeleon. - PN5 Fit Linear/quadratic with Origin = Ignore is Linear/quadratic with Offset in Chromeleon. - PN5 Fit Linear/quadratic with Origin = Include is Linear/quadratic with Offset and Include point (0,0) options in Chromeleon. - All points are set to No Weight in Chromeleon. - No Average Response Factor in Chromeleon, so set to Linear.</td>
</tr>
<tr>
<td>Origin</td>
<td>Calibration Type</td>
<td>See Curve Fit Type for rules.</td>
</tr>
<tr>
<td>Calibrate By</td>
<td>Calibrate By</td>
<td>- Area or Height</td>
</tr>
<tr>
<td>Relative Response Component</td>
<td>Response Factor</td>
<td>Relative to Peak is set and correct peak is assigned.</td>
</tr>
<tr>
<td>Relative Factor Component</td>
<td>Response Factor</td>
<td>Value for factor is assigned.</td>
</tr>
<tr>
<td>Groups</td>
<td>Groups</td>
<td>- For each peak in a group, the Chromeleon group item is set to that name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For each time range in a group, the range is added to Unidentified Peaks list.</td>
</tr>
<tr>
<td>Standardization</td>
<td>External/Internal</td>
<td>See handling in Quantification section above.</td>
</tr>
<tr>
<td>Calibration Standard Volume</td>
<td>Reference Inject Volume</td>
<td>Last Standard Options = Last Value</td>
</tr>
<tr>
<td>Amount Units</td>
<td>Dimension of Amounts</td>
<td></td>
</tr>
<tr>
<td>Replace Retention Time</td>
<td>Use recently detected retention times check box is checked</td>
<td></td>
</tr>
<tr>
<td>Low Limit Amount</td>
<td>Not Available (N.A.)</td>
<td></td>
</tr>
<tr>
<td>High Limit Amount</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Total Levels for Calibration Standards</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Component Table Parameter</td>
<td>Chromeleon QNT Method Parameter</td>
<td>Comment</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Total Levels for Check Standards</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Replicates Table</td>
<td>N.A.</td>
<td>No replicate information will be converted from PN5.</td>
</tr>
<tr>
<td>Replicates</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Rejection of Outlier</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Linear Weighting</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Replace/Average Response</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Sample Volume Default</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Sample Weight</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Dilution Factor</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Internal Standard Amount</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Unknown Response Factor</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>Response for Unknowns</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>CE Information</td>
<td>N.A.</td>
<td>If CE information is contained, it will not be converted in Chromeleon.</td>
</tr>
</tbody>
</table>
Importing Agilent/HP ChemStation Data Files

In order to use Agilent/HP ChemStation data files with Chromeleon, you must first import the files into Chromeleon. However, keep in mind that the structure of the two systems is different:

- **Agilent/HP ChemStation** contains single files.
- **Chromeleon** is a database-aided system.

Select the type of data you want to import in the wizard that guides you through the process (see below):

<table>
<thead>
<tr>
<th>Agilent/HP ChemStation</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch</td>
<td>One Sequence that has already been analyzed (not a Batch!)</td>
</tr>
<tr>
<td>Sequence</td>
<td>A sequence that has not yet been processed.</td>
</tr>
<tr>
<td>Method</td>
<td>Contains elements of the PGM File, the QNT Method, and the Report Definition File (RDF)</td>
</tr>
<tr>
<td></td>
<td>Tip: Only the transferable QNT part of each file is imported.</td>
</tr>
<tr>
<td>Sample</td>
<td>Single sample</td>
</tr>
<tr>
<td>Spectra Library</td>
<td>Spectra Library</td>
</tr>
</tbody>
</table>

Depending on your selection, the following Agilent/HP ChemStation data are imported together with the selected data type:

<table>
<thead>
<tr>
<th>Agilent/HP ChemStation</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D/3D raw data file</td>
<td>The corresponding channels; for example, UV and 3D channels.</td>
</tr>
<tr>
<td>Instrument data such as pressure, flow, temperature, and gradient composition</td>
<td></td>
</tr>
<tr>
<td>Sample LOG File</td>
<td>Audit Trail</td>
</tr>
</tbody>
</table>
How To

• In the Browser, select Import/Restore on the File menu, and then select Agilent/HP ChemStation. The Agilent/HP ChemStation Data Import Wizard is opened.

• On the first page, select the data type to be imported. Clicking Next> takes you to the next wizard page.

• Click Add. In the Select Agilent/HP ChemStation ... dialog box, navigate to the folder in the Windows Explorer that contains the file(s) to be imported. (The picture refers to importing a sample.)

• Select the first file to be imported. Click OK to confirm your selection. This action automatically returns you to the wizard. (When you import a batch, a sequence, or a spectra library, the appearance of the dialog box is slightly different. In this case, click Open to confirm your selection.)

• Repeat these steps until all desired files appear in the selected files list. Clicking Next> takes you to the next wizard page.

• Determine the destination directory. (Depending on the data type to be imported, you may have to determine the destination sequence and the method to be used):
• Select **Import instrument signals** by the check box if you want to include the instrument signals into the import. Clicking **Next** takes you to the next wizard page.

• All files selected for import and the desired location are listed.

• Click **Finish**. The selected files are imported into Chromeleon.

For more information about how to import ChemStation data files, refer to **ChemStation Translation Tables**.
ChemStation Translation Tables

For information about how ChemStation data are translated to Chromeleon data, refer to:

- Translating ChemStation Sequences and Batches
- Translating ChemStation Samples
- Translating ChemStation Methods
- Translating ChemStation Spectra Libraries

Translating ChemStation Sequences and Batches

ChemStation (CS) sequences and batches correspond to the Sequences in Chromeleon. Chromeleon uses all information available in the ChemStation sequence or in the ChemStation batch to create a new sequence with the same name. A message appears if this sequence already exists. You can either overwrite the old sequence or cancel the import.

The table below lists the parameters that are available for a sequence and/or batch in ChemStation and their equivalents in Chromeleon:

<table>
<thead>
<tr>
<th>ChemStation (CS)</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment (of a CS sequence)</td>
<td>Title</td>
</tr>
<tr>
<td>Instrument</td>
<td>Timebase</td>
</tr>
<tr>
<td>Operator Name (of a CS sequence)</td>
<td>Created by</td>
</tr>
<tr>
<td>Last modification time (of a CS sequence)</td>
<td>Created</td>
</tr>
<tr>
<td>Current CM user (user who imported the data)</td>
<td>Last Update by</td>
</tr>
<tr>
<td>Date/time of import</td>
<td>Last Update</td>
</tr>
<tr>
<td>-</td>
<td>Locked</td>
</tr>
<tr>
<td>-</td>
<td>Preferred RDF file</td>
</tr>
<tr>
<td>-</td>
<td>Preferred channel</td>
</tr>
</tbody>
</table>
Some ChemStation sequence and/or batch settings cannot be mapped directly to Chromeleon settings:

- **Cal Level**: Used for ChemStation calibration; not used in Chromeleon. In Chromeleon, the corresponding information is available in the ⇒Amount column of the QNT Method.

- **Inj/Location**: Indicates the number of replicates. The corresponding number of samples will be generated for the Chromeleon sequence.

- **Interval**: If the interval value for one of the standards is > 0, the ChemStation sequence runs in a special mode: The standard samples are injected first; then the unknown samples are injected. After x unknown samples have been injected (where x is defined by Interval), one or more standards are injected again. After importing, a sequence is created in Chromeleon in which standards are injected again after x unknown samples.

Translation table for generating a sample list:

<table>
<thead>
<tr>
<th>ChemStation</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Name</td>
<td>⇒Name (sample name)</td>
</tr>
<tr>
<td>Sample Type</td>
<td>⇒Type (sample type)</td>
</tr>
<tr>
<td>Sample Calibration Control Sample</td>
<td>Unknown, Standard, Validation.</td>
</tr>
<tr>
<td>Location</td>
<td>⇒Pos. (sample position)</td>
</tr>
<tr>
<td>Inj Volume</td>
<td>⇒Inj. Vol. (injection volume)</td>
</tr>
<tr>
<td>-</td>
<td>⇒Program (PGM File)</td>
</tr>
<tr>
<td>Method Name</td>
<td>⇒Method (quantification method)</td>
</tr>
<tr>
<td>Date/Time of injection (evaluated from CS log file)</td>
<td>⇒Inj. DateTime (injection date and time)</td>
</tr>
<tr>
<td>Product of Sample Amount and Multiplier</td>
<td>⇒Weight (Sample Weight Factor)</td>
</tr>
<tr>
<td>Dilution</td>
<td>⇒Dil. Factor (Dilution Factor)</td>
</tr>
<tr>
<td>ISTD Amount</td>
<td>⇒ISTD Amount (Amount of the Internal Standard)</td>
</tr>
<tr>
<td>Datafile (standards are named automatically - see below)</td>
<td>⇒Sample ID</td>
</tr>
<tr>
<td>-</td>
<td>⇒Replicate ID</td>
</tr>
<tr>
<td>Sample Info</td>
<td>⇒Comment</td>
</tr>
</tbody>
</table>
The ChemStation does not name the calibration standards; the names are automatically generated with a prefix and counter. Chromeleon needs the exact file name for data import and thus, uses the same algorithm.

Translating ChemStation Samples

Chromeleon uses all information available for the ChemStation (CS) sample to create a new sample with the same name. If the new sample is imported into an existing sequence, the sample is appended to the sequence. Existing samples will **not** be overwritten.

Unlike Chromeleon, ChemStation does not provide a sequence context for the single samples. That is why the sample information is gathered from raw data, instrument diagnosis, macros, and the LOG files.

The table below lists the properties that are available for a ChemStation sample and their equivalents in Chromeleon:

<table>
<thead>
<tr>
<th>ChemStation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample name information from a 2D/3D raw data file</td>
</tr>
<tr>
<td>Cannot be evaluated from the CS sample data; set to "unknown"</td>
</tr>
<tr>
<td>Vial position information from a 2D/3D raw data file</td>
</tr>
<tr>
<td>Inj Volume from the Lcdiag.reg file</td>
</tr>
<tr>
<td>Not specified, no entry.</td>
</tr>
<tr>
<td>Method information from a 2D/3D raw data file</td>
</tr>
<tr>
<td>Set to "Finished"</td>
</tr>
<tr>
<td>Date/time of injection (from the LOG file)</td>
</tr>
<tr>
<td>Cannot be evaluated from the CS sample data, set to 1.0</td>
</tr>
<tr>
<td>Cannot be evaluated from the CS sample data, set to 1.0</td>
</tr>
<tr>
<td>Sample name (*.d)</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>Sample information from the "sample.mac" file</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒Name (sample name)</td>
</tr>
<tr>
<td>⇒Type (sample type)</td>
</tr>
<tr>
<td>⇒Pos. (sample position)</td>
</tr>
<tr>
<td>⇒Inj. Vol. (injection volume)</td>
</tr>
<tr>
<td>⇒Program (PGM File)</td>
</tr>
<tr>
<td>⇒Method (quantification method)</td>
</tr>
<tr>
<td>⇒Status (sample status)</td>
</tr>
<tr>
<td>⇒Inj. Date/Time (injection date and time)</td>
</tr>
<tr>
<td>⇒Weight (Sample Weight Factor)</td>
</tr>
<tr>
<td>⇒Dil. Factor (dilution factor)</td>
</tr>
<tr>
<td>⇒ISTD Amount (Amount of the Internal Standard)</td>
</tr>
<tr>
<td>⇒Sample ID</td>
</tr>
<tr>
<td>⇒Replicate ID</td>
</tr>
<tr>
<td>⇒Comment</td>
</tr>
</tbody>
</table>

If you did not specify the ChemStation method to be used, all methods used for the imported samples will be imported. If one of these methods does not exist, Chromeleon generates a standard QNT Method.
Translating ChemStation Methods

The ChemStation (CS) method contains parts of the Chromeleon PGM File, the QNT Method, and the Report Definition File (RDF). Chromeleon uses only the relevant information of a ChemStation method (i.e., Peak Table and Integration Events) to create a new QNT Method with the same name. A message appears if this method already exists. You can either overwrite the old method or cancel the import.

The table below lists the Integration Events of a ChemStation method and the equivalent detection parameters in Chromeleon:

<table>
<thead>
<tr>
<th>ChemStation</th>
<th>Chromeleon</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope Sensitivity</td>
<td>Sensitivity</td>
<td>Translation factor: 20</td>
</tr>
<tr>
<td>Peak Width</td>
<td>Peak Slice</td>
<td>Translation factor: 0.8</td>
</tr>
<tr>
<td>Area Reject</td>
<td>Minimum Area</td>
<td>Translation factor: 1/60</td>
</tr>
<tr>
<td>Height Reject</td>
<td>Minimum Height</td>
<td></td>
</tr>
<tr>
<td>Shoulders</td>
<td>Peak Shoulder Threshold</td>
<td>Off = Off, On = 0.1</td>
</tr>
<tr>
<td>Baseline Now</td>
<td>Lock Baseline</td>
<td>On</td>
</tr>
<tr>
<td>Baseline at Valleys</td>
<td>Valley to Valley</td>
<td>Off = Off, On = On</td>
</tr>
<tr>
<td>Baseline Hold</td>
<td>Lock Baseline</td>
<td>On = At Current Level, Off = Off</td>
</tr>
<tr>
<td>Tail Tangent Skim</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tangent Skim Mode</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Area Sum</td>
<td>Peak Group Start</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Peak Group End</td>
<td>Off</td>
</tr>
<tr>
<td>Integration</td>
<td>Inhibit Integration</td>
<td>Off = On, On = Off</td>
</tr>
<tr>
<td>Negative Peak</td>
<td>Detect Negative Peaks</td>
<td>Off = Off, On = On</td>
</tr>
<tr>
<td>Split Peak</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fixed Peak Width</td>
<td>Peak Slice</td>
<td></td>
</tr>
<tr>
<td>Auto Peak Width</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Detect Shoulders</td>
<td>Peak Shoulder Threshold</td>
<td>Off = Off, On = 0.1</td>
</tr>
<tr>
<td>Shoulder Mode</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Solvent Peak</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Baseline Backwards</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Baseline Next Valley</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Unassigned Peaks</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Chromeleon provides equivalents in the QNT Method for the following peak table parameters of a ChemStation method:

<table>
<thead>
<tr>
<th>ChemStation</th>
<th>Chromeleon</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
<td>Peak Name</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Ret. Time</td>
<td></td>
</tr>
<tr>
<td>RT Window Low</td>
<td>Window</td>
<td>Calculated from the difference:</td>
</tr>
<tr>
<td>RT Window High</td>
<td></td>
<td>RT High - RT Low</td>
</tr>
</tbody>
</table>

Translating ChemStation Spectra Libraries

When importing a ChemStation (CS) spectra library into Chromeleon, the library name is the same in Chromeleon and in ChemStation. All spectra of the ChemStation library are imported into the Chromeleon library. Only the unmodified spectra are imported, all specific wavelength entries are ignored.

The table below lists the information available in a ChemStation spectra library and the equivalent parameters in Chromeleon:

<table>
<thead>
<tr>
<th>ChemStation</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>File name of the imported library + hint "Imported CS library"</td>
<td>Name</td>
</tr>
<tr>
<td>User who imported the spectra library</td>
<td>Created by</td>
</tr>
<tr>
<td>Creation date of the imported spectra library</td>
<td>Created</td>
</tr>
<tr>
<td>Current user</td>
<td>Last Update by</td>
</tr>
<tr>
<td>Date/time of the import</td>
<td>Last Update</td>
</tr>
<tr>
<td>Information on the imported library</td>
<td>Title</td>
</tr>
</tbody>
</table>
Before you can start analyzing your samples, you have to equilibrate the chromatography system. For the Summit HPLC System, Chromeleon supports SmartStart to automate the equilibration process. SmartStart means that the entire system, especially the column, is washed with the starting solvent until the system is free of any other liquid compositions. In addition, the column thermostat and the thermostatted autosampler if installed are warmed or cooled to the starting temperature. Besides, Chromeleon checks the lamp for stability to avoid increased Drift or Signal Noise.

The SmartStart Wizard in Chromeleon assists you in automating equilibration for the Dionex Summit HPLC system. To start the wizard, select SmartStart on the Batch menu:

<table>
<thead>
<tr>
<th>Batch</th>
<th>Tool</th>
<th>Window</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit...</td>
<td>DTHB</td>
<td>Stop...</td>
<td></td>
</tr>
<tr>
<td>SmartStart</td>
<td>Open SmartStart Panel...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting...</td>
<td>Export Handling...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer...</td>
<td>Start Recovery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Or else, click the following icon on the Online Toolbar:

The SmartStart Wizard guides you through the following steps:

- Selecting the Timebase
- Extracting the Equilibration Conditions
- Editing the Equilibration Conditions
- Starting Equilibration
Selecting the Timebase

In the first step of the SmartStart Wizard, select the Timebase. (Note: If a timebase is already selected in the current window, this timebase is used and the related wizard step is omitted.) The right-hand pane lists various computers, timebases, and networks. It depends on the access right(s) of the user which items are displayed.

Select the timebase for which equilibration shall be performed. To do so, SmartStart Wizard support must be available for at least one device in the timebase. The SmartStart Wizard currently supports the following Dionex devices:

- P680 HPLC pump
- ASI-100 HPLC autosampler
- TCC-100 HPLC thermostatted column compartment
- UVD 170U, UVD 340U, UVD 170S, and UVD 340S HPLC detectors

Clicking Next takes you to the next wizard pages.

For an overview of how to equilibrate the HPLC system with Chromeleon, refer to How to ...: Equilibrating the Chromatography System.
Extracting the Equilibration Conditions

Use the Extract Equilibration Conditions page of the SmartStart Wizard to determine whether an existing program or the current settings shall be the basis for the equilibration program:

- Select <Choose Program...> to use an existing program.
- Select <Manual Input> to use the current settings.
- Any existing equilibration programs are listed and available for selection, also.

After making your selection, click Next> to continue:

If you selected <Choose Program...>, clicking Next> opens the Browse dialog box. Select a program from the list and click Open. This takes you to the next wizard page.

If you selected <Manual Input>, clicking Next> takes you to the next wizard page. Use this page to Edit the Equilibration Conditions.

If you selected an existing equilibration program, click Next> and edit the program on the next wizard page.

For an overview of how to equilibrate the HPLC system with Chromeleon, refer to How to …: Equilibrating the Chromatography System.
Editing the Equilibration Conditions

The **Equilibration Conditions** page of the SmartStart Wizard provides an overview of the equilibration conditions, including a brief description of the parameter settings for the single devices:

<table>
<thead>
<tr>
<th>Device</th>
<th>Equilibrate</th>
<th>Properties</th>
<th>Value(s) and/or limits (if 0s to edit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PumpLeft</td>
<td></td>
<td>Flow %B, %C</td>
<td>1,000 min, purge: yes %B: 0.0 %, %C: 0.0 % Duration: 5,000 min; 0.0 % 0.0 % Lower limit : 0 bar, upper limit : 400 bar, pulse limit : 3.0 %</td>
</tr>
<tr>
<td>PumpRight</td>
<td></td>
<td>Flow %B, %C</td>
<td>1,000 min, purge: yes %B: 0.0 %, %C: 0.0 % Duration: 5,000 min; 0.0 % 0.0 % Lower limit : 0 bar, upper limit : 400 bar, pulse limit : 3.0 %</td>
</tr>
<tr>
<td>Sampler</td>
<td></td>
<td>Prime average</td>
<td>Substrate position (0.0), solvent position (0.0) Nominal: 5.0 C, lower limit: 4.0 C, upper limit: 6.0 C</td>
</tr>
<tr>
<td>ColumnOven</td>
<td></td>
<td>Temperature</td>
<td>Nominal: 18.0 C, lower limit: 5.0 C, upper limit: 55.0 C +1.5 C</td>
</tr>
<tr>
<td>UV</td>
<td></td>
<td>Wavelength</td>
<td>225 nm, bandwidth: 1 nm</td>
</tr>
</tbody>
</table>

If you want to exclude a device from equilibration, clear the **Equilibrate** check box. To edit the parameters for a device, open the related dialog box by double-clicking the device in the **Devices** column.

As an alternative, select the device and click **Edit** or press the **F8** key. For example, double-click **PumpLeft** to open the following dialog box for the left pump of the P680 DGP:
Modify the equilibration conditions as required. For example, for the pump, change the flow, pressure limits, and the maximum allowed ripple.

Clicking Next> takes you to the next wizard page.

For an overview of how to equilibrate the HPLC system with Chromeleon, refer to How to …: Equilibrating the Chromatography System.

Starting Equilibration

The Start Equilibration page is the last page of the SmartStart Wizard. Click Finish to start equilibration. The single steps that are automatically performed by Chromeleon appear in the Equilibration start log section. Before performing the first step (Preparing equilibration start), Chromeleon wants to know whether you want to save the equilibration program for later use.

To do so, click Yes to open the Save Startup Conditions dialog box:
Type a program name in the **Save As** field. The **Saved Startup Conditions** field lists all existing equilibration programs.

Click **Save** to save the equilibration program for later use. Chromeleon creates an **Equilibration** sample (=*Type = Blank*) and saves it to the **Equilibration** sequence in the timebase's directory located in the server's standard datasource. The **Equilibration** sequence also contains the new equilibration program (see > *PGM File*).

When you have saved the equilibration program, Chromeleon closes the SmartStart Wizard and opens the appropriate equilibration panel for your timebase.

Tip:

The **Dionex Templates/Panels/Equilibration** folder provides several panels from which Chromeleon automatically composes a panel that matches your timebase. Therefore, you should not modify the default equilibration panels.

Chromeleon automatically connects the panel to the related timebase. The panel contains a stripe for each device in the timebase that is supported by the SmartStart Wizard.

In addition, the **Bach Start** dialog box is opened, already containing the **Equilibration** sequence with the new sample (first position on the list). Click **Start** to start the > *Batch* and have Chromeleon perform equilibration automatically.
Equilibration is successful when all devices reached the specified settings at the end of the program. If equilibration failed, the batch is aborted after the maximum time. When equilibration was successful, Chromeleon continues with processing any other sequences in the batch.

For an overview of how to equilibrate the HPLC system with Chromeleon, refer to How to …: Equilibrating the Chromatography System.
Controlling Devices from the Control Panel

Chromeleon provides different control panels for device control. Using an appropriate control panel, you can connect and control your chromatography instruments. In addition, you can modify the control panel controls and/or the timebase assignment. (For general information about control panels, refer to Control The Control Panel.)

For more information, refer to:
- Opening a Control Panel
- Connecting a Control Panel to a Chromatography Device
- Creating and Starting Sample Batches
- Modifying a Control Panel
- Displaying Sample and Sequence Information

As an alternative to recording real data, you may simulate data acquisition, also. Refer to Using and/or Recording Demo Data for more information.

Also, refer to Answering Frequently Asked Questions.

Device control also includes System Wellness (see Performing Validation and Qualification Ensuring System Wellness).

Opening a Control Panel

To process unknown samples or to control an instrument with Chromeleon, open a Control Panel, either manually or automatically.

Chromeleon is shipped with more than 100 default control panels that provide all standard functions required for operation. The default panels are usually stored in the Dionex Templates > Panels directory of the local Datasource.
Open a control panel manually

• Select **Open** on the **File** menu. In the **Open** dialog box, select **Control Panel** from the **Object of type** drop-down list and navigate to the folder that contains the control panels. All panels available in the selected folder are listed. Type the panel name in the **Name** field. Or else, click the name in the list. In this case, the panel name is automatically written into the **Name** field. Click **Open** to open the panel.

• Alternatively, you can select the panel directly from the **Browser**. Double-click the panel name to open the panel.

Each control panel is connected to a **Timebase**. When you open a control panel, Chromeleon automatically connects to the timebase saved last. When installing the software, Dionex Service usually specifies the timebase to which Chromeleon connects automatically. Of course, you can connect the control panel to any other timebase whenever you want (see **How to ...: Controlling Devices Connecting a Control Panel to a Chromatography Device**).

Tip:

To change the automatic timebase assignment for a control panel:

Select **Properties** on the **Edit** menu. On the **Timebase** tab page, delete the entry in the **Timebase** field and click **OK**. When you open the control panel again, no timebase will be assigned. Return to the **Timebase** tab page, and select a timebase. Click **OK** to save the new assignment.

Open a control panel automatically

When started, Chromeleon opens the most recently used **Workspace**. If the workspace contains a control panel, the corresponding control panel is opened as well.

If you cannot open a workspace, for example, because you have not yet created such a view, open the control panel manually.

Tip:

Instead of opening a single control panel, you can open a panel tabset, which provides (on one window) a group of control panels for controlling and monitoring a timebase (see **How to ...: Controlling Devices from the Panel Tabset**).
Connecting a Control Panel to a Chromatography Device

When you open a Control Panel, it is automatically connected to the assigned Timebase, i.e., to the chromatography devices in this timebase. You can modify the timebase assignment any time:

- Open a control panel. Select Connect to Timebase on the Control menu.

The Timebase field on the left reports the name of the currently selected timebase, the Computer field reports the name of the computer on which the corresponding Server is running, and the Protocol field reports the used communication protocol. The list box on the right shows an icon for the local computer (My Computer). If the computer is connected to a network, an icon for the network neighborhood appears, also (see Chromatography Components: Hardware and Software Network Installation.)

- Click the Plus sign (+) beside an icon to display the items underneath.
- If the server is running, all timebases configured for the local server are listed under My Computer. If the server is not active, the entry is The server is not running.
- All PCs available on the network are listed under Network Neighborhood. Click the "+" sign beside a computer name to display the Chromeleon servers underneath. If there is no active Chromeleon server, the entry is Server not found.
- Select a timebase and click OK to confirm your selection. The name of the timebase is automatically written to the Timebase field on the left.
- If you want to connect to a different timebase whenever you open the control panel, delete the entry in the Timebase field. The panel is no longer assigned to a specific timebase and the message stating that the former timebase is not found does not appear.
- Click OK to have Chromeleon connect the control panel to the selected timebase. If the connection is successful, you can control the connected instruments, using the control elements on the control panel.
Tip:

If you want to connect automatically to the currently timebase when you reopen the control panel later, save the panel with the current timebase assignment.

Problems when Connecting to a Timebase

It depends on the selected network protocol whether a non-local server is displayed or can be accessed. The system needs several seconds to check whether the selected protocol can be used. If the connection to a specific timebase is not successful, this can be due to several reasons.

- First, check whether the corresponding server is running.
- If the server is running, try a different network protocol. Chromeleon can communicate via various network protocols, such as IPX, TCP/IP, or NetBEUI.

Tip:

Communication between two stations is possible only if the same network protocol is installed and selected on both stations. It is usually sufficient if you have installed the corresponding network protocols, e.g., IPX/SPX compatible protocol; NetBEUI Protocol, or Internet Protocol (TCP/IP). (Click Settings > Control Panel > Network and Dial-up Connections > Local Area Connection, and then select Properties on the context menu.) The current network installation determines which protocol is actually used. Please contact your network administrator. To connect to a Windows 2000 or Windows XP computer, use the Named Pipes protocol. Usually, the connection is successful when this protocol is used.

- It may happen that the required timebase exists (Server is running) but that it is not displayed. In this case, return to the Connect to Timebase dialog box. The timebase is usually displayed then. This may also happen when you connect two computers using an ISDN connection. Usually, the reason is that the network installation is not 100 per cent correct.

- If you use an IPX/SPX compatible protocol, verify that NWLink IPS/SPX/NetBIOS Compatible Transport Protocols is installed and that the check box is selected. To check this, click Settings > Control Panel > Network and Dial-up Connections > Configuration and select Properties on the context menu. If necessary, install the protocol via the Install button.
If the connection is still not successful, contact Dionex Service.

Problems when Controlling Instruments

In addition to the control mode, Chromeleon also provides a Monitor Only mode. If you connect to a timebase that is only available on a network, you can only monitor this timebase.

The Monitor Only status is also assigned when you attempt to access a local timebase that is currently controlled by an external user.

- Deselect Monitor Only on the Control menu to enable complete control over the timebase.

Creating and Starting Sample Batches

Chromatography systems are often operated day and night to ensure the best possible rate of utilization. To facilitate processing, Chromeleon allows you to group different sequences in a Batch:

- Select Edit on the Batch menu. The Batch dialog box is opened.

- On the Batch List tab page, click Add to add the sequences to be processed. (In the Browse dialog box, select Sequence as Object of type and navigate to the desired sequence(s). Click Open to confirm your selection.) If necessary, click Remove to remove any unwanted sequences. To delay the start of a sequence, select the sequence and click Set Delay. A dialog box is opened. Enter the date and time to start the sequence and click OK.
• Use the **Reporting** tab page to determine the print and report options. Select the **Print/Export Report** check box to open the **Batch Report** dialog box. Use this dialog box to specify which pages of the **Printer Layout** you want to print or export and for which samples you want to print/export the selected pages. Confirm your settings by clicking **OK**. On the **Reporting** tab page, also determine whether the selected pages shall be printed or exported immediately after the corresponding sample has been processed or when the entire batch has been finished. (For more information, refer to **How to …: Preparing the Printout** [Printing the Results of a Sequence or a Sample Batch].)

• On the **Error Handling** tab page, determine the behavior of Chromeleon if errors occur during batch processing. Under **Emergency Program**, select the program to be run if an Abort error occurs. Select the program from the drop-down list or click **Browse** to navigate to the desired file. (For more information, refer to **How to …: Creating and Modifying Programs** [Creating an Emergency Program].)

Under **Power Failure Handling**, determine the program to be run when the server restarts after a power failure. Select the program from the drop-down list or click **Browse** to navigate to the desired file. (For more information, refer to **How to …: Creating and Modifying Programs** [Creating a Power Failure Program].) In addition, determine how the system shall proceed after running the power failure program. Select an action from the drop-down list.

• On the **Transfer** tab page, determine whether the data shall be copied when the batch has been processed. Select the **Copy data to the following location** check box, and then click **Browse** to navigate to the desired location. The options provided in the **Options** section depend on whether the **Online Transfer Agent (= OTA)** is installed on your computer. If the Online Transfer Agent is installed, the following options are available:
If the Online Transfer Agent is not installed on your computer, the Chromeleon client transfers the data. If the OTA is installed, data transfer is performed by the OTA service. In this case, it is possible to start the batch even if the client is not running and to have data transferred to network datasources that you are not allowed to access.

Tip:

To use the Online Transfer Agent, make sure that the Multiple Network Control license is available on your PC (see Chromeleon Licenses).

For information about how to install the Online Transfer Agent, refer to How to …: Starting and Monitoring the Server, Setting Up the Server for Network Access Setting Up the Online Transfer Agent for Network Access in the Administrator Help section.
Modifying a Control Panel

Open the ➜ Control Panel you intend to modify (see How to …: Controlling Devices from the Control Panel ➜ Opening a Control Panel).

Saving the Panel under a Different Name

Dionex recommends that you do not overwrite any panels from the Dionex Templates > Panels directory. Also, before modifying an existing panel, select Save as on the File menu and save the panel under a different name.

Enabling Layout Mode

• Enable ➜ Layout Mode on the Edit or context menu.

Adding a Control

• Move the mouse pointer over the ➜ Layout Toolbar:

The quick info box provides a brief description of the ➜ Control to which you are currently pointing.

• Left-click to select and append the desired control to the pointer.

• Point to the desired position. Left-click to position the new control.

Removing a Control

• Left-click the control to be removed. A control frame marks the selected control.

• Press the Del key to remove the control. Or, select Delete on the Edit menu.

Modifying the Size and Position of Controls

• To resize left-click the control and draw its ➜ Control Frame to the desired size.

• To move a control left-click and drag the control to the desired position, holding down the left mouse button. To select several controls simultaneously, press the SHIFT key and left-click the desired controls.
To align several controls, press the **SHIFT** key and left-click the desired controls. Select **Align** on the **Edit** menu, and then select an option. The control frame of the control selected first is used as the reference point and reference size for the other controls.

Also, refer to:

- **Modifying a Control**
- **Linking a Control to a Device**
- **Creating a Script Button**
- **Linking a Control to a Command**
- **Creating a Device Command Button**
- **Creating a Timebase Command Button**
- **Creating Hidden Windows**

Modifying a Control

In Online Mode
- Right-click the **Control (= object)** to be modified.
- Select **Properties** on the context menu to open the **Properties** dialog box for the selected control.

In Layout Mode
- Select the control to be modified.
- Select **Properties** on the context menu to open the **Properties** dialog box.
Properties Dialog Box

The tab pages provided in the Properties dialog box vary, depending on the selected control:

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Determine the caption, font, and text position and size for the control.</td>
</tr>
<tr>
<td>Link</td>
<td>Link to the device for which the property is displayed.</td>
</tr>
<tr>
<td>Autosize</td>
<td>Determine how the size of the control changes when the entire panel is increased or reduced in size.</td>
</tr>
<tr>
<td>Color</td>
<td>Select the colors for the individual components of the control.</td>
</tr>
<tr>
<td>Style</td>
<td>Select the shape of the control.</td>
</tr>
<tr>
<td>Button</td>
<td>Specify whether and which additional Control Panel(s) are opened when the corresponding Script button is clicked (also, see How to ...: Controlling Devices from the Control Panel Creating Hidden Windows).</td>
</tr>
<tr>
<td>Command</td>
<td>Type the command or program to be executed when the Script button is clicked.</td>
</tr>
<tr>
<td>Axis/Decoration</td>
<td>Determine the scaling of the axes and the representation of the online signals and 3D plot.</td>
</tr>
<tr>
<td>Signals</td>
<td>Determine which signals are displayed and which offset is used.</td>
</tr>
<tr>
<td>Chrom.</td>
<td>Determine whether and how chromatograms overlap on the signal plot.</td>
</tr>
<tr>
<td>Device</td>
<td>Select the pump(s) for which gradient profiles are displayed.</td>
</tr>
<tr>
<td>Timebase</td>
<td>Connect to the selected Timebase.</td>
</tr>
<tr>
<td>Default Parameters</td>
<td>Specify the default parameters for a command that is linked to a Device Command button.</td>
</tr>
<tr>
<td>Events</td>
<td>Select the events to be marked on the Trend Plot.</td>
</tr>
<tr>
<td>Statistics</td>
<td>Select the statistics to be marked on the trend plot and define how they are calculated.</td>
</tr>
<tr>
<td>Data Labels</td>
<td>Specify which data points on the trend plot are labeled, and the text of the label.</td>
</tr>
<tr>
<td>Data</td>
<td>Select the trend variable to be plotted, the datasource from which trend data is retrieved, and the time period of the trend data.</td>
</tr>
<tr>
<td>Function</td>
<td>Select the function to assign to the timebase command button.</td>
</tr>
</tbody>
</table>
These tab pages are available for the following controls:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Box</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Color Box</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>String Display</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gauge Indicator</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Script Button</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Online Signal Plot</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Group Box</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Group Box</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gauge/Slider</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lamp</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Switch</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Edit Field</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Audit Trail</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gradient Display</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3D Plot</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3D Amp Plot</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rack Display</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Online Mass Spectrum Plot</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Device Command Button</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Trend Plot</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timebase Command Button</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample List</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
For information about how to specify the property of a control, refer to How to ...: Controlling Devices from the Control Panel Linking a Control to a Device.

Linking a Control to a Device

To have a control display the status or the parameter of a device, you have to link the element to the device:

- Right-click the corresponding Control and select Properties on the context menu.
- Open the Link tab page.
- From the Object list box, select the object to which you want to link a property or parameter. For example, select an instrument, a function (relay), a Channel, or a system. Select a property from the Object Property list box. Click OK to link the control to the object and the property.

Example

To have a color box indicate whether the pump is connected to Chromeleon, select Pump from the Object list box and Connected from the Object Property list box:
Tip:

Not every control is an ideal choice for representing a certain function or parameter. The functions and properties that appear in the Object Property list box depend on the selected control.

Note:

The Link tab page is not available for the signal plot, the gradient profile, and the 3D plot. Use the Signals tab page for the signal plot and the Device tab page for the gradient profile instead. You cannot change the parameters for the 3D plot.

Creating a Script Button

Chromeleon lets you assign a command or an entire sequence of commands to a Script Button. In this way, you only need to click the corresponding button to have Chromeleon execute the command or program. To create script buttons, you must have the corresponding authorization.

- Right-click the script button, select Properties on the context menu, and then select the Command tab page.

- Type all commands to be executed successively into the list box. The syntax corresponds to the syntax used when creating a →Program. When you have entered the desired commands, click Check to check the syntax. Click Try it now to test the operation before you complete programming.

- You can also use a script to start a previously written program: Copy the entire program text and paste it into the list box on the Command tab page. Or else, use the →Branch command. Enter the Branch command and then enter the path and name for the program to be started, e.g.:

 Branch "CM_Seminar\Programs\Equilibration"

This button allows you to start a column equilibration program that is stored on the CM_Seminar datasource in the Programs directory.
For more information, refer to Control The Program Syntax.

For practical tips, refer to:

How to …: Creating and Modifying Programs and Device Control
Practical Tips for Device Control (Overview).

Linking a Control to a Command

To have a control execute a specific device command, you have to link the control to both the device and the command:

- Right-click the corresponding Control and select Properties on the context menu.
- Open the Link tab page.
- From the Object list box, select the object to which you want to link a property from the Object list box. For example, select an instrument, a function (relay), a Channel, or a system. Select a property from the Object Property list box. Click OK to link the control to the object and the property.

Creating a Device Command Button

Chromeleon lets you assign a command to a device command button so that you can execute the command by clicking the button. To create a device command button, you must have the appropriate authorization.

- Right-click the corresponding button and select Properties on the context menu.
- Open the Link tab page.
- From the Object list box, select the object to which you want to link the command. From the Command list box, select the command to be linked to the selected object.
- Select the Default Parameters tab page.
- Specify the default setting for the linked command and enter any comment text you want to have associated with the command.
Tip:
Device command buttons provide commands for controlling a specific device (for example, performing a detector autozero). Timebase command buttons provide commands for controlling a timebase (for example, creating a program).

Also, refer to Creating a Timebase Command Button.

Creating a Timebase Command Button
Chromeleon lets you assign a command to a button so that you can execute the command by clicking the button. To create a timebase command button, you must have the appropriate CmUser rights.

- If you have not already done so, add a timebase command button to the control panel (see How to …: Modifying a Control Panel).
- Right-click the button and select Properties on the context menu.
- On the General tab page, enter a caption to identify the function to be assigned to the button. To include a variable in the name, click the {..} button.
- On the Timebase Command tab page, select the command to assign to the button and click OK.

Tip:
Timebase command buttons provide commands for controlling a timebase (for example, creating a program). Device command buttons provide commands for controlling a specific device (for example, priming an autosampler).

Also, refer to Creating a Device Command Button.
Creating Hidden Windows

In some cases, a Control Panel has to fulfill so many different functions that they do not fit in one window. For example, there may be only a small space left for the signal plot. In this case, create a Script Button to open an additional window for the remaining controls or, for example, a large signal plot:

- First, create an additional window: Enable Layout Mode on the Edit or context menu.
- Select New Window on the Window menu.
- Click the Online Signal Plot icon on the toolbar. Add the signal plot to the window by clicking inside the window, and then determine the size of plot. Right-click the signal plot to open the Online Signal Plot Properties dialog box. Use this dialog box to determine the properties for the signal plot.
- Right-click the background of the new window, i.e., right-click outside beside the signal plot. Select Properties on the context menu to open the Form Properties dialog box.
- On the General tab page, enter a name, e.g., Signal. On the Style tab page, clear the Initially Visible check box.
- Return to the original window by clicking the little cross on the top right of the new window.
- Select the Script Button icon on the toolbar and add a new script button to the original window. Right-click the button and select Properties on the context menu. The Script Button Properties dialog box is opened.
- The Button tab page indicates the names and captions of all windows assigned to this panel. Select the new window and select the Show Form check box.
After disabling Layout Mode, you can open the signal plot by clicking this button.

Displaying Sample and Sequence Information

In addition to the current analysis and status values, information specific to sequences and/or samples can be displayed on a Control Panel. Thus, you can read from the control panel which sample is processed, to which Sequence and Datasource the sample belongs, which status the sample has, and so on.

There are two ways to display this type of information:

- Display individual properties for a sample or sequence by linking a Control (alphanumeric display) to one of the following functions (Object Properties):

<table>
<thead>
<tr>
<th>Comment</th>
<th>Datasource</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Sequence</td>
<td>ProgramMoniker</td>
</tr>
<tr>
<td>Number</td>
<td>SequencePath</td>
<td>Moniker</td>
</tr>
<tr>
<td>Type</td>
<td>SequenceMoniker</td>
<td>ID</td>
</tr>
</tbody>
</table>
• Display information about all sample injections in the current batch by adding a **Sample List** control to the control panel.

For more information about controls, refer to the topics in *How to …:* **Controlling Devices from the Control Panel**.

Using and/or Recording Demo Data

Simulating Data Acquisition

- **Demo (or Virtual) Mode** lets you simulate data acquisition by loading a pre-recorded demo file and displaying the data from the demo file on the **Control Panel's** signal plot. The demo file is "read back" as though the data were being acquired in real time.

1. To select **Demo** or **Virtual Mode** for a device, start the **Server Configuration** program and select a device in the corresponding **Timebase**.

2. Select **Properties** on the **Edit** or context menu.

3. For detectors that use demo mode, select **Read** under **Demo Mode** on the **General** tab page, and then select an existing demo file from the **Demo File Name** drop-down list.

 For other detectors, select **Virtual Mode** on the **General** tab page. Then, select the **Demo Chromatogram** tab, select the **Read demo chromatogram from:** check box, and select a demo file from the drop-down list.

4. (Optional) Enable the **Demo** or **Virtual Mode** for all other devices of the timebase on the corresponding **General** tab pages.

5. To run the demo file, open the control panel for the device, connect to the timebase, and then enable data acquisition. The **Data Acquisition** dialog box appears.

6. If the demo file contains more than one channel, select the channel(s) and click **OK**. The demo file begins running. It runs continuously (repeats) until data acquisition is disabled.
Recording Demo Data

1. To create a demo file for an installed detector, open the Properties dialog box in the Server Configuration.

2. For detectors that use demo mode, select Write under Demo Mode on the General tab page.

 For other detectors, select Live Mode on the General tab page. Then, select the Demo Chromatogram tab page and select the Write demo chromatogram to: check box.

3. Enter a name for the demo file. If the device is connected via the Dionex DX-LAN, select the Device ID under Communication.

4. To write the demo file, open the control panel for the device and enable data acquisition. The data acquired from the detector is recorded in the demo file.

5. To stop recording data, disable data acquisition. The demo file is then complete. Alternatively, instead of starting and stopping data acquisition manually, you can run a PGM File that turns acquisition on and off.

Answering Frequently Asked Questions

Question: Why does an error message appear in Chromeleon when I shut down a device?

Answer: The Chromeleon server reports an error because the device is no longer connected. Stop the Chromeleon server. Right-click the Chromeleon Monitor icon and click Stop Server.

Note:

Keep in mind that you have to restart the Chromeleon server before you can record another chromatogram.

Question: How can I learn from a control panel which program is being sent to the device and which commands are being executed?

Answer: The program used for analyzing the sample is displayed in the Audit Trail section on the control panel. Under the program, the times at which the different commands were executed by the device are listed.
Question: What is the function of the Inject command on the Control menu? Does it also start data acquisition?

Answer: Only select this command to perform a manual injection. If you select the command while a program is running, the program will be interrupted. Data acquisition will not be started. To start data acquisition, select Acquisition On on the Control menu.

Question: Several control panels are listed on the Window menu. How can I delete an entry?

Answer: Select the control panel that is not used any longer. Close the panel by either clicking the left-most or right-most button on the top of the panel or by selecting Close on the File menu. If you have modified the panel, a dialog box appears in which you can confirm to save the modifications.

For tips to solve similar questions, also refer to How to …: Controlling Devices from the Control Panel.
Controlling Devices from the Panel Tabset

A panel tabset provides (on one window) a set of Control Panels for controlling and monitoring a timebase. If more than one timebase is connected to the chromatography Server, the window provides a panel tabset for each timebase. For general information, refer to Control The Panel Tabset.

Chromeleon provides a default panel tabset, which you can use as is, or modify to suit your needs. You can also create new panel tabsets.

For more information, refer to:
- Opening a Default or Saved Panel Tabset
- Modifying a Panel Tabset
- Creating a New Panel Tabset
- Expanding, Splitting, or Resizing a Panel Tabset
- Using the Sequence Control Panel

Opening a Default or Saved Panel Tabset

To open a default panel tabset:

1. Select Default Panel Tabset from the View menu or click the icon on the standard toolbar. The Connect to Chromeleon Server dialog box opens.

2. Select the chromatography Server on which the timebase you want to control is configured and click OK. The panel tabset opens.

 The panel tabset consists of a set of default Control Panels, organized on tab pages. The timebase is automatically connected to the panels. If there are multiple timebases connected to the selected server, the window displays a panel tabset for each timebase.
Tip:
The number and type of control panels included in a default panel tabset depend on the timebase configuration. After opening the default tabset, you can add or delete panels.

To open a saved panel tabset:
1. Select Open on the File menu.
2. In the Open dialog box, select Panel Tabset from the Object of type drop-down list.
3. Navigate to the folder that contains the panel tabset. Click the name in the list and click Open.

Tip:
You can also select a panel tabset directly from the Browser. Double-click the name (*.PTS) to open the panel tabset.

For more information, refer to:
Control: The Panel Tabset
 Modifying a Panel Tabset
 Creating a New Panel Tabset
 Expanding, Splitting, or Resizing a Panel Tabset
 Using the Sequence Control Panel

Modifying a Panel Tabset
After opening a panel tabset, you can customize it to suit your needs. You can:
- Add panels
- Delete panels
- Edit panel tab labels

After modifying a panel tabset, select Save from the File menu to save it under the same name, or Save As to save it under a different name and keep the original unchanged.
Tip:
To change the controls found on individual control panels on a panel tabset, open the control panel file (*.PAN) directly from the Browser (see How to …: Modifying a Control Panel).

To add a panel:
1. Click the panel tabset. Its border changes to bold, indicating it is active.
2. Select Add Panel on the Edit or context menu.
3. In the Browse dialog box, navigate to the folder that contains the control panel to be added.
4. Click the panel name and click Open. Chromeleon automatically connects the new panel to the timebase.

To delete a panel:
1. Select the tab for the panel to be deleted.
2. Select Remove Current Panel on the Edit or context menu.

To edit tab text:
1. Click the tab to be edited.
2. Select Edit Panel Tab Text on the Edit or context menu.
3. Type the new tab label. After 16 characters are displayed on the tab, ellipses are used to represent any additional text.

For more information, refer to:
Control: The Panel Tabset
Opening a Panel Tabset
Creating a New Panel Tabset
Expanding, Splitting, or Resizing a Panel Tabset
Using the Sequence Control Panel
Creating a New Panel Tabset

1. In the Browser, select New on the File menu.

2. Select Panel Tabset and click OK. The Connect to Chromleon Server dialog box opens.

3. Select the chromatography Server to which the timebase(s) that you want to control are connected and click OK. An empty panel tabset opens.

4. The window is divided into panes (one for each timebase). On each pane there are two choices for adding Control Panels:

 Add Panel: Click this option to choose a panel from a Browse dialog box. After adding the first panel, you can add additional panels by selecting Add Panel from the Edit or context menu.

 Add Default Panels: Click this option to have Chromleon add a set of default control panels. The control panels added for each timebase depend on its configuration. Typically, there is a panel for each instrument (pump, detector, autosampler, etc.), a panel for sequence control functions (creating programs and sequences, loading sequences, starting and stopping a batch, etc.), and a "home" panel that provides basic control functions and status for the system.

5. Select Save from the File menu to save the panel tabset. Panel tabsets are saved as PTS (*.pts) files.

For more information, refer to:

Control: The Panel Tabset

Opening a Panel Tabset

Modifying a Panel Tabset

Expanding, Splitting, or Resizing a Panel Tabset

Using the Sequence Control Panel
Expanding, Splitting, or Resizing a Panel Tabset

If a panel tabset window contains multiple timebases, you can switch between two display options:

- Click to expand the selected panel tabset and hide the other panel tabsets.
- Click to view panel tabsets for each timebase simultaneously (split-window view).

In the split-window view, you can also change the width of the panels. To do this, point to the vertical bar between two panels and drag left or right. Increasing the width of one panel decreases the widths of the other panels.

For example, the panel tabset window below is comprised of two panel tabsets.
Drag the vertical bar to the left to increase the width of the ICS-3000 panel tabset.

To return to the default split-window view, click [button].

For more information, refer to:

Control: The Panel Tabset
- Opening a Panel Tabset
- Modifying a Panel Tabset
- Creating a New Panel Tabset
- Using the Sequence Control Panel
Using the Sequence Control Panel

Each default panel tabset includes a Sequence Control panel that provides a central location from which you can develop applications, run samples, view sample status, and record system maintenance events.

Developing an Application

Two approaches are available:

- Use the Program and Sequence Wizards. Click Create Program under 1. Create Application. The Program Wizard opens and guides you through creating and saving a program. After creating the program, click Create Sequence. The Sequence Wizard opens and guides you through creating and saving a sequence.

- Alternatively, use the Application Wizard. Click Application Wizard under 2. Prepare System. The wizard guides you through creating a program, quantification method, and sequence.

Running Samples Manually

After injecting the sample, click Acq On under 2. Prepare System to start data acquisition and Acq Off to stop acquisition.

Running Samples Automatically

1. Click Load Sequence under 2. Prepare System. Select the sequence to be run and click Open.
 - If the system is idle (not currently running a Batch), the injections in the selected sequence are displayed in the Sequence list. If a sequence is already loaded you can append the new sequence to the list or clear the list first.
 - If the system is running when you load a sequence, the new sequence is automatically appended to the existing list.

2. After loading the sequence, you can edit Sample Variables in the Sequence list if desired.

3. To run the samples, click Start Batch.

4. To hold, continue, or abort the batch, click the corresponding button under 3. Execute Application.
Viewing the Daily Audit Trail

To view an audit trail for a previous day, click **Daily Audit Trail** under **System Maintenance**. The **View Daily Audit Trail** window opens. Select a date and click **View** to see the audit trail for that day.

Tip:

Point to the audit trail pane and right click to open the context menu. The menu includes commands for filtering the audit trail, and for selecting, copying, and searching entries. Refer to **Audit Trails** for additional information.

Recording Consumable and Eluent Changes

After changing a consumable (for example, a column) or changing eluent, click the corresponding button under System Maintenance. The change is recorded in the audit trail.

Tip:

In **Trend Plots** the recorded consumable and eluent changes show up as events. This allows a change in a parameter, such as signal background, to be correlated directly against a consumable or eluent change.

For more information, refer to:

Control:
- Opening a Default or Saved Panel Tabset
- Modifying a Panel Tabset
- Creating a New Panel Tabset
- Expanding, Splitting, or Resizing a Panel Tabset
- Using the Sequence Control Panel
Creating and Modifying Programs

A Program is used to define precisely timed start conditions and Control Commands. You usually create the program using the Program Wizard and edit the program later in the PGM Editor (see Control The PGM Editor). The minimum entries required for an operable program are as follows:

- Signals to be recorded and their parameters
- Flow rate and solvent composition
 (⇒%B, %C, %D - for controlled pumps, only)
- Inject command
- Start of data acquisition (⇒AcqOn)
- End of data acquisition (AcqOff)
- End of the program (⇒End)

Verify that all relevant parameters are defined in the program. For parameters that are not explicitly defined, Chromeleon uses the settings of the last sequence.

Dionex recommends creating the program automatically first (see Automatically Creating a Program), and then edit the file either via the PGM Editor (see Editing PGM Files in the Device Views of the PGM Editor) or manually (see Manually Editing a PGM File in the Commands View).

With respect to GLP (Good Laboratory Praxis), Dionex recommends adding comments about all chromatographic settings (e.g., for the column, detector, pump, and the sample components) as well as explanatory notes at the beginning of the program. However, this is possible only in the Commands view.

To see the structure of a simple program, refer to How to …. Creating and Modifying Programs Program Example.
Automatically Creating a Program

Create the basic structure of a Program using the Program Wizard. (For general information about the wizard, refer to Control The Program Wizard.)

- Select New on the File menu, and then select Program File from the list box. The Program Wizard guides you through program creation.
- Enter the required information in the input fields on the corresponding wizard pages. Clicking Next> takes you to the next wizard page.
- If you need help, press the F1 key.

When input is complete, click Finish. Based on your entries, Chromeleon creates an operable program. You are not required to pay attention to the syntax or other programming details.

The Program Wizard is a basic operating element in Chromeleon. Therefore, refer to the Tutorial Program Wizard for basic information about the wizard. For information about special applications, refer to:

- Defining Tandem Gradients (Summit x2)
- Setting the Bypass Mode Options (ASI-100)

You can modify and/or extend the basic program later as described in Editing PGM Files in the Device Views of the PGM Editor.

For a simple program example, refer to How to ...: Creating and Modifying Programs Program Example.

For examples for special programs, refer to How to ...: Creating and Modifying Programs

- Creating an Emergency Program
- Creating a Power Failure Program

For an overview of the numerous programming capabilities, refer to Device Control Practical Tips for Device Control (Overview).
Defining Tandem Gradients (Summit x2)

The Summit x2 Dual-Gradient HPLC System features Tandem Operation. Running the system with a dual-gradient pump, a second column, and a column switching valve allows increasing the sample throughput considerably, typically by 50 to 100%. This is achieved by using the reequilibration time of the first column after a sample run for analyzing the next sample on the second column.

The Program Wizard (see The Control Program The Program Wizard) supports tandem operation only for the Summit x2 Dual-Gradient HPLC System. On the Wizard Options page, select Program for Summit x2 Tandem Operation and create the program on the next wizard pages.

On the Tandem Gradient Options page, determine the (virtual) profile assuming that only one pump is installed. The picture graphically represents this virtual profile.
Determining the start for off-line reconditioning

To determine the start for off-line reconditioning, enter a time value in the \textit{Off-line Reconditioning Start Time} input field.

\textbf{Note:}

Starting off-line reconditioning does not mean that the column switching valve immediately switches to the other column. Before the valve can switch, the solvent lines between the pump and the column switching valve have to be purged. This ensures that only solvent of the starting composition is transported to the second column. In this way, the second column is optimally conditioned when the next sample is injected.

Set the start of the off-line reconditioning to a retention time at which all peaks eluted from the column. Or else, draw the red line in the graphical representation to the desired gradient position. In the graphical representation, you can draw the line only to certain values, e.g., the basic points of the gradient. In the input field, you can enter the time with three places after the decimal point.

The pictures on the \textbf{Tandem Operation Options} page graphically represent the gradients actually delivered by the two pumps.
Tip:

It may happen that the virtual gradient on the Tandem Gradient Options page seems to be shorter than the actual gradients on the Tandem Operation Options page. The reason is that the times for purging the void volume are not considered for the virtual gradient.

The (virtual) gradient (defined in the table) is delivered by the analytical pump until off-line reconditioning starts. Then, the analytical pump washes the solvent lines between the pump and the column switching valve. The column switching valve can switch to the other column only after solvent line washing is finished. Afterward, the reconditioning pump delivers the remaining (virtual) gradient that has not yet been delivered by the analytical pump.

For a program example, refer to Tandem Program (including Bypass Mode).

Setting the Bypass Mode Options (ASI-100)

The ASI-100 autosampler features the bypass mode that allows reducing the cycle time for short chromatograms. The Program Wizard (see The Control Program The Program Wizard) supports the bypass mode only for the Summit x2 Dual-Gradient HPLC System.

When the bypass mode is enabled, the chromatographic flow bypasses the loop of the ASI-100 autosampler. In this way, you can condition the solvent line(s) between the injection needle and the motorized switching valve (MSV), as well as the sample loop before loading the next sample.

Tip:

Make sure that the system runs under isocratic conditions until switching to the bypass mode.

To avoid carry-over, bypass the sample loop only after the entire sample has left the sample loop. To ensure this, purge the loop volume and the void volume between the injection needle and the MSV a minimum of 5 times.
Creating and Modifying Programs

The bypass time is calculated as follows:

\[
\text{Time} = \text{FlushFactor} \times (\text{Max. Inj. Vol.} + \text{void vol. between injection needle and MSV}) / \text{Flow}
\]

The void volume between the injection needle and the MSV is 20 µl. Set all other parameters in the Program Wizard. On the **Wizard Options** page, select **Program for Summit x2 Tandem Operation** and create the program on the next wizard pages. To enable the Bypass Mode, select the related check box on the **Tandem Operation Options** page:

![Program Wizard: Tandem Operation Options](image)

Make the following settings:

Max Inj. Vol. Enter the maximum injection volume for the application.

Flow Enter the flow to be delivered by the analytical pump until the bypass time.

Tip:

Dionex recommends using the flow specified for the analysis. (This is the default setting.) If you enter a different flow, the pump will deliver this flow until reaching the bypass time instead of delivering the flow specified for the analysis.
Flush Factor

Enter a factor for calculating the purge volume.

Tip:

Dionex recommends using a factor of \(= 5 \). (Any factor between 1 and 120 is allowed.)

Time

Usually, the time is calculated from the above settings:

\[
\text{Time} = \text{FlushFactor} \times \left(\frac{\text{Max. Inj. Vol.} + \text{void volume between needle and MSV}}{\text{Flow}} \right)
\]

Enter a time if you want to limit the time until bypass mode is enabled. In this case, the flow is recalculated as follows:

\[
\text{Flow} = \text{FlushFactor} \times \left(\frac{\text{Max Inj. Vol.} + \text{void vol. between injection needle and MSV}}{\text{Time}} \right)
\]

At the bypass time, the `MsvToLoad` command is added to the program file. The chromatographic flow bypasses the sample loop of the ASI-100. This allows conditioning the void volume section between the injection needle and the motorized switching valve, as well as the sample loop, before loading the next sample.

Tip:

In addition, enter the `PrepareNextSample` command about 1 minute before injection of the next sample to load this sample into the loop and inject it immediately after column valve switching.

For a program example, refer to [Tandem Program (including Bypass Mode)](#).

Editing PGM Files in the Device Views of the PGM Editor

The different device views in the PGM Editor offer a user-friendly way to edit an existing program at any time according to your requirements. (For general information about the PGM Editor, refer to [Control The PGM Editor].)

- Click a device icon on the left pane in the PGM Editor to change the parameters and/or to enter new parameters for the associated device.
- The associated page(s) of the [Program Wizard] are opened.
- Enter the desired parameters or changes.
• If you want to change and/or enter parameters for other devices, click the respective icon and follow the description above.

The wizard pages or the PGM Editor provide only the most important commands for the devices. The Commands view allows you to enter additional commands manually (see Manually Editing a PGM File in the Commands View).

Note:

If your program already contains many comments, it may make sense to edit the PGM File in the Commands view and not in the Device Views. If you edit such a program in the Device Views, it may happen in some configurations that the single commands appear at the "wrong" position. Please note that comments that were entered at the end of a line are removed. Therefore, please check the program before saving the changes.

Manually Editing a PGM File in the Commands View

If you want to modify and save an existing Program, follow the steps below. (For information about how to create a new program, refer to Automatically Creating a Program. Modify the program in the corresponding device view as described in Editing PGM Files in the Device Views of the PGM Editor.)

General Information

• Select Open… on the File menu, and then select an existing PGM File from the Open dialog box.

• Verify that the server is running. If the server is not yet running, start the server in the Server Monitor Program.

• Select Connect to Timebase on the Control menu, and then select the timebase in which you want to use the modified PGM File.

• To open the Commands view, click the following icon on the icon bar:

• Place the cursor on the position you wish to modify or press the Enter key to insert a new program line.
Creating and Modifying Programs

Entering commands or properties

- Press the F8 key to open the **Commands** dialog box.
- Select the instrument (below called **Device**) for which you want to edit an instruction. A device can be any instrument of a timebase, an installed channel, a relay, a remote input, or the system itself. Devices are marked by the following icon [image]. Click the "+" character beside the device name to display the items underneath.
- Each device has its own **commands (** and/or **properties (**).
- When you select a command or a property, additional input boxes appear under the **Retention Time** input box. A short help text is displayed in the **Help** section.
- Enter the retention time when the command shall be executed or when the status of a property shall be changed.
- Assign either the required value (e.g., a number) or a new status (e.g., *On*) to the command or property.
- Click **OK** to complete the input. Click **OK & Prev** or click **OK & Next** to change to the previous or to the next program line.
- Repeat the input procedure until you have changed all commands and/or properties of interest.

Adding command/property values to the audit trail

- Press the F8 key to open the **Commands** dialog box.
- Select the ⇒**Log** command from the commands list. The devices listed in the left window are displayed a second time, in the **Property** box on the right. The structure in which the devices are displayed is the same as described above. The **Property** box provides the commands and properties from the left window and in addition several read-only variables.
- Select the command or the property for which you want to write the value at the time specified in the **Retention Time** field to the Audit Trail. The **Help** section provides a short description of the selected command or property.
- Click **OK** to enter the selected **Log** command into the program.
Adding comments to the audit trail

- Press the F8 key to open the **Commands** dialog box.
- Select the →**Protocol** command from the commands list. Enter the desired comment into the **Text** input box that appears on the right.
- Click **OK** to enter the **Protocol** command into the program.

Checks during command input

- When you enter commands, Chromleon performs different checks (see ➤**Check Command**):
 - Syntax check: Does the entry correspond to the formal rules of the program language?
 - Semantics check: Does the program make sense with regard to chromatography?
- If an error is detected, the corresponding line is displayed in red color. Check and correct the entry. If necessary, repeat this procedure, using the F8 box.

Adding comments

To enter a comment, place the cursor at desired position. Type the desired text, starting with a semicolon. Or else, press the F8 key to open the **Commands** dialog box and enter the desired comment in **Comment** field. Click **OK** to add the comment to the program.

Comments are displayed in green color, indicating that Chromleon considers the text as a comment. Any comment entered in this way does not appear in the audit trail. It only serves to comment the program so that you can, for example, easily recall and understand the various steps later.

Note:

*If you want to edit your program later in the Device views (see **Control/The PGM Editor** ❯ The Device Views), Dionex recommends entering all comments right at the beginning of the program. In some cases, Chromleon cannot assign comments to the associated commands when re-sorting. Thus, it may happen that some comments appear at the wrong position after you have edited the program in the Device views.*

For information about how to perform calculations in a program, refer to ❯ **Calculating in a Program**.
Save the result as a new PGM File, using the **Save as** command.

Note:

Experienced users can enter these commands directly, that is, without opening the F8 box. However, this requires profound knowledge of the program syntax (see Control The Program Syntax).

Tip:

Try to avoid editing programs for Tandem Operation. If editing is necessary, keep in mind that you have to make the corresponding changes also for the other pump. Any inconsistencies that might occur are displayed on the Consistency Check page. (When Chromeleon detects inconsistencies, this page opens automatically when you exit the PGM Editor and specify that you want to solve the problem(s). As an alternative, you may open this open by clicking the Tandem Operation icon.)

For a simple program example, refer to Program Example.

For special program examples, refer to How to ...: Creating and Modifying Programs:

- Creating an Equilibration Program
- Creating a Shutdown Program
- Creating an Emergency Program
- Creating a Power Failure Program

For program examples for special applications, refer to How to ...: Creating and Modifying Programs

- Creating a Tandem Program (including Bypass Mode)
- Using User-defined Columns in a Program

For an overview of the numerous programming capabilities, refer to Device Control Practical Tips for Device Control (Overview).
Calculating in a Program

To use different values and signals in one program, Chromeleon lets you use the four fundamental operations of arithmetic and powers. See below for some examples:

Addition or Subtraction: Relative Sample Position

The two examples below refer to the ASI-100 autosampler. (For general information about this autosampler, refer to Hardware Installation ASI-100 HPLC Autosampler Series in the Administrator Help section.)

1. To determine that the vial that is five incremented positions away from the current position is always used as the sample preparation vial, use the following command line:

 `0.000 Sampler.PrepVial Position + 5`

 For example, if you are currently processing the sample from position RB3, the vial at position RB8 is used for sample preparation.

2. If the autosampler is currently at a position in the RA ring, the following line takes you to the corresponding position in the RB ring:

 `0.000 Position Position + RB1 - RA1`

Multiplication: Calculating the Volume

3. To record the solvent volume, which is transported through the column while the current sample is processed, as a virtual channel use the following line:

 `VirtualChannel_01.Formula Formula=pump.flow*system.retention`

 In addition, you have to define: `VirtualChannel_01.FormulaMin` and `VirtualChannel_01.FormulaMax`.

 Tip:

 Always set `FormulaMin` and `FormulaMax` after you have defined the formula.

Division: Ratio

4. To determine the ratio of two channels, record the quotient of the two channels as virtual channel:

 `VirtualChannel_01.Formula Formula=UV_VIS_1/UV_VIS_2`
Powers: Calculating the radioactive decay

5. Use the following formula to record a channel for a radioactive substance as if this substance would not decay:

\[
\text{VirtualChannel}_01.\text{Formula} = \frac{\text{UV_VIS_1}}{2.718^{(-0.69314718\times \text{System.Retention}/t\%)}},
\]

Note:

For detailed examples of the Virtual Channel Driver, refer to Practical Tips for Device Control Special Commands, Relays and Others Program Examples for Virtual Channels.

Relational and logical operators: Trigger Commands

6. Use the following condition to combine, for example, fraction collection:

\[
\text{Trigger FRACTIONUV_VIS_1 OR UV_VIS_2 > 100}
\]

In the above example, fraction collection could start if a signal with a peak area larger than 100 mAU is recorded on either the UV_VIS_1 or the UV_VIS_2 channel.

The following operators are available for trigger commands:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>=</td>
<td>Equals</td>
</tr>
<tr>
<td>AND</td>
<td>All parameters must fulfill a condition.</td>
</tr>
<tr>
<td>OR</td>
<td>Only one parameter must fulfill a condition.</td>
</tr>
<tr>
<td>NOT</td>
<td>Verifies that a parameter has no specified value.</td>
</tr>
<tr>
<td>XOR (=^)</td>
<td>Verifies that the values are different.</td>
</tr>
</tbody>
</table>

Dionex recommends using the Fraction Collection device driver to control fraction collection. For more information, refer to How to …: Collecting Fractions.
Program Example

A Program for a 20-minute chromatogram (flow rate: 1 ml/min, components: A (60%) and B (40%), signals: UV_VIS_1 (256 nm), UV_VIS_2 (300 nm), and 3D field: recorded in the 200 to 360 nm range at a step of 0.5 seconds) could have the following appearance:

```plaintext
-10.000 Lamp=On
  Pressure.LowerLimit = 5
  Pressure.UpperLimit = 250
  %A.Equate = "%A"
  %B.Equate = "%B"
  %C.Equate = "%C"

  3DFIELD.MaxWavelength = 360.0
  3DFIELD.MinWavelength = 200.0
  3DFIELD.BunchWidth = 1.9
  3DFIELD.Step = 0.5
  3DFIELD.RefWavelength = 600.0
  3DFIELD.RefBandwidth = 1.9

  UV_VIS_1.Wavelength = 256
  UV_VIS_1.Bandwidth = 1
  UV_VIS_1.Step = 2
  UV_VIS_1.Average = On
  UV_VIS_1.RefWavelength = 600
  UV_VIS_1.RefBandwidth = 1

  UV_VIS_2.Wavelength = 300
  UV_VIS_2.Bandwidth = 1
  UV_VIS_2.Step = 2
  UV_VIS_2.Average = On
  UV_VIS_2.RefWavelength = 600
  UV_VIS_2.RefBandwidth = 1

  Flow = 1.000
  %B = 60
```
Creating and Modifying Programs

0.000 UV.Autozero
 Inject
 3DFIELD.AcqOn
 UV_VIS_1.AcqOn
 UV_VIS_2.AcqOn

20.000 3DFIELD.AcqOff
 UV_VIS_1.AcqOff
 UV_VIS_2.AcqOff
 End

Notes:

- A program for processing a sample batch must contain the \(\Rightarrow \) *Inject*, \(\Rightarrow \) *AcqOn/Off*, and \(\Rightarrow \) *End* commands.

- It is possible but it is not necessary to include the commands for controlling the pump and the detector. Instead of entering the \(\Rightarrow \) *Flow rate*, eluent composition (\(\Rightarrow \%B, \%C, \%D \)), and signal parameters directly on the instruments, you can set these values in the program, as shown in the example. This is only possible for controllable chromatography instruments connected to Chromeleon via an RS-232 interface.

- By definition, the injection time is \(t = 0.000 \). For all commands that are to be executed before the injection time, the time entry is \(t \leq 0.000 \); for example, the detector lamp on command, here \(-10.000 \) min.

- You can omit the \(\Rightarrow \text{Lamp}=\text{On} \) command if you allow sufficient time for the lamp to reach the operating temperature.

- Any PDA-100 Photodiode Detector command that triggers an Autozero or Auto Offset command must be followed by either a Wait_AZ command or a delay of at least 30 seconds until the next command. The following commands trigger Autozero or Auto Offset: UV Lamp, Visible Lamp, Wavelength, Bandwidth, RefWavelength, RefBandwidth, Reference Mode, Rise Time, MinWavelength, and MaxWavelength.
• For commands that are not listed but are automatically considered, such as, the \texttt{\textit{\textit{Step}}} parameters of the \texttt{UV_VIS_1} channel, either the default values or the values that were last used are used; for example, \texttt{Step = 0.25}. The decision which value is considered depends on the respective device driver.

• In your programs, keep in mind that the instruments need a certain time to execute the different processes. If you use an HP autosampler, for example, the program files must be at least 2 min long to allow the \texttt{\textit{\textit{Autosampler}}} sufficient time until the next injection.

For special program examples, refer to \textit{How to ...: Creating and Modifying Programs}:

- Creating an Equilibration Program
- Creating a Shutdown Program
- Creating an Emergency Program
- Creating a Power Failure Program
- Creating a Tandem Program (including Bypass Mode)
- Program with Variable Run Time

\textbf{Creating an Equilibration Program}

An equilibration program of a \textit{Summit HPLC System} (consisting of a P680A LPG, ASI-100 with temperature control, TCC-100 with motorized switching valve (MSV), and UVD 340U) could look as follows:

\begin{verbatim}
-12.800 %B = 0.0 [%]
%C = 0.0 [%]
%D = 0.0 [%]
Pressure.LowerLimit = 0 [bar]
Pressure.UpperLimit = 400 [bar]
Pump_Pressure.Ripple.UpperLimit = 3.0 [%]
RearSealLeakLimit = 5
MsvPosition = A
ActiveColumn = Column_A
MaximumFlowRamp = 10000.00 [ml/min²]
Flow = 0.000 [ml/min]
\end{verbatim}
Creating and Modifying Programs

Message "Please carefully observe the following instructions. Please note that disregarding the instructions might cause erroneous results or damage parts of your system."
Message "Open the purge valve screw(s)."
Message "CHECK!!! Make sure that the purge valve screw(s) is(are) open!!!"
 Flow = 0.000 [ml/min]
-12.700 Flow = 5.000 [ml/min]
Message "Wait at least 5 minutes while the pump purges with a flow of 5.000 ml/min before clicking the 'OK' button; take care that no air bubbles occur in the corresponding channel(s)."
-12.600 Flow = 5.000 [ml/min]
-12.500 Flow = 0.000 [ml/min]
 Message "Close the purge valve screw(s)."
 WashSpeed = 10.00 [µl/s]
 DispSpeed = 10.00 [µl/s]
 Message "Verify that you have placed the 4 mL vials in the correct positions: Solvent position: R99, eluent position: B99. Make sure to fill the vials only to half the vial height."
 WashVial = R99
 PrimeSyringe
 Wait Sampler.Ready
 WashVial = B99
 PrimeSyringe
 Wait Sampler.Ready
 MsvToInject
-12.000 Flow = 0.000 [ml/min]

-11.000 Flow = 1.000 [ml/min]
 Pressure.LowerLimit = 0 [bar]
 Pressure.UpperLimit = 400 [bar]
 Lamp = On

-9.000 Sampler.TempCtrl = On
 Sampler.Temperature.Nominal = 20[°C]
 Sampler.Temperature.LowerLimit = 4[°C]
 Sampler.Temperature.UpperLimit = 45[°C]
 ColumnOven.TempCtrl = On
 ColumnOven.Temperature.Nominal = 18.0[°C]
 ColumnOven.Temperature.LowerLimit = 5.0°C
 ColumnOven.Temperature.UpperLimit = 85.0 °C
 ReadyTempDelta = 1.0 [°C]

-7.000 %B = 0.0 [%]
 %C = 0.0 [%]
 %D = 0.0 [%]

-6.500 %B = 80.0 [%]
 %C = 0.0 [%]
 %D = 0.0 [%]

-1.500 %B = 80.0 [%]
 %C = 0.0 [%]
 %D = 0.0 [%]

-1.000 %B = 0.0 [%]
 %C = 0.0 [%]
 %D = 0.0 [%]

UV.Disconnect
Delay 10.0
UV.Connect

3DFIELD.Step = 0.5 [s]
UV_VIS_1.Wavelength = 225 [nm]
UV_VIS_1.Bandwidth = 1 [nm]
UV_VIS_1.RefWavelength = 600 [nm]
Creating and Modifying Programs

UV_VIS_1.RefBandwidth = 1 [nm]
UV_VIS_1.Step = Auto
UV_VIS_1.Average = On
UV_VIS_1.Noise.UpperLimit = 0.10 [mAU]
UV_VIS_1.Drift.UpperLimit = 3.0 [mAU/hours]
MinLampIntensity = 250000 [counts/s]

0.000 UV.Autozero

Inject
Pump_Pressure.AcqOn
ColumnOven_Temp.AcqOn
UV_VIS_1.AcqOn

Pump_Pressure.StartEquilibration
UV_VIS_1.StartEquilibration

Wait Pump_Pressure.Equilibration AND 15 <=
Sampler.Temperature.Value AND
Sampler.Temperature.Value <= 25 AND
ColumnOven.Ready AND UV_VIS_1.Equilibration AND
LampIntensity >= 250000, Continue, Timeout = 45.000

Pump_Pressure.AcqOff
ColumnOven_Temp.AcqOff
UV_VIS_1.AcqOff

Message "The system was equilibrated successfully."
End
Creating a Shutdown Program

When creating a shutdown program, keep the following aspects in mind:

- Reduce the flow to make sure that as little solvent as possible is used. However, do not reduce the flow to zero because this may result in crystallization of salts in ion chromatography, for example.

- Therefore, set the lower pressure limit (Pressure.LowerLimit) to 1. This setting avoids that the pressure falls below the lower pressure limit when the flow is reduced and that the pump is shut down.

- In addition, the detector lamp(s) should be turned off.

Tip:
Dionex does not recommend performing data acquisition in the shutdown program, i.e., do not use an AcqOn command.

An example program could look as follows:

```
Pressure.LowerLimit = 1
Pressure.UpperLimit = 350

0.000 Flow = 0.500
0.500 UV Lamp = Off
  Flow = 0.100
End
```

Also, refer to:

- Creating an Emergency Program
- Creating a Power Failure Program
Creating an Emergency Program

If a Batch was automatically aborted due to a severe or serious error, an Emergency Program can be started. Determine which Program is executed by default.

Select Error Handling… on the Batch menu to open the Batch - <Timebase> dialog box. On the Error Handling tab page, click Browse in the Emergency Program section and navigate to the desired emergency program.

Example 1:

Failure of the detector lamp is a severe error because data acquisition is no longer possible. However, it is not necessary to stop the flow immediately. Instead, the column should be reconditioned after the batch is aborted. You may use, for example, the following emergency program:

```
; Program: Emergency.PGM
Recondition column after abort.
0.000  Flow = 1
%A.Value = 0
%B.Value = 100
%C.Value = 0
10.000 Flow = 1
10.500 End
```
Example 2:
Power failure of an Autosampler is a serious error. In this case, the entire system should be stopped immediately to prevent more damage. The Abort.PGM emergency program stops the pump flow and turns off the detector lamp.

; Program: Abort.PGM
 The detector lamp and the pump flow are turned off.
0.000 Flow = 0
 Lamp = Off
0.500 End

For a program example for the 1100 HPLC System, refer to Hardware Installation Agilent 1100 HPLC System: Program Tips in the Administrator Help section.

Also, refer to:

Creating a Shutdown Program
Creating a Power Failure Program

Creating a Power Failure Program
You can determine how Chromeleon continues operation after a power failure (see Power Failure Protection). After booting the server, you may run a power failure program first.

Select Error Handling... on the Batch menu to open the Batch <Timebase> dialog box. On the Error Handling tab page, click the Browse button in the Power Failure Handling section and navigate to the desired power failure program.

If a power failure program is not yet available, create a program for the timebase on which you want to use it. Make sure that all instruments are reconnected to Chromeleon first. Very often self-tests have to be performed during which the devices are not ready for access. Therefore, issue the Connect commands 1-2 minutes before the first Control Commands are sent to the instruments.
Example:

Use the following program example, for example, for a Timebase that contains an ASI-100 Autosampler, a UVD 340U Photodiode Array Detector, and a P580 pump:

-2.000 UV.Connect
 Sampler.Connect
 Pump.Connect
-1.500 Lamp = On

; After the UVD 340U has been turned on, the detector needs some time
; for spectra; calibration. That is why you have to issue this
; command, too, some minutes before data acquisition is started.
0.000 Flow = 0.300
1.000 Flow = 1.000

End

Also, refer to:

- Creating a Shutdown Program
- Creating an Emergency Program

Program with Variable Run Time

To be able to create a program with variable run time for method development, you need a generic device driver. This driver is not included on the Chromeleon software CD. However, you may use the example driver described in the Administrator Help section (see Hardware Installation: Special Drivers: The Generic Device Driver Example), and then generate the following program for this driver:

(…)
Flow = 1.000
%B = 60
0.000 UV.Autozero
Inject
3DFIELD.AcqOn
UV_VIS_1.AcqOn
UV_VIS_2.AcqOn
Stop_Device.Time = 15.000
Creating and Modifying Programs

The program ends when the time defined for the stop device (here: 15.000 minutes) has been reached. You can change this time from the panel during the program run. If the Stop-Device.Time is not reached, the above program runs 999 minutes.

To change the run time quickly, create, e.g., an edit field on the control panel, following the instructions in How to ...: Controlling Devices from the Control Panel Modifying a Control Panel. On the Link tab page, link the edit field to the Time object property of the Stop_Device. You can then use this edit field to set the run time to the desired value.

In addition, to identify the edit field, create a Color box above the field:

Creating a Tandem Program (including Bypass Mode)

A program for operating a Summit x2 Dual-Gradient HPLC System (consisting of a P680-DGP, ASI-100, TCC-100, UVD 340U) in Tandem Operation mode with enabled Bypass Mode could look as follows:

ColumnOven.TempCtrl = 0n
ColumnOven.Temperature.Nominal = 18.0 [°C]
ColumnOven.Temperature.LowerLimit = 5.0 [°C]
ColumnOven.Temperature.UpperLimit = 85.0 [°C]
EquilibrationTime = 0.5 [min]
ReadyTempDelta = 1.0 [°C]
HumidityLeakSensor = Standard
GasLeakSensor = Standard
PumpLeft.Pressure.LowerLimit = 0 [bar]
PumpLeftPressureUpperLimit = 400 [bar]
PumpRightPressureLowerLimit = 0 [bar]
PumpRightPressureUpperLimit = 400 [bar]
PumpLeft.%A.Equate = "%A"
PumpRight.%A.Equate = "%A"
PumpLeft.%B.Equate = "%B"
PumpRight.%B.Equate = "%B"
PumpLeft.%C.Equate = "%C"
PumpRight.%C.Equate = "%C"
SyncWithPump = On
PumpDevice = "PumpLeft"
; Determines that the left pump (PumpLeft) is the analytical pump and
; thus that the right pump is the reconditioning pump.
DispSpeed = 10.00 [µl/s]
DrawSpeed = 10.00 [µl/s]
SampleHeight = 0.50 [mm]
SyringeDelay = 5 [s]
UpSpeed = 10.00 [mm/s]
DownSpeed = 10.00 [mm/s]
RadialSpeed = 20.00 [mm/s]
ColumnOven_Temp.Step = Auto
ColumnOven_Temp.Average = On

0.000 PumpRight.Flow = 1.000 [ml/min]
PumpRight.%B = 20.0 [%]
PumpRight.%C = 10.0 [%]
PumpLeft.Flow = 1.000 [ml/min]
PumpLeft.%B = 10.0 [%]
PumpLeft.%C = 0.0 [%]
Wait ColumnOven.Ready and Sampler.Ready
Inject ColumnOven.Temp.AcqOn
PumpRight.Flow = 1.000 [ml/min]
PumpRight.%B = 20.0 [%]
PumpRight.%C = 10.0 [%]
PumpLeft.Flow = 1.000 [ml/min]
PumpLeft.%B = 10.0 [%]
PumpLeft.%C = 0.0 [%]

0.050 PumpRight.Flow = 2.500 [ml/min]
PumpRight.%B = 60.0 [%]
PumpRight.%C = 20.0 [%]
0.250 MsvToLoad
; Sets that the chromatographic flow bypasses the sample loop
; (= bypass mode).
1.000 PumpLeft.Flow = 1.000 [ml/min]
PumpLeft.%B = 10.0 [%]
PumpLeft.%C = 0.0 [%]
2.500 PumpRight.Flow = 2.500 [ml/min]
PumpRight.%B = 60.0 [%]
PumpRight.%C = 20.0 [%]
2.600 PumpRight.Flow = 1.000 [ml/min]
PumpRight.%B = 10.0 [%]
PumpRight.%C = 0.0 [%]
3.500 ColumnOven_Temp.AcqOff
PumpRight.Flow = 1.000 [ml/min]
PumpRight.%B = 10.0 [%]
PumpRight.%C = 0.0 [%]
PumpLeft.Flow = 1.000 [ml/min]
PumpLeft.%B = 20.0 [%]
PumpLeft.%C = 10.0 [%]
PumpLeft.Flow = 2.500 [ml/min]
PumpLeft.%B = 10.0 [%]
PumpLeft.%C = 0.0 [%]
PrepareNextSample
; Loads the sample loop with the next sample.
4.500 PumpRight.Flow = 1.000 [ml/min]
PumpRight.%B = 10.0 [%]
PumpRight.%C = 0.0 [%]
PumpLeft.Flow = 2.500 [ml/min]
PumpLeft.%B = 10.0 [%]
PumpLeft.%C = 0.0 [%]
NextColumn
; Switches the column switching valve to the next column.

End
Converting Units

Chromeleon allows you to convert the registered units. Use the following command, observing the correct syntax:

<Parameter> = <Value> [<Unit>]

Tip:

Chromeleon can only convert registered units, e.g., the pressure units bar, psi, and MPa. Conversion is case-sensitive, i.e., Bar is not registered, and thus, it would not be converted.

Example

If the pressure unit set on a GP50 pump is psi, you can nevertheless enter the pressure limits as follows:

Pressure.LowerLimit = 15 [bar]
Pressure.UpperLimit = 200 [bar]

When the program is started, the pressure limits are converted into psi. Chromeleon automatically converts the values and communicates the following commands to the pump:

Pressure.LowerLimit = 218 [psi]
Pressure.UpperLimit = 2901 [psi]

This feature is important for programs that run on different systems. Even if the pressure units are different for these systems, you can use the same PGM File without adapting the values.

Chromeleon can convert the following units:

<table>
<thead>
<tr>
<th>Value</th>
<th>Registered Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td>AU, mAU, µAU</td>
</tr>
<tr>
<td>Charge</td>
<td>C, µC, nC</td>
</tr>
<tr>
<td>Conductivity</td>
<td>S, mS, µS, nS</td>
</tr>
<tr>
<td>Current</td>
<td>A, mA, µA, nA, pA</td>
</tr>
<tr>
<td>Density</td>
<td>kg/m³, g/ml</td>
</tr>
<tr>
<td>Flow rate</td>
<td>m³/s, ml/min, µl/min, µl/s</td>
</tr>
<tr>
<td>Flow acceleration</td>
<td>m³/s², ml/min²</td>
</tr>
<tr>
<td>Fraction</td>
<td>None, %</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hz, kHz, MHz</td>
</tr>
<tr>
<td>Value</td>
<td>Registered Units</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Inverse pressure</td>
<td>1/Pa, 1/Mbar</td>
</tr>
<tr>
<td>Inverse temperature</td>
<td>1/K, %/K</td>
</tr>
<tr>
<td>Length</td>
<td>m, mm, µm, nm, Å</td>
</tr>
<tr>
<td>Mass</td>
<td>kg, g, amu</td>
</tr>
<tr>
<td>Molar concentration</td>
<td>mol/m³, mM</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa, bar, psi, MPa, kPa</td>
</tr>
<tr>
<td>Refractive index</td>
<td>RIU, µRIU, nRIU</td>
</tr>
<tr>
<td>Refractive index/voltage</td>
<td>RIU/V, µRIU/V</td>
</tr>
<tr>
<td>Refractive index/time</td>
<td>RIU/s, nRIU/h</td>
</tr>
<tr>
<td>Temperature</td>
<td>K, °C, °F</td>
</tr>
<tr>
<td>Time</td>
<td>s, h, min, ms, µs</td>
</tr>
<tr>
<td>Velocity</td>
<td>m/s, mm/s</td>
</tr>
<tr>
<td>Voltage</td>
<td>V, mV, µV</td>
</tr>
<tr>
<td>Volume</td>
<td>m³, l, ml, µl</td>
</tr>
</tbody>
</table>

Note:

Concentration units, such as mg/ml and µg/ml, are not available in a PGM File.

Using User-defined Columns in a Program

You may include User-defined Columns from the sample list of the Browser in a program, e.g., for special applications. However, you can only use user-defined columns of the server's Standard Datasource for which the Value type is neither Time nor Date and time.

Caution:

Only experienced users should include and program user-defined columns in a program. Errors in the control program may abort processing of the single program steps, and thus the control program.

If you use user-defined columns in PGM files, verify that the column does not contain empty fields. Otherwise, it may happen that the program is not executed.
You cannot use user-defined columns with a date or time format in PGM files.

When user-defined columns are used in a program, the entry of the current sample is usually used. The syntax is as follows:

```<Command> Sample.<UDC Name>```

You can also use the values of the user-defined column of the next or previous sample (NextSample / PrevSample.<UDC-Name>) or of the previous standard (PrevStandard<UDC-Name>). The standard may not be required for the current sample.

Example 1: Defining the wavelength

In a control program, you can use user-defined columns, e.g., to define the wavelength of a certain channel separately in the sample list for each sample:

- Create a user-defined column in the Standard Datasource of the server (see How to …: Creating and Managing Files and Data Creating User-defined Columns).
- Name the column, e.g., WL (for wavelength). To avoid confusion, do not use a property that is already available in Chromeleon. That is why you should not use, e.g., Wavelength. (Instead of WL, any other agreed-upon abbreviation is acceptable.)
Tip:

Do not use a German "Umlaut" or "ß" in the name.

Restart the server.

- In the program, enter, e.g., UV_VIS_1 for the channel:

  \[
  \text{UV_VIS}_1.\text{Wavelength} = \text{Sample.WL}
  \]

This entry means: For each sample, the wavelength used for the UV_VIS_1 channel is the wavelength defined in the corresponding cell of the user-defined column called WL.

Example 2: Starting and stopping fraction collection

You can use the Program Wizard to create user-defined columns to define the fraction collection start and the end. (For information about the wizard, refer to Control The Program Wizard). For more information, refer to How to …: Collecting Fractions PGM Wizard: Fraction Collection - General Options.

Restrictions when using user-defined columns in a program

You cannot use user-defined columns if the value that the parameter shall reach must be known in advance. This applies to all gradient commands, for example:

- \(\Rightarrow\) Flow
- \(\Rightarrow\) %B, %C, %D in % gradients
- GC.Temperature in temperature gradients
- Concentration
- Pump.Curve and EluentGenerator.Curve (see Gradient Curves)

Note:

Only if you issue these commands before you enter the retention time, you can determine the corresponding values using user-defined columns.

For some instruments, the entire control program is downloaded before sample processing, e.g., for the 1100 HPLC System. In this case, you cannot make changes during the analysis.
Adding Post-Acquisition Steps

Use the Post-acquisition steps view of the PGM Editor to define extraction and data smoothing steps to be performed after data acquisition. (For general information about the PGM Editor, refer to Control The PGM Editor.) In addition, you can copy existing channels or combine them, using arithmetic operations. A new data channel is created for each of these steps. If a Purification license is installed on your PC, Chromeleon also supports automatic creation of samples for fractionation. The single data reprocessing steps are performed directly after either data acquisition on all channels is finished or the program is completely executed.

To open the Post-acquisition steps view, click the following icon on the shortcut bar:

Click the bottom line to add a new post-acquisition step. In the dialog box, select a step:

- **Arithmetic combination of channels** (arithmetic combination of 2D channels - see Combining Channels via Arithmetic Operations)
- **Copy Channel** (see Copying a Channel)
- **Create Fraction Analysis Samples** (see How to ...: Collecting Fractions Automatically (Autopurification) Creating Fraction-Type Samples)
- **Create Purification Samples** (see How to ...: Collecting Fractions Automatically (Autopurification) Creating Preparation-Type Samples)

**Tip:**

The Create Fraction Analysis Samples and Create Purification Samples options are visible only if a Purification license is installed and a connection to the server exists. A connection exists if a PGM File is associated with a timebase, the server on which this timebase resides is running, and the client is connected to this server.
• **Extract ED channel** (for extracting an ED channel – only possible if \(3D_{-}Amp\) data is available)

• **Extract MS channel** (for extracting a \(Mass\ Trace\) - only if MS data are available; see How to …: Using Mass Spectrometers Extracting Mass Traces Afterward)

• **Extract optimum integration path** (for extracting the \(Optimum Integration Path\) - only possible if a 3D field is available; see How to …: Creating and Using Spectra Libraries Selecting the Optimum Integration Path)

• **Extract UV channel** (for extracting a UV channel extraction - only possible if a 3D field is available; the procedure is similar to selecting the optimum integration path)

• **Smooth data** (for chromatogram \(Smoothing\) - see How to …: Working with Chromatograms Performing Data Smoothing)

For example, the following steps can be added:

In steps 1 and 6, two UV channels are extracted at 254 nm and 220 nm, respectively. The EXT254NM channel does not use compression; only data acquired at 254 nm are used. For the EXT220NM, a range of 10 nm was selected, i.e., the wavelengths from 215 to 225 nm are used. In addition, compression is used during channel extraction. Compression = 3 means that only every third data point is saved.

In steps 3 and 4, two MS channels (MS_1 and MS_2) are extracted. The first mass trace covers the mass range 49.0 to 51.0 m/z, while the second trace covers masses from 137.0 to 145.0 m/z. For both channels, the Gaussian algorithm is used for data smoothing.
Seven points are used for data smoothing when the MS_N1 channel is extracted; five points are used when the MS_N2 channel is extracted.

In step 2, the **Optimum Integration Path** is saved as OPTINT channel. In step 5, data smoothing is performed for this new channel, using the Savitzky-Golay **Filter**. The channel is then saved again as OPTINT_SG_009_001 channel. **Filter size: 9** indicates that 9 input data points are used to create one output data point.

Use the bottom line to add additional steps. Alternatively, select **Insert Line** or **Append Line** on the context menu.

The server performs the post-acquisition steps when the program is completed and before the **System Suitability Test (SST)** is started. If there is a network failure (see **Network Failure Protection**), execution of the post-acquisition steps is delayed until the network source is available again.

### Manual Injections with Templates

If no autosampler is found in the server configuration, Chromeleon assumes that an AS40 Autosampler is connected to the Pump’s Relay 1. If, however, sample is being loaded and injected manually instead of via an AS40, and the program is being created by either an application template or a **Virtual Column** template selected in the Application **Wizard**, you must modify the **PGM File** to support this. The PGM File created by the application template is saved in the sequence created by the **Sequence Wizard**. The PGM File created by the Virtual Column template can be saved to a new sequence or an existing sequence.

Open the PGM File and locate the AS40 load command. The command typically occurs at the beginning of the timed events, at time -2.300. Below is an example AS40 load command; note that "Pump_Relay_1.Closed" closes the AS40 relay, thereby loading the sample into the loop.

```
-2.300 Pump_Relay_1.Closed Duration=130.00 ; For AS40 injection.
```

Replace this line with the following for manual injection:

```
-2.300 Pump_Relay_1.Closed Duration=130.00 ; For AS40 injection.
```

A manual injection line has been added to the PGM File immediately after the load command:

```
-0.100 Message "Load the sample into the injection loop, press OK to continue"
```
The semicolon at the beginning of the line deactivates (comments out) the manual injection ⇒Message. To reactivate it, remove the semicolon at the beginning of the manual injection message and add one to the beginning of the AS40 load command. Do not change the times preceding the commands, even if they differ from the above examples.

;-2.300  Pump_Relay_1.Closed Duration=130.00 ; For AS40 injection. Replace this line with the following for manual injection
-0.100  Message "Load the sample into the injection loop, press OK to continue"

Save and close the PGM File.
Performing Validation and Qualification

To ensure the quality of analytical results, Validation and Qualification have become increasingly important in modern chromatography laboratories.

Chromeleon supports Installation Qualification and Operational Qualification for qualification of Chromeleon software. The system administrator usually performs both installation and operational qualification. The Administrator Help section provides more information; refer to:

- Chromeleon Installation Qualification
- Chromeleon Operational Qualification (OQ)
- How to …: Working with Files, Databases, and Networks
- Performing Chromeleon OQ.

Chromeleon also supports instrument qualification, which is usually performed by the system administrator, too. For more information, refer to Instrument Installation Qualification in the Administrator Help section. Dionex recommends performing Operational Qualification and Performance Qualification for devices, as well. For details, refer to Operating Instructions for Operational Qualification/Performance Qualification for HPLC Instruments, available from Dionex Service.

In addition, Chromeleon provides several System Wellness features that help ensure the functionality of individual devices and, thus, the wellness of the entire system. For more information, refer to Ensuring System Wellness.

To ensure the efficiency of your chromatography method for the current analysis, Chromeleon supports System Suitability Tests (SSTs). For more information, refer to Defining System Suitability Tests.
Ensuring System Wellness

System Wellness provides built-in diagnostic and calibration features that help prevent unscheduled system shutdowns and assure reliable operation of system devices. System Wellness features are available for IC devices that have a version of Moduleware installed that supports System Wellness. Wellness features are available for devices in the Summit HPLC product line, also.

For an overview of System Wellness features and a list of supported devices, refer to:
- System Wellness for IC Devices (Overview)
- System Wellness for HPLC Devices (Overview)

System Wellness tasks for IC devices are performed from the control panel. For more information, refer to:
- Opening a Wellness Control Panel
- Viewing and Restoring Calibration Data
- Uploading ICS-1500/2000 Calibration Data
- Performing Device Calibrations
- Performing Device Diagnostics
- Entering Device Parameters

Also, refer to How to ...: Configuring the Chromleon Server
- Enabling and Disabling System Wellness Functions for IC Devices in the Administrator Help section.

Opening a Wellness Control Panel

Control Panels for performing System Wellness functions are provided for various system configurations.

Note:

System Wellness control panels that include "Service." as part of the name are reserved for use by Dionex Service Representatives.
Performing Validation and Qualification

To open a Wellness panel from the Browser:
1. In the Browser under the local Datasource, open the Panels folder, and then open the Wellness sub-folder.
2. Double-click the panel name that corresponds to your Timebase configuration.
3. The control panel is opened; then Chromeleon attempts to connect to the timebase assigned to the panel.
4. If an error message appears stating that the timebase was not found, close the message, and then select Connect to Timebase on the Control menu. Select the timebase to be connected to the panel.
5. After communication is established with the timebase, the various calibration and diagnostic controls on the panel are enabled.

To open a Wellness panel for a CD or ED from the panel tabset:
1. In the panel tabset, click the Cond. Detector or EC Detector tab.
2. On the instrument control panel, click Calibration.
3. The Wellness panel opens.

Viewing and Restoring Calibration Data

Calibration data for IC device is displayed on the Wellness Control Panel (see Opening a Wellness Control Panel).

Chromeleon stores three sets of calibration data for each System Wellness supported IC device.
- Current is the data most recently sent (uploaded) from the device. It is the data currently stored in the device memory.
- Previous is the data from the previous time calibration data was uploaded from the device.
- Factory is the data obtained (uploaded) from the device when it was initially configured in the System Configuration program (see How to …: Configuring the Chromeleon Server Enabling and Disabling System Wellness Functions in the Administrator Help section).
The Wellness control panel displays the current data and the date the current calibration function was performed. If the factory value is the current data, the date field displays "---."

- To display previous data or factory data or download calibration data from Chromeleon to the device, click **Detail**.

  A **Calibration Detail** dialog box appears that displays the three sets of calibration data values and their corresponding dates. The dates indicate when the values were uploaded from the device to Chromeleon.

- To download calibration data to the device, select **Current, Previous,** or **Factory** from the list next to the **Download** button. Then, select **Download**.

### Uploading ICS-1500/2000 Calibration Data

After performing a calibration procedure or changing a calibration variable from the ICS-1500 or ICS-2000 touch screen, use the procedure below to update the System Wellness database with the new calibration data.

**Note:**

Do not open a System Wellness Control Panel if the name includes "Service.pan." These Wellness panels are reserved for use by Dionex Service Representatives.

1. Open the System Wellness Control Panel for the ICS-1500/2000 (see [Opening a Wellness Control Panel]).

2. Locate the **Update Wellness Database** controls. If desired, click **Instructions** for an overview of the procedure.

3. Click **Upload** to begin uploading (sending) calibration data to Chromeleon.
Performing Device Calibrations

Wellness ➤ Control Panels, which are supplied by Chromeleon, display calibration data and provide script buttons for performing IC device calibrations. After a calibration is performed, the device uploads the new calibration data to Chromeleon.

**Tip:**

Many calibrations require setup steps before the actual calibration command is given. Before selecting a calibration script button on a control panel, refer to the topics below for details about the particular calibration task you are performing.

<table>
<thead>
<tr>
<th>Devices</th>
<th>Calibration Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS-1000/1500/2000 systems</td>
<td>Flow Rate</td>
</tr>
<tr>
<td></td>
<td>Degas Pump</td>
</tr>
<tr>
<td></td>
<td>Conductivity Cell</td>
</tr>
<tr>
<td>ICS-90 system</td>
<td>Pressure Transducer</td>
</tr>
<tr>
<td></td>
<td>Conductivity Cell</td>
</tr>
<tr>
<td>Autosamplers, Detectors, Pumps</td>
<td>Leak Detector</td>
</tr>
<tr>
<td>AS/AS50 Autosamplers Pumps</td>
<td>Inject Port Volume</td>
</tr>
<tr>
<td></td>
<td>Flow Rate</td>
</tr>
<tr>
<td></td>
<td>Pressure Transducer Offset</td>
</tr>
<tr>
<td></td>
<td>Degas</td>
</tr>
<tr>
<td>Detectors</td>
<td>Wavelength (AD25/PDA-100)</td>
</tr>
<tr>
<td></td>
<td>Conductivity Cell (CD20/25/25A, ED40/50/50A, IC20/25/25A)</td>
</tr>
<tr>
<td></td>
<td>pH Reference Electrode (ED40/50/50A Amperometry Mode)</td>
</tr>
<tr>
<td></td>
<td>ICS-3000 Conductivity Cell</td>
</tr>
<tr>
<td></td>
<td>ICS-3000 pH Reference Electrode</td>
</tr>
</tbody>
</table>
Calibrating the Leak Detector

When to Calibrate:
- After installing a new leak detector
- If the leak detector diagnostic test fails
- Every 6 months

Many System Wellness supported devices are equipped with leak detectors. The calibration procedure for all of the sensors of IC devices is the same.

1. Thoroughly dry the sensor.
2. Open the System Wellness ➤ Control Panel for the device (see Opening a Wellness Control Panel.)
3. Under Calibration, leak detector, click the internal script button to calibrate the sensor installed in the device itself. Click the external script button to calibrate the sensor on a controlled device. For example, for a pump, internal refers to the sensor in the pump and external refers to the sensor in a chromatography oven controlled by the pump.
4. The device calibrates the sensor and uploads the new value to Chromeleon. Chromeleon stores this new calibration value as the current value.

Calibrating the Pump Flow Rate

When to Calibrate: Every 6 months

Items Needed:
- Backpressure tubing to create 14 MPa ± 2 MPa (2000 psi ± 300 psi).
- Use 0.076 mm (0.003 in) ID yellow PEEK tubing (P/N 049715)
- Deionized water
- Tared beaker

1. Verify that there is about 14 MPa (2000 psi) of backpressure.
2. Pump deionized water at 1.0 ml/min.
3. Allow the pump to stabilize for at least 5 minutes.
4. Collect water into a tared beaker for exactly 5 minutes.
5. Open the System Wellness ➤ Control Panel for the pump (see Opening a Wellness Control Panel).
6. Enter the weight of the water into the weight entry field under flow rate and press <Enter>. Chromeleon downloads the value to the pump and stores this calibration value as the current value.
Calibrating the ICS-1000/1500/2000 Flow Rate

When to Calibrate: Every 6 months
- If the OQ/PQ flow rate accuracy and precision test fails

Items Needed:
- Backpressure tubing to create $14 \pm 1.4$ MPa ($2000 \pm 200$ psi); use 0.076-mm (0.003-in) ID yellow PEEK tubing (P/N 049715)
- Deionized water
- Tared beaker

Note:
Do not open a System Wellness Control Panel if the name includes “Service.pan.” These Wellness panels are reserved for use by Dionex Service Representatives.

1. Open the System Wellness Control Panel for the ICS-1000/1500/2000 (see Opening a Wellness Control Panel).
2. Locate the Pump Flow Rate Calibration controls. If desired, click Instructions for an overview of the calibration procedure.
3. Click Reset Cal to reset the flow rate calibration value.
4. Click 1.00 ml/min to set the pump flow rate.
5. Allow the Current Pump Pressure reading to stabilize at $14 \pm 1.4$ MPa ($2000 \pm 200$ psi) for 20 minutes.
6. Click 5.00 min to start the timer and immediately start pumping deionized water at 1.00 ml/min.
7. Collect water into a tared beaker for exactly 5 minutes.
8. Enter the weight of the deionized water (in grams) in the Enter new Flow Rate Cal field.
9. Click Calibrate to begin the calibration. When the calibration is complete, Chromeleon will download the new calibration value to the ICS-1000/1500/2000 and will store it as the current calibration value.
10. Click Log to record the new calibration value in the Audit Trail. Chromeleon will automatically update the Current Calibration Date and Last Calibration Date fields.
11. Wait at least 15 minutes, and then recheck the flow rate to verify that the calibration was successful.
Calibrating the Pressure Transducer Offset

When to Calibrate: Every 6 months

1. Turn off the pump flow.
2. Open the waste valve.
   - For GP40/50, IP20/25 pumps: The waste valve is on the pressure transducer. To open the valve, turn the knob about two turns counterclockwise.
   - For GS50/IS25 pumps: The waste valve is on the secondary pump head. To open the valve, turn the knob one-quarter to one-half turn counterclockwise.
3. Open the System Wellness ➔ Control Panel for the pump (see Opening a Wellness Control Panel).
4. Click the offset script button under pressure transducer. The pump calibrates the offset and uploads the new value to Chromeleon. Chromeleon stores this new offset as the current value.
5. Close the waste valve.

Calibrating the ICS-90 Pressure Transducer

When to Calibrate: Every 6 months

About 10 minutes before starting the calibration, toggle the injection valve position a few times by clicking the valve Load and Inject buttons on the ICS-90 Control Panel. This removes any air or contaminant buildup in the injection valve loop.

1. Turn off the pump flow.
2. Open the waste valve on the front of the pump head by turning the knob counterclockwise two turns.
3. Open the ICS-90 System Wellness ➔ Control Panel (see Opening a Wellness Control Panel).
4. Click the Calibrate Offset script button under pressure transducer. The pump calibrates the transducer and uploads the new value to Chromeleon. The new offset is stored as the current value.
5. Close the waste valve.

6. Connect a pressure gauge between the pump outlet and the pressure transducer. Turn on the pump and let the system stabilize. Note the average pressure reading on the gauge, and enter this reading in the measured field.

7. Click the Calibrate Slope script button under pressure transducer. The pump calibrates the slope and uploads the new value to Chromeleon. The new slope is stored as the current value.

8. Turn off the pump.

9. Disconnect the pressure gauge. Reconnect the pressure transducer to the pump.

Degas Calibration

When to Calibrate: Every 6 months

1. Open the System Wellness ➔ Control Panel for the pump (see Opening a Wellness Control Panel).

2. Select the degas script button. The pump performs the degas calibration and uploads the new calibration value to Chromeleon. Chromeleon stores this new value as the current degas value.

Calibrating the ICS-1000/1500/2000 Degas Pump

When to Calibrate: Every 6 months

Note:

Do not open a System Wellness ➔ Control Panel if the name includes "Service.pan." These Wellness panels are reserved for use by Dionex Service Representatives.

1. Open the System Wellness Control Panel for the ICS-1000/1500/2000 (see Opening a Wellness Control Panel).

2. Locate the Degas Calibration controls. If desired, click Instructions for an overview of the calibration procedure.
3. Click **Calibrate** to begin the calibration. When the calibration is complete, the ICS-1000/1500/2000 will upload the new calibration value to Chromeleon. Chromeleon will store the new calibration value as the current calibration value.

4. Click **Log** to record the new calibration value and degas pressure in the Audit Trail. Chromeleon will automatically update the **Current Cal. Date** and **Last Calibration Date** fields.

### Wavelength Calibration

Use this manual wavelength calibration procedure for the Dionex AD25 and PDA-100 detectors.

When the AD25 power is turned on, the wavelength is automatically calibrated. The PDA-100 wavelength is automatically checked under certain conditions, but is not automatically calibrated.

Manually calibrate the wavelength at the following time:

**When to Calibrate:**
- After a failed wavelength calibration check
- After a failed wavelength calibration

1. Verify that there is solvent flowing through the cell, the background absorbance is low, and there are no bubbles in the light path.

2. Open the System Wellness ➤ **Control Panel** for the detector (see Opening a Wellness Control Panel).

3. Click the **wavelength** script button under **Calibration**. The detector performs the wavelength calibration routine and uploads the results (Pass or Fail) to Chromeleon.

If wavelength calibration fails, refer to the troubleshooting section of the detector operator's manual.
Calibrating the Conductivity Cell (CD20/25/25A, ED40/50/50A, IC20/25/25A)

**When to Calibrate:**
- After installing a new cell (use Method A)
- Every 6 months (use Method B)

**Items Needed (Method B Only):**
- 1.0 mM KCl solution: Prepare by dissolving 0.07456 g of reagent grade KCl in one liter of 18 megohm deionized water
- Backpressure tubing to provide at least 7 MPa (1000 psi). Use 0.076 mm (0.003 in) ID yellow PEEK tubing (P/N 049715)

**Method A: For Calibrating New or Replacement Cells**
1. Open the System Wellness ➤ Control Panel for the detector (see Opening a Wellness Control Panel).
2. In the conductivity cell calibration entry field, type the cell calibration constant (written on a tag on the conductivity cell's cable) and press <Enter>. Chromeleon downloads the value to the detector and stores the value as the current cell calibration constant.

**Method B: For Calibrating After Every 6 Months of Use**
1. Disconnect the pump output line from the injection valve.
2. Connect the pump output line directly to the inlet of the DS3 or cell.
3. Verify that there is a minimum of 7 MPa (1000 psi) of backpressure.
4. Pump 1.0 mM KCl through the cell at 1.0 ml/min.
5. If using a DS3, set the DS3 temperature to the intended operating point and allow it to reach this temperature.
6. Allow the conductivity to stabilize for about 5 minutes.
7. Open the System Wellness control panel for the detector (see Opening a Wellness Control Panel).
8. Click the calibrate script button under conductivity cell. The detector calibrates the cell and uploads a new cell calibration constant to Chromeleon. Chromeleon stores this value as the current cell calibration constant.

After calibration, the conductivity reading should be 147.00 ± 2 µS/cm and the cell calibration constant should be between 130 and 190. If
Performing Validation and Qualification

this is not the case, refer to the troubleshooting section of your
detector operator’s manual.

9. Flush the KCl solution from the system by pumping deionized water
through the cell. When the conductivity drops to less than 1 µS/cm,
stop the pump.

10. Reconnect the pump to the injection valve and reconnect the line from
the suppressor to the cell inlet.

Calibrating the ICS-90 Conductivity Cell

When to Calibrate: After installing a new cell
Every 6 months

Items Needed: 1.0 mM KCl solution: Prepare by dissolving 0.07456 g of reagent-grade
KCl in one liter of 18 megohm deionized water
Backpressure tubing to provide at least 7 MPa (1000 psi). Use
0.076 mm (0.003 in) ID yellow PEEK tubing (P/N 049715)

1. Open the ICS-90 System Wellness ➤Control Panel (see ➤Opening
a Wellness Control Panel).

2. Use an Allen wrench to remove the two screws securing the DS5
Detection Stabilizer (which holds the cell) to the ICS-90 component
mounting panel.

3. Pull the DS5 straight out from the component mounting panel to
unplug the cell from its electronics. Let the DS5 hang by the tubing.

4. Allow the conductivity to stabilize for 5 to 10 minutes.

5. Click the Calibrate Offset script button under conductivity cell.

6. Line up the 9-pin connectors on the DS5 and the component mounting
panel and plug the DS5 back into the electronics. Replace the screws
and tighten.

7. Disconnect the pump outlet line from port P (2) on the injection valve;
connect the line directly to the cell inlet using the yellow PEEK
backpressure tubing.

8. Fill an eluent bottle with the 1.0 mM KCl solution and connect it to the
eluent out line. Prime the pump and then turn on the pump.

9. Verify that there is a minimum of 7 MPa (1000 psi) of backpressure.
10. Allow the conductivity to stabilize for 5 to 10 minutes.

11. Click the **Calibrate Slope** script button under **conductivity cell**. The cell is calibrated and a new cell calibration constant is uploaded to Chromeleon. The new value is stored as the current cell calibration constant.

12. After calibration, the conductivity reading should be 147.00 ± 2 µS/cm. If this is not the case, call Dionex for assistance.

13. Flush the KCl solution from the system by pumping DI water through the cell. When the conductivity drops to less than 1 µS/cm, stop the pump flow.

14. Reconnect the pump to the injection valve and reconnect the line from the suppressor to the cell inlet.

### Calibrating the ICS-1000/1500/2000 Conductivity Cell

**When to Calibrate:**
- (Optional) After installing a new cell (use Method A)
- Every 6 months (use Method B)

**Items Needed**
- (Method B Only): 1.0 mM KCl solution: Prepare by dissolving 0.07456 g of reagent-grade KCl in one liter of 18 megohm deionized water.
  - Backpressure tubing to provide at least 7 MPa (1000 psi); use 0.076-mm (0.003-in) ID yellow PEEK tubing (P/N 049715).

**Note:**

*Do not open a System Wellness ➔Control Panel if the name includes "Service.pan." These Wellness panels are reserved for use by Dionex Service Representatives.*

**Method A: For Calibrating New or Replacement Cells (Optional)**

1. Open the System Wellness Control Panel for the ICS-1000/1500/2000 (see **Opening a Wellness Control Panel**).
2. Locate the **System Status** controls.
3. Click **Details** to open the **Calibration Details** dialog box.
4. Locate the **Conductivity Cell Cal Details** controls.
Performing Validation and Qualification

5. Enter the cell calibration constant (written on the front of the cell) in the Conductivity Cell Constant field and press <Enter>. Chromeleon will download the new value to the ICS-1000/1500/2000 and will store it as the current cell calibration constant.

6. Click Close to exit the dialog box.

Method B: For Calibrating After Every 6 Months of Use


2. Locate the Electric Conductivity Cell Calibration controls. If desired, click Instructions for an overview of the calibration procedure.

3. Click Offset Cal to begin the offset calibration.

4. When the offset calibration is complete, click Slope Cal to begin the slope calibration. When the slope calibration is complete, Chromeleon will retrieve the new calibration value from the ICS-1000/1500/2000 and will store it as the current calibration value. Chromeleon will automatically update the Current Calibration Date and Last Calibration Date fields.

5. Disconnect the pump output line from the injection valve.

6. Connect the pump output line directly to the inlet of the conductivity cell.

7. Verify that there is a minimum of 7 MPa (1000 psi) of backpressure.

8. Locate the Conductivity Cell Calibration controls. If desired, click Instructions for an overview of the calibration procedure.

9. Click Cell 35 C to select the cell heater temperature. Monitor the cell during the warm-up period:
   - If you have an ICS-1000, monitor the cell temperature on a standard ICS-1000 control panel. When the temperature reaches 35 °C, wait an additional 5 minutes and then go on to Step 11.
   - If you have an ICS-1500 or ICS-2000, monitor the cell temperature on the HOME page on the instrument front panel. When the "=" symbol is displayed next to the Cell Heater control, go on to Step 11.

10. Click 1.00 ml/min to set the pump flow rate. Begin pumping 1.0 mM KCl through the cell.
11. Wait until the **Total Conductivity** reading stabilizes (in approximately 15 minutes), and then click **Calibrate**. When the calibration procedure is complete, Chromeleon will retrieve the new calibration value from the ICS-1000/1500/2000 and store it as the current calibration value. After calibration, the conductivity reading should be 147.00 ± 2 µS/cm and the cell calibration constant should be between 130 and 190. If this is not the case, refer to the troubleshooting section of your ICS-1000/1500/2000 operator's manual.

12. Click **Log** to record the new calibration value in the Audit Trail. Chromeleon will automatically update the **Current Calibration Date** and **Last Calibration Date** fields.

13. Flush the KCl solution from the system by pumping deionized water through the cell. When the conductivity drops to less than 1 µS/cm, stop the pump flow.

14. Reconnect the pump to the injection valve and reconnect the line from the suppressor to the cell inlet.

**Calibrating the ICS-3000 Conductivity Detector Cell**

When to Calibrate: Every 6 months

Items Needed

- 1.00 mM KCl solution: Prepare by dissolving 0.07456 g of reagent-grade KCl in 1.000 liter of 18 megohm deionized water.
- Backpressure tubing to provide at least 7 MPa (1000 psi); use 0.076-mm (0.003-in) ID yellow PEEK tubing (P/N 049715).

1. In the panel tabset, click the **Cond. Detector** tab.

2. Under **Conductivity Detector Settings**, click **Calibration**.

   The **Conductivity Detector Wellness** panel opens.

3. Locate the **External Conductivity Cell Calibration** controls. If desired, click **Instructions** for an overview of the calibration procedure.

4. Disconnect the pump output line from the injection valve.

5. Disconnect the line from the suppressor **ELUENT OUT** port to the cell inlet and connect the pump output line directly to the inlet of the conductivity cell.

6. Verify that there is a minimum of 7 MPa (1000 psi) of backpressure.
6. Under **External Conductivity Cell Calibration**, click **Cell 35 C** to select the cell heater temperature. Allow the cell to reach this temperature and then wait an additional 5 minutes to let it stabilize.

7. Click **1.00 ml/min** to set the pump flow rate and begin pumping 1.00 mM KCl through the cell.

8. Wait until the **Total Conductivity** reading stabilizes (in approximately 15 minutes), and then click **Calibrate**. After calibration, the conductivity reading should be 147.00 ± 2 µS/cm. If this is not the case, contact Dionex for help.

9. Click **Log** to record the new calibration value in the Audit Trail.

10. Flush the KCl solution from the system by pumping deionized water through the cell. When the conductivity drops to less than 1 µS/cm, stop the pump flow.

11. Reconnect the pump to the injection valve and reconnect the line from the suppressor to the cell inlet.

---

**Calibrating the ED40/50/50A pH Reference Electrode**

When to Calibrate: After installation of a new reference electrode

Items Needed:  
- pH 7 buffer  
- A second buffer of known pH (usually a calibration buffer that most closely matches the pH of the eluent used in your application)

1. Carefully remove the combination pH/Ag-Ag/Cl reference electrode from the amperometry cell, making sure to leave the electrode leads connected to the cell.

2. Place the electrode into a pH 7 buffer.

3. Wait for the pH reading to stabilize (about 1 minute).

4. Open the System Wellness ➔ Control Panel for the detector (see [Opening a Wellness Control Panel]).

5. Click the **pH 7** script button under **pH electrode**.

6. Remove the electrode from the pH buffer, rinse, and then dry it.

7. Place the electrode in the second buffer.

8. Wait for the pH reading to stabilize.
9. Enter the pH of the second buffer into the edit field above the 2nd buffer script button.

10. Click the 2nd buffer script button.

Calibrating the ICS-3000 ED pH Reference Electrode

When to Calibrate: After installation of a new reference electrode

Items Needed: pH 7 buffer
A second buffer of known pH (usually a calibration buffer that most closely matches the pH of the eluent used in your application)

1. Carefully remove the combination pH/Ag-Ag/Cl reference electrode from the amperometry cell, making sure to leave the electrode leads connected to the cell.

2. Place the electrode into a pH 7 buffer.

3. Wait for the pH reading to stabilize (about 1 minute).

4. In the panel tabset, click the EC Detector tab.

5. Under Electrochemical Detector Settings, click Calibration. The Electrochemical Detector Wellness panel opens.


7. Remove the electrode from the pH buffer, rinse, and then dry it.

8. Place the electrode in the second buffer.

9. Wait for the pH reading to stabilize.

10. Enter the pH of the second buffer into the pH Slope Buffer Value field.

11. Click pH Slope Cal.

Entering the AS/AS50 Inject Port Volume

The inject port volume is the volume of tubing between the AS or AS50 inject port and the injection valve. The autosampler uses this information to determine how much fluid to push through the line in order to position the sample correctly in the loop for precision injections.
Performing Validation and Qualification

When to enter a new inject port volume:

After recalibrating the inject port volume on a new or existing needle seal assembly.

For detailed instructions on replacing a needle seal assembly or calibrating the inject port, refer to the AS or AS50 operator’s manual.

1. Open the System Wellness Control Panel for the autosampler (see Opening a Wellness Control Panel).

2. In the Inject Port Volume field, enter the volume determined during recalibration of the inject port volume on a new or existing needle seal assembly.

3. Press <Enter>. Chromeleon downloads the value to the autosampler and stores this calibration value as the current value.

Performing Device Diagnostics

Wellness control panels, which are supplied with Chromeleon, display diagnostic test results and provide script buttons for performing the tests.

The following tests are available; see:

- Leak Detector (for any IC device equipped with a leak detector)
- Wavelength Verification (for AD25 and PDA-100 detectors)
- Pressure and Conductivity Diagnostics (for ICS-90 Ion Chromatography System)
- Conductivity Diagnostics (for ICS-1000/1500/2000 Ion Chromatography Systems)

Testing the Leak Detector

Many System Wellness supported devices are equipped with leak detectors. The test procedure for all of the sensors of IC devices is the same.

1. Thoroughly dry the sensor.

2. Open the System Wellness Control Panel for the device (see Opening a Wellness Control Panel).
3. Under **Diagnostic Tests, leak detector**, select the **internal** script button to test the sensor installed in the device itself. Select **external** to test the sensor on a controlled device. For example, for a pump, internal refers to the sensor in the pump and external refers to the sensor in a chromatography oven controlled by the pump.

4. The device tests the sensor and reports the results to Chromeleon. Possible test results are:
   - Passed (Dry)
   - Failed (Wet)
   - Failed (Open circuit): The sensor may be disconnected. Check the connection.
   - Failed (Short circuit): The sensor may need replacing. Contact Dionex for assistance.
   - Failed (Out-of-calibration): Calibrate the sensor (see **Calibrating the Leak Detector**) and retest. If the test still fails, the sensor may need replacing. Contact Dionex for assistance.

**Wavelength Verification**

Use this procedure for the Dionex AD25 and PDA-100 detectors. The **Wavelength Verification** test verifies the wavelength accuracy of the AD25 or PDA-100 detectors. When this test is run, a holmium oxide filter is placed in the light path and measured wavelengths are compared to theoretical wavelengths for holmium oxide.

1. Verify that there is solvent flowing through the cell, the background absorbance is low, and there are no bubbles in the light path.

2. Open the System Wellness > **Control Panel** for the detector (see **Opening a Wellness Control Panel**).

3. Under **Diagnostic Tests, wavelength verification**, click the **Verify** script button. The detector runs the test and then reports the results to Chromeleon. The overall results (**Passed** or **Failed**) are reported and the theoretical and measured values for three peaks in the holmium oxide spectrum.

If the test fails, run the wavelength calibration (see **Wavelength Calibration**) and then rerun the verification test.
ICS-90 Pressure and Conductivity Diagnostics

Use this procedure to test the variance in pressure and conductivity readings for the Dionex ICS-90 Ion Chromatography System.

1. Verify that the ICS-90 pump is on.
2. Open the ICS-90 System Wellness Control Panel (see Opening a Wellness Control Panel).
3. Under Diagnostic, click the Start script button. The ICS-90 begins collecting pressure and conductivity readings. To stop the test, click the Stop script button. The ICS-90 reports the minimum, maximum, and variance results for both pressure and conductivity.

   To test the conductivity variance on the electronics alone, select the Dummy Cell check box before running the test.

Conductivity Verification (ICS-1000/1500/2000)

Use this procedure to test the conductivity variance on the DS6 conductivity cell electronics.

Note:

Do not open a System Wellness Control Panel if the name includes "Service.pan." These Wellness panels are reserved for use by Dionex Service Representatives.

1. Open the System Wellness Control Panel for the ICS-1000/1500/2000 (see Opening a Wellness Control Panel).
2. Locate the Dummy Cell Test controls. Click Instructions for an overview of the test procedure.
3. Click On to begin the test.
4. When the test is complete, click Log to record the new dummy cell value in the Audit Trail. The new dummy cell value should be 21 μS; if it is not, the CPU card may be defective. Contact Dionex for assistance.
Entering Device Parameters

For some devices, System Wellness Control Panels include fields that let you enter various device parameters.

Also, see Applying a Sodium Correction (for ED40/ED50/ED50A Amperometry detectors).

Applying a Sodium Correction

If you are using a NaCl reference electrode with an ED40, ED50, or ED50A detector in amperometry mode, turn on the sodium correction parameter. This adjusts the detector’s signal response for the NaCl electrode, instead of the default AgCl reference electrode.

1. Open the System Wellness Control Panel for the detector (see Opening a Wellness Control Panel).
2. Under Device Parameters, sodium correction, select On.

Defining System Suitability Tests

Use the SST page (see System Suitability Test (SST)) of the QNT Editor (see Data Representation and Reprocessing The QNT Editor) to check your system’s performance for individual samples. The number of tests is only limited by the capacity of your computer. Each test is defined in a separate line. Use the arrow key ↓ to append additional lines to the table. This action automatically opens the SST Wizard, which guides you through all further steps.

Tip:

In order to perform a System Suitability Test, enter the QNT File into the sample list before you start the analysis. If you start the analysis and the QNT File has not yet been entered, the test is not performed during the batch run. Thus, the Batch cannot be aborted in case of Fail Action - Abort Batch.
For more information, refer to:

- SST Wizard: Overview and Start Conditions
- SST Wizard: Sample and Test Conditions
- SST Wizard: Other Wizard Pages
- Modifying the System Suitability Test
- SST Example: Is the Amount in the Calibrated Range?
- SST Example: Amount Deviation on Reinjection
- Inserting SST Results in the Printer Layout

**SST Wizard: Overview and Start Conditions**

The SST Wizard supports you in inserting a new System Suitability Test (SST). To open the SST Wizard, double-click a cell or press the F8 key. Or else, select Lines... Append Line or Insert Line on the context menu or press the ↓ key. (Note: To open the SST Wizard via the ↓ key, place the cursor on the bottom line.)

The SST Wizard provides the following pages:

- Start
- Sample Condition
- Test Condition
- Aggregated (optional)
- Peak & Channel Condition (optional)
- N.A. & Fail Action
Performing Validation and Qualification

On the first Wizard page, select a test from the **Predefined Tests** list:

All predefined values on the following pages depend on this selection.

To copy the previous test, select **Copy Previous Test** from the list. If there is no previous test, i.e., if the test is the first on the list, this entry is not available.

If no other conditions are required, you can already complete the Wizard on this page by clicking **Finish**. Clicking **Next** takes you to the following Wizard pages. Use these pages to check and edit the predefined conditions as necessary.

For more information, refer to:

- SST Wizard: Sample and Test Conditions
- SST Wizard: Other Wizard Pages
SST Wizard: Sample and Test Conditions

Use the Sample Condition page to specify for which sample(s) the test is performed. Select an option:

Select Apply on all Samples to perform the test for each sample. Select Sample Type to perform the test for a certain sample type only. In the Sample Number(s) and/or Vial Number(s) input fields, enter the sample or vial number(s) for which to perform the test; for example 1,3,7-10. (Note: To separate the entries, you can use either a comma or a semicolon.) Select Sample Property to perform the test only for samples with the specified property. Enter the property in the corresponding input fields. The User defined condition option is reserved for advanced users. Select this option to enter any kind of formula in the report format. The test is performed only for those samples for which this condition is true.
Test Condition

Use Test Condition tab page to enter the basic conditions for the single system suitability tests:

First, enter a unique name in the Test Name input field. Specify the Test Condition by clicking the "..." (Browse) button. Select a variable from the Edit Result Formula dialog box. Select the Operator from the drop-down list, and then enter the compare value in the Value input field. The following operators are available:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>equals the entered string of characters.</td>
</tr>
<tr>
<td>&lt;&gt;</td>
<td>does not equal the entered string of characters.</td>
</tr>
<tr>
<td>&gt;</td>
<td>is larger than the entered string of characters.</td>
</tr>
<tr>
<td>&lt;</td>
<td>is smaller than the entered string of characters.</td>
</tr>
<tr>
<td>&gt;=</td>
<td>is larger than or equals the entered string of characters.</td>
</tr>
</tbody>
</table>
Performing Validation and Qualification

Operator: Description:
Sample Condition: The SST if performed for all samples for which the property ....
Test Condition: The SST checks whether the sample property ....

\[ \leq \]
is smaller than or equals the entered string of characters.
contains: contains the entered string of characters.
does not contain: does not contain the entered string of characters.
starts with: starts with the entered string of characters
does not start with: does not start with the entered string of characters.
ends with: ends with the entered string of characters
does not end with: does not end with the entered string of characters.

Note:

If the operators \( >, <, \geq, \text{ or } \leq \) apply to text variables, the lexicographical order is observed; for example, A<B.

The Value can be either a value or a report variable or formula. Select the Use aggregation check box to aggregate the test conditions over several samples. Selecting this check box takes you to the Aggregate page.

For more information, refer to:
- SST Wizard: Overview and Start Conditions
- SST Wizard: Other Wizard Pages

SST Wizard: Other Wizard Pages

Aggregate
Use this page to define the function, sample(s), and condition for sample aggregation. (Refer to the online Help for information about the Aggregate page.)

Peak & Channel
This page is optional and appears only if the test condition requires that you enter a peak or channel. (Refer to the online Help for information about the Peak & Channel page.)
N.A. & Fail Action

Use this page to determine what the test result is if the test cannot be performed (N.A.). Also, determine which action is taken if the test fails (Fail Action).

For more information, refer to:
- SST Wizard: Overview and Start Conditions
- SST Wizard: Sample and Test Conditions

Modifying the System Suitability Test

To modify an existing System Suitability Test (SST), double-click a cell or press the F8 key. The SST Properties dialog box provides the following tab pages:

- Sample Condition
- Test Condition
- Aggregate
- Peak & Channel Condition
- N.A. & Fail Action

These pages correspond to the individual SST Wizard pages. For more information, refer to How to …: Integrating Chromatograms and Identifying Peaks SST Wizard: Overview and Start Conditions.

SST Example: Is the Amount in the Calibrated Range?

It is only possible to determine the amount of an unknown sample if it is in the calibrated range, i.e., between the smallest and the largest amount of the standard samples. You can check this using a System Suitability Test. Follow the description below:

Create a test that checks whether the current Amount is either equal or larger than the smallest Amount of all standard samples:

- If no System Suitability Test has been created yet, double-click the empty line on the SST tab page to open the SST Wizard. For an existing System Suitability Test, select the bottom line of the existing test and press the arrow down key on the keyboard.
From the Predefined Tests list, select the Minimum Peak Amount test. The Wizard guides you through test creation. Clicking Next> takes you to the next Wizard page.

- On the Sample Condition page, specify for which samples the test is performed. The default setting is Apply on all Samples.
- You can accept the settings on the Test Condition page:

![Test Condition](image)

- Use the next Wizard page to determine the peak(s) and the channel for which the test is performed.
- Finally, determine what the test result is if the test cannot be performed and which action is taken if the test fails.

In the same way, create a second test that checks whether the current Amount is either equal or smaller than the largest Amount of all standard samples. In this case, select the Maximum Peak Amount test from the Predefined Tests list.
**SST Example: Amount Deviation on Reinjection**

For reinjections from the same vial, the relative standard deviation of the determined Amount values should be as small as possible. You can use a System Suitability Test to check whether the standard deviation is below a specified minimum value. Follow the description below:

- If no System Suitability Test has been created yet, double-click the empty line on the SST tab page to open the SST Wizard. For an existing System Suitability Test, select the bottom line of the existing test and press the arrow down key on the keyboard. The Wizard guides you through test creation. Clicking **Next** takes you to the next Wizard page.

- On the **Sample Condition** page, specify for which samples the test is performed. The default setting is **Apply on all Samples**.

- On the **Test Condition** page, enter an appropriate name for the new System Suitability Test, e.g., Amount Deviation.

- Determine the **Test Condition**, e.g., `peak.amount >= 1`. (In this case, 1 is the maximum allowed deviation in percent.)

- Click the "..." button behind the **Test Condition** input field. In the dialog box, select `⇒ Peak Results` from the **Categories** list, and then select `Amount` from the **Variables** list.

- Click **OK** to confirm your selection. This returns you to the SST Wizard.

- In the **Operator** input field, select `>=`. In the **Value** input field, enter 1.
• Select the **Use aggregation** check box. Clicking **Next >** takes you to the **Aggregate** page.

• On the **Aggregate** page, select **RSD %** from the **Aggregate Function** drop-down list.

• Enter the **Maximum number of samples to aggregate**, e.g., 5.

• For **Only aggregate samples with**, determine **Replicate ID = smp.replicate**. This searches for a maximum of four previous samples for which the replicate ID matches the replicate ID of the current sample. The relative standard deviation of the Amount value is determined for a maximum of five samples—for the current sample and up to four others.

• Use the next Wizard page to determine the peak(s) and the channel for which the test is performed.

• Finally, determine what the test result is if the test cannot be performed and which action is taken if the test fails.
Inserting SST Results in the Printer Layout

If you save the System Suitability Test (SST) parameters in the QNT File, you can use the test results for peak labels or as individual variables in the Printer Layout (not in tables).

Use the Report category System Suitability Test to display the SST results in the Printer Layout. The following variables are available:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Sample Condition</td>
<td></td>
</tr>
<tr>
<td>Test Condition</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td></td>
</tr>
<tr>
<td>N.A.</td>
<td>User-defined test result if the test is not performed</td>
</tr>
<tr>
<td>Fail Action</td>
<td></td>
</tr>
<tr>
<td>Aggregated Samples</td>
<td></td>
</tr>
<tr>
<td>Sample Condition Results</td>
<td></td>
</tr>
<tr>
<td>Test Results</td>
<td></td>
</tr>
<tr>
<td>Aggregated Sample List</td>
<td></td>
</tr>
<tr>
<td>Aggregated Sample Result List</td>
<td></td>
</tr>
<tr>
<td>Result of Test Condition or Aggregate</td>
<td></td>
</tr>
<tr>
<td>Result of Compare Value</td>
<td></td>
</tr>
</tbody>
</table>

The Formula field indicates your selection in short; for example, sst.test_condition for the test condition.
Integrating Chromatograms and Identifying Peaks

Chromeleon supports various $\Rightarrow$ QNT Parameters, such as calibration and peak table parameters, as well as $\Rightarrow$ Detection Parameters. Specify in the $\Rightarrow$ Quantification Method (QNT Method) which parameters are used for evaluating chromatographic raw data. For more information, refer to:

- Creating a Peak Table
- Defining Detection Parameters
- Combining Peaks
- Subtracting a Blank Run Sample

For information about how to perform calibration and enter the calibration parameters in the QNT Editor, refer to $\Rightarrow$ Calibrating.

Creating a Peak Table

The peak table contains data for
- Peak identification
- Amount calculation

Specific peaks of a chromatogram are identified by a name. The determined peak areas are converted into amount values ($\Rightarrow$ Formula for Amount Calculation). The peak table contains the amount values for all standard samples. Hence, it is the basis for each calibration. Usually, all the information is entered into the peak table before the analysis is started.

The peak table contains more columns than can be displayed clearly on the screen. Thus, the columns are distributed on the following tabs:
- Peak Table (general peak table)
- Amount Table (parameters to determine the amount)
- Peak Tracking (parameters to assign peaks using reference spectra)
- MS Tracking (parameters to assign peaks using $\Rightarrow$ Mass Spectra)
To determine which columns are displayed on the tab pages, select **Display Columns** on the **View** menu or select **Columns > Display Column** on the context menu. In this way, you can adjust the tab pages to your individual requirements.

For more information, refer to:

- Identifying Peaks
- Identifying Peaks via Their UV Spectra (Peak Tracking)
- Identifying Peaks via Their Mass Spectra (MS Tracking)
- Defining Retention Times and Reference Peaks
- Defining the Retention Index and the Kovats Index
- Defining the QNT Method for Several Detectors
- Entering Reference Spectra
- Autogenerating the Peak Table

Also, refer to **How to …: Calibrating**:

- Selecting the Standard Method (Standard Column)
- Selecting the Calibration Function (Cal. Type and Int. Type Columns)
- Entering Amount Values (Amount Column)

and

**How to …: Creating and Managing Files and Data**

**Creating User-defined Columns**

**Identifying Peaks**

(Peak Name, Retention Time, and Window columns)

Most frequently, peaks are identified by their retention time.

- Enter the names of all peaks to be identified in the **Peak Name** column, line by line. Assign a nominal retention time to each peak by entering a retention time value in the **Ret. Time** peak table column (manually creating a peak table). Or else:
- Select **Autogenerate Peaktable** on the **Edit** menu to generate the peak table automatically, based on the current sample. In this case, Chromeleon includes all integrated peaks of the current sample into the peak table. The assigned peak names consist of the sequence name and a consecutive number. Chromeleon uses the maximum values of the single peaks to recalculate the values to be entered in the ⇒ *Retention Time* and ⇒ *Window* columns. All other entries are replaced by the default values (= automatically creating a peak table).

If a peak is detected at the specified time in an unknown sample, the peak is automatically assigned a name (fig. a).

Identification is possible even if the retention times deviate or if neighboring peaks are very close. To allow this, use the **Window** (fig. b) peak table parameter to define a tolerance range. If a peak is detected in this range, it is identified even if the *nominal* and the *actual* retention times do not coincide exactly (fig. c). If several peaks are detected in this range, Chromeleon identifies the greatest peak, the first peak, or the peak nearest to the retention time (fig. d), depending on the selected option.

To open the **Peak Window** dialog box, mark the **Window** column cell of the peak of interest, and then either press the F8 key or double-click in the cell. Determine the Window Interpretation: Select **Absolute** to enter the window width in minutes. Select **Relative** to define the window width in percent.

In the **Peak Match** section, select the criterion for peak identification. If you use a **Photodiode Array Detector**, you can also identify the peaks by the spectrum or by the spectrum and the retention time. For more information, refer to **Identifying Peaks via Their UV Spectra (Peak Tracking)**. If you use a **Mass Spectrometer** for data acquisition, you can identify the peaks by their mass spectra. (For more information, refer to **Identifying Peaks via Their Mass Spectra (MS Tracking)**.)
The **Window** column in the peak table indicates the window width in **Decimal Minutes**; for example, 0.25, followed by the abbreviation for the selected window interpretation and the peak match criterion. To identify the greatest peak in a 30 second window, the entry in the column must be as follows: 0.25 AG (0.25 min or 15 seconds to the left and right of the retention time). If the entry is 0.25 AN, the peak that is nearest to the nominal retention time is identified.

**Notes:**

The retention times and window values stated in the peak table only serve to identify a peak. The retention times indicated in a **Report** are always the actual retention times (= retention time in the peak maximum).

If the retention time of the same peak shifts from sample to sample due to a column trend, it may happen that the peak leaves the retention time window at some point. In this case, peak identification is no longer possible. However, Chromleon provides a method to reliably identify peaks even then: Select the ⇒Use Recently Detected Retention Time check box on the **General** tab page of the QNT Editor.

In addition to peak identification by the nominal retention time, it is possible to identify compounds by their substance spectrum.

**Identifying Peaks via Their UV Spectra (Peak Tracking)**

Chromleon allows you to perform peak tracking. Peak tracking means identifying peaks by comparing spectra. In addition to the **Reference Spectrum** column, other peak table columns also allow you to influence spectra comparison: **Match Criterion**, **Check Derivative**, **Min. WL**, **Max. WL**, **Threshold**, **Rel. Max. Deviation**, and **Check Extrema**. The values entered in these columns have the same meaning as described in How to …: Displaying and Using UV Spectra ⇒ Entering Criteria for the Spectra Library Screening.

**Tip:**

If neither the minimum (**Min. WL**) nor the maximum wavelength (**Max. WL**) are set, the comparison is performed for the entire wavelength range of the reference spectrum.

Enable peak tracking in the **Window** column. In the corresponding F8 dialog box (press the F8 key in any cell in the Window column or double-click), select **Spectrum** or **Spectrum and time** under Peak Match.
The algorithm for peak identification by comparing spectra can be described as follows: If, in the Window column of the peak table, the Peak Match criterion for a peak is Spectrum or Spectrum and time, peak tracking uses the reference spectra in the corresponding column. If Spectrum and time is selected, the spectra comparison is limited to the specified time window. Peak tracking generates a list of spectra sorted by the match factor; a peak hit list is not displayed.

**Tips:**

Peak tracking is performed using the parameters (match criteria, etc.) specified for the peak in the peak table.

The peak hit list includes only peaks with a match factor above the threshold specified for this peak.

An empty peak hit list indicates that no spectrum fulfilling the match criteria was found. This could be due to a very high threshold.

The peak hit list is calculated for all peaks in the peak table, for which peak tracking was enabled. After calculation, the peak hit lists are checked for multiple hits. If the Check the best hits only option is enabled, only the best hits are compared for the individual peaks.
In case of multiple hits, the peak with the best match factor receives the name of the reference substance.

Usually, multiple hits are not found if you select Spectrum and time as match criterion.

All other peaks in the peak table, i.e., peaks for which the peak tracking function is disabled, are identified via the window assignment (First, Nearest, Greatest) as described in Identifying Peaks.

If you acquire data with a Mass Spectrometer, you can identify peaks via their mass spectra. (For more information, refer to Identifying Peaks via Their Mass Spectra (MS Tracking)).

Identifying Peaks via Their Mass Spectra (MS Tracking)

(Mass peak x, MS threshold, MS filter conditions, and Check MS ret. times columns)

Mass Spectra present a very reliable method for peak identification. For the available parameters, refer to the MS Tracking tab page.

![Identifying Peaks via Their Mass Spectra (MS Tracking) Table]

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret. Time</th>
<th>Mass peak 1</th>
<th>MS threshold</th>
<th>MS filter conditions</th>
<th>Check MS ret. times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cytlin</td>
<td>3.072 min</td>
<td>195.0 amu @ 100.0 %</td>
<td>8.0 Automatic</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ethyloxazone</td>
<td>3.630 min</td>
<td>151.0 amu @ 100.0 %</td>
<td>5.0 Automatic</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Propyloxazone</td>
<td>4.200 min</td>
<td>N/A @ 100.0 %</td>
<td>5.0 Automatic</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Butyloxazone</td>
<td>5.200 min</td>
<td>129.0 amu @ 100.0 %</td>
<td>5.0 Automatic</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Butylpropanol</td>
<td>5.900 min</td>
<td>193.0 amu @ 100.0 %</td>
<td>5.0 Automatic</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>
Double-click the respective cell or press the **F8** key to open the Mass spectrometry conditions for dialog box:

If you have entered the mass of at least one mass peak, you can enable and disable peak identification via mass spectra by selecting the **Check mass ratios** check box.

Under **Mass Peak 1**, enter the mass of the substance (range: 1.0 to 2000.0 m/z) that is expected at this peak. If you expect fragmentation and can estimate the fragments, you can enter two of them, with their expected intensities, under **Mass Peak 2** and **Mass Peak 3**.

Select the **MS Threshold** option to filter the noise. A mass is detected in the mass spectrum only if its relative intensity compared to the **Base Peak** (largest peak) is higher than the threshold value.

The filter settings limit the mass spectra used for peak identification. This option is required if you modify the polarity and/or use a different maximum voltage for ionization of the sample.

Select the **Check retention time of mass spectra** check box to use the retention times of all masses for peak assignment. All retention times must be within one scan.
The settings selected in the Mass spectrometry conditions for dialog box are not active immediately. You can activate them later from the Peak Table tab page: Press the F8 key in the Window column or double-click to open the Peak Window for dialog box. Select the Check mass ratios check box.

If you acquire data with a Photodiode Array Detector, you can identify peaks via their UV spectra. (For more information, refer to Identifying Peaks via Their UV Spectra (Peak Tracking)).

---

**Defining Retention Times and Reference Peaks**

(Retention Time column)

The Retention Time column allows you to select reference peaks for relative retention times and to determine how the Retention Time is to be interpreted for the respective peak. Double-click the corresponding peaks or press the F8 key in the Ret. Time column, to open the Retention Time for dialog box.

In the Interpretation section, determine the display of the retention time (relative or absolute time) individually for each peak. Note that relative times can be displayed either as difference or as percentage ratio to the retention time of a reference peak.
Use the **Reference peak** drop-down list box to define one (or several) of the other peaks as reference peak. However, only peaks with absolute reference times can be selected as reference peaks. They are indicated with a light blue background. It is not possible to delete reference peaks from a peak table.

The retention time is re-calculated automatically when the retention time interpretation is changed or when a different reference peak is selected.

Besides, you can also enter the retention time directly in the input field (Peak Table page in the Ret. Time column) in the following manner:

`[<Reference Peak>] <Ret. Time> [<Unit>]`

You are free to choose the order in which the fields are entered.

If you do not enter a name for the reference peak, the time is interpreted as absolute time.

Select **min** or **%** as the unit. **min** is the default if no entry is made. The unit determines whether the time is indicated as the difference (**min**) or the ratio (**%**) to the time of the reference peak. For absolute times, only **min** is permitted.

### Defining the Retention Index and the Kovats Index

(Ret. Index and Kovats Index columns)

Retention indexes can be used to generate generally comparable retention times. Determine one or several marker peaks in the ⇒*Ret. Index* (= RI) or ⇒*Kovats Index* (= KI) column.

Enter a value between 0 and 99.999. Each peak for which a value is entered is used as marker peak. Increment the values that you enter, i.e., either leave the field empty or enter any value above the value for the predecessor peak. The column is 'empty' by default.

The retention index and the Kovats index are calculated based on these variables. Both indexes are mainly used in GC to correct retention time variations. Therefore, the peak table must contain certain marker peaks, which usually have the following RI or KI values assigned:

Retention Index: 100, 200, 300, etc.

Kovats Index: 100*number of carbon atoms of the alkane.
The RI or KI values of all other peaks remain empty; they are calculated by means of interpolation.

Select Columns > Duplicate Column on the Edit or the context menu to duplicate the column and thus, allow different values for the individual channels.

**Tip:**
The Kovats index is calculated using the adjusted retention times. Therefore, to enable calculation, enter a ⇒Dead Time on the General tab page of the QNT Editor.

**Defining the QNT Method for Several Detectors**

1. If two detectors are connected in series, the retention times are delayed against each other. As the flow normally remains unchanged, the shift of the retention times is constant. Select the ⇒Delay Time parameter to consider this fact.

   On the General tab page of the QNT Editor, click the arrow next to the 2nd Detector and/or 3rd Detector input field and select the name of the detector from the list. Enter the measured delay time in the next field.

2. For some applications, it might be necessary to modify the QNT Method for a second detector or another channel. For example, you cannot use the Delay Time parameter when you are working with ⇒Flow Gradients. Instead, duplicate the following columns and assign the duplicate to one or several channels:
   ⇒Calibration Type
   ⇒Integration Type
   ⇒Kovats Index
   ⇒Left/Right Limit
   ⇒Peak Type
   ⇒Response Factor
   ⇒Retention Index
   ⇒Retention Time
   ⇒Window
Select the column to duplicate in the Peak Table (Amount Table, Peak Tracking table, respectively) and select Columns on the context or Edit menu. Select Duplicate Column to open the Duplicate Column dialog box. Click Add Channel to define the channel(s) for the new column.

If an individual peak is not detected in a channel, the corresponding cell in the Retention Time column can be left empty. Thus, this channel will not identify this peak. If you do not wish to include a detected peak into the report, just leave the corresponding cell in the Retention Time column empty.

In addition, you can define more detection parameters for the respective channel(s) in the Channel column on the Detection tab page. Also, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.

Entering Reference Spectra (Reference Spectrum Column)

You can enter a reference spectrum for each peak in the peak table of the QNT Editor.

Position the cursor in the Reference Spectrum column, press the F8 key or left-click twice. In the dialog box, select the reference spectrum of the peak. Click Browse to load any samples or spectra libraries for selecting the reference spectrum. If samples are loaded, a list of all peaks in the corresponding chromatogram is displayed.

For spectra libraries, the list displays the spectra included in the spectra library (see figure). The selected reference spectrum is displayed in the right window. If the relevant peak of the peak table is identified in the active chromatogram, the spectrum is included as overlay. The corresponding match factor is displayed in the upper corner of the plot frame.
Click **Select** to copy the selected reference spectrum to the corresponding line of the peak table.

**Clipboard:** Spectra can copied to the clipboard from the spectra plot window or the spectra library by simultaneously pressing the CTRL+C keys or by selecting **Copy** on the **Edit** menu. In the QNT Editor, either simultaneously press the CTRL+V keys or select **Paste** on the **Edit** menu to insert the copied spectrum as reference spectrum into the **Reference Spectra** column.

**Copy Peak Spectra as Reference:** If one or several lines are selected in the **Reference Spectrum** column, select **Copy Peak Spectra as Reference** on the **Edit** or context menu to use the spectra of the active chromatogram as the reference spectra.

**Overlay of the Reference Spectrum on the Spectra Plot**

To include the current reference spectrum from the peak table as **Overlay** on the Spectra plot, place the cursor in the spectrum and right-click. Select **Decoration** on the context menu. On the **Peak Spectra** tab page, click **Reference Spectrum in corresponding peak table**. Click **OK** to receive the spectrum from the **Reference Spectrum** column in addition to the current one.
**Autogenerating the Peak Table**

To save the user from having to determine the retention time of each peak, peak tables can be created automatically by selecting **Autogenerate Peak Table** on the **Edit** or context menu.

Chromeleon automatically generates a peak table, entering the retention times of all detected peaks of the currently open chromatogram as set times. The user need only complete the table by entering component names and altering the default window and other values as necessary. Peaks, which are not of interest, can be deleted from the table. These will consequently be excluded from the report, provided that the **Including all not detected peaks of the peak table** parameter in the **Integration Report Properties** (Table Properties command on the **Edit** or context menus) is turned to OFF.

During automatic table generation, the variables described below are set as follows:

- **Autogenerated Peak Table** is entered as **Comment**.

  The peak names (⇒**Name**) are constructed from the name of the QNT Method; for example, in the **Test** peak table, detected peaks will be assigned the names Test-1, Test-2, Test-3, etc.

  The ⇒**Window** values are entered as absolute values; they represent one-third of the distance from the nearest peak.

  No ⇒**Group**.

  The ⇒**Amount** values and the ⇒**Response Factor** are set to 1.0.

  The peak type (⇒**Sample Type**) is Auto; that is, Chromeleon determines the peak type.

If you select **Autogenerate Peak Table** on the **Edit** menu to generate peak tables, it is possible to use the results of the spectra library screening (type: **Use spectra library screening results**) instead of enumerating all peaks in the chromatogram (type: **Enumerate peaks of current chromatogram**).
In this case, library screening is performed based on the parameters entered in the QNT File. The peak table will include all peaks for which at least one reference spectrum was found and the name of the best hit.

The following options can also be used:

- **Apply only to peaks with**: With this option, only peaks exceeding a selectable absolute or relative area or height will be included in the peak table.

- **Apply only to peaks in current time interval**: Click this button to include only peaks in the currently displayed section of the chromatogram; for example, in the zoomed chromatogram section.

- **Copy reference spectrum from**: This option simultaneously includes the reference spectrum for each peak. Either the current peak spectrum from the displayed chromatogram or the library spectrum of the best hit from library screening can be used. If you want to use the library spectrum of the best hit, make sure that the **Use spectra library screening results** autogeneration option is enabled in the upper window section.
• Select Enable peak tracking using peak match type to enable peak tracking for each included peak. Select Spectrum or Spectrum and time as match type (see How to …: Integrating Chromatograms and Identifying Peaks: Peak Tracking).

• Allow multiple best hits or Unique identification: The results of the spectra library screening will produce a hit list of library spectra for each peak in the chromatogram. If Unique Identification is selected, these hit lists are handled as in Peak Tracking; that is, multiple identical hits with smaller match factors are eliminated. In the case of Allow multiple best hits, each peak in the chromatogram is copied to the peak table with the best hit. If the best hits are identical, this can result in identical entries in the peak table. In this case, adding a number to the name generates a unique peak; for example 2-, -3.

If you have generated a new peak table via Autogenerate Peak Table, a note is automatically included in the Comment column of the peak table:
• If you have selected Enumerate peaks of current chromatogram, the comment is: Autogenerated.
• If you have selected Use spectra library screening results, the comment is: Autogenerated. Spectrum: Name of reference spectrum, Match: Match factor.

Tip:
If Use spectra library screening results is enabled, the settings made on the Spectra Library Screening tab page are automatically entered in the peak table (Peak Tracking tab page).

**Defining Detection Parameters**

The ⇒Detection Parameters define how the chromatograms are integrated, in which areas peaks are suppressed, how peak starts and peak ends are detected, etc. Thus, the detection parameters allow you to adapt the integration to your requirements and to minimize the re-integration effort for individual chromatograms.

You can either enter the detection parameters in the table on the Detection tab page of the QNT Editor or define them graphically in a chromatogram.
The detection parameters influence the integration of all chromatograms to which the selected QNT Method applies. They can assume new values at any time. Only the value that was defined last will take effect, however, only for the time of the chromatogram. The parameters are reset to their default values afterward. If a parameter assumes a new value at a specified time (Retention Time column), this is called an Event. You do not have to enter these events in chronological order. They will be sorted automatically when being saved. The Channel column allows you to define whether this applies to an individual channel only or to all channels (default) of a sample.

Each detection parameter has a default value assigned. Using this value, the system automatically integrates about 90% of all chromatograms correctly. However, for critical applications, such as wavelength switching, the user can influence the baseline or the peak type, for example, rider peak or main peak, or disable detection for defined periods.

Parameter tables can include up to 100 lines. For an example of how to enter detection parameters in the table of the Detection tab page, refer to the following image:

![Parameter Table Example](image)

In many cases, it may be easier to enter the detection parameters graphically in the chromatogram (see How to ...: Working with Chromatograms Defining Detection Parameters Graphically).

Usually, the chromatogram and the report table are immediately updated when the detection parameters have been changed. However, you may disable this function by deselecting Autom. Re-Integerate on the View menu of the QNT Editor. If this option is disabled, save the QNT Method or select Start Integration on the View menu to start re-integration with the new integration parameters.
**Tip:**

Save the setting for this option in the corresponding Report Definition File (Select Save Report Definition on the Workspace menu.)

In addition, the QNT Editor provides more detection parameters. The following sections describe how to edit the default values together with the respective possibilities and advantages. Use the detection parameters for:

- Reducing the Number of Evaluated Peaks
- Excluding Certain Peaks
- Inhibiting Peak Integration
- Modifying the Baseline
- Modifying the Peak Recognition Algorithm
- Defining the Peak Start/End
- Defining Rider Peaks
- Defining the Area for PPA

### Reducing the Number of Evaluated Peaks

To limit the integration report to a manageable size, only the most important peaks (i.e., the largest peaks) should be included in the evaluation. Define either the \( \Rightarrow \text{Minimum Height} \) or the \( \Rightarrow \text{Minimum Area} \).

**How To**

The following example refers to the minimum peak height:

- Open a QNT File (select Open on the File menu) and click the Detection tab page.
- Look at the chromatogram and determine the minimum peak height to be evaluated. You may also click the smallest peak to be integrated. Then open the corresponding Peak Properties via the context menu. The dialog box then indicates the width, height, and area of the peak.
- Enter the name of the parameter to modify; for example, the \( \Rightarrow \text{Minimum Height} \) in the Parameter Name column of the quantification method.
• Assign the smallest possible signal value, for example, in mAU, as the new parameter value in the **Parameter Value** column.

• In the **Time** column, determine from which time (relative to injection time) the parameter becomes valid.

• Alternatively, you can open an edit dialog box (press the F8 key) to enter the parameter name, value, and time.

All peaks with a height lower than the indicated value will not be displayed.

As the parameters affect peak recognition and thus the baseline, you must consider a tolerance of approximately 5% to ensure that all desired peaks are recognized.

Another way to define, for example, the minimum area, is to graphically define the corresponding parameter. For example, follow the steps below:

• In the chromatogram, find the smallest peak just no longer to be displayed.

• Enlarge this peak to be clearly visible.

• In the chromatogram, right-click to select an area whose area is a slightly smaller than that of the selected peak.

• Select **Set Minimum Area** on the context menu.
This action enters the selected area as minimum area together with the time of its left edge into the QNT Method. Enter the 0.000 as time into the Detection tab page or move the parameter in the chromatogram with the Detection Parameter Tool so that the minimum area is valid for the entire chromatogram.

**Note:**

You can undo the graphical input of detection parameters. Click one of the tables of the QNT Editor and select **Undo** on the **Edit** menu. (In the chromatogram itself, you can only undo the modifications of the currently open chromatogram.)

**Tip:**

To make the report clearer:

- Select any cell in the report (integration tab page) and select **Table Properties** on the **Table** menu.
- Select the **Reject peaks with smaller area than ...%** check box and specify below which size not to include a peak in the report.

### Excluding Certain Peaks

#### Spikes

Sometimes, very narrow peaks (so-called spikes) occur in chromatograms due to, for example, gas bubbles in the HPLC system. In such a case, the problem (= the gas bubbles in the HPLC system) should be solved first, of course. However, to use the chromatogram, identification of these narrow peaks can be suppressed with the QNT Method.

Select the ⇒Minimum Width parameter to define the minimum width for the peaks to be integrated. Proceed as when entering the minimum height (see Reducing the Number of Evaluated Peaks).

#### Peaks above the Detector Maximum

Sometimes peaks occur whose absorption maximum is above the detector maximum so that integration does not make sense. You can then include these peaks as unidentified peaks into the peak table by using the ⇒Maximum Peak Height parameter.
402 Integrating Chromatograms and Identifying Peaks

Broad Peaks
If an unusually broad peak occurs in the chromatogram, it may be from a previous sample. Select the ⇒Maximum Width parameter to define this peak as being unidentified.

Inhibiting Peak Integration
The ⇒Inhibit Integration parameter can be enabled at the time t1 and can be disabled at the time t2. The peaks within the time window t1 - t2 are not integrated. Whether this applies to all channels or to only one channel is specified via the Channel column.

To prevent the integration of all peaks in the range from 0 to 1.0min (especially the injection peak), the following input is necessary in the quantification method.

Peaks detected in this time span will not be integrated and will not be included in an integration report.

Modifying the Baseline
It may be necessary to modify the baseline, especially for non-resolved peaks. The baseline is usually defined via a mathematical procedure. For calculating the individual peak areas, a perpendicular is dropped to the baseline from each local minimum (standard).

If you think that integration starts too early or that the peak end is delayed, you can force a better peak start or end by inserting a ⇒Baseline Point.

If a series of non-resolved peaks is piled on an "absorption mount", for example, due to increased solvent absorption, the ⇒Valley to Valley detection parameter can be used to force the baseline from minimum to minimum via.
Single peaks that are piled on a recognizable "absorption mount" are integrated individually. To integrate the entire area, the baseline can be fixed. Setting the \(\Rightarrow\text{Lock Baseline}\) parameter to \textbf{At Current Level} extrapolates the baseline horizontally to the intersection with the signal curve. Setting the parameter to \textbf{At Global Minimum} searches for the absolute minimum in the direction of the peak end or until the next \textbf{Lock Baseline}. Both parameters disable the \textbf{Valley to Valley} parameter.

\[\begin{align*}
\text{Move baseline point} & \quad \text{Default} & \quad \text{Valley to Valley} \\
\text{Lock Baseline - current level} & \quad \text{Default} & \quad \text{Lock Baseline - global minimum}
\end{align*}\]

\[\textbf{Tip:}\]

\textit{In all these actions, the \textbf{Peak Type} classification criterion of the peak table has priority. For a \textbf{Baseline-Main-Baseline} type peak, the peak limits always have baseline contact.}

As an alternative, you may modify the baseline manually (refer to Working with Chromatograms/Manual Re-Integration \[\text{Modifying the Baseline Manually}.\]

\[\textbf{Modifying the Peak Recognition Algorithm}\]

Whether signal variations are interpreted as peaks or not, is usually set automatically. Manual modification of this "recognition sensitivity" is possible via the combination of the \(\Rightarrow\text{Peak Slice}\) and \(\Rightarrow\text{Sensitivity}\) detection parameters. Changing the parameters is required, for example, in chromatograms with unusually wide (many minutes) or very narrow (< 0.1sec) peaks.
Another way to define the peak recognition algorithm is to define both parameters graphically.

**How To**

- Enlarge a baseline section so that the noise is clearly visible.
- In the chromatogram, right-click to select an area from which the baseline runs out neither at the top nor at the bottom.
- Select **Set Peak Slice & Sensitivity** on the context menu.

The width of the selected area is entered into the QNT Method as peak slice and the height is entered as sensitivity at the time of the left edge of the area. Enter 0.000 as time onto the Detection tab page or move the parameters in the chromatogram with the Detection Parameter Tool so that this peak recognition algorithm applies to the entire chromatogram.

**Note:**

You can undo the graphical input of detection parameters. Click one of the tables of the QNT Editor and select **Undo** on the Edit menu. (In the chromatogram itself, you can only undo the modifications of the currently open chromatogram.)

The peak recognition algorithm considers signal variations only beyond the adjusted sensitivity values. Peaks below this threshold are interpreted as noise.

Both parameters affect peak recognition only, not integration! The area calculation (integration) is not affected.
Defining Peak Start or Peak End

Depending on the chromatogram type, the peak start or the peak end can be detected too early or too late. There are several ways to prevent this:

If you think that the integration is started too early or that the peak end is delayed too much, select the Fronting Sensitivity Factor parameter for the peak start and the Tailing Sensitivity Factor for the peak end. The entered value multiplied with the left or right peak width determines the peak start or the peak end.

Depending on the chromatogram type, different values may make sense. Test which value is best for your chromatograms. A value of 2 is often an appropriate starting point for finding the best Fronting/Tailing Sensitivity Factor.

You can also set a new Baseline Point to force the peak to start later or to end earlier.

Caution:

However, when setting a baseline point keep in mind that this point will be valid for all chromatograms, which are evaluated with the respective QNT Method. If in one of these chromatograms a peak maximum occurs by coincidence at the time of your hard entered baseline point, the peak maximum will be defined as base point and the peak will not be detected.

Correct too late a peak start or too early a peak end (the latter can occur, for example, with increased baseline noise as follows:

1. In recorded chromatograms: Select a higher Peak Slice (= about 20% of the smallest peak width) and, in addition, a higher Sensitivity, if necessary.

2. For samples that have not been processed yet: Change the data acquisition Step in the program file. Select the step so that only about 20 data points are recorded for the smallest peak.
Defining Rider Peaks

The detection parameters ⇒Rider Threshold and ⇒Maximum Rider Ratio allow you to define which peaks shall be detected as ⇒Rider Peaks and which shall be detected as main peaks. The following applies:

The smaller the rider threshold is, the smaller are the peaks that can be detected as rider peaks. (Peaks below the rider threshold are always regarded as main peaks. For peaks above the rider threshold, the Maximum Rider Ratio defines whether a peak is a rider peak or a main peak.) The larger the maximum rider ratio is, the larger the peaks that can be defined as rider peaks.

Tip:

When defining rider peaks with these parameters please keep in mind that the same peak may be detected in two different chromatograms as main peak and as rider peak. This would result in considerable deviations; for example, in the calibration. To prevent this, select the peak type Rider (or Main) for the respective peak in the peak table. Thus, the peak is a rider peak, if possible (or always a main peak).

In addition, you can define how to skim rider peaks by using the ⇒Rider Skimming parameter. With the two options Tangential at lower peak end and Tangential at both peak ends the peak is skimmed by a tangent. Usually, there is hardly any difference between the results of the two options.

With the Exponential option, the course of the baseline is approximated by an exponential function; that is, the peak is skimmed by the exponential function. This option clearly distinguishes from the two others. In most of the cases, Exponential maps the actual baseline course very accurate. With this option, the rider peak will usually receive a more realistic larger area. To be able to use this option, make sure that a sufficient number of data points is available.

Tips:

You can move the baseline in the chromatogram with the mouse for tangentially skimmed riders, but you cannot for exponentially skimmed riders.

Split Peak on the context menu allows splitting one rider peak into two peaks.
Defining the Area for PPA

When using Photodiode Array Detectors and recording 3D Fields, you may check the peak purity with the Peak Purity Index (PPI).

Define the most expressive area of your spectrum by means of the Peak Purity Start/End Wavelength parameters and limit the examination to this area only.

The detection limit becomes especially apparent with very small peaks. The influence (that is the noise, drift and limits of the measuring method) on the peak spectrum is strongly developed at the peak start and peak end because, in these areas, the concentration of the peak substance in the flow cell is very low. Set the Peak Purity Threshold parameter to reduce the influence on the PPI and the match factor and, thus, to prevent that contaminated substances are indicated falsely. The PP threshold value defines the percentage of the peak height starting as of which the spectra will be considered for the respective purity examination.

If you work close to the detection limit, use higher PP threshold values to reduce the influence of the detection limit on the purity examinations. If you are mainly interested in the purity of large peaks, use lower PP threshold values to examine the purity over the largest possible area of the peaks.

Grouping Peaks

If you are interested in the sum parameters for two or more peaks, you can

1. Define these peaks as a peak group (that is treated as one single peak).
2. Define them as a group of peaks.

1. If the peaks lie close together and are not baseline separated, for example, with overloaded columns, define the peak group start and the peak group end via the Peak Group Start/End parameters on the Detection tab page. The baseline will then be drawn from the start of the peak group to its end. Such a peak group is treated as one single peak.
2. To define a peak group in which the peaks do not necessarily succeed one another, for example, to determine the amount/concentration of an entire class of substances, take the following steps:
Identified peaks: Select Column > Display Column on the context menu to insert the ⇒Group column into the peak table if the column is not yet displayed. For those peaks that should belong to this group, type the desired group name into this column.

Unidentified peaks: Click Unidentified peaks... on the General tab page to define the period for which this group shall be valid. The baseline will be drawn in the same way as for individual peaks.

Add the Group Amount column to the Report and the Printer Layout. This column shows the desired ⇒Amount value. In the report, open the dialog box Insert/Add Report Column via the Insert Column or Add Column commands on the context menu. Select the Peak Results category and then choose Group Amount as variable.

Tip:
If the selected calibration type is, for example, LOff instead of Lin, the value in the Group Amount column will not be identical to the sum of the amount values of the individual peaks even if the group includes all peaks of the chromatogram.

Subtracting a Blank Run Sample

On the General tab page of the QNT Editor, use the Blank Run & Matrix Blank section to consider absorption values of a ⇒Blank Run Sample, a ⇒Matrix Blank Sample, or any other sample (⇒Blank Run Subtraction).

Select No Blank Run Subtraction if no correction is to be performed.

If the absorption values of a specific sample are to be considered for sample evaluation, determine which sample is to be used as Blank Run Sample.

Select Subtract Recent Blank Run Sample in Corresponding Sequence if the Blank Run Sample (sample type: Blank) that was processed last in the current sequence before the current sample is to be used.

Select Subtract a Fixed Sample to perform the correction with a specific Blank Run Sample. Click Browse to search for the sample.
When subtracting a blank run sample, the chromatogram of the blank sample is subtracted point by point from the active chromatogram. If the current sample is a standard sample, the difference between the two chromatograms is used for the calibration.

- **Enable Matrix Blank Subtraction** enables the subtraction of matrix blank samples. Contrary to the other options, the resulting peak areas or peak heights are subtracted for peaks that have been identified for the matrix blank sample and for the unknown sample.

Tip:

Although sample types other than "blank" can be subtracted as well, this usually does not make sense because often-negative peaks would occur in the resulting chromatogram.

### Calibrating

In calibration, a functional relationship is determined between the peak area or peak height and the concentration of a substance (in HPLC/IC; in GC, usually the injected amount of a substance). To allow this you have to enter certain values or make other settings in Chromeleon. The required input is listed below. The order corresponds to the order in which the input is usually made.

**Sample List (Browser)**

- Injection volume (⇒*Inj. Vol.*)
- Sample weight factor (⇒*Weight*)
- Dilution factor (⇒*Dil. Factor*)
- Amount of the ⇒**Internal Standard** (⇒*ISTD Amount*)

Tip:

In many cases, it is sufficient to enter the injection volume in the sample list. Usually, you enter the injection volume in the Sequence Wizard (unless you copy an existing sequence).
410 Integrating Chromatograms and Identifying Peaks

QNT Editor: General Tab
- ⇒ Dimension of Amounts
- ⇒ Calibration Mode

QNT Editor: Peak Table Tab
- ⇒ Standard; also, see Selecting the Standard Method (Standard Column)
- ⇒ Integration Type; also, see Selecting the Calibration Function (Cal Type and Int. Type Columns) and Weighting and Averaging Calibration Points
- ⇒ Calibration Type

QNT Editor: Amount Table Tab (The amount table is part of the peak table.)
- ⇒ Amount; also, see Entering Amount Values (Amount Column)

QNT Editor: Calibration Tab
- See Disabling the Calibration Sample

For calibration examples, refer to Calibration Examples.
For information about how to display calibration curves, refer to Displaying Calibration Curves.

Selecting the Standard Method (Standard Column)

Use the Standard method to determine how calibration is performed. Generally, a distinction is made between a calibration based on an internal or an external standard.

External means that the calibration is performed based on one or several standard samples. (This is the default.)

Using an internal standard substance means adding a standard to the unknown sample. This can be either before (External/Internal) or after (Internal) sample preparation. Either the standard (= Internal Standard) can be added to all samples or it can serve as a basis for a relative area
calculation. In this case, results are displayed only in relation to the amount or area of the internal standard. (For more information, refer to Theory of Calibration, Standard Methods.)

- In the Standard column, use the Standard Method for <Peak Name> dialog box to determine the standard method (External, Internal/External, Internal) for each peak to be calibrated. To open the dialog box, press the F8 key in the corresponding cell.

- For the last two options, at least one peak of the peak table must be used as the internal standard: In the Standard Method for <Peak Name> dialog box for the peak to be used, select Use this peak as Internal Standard (ISTD).

- Press the F8 key to enter the standard method assignment via an edit dialog box.

Selecting the Calibration Function (Cal.Type and Int. Type Columns)

Use the Int. Type (⇒Integration Type) column to define how the individual peaks are evaluated.

Press the F8 key or double-click a cell in the Int. Type column. The following dialog box appears:

In addition to Area, Height, and CE-Area, you can select the relative area or the relative height as the reference for the evaluation (Integration Type).
If you select Area, all amount calculations refer to the area of one peak. This Peak Area Integration is the default setting. The peak height integration is only used in exceptional cases.

The relative height is either calculated relating to all peaks or all identified peaks. ISTD peaks can be considered for the calculation of the total area (height).

There are several peak table columns, which define the conversion of the determined area values into the calculated amount values. A separate calibration and integration type must be assigned to each calibrated peak in the peak table.

Enter a calibration function in the Cal. Type column. Press the F8 key to receive a list of available functions and options. Apart from few exceptions, the calibration types Linear or Linear with Offset are used.

The Calibration Type determines which Calibration Function is used for deriving a valid amount/area assignment for a larger range from the calibration points of the standard samples. For more information about linear and non-linear calibration types, refer to Theory of Calibration Calibration Types (Linear), or Calibration Types (Non-linear).
Via the calibration type, you can also define the weighting and averaging of calibration values (see How to .... Calibrating Weighting and Averaging Calibration Points.

Either the calibration curve leads through the origin, for example, with the Lin and Quad calibration types, or the origin is not considered, for example, with the LOff and QOff calibration types. For calibration types with offset, the origin can be treated as a calibration point, using the Add zero point (0,0) for curve fitting (0) option. In this case, the calibration curve will not be forced through the origin, but the origin will be considered nevertheless.

Usually, all other columns of the peak table can be used with the default settings. Press the F1 key to display more information. Press the F8 key to open an edit box.

Weighting and Averaging Calibration Points

Weighting

With the default settings, Chromeleon weights calibration points of higher concentrations more strongly than lower concentrations, that is, the course of the calibration curve is oriented towards the calibration points of higher concentration. This makes sense as smaller concentrations also cause a stronger dispersion of the determined area values, which would distort the result beyond proportion.

To undo or even reverse this type of weighting, four additional weighting functions have been introduced:

The weighting $1/\text{Amount}$ (or $1/\text{Response}$) virtually undoes the "normal" weighting described above; i.e., low and high concentrations are weighted similarly. The weighting $1/\text{Amount}^2$ (or $1/\text{Response}^2$) results in an over-proportional weighting of smaller amounts.

By variation of the Number of Replicates, this weighting can be avoided. Smaller concentrations are injected more frequently than larger concentrations, more calibration points in the low concentration range support the calibration curve. Outliers are then less relevant.

Tips:

The stronger weighting of higher concentrations is valid in all Calibration Functions, with the exception of Point-to-Point.
Outliers can be explicitly "disabled" by excluding a specific standard sample from the calculation. Exclude the sample on the Calibration tab page of the quantification method.

When calculating the calibration values Variance, Var.Coeff, Std.Dev, Rel.Std.Dev, and Corr.Coeff, averaging is not considered! Weighting only influences the course of the calibration curve, the values are a measure for the quality of the calibration.

Averaging

To determine the calibration curve, all available Calibration Points are normally used. As dispersion is stronger for the lower calibration levels, many users verify the results by using a large number of calibration points. The calibration curve is thus determined by a larger number of points on the lower than on the higher level.

If all points of a Calibration Level are averaged before calculating the calibration curve, and the subsequent calibration is performed based on these average values only; the calibration curve is based on one point of each calibration level only.

Entering Amount Values (Amount Column)

Standard substances are labeled by user input in the Amount column.

- Search the peak table for the substance name of the standard substance(s), or
- Enter the name and the retention time as described in How to …: Integrating Chromatograms and Identifying Peaks.
- Type the amount value of the standard into the first Amount column. This can be a concentration value (such as µg/ml) or the absolute value (such as µg). If a standard is available in different concentrations, enter the concentration of each vial in a separate Amount column. For example, two concentrations result in two Amount column entries:
If injection is performed several times from the same sample vial (multiple injection), one amount value is sufficient, even if a different volume and thus, a different amount, are injected. Chromleon considers this automatically.

- Repeat the procedure for each substance serving as a standard.

**Inserting new Amount columns**

- Double-click the header of an existing Amount column (or select Columns > Edit Amount Columns on the Edit or context menu) to open the Edit Amount Columns dialog box.

- From the Assign Standards on the basis of list, select the sample variable (e.g., ⇒ Name for the sample name, ⇒ No. for the sample (vial) number, or ⇒ Ref. Amount Set, etc.) that shall be used to identify and assign standards to the amount column.

- Use one of the following methods to create new Amount columns:

  Click **New**, type a unique column name in the edit field that appears in the Amount Column window, and press Enter. Select an Amount column (or Unassigned) in the Amount Column window to display the associated standards. Drag the selected sample(s) ( ![ ] = standard sample; ![ ] = Validation Sample or ![ ] = Spiked Sample) from the Standards window to the new column.

- or -

  Click **Auto-Generate**. Select the preferred option from the drop-down list and click Apply. The following options are available: Select Generate a separate column for EACH standard to generate a separate column for all samples with the same value for the selected sample variable. Or else, select Generate a single column to apply to ALL standards to generate only one common column for all standards.

**Note:**

The selected option will apply to all sequences that use the current QNT File. For example: You select the Vial Number option, and then assign vial number 5 to Amount column B. From now on, vial number 5 (regardless of its contents) will be assigned to Amount column B in every sequence that uses this QNT File.

- Click OK to close the dialog box and return to the peak table.
Disabling Calibration Samples

Use the **Calibration** tab page to determine which sample shall be used.

It depends on the **Calibration Mode** which sample **Types** available (for the sample type, refer to the symbol in the **Name** column):

Usually standard samples [ ] are used for calibration.

Only in the **Standard Addition** mode, i.e., if you use the **Standard Addition** method, you can use the sample types **Unspiked** [ ] and **Spiked** [ ] (see **Spiked Sample**) for calibration.

Click the box in the **Enabled** column to open the **Disable (Enable) Standard xyz** dialog box and define whether the respective sample shall be used for calibration purposes. You can exclude the respective calibration sample from calibration either for all peaks and all channels (default setting) or only for the selected peak and/or channel. For more information about how to use this option, refer to the following examples:

The calibration sample was contaminated

Exclude the sample from the calibration. Accept the default setting: Disable the sample for **All Peaks** and **All Channels**.

By mistake, too much of a substance was added to the calibration sample

Do not exclude the sample completely from calibration, but disable the calibration for this substance, instead. Click the peak and select **Selected Peaks** and **All Channels** in the **Disable (Enable) Standard xyz** dialog box.

Contamination in the calibration sample that is detected in one channel only

You do not need to exclude the sample completely from calibration. Select the channel that detects the contamination and select **All Peaks** and **Selected Channel** in the **Disable (Enable) Standard xyz** dialog box.

For more information about calibration, refer to **How to …: Calibrating.**
Calibration Examples

The following topics provide a detailed description of the theory and practical use of the available calibration possibilities. The first examples describe the different applications:

- Introduction and Example: 1 Standard and 1 Substance
- Several Standards with Several Substances Each
- Multiple-Point Calibration Using One Single Standard
- Calibrating Using Standards of an Old Sequence
- Standard Addition
- Calibrating Unstable Substances
- No Pure Substance Available - Known Relative Extinction Coefficient

For an overview of the different calibration options for which an Internal Standard (ISTD) is used, refer to Calibrating with an Internal Standard Substance.

The Calibration Mode determines the standard samples that are used for calibrating specific unknown samples. For an overview of the different calibration modes and the topics that provide more information, refer to Calibration Modes for External Calibration.

For more information about validation, refer to:

- Entering the Concentration/Amount of the Validation Sample
- Validating the Calibration Curve

For a better compatibility with PeakNet 5, Chromeleon also supports Inverting Dependent and Independent Variables.

Note:

To apply an existing calibration to a new sequence consisting of one or several Unknown samples, set the Calibration Mode to Fixed. Always perform calibration manually (Calibrate). The Auto-Recalibrate option is not available.
Introduction and Example: 1 Standard and 1 Substance

Most calibrations in HPLC and IC are performed using external standard samples. In the simplest case, the corresponding peak area for a known amount of a substance is determined for one standard sample only. Chromeleon then calculates the slope (c1) of the \( \text{Calibration Function} \) from the ratio of the amount and the peak area. (In this case, you can only select the Linear without Offset calibration type). Chromeleon uses this slope to calculate the \( \Rightarrow \text{Amount} \) of this substance in unknown samples.

Example:

You want to determine the amount of substance A in two samples, Sample 1 and Sample 2. A standard sample (Standard) is available. For each sample, an injection volume of 20 µl is injected by an autosampler. The samples are located at the autosampler positions 1 (standard), 2, and 3 (unknown samples).

Sample List

In the Browser, create the following sequence using the Sequence Wizard:

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Inj. Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard</td>
<td>Standard</td>
<td>1</td>
<td>20.0</td>
</tr>
<tr>
<td>2</td>
<td>Sample 1</td>
<td>Unknown</td>
<td>2</td>
<td>20.0</td>
</tr>
<tr>
<td>3</td>
<td>Sample 2</td>
<td>Unknown</td>
<td>3</td>
<td>20.0</td>
</tr>
</tbody>
</table>

(For information about the Browser, refer to Data Management The Browser.)

Note:

For more information about how to create a sample list, refer to How to …: Creating and Managing Files and Data Creating a Sample List (Sequence).

QNT Method/General Tab

The concentration of substance A in the standard sample is 12 mg/l. The calibration curve for substance A shall be linear (calibration type: Lin) and run through the origin. After processing this sequence, you have to create the QNT Method for performing the calibration.
Integrating Chromatograms and Identifying Peaks

On the **General** tab page of the QNT Editor (see [Data Representation and Reprocessing](#)), enter the unit for all other entries in the ⇒ *Dimension of Amounts* field. (For this example, enter "mg/l"). In the **Global Calibration Settings** section, keep the setting for the ⇒ *Calibration Mode*, i.e., *Total*.

### QNT Method/Peak Table Tab

Do not change the defaults in the **Standard** (External) and ⇒ *Calibration Type* (Lin) columns on the **Peak Table** tab page either. Chromeleon automatically creates a "default" amount column. If only one standard sample is available (as is in this case), you can keep this standard sample as well. Enter the concentration in the **Amount** column:

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret. Time</th>
<th>Window</th>
<th>Standard</th>
<th>Int.Type</th>
<th>Cal.Type</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subst. A</td>
<td>5.342 min</td>
<td>0.100 A0</td>
<td>External</td>
<td>Area</td>
<td>Lin</td>
<td>12.0000</td>
</tr>
</tbody>
</table>

**Note:**

If more than one substance is available in the samples, append a new line to the table using the **Lines > Append Line** commands on the context menu. Enter the concentration in the corresponding cell of the **Amount** column.

Chromeleon now automatically calculates the amount for the two unknown samples. You can display the results afterwards in the report on the **Integration** tab page:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Peakname</td>
<td>Ret.Time</td>
<td>Area</td>
<td>Amount</td>
</tr>
<tr>
<td>1</td>
<td>Subst. A</td>
<td>0.287</td>
<td>0.8560</td>
<td>11.3217</td>
</tr>
</tbody>
</table>

For an overview of the different calibration possibilities provided by Chromeleon, refer to [How to …:](#) **Calibrating**.
Several Standards with Several Substances Each

Calibrations are usually performed using several standards. They often contain more than one substance to be calibrated. The simplest case is two standard samples that contain two substances each. In this case, you can determine the slope and the offset and/or curvature of the calibration curve (depending on the number of acquired data points).

Example:

You want to determine the amount of substances A and B in two samples, Sample I and Sample II. Two standard samples, containing different levels of Standard 1 and Standard 2, are available. Both standard samples contain substance A and substance B. For each sample, an injection volume of 20 µl is injected by an autosampler. The samples are located at the autosampler positions 1 (Standard 1), 2 (Standard 2), 3 (Sample I), and 4 (Sample II).

Sample List

The sequence appears as follows (for more information, refer to How to …: Creating and Managing Files and Data Creating a Sample List (Sequence)):

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Pos</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard 1</td>
<td>1</td>
<td>20.0</td>
</tr>
<tr>
<td>2</td>
<td>Standard 2</td>
<td>2</td>
<td>20.0</td>
</tr>
<tr>
<td>3</td>
<td>Sample 1</td>
<td>3</td>
<td>20.0</td>
</tr>
<tr>
<td>4</td>
<td>Sample 2</td>
<td>4</td>
<td>20.0</td>
</tr>
</tbody>
</table>

QNT Method/Peak Table Tab

In Standard 1, for example, the concentration of substance A is 10.2 mg/l and the concentration of substance B is 20.1 mg/l. Standard 2 contains 30.5 mg/l of substance A and 49.7 mg/l of substance B. Thus, you have to create the following peak table in the QNT Editor (For more information about the editor, refer to Data Representation and Reprocessing The QNT Editor.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret.Time</th>
<th>Window</th>
<th>Col.Type</th>
<th>Amount 1</th>
<th>Amount 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Substance A</td>
<td>1.250 min</td>
<td>0-100 AO</td>
<td>Exp.</td>
<td>2595.280</td>
<td>35.540</td>
</tr>
<tr>
<td>2</td>
<td>Substance B</td>
<td>2.450 min</td>
<td>0-100 AO</td>
<td>Lin.</td>
<td>20.600</td>
<td>49.700</td>
</tr>
</tbody>
</table>
Remove the default ⇒Amount column and add two new Amount columns (one for each standard level):

- Double-click the header of an existing Amount column (or select Columns > Edit Amount Columns on the Edit or context menu) to open the Edit Amount Columns dialog box.

- From the Assign Standards on the basis of list, select the criterion (Name, Vial Number, Sample ID, etc.) to use to identify and assign standards to the amount columns.

**Note:**

The selected option will apply to all sequences that use the current QNT File. For example: You select the Vial Number option, and then assign vial number 5 to Amount column B. From now on, vial number 5 (regardless of its contents) will be assigned to Amount column B in every sequence that uses this QNT File.

- Click Auto-Generate. Select Generate a separate column for EACH standard from the drop-down list and click Apply. Two new columns will appear in the Amount Column window. Double-click the columns to rename them, if desired.

- Click OK to close the dialog box and return to the peak table.

**Note:**

If one of the substances is not available in the standard sample, the corresponding cell in the Amount column should be left empty.

If you are using several standards for calibration, you may prefer to select a ⇒Calibration Type other than Lin (Linear without Offset).

Using these settings, Chromeleon automatically calculates the concentrations of substance A and substance B in the two unknown samples.

For an overview of the calibration options provided by Chromeleon, refer to How to …:  Calibrating.
Multiple-Point Calibration Using 1 Single Standard

If you want to perform a multiple-point calibration (see Single-Point and Multiple-Point Calibration) using only one standard sample, you can inject different injection volumes (= quasi Dilution Series).

Sample List

For example, if you inject 10, 20, and 40 µl of just one standard, the sample list will appear as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Inj Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard_1</td>
<td>Standard</td>
<td>1</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>Standard_2</td>
<td>Standard</td>
<td>1</td>
<td>20.0</td>
</tr>
<tr>
<td>3</td>
<td>Standard_3</td>
<td>Standard</td>
<td>1</td>
<td>40.0</td>
</tr>
<tr>
<td>4</td>
<td>Sample1</td>
<td>Unknown</td>
<td>2</td>
<td>10.0</td>
</tr>
<tr>
<td>5</td>
<td>Sample2</td>
<td>Unknown</td>
<td>3</td>
<td>10.0</td>
</tr>
</tbody>
</table>

For Chromeleon, each injection is an individual sample. To distinguish between different injections made from the same standard sample vial, you may append the sample number and the injection number (see example above).

QNT Method/General Tab

The standard sample contains, for example, 10 ml/l Uracil. As all injections of a dilution series are made from the same sample vial with the same concentration, you cannot represent the concentration in the calibration curve. Instead, enter the actually injected amount in the Amount column and enter a Dimension of Amounts. For example, enter ng on the General tab page of the QNT Editor. (For more information about the editor, refer to Data Representation and Reprocessing The QNT Editor).

QNT Method/Peak Table Tab

As in the introduction example (see Introduction and Example), you do not need to change the default Amount column setting on the Peak Table tab page.
If the calibration line does not run through the origin as in the example below, select **Linear with Offset** (= LOff) as ⇒ *Calibration Type*.

These settings will then result in the following calibration line:

For an overview of the different calibration possibilities provided by Chromeleon, refer to **How to …**: [Calibrating](#).

### Calibrating Using Standards of an Old Sequence

Calibration standards are often quite expensive. Thus, if the calibration curve remains constant for weeks or months, the standards of a sequence can be used for calibration for several weeks before the calibration constancy needs to be checked again.

### Sample List

In this case, the new sequence will neither contain standards nor **Validation Samples** but unknown samples only (perhaps plus **Blank Run Samples** and/or **Matrix Blank Samples**).
QNT Method/General Tab

Select Fixed as Calibration Mode in the Global Calibration Settings section:

In Fixed mode, manual calibration is possible only. That is, you have to add standard samples on the Calibration tab page (see below). Then, click Calibrate on the General tab page to include the newly entered standards in the calibration.

QNT Method/Calibration Tab

If the Fixed calibration mode is selected, the Calibration table is empty at first. Select Append Standard on the context menu to add the desired standard(s). The Browse dialog box is opened. Select a standard sample from any sequence:
The Calibration tab page then lists the desired standards:

<table>
<thead>
<tr>
<th>No.</th>
<th>Enabled</th>
<th>Name</th>
<th>Sequence</th>
<th>Seq.No.</th>
<th>Pos.</th>
<th>Inj. Vol</th>
<th>Inj. Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✔</td>
<td>Standard 1</td>
<td>ParagonoCALISEQ</td>
<td>1</td>
<td>6</td>
<td>4.0</td>
<td>04.12.00 12:51:27</td>
</tr>
<tr>
<td>2</td>
<td>✔</td>
<td>Standards 2</td>
<td>ParagonoCALISEQ</td>
<td>2</td>
<td>6</td>
<td>8.0</td>
<td>04.12.00 13:03:26</td>
</tr>
<tr>
<td>3</td>
<td>✔</td>
<td>Standard 3</td>
<td>ParagonoCALISEQ</td>
<td>3</td>
<td>6</td>
<td>12.0</td>
<td>04.12.00 13:15:24</td>
</tr>
<tr>
<td>4</td>
<td>✔</td>
<td>Standard 4</td>
<td>ParagonoCALISEQ</td>
<td>4</td>
<td>6</td>
<td>16.0</td>
<td>04.12.00 13:27:24</td>
</tr>
<tr>
<td>5</td>
<td>✔</td>
<td>Standard 5</td>
<td>ParagonoCALISEQ</td>
<td>5</td>
<td>6</td>
<td>20.0</td>
<td>04.12.00 13:39:23</td>
</tr>
<tr>
<td>6</td>
<td>✔</td>
<td>Standard 6</td>
<td>ParagonoCALISEQ</td>
<td>6</td>
<td>6</td>
<td>24.0</td>
<td>04.12.00 13:51:24</td>
</tr>
<tr>
<td>7</td>
<td>✔</td>
<td>Standard 7</td>
<td>ParagonoCALISEQ</td>
<td>7</td>
<td>6</td>
<td>28.0</td>
<td>04.12.00 14:03:22</td>
</tr>
<tr>
<td>8</td>
<td>✔</td>
<td>Standard 8</td>
<td>ParagonoCALISEQ</td>
<td>8</td>
<td>6</td>
<td>32.0</td>
<td>04.12.00 14:15:24</td>
</tr>
</tbody>
</table>

After you have entered all standards, click Calibrate on the General page to perform calibration with those standards. After each change, for example, if you exclude a standard by disabling the Enabled check box or if you correct the injection volume in the sample list, you have to click Calibrate again.

Note:

If you later edit the name of the sequence, from which the standards were added or if you change the name of the directory that houses the sequence, the reference becomes invalid. Then, you have to add the standards again on the Calibration page.

For an overview of the different calibration possibilities provided by Chromeleon, refer to How to: Calibrating.

Standard Addition

The sample matrix can considerably influence sample analysis. To consider this, a known amount of one or more substances is added to the unknown sample, particularly in ion and gas chromatography. In this way, the concentration of these substances is increased by a value that is exactly known. Afterward, the original and the Spiked Sample are analyzed, using Standard Addition.

Sample List

In this case, the new sequence includes only unspiked, unknown samples (⇒ Type (Sample Type): Unspiked) and the associated Spiked samples. For example, the new sequence could look as follows:
Each unknown sample was spiked three times with the same known amounts. In this example, several unknown samples are analyzed. Therefore, the unknown samples must be assigned to the associated spiked samples, via the `Std. Add. Group` column. In this column, the samples are assigned to a common standard addition group. For example, in this way, Sample 1 is calibrated with the spiked samples Spiked 1_1, Spiked 1_2, and Spiked 1_3.

Dionex recommends spiking unknown samples always with the same amount of the same substances. In the `Ref. Amount Set` column, you can then assign the spiked samples to the same amount values in the Amount Table of the QNT Editor. Enter the same ID for the associated spiked samples into this column (here: Spike1 for samples Spiked 1_1, Spiked 2_1, and Spiked 3_1).

### QNT Method/General Tab

Select Standard Addition as `Calibration Mode` in the Global Calibration Settings section:

Re-calibration is performed automatically; it cannot be disabled.
QNT Method/Amount Table Tab

On the Amount Table tab page, insert standard columns for every spiked sample:

- On the context menu, select Columns, and then select Edit Amount Columns.
- From the Assign Standards on the basis of list, select Ref. Amount Set if you have used the associated column in the sample list (see above) or, select another option from the list, e.g., Name.
- Click Auto-Generate and select Generate a separate amount column for EACH standard from the list:

  ![Edit Amount Columns](image)

  - Click Apply to add a column for all identically spiked samples in the Amount Table.

Concentrations

If your dimension of amount is a concentration, enter the added concentrations of the various substances in the spiked samples into the associated Amount columns.
or

Amounts

If your dimension of amount is an amount, enter the added amounts of the various substances into the associated Amount columns.

Chromeleon automatically analyzes the Unspiked sample(s) using the Standard Addition method.

For an overview of the different calibration possibilities provided by Chromeleon, refer to How to …: Calibrating.

Calibrating Unstable Substances

If you want to calibrate unstable substances, the concentration in the samples that are analyzed later may be considerably lower than the concentration in those samples that are analyzed first although originally the concentration was the same. The instability of the substance makes calibrating more difficult. Chromeleon provides two possible solutions:

Sample List

To consider the instability of substances one or several standard samples are added to a series of unknown samples every now and then. The sequence will then appear as follows, for example:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard 1</td>
<td>Standard</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Standard 2</td>
<td>Standard</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Sample 1</td>
<td>Unknown</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Sample 2</td>
<td>Unknown</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Standard 3</td>
<td>Standard</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Standard 4</td>
<td>Standard</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Sample 3</td>
<td>Unknown</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Sample 4</td>
<td>Unknown</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Standard 5</td>
<td>Standard</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Standard 6</td>
<td>Standard</td>
<td>10</td>
</tr>
</tbody>
</table>
QNT Method/General Tab

The bracketed calibration illustrated in the above figure has been achieved using the Bracketed ⇒ Calibration Mode (set in the Global Calibration Settings section). The four less decayed standards 1-4 (from positions 1, 2, 5, and 6) are used for calibrating the less decayed unknown samples (samples 1 and 2 from positions 3 and 4). The more decayed standards 3-6 (from positions 5, 6, 9, and 10) are used to calibrate the higher decayed samples 3 and 4 from positions 7 and 8. The calibration curve shows the corresponding Calibration Points, only.

For more information about the Bracketed mode see Calibration Mode: Bracketed.

Tip:

Knowing the half-life of an unstable substance (this is especially true for radioactive substances) is a clever way to calculate the chromatogram, as it would be without the decay. Use a virtual channel (Virtual Channel Driver) to record all chromatograms in this special channel as if the substance would not decay. For a program example, refer to Practical Tips for Device Control Program Examples for Virtual Channels. Having recorded these Virtual Signals, perform the calibration as described in the above examples for stable substances.

For an overview of the different calibration possibilities provided by Chromeleon, refer to How to …: Calibrating.

No Pure Substance Available - Known Relative Extinction Coefficient

If you wish to quantify substance A although the pure substance A is not available, calibration can be performed nevertheless if the ratio of the extinction coefficient to the extinction coefficient of a different substance B is known. First, create the corresponding sample list following the description in Several Standards with Several Substances Each.

Then, create the ⇒ Amount columns for your standards. As the pure substance A is not available and thus is not contained in the standards, the cells for substance A remain empty in the Amount table:
The entry made in the \textit{Response Factor} column is the decisive entry. This column allows you to use the calibration of substance B for substance A. Double-click the selected cell (see above) to open the \textbf{Response Factor for Substance A} dialog box and enter the factor of the extinction coefficient at the measuring wavelength between the two substances:

\[
\text{Resp. Fact.} = \frac{\text{Ext. Coeff}_B}{\text{Ext. Coeff}_A}
\]

Set the interpretation to \textbf{Relative to Peak} and select substance B:

The resulting calibration curve is 75\% of the \textit{Calibration Function} of substance B. No calibration points are indicated in the calibration curve because no points were acquired for substance A:
Extinction coefficients depend on the measuring wavelength. Thus, enter the corresponding response factor needs for each channel. Create a separate Response Factor column for each channel:

Select **Columns** on the context menu of the existing **Response Factor** column. Select **Duplicate** and then select a channel by clicking **Add Channel**.

**Note:**

The calibration curve of the reference peak is the decisive factor. If possible, it should not have an offset. Otherwise, errors may occur when calculating the amount using the response factor. This is especially true for lower amounts.

For an overview of the different calibration possibilities provided by Chromeleon, refer to **How to …: I Calibrating**.

**Calibrating with an Internal Standard Substance**

Especially in gas chromatography but also in HPLC or IC, calibration using an internal standard substance, i.e., an **Internal Standard** (= ISTD), is used to eliminate possible measuring and sample preparation errors. Chromeleon provides different calibration possibilities using one single internal standard substance:
If several internal standard substances are available, the flow chart changes accordingly. For more information about the numbered options in the flow chart, refer to:

1. **Compensating Measurement Errors (Internal Calibration)**
2. **Correcting Sample Preparation Errors (Internal/External Calibration)**
3. **Using Different ISTD Amounts (Variable ISTD)**
4. **Calibrating without Standard Samples**
Compensating Measurement Errors (Internal Calibration)

It is possible to compensate measuring errors, such as deviations that occur during the injection, by calibrating with an internal standard substance, i.e., the Internal Standard. In the purely internal standard method, calibration is performed relatively to the internal standard substance, using area ratios instead of absolute areas.

Sample List

In the simplest case, only one standard sample is available. In this case, the sample list looks, for example, as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>In. Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard</td>
<td>Standard</td>
<td>R99</td>
<td>10.00</td>
</tr>
<tr>
<td>2</td>
<td>Sample 1</td>
<td>Unknown</td>
<td>RA1</td>
<td>10.00</td>
</tr>
<tr>
<td>3</td>
<td>Sample 2</td>
<td>Unknown</td>
<td>RA2</td>
<td>10.00</td>
</tr>
</tbody>
</table>

QNT Method/Amount Table Tab

Enter the amounts of the single substances contained in the standard sample in the Amount column of the Amount table of the QNT Editor:

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret. Time /</th>
<th>Resp. Fact.</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subst. 1</td>
<td>5.400 min</td>
<td>1.000000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>Subst. 2</td>
<td>7.800 min</td>
<td>1.000000</td>
<td>17.00000</td>
</tr>
</tbody>
</table>

QNT Method/Peak Table Tab

The internal standard substance is defined in the peak table. If all three samples contain two relevant substances only as in the example, make the following entries in the Standard column, using the F8 input box.

- For substance 1, select Use this peak as Internal Standard and thus define this substance as the internal standard. (The light yellow background of the line and the ISTD: Internal entry indicate that the assignment is correct.)
- In the F8 input box of substance 2, select the option Internal. From the Associated ISTD Peak field, select the standard substance serving as internal standard (here: Subst. 1).
• If necessary, repeat this operation for every additional substance that should be calibrated based on the internal method.

After completing the input, the substance 2 is labeled Internal Subst. 1 in the Standard column. In addition, substance 1 is labeled as the internal standard for internal calibration:

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret.Time</th>
<th>Window</th>
<th>Standard</th>
<th>Int.Type</th>
<th>Cal.Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subst. 1</td>
<td>5.00 min</td>
<td>0.100 AG STD Internal</td>
<td>Area</td>
<td>Lin</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Subst. 2</td>
<td>7.500 min</td>
<td>0.100 AG Internal Subst. 1</td>
<td>Area</td>
<td>Lin</td>
<td></td>
</tr>
</tbody>
</table>

**Amount Calculation**

Chromeleon automatically calculates the amount values for the "unknown" substance. The calculation is performed according to the formula for amount calculation (rel. to ISTD) (for more information, refer to Formula for Amount Calculation (Rel. to ISTD) in the Glossary section). Chromeleon calculates the amount for substance 2 adapted by the deviation of substance 1.

For detailed information about how to calculate the amount for unknown substances using internal calibration, refer to Internal Calibration: Calculation.

For an overview of the different calibration possibilities with internal standard substances provided by Chromeleon, refer to How to …: Calibration Examples Calibrating with an Internal Standard Substance.

**Internal Calibration: Calculation**

In the purely internal standard method, calibration is performed only by means of an internal standard substance, i.e., the Internal Standard. Calculation is performed using area ratios instead of absolute areas. That is why in the Formula for Amount Calculation (Rel. to ISTD)

\[
Amount_p = f_p \left( \frac{y_{Peak}}{y_{ISTD}} \right) * Resp.Fact_p * \frac{Dil.Fact_{p}}{Weight_p}
\]
Example
In a clinic lab, prepared urine samples of two patients are examined for the catechol level. Adrenaline and dopamine are to be determined. Two standard solutions of different concentrations are available (STD 1: 50 ng/µl each; STD 2: 100 ng/µl adrenaline/dopamine each). To correct possible inaccuracies regarding the precise dosing of the autosampler, catechol is added. The internal standard method is selected. 20 µl of each unknown sample and each standard sample is mixed with 20 µl of the catechol solution. As the concentration of the added catechol solution is 10ng per µl, each sample and standard vial (40 µl) contains 10 x 20 = 200 ng catechol. This means that exactly 200/4 = 50 ng catechol is injected with each 10 µl injection.

a) User Input

Sample List

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Inj. Vol</th>
<th>Program</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>10.0 AED_DOPA</td>
<td>QNT_DOPA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>STD 2</td>
<td>Standard</td>
<td>2</td>
<td>20.0 AED_DOPA</td>
<td>QNT_DOPA</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sample I</td>
<td>Unknown</td>
<td>3</td>
<td>10.0 AED_DOPA</td>
<td>QNT_DOPA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sample II</td>
<td>Unknown</td>
<td>4</td>
<td>10.0 AED_DOPA</td>
<td>QNT_DOPA</td>
<td></td>
</tr>
</tbody>
</table>

In contrast to the examples in the external and internal/external calibration, the second calibration point is not determined by means of the modified injection volume but by means of a second standard sample with the double concentration. As a result, two different autosampler positions are used (1 and 2).

QNT Method/Peak Table Tab

<table>
<thead>
<tr>
<th>No</th>
<th>Peak Name</th>
<th>Ret. Time</th>
<th>Window</th>
<th>Standard</th>
<th>Cal.Type</th>
<th>Amount 1</th>
<th>Amount 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adrenaline</td>
<td>3.400 min</td>
<td>0.400 A0</td>
<td>Internal Catechol Lin</td>
<td>50.000000</td>
<td>100.000000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dopamine</td>
<td>5.500 min</td>
<td>0.400 A0</td>
<td>Internal Catechol Lin</td>
<td>50.000000</td>
<td>100.000000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Catechol</td>
<td>9.500 min</td>
<td>0.400 A0</td>
<td>STD, Internal Lin</td>
<td>50.000000</td>
<td>50.000000</td>
<td></td>
</tr>
</tbody>
</table>

As the calibration of adrenaline and dopamine is performed with two standard concentrations (STD 1, STD 2; different autosampler position in the sample list), two amount values are entered for each peak. Then, the internal standard substance is defined.
How to define the **Internal Standard** substance:
- Select the **Standard** column in the **Catechol** line and open the F8 edit box.
- Select the **Use this peak as internal Standard** option and thus define catechol as Internal Standard.

The yellow coloring of the line and the **ISTD: Internal** entry indicate the correct assignment.
- Change to the **Standard** column in the **Adrenaline** line and open the F8 edit box again.
- Select the option **Internal**, and then select the standard substance serving as Internal Standard (here: catechol) in the **Associated ISTD Peak** field.
- Perform this operation for each peak that should be calibrated with the **Internal** method (here dopamine).

After completing the input, the following occurs: In the **Standard** column, alanine, and dopamine are labeled **Internal Catechol**. In addition, catechol is marked as the internal standard substance by a darker shade of yellow.

**Note:**

*In addition to the color changes from light yellow to dark yellow, there are two other possible colors. If the retention time is expressed depending on a selected reference peak (see ⇒Retention Time), a light blue background highlights this reference peak in the peak table. If this reference peak is also used as the internal standard peak, the corresponding line is displayed in green (blue + yellow = green).*

**QNT Method/General Tab**

The **Total** mode is selected. This ensures that the calibration of all samples (Sample I and II) is performed based on all standard samples (STD 1, STD 2).

**QNT Method/Calibration Tab**

This page shows all **standard samples** (of a sequence) that are inserted for calibrating the current sample.

Press the F4 key or the SHIFT+F4 key combination to successively open the sample of a sequence. The standard samples forming the basis for calibration are shown for each sample.
Due to the selected mode, sample I and II appear as follows:

<table>
<thead>
<tr>
<th>No</th>
<th>Enabled</th>
<th>Name</th>
<th>Pos.</th>
<th>Inj. Vol.</th>
<th>Inj. Date/Time</th>
<th>Calib. Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>STD 1</td>
<td>1</td>
<td>10.0</td>
<td>10/1/2000 1:15:30 PM Delivered</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✅</td>
<td>STD 2</td>
<td>2</td>
<td>20.0</td>
<td>10/1/2000 1:29:05 PM Delivered</td>
<td></td>
</tr>
</tbody>
</table>

If you notice that an error occurred during the analysis of the standard sample, you can "exclude" this standard sample. Remove the standard in the Enable column on the Calibration tab page of the QNT Editor. Only the standard samples labeled X are considered for the calibration.

b) Analysis Structure

Injection is four times. During the first run, the first calibration point of the adrenaline and dopamine calibration curve is determined via STD 1, and during the second run the second point is determined accordingly via STD 2. Run three serves to determine the concentration of adrenaline and dopamine in sample I. In the fourth run, the concentrations of adrenaline and dopamine in sample II are determined. In addition, the area of the added catechol is determined in each run.

Chromeleon determines the following area values:

<table>
<thead>
<tr>
<th>Name</th>
<th>Area Adrenaline</th>
<th>Area Dopamine</th>
<th>Area Catechol</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD 1</td>
<td>125</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>STD 2</td>
<td>250</td>
<td>400</td>
<td>250</td>
</tr>
<tr>
<td>Sample I</td>
<td>223</td>
<td>150</td>
<td>245</td>
</tr>
<tr>
<td>Sample II</td>
<td>178</td>
<td>380</td>
<td>255</td>
</tr>
</tbody>
</table>

The area values determined for catechol reflect the ratio of the injected volume or amounts (except for minor inaccuracies).

c) Calculation of $\frac{Amount_{p,rel}}{x_{p,rel}}$

The ratio of Area (Peak) to Area (ISTD) results in $x_{p,rel}$:

$$x_{(p,rel)} = \frac{Area_p}{Area_{STD}}$$
Integrating Chromatograms and Identifying Peaks

<table>
<thead>
<tr>
<th>Substance</th>
<th>Area</th>
<th>Area (ISTD)</th>
<th>x (p, rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenaline (STD 1)</td>
<td>125</td>
<td>250</td>
<td>0.5</td>
</tr>
<tr>
<td>Adrenaline (STD 2)</td>
<td>250</td>
<td>250</td>
<td>1.0</td>
</tr>
<tr>
<td>Dopamine (STD 1)</td>
<td>200</td>
<td>50</td>
<td>0.8</td>
</tr>
<tr>
<td>Dopamine (STD 2)</td>
<td>400</td>
<td></td>
<td>1.6</td>
</tr>
</tbody>
</table>

The ratio of Amount (Peak) to Amount (ISTD) results in \( \frac{\text{Amount}_{\text{p,rel}}}{\text{Amount}_{\text{STD}}} \):

\[
\text{Amount}_{\text{p,rel}} = \frac{\text{Amount}_{\text{p,rel}}}{\text{Amount}_{\text{STD}}}
\]

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
<th>Amount (ISTD)</th>
<th>Amount (p, rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenaline (STD 1)</td>
<td>50</td>
<td>50</td>
<td>1.0</td>
</tr>
<tr>
<td>Adrenaline (STD 2)</td>
<td>100</td>
<td>50</td>
<td>2.0</td>
</tr>
<tr>
<td>Dopamine (STD 1)</td>
<td>50</td>
<td>50</td>
<td>1.0</td>
</tr>
<tr>
<td>Dopamine (STD 2)</td>
<td>100</td>
<td>50</td>
<td>2.0</td>
</tr>
</tbody>
</table>

d) Calculation of the Calibration Coefficients

A linear calibration curve through the origin (calibration type: Linear) can already be described by one calibration coefficient (c1). If the example is selected so that the calibration points in each calibration curve are located exactly on a straight line, that is, for example, in an exact measurement, c1 results as the y/x-quotient of each value pair \( \text{Amount p rel} \) to \( \text{x p rel} \):

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount (p rel) / x (p rel)</th>
<th>c1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenaline</td>
<td>1.0/0.5</td>
<td>2.00</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>2.0/1.0</td>
<td>2.00</td>
</tr>
<tr>
<td>Dopamine</td>
<td>1.0/0.8</td>
<td>1.25</td>
</tr>
<tr>
<td>Dopamine</td>
<td>2.0/1.6</td>
<td>1.25</td>
</tr>
</tbody>
</table>

If the calibration points are not located exactly on one line, Chromeleon calculates an optimized c1 approximate value for each substance.

If a different calibration type is selected, Chromeleon calculates the corresponding calibration coefficients (c0, c1, and c2).
e) Amount Calculation

By means of the Formula for Amount Calculation, the relative amount (relative to the amount of the ISTD) of the sample content adrenaline and dopamine can be calculated from the known c1 and from the ratio peak area (sample) to peak area (ISTD). If the Dil. Factor (Dilution Factor) and Weight (Sample Weight Factor) correction factors are assumed to be 1, the following Amount/Amount ISTD values result:

<table>
<thead>
<tr>
<th>Sample I</th>
<th>Calculation: Amount/Amount ISTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenaline</td>
<td>2.000 x (223/245) = 1.820</td>
</tr>
<tr>
<td>Dopamine</td>
<td>1.250 x (150/245) = 0.765</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample II</th>
<th>Calculation: Amount/Amount ISTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenaline</td>
<td>2.000 x (178/255) = 1.396</td>
</tr>
<tr>
<td>Dopamine</td>
<td>1.250 x (380/255) = 1.863</td>
</tr>
</tbody>
</table>

By multiplication with the amount values of the internal standard substance, the actual amount values for adrenaline and dopamine in the analysis samples can be calculated.

<table>
<thead>
<tr>
<th>Sample I</th>
<th>Calculation: Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenaline</td>
<td>1.820 x 50 = 91.00 [ng]</td>
</tr>
<tr>
<td>Dopamine</td>
<td>0.765 x 50 = 38.25 [ng]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample II</th>
<th>Calculation: Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenaline</td>
<td>1.396 x 50 = 69.80 [ng]</td>
</tr>
<tr>
<td>Dopamine</td>
<td>1.863 x 50 = 93.15 [ng]</td>
</tr>
</tbody>
</table>

For an overview of the different calibration possibilities provided by Chromeleon, refer to How to …: Calibrating.

Correcting Sample Preparation Errors (Internal/External Calibration)

It is possible to eliminate errors occurring during sample preparation by calibrating using the internal/external method. If you use the internal/external method, an internal standard substance, i.e., the Internal Standard (= ISTD), is used to adapt the external calibration to the corresponding sample. Exactly that amount of the internal standard substance is added to each standard sample and each unknown sample that makes sure that the concentration is identical in all sample vials. The following entries are required:
Sample List

In the simplest case, only one standard sample is available. In this case, the sample list looks, for example, as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Int. Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard</td>
<td></td>
<td>R00</td>
<td>10.00</td>
</tr>
<tr>
<td>2</td>
<td>Sample 1</td>
<td>Unknown</td>
<td>RA1</td>
<td>10.00</td>
</tr>
<tr>
<td>3</td>
<td>Sample 2</td>
<td>Unknown</td>
<td>RA2</td>
<td>10.00</td>
</tr>
</tbody>
</table>

QNT Method/Amount Table Tab

Enter the amounts of the single substances contained in the standard sample in the Amount column of the Amount table of the QNT Editor:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Rel. Time</th>
<th>Resp. Fact</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subst. 1</td>
<td>5.400 min</td>
<td>1.200000</td>
<td>17.00000</td>
</tr>
<tr>
<td>2</td>
<td>Subst. 2</td>
<td>7.800 min</td>
<td>1.200000</td>
<td>17.00000</td>
</tr>
</tbody>
</table>

QNT Method/Peak Table Tab

The internal standard substance is defined in the peak table. If all three samples contain two relevant substances only as in the example, make the following entries in the Standard column, using the F8 input box.

- For substance 1, select **Use this peak as Internal Standard** and thus define this substance as the internal standard substance. (The light yellow background of the line and the **ISTD: Internal** entry indicate that the assignment is correct.)

- In the F8 input box of substance 2, select **Internal/External**. In the **Associated ISTD Peak** field, select the standard substance serving as internal/external standard (here: Subst. 1).

- If necessary, repeat this operation for every additional substance that should be calibrated based on the internal/external method.

After completing the input, the substance 2 is labeled **Int/Ext Subst. 1** in the Standard column. In addition, substance 1 is labeled as the internal standard for internal/external calibration. The description **ISTD: Internal** is changed to **ISTD: Int/Ext** and the yellow coloring of the Subst. 1 line is intensified.
Amount Calculation

Chromeleon automatically calculates the amount values for the substance 2. The calculation is performed according to the formula for amount calculation (for more information, refer to Formula for Amount Calculation in the Glossary section). In case of internal/external calibration, the ISTD factor is used to correct the external calibration, using the ISTD amount determined for the respective sample.

The ISTD factor considers the ratio of the (nominal) amount entered in the peak table to the amount that was determined for the respective sample due to the peak area:

\[
ISTD \text{ Factor} = \frac{Amount_{ISTD(Peak\ Table)}}{Amount_{ISTD(Sample)}}
\]

Using this formula, Chromeleon calculates the amount for substance 2 that has been adapted by the deviation of substance 1.

For detailed information about how to calculate the amount of unknown substances using internal/external calibration, refer to Internal/External Calibration: Calculation.

For an overview of the different calibration possibilities with internal standard substances provided by Chromeleon, refer to How to …: Calibrating Calibrating with an Internal Standard Substance.

Internal/External Calibration: Calculation

In a calibration with the internal/external method, external calibration is adapted to the corresponding sample, by using an internal standard substance, i.e., an Internal Standard (= ISTD):

Each standard sample and each unknown sample is added exactly that amount of internal standard substance to make sure the concentration is identical in each vial. The internal standard substance and the substance to be determined are calibrated using known standard solutions; that is, the Calibration Coefficients are determined from the Amount values of the standard sample and the corresponding peak area values by means of the Calibration Function. Thus, the amounts of all substances (including the ISTD) can be determined. As the concentration of the internal standard substance is identical in all samples, the same ISTD amount should result.

If this is not the case, an error occurred in the chromatography system (sample preparation, injection, carry-over, etc). The deviation of the actual
ISTD amount from the nominal ISTD quantifies of the error. If the substances to be determined and the internal standard substance are similar, it can be assumed that the values of the remaining contents of the sample deviate in the same way; that is, they are incorrect. A correction by the deviation of the nominal and the actual internal standard substance supplies the actual values.

Example:
You want to determine the concentration of alanine and glycine in two samples. One standard sample is available. The internal standard substance norvaline is added to all three sample vials, so that the final concentration is 10 mmol/l. During the subsequent pre-column derivatization, 10 µl sample + 20 µl OPA reagent + 20 µl stop reagent are pipetted together. A constant concentration of 2 mmol/l is added from the norvaline. The chromatographic separation follows the derivatization of the amino acids in OPA derivatives. 10 and 20 µl of the standard solution (Dilution Series) and 10 µl of each sample (autosampler position 2 and 3) are injected.

a) User Input:

Sample List

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>In Vol</th>
<th>Program</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>10.0</td>
<td>ALA, GLY</td>
<td>QNT_ALA</td>
</tr>
<tr>
<td>2</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>20.0</td>
<td>ALA, GLY</td>
<td>QNT_ALA</td>
</tr>
<tr>
<td>3</td>
<td>Sample II</td>
<td>Unknown</td>
<td>2</td>
<td>10.0</td>
<td>ALA, GLY</td>
<td>QNT_ALA</td>
</tr>
<tr>
<td>4</td>
<td>Sample II</td>
<td>Unknown</td>
<td>3</td>
<td>10.0</td>
<td>ALA, GLY</td>
<td>QNT_ALA</td>
</tr>
</tbody>
</table>

QNT Method/Peak Table Tab

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret.Time</th>
<th>Window</th>
<th>Standard</th>
<th>Cal.Type</th>
<th>Amount 1</th>
<th>Amount 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alanine</td>
<td>5.400 min</td>
<td>0 400 A0</td>
<td>InEst Norvaline Lin</td>
<td>50.0000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Glycine</td>
<td>7.000 min</td>
<td>0 400 A0</td>
<td>InEst Norvaline Lin</td>
<td>50.0000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Norvaline</td>
<td>13.600 min</td>
<td>0 400 A0</td>
<td>STD InEst Lin</td>
<td>20.0000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As the calibration of alanine and glycine is performed with only one (STD 1) standard concentration (same autosampler position in the sample list), only one amount value is be entered for each peak. Then, the internal standard substance is defined.
How to define the **Internal Standard** substance

- In the **Norvaline** line, select the **Standard** column and open the F8 edit box.
- Select **Use this peak as internal Standard** and thus define norvaline as the internal standard substance.

A light yellow background and the **ISTD: Internal** entry indicate that the assignment is correct.

- In the **Alanine** line, change to the **Standard** column and open the F8 edit box again.
- Select the option **Internal/External**. In the **Associated ISTD Peak** field, select the standard substance serving as **Internal/External Standard** (here: norvaline).
- Repeat this operation for each peak that should be calibrated using the Internal/External method (here: glycine).

After completing the input, the following occurs: In the **Standard** column, alanine and glycine are labeled **Int/Ext Norvaline**. In addition, norvaline is labeled as the internal standard for the Internal/External calibration. The **ISTD: Internal** description is changed to **ISTD: Int/Ext** and the yellow coloring of the norvaline line intensifies.

**Note:**

*In addition to the color changes from light yellow to dark yellow, there are two other possible colors. If the retention time is expressed depending on a selected reference peak (see ⇒Retention Time), a light blue background highlights this reference peak in the peak table. If this reference peak is also used as the internal standard peak, the corresponding line is displayed in green (blue + yellow = green).*

**QNT Method/General Tab**

The **Total** mode is selected. This ensures that the calibration of all samples (Samples I and II) is performed based on all standard samples (STD 1).

**QNT Method/Calibration Tab**

The page shows all **standard samples** (of a sequence) that are used for calibrating the current sample.
Press the F4 key or the SHIFT+F4 key combination to successively open the samples of a sequence. The standard samples forming the basis for calibration are shown for each sample.

Due to the selected mode, samples I and II appear as follows:

If you notice that an error occurred during the analysis of the standard sample, you can "exclude" this standard sample. Remove the standard in the Enable column on the Calibration tab page of the QNT Editor. Only the standard samples labeled X are considered for the calibration.

b) Analysis Structure:

Injection is four times. During the first run, the first calibration point of the calibration curve is determined, and during the second run, the second point is determined. Run three serves to determine the concentration of alanine and glycine in sample I. In the fourth run, the concentrations of alanine and glycine in sample II are determined.

Chromeleon determines the following area values:

<table>
<thead>
<tr>
<th>Name</th>
<th>Area Alanine</th>
<th>Area Glycine</th>
<th>Area Norvaline</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD 1 (first run)</td>
<td>55</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>STD 1 (second run)</td>
<td>110</td>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>Sample I</td>
<td>45</td>
<td>75</td>
<td>39</td>
</tr>
<tr>
<td>Sample II</td>
<td>80</td>
<td>150</td>
<td>41</td>
</tr>
</tbody>
</table>

The determined area values of the internal standard substance norvaline reflect the ratio of the injected volumes (amounts), except for minor inaccuracies.

c) Calibration Points

From the known amount values and from the determined area values of the standard samples, the value pairs of the individual calibration points can be established:
Integrating Chromatograms and Identifying Peaks

Chromeleon determines all calibration coefficients, depending on the selected calibration function.

d) Calculation of the Calibration Coefficients

A linear calibration curve through the origin (calibration type Linear) can already be described by one calibration coefficient (c1). If the example is selected so that the calibration points in each calibration curve are located exactly on a straight line, that is, for example, in an exact measurement, c1 results as the y/x-quotient of each value pair (= slope of the calibration curve).

<table>
<thead>
<tr>
<th>Substance</th>
<th>y/x-Value pair</th>
<th>c1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>50/45</td>
<td>1.111</td>
</tr>
<tr>
<td>Alanine</td>
<td>100/90</td>
<td>1.111</td>
</tr>
<tr>
<td>Glycine</td>
<td>50/80</td>
<td>0.625</td>
</tr>
<tr>
<td>Glycine</td>
<td>100/160</td>
<td>0.625</td>
</tr>
<tr>
<td>Norvaline</td>
<td>20/40</td>
<td>0.500</td>
</tr>
<tr>
<td>Norvaline</td>
<td>40/80</td>
<td>0.500</td>
</tr>
</tbody>
</table>

If the calibration points are not located exactly on one line, Chromeleon calculates an optimized c1 approximate value for each substance. If a different calibration type were selected, Chromeleon would also calculate the remaining calibration coefficients (c0 and c2) according to the calibration function.

e) Amount Calculation: Internal Standard Substance in Unknown Samples

If the area values of the internal standard substances from samples I and II are known, the amount of the internal standard substance norvaline can be determined in the two samples by means of the calibration coefficient c1 (here = 0.5) established for the calibration curve of the norvaline.
The ratio between the (nominal) amount value entered in the peak table and the \( \Rightarrow \text{ISTD Amount (Amount of the Internal Standard)} \) of the internal standard in the corresponding sample is referred to as ISTD factor.

\[
\text{ISTD Factor} = \frac{\text{Amount}_{\text{ISTD(Peak~Tab.)}}}{\text{Amount}_{\text{ISTD(Sample)}}}
\]

The following values are resulting:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Calculation</th>
<th>ISTD Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>20 / 19.5</td>
<td>1.026</td>
</tr>
<tr>
<td>II</td>
<td>20 / 20.5</td>
<td>0.976</td>
</tr>
</tbody>
</table>

The result states that an error was made by 1.026 (sample 1) or 0.976 (sample 2). The actual amounts of alanine and glycine deviate in all probability by 2.6 or 2.4% from the "real" values. They are corrected by this amount.

f) Amount Calculation: Alanine and Glycine

The amount values of glycine and alanine are calculated by means of the \[\text{Formula for Amount Calculation}\]. In contrast to an external calibration, \text{ISTD Factor} is not equal to 0; i.e., the results are corrected by the calculated ISTD factor.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Calculation (Area x c1 x ISTD Fact. =)</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>45 x 1.111 x 1.026 =</td>
<td>51.30 (Alanine)</td>
</tr>
<tr>
<td>I</td>
<td>90 x 0.625 x 1.026 =</td>
<td>54.90 (Glycine)</td>
</tr>
<tr>
<td>II</td>
<td>80 x 1.111 x 0.976 =</td>
<td>86.75 (Alanine)</td>
</tr>
<tr>
<td>II</td>
<td>160 x 0.625 x 0.976 =</td>
<td>97.60 (Glycine)</td>
</tr>
</tbody>
</table>

The alanine or glycine amount values corrected by the norvaline deviation are resulting.

For an overview of the different calibration possibilities provided by Chromeleon, refer to \textbf{How to …:} \( \rightarrow \text{Calibrating} \).
Using Different ISTD Amounts (Variable ISTD)

Due to the method itself or the properties of the internal standard substance, i.e., the Internal Standard, it is sometimes impossible to add exactly the same amount of ISTD. To solve this problem, Chromeleon provides the Use sample amount as reference (Variable Internal Standard) option. Use this option to define the ISTD as variable internal standard substance. (Access to the option is via the F8 box of the Standard column in the peak table).

In this case, you do not need to enter the amount of the internal standard substance in the Amount column of the peak table (this is not possible), but in the ⇒ ISTD Amount column of the sample list. It is not important whether Internal/External or Internal is selected as calibration method. In this way, it is possible to enter the amount of an internal standard substance separately for each sample. The following entries are required:

Sample List

Enter the amount of the internal standard substance directly in the ISTD Amount column of the sample list:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pw</th>
<th>Int. Vol.</th>
<th>ISTD Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard</td>
<td>Standard</td>
<td>R10</td>
<td>10.00</td>
<td>29.5070</td>
</tr>
<tr>
<td>2</td>
<td>Sample 1</td>
<td>Unknown</td>
<td>R11</td>
<td>10.00</td>
<td>30.2430</td>
</tr>
<tr>
<td>3</td>
<td>Sample 2</td>
<td>Unknown</td>
<td>R12</td>
<td>10.00</td>
<td>30.5040</td>
</tr>
</tbody>
</table>

QNT Method/Peak Table Tab

Except the substance serving as internal standard, enter all amount values as before. Then, select the internal standard substance as follows:

- For substance 1, select Use this peak as Internal Standard and thus define this substance as the internal standard.
- In addition, enable the Use sample amount as reference (Variable Internal Standard) option to define the ISTD as variable internal standard substance.

The yellow coloring of the line and the ISTD: Var. Internal or ISTD: Var. Int/Ext entry indicate that the assignment is correct. The corresponding Amount column cells are automatically set to 1.
Make all other QNT File entries as before. The peak table appears as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret.Time</th>
<th>Window</th>
<th>Standard</th>
<th>Inf.Type</th>
<th>CalType</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subst. 1</td>
<td>5.400 min</td>
<td>0.100 A0</td>
<td>STD Var Internal</td>
<td>Area</td>
<td>Lin</td>
</tr>
<tr>
<td>2</td>
<td>Subst. 2</td>
<td>7.800 min</td>
<td>0.100 A0</td>
<td>Var Internal Subst. 1</td>
<td>Area</td>
<td>Lin</td>
</tr>
</tbody>
</table>

**QNT Method/Amount Table Tab**

Enter the amount values for the unknown substances contained in the standard sample in the Amount column of the Amount table of the QNT Editor:

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret.Time</th>
<th>Resp.Fact.</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subst. 1</td>
<td>5.400 min</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>2</td>
<td>Subst. 2</td>
<td>7.800 min</td>
<td>1.000000</td>
<td>7.000000</td>
</tr>
</tbody>
</table>

**Evaluation**

Evaluation is similar to the corresponding evaluation with a constant amount of the internal standard substance. However, slightly different calibration and evaluation formulas are used.

For a detailed description of the differences between standard methods, refer to *Calibration Evaluation with Various Standard Methods*.

For an overview of the different calibration possibilities with internal standard substances provided by Chromeleon, refer to *How to ...: Calibrating with an Internal Standard Substance*.

**Calibrating without Standard Sample**

If you calibrate with an internal standard substance, i.e., an *Internal Standard*, you may as well perform the calibration without standard samples. The prerequisite is that you know the relative *Response Factor* of the respective substance for the ISTD. The following entries are required:
Sample List

Assign all samples the Unknown sample type. Enter the amount for the ISTD in the ISTD Amount column:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Ret Real</th>
<th>Inj. Vol.</th>
<th>ISTD Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sample 1</td>
<td>Unknown</td>
<td>RA1</td>
<td>10.00</td>
<td>300.00</td>
</tr>
<tr>
<td>2</td>
<td>Sample 2</td>
<td>Unknown</td>
<td>RA2</td>
<td>10.00</td>
<td>300.00</td>
</tr>
<tr>
<td>3</td>
<td>Sample 3</td>
<td>Unknown</td>
<td>RA3</td>
<td>10.00</td>
<td>300.00</td>
</tr>
</tbody>
</table>

QNT Method/General Tab

On the General tab page, select Fixed as ⇒ Calibration Mode.

QNT Method/Peak Table Tab

The internal standard substance is defined in the peak table. If all three samples contain two relevant substances only as in the example, make the following entries in the Standard column, using the F8 input box:

- For substance 1, select Use this peak as Internal Standard and enable the Use sample amount as reference (Variable Internal Standard).
- In the F8 input box of substance 2, select Internal. In the Associated ISTD Peak field, select the standard substance serving as internal standard (here: Subst. 1).
- If necessary, repeat this operation for every additional substance that should be calibrated based on the internal method.

After completing the input, the substance 2 is labeled Var. Internal Subst. 1 in the Standard column. In addition, substance 1 is labeled ISTD Var. Internal to indicate that substance 1 is used as internal standard for the internal calibration:
QNT Method/Amount Table Tab

Define the corresponding calibration curve in the Amount table of the QNT Editor:

- Enter =1.000 as C1 value for both the ISTD and the unknown substance.

**Tip:**

Do not recalibrate afterwards by clicking Calibrate on the General tab page because this action overwrites the values for the Calibration Coefficient.

- Enter the known response factor. This factor automatically refers to the ISTD because the ISTD is used for calibration. It is not necessary to define the ISTD as reference.

### Amount Calculation

Chromeleon automatically calculates the amount values for the substance 2. The calculation is performed according to the formula for amount calculation (rel. to ISTD) (for more information, refer to Formula for Amount Calculation (Rel. to ISTD) in the Glossary section). In case of internal calibration, the external calibration of the internal standard substance is adapted to the corresponding sample, using the area ratio of the peak to the ISTD in the corresponding sample. In addition, in this special case, the response factor is used to take the absorption of substance 2 in relation to the ISTD (here: Subst. 1) into account.

Chromeleon calculates the amount for substance 2 adapted by the deviation of substance 1.

For detailed information about how to calculate the amount for unknown substance using internal calibration, refer to Internal Calibration: Calculation.

For an overview of the different calibration possibilities with internal standard substances provided by Chromeleon, refer to How to ...: Calibrating Calibrating with an Internal Standard Substance.
Calibration Modes for External Calibration

The *Calibration Mode* determines the standard samples that are used for calibrating specific unknown samples. The following calibration modes are available:

<table>
<thead>
<tr>
<th>Calibration Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>All standard samples of the current sequence</td>
</tr>
<tr>
<td>Group</td>
<td>Grouping calibration</td>
</tr>
<tr>
<td>Additional</td>
<td>Additional standard samples for the samples that appear later in the sequence.</td>
</tr>
<tr>
<td>Bracketed</td>
<td>Unknown samples are &quot;bracketed&quot; by standard samples.</td>
</tr>
<tr>
<td>Fixed</td>
<td>Specific standard samples (also from other sequences)</td>
</tr>
</tbody>
</table>

For a schematic representation of the **Group**, **Additional**, and **Bracketed** calibration modes, refer to the example below:

For more information about the different calibration modes including calibration curve calculation, refer to the topics below:

- **Calibration Mode: Total**
- **Calibration Mode: Additional**
- **Calibration Mode: Group**
- **Calibration Mode: Bracketed**
- **Calibration Mode: Fixed**

**Note:**

*Please note that the procedure is described for the *Total* mode. All other examples describe the differences between the calibration modes only.*
Calibration Mode: Total

If standard samples exist, the ratio between the amount and the peak area can be used to calculate the calibration coefficients $c_0$ (offset), $c_1$ (slope), and $c_2$ (curvature) by means of the selected Calibration Function. The resulting values are entered in the Formula for Amount Calculation, together with the area values of the substance of an unknown sample. As the result, Chromeleon provides the $\Rightarrow$ Amount of substance A in the unknown sample. You can also use the concentration instead of the amount. However, in this case, the concentration must be seen in relation to the injection volume.

Example:

You want to determine the concentration of the substances A and B in two samples (Sample 1 and Sample 2). One standard solution (Std 1) is available containing substance A in a concentration of 12 mg/l and substance B in a concentration of 17 mg/l. The calibration curve for substances A and B shall be linear and run through the origin (calibration type: linear). The curve shall show two calibration points for each substance. As only one standard solution is available, two different volumes (10 and 20 µl) must be injected (Dilution Series). Two Calibration Points are resulting. The autosampler injects a volume of 10 µl for the two unknown samples. The standard and analysis samples occupy the autosampler positions R99, RA1, and RA2.

a) User Input

Sample List

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Time</th>
<th>Pos.</th>
<th>Inj. Vol</th>
<th>Program</th>
<th>Method</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Std. 1</td>
<td>10.00</td>
<td>R99</td>
<td>10.00</td>
<td>Control</td>
<td>QNF 1</td>
<td>Single</td>
</tr>
<tr>
<td>2</td>
<td>Std. 2</td>
<td>10.00</td>
<td>R99</td>
<td>20.00</td>
<td>Control</td>
<td>QNF 1</td>
<td>Single</td>
</tr>
<tr>
<td>3</td>
<td>Sample 1</td>
<td>10.00</td>
<td>RA1</td>
<td>10.00</td>
<td>Control</td>
<td>QNF 1</td>
<td>Single</td>
</tr>
<tr>
<td>4</td>
<td>Sample 2</td>
<td>10.00</td>
<td>RA2</td>
<td>10.00</td>
<td>Control</td>
<td>QNF 1</td>
<td>Single</td>
</tr>
</tbody>
</table>

For more information, refer to How to …: Creating and Managing Files and Data Creating a Sample List (Sequence).
QNT Method/Peak Table Tab

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret. Time</th>
<th>Window</th>
<th>Standard</th>
<th>Int. Type</th>
<th>Cal. Type</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subst. A</td>
<td>1.310 min</td>
<td>0.100 A0</td>
<td>External</td>
<td>Area</td>
<td>Lin</td>
<td>12.0000</td>
</tr>
<tr>
<td>2</td>
<td>Subst. B</td>
<td>2.450 min</td>
<td>0.100 A0</td>
<td>External</td>
<td>Area</td>
<td>Lin</td>
<td>17.0000</td>
</tr>
</tbody>
</table>

Regarding this example, note the following:

- Select the **External** standard method in the **Standard** column using the F8 edit box.

- Only one standard concentration (Std 1) is available for calibrating the substances A and B. That is why one concentration value for each substance is entered in the **Amount** column of the peak table. The same applies if several sample list entries are generated by analyzing the same standard sample several times (twice, in this case). If the injection volume is identical, the calibration is referred to as 1-point calibration with several replicates. If the injection volume varies (10 and 20 µl) as in this case, this is referred to as multiple-point calibration, that is, 2-point calibration. This is a special case of the "Dilution Series" ("concentration series").

However, if two separate standards with different concentrations are available (two vials, different autosampler positions), two concentration values need to be entered in the **Amount** column of the peak table.

All other entries in the peak table are based on the criteria described in **How to ...: Integrating Chromatograms and Identifying Peaks Creating a Peak Table.**
QNT Method/General Tab
To calibrate all samples (here: samples 1 and 2) with the two standard samples, select the **Total ⇒ Calibration Mode**.

QNT Method/Calibration Tab
This page shows all standard samples (of a sequence) that are used for calibrating the current sample.

Press the F4 key or the SHIFT+F4 key combination to successively open all samples of a sequence. The standard samples used for calibrating the sample are shown for each sample.

If you notice that an error occurred during the analysis of the standard sample, you can "exclude" this standard. Remove the standard in the **Enable** column on the **Calibration** tab page of the QNT Editor. Only the standard samples labeled **X** are considered for the calibration.

b) Analysis Structure
Injection is four times. During the first run, the first calibration point of the calibration curves of the substances A and B is determined on the basis of the determined area values. In the second run, the second point is determined accordingly. Run three serves to determine the area values of the substances A and B of sample 1. In the fourth run, the area values of A and B of sample 2 are determined.
Integrating Chromatograms and Identifying Peaks

The following area values are resulting:

<table>
<thead>
<tr>
<th>Name</th>
<th>Area Subst. A</th>
<th>Area Subst. B</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD 1 (first run)</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>STD 2 (second run)</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Sample I</td>
<td>175</td>
<td>150</td>
</tr>
<tr>
<td>Sample II</td>
<td>95</td>
<td>180</td>
</tr>
</tbody>
</table>

c) Calculation of the Calibration Coefficients

From the area values of the standard samples and the corresponding concentration values, you can determine the four value pairs. The intersection of each value pair represents a calibration point. Based on the selected calibration type (in the example: *Calibration Type (Linear)*), Chromeleon calculates the optimum course of the calibration curve; that is, the system tries to find a course with four calibration points on or near the curve. If the course of the curve is established, the corresponding calibration coefficients (c0, c1, c2) can be calculated.

<table>
<thead>
<tr>
<th>Substance</th>
<th>y/x-value pair</th>
<th>c1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12/150</td>
<td>0.08</td>
</tr>
<tr>
<td>A</td>
<td>24/300</td>
<td>0.08</td>
</tr>
<tr>
<td>B</td>
<td>17/200</td>
<td>0.085</td>
</tr>
<tr>
<td>B</td>
<td>34/400</td>
<td>0.085</td>
</tr>
</tbody>
</table>

With a linear course through the origin, the calibration curve can be described by one single coefficient (c1). C1 expresses the slope of the curve. If all calibration points are located exactly on the calibration line, the resulting c1 calibration coefficient is the direct y/x-quotient of each value pair.
If the calibration points are not located exactly on one line, Chromeleon calculates an optimized approximate c1 value for each substance from the Calibration Function.

If a different calibration type (Theory of Calibration Calibration Type (Non-Linear)) is used, Chromeleon also calculates the remaining calibration coefficients (c0 and c2).

d) Amount Calculation

If the calibration coefficients of a substance A are known, each area value from an unknown sample for substance A can be converted into an amount value by inserting the values in the calibration function. When inserting this value into the Formula for Amount Calculation, the actual amount value will result.

When you perform this action for the peak areas of the substances A and B in samples I and II (the correction factors of the formula for amount calculation are assumed with 1.0), the following amount values are calculated:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Calculation</th>
<th>Amount. A</th>
<th>Amount B</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>175 x 0.08</td>
<td>14.00</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>150 x 0.085</td>
<td>12.75</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>95 x 0.08</td>
<td>7.60</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>180 x 0.085</td>
<td>15.30</td>
<td></td>
</tr>
</tbody>
</table>

For an overview of the different calibration possibilities provided by Chromeleon, refer to How to …: Calibrating.

Calibration Mode: Additional

The following example illustrates the difference between the Total and Additional Calibration Modes.

Independently from the standard method, this mode determines which standard samples are used for evaluating a specific unknown sample. The position of the unknown sample in the sample list is decisive here.
Extending the Example: External Calibration/Mode: Total

Two standard samples are injected after two unknown autosampler samples have been injected. This results in an alternating list of two standard samples: two unknown samples, two standard samples, etc. All other settings are maintained; that is, two-point calibration is performed. The calibration is verified by additional replicates.

a) User Input:

Sample List

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Inj. Vol</th>
<th>Program</th>
<th>Method</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>10.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>2</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>20.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>3</td>
<td>Sample I</td>
<td>Unknown</td>
<td>2</td>
<td>10.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>4</td>
<td>Sample II</td>
<td>Unknown</td>
<td>3</td>
<td>10.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>5</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>10.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>6</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>20.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>7</td>
<td>Sample III</td>
<td>Unknown</td>
<td>4</td>
<td>10.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>8</td>
<td>Sample IV</td>
<td>Unknown</td>
<td>5</td>
<td>10.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>9</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>10.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>10</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>20.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>11</td>
<td>Sample V</td>
<td>Unknown</td>
<td>6</td>
<td>10.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
<tr>
<td>12</td>
<td>Sample VI</td>
<td>Unknown</td>
<td>7</td>
<td>10.0</td>
<td>Control2</td>
<td>QNT2</td>
<td>Single</td>
</tr>
</tbody>
</table>

QNT Method/Peak Table Tab

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret.Time</th>
<th>Window</th>
<th>Standard</th>
<th>Int.Type</th>
<th>Cal.Type</th>
<th>Amount1</th>
<th>Amount2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subst. A</td>
<td>1.500 min</td>
<td>0.400 A/G</td>
<td>External</td>
<td>Area</td>
<td>Lin</td>
<td>12.000000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Subst. B</td>
<td>2.600 min</td>
<td>0.400 A/G</td>
<td>External</td>
<td>Area</td>
<td>Lin</td>
<td>17.000000</td>
<td></td>
</tr>
</tbody>
</table>
QNT Method/General Tab

If the user selects the Additional mode, each unknown sample is evaluated based on the standard samples analyzed so far.

This means:

As before, samples I and II are evaluated by means of a two-point calibration. However, four analyzed standard samples are available for the samples III and IV. The result is a two-point calibration with two replicates each. Finally, the samples V and VI are evaluated by means of a two-point calibration with three replicates each.

QNT Method/Calibration Tab

The page shows all standard samples (of one sequence) that can be used for calibrating the current sample.

Press the F4 key or the SHIFT+F4 key combination to successively open the samples. The standard samples forming the basis for calibration are shown for each sample.

Thus, two standard samples are displayed for the samples I and II, four standard samples are displayed for the samples III and IV, and six standard samples are displayed for the samples V and VI (see below).
If you notice that an error occurred during the analysis of the standard sample, you can "exclude" this standard. Remove the standard in the Enable column on the Calibration tab page of the QNT Editor. Only the standard samples labeled X are considered for the calibration.

b) Evaluation:
Evaluation is similar to the example with external calibration (mode: Total). The only difference is:

The calibration curve is created for the different samples based on a different number of replicates.

This can affect the calculated calibration coefficients and thus the result, but does not necessarily do so. Normally this type of calibration is used to adapt to changed column conditions. Thus, it may happen that after a several samples, a specific substance cannot elute 100 percent from the column. As this will also be the case with the standard substance, the result is automatically corrected.

For an overview of the different calibration possibilities provided by Chromeleon, refer to How to …: Calibrating.

Calibration Mode: Group

The Group Calibration Mode completes the Total and Additional modes. The Group mode is used when there are time-dependent modifications during the analysis, for example, decomposition of the analyzed substance.

The mode is described using the example of the Additional mode (sample list of alternating sample pairs (2 standards, 2 samples, 2 standards, etc.).
a) User Input:

Sample List

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Inj. Vol</th>
<th>Program</th>
<th>Method</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>2</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>20.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>3</td>
<td>Sample I</td>
<td>Unknown</td>
<td>2</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>4</td>
<td>Sample II</td>
<td>Unknown</td>
<td>3</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>5</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>6</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>20.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>7</td>
<td>Sample III</td>
<td>Unknown</td>
<td>4</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>8</td>
<td>Sample IV</td>
<td>Unknown</td>
<td>5</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>9</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>10</td>
<td>STD 1</td>
<td>Standard</td>
<td>1</td>
<td>20.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>11</td>
<td>Sample V</td>
<td>Unknown</td>
<td>6</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
<tr>
<td>12</td>
<td>Sample VI</td>
<td>Unknown</td>
<td>7</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 3</td>
<td>Single</td>
</tr>
</tbody>
</table>

QNT Method/Peak Table Tab

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret. Time</th>
<th>Window</th>
<th>Standard</th>
<th>Int. Type</th>
<th>Cal. Type</th>
<th>Amount 1</th>
<th>Amount 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Guest A</td>
<td>1.500 min</td>
<td>0-400 A</td>
<td>External</td>
<td>Area Lin</td>
<td></td>
<td>120 00000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Guest B</td>
<td>2.600 min</td>
<td>0-400 A</td>
<td>External</td>
<td>Area Lin</td>
<td></td>
<td>170 00000</td>
<td></td>
</tr>
</tbody>
</table>

QNT Method/General Tab

If the user selects the Group mode, each sample is evaluated based on the standard sample in the sample list that has been analyzed immediately before.

QNT Method/Calibration Tab

This page indicates all standard samples (of a sequence) that are used for calibrating the current sample.

Press the F4 key or the SHIFT+F4 key combination to successively open the sample of a sequence. The standard samples forming the basis for calibration are shown for each sample.

This means in the example that in the Group mode the standard samples from the lines 1 and 2 are displayed for the samples I and II. The standard samples from lines 5 and 6 are displayed for the samples III and IV, and the standard samples from lines 9 and 10 for the samples V and VI.
b) Evaluation:

Evaluation is similar to the examples with the external calibration (modes: **Total** and **Additional**). The only difference is that the calibration curve is constantly updated without considering the previously analyzed standard samples.

For the example, this means:

Samples I and II are evaluated by means of a two-point calibration of the standard samples in the lines no. 1 and 2.

In contrast to the **Additional** mode, samples III and IV are also evaluated by means of a two-point calibration. However, only the standard samples STD 1 from lines no. 5 and 6 are used.

Correspondingly, the samples V and VI are evaluated by means of the standard samples STD 1 in the lines no. 9 and no. 10.

For an overview of the different calibration possibilities provided by Chromeleon, refer to **How to …: Calibrating**.

---

**Calibration Mode: Bracketed**

In a bracketed calibration, a standard sample is included in a series of unknown samples so that modifications, such as column or detector drift, can also be considered in the calibration function. Amount calculation of an unknown sample is always performed using the calibration coefficients of the surrounding standard samples.

**New Example**

You want to determine the concentration of substance A in four samples (Samples I-IV). Two standard solutions (STD 1, STD 2) of substance A with different concentrations (50 and 100ng/µl) are available for external calibration. At the beginning, after the second and after the fourth sample, a two-point calibration is to be performed. To receive exacter results, a bracketed calibration is performed. The basis for calibrating samples I and II is provided by standards STD 1 and STD 2 from lines no. 1, 2, 5, and 6, while the samples III and IV are calibrated on the basis of the standards no. 5, 6, 9, and 10.
a) User Input:

Sample List

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Inj. Vol</th>
<th>Program</th>
<th>Method</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD 1</td>
<td>Standard</td>
<td>10</td>
<td>20.0</td>
<td>Control</td>
<td>QNT 4</td>
<td>Single</td>
</tr>
<tr>
<td>STD 2</td>
<td>Standard</td>
<td>11</td>
<td>20.0</td>
<td>Control</td>
<td>QNT 4</td>
<td>Single</td>
</tr>
<tr>
<td>Sample I</td>
<td>Unknown</td>
<td>1</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 4</td>
<td>Single</td>
</tr>
<tr>
<td>Sample II</td>
<td>Unknown</td>
<td>2</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 4</td>
<td>Single</td>
</tr>
<tr>
<td>STD 1</td>
<td>Standard</td>
<td>10</td>
<td>20.0</td>
<td>Control</td>
<td>QNT 4</td>
<td>Single</td>
</tr>
<tr>
<td>STD 2</td>
<td>Standard</td>
<td>11</td>
<td>20.0</td>
<td>Control</td>
<td>QNT 4</td>
<td>Single</td>
</tr>
<tr>
<td>Sample III</td>
<td>Unknown</td>
<td>3</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 4</td>
<td>Single</td>
</tr>
<tr>
<td>Sample IV</td>
<td>Unknown</td>
<td>4</td>
<td>10.0</td>
<td>Control</td>
<td>QNT 4</td>
<td>Single</td>
</tr>
<tr>
<td>STD 1</td>
<td>Standard</td>
<td>10</td>
<td>20.0</td>
<td>Control</td>
<td>QNT 4</td>
<td>Single</td>
</tr>
<tr>
<td>STD 2</td>
<td>Standard</td>
<td>11</td>
<td>20.0</td>
<td>Control</td>
<td>QNT 4</td>
<td>Single</td>
</tr>
</tbody>
</table>

QNT Method/Peak Table Tab

The external calibration (Standard = External) is performed via two standard samples (autosampler positions 10 and 11) of different concentrations. In contrast to the Total, Additional, and Group examples, two different ⇒Amount values must be entered in the corresponding amount columns [1] and [2] of the peak table.

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Ret.Time</th>
<th>Window</th>
<th>Standard</th>
<th>Int.Type</th>
<th>Cal.Type</th>
<th>Amount 1</th>
<th>Amount 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subst. A</td>
<td>4.402 min</td>
<td>0.100 AG</td>
<td>External</td>
<td>Area</td>
<td>Lin</td>
<td>50.00000</td>
<td>100.00000</td>
</tr>
</tbody>
</table>

QNT Method/General Tab

To evaluate each sample based on the neighboring standard samples in the sample list, select the Bracketed ⇒Calibration Mode.

QNT Method/Calibration Tab

This page shows all standard samples (of a sequence) that are used for calibrating the current sample.

Press the F4 key or the SHIFT+F4 key combination to successively open the samples of a sequence. The standard samples forming the basis for calibration are shown for each sample.
For the samples I and II, the page will look as follows:

<table>
<thead>
<tr>
<th>No</th>
<th>Enabled</th>
<th>Name</th>
<th>Smp.No</th>
<th>Pos.</th>
<th>Inj. Date/Time</th>
<th>Calib. Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>STD 1</td>
<td>1</td>
<td>10</td>
<td>12:00 01:00:00</td>
<td>Ok</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>STD 2</td>
<td>1</td>
<td>11</td>
<td>12:00 01:04:05</td>
<td>Disabled</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>STD 1</td>
<td>5</td>
<td>10</td>
<td>12:00 01:27:00</td>
<td>Ok</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>STD 2</td>
<td>6</td>
<td>11</td>
<td>12:00 01:30:14</td>
<td>Ok</td>
</tr>
</tbody>
</table>

For the samples III and IV, the page will look as follows:

<table>
<thead>
<tr>
<th>No</th>
<th>Enabled</th>
<th>Name</th>
<th>Smp.No</th>
<th>Pos.</th>
<th>Inj. Date/Time</th>
<th>Calib. Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>STD 1</td>
<td>5</td>
<td>10</td>
<td>12:00 01:00:03</td>
<td>Ok</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>STD 2</td>
<td>6</td>
<td>11</td>
<td>12:00 01:26:05</td>
<td>Ok</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>STD 1</td>
<td>9</td>
<td>10</td>
<td>12:00 01:27:03</td>
<td>Ok</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>STD 2</td>
<td>10</td>
<td>11</td>
<td>12:00 01:30:14</td>
<td>Ok</td>
</tr>
</tbody>
</table>

Note that the standards in line 5 and 6 are determined only once.

b) Analysis Structure:
Injection is eight times. The following area values are determined:

<table>
<thead>
<tr>
<th>Name</th>
<th>Area substance A</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD 1 (conc.1)</td>
<td>218</td>
</tr>
<tr>
<td>STD 2 (conc.2)</td>
<td>439</td>
</tr>
<tr>
<td>Sample I</td>
<td>167</td>
</tr>
<tr>
<td>Sample II</td>
<td>152</td>
</tr>
<tr>
<td>STD 1 (conc.1)</td>
<td>224</td>
</tr>
<tr>
<td>STD 2 (conc.2)</td>
<td>442</td>
</tr>
<tr>
<td>Sample III</td>
<td>283</td>
</tr>
<tr>
<td>Sample IV</td>
<td>305</td>
</tr>
<tr>
<td>STD 1 (conc.1)</td>
<td>219</td>
</tr>
<tr>
<td>STD 2 (conc.2)</td>
<td>441</td>
</tr>
</tbody>
</table>

c) Calculation of the Calibration Coefficients
From the determined area values of the standard samples and the amount values from the peak table, the value pairs of the six calibration points can be listed. Note that depending on the standard (STD 1 or STD 2) the amount value is once taken from the Amount [1] peak table column and once from the Amount[2] column.
If all calibration points are used simultaneously, a two-point calibration with three replicates of the same calibration level results.

As amount determination of samples I and II or III and IV is performed only according to the neighboring standard samples, there are two calibrations for substance A instead of one. Each calibration is a two-point calibration with two replicates each. That is why Chromeleon calculates two different sets of calibration coefficients.

If a linear calibration function without offset is assumed as in the previous examples, Chromeleon determines two different \( c_1 \)-values. One value (\( K_1 \)) is calculated for the numbers 1, 2, 5, and 6, and another value (\( K_2 \)) is calculated for the numbers 5, 6, 9, and 10.

d) Amount Calculation

If the calibration coefficients of a substance A are known, the amount of substance A contained in each sample can be calculated by inserting the peak areas determined from the unknown samples in the calibration function. Inserting this value in the \( \text{Formula for Amount Calculation} \) returns the actual amount value.

If this action is performed for the determined peak areas of substance A in the samples I and II (taking \( K_1 \) into account), the following amount values are calculated (the correction factors of the formula for amount calculation are assumed to be 1.0):

<table>
<thead>
<tr>
<th>Sample</th>
<th>Calculation</th>
<th>Amount A</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>167 x 0.2267</td>
<td>37.86</td>
</tr>
<tr>
<td>II</td>
<td>152 x 0.2267</td>
<td>34.46</td>
</tr>
</tbody>
</table>

For the samples III and IV, the result is as follows (taking \( K_2 \) into account):

<table>
<thead>
<tr>
<th>Sample</th>
<th>Calculation</th>
<th>Amount A</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>283 x 0.2261</td>
<td>63.99</td>
</tr>
<tr>
<td>IV</td>
<td>305 x 0.2261</td>
<td>68.96</td>
</tr>
</tbody>
</table>
Tip:

Calculation of the amount values is continuously; that is, after analyzing an unknown sample, the values are calculated based on the standard samples calculated so far!

Calculation of the area values of samples I and II is performed depending on the current processing status, first with one, then with two and three, and finally with four standard samples. The same applies to the samples III and IV that are evaluated based on the standard samples in the lines 5, 6, 9, and 10 of the sample list.

For example, if a Report is generated after each sample, it will only include the results from the samples analyzed so far. The result may differ from the final result.

In the Bracketed Calibration Mode, processing of all standard samples should be completed before printing the results.

For an overview of the different calibration possibilities provided by Chromeleon, refer to How to: Calibrating.

Calibration Mode: Fixed

To use any desired standard samples of an existing calibration for determining current unknown samples, perform calibration based on the Fixed Calibration Mode.

Caution:

Always perform the calibration manually (Calibrate). The Auto-Recalibrate option is not available.

a) User Input:

Sample List

Only unknown samples are entered. If the sample list is generated using the Sequence Wizard, decide whether to refer to an existing QNT File (which is recommended) or whether to leave out this information. When closing the Wizard, Chromeleon recognizes that the sequence does not contain any standard samples and copies the QNT File with the entire information to the sequence directory. The Fixed mode is selected at the same time.
If no QNT File is defined in the Sequence Wizard, enter the file name in the **Method** column of the sample list after the QNT File has been created.

**QNT Method/Peak Table Tab**

If an existing QNT File is copied, a peak table already exists. Change the table according to your requirements.

However, if a new (empty) QNT File is used, a new peak table must also be created. It is not necessary to enter the \( \Rightarrow \) *Amount* because calibration is based on an existing calibration.

**QNT Method/General Tab**

If an existing QNT File is copied in which the **Fixed** calibration mode is selected, this mode is automatically selected.

If a new QNT File was generated, select the **Fixed** mode. Determine the standard samples to be used for calibration on the **Calibration** tab page.

**QNT Method/Calibration Tab**

If a QNT File was copied, this page lists all standard samples to which the QNT-File originally referred.

With each newly created QNT File, no standard samples are listed. Select **Insert Standard** or **Append Standard** on the context menu to insert the standard samples to be used for calibration and to evaluate the current samples according to their results.

The standard samples listed here always apply to all samples of a sequence. Press the F4 key or the SHIFT+F4 key combination to display the same maximum number of standard samples.

**b) Analysis and Evaluation**

Performing the analysis and the evaluation of the individual samples is similar to the previous examples.

For an overview of the different calibration possibilities provided by Chromeleon, refer to **How to …: 📖 Calibrating**.
**Entering the Concentration/Amount of the Validation Sample**

*Validation Samples* are used to check the calibration. They correspond to standard samples in as much as the amount of analyte is known. They are used to validate the calibration, but not to determine the calibration curve.

Enter the known concentration (or amounts) of the different analytes in the validation samples in the QNT Editor. The two sections below explain the ways in which the validation and standard samples can interact and the most common means to implement them. It is up to each user to decide which method is appropriate for a particular application.

1. **The validation sample is equal to the standard sample**

All individual concentrations/amounts correspond to the concentrations/amounts of a standard sample that has already been used for the calibration curve, especially if the validation sample is injected from a vial containing standard sample.

In this case, an ⇒*Amount* column for the corresponding standard sample is already available in the QNT Editor. The validation sample should have already been assigned to the correct vial. To verify this, proceed as follows:

- On the **Amount Table** tab page, place the cursor in the header of the **Amount** column of the corresponding standard sample. Double-click the column header to open the **Edit Amount Columns** dialog box.
- Select an **Amount** column (or **Unassigned**) in the **Amount Column** window to display the associated standards.
- Select one or more validation samples (ǐ) in the **Standards** window and drag them to the appropriate column in the **Amount Column** window.
- Click **OK** to close the dialog box and return to the amount table.

All values in the **Amount** column now apply to the validation sample(s), also.
2. The validation sample is not equal to the standard sample

When using a validation sample whose composition is different from all standard samples (if only in its concentration of amount of one analyte), a separate Amount column must be created for the validation sample. Follow the steps below:

- On the Amount Table tab page of the QNT Editor, double-click the header of an existing Amount column (or select Columns > Edit Amount Columns on the Edit or context menu) to open the Edit Amount Columns dialog box.

- Click New, type a unique column name in the edit field that appears in the Amount Column window, and press Enter.

- Select an Amount column (or Unassigned) in the Amount Column window to display the associated standards.

- Select one or more validation samples in the Standards window and drag them to the new column in the Amount Column window.

- If the column created for the validation sample is valid for other validation samples or for standard samples, assign the additional standards as described in The validation sample is equal to the standard sample.

- Click OK to close the dialog box.

For information about how to use the validation sample to check the calibration curve, refer to Validating the Calibration Curve.

For an overview of the calibration options provided by Chromeleon, refer to How to …: Calibrating.
Displaying Calibration Curves

Chromeleon displays the Calibration Curve calculated from the Calibration Points in the Calibration Curve window. The Calibration tab page of the Report allows you to display the calibration data of the peaks of the active chromatogram.

If a single standard was excluded from the calculations (Enabled column) on the Calibration tab in the QNT Editor, the corresponding calibration point is red. Calibration points of this type will not be used for calculating the calibration curve(s) for which they were disabled (see Disabling the Calibration Sample). The display color of the calibration points of the current sample is purple.

In the Calibration Curve, select Disable Standard on the context menu to exclude standards, completely or in part, from the calibration. The Disable (Enable) Standard xyz dialog box appears for the selected calibration point. (This point refers to the selected peak in the active chromatogram. Double-click a different calibration point to select a different standard.) Define whether the corresponding standard sample shall be used for calibration purposes. You can exclude the respective standard from the calibration for all peaks and all channels (default) or for the selected peak and/or channel only.

Select Decoration on the context menu to perform the following actions on the different tab pages:

- Select the peak for which to show the calibration curve (Peaks tab page).
- Determine the axis scale (Scale tab page).
- Define the display and decoration of the axes, frames, and grids (Frame & Axes tab).
- Show validation samples (select Draw validation sample points on the Options tab). Validation samples are indicated by the following symbol: ç.
- Draw lines for the Confidence Interval (Options tab, see Show Confidence Interval)
- Change the colors of the single elements (Colors tab).

In addition, you can select Next Peak or Prev. Peak to display the calibration curve of the next/previous peak.

For more information, also refer to Displaying Values.
Displaying Values

A purple cross marks the standard sample or the Spiked Sample that is currently used: ➤. (The sample has been selected on the Calibration tab page of the QNT Editor. For information about the editor, see Data Representation and Reprocessing: The QNT Editor.) If you disable a specific sample in the Enabled column on the Calibration tab page of the QNT Editor, e.g., because an error occurred during determination of the area value, this sample is excluded from calibration. A red asterisk marks the corresponding calibration point: ➤. This kind of calibration points is not considered when the calibration curve is determined. To exclude standards, completely or in part, from calibration, select Disable Standard on the context menu of the Calibration Curve.

To display validation samples, Select Decoration on the context menu. The Calibration Plot Decoration dialog box is opened. On the Options tab page, select the Draw validation sample points check box. Validation samples are indicated by the following symbol: ✹. They are not considered for calibration.
Indicating the Confidence Interval

The confidence interval describes the range in which the "true" calibration curve will be found with a given probability. The range of the \( \textit{Confidence Interval} \) grows linearly with growing standard deviation. The easiest way is to indicate the confidence interval graphically.

How To

- Open the \textit{Calibration Plot Decoration} dialog box by selecting \textit{Decoration} on the context menu.
- Select \textit{Draw upper & lower confidence limits} on the \textit{Options} tab page.
- Select the probability with which the values should be within the confidence interval. The following options are available: 90%, 95%, 98%, 99%, 99.8%, 99.9%, and 99.99%.

The following example shows the confidence interval of a calibration at a probability of 99%:

You can indicate the limits of the confidence interval in the Report using the \textit{Upper} and/or \textit{Lower Confidence Limit} variables of the \( \Rightarrow \textit{Peak Calibration} \) peak category.

For more information, refer to \textit{How to …: Creating and Using Report Tables \& Setting Parameters for Variables (e.g., for the confidence interval)}. 
Validating the Calibration Curve

To check the calibration using the respective values of the Validation Samples (perhaps of the standard sample as well) you have to compare the expected concentration or amount values to the measured/calculated values either numerically by means of the Amount Deviation report variable or visually by means of the calibration function.

1. Numerically, by means of the Amount Deviation report variable:

The determined (actual) area values are converted to concentration or amount values by means of the Calibration Function and compared to the expected (nominal) values of the Amount table.

- Add a new column to a report or a Printer Layout page or change the assignment of an existing column as described in How to: Creating and Using Report Tables Defining the Contents of a Report.

- Select the Amount Deviation variable in the Peak Results report category. Click Parameter to define whether the result of the variance comparison shall be expressed as absolute amount value or as deviation in percent (Relative in % of the expected Amount).

2. Visually, by means of the Calibration Curve

For checking the calibration curve visually, the validation samples can be displayed (specially marked) in the curve:

- Select Decoration on the context menu of the calibration curve (respectively, the Calibration Plot Properties command in the Printer Layout).

- Select the Draw validation sample points check box on the Options tab page.

Note:

Even if this action is performed in the QNT Editor, these validation samples will not be considered for the calibration. Nevertheless, if you wish to use a validation sample as standard sample later and consider it for calculating the calibration curve, set the Type (Sample Type) to Standard in the sample list of the Browser.
3. By Means of the Confidence Interval

a) In addition, the confidence region interval can be indicated in the calibration curve. Select the Draw upper and lower confidence limit check box on the Options tab page and define the desired confidence region to check whether your validation and standard samples are within the corresponding confidence interval (also, refer to How to ...: Displaying Calibration Curves Indicating the Confidence Interval).

b) For single values, you can also indicate the limits for the respective Confidence Interval in the Report using the Upper/Lower Confidence Limit variables of the ⇒Peak Calibration report category.

For information about how to enter the concentration/amount, refer to How to ...: Integrating Chromatograms and Identifying Peaks Entering the Concentration/Amount of the Validation Sample. For an overview of the different calibration possibilities, refer to How to ...: Calibrating.

Tip: Chromeleon supports this function to improve compatibility with PeakNet5.

Normally, calibration curves are fitted using normal regression analysis, in which the known amount (or concentration) of the analyte is treated as the independent variable (x) and the corresponding response (peak area or peak height) is treated as the dependent variable (y):

![Calibration Curve Diagram]
Many legacy data systems use inverted curve fitting, which treats the response as if it were the independent variable (x), and amount as if it were the dependent variable (y):

![Graph showing concentration and area with inverted curve fitting]

You can select the **Inverted** curve fitting option on the **General** tab page:

Although inverted curve fitting is not supported by standard statistical theory, it was often taken because it makes amounts of analytes in unknowns easier to calculate when quadratic and cubic calibration functions are used. With linear regression, the differences between normal and inverted curve fitting are usually small, but the differences can be significant with higher-order polynomials. In a few applications, most notably the determination of ammonium by suppressed conductivity detection, a better fit to the empirical data may actually be achieved using inverted curve fitting.
To provide consistency of results for customers migrating from legacy systems, and to satisfy users of special applications, Chromeleon supports inverted curve fitting via an option in the General tab page of the QNT Editor. Methods imported from PeakNet 5 default to using inverted curve fitting, the approach used by PeakNet 5. Normal curve fitting remains the default setting for new methods created in Chromeleon.

⚠️ Caution:

It is the user's responsibility to decide whether inverted curve fitting is sensible for their application.

If you select **Inverted**, the dependent and independent variables are inverted. Thus, different values are usually obtained for the following variables:

⇒ **Peak Results Category**
- ⇒ **Amount** (concentration or amount)
- Amount Deviation (deviation from the expected concentration or amount)
- Concentration (concentration, if **Amount** is really an amount)
- Relative Amount (relative concentration or amount)
- Group Amount (concentration or amount of a group)

⇒ **Peak Calibration Category**
- ➢ Offset c0 (intersection with the y-axis)
- ➢ Slope c1
- ➢ Curve c2 (curvature)
- ➢ Cubic Coefficient c3
- ➢ RF Value (1/slope)
- ➢ Variance
- ➢ Variance Coefficient
- ➢ Standard Deviation
• Relative Standard Deviation
• Coefficient of Determination
• DOF-Adjusted Coefficient of Determination
• Calibration Point X
• Calibration Point Y
• Evaluation of Cal.Function for X ()
• Residual for Calibration Point X
• Upper Confidence Limit (upper limit for the Confidence Interval)
• Lower Confidence Limit (lower limit for the confidence interval)
All operations for processing single chromatograms are performed in the Chromatogram window. This window displays the integrated chromatogram of the current sample. The peak areas are determined and integrated automatically, based on the \(\Rightarrow\) Detection Parameters.

If the representation and/or evaluation of single samples do not correspond to the expected result, you can select another chromatogram section to specifically change the peak delimiters and the baseline manually. It is also possible to display more chromatograms for comparison. In addition, you can assign the peaks manually and define a baseline for the entire chromatogram (averaged baseline). You can also apply a data filter to smooth the chromatogram and to improve the reproducibility of the peak baselines.

For more information, refer to:

- Using Keyboard Shortcuts in the Chromatogram
- Manual Re-Integration
- Manual Peak Assignment
- Comparing Chromatograms
- Performing Data Smoothing

You can also generate additional channels after data acquisition, see:

- Copying a Channel
- Combining Channels via Arithmetic Operations

Due to the increased noise, Dionex recommends performing background subtraction for mass spectra. This is also possible for UV channels. In both cases, determine background subtraction in the chromatogram (see \(\Rightarrow\) Subtracting Background Spectra).

In addition, you can \(\Rightarrow\) Display Peak Information in a Separate Area.

To graphically move the retention window, refer to \(\Rightarrow\) Moving a Retention Window Graphically.
If you want to change the detection parameters, for example, because peaks that are too small or unimportant are integrated or because the baseline does not meet the requirements, you can perform these changes graphically in the chromatogram; see Defining Detection Parameters Graphically.

You can define the detection parameters according to your requirements. All detection parameters are available in the QNT Editor on the Detection tab page (see How to …: Integrating Chromatograms and Identifying Peaks; for information about the editor, refer to Data Representation and Reprocessing: The QNT Editor).

For more information about how to display a Report or a spectra plot, refer to How to …:

Displaying and Using UV Spectra
Creating and Using Report Tables

**Using Keyboard Shortcuts in the Chromatogram**

Often, it may be necessary to display specified chromatogram areas only. In this case, use the mouse to zoom out this area. In addition, keyboard keys and key combinations are supported for user-friendly operation. These keys refer to the number and navigation area on the keyboard.

**Scrolling**

<→> = <LEFT> scrolls all chromatograms to the right; <-> = <RIGHT> scrolls them to the left. If you press the respective key, the chromatogram is scrolled by 5% of the window width.

<↑> = <UP> (<↓> = <DOWN>) scrolls the active chromatogram plot up (down). If you press the respective key, the plot is scrolled by 10% of the plot height.
Tip:
Scrolling beyond the chromatogram limits is supported for both cases.

<HOME> (<END>) brings you to the first (last) datapoint of the active chromatogram. The entry is ignored if the chromatogram is already displayed in full-size mode.

Zoom/UnZoom
Press <x> (MULTIPLY) to zoom in horizontally by 20%. The anchor point is the center of the time axis; for example, 0.0 to 10.0 min > 1.0 to 9.0 min.
Press <÷> (DIVIDE) to unzoom horizontally by 25%. The anchor point is the center of the time axis.
Press <CTRL><x> or <CTRL><÷> to display all chromatograms in full size. This action corresponds to an Autoscale of the time axis.
Press <-> (PLUS SIGN) to zoom in vertically by 20%. The anchor point is 10% of the signal height because the baseline region at the beginning or end of a peak is usually more interesting than the course of the peak at its maximum; for example, 0.0 - 100.0 mAU > 2.0 - 82.0 mAU.
Press the <-> (MINUS SIGN) key to vertically unzoom by 25%. The anchor point is near the baseline as described above.

Tip:
If the unzoom operation is performed after the zoom operation, the original chromatogram view will be restored.

Press <CTRL><-> or <CTRL><<-> to autoscale the active chromatogram.
Press <NUM5> to autoscale the time and signal axes in all currently open plots. This operation corresponds to the Full Size command on the View menu.

Peak Selection
Press <CTRL><<-> to select the previous peak of the active chromatogram. If no peak is selected, the first peak of the chromatogram will be selected.
Press <CTRL><<-> to select the next peak of the active chromatogram. If no peak is selected, the first peak of the chromatogram will be selected.
Press <CTRL><HOME> to select the first peak of the active chromatogram.
Press <CTRL><END> to select the last peak of the active chromatogram.

Tip:  
If the newly selected peak is outside the current view, the peak is automatically scrolled into the view.

Chromatogram Selection

The following keys are available for chromatogram Overlay:
Press <PAGE UP ↑> or <CTRL><↑> to activate the next upper chromatogram; that is, the chromatogram whose caption is found above the active chromatogram.
Press <PAGE DOWN ↓> or <CTRL><↓> to activate the next lower chromatogram; that is, the chromatogram whose caption is found below the active chromatogram.

Chromeleon supports many additional "quick access" keys. For a summary of the most important keys, refer to the table in Basic Operation Quick Access Keys.

Manual Re-Integration

On the Integration Toolbar, Chromeleon provides different icons for manual re-integration of a chromatogram via mouse-click. However, please note that these actions affect only the active chromatogram:

Moving Peak Delimiters
Modifying the Baseline Manually
Inserting or Deleting Peaks
Changing the Peak Type
Defining an Averaged Baseline
Prerequisite

Manual re-integration is possible only for integrated chromatograms. They have a red baseline below the peaks and blue peak delimiters on the left and right ends of the baseline (= integration limit).

Tip:

To display these elements on the chromatogram, select Decoration > Peak Decoration on the context menu.

For manual re-integration, Dionex recommends zooming the area in which you want to make the changes. Select Automatic on the context menu. The corresponding mouse pointer will then mark all places in the chromatogram that can be changed manually. The shape of the mouse pointer indicates which action can be performed.

If you have not yet saved the modifications, you can undo them by selecting Delete Manipulations on the Edit menu.

Moving Peak Delimiters

Near the peak delimiters (blue color by default), the mouse pointer changes its appearance (if the Automatic Tool or the Delimiter Tool is selected). The \[\text{\downarrow\uparrow}\] pointer indicates the peak start and the \[\text{\uparrow\downarrow}\] pointer indicates the peak end.

Left-click and move the mouse pointer to the new peak start or peak end.

It is not possible to cross another peak delimiter. This peak delimiter, too, will then be moved in the same direction. After positioning, Chromeleon draws a new baseline. The modified peak properties (Area, Width, Amount, etc.) are immediately updated and displayed in the integration report.

Notes:

You can also move the peak delimiters of negative peaks.

For special cases, it is possible to move the peak delimiter beyond the peak maximum. However, this is usually not reasonable.
Modifying the Baseline Manually

The usual way to determine the baseline is to use the detection parameters of the QNT Method (see Integrating Chromatograms and Identifying Peaks/Defining Detection Parameters; Modifying the Baseline). However, in some cases it may be necessary to modify the baseline for a single chromatogram:

To individually integrate two peaks that are not completely separated in the chromatogram, drop a perpendicular line from the minimum between the two peaks to the baseline. The intersection with the baseline is referred to as "baseline node" (a).

To draw the baseline from peak end to peak end, enable the Valley to Valley detection parameter. The baseline node automatically moves towards the signal curve until it rests on the curve in the minimum between two peaks (b).

You can move each baseline node along the perpendicular line and position it at the desired position ("freely floating baseline node" (c)). If you approach state (a) or (b), the mouse pointer automatically clicks into place. The shape of the mouse pointer indicates which action is currently performed. Select the Automatic Tool or the Baseline Tool.

At the end of a baseline, you can generate freely floating baseline nodes (d, e).
Depending on the direction in which you drag the mouse pointer, the system automatically distinguishes between moving a peak delimiter horizontally and moving a baseline node vertically.

Between two baseline nodes, you can move the entire baseline in vertical direction (f). The shape of the mouse pointer (†) indicates whether you can perform this action.

**Note:**

*For exponentially skimmed >Rider Peaks, you cannot move the baseline manually.*

## Inserting or Deleting Peaks

### Inserting a Peak

You can later insert a new peak, i.e., a baseline and two peak delimiters, at any free position on the chromatogram and on the leading and trailing edges of a peak. The new peak is also added to the peak table in the QNT Editor.

If a small peak (†) appears on the right side of the mouse pointer, you can insert a new peak at this position. If a warning sign ( nargin ) appears instead, you cannot insert a new peak.

- Select **Insert Peak Tool** on the context menu to have the mouse pointer indicate only those positions where you can or cannot insert a peak. If the Insert Peak Tool is active, you cannot perform any other actions (edit modes).

### Deleting a Peak

To delete a peak, point to the peak.

Select **Delete Peak** on the context menu to remove the peak's delimiter and its baseline. This also removes the peak from the peak table in the QNT Editor.
Splitting Peaks

Sometimes only one peak is recorded when two substances elute approximately at the same time. It may happen that one peak is detected instead of two. This depends on the concentration ratio of the substances and the arrangement of the single peaks. You can then add a second peak below the existing one (also, refer to Inserting or Deleting Peaks). The following commands are available:

Split Peak

Move the mouse pointer to the position where you want to split the existing peak. Select Split Peak on the context menu to split the peak into two main peaks. The perpendicular line splits the peak exactly at the pointer position.

**Note:**

Splitting the peak does not change the baseline.

Shape Shoulder

Select Shape Shoulder on the context menu to exponentially skim a Peak Shoulder from the existing peak. First, move the pointer to the position for the peak start of the peak shoulder and select Shape Shoulder. The exponential-skimming algorithm automatically calculates the peak end for the peak shoulder.

**Note:**

The shoulder maximum is calculated relative to the baseline. Thus, it must not correspond to the highest signal value.

Dionex recommends using the Peak Shoulder Threshold to define shoulder shaping for the entire quantification method.

Use the Rider Threshold and Maximum Rider Ratio detection parameters to define the peaks that will be detected as rider peaks. For more information, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining Rider Peaks.
Changing the Peak Type

To change the peak type, point to the respective peak.

- Select **Change to Main Peak** or **Change to Rider** on the context menu.

Use this function to change a main peak into a Rider Peak and vice versa. Single peaks are always interpreted as main peaks. That is why you cannot convert them into rider peaks. The context menu indicates: **Can't Change Peak Type**.

With automatic classification, the Rider Threshold and Maximum Rider Ratio parameters determine whether a peak is classified as a main peak or a rider.

Defining an Averaged Baseline

By means of two points entered in the chromatogram, you can define a baseline for the entire chromatogram (= averaged baseline):

**How To**

- In the chromatogram, right-click to select an area at the beginning of the chromatogram. The first Baseline Point shall be in the middle of this area.
- Select **Set Averaged Baseline Start** on the context menu.
This sets the first baseline point. The x-value is the middle of the selected area while the y-value is the averaged value of the signal values weighted by the data rate. This first value will not be marked, as it is not sufficient for setting the baseline. A second point is required as well.

**Note:**
If you exit Chromeleon without having entered the second point, the first point will be deleted.

Enter the second point as follows:

- In the chromatogram, right-click and select an area somewhere at the end of the chromatogram. The second baseline point shall be in the middle of this area.

- Select Set Averaged Baseline End on the context menu.

This action sets the second baseline point. The new baseline is drawn through both points, which are marked by a red cross.

You can modify the averaged baseline later in two ways:

1. Select a new baseline point, which then replaces one of the former ones.
2. Use the baseline tool on the Integration Toolbar, see How to ...: Working with Chromatograms Modifying the Baseline Manually.

**Manual Peak Assignment**

(Dialog box "Properties of Peak No. x")

If you have inserted a new peak, or wish to name existing or unidentified peaks, or rename incorrectly identified peaks, you can do this in the chromatogram either via the QNT Editor (see Data Representation and Reprocessing The QNT Editor) or in a report.

- Click the respective peak and select Peak Properties on the context menu to open the dialog box Properties of Peak No. x or double-click the peak.
• Enter the corresponding name under **Component** or select one of the names listed in the combo box. Click <Return> or the lowest symbol bottom to insert the peak into the peak table of the QNT Method using the retention time of the active chromatogram and the settings of the previous peak (as far as sensible).

![Properties of Peak No. 4](image)

• It is also possible to rename an identified peak by manually assigning it a different name. Enter the new name or select one of the names listed in the combo box and confirm your entry by clicking the first symbol button. Via the additional symbol buttons, you can cancel this action or delete all manual peak assignments (see quick info for the buttons). Manual peak assignments of identified peaks are not transferred to the QNT Method but apply to the currently open chromatogram only.

![Properties of Peak No. 5](image)

You do not have to close the dialog box to continue working in the chromatogram. <Return> accepts a new entry in the peak table of the QNT Editor (provided that the peak has not yet been assigned there).
The dialog box then indicates the values of the next peak to be assigned. The dialog box remains open until explicitly closed or until the chromatogram is closed.

**Note:**
The manual peak assignments are saved in the Quantification Method. However, manual peak assignments for identified peaks are not included in the QNT Method and are valid for the currently open chromatogram only.

**Comparing Chromatograms**

Chromeleon allows you to compare several chromatograms by simultaneously displaying different samples or several Channels of the same sample. Besides, you can also compare different channels of different samples. To compare chromatograms, select the samples or channels and relate them to each other.

For more information, refer to:

- Selecting the Samples and Channels
- Displaying Several Chromatograms
- Mirroring Chromatograms
- Normalizing Chromatograms
- Printing Overlaid Chromatograms

**Selecting the Samples and Channels**

Different alternatives are available to select samples and channels that are to be displayed as Overlays:

- Display the chromatogram for a sample in an integration window, e.g., by double-clicking the sample name in the Browser.
- Afterward, select one or several samples of a Sequence in the Browser and drag the sample(s) into an open integration window while holding down the left mouse button. The action is indicated by a + sign on the mouse pointer. When you release the mouse button, the chromatogram of the sample(s) is displayed, showing the same channel as for the sample already displayed.
Instead of selecting a sample in the Browser and dragging it into an open integration window, you may also select the sample in the integration view using the Add Overlay command on the File menu. The chromatogram of the first sample will then be overlaid by the chromatogram of the selected one.

Or:
- Select several samples in the Browser and then select Compare on the context menu. The Compare submenu lists all recorded channel types. After selecting a channel, the chromatograms of all samples with raw data for this channel are compared.

Or:
- Select a sample in the Browser, and then select Open > All Channels on the context menu to compare all channels of a sample in a separate window. Press F10 or SHIFT+F10 to display the channels of all samples in a sequence successively.

If several samples are selected, all channels of the first selected sample are displayed. Press F4 or SHIFT+F4 to browse through the selected samples.

Or:
- Hold down the CTRL key and click the Next (or Previous) Chromatogram icon ( or ) to insert the chromatogram of the next (previous) sample.

Or:
- Perform a Query over several sequences or Datasources. Select Compare on the context menu. The Compare submenu lists all recorded channel types. After selecting a channel, the chromatograms of all samples with raw data for this channel are compared.

Or:
- Hold down the CTRL key and click the Next Channel icon ( ) to insert the next channel of the same sample.

- Hold down the CTRL key and click the Previous Channel icon ( ) to insert the previous channel of the same sample.

Chromeleon supports several actions for overlaying chromatograms. For an overview, refer to Comparing Chromatograms.
Displaying Several Chromatograms

After adding an Overlay (= an additional chromatogram), you can define the display arrangement for the two chromatograms.

How To

• Select Decoration on the context menu of the chromatogram plot.

• In the Chromatogram Decoration dialog box, select the Comparison tab page and define the chromatogram Arrangement:

  Select Overlay to overlay the single chromatograms on one single plot (see the left section of the screenshot below).

  Select Stack to display the chromatograms one below the other in different plots (see the right section of the screenshot below).

  Select Mixed to combine the Overlay and the Stack option. Chromatograms of different detectors are displayed as single plots.

  Use the Overlay view to add an additional signal axis (on the right). The axis refers to the overlaid chromatogram that was added last using the Overlay with right signal axis command. This command, too, is available on the Comparison tab page of the Chromatogram Decoration dialog box. Thus, you can select a different signal range for the chromatogram that was added last. Use the Stack view for individual scaling of the signal axis for each single chromatogram.

  To offset the chromatograms in x- and/or y-direction in the Overlay view, set the signal or time offset on the Comparison tab page.
• Select the **Time** check box to move the active chromatogram in the x-direction.

• Select the **Signal** check box to move the active chromatogram in the y-direction.

The offset is specified in percent of the signal or time axis. A signal offset of 5% shifts each of the following chromatograms upwards by 5%. Accordingly, a time offset causes a percentage alteration in the x-direction. This results in a "pseudo-3D" presentation.

Chromeleon supports several actions for overlaying chromatograms. For an overview, refer to [Comparing Chromatograms](#).

## Mirroring Chromatograms

If you have inserted an *Overlay* (= an additional chromatogram), you can mirror the overlay.

• Select **Decoration** on the context menu on the chromatogram.

• In the **Chromatogram Decoration** dialog box, select the **Comparison** tab page. Verify that **Overlay** is selected in the **Arrangement** section.

• You can mirror the chromatogram that was added first by selecting the **Mirror chromatogram** check box in the **Overlay** section.
If you have also selected the **Overlay with right signal axis** check box, this setting will be ignored. In this case, the overlay is displayed with the right signal axis; it is not mirrored. However, if you add another chromatogram, it is displayed with the right signal axis and the previous chromatogram is mirrored.

Chromeleon supports several actions for overlaying chromatograms. For an overview, refer to "Comparing Chromatograms."

### Normalizing Chromatograms

For a sensible comparison of different chromatograms, often a common reference point is chosen for the overlaid chromatograms (see ➔ *Overlay*). The chromatograms are normalized. As the default, the ➔ *Retention Time* is used for the normalization, that is, all chromatograms are arranged so that their start points match \( t = 0 \).

Alternatively, chromatograms can use a common peak as their reference point.

- Select **Decoration** on the context menu and open the **Comparison** tab page.
- Select the reference peak from the **At Peak** list box.
- Select **Shift** if this is to be performed independently from the length of the chromatogram.
- Select **Stretch** if the chromatograms are to be stretched or compressed in x-direction, so that there is a time scaling in all chromatograms. The stretch 0 to 1min (or n min) has the same length for all chromatograms.
- Enable the **Normalize Signal** check box if the height of the desired chromatogram peak should match in addition. Depending on how much the reference peak must be stretched or compressed, all other peaks in the chromatogram are also stretched or compressed. This enables amount estimation for the same peaks from different chromatograms. This option is not available in the **Stack** view.

Chromeleon supports several actions for overlaying chromatograms. For an overview, refer to "Comparing Chromatograms."
Printing Overlaid Chromatograms

On single-colored printouts, it is difficult to distinguish multi-colored chromatograms. To enhance legibility, determine that dashed and dotted lines are used for the chromatograms in the Printer Layout and printout:

On the Browser, select Preferences on the File menu to open the Preferences dialog box. On the Print tab page, select the Use dashed and dotted lines instead of colored lines check box. To define the line width, select an option from the Line weight drop-down list. Select hair for very thin lines. Or else, select an entry between 1 pt, which is the default setting, and 10 pt (for thick lines).

Chromeleon supports several actions for overlaying chromatograms. For an overview, refer to Comparing Chromatograms.

Performing Data Smoothing

Data Smoothing can help improve the appearance of chromatograms and the reproducibility of peak baselines by reducing noise through digital filtering. Smoothing affects both, the display and the integration of the chromatogram. When smoothing is completed, the new chromatogram is displayed overlaid on the original chromatogram. The original data file is not altered and the smoothed data is saved separately.
You can define data smoothing also in the Post-Acquisition Steps view of the PGM Editor (see Control The PGM Editor). Please observe the corresponding hints below.

How To

1. Display the sample's chromatogram by double-clicking its name in the Browser.

   Tip:
   
   Open the PGM File in which you want to define data smoothing and select the Post-acquisition steps view, instead.

2. Select Smoothing on the context menu. The Smoothing dialog box appears:

   ![Smoothing Dialog Box]

   Tip:
   
   In the PGM Editor, follow the steps below: Select Insert line on the context menu to add a new post-acquisition step. The New post-acquisition step dialog box is opened. Select Smooth data to open the Smoothing dialog box.
3. Select the **Filter Type, Filter Size, and Iterations**. For more information, refer to **Data Smoothing**.

4. In the **Smoothed Channel** box, enter the name for the smoothed channel. The suggested name is the current channel name, followed by the type of filter (MA for Moving Average, OL for Olympic, and SG for Savitzky-Golay), the filter size, and the number of iterations.

5. To smooth all the samples in the sequence or **Query**, select the **Apply to all samples in the current sequence or query** check box.

   **Tip:**
   
   This option is not provided in the **Smoothing** dialog box of the **PGM Editor**.

6. Click **OK** to start the smoothing.

   For information about how to smooth MS chromatograms during mass trace extraction, refer to **How to ...: Using Mass Spectrometers**

   **Extracting Mass Traces Afterward**

**How to delete a smoothed channel**

- Right-click the sequence name to open the context menu.
- Select **Delete** to open the **Delete Sequence "<Name>"** dialog box.
- Select **Only selected raw data**.
- Select the smoothed channel and delete the channel by clicking **Yes**.

   **Tip:**

   This action deletes the channel from all samples in the sequence.
Copying a Channel

Chromeleon allows you to copy a channel to evaluate the same raw data in different ways, for example, to determine both, the ingredients and the contaminations of a pharmaceutical product in one chromatogram. To do so, evaluate the original channel with one QNT Method, and then evaluate the copied channel with a different QNT Method.

**Tip:**
You may also define copying of channels in the Post-Acquisition Steps view of the PGM Editor (see Control The PGM Editor). Please observe the corresponding hints below.

**How To**

1. Display the sample’s chromatogram by double-clicking its name in the Browser.

   **Tip:**
   Open the PGM File in which you want to define that a channel is copied and select the Post-acquisition steps view, instead.

2. Select Copy Channel on the context menu. The Copy Channel dialog box appears.

   **Tip:**
   In the PGM Editor, follow the steps below: Select Insert line on the context menu to add a new post-acquisition step. The New post-acquisition step dialog box is opened. Select Copy Channel to open the Copy Channel dialog box.

3. In the New Channel box, enter the name for the new channel. The suggested name is the name of the current channel plus _COPY. However, you are free to enter any name of your choice as well.

4. To copy the channel for all samples in the sequence or Query, select the Apply to all samples in the current sequence or query check box.

   **Tip:**
   This option is not provided in the Copy Channel dialog box of the PGM Editor.

5. Click OK to start the procedure.
Combining Channels via Arithmetic Operations

Chromeleon also allows you to combine two channels of different samples, using arithmetic operations. Each data point is created by combining the associated two data points from the existing channels (i.e., the data points at the corresponding time), using the desired operation. Arithmetic combinations are not restricted to chromatograms in the strict sense. They can be used for all 2D channels, except for temporary channels.

Tip:
You may also define the combination of two channels in the Post-Acquisition Steps view of the PGM Editor (see Control The PGM Editor). Please observe the corresponding hints below.

How To
1. Display the sample's chromatogram by double-clicking its name in the Browser.

Tip:
Open the PGM File in which you want to define that two channels are combined and select the Post-acquisition steps view, instead.
2. Select **Arithmetic combination of channels** on the context menu. The **Arithmetic combination of channels** dialog box appears.

*Tip:*

*In the PGM Editor, follow the steps below: Select **Insert line** on the context menu to add a new post-acquisition step. The **New post-acquisition step** dialog box is opened. Select **Arithmetic combination of channels** to open the **Arithmetic combination of channels** dialog box.*

3. The current channel is **Channel A**. Select the factor with which the channel shall be multiplied.

*Tip:*

*In the PGM Editor, select the channel of the corresponding sample from the channels defined in the PGM File. Channels defined in previous post-acquisition steps are also available for selection.*

4. Select a channel of the same sample or of any other sample of your choice as Channel B. Also, determine the factor with which Channel B shall be multiplied.

5. Select an **Operation**.

6. In the **Result Channel** box, enter the name for the new channel. The suggested name is the abbreviation for the operation plus the names of the two channels. However, you are free to enter any name of your choice as well.

7. To combine the selected channels for all samples in the sequence or **Query**, select the **Apply to all samples in the current sequence or query** check box.

*Tip:*

*This option is not provided in the **Arithmetic combination of channels** dialog box of the PGM Editor.*

8. Click **OK** to start the procedure.
**Subtracting Background Spectra**

- Mass Spectra usually have a higher noise level than UV spectra. Therefore, you may want to subtract the background spectra. (However, for UV channels, it is usually not necessary to change the default background subtraction.) There are two ways to subtract background spectra.

**Peak Dependent Background Subtraction**

Enable **Background Subtraction** on the context menu of the chromatogram. Return to the context menu and select **Peak Dependent Ranges**. Chromeleon automatically determines two ranges for calculating the background and then subtracts the entire mass or UV spectrum of these ranges. On the MS or UV tab page of the QNT Editor (see Data Representation and Reprocessing The QNT Editor), define the number of mass spectra or UV spectra to be used for the two ranges. (For more information, refer to How to …: Using Mass Spectrometers Processing Mass Spectra and/or How to …: Displaying and Using UV Spectra Processing UV Spectra.)

**Fixed Background Subtraction for the Entire Chromatogram**

At the beginning of the chromatogram, hold down the right mouse button and select the baseline range for which the mass spectra (UV spectra) will be subtracted. A context menu will appear. Select **Set Background Subtraction Range 1** on the context menu to use the defined range as the first range for which to subtract the mass spectra (UV spectra) from the mass spectra (UV spectra) of the single peaks and/or from the retention time spectrum.

**Note:**

Selecting **Set Background Subtraction to Range 1** automatically enables the **Fixed Background Ranges** option of the **Background Subtraction** command on the context menu.

In the same way, select a baseline range at the end of the chromatogram. Select **Set Background Subtraction Range 2** on the context menu to define this range as the second range for which mass spectra (UV spectra) will be subtracted from the mass spectra (UV spectra) of the single peaks.
Note:

It is useful, but not imperative, to define a second range; background subtraction can also be performed using only the mass spectra (UV spectra) of the first range.

The two defined ranges are marked by a horizontal line (in the same color as the spectrum, or in blue if no spectrum is available) and labeled "SB1" or "SB2" (SB = subtracted background). If the background subtraction range was used, the number of single mass spectra or UV spectra that were averaged is indicated in parentheses:

Note:

It is possible to set the two ranges for background subtraction of mass spectra in a UV channel. However, Dionex recommends setting the two ranges in the corresponding MS channel because the respective peaks are visible only there.

Clear Background Subtraction Ranges removes the previously defined ranges.
Effects

The settings selected in the chromatogram are saved in the QNT File of the current sample. These settings overwrite the settings on the MS or UV tab page of the QNT Editor. It makes no difference whether background subtraction is defined on the Integration plot or in the QNT Editor. Thus, your input affects all samples that are evaluated using this QNT File.

Tip:

Make sure that no peak of another sample is within the retention time used as the Background Subtraction Range in Fixed mode.

For a mass spectrum (UV spectrum) that was recorded between two ranges, the ranges are averaged and the result is subtracted. The mass spectra (UV spectra) of the two ranges are weighted based on the time distance from where the respective mass spectrum (UV spectrum) was recorded; that is, the range that is nearer to the respective mass spectrum (UV spectrum) is considered more.

If a mass spectrum (UV spectrum) is not located between the two ranges, only the averaged mass spectrum (UV spectrum) of the range next to the spectrum is subtracted.

Displaying Peak Information in a Separate Area

Chromeleon supports displaying the peak information in a separate area above the actual chromatogram:

- Double-click the chromatogram to open the Chromatogram Decoration dialog box.
- On the Peak Calipers tab page, select Show peak calipers to display the peak information.

In addition, you can also display the following information:

- The name of the current QNT method: Show QNT info.
- The lines indicating the width of the retention time ⇒Window of the associated substance: Show all caliper drop lines.
The chromatogram looks as follows:

In addition, you move the retention time window graphically. For more information, refer to Moving a Retention Window Graphically.

**Moving a Retention Window Graphically**

Chromeleon allows you to change the retention window, i.e., the expected Retention Time and the time Window, for single peaks in the chromatogram:

- Go to the Peak Table tab page of the QNT Editor to check the graphical move of the retention window described below:

- Option: Add the lines that indicate the time limit of the window to the chromatogram: In the Chromatogram Decoration dialog box, select the Show all caliper drop lines check box on the Peak Calipers tab page. (For more information, refer to Showing the Peak Information in a Separate Area.)
To graphically move the retention window, perform one of the steps below:

1. **Move the entire window**: To move the retention window of a peak, point to the center of the associated peak caliper. The pointer changes its appearance and looks as follows: 🔄��. Hold down the left mouse button and drag the caliper to the desired position, i.e., to the desired time.

   The entry in the **Retention Time** column of the peak table is updated automatically.

2. **Move the start or end time**: To change the time of a specific line, point the edge of the caliper or on the associated dotted line. The pointer changes its appearance and looks as follows 🔄. Hold down the left mouse button and drag the line to the desired position, i.e., to the desired time.

   The entries in the **Window** and **Retention Time** columns of the peak table are updated automatically.

3. **Move the start or end time symmetrically**: Hold down the **SHIFT** key when you point to the edge of a caliper or on a dotted line. The pointer changes its appearance and looks as follows 🔄. Hold down the left mouse button and drag the lines to the desired position, i.e., to the desired time.

   The entry in the **Window** column of the peak table is updated automatically.

---

**Tip:**

*In the same way, you can change the start and end time of an area for groups of unidentified peaks.*
Defining Detection Parameters Graphically

Chromeleon supports entering detection parameters graphically: This considerably facilitates defining the time for the ⇒Detection Parameters.

How To

• If no parameter is displayed in the chromatogram, use the Detection Parameter Tool. Either select this command on the context menu or click the following icon on the integration Toolbar:

• In the chromatogram, move to the exact location where you want to enter a parameter.

• Select Detection Parameters on the context menu.

• You can then select

  Insert Inhibit Integration On or Off to inhibit or allow integration (see How to …: Integrating Chromatograms and Identifying Peaks ⇒Inhibiting Peak Integration).

  Insert Valley to Valley On or Off to enable or disable integration from valley to valley.

  Insert Detect Negative Peaks On or Off to enable or disable integration of negative peaks.

  Insert Baseline Point to insert a new baseline point (for more information about the last three commands, refer to How to …: Integrating Chromatograms and Identifying Peaks ⇒Modifying the Baseline).

  Insert to insert a new parameter.

• The Detection Parameter Tools moves the entered parameters to the desired location in the chromatogram.

The example below corresponds to the table input in How to …: Integrating Chromatograms and Identifying Peaks ⇒Defining Detection Parameters.
A dotted line indicates the parameters in the chromatogram. The short form for the parameters and their values are displayed along the line. The picture shows, for example, the Rider Threshold (in short: RidThd), Rider Skimming (RidSki), and Maximum Rider Ratio (RidRat) parameter values at 1.000 min.

To enter the detection parameters graphically, you also select a chromatogram area while holding the right mouse key. The context menu is opened automatically; the menu contains the following commands:

- **Set Averaged Baseline Start** and **Set Averaged Baseline End** to set an averaged baseline (see How to …: Working with Chromatograms Defining an Averaged Baseline).
- **Set Minimum Area** to define the minimum peak area.
- **Set Minimum Height** to define the minimum peak height.
- **Set Minimum Width** to define the minimum peak width (for more information about the Set Minimum commands, refer to How to …: Integrating Chromatograms and Identifying Peaks Reducing the Number of Evaluated Peaks).
• **Set Peak Slice & Sensitivity** to define the peak recognition algorithm (see *How to …: Integrating Chromatograms and Identifying Peaks* Modifying the Peak Recognition Algorithm).

• **Set Inhibit Integration Range** to select a range for the peak inhibition.

• **Set Void Volume Treatment Range** to determine the range for recognition of the negative water peak. This overwrites all previous ranges for recognition of the negative water peak.

**Note:**

You can undo the graphical input of detection parameters. Click one of the QNT Editor tables, and then select *Undo* on the Edit menu. (In the chromatogram itself, you can only undo the modifications made for the active chromatogram.)

When new detection parameters are entered graphically, they are automatically copied to the Detection tab page of the QNT Editor. (For more information about the editor, see *Data Representation and Reprocessing* The QNT Editor.) They will be used for all samples that are evaluated with the QNT File of the current sample. As an alternative, you can also enter the detection parameters directly on the Detection sheet. (For more information, refer to *How to …: Integrating Chromatograms and Identifying Peaks* Defining Detection Parameters).
Displaying and Using UV Spectra

After recording UV spectra with a Photodiode Array Detector, Chromeleon supports all possibilities for using spectra with a modern chromatography data system.

Displaying Spectra

UV spectra are displayed in the Spectra Plot window. Select Show Spectra on the View menu or click

The spectra plot represents UV spectra and allows their identification by means of a spectra library.

For more information, refer to:

- Displaying Peak Spectra
- Displaying and Overlaying Single Spectra
- Processing UV Spectra
- Match Factor, Difference Spectra, 1st/2nd Derivatives of Spectra

In addition, you can

- Create and Use Spectra Libraries
- Search Reference Spectra

The PPA (Peak Purity Analysis) window allows you to

- Analyze the Peak Purity
- Select the Optimum Integration Path

and Extract Spectra, Chromatograms, and 3D Fields
Displaying Peak Spectra

- In the chromatogram, select the peak of which you want to display the spectrum. If the associated raw data is available, thumbnail spectra of the peak are displayed in the chromatogram.

- Select Show Spectra on the View menu or click

- Select Decorations on the context menu of the Spectra window. On the Peak Spectra tab, determine from which peak height spectra are displayed.

Depending on the settings, up to five spectra of the same peak can be displayed in different colors. Normally, the spectra are extracted at 10 and 50% peak height from the leading and the trailing peak edges and at the run time of the peak. The representation of the spectrum is normalized. If the spectra largely match, this can be an indication for good peak purity.

Displaying and Overlaying Single Spectra

In addition to peak spectra (= spectrum in the peak maximum or spectrum at a defined peak height), Chromeleon is capable of displaying any other spectrum of a chromatogram at the time t.

To extract any spectra of a chromatogram via a mouse click, follow the steps below:

- Enable the Spectra Tool on the context menu or click the corresponding icon on the Integration Toolbar

- A spectra symbol that is appended to the mouse pointer indicates that the mode was changed.

- Click anywhere in the chromatogram to display the corresponding spectrum.

- Repeat the action while pressing the SHIFT key to overlay several spectra.
Displaying and Using UV Spectra

Displaying Spectra of Different Samples
To objectively compare spectra of different samples, it is necessary to perform a chromatogram comparison.

- Compare two chromatograms by displaying an additional chromatogram in the Integration window (see Integration Chromatogram Comparison).
- Enable the Spectra Tool and select single spectra by clicking various places in the chromatogram while pressing the SHIFT key.

Note:
UV spectra are overlaid in one window.

Processing UV Spectra
For a better comparability of UV spectra, it is useful to subtract the background spectrum (of the solvent). Chromeleon performs this automatically, using the following algorithm:

- The background spectra are determined for both peak ends. At both peak ends, several UV spectra can be averaged over a specified range.
- The background peak spectrum (usually at the peak maximum) is then determined via linear interpolation of these two background spectra and is finally subtracted from the single spectrum (usually of the peak maximum).

Tip:
In addition, it is possible to combine several spectra to the Apex spectrum, and then subtract the background spectrum from this averaged spectrum. However, this is usually not necessary for UV spectra as they have a relatively low noise level compared to Mass Spectra.

Use the UV tab of the QNT Editor to determine background subtraction for UV spectra. (For more information about the editor, see Data Representation and Reprocessing The QNT Editor.)
The **Enable Background Subtraction** check box is enabled indicating that spectrum subtraction is active:

Only for UV spectra with a high noise level, it is necessary to average spectra to reduce the noise level. For example, spectra averaging may be required for very small peaks that are only slightly above the *Limit of Detection*. In the combo box under **Peak Spectrum Bunch**, enter the number of single spectra that shall be bunched to form the spectrum at the peak maximum. A maximum of 99 single spectra can be averaged. For symmetry reasons, it is possible to enter odd numbers only. Therefore, by default, only one spectrum is selected as **Width** of the **Peak Spectrum Bunch**.

**Peak Dependent Background Subtraction** allows automatic background subtraction for each peak. In the edit fields under **Left Region Bunch** and **Right Region Bunch**, enter the number of spectra to be used for forming the two background spectra. You can select up to 99 single spectra. Zero and even numbers are permitted as well. These settings apply to peak spectra and time spectra below peaks. The default setting is that one spectrum each is subtracted on both sides of the peak.

Select **Fixed Background Subtraction Ranges** to define two fixed ranges for background subtraction for the entire chromatogram. It usually makes sense to set one range at the beginning and the other one at the end of the chromatogram. These settings apply to peak spectra and to all time spectra.
Click **Apply** to accept the settings and calculate the resulting UV spectrum. When the **Show Spectra** view is enabled, the newly calculated UV spectrum is displayed at once.

**Note:**

*Defining the background subtraction manually in the chromatogram affects the settings on the UV tab page. For example, if you select **UV Background Subtraction** on the context menu of the chromatogram, and then select **Fixed Background Ranges**, the corresponding option is automatically selected on the UV tab page of the QNT Editor.*

**Match Factor, Difference Spectra, 1st/2nd Derivatives of Spectra**

When two or more spectra are represented on the spectra plot, the similarity of the UV spectra becomes an issue.

The match factor can express the similarity, by forming difference spectra or by representing the first or second derivative of a UV spectrum.

- Select **Decorations** on the **View** or context menu and select the **Show match** check box on the **Label** tab page. Chromeleon issues a value for each represented spectrum, expressing the match degree relative to the main spectrum (0 = no match; 1000 = perfect match).

- On the **Analysis** tab, define whether the difference spectrum or the first or second derivative of a spectrum shall be displayed in a second window in addition to the actual spectra.

In the case of the match factor and the difference spectrum, the question which UV spectrum is considered a main spectrum is especially important, as this is the basis of comparison or the basis for all calculations.

Usually, this is the peak spectrum extracted at the retention time. If there is no peak spectrum, distinguish two situations: If you select the spectra tool to extract the single UV spectra from the chromatogram, the spectrum that is first extracted is the main spectrum. If spectra are extracted automatically at different peak heights, the spectrum with the "oldest" retention time is considered the main spectrum. When representing difference spectra, the **Difference to** entry indicates the basis of calculation.
Creating and Using Spectra Libraries

The Spectra Library pane allows you to compare \textit{Normalized} and single \textit{baseline-corrected} spectra with spectra from various libraries.

For more information, refer to:

- Creating a New Library
- Using Spectra Libraries
- Comparing Spectra

Creating a New Library

First, select \textbf{New > Spectra Library} on the \textbf{File} menu to create a new and empty spectra library. Then, include the spectra of interest:

- From the \textbf{PPA} or \textbf{Spectra Plot} panes: Copy a spectrum to the Windows clipboard, using the \textbf{Copy} command or the \textbf{Extract > Lib-Spectrum to clipboard} commands on the context menu. Insert the spectrum in the open library, using the \textbf{Paste Spectra} command. (For information about PPA and/or the spectra plot, refer to Data Representation and Reprocessing \textbf{PPA: Peak Purity Analysis} or Integration \textbf{The Spectra Plot}.)

- Or else, generate a subset of an existing selection based on specific \textit{Hit Criteria}.

\textbf{Note:}

\textit{To be able to compare UV spectra, the spectrum and the reference spectrum should be recorded under identical conditions. That is why the best search results are obtained based on spectra that were recorded and saved by the user. Dionex recommends to writing down the conditions under which the spectrum is recorded. These notes will be very useful when there are several spectra for the same sample.}

Saving the library

Select \textbf{Save as} to save an open library under a different name to a directory of your choice. Libraries have the file extension \textbf{LIB}. 
Using Spectra Libraries

Spectra Table

The upper section lists all spectra that are contained in the active Spectra Library, as well as their data. Double-click a column header to sort the list according to the criteria of the selected column, such as the name, ID, or number of extremes. Select the first column of the table to select the corresponding spectrum.

- When you move the mouse pointer into the left column, the cursor becomes a horizontal arrow. Left-click to select a spectrum.
- To select several spectra, press and hold the CTRL key.
Spectra Plot
The spectra plot is displayed at the bottom left, underneath the table, showing the spectra of all substances selected in the spectra table.
- Double-click the window or select Decoration on the context menu to change the spectra representation. For more information, refer to Integration The Spectra Plot.

Working with the Spectra Library
The objective of spectra administration is the identification of an unknown substance based on its UV spectrum. If you have a spectrum of a previously unidentified substance, for example, in the spectra window of the PPA method, you can start searching various libraries from there.
Chromeleon compares the curve form of the two spectra (comparison), calculates a similarity value (evaluation), and displays similar spectra (hit criterion).
The distinction made by Chromeleon depends on whether a single spectrum is identified or all peaks of a sample.

Hit List
The hit list lists all library spectra that have a certain similarity to the extracted (and normalized) spectrum. For more information, refer to How to ...: Displaying and Using UV Spectra Searching Single Reference Spectra.

Peak Tracking
Assigning each peak in a chromatogram the spectrum of a library that matches the spectrum extracted at the peak maximum best is referred to as peak tracking.

Comparing Spectra
To compare two spectra with each other, the curve of the normalized spectrum can be compared to the curves of single library spectra. In some cases, better results are achieved when the first or second derivations are compared instead of the spectra themselves.
Use the comparison function (see ⇒ Check Derivative) to determine the curve form to be used for the comparison.
In the next step, determine how the single curves are compared with each other. Select one of three mathematical methods; they are referred to as ⇒Match Criterion.

The combination of comparison function and standard of comparison results in a "similarity value" between 0 and 1000 that expresses the match degree between the search spectrum and various library spectra. The similarity value is known as ⇒Match Factor. A perfect match has the value 1000.

Depending on the method (hit list or peak tracking), a similarity list is displayed or each peak is assigned the most similar spectrum. If you enter a minimum similarity value (threshold), only the hits above the threshold value are displayed.

For more information about how to search spectra, refer to How to …: Displaying and Using UV Spectra Searching Single Reference Spectra.

**Result Presentation in a Hit List**

Using the hit list, a similarity list sorted by the match factor and a representation of the original spectrum and the library spectrum with the best match are displayed. Entering a minimum similarity value excludes dissimilar spectra.

Due to the frequently insufficient characteristics of UV spectra, it may be necessary to further limit the hit lists. ⇒Hit Criteria are available as additional filters. Only the spectra fulfilling the selected criteria will be displayed.

For information about how to search reference spectra, refer to Searching Reference Spectra.
Searching Reference Spectra

Chromeleon allows you to search for reference spectra as follows:


2. Searching spectra from any number of samples that use the same quantification method: Perform the search from the Spectra Library Screening tab in the QNT Editor.

For more information, refer to:

- Entering Criteria for the Spectra Library Screening
- Starting Library Screening and Viewing Results
- Integrating Screening Results in Reports and Peak Labels

Searching Single Reference Spectra

To facilitate substance identification, the peak spectrum, which is displayed on the Spectra Plots of the Integration or PPA method, can be compared to the UV spectra of a spectra library.

Based on the available library, Chromeleon creates a spectra list sorted by the degree of similarity, the Hit List. The number of possible hits can be limited via comprehensive search criteria.

- If the pointer is in a spectra window, select Library Search on the context menu of the UV spectrum to start the spectra search.

In the edit box, specify the library that should be searched. The following are minimum entries required to receive a valid search result:

- Select a spectra library (LIB file) from the Spectra Library to be searched in list. If no LIB file is displayed, click Browse to search for the file.

- In the Match Criterion field, determine the mathematical method based on which the original spectrum and the library spectrum are compared with each other. The best search results are generally received with Least Squares.

- Click OK to start a spectra search.
Note:

To be able to compare UV spectra with each other, the spectrum and the reference spectrum should be recorded under identical conditions. For best results, compare spectra to your own spectra library.

Result

A list of possible candidates will be displayed. The top spectrum has the highest match value and the best similarity to the original spectrum.

Detailed Search

To accelerate the search and to receive very specific results, there are numerous options:

- Normally, the Spectrum Derivative option is disabled, that is, spectra comparison is based on the actual curve shape. If the 1st Derivative option is selected, the comparison of the two spectra is performed based on the first derivative. Consequently, the curve characteristics are more significant (shoulders become real extremes), which allows a more precise comparison. The drawback of this option is the reduction of the signal-to-noise ratio, which causes sections with weaker signals to lose significance.

- Select Hit Threshold and enter a value between 0 and 1000, for example, 950. Only the spectra with a match above 950 will be displayed. Spectra with a lower match value will not be displayed. Spectra with a match value below 900 are usually spectra of other substances (if derivatives are not used for the comparison). Exceptions to this are acceptable only if, for example, the signal-to-noise ratio is low.

Select the following options to ensure precise search results:

- Enter the number of relative extremes the spectrum should have (Number of Relative Extrema). This option is useful to exclude spectra that are similar but have an additional side maximum.

- Select Check Greatest Relative Maximum to use only spectra with the greatest relative maximum at the same position. Select Allowed Deviation to define a tolerance range. The range should not be more than 10 nm to avoid that the criterion weakens.
• Via **Retention Time Window**, define a time window that includes the retention time of the peak. Use this option to exclude substances with very similar spectra, but which are eluted at very different retention times.

Additional criteria are only required in special cases. However, they are useful for searching large libraries containing numerous spectra of the same substance, but extracted under different conditions; for example, different solvents and detectors, different users, different date, etc.

**Note:**

*When creating your own spectra library, please enter information in all fields, even in the fields that may seem unnecessary. In the course of time and with a growing library, this may become a major advantage.*

### Entering Criteria for the Spectra Library Screening

Enter the criteria for a spectra library search on the **Spectra Library Screening** (= SLS) page of the QNT Editor:

- Select a spectra library (LIB file) from the **Spectra Library to be searched** in field. If the required LIB file is not included, click the **Browse** button to search for the file.
In the **Match Criterion** field, select the method (see ⇒ *Match Criterion*) used for comparing the original spectrum and the library. The best search results are usually received via the setting **Least Square**.

- In the **Hit Threshold** field, enter a *Match Factor* between 0 and 1000; for example, 950. Only spectra with a match value above 950 will be shown. Spectra with less similarity will not be included. Unless derivatives of spectra are compared with each other, reference spectra with a match value below 900 are usually spectra of other substances. Exceptions to this rule are only acceptable, if the signal-to-noise ratio is low.

**Note:**

*To be able to compare UV spectra, the spectrum and the reference spectrum should be recorded under identical conditions. For best results, create your own library of spectra you recorded yourself.*

Additional conditions are possible to perform a more exact search:

- Usually, the **Use Spectrum Derivative** option is disabled; that is, the comparison of spectra is based on their actual curve. If the **1st derivative** option is selected, the comparison of two spectra is based on the first derivative. As a result, the curve characteristics increase (shoulders become extrema), allowing a more exact comparison of extrema. However, the signal-to-noise ratio will considerably decrease; and sections with lower signals will be less significant.

- Select **Restrict Wavelength Range** to limit the spectra comparison to the relevant spectral range.

- Select **Check Greatest Rel. Max.** to use only spectra with the greatest relative maximum at the same position. Select **Allowed Deviation** to specify a tolerance range. The range should not exceed 10 nm to avoid that the criterion loses significance.

- Click **Maximum Retention Time Deviation** to determine the maximum retention time deviation of the reference spectrum in percent. This prevents including substances with very similar spectra that are eluted at different retention times.

- If you select **Check Number of Relative Extrema**, Chromeleon checks the number of relative extrema of the reference spectrum. Select this option to exclude spectra that are very similar but have an additional maximum.
Select **Maximum Retention Index Deviation:** or **Maximum Kovats Index Deviation:** to include only those spectra in the comparison for which the retention index or, respectively, the ⇒ Kovats Index is identical with the index of the sample substance. The respective tolerances are defined in the right field.

**Tip**

*With an increased noise level, noise peaks can be considered extrema. In this case, Dionex recommends disabling Check Number of Relative Extrema.*

On the right side of the window, you can further restrict the resulting library spectra. Open the dialog box **Restrict Library Search** with **Add.** Via **Field Name,** you can then select type of parameter to be determined from the following search criteria:

- Solvent Composition
- Control Program
- Substance Name
- Unique ID
- Comment
- Detector Name
- Detector Serial Number
- Timebase
- Sequence Name
- Sample Name
- Extract Operator
- Unique ID

These items can be linked (partly) via the following operators (Conditions) with a freely selectable value:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Restricts the search to spectra with parameters that</th>
</tr>
</thead>
<tbody>
<tr>
<td>is equal to:</td>
<td>fulfill the specified condition.</td>
</tr>
<tr>
<td>starts with:</td>
<td>start with the entered string.</td>
</tr>
<tr>
<td>does not start with:</td>
<td>do not start with the entered string.</td>
</tr>
<tr>
<td>ends with:</td>
<td>end with the entered string.</td>
</tr>
<tr>
<td>does not end with:</td>
<td>do not end with the entered string.</td>
</tr>
<tr>
<td>contains:</td>
<td>contain the entered string.</td>
</tr>
<tr>
<td>does not contain:</td>
<td>do not contain the entered string.</td>
</tr>
</tbody>
</table>

**Note:**

*If you want to search all libraries in a directory, simply enter the character * as the file name. The wildcard characters (known from MSDOS) * and ? are valid. Example: LIB::\CMDATA\LIB\D* searches all libraries starting with the letter D in the directory LIB of the datasource CMDATA.*
Starting Library Screening and Viewing the Results

Click **Apply** to use the entered search parameters. This command starts the library search for each peak in the active chromatogram.

The spectra plot is displayed in addition to the chromatogram. The reference spectrum (hit) with the corresponding match criterion will be shown. The displayed spectrum is the reference spectrum of the selected peak. You can display the search results for the other substances by clicking the corresponding peaks in the chromatogram.

If more than one library spectrum fulfills the entered criteria, you can display the other hits. Place the cursor on the spectrum, open the context menu, and open the **Spectra Decoration** tab page. Use the **Peak Spectra** tab page to enter the number of reference spectra to overlay:

In this example, you will receive a list of three reference spectra. The first spectrum has the highest match value and thus the greatest similarity to the original spectrum.
## Inserting Screening Results in Reports and Peak Labels

If you save the search parameters in the QNT File, the results of the **Spectra Library Screening** can be used for the peak label or in report tables or templates (⇒ Printer Layout).

### Inserting Screening Results in ⇒ Report Definition Files

To display the screening results in the report, the **Peak Purity** report category supports the following variables:

- **Number of SLS Hits** calculates the number of library screening hits for a peak.
- **SLS Hit** opens the ⇒ *Hit Spectrum* report category that includes all variables of the corresponding library spectrum:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance Name</td>
<td></td>
</tr>
<tr>
<td>Match Factor</td>
<td>⇒ <em>Match Factor</em></td>
</tr>
<tr>
<td>Library Name</td>
<td>Name of the spectra library</td>
</tr>
<tr>
<td>Library Record</td>
<td>Opens the ⇒ <em>Spectra Library</em> category</td>
</tr>
<tr>
<td>Number of rel. Extrema</td>
<td></td>
</tr>
<tr>
<td>Solvents</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>⇒ <em>Comment</em></td>
</tr>
<tr>
<td>Sequence Name</td>
<td></td>
</tr>
<tr>
<td>Sequence Header Record</td>
<td></td>
</tr>
<tr>
<td>Sample Name</td>
<td></td>
</tr>
<tr>
<td>Sample Record</td>
<td>Branches to the ⇒ <em>Sample</em> category</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>Acquisition date and time</td>
</tr>
<tr>
<td>Timebase</td>
<td>⇒ <em>Timebase</em></td>
</tr>
<tr>
<td>Program</td>
<td>⇒ <em>PGM File</em></td>
</tr>
<tr>
<td>Sample Rate</td>
<td></td>
</tr>
<tr>
<td>Retention Time</td>
<td>⇒ <em>Retention Time</em></td>
</tr>
<tr>
<td>Lambda Min.</td>
<td>Minimum wavelength</td>
</tr>
<tr>
<td>Lambda Max.</td>
<td>Maximum wavelength</td>
</tr>
<tr>
<td>Lambda Range</td>
<td>Wavelength range</td>
</tr>
<tr>
<td><strong>Designation</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>Lambda Resolution</td>
<td>Spectral wavelength resolution</td>
</tr>
<tr>
<td>Detector Name</td>
<td></td>
</tr>
<tr>
<td>Detector Serial Nr.</td>
<td></td>
</tr>
<tr>
<td>Extract Time</td>
<td>Time when the sample was added to the library</td>
</tr>
<tr>
<td>Extract Operator</td>
<td>User who added the sample to the library</td>
</tr>
<tr>
<td>Retention Index</td>
<td>Linear ⇒ Retention Index</td>
</tr>
<tr>
<td>Kovats Index</td>
<td>⇒ Kovats Index</td>
</tr>
</tbody>
</table>

The *Formula* field shows a short version of your selection; for example, `peak.hitSpec(1).name` for the spectra name of the best hit. The digit indicates the hit: 1 is the best, 2 is the second best hit, etc.

**Including Screening Results in the Peak Label**

To include the screening results in the chromatogram, follow the steps below:

- Position the cursor in the chromatogram.
- Select *Chromatogram Decoration* on the context menu.
- On the *Peak Label* tab page of the *Chromatogram Decoration* dialog box, click `{...}` to open the *Insert Variable into Peak Label Formula* dialog box. Select the *Number of SLS Hits* and *SLS Hit* variables (see *Inserting Screening Results in Report Definition Files* above) from the *Peak Purity* category.

**Example**

To label each peak in the chromatogram with the name of the best hit and the corresponding match factor, follow the steps below:

- From the category *Peak Purity*, select the *Substance Name* under *SLS Hit*.
- In the *Formula* field, enter " - " after the formula, then click *Match Factor* under *SLS Hit*.
- Click *OK*. You will receive the following *Formula* input on the *Peak Label* tab page of the *Chromatogram Decoration* dialog box:
Tip:

If you have saved the search parameters in the QNT File, it is sufficient to enable **Spectra library screening results**; for example, on the spectra plot. Just open the context menu and select the option via **Spectra Decoration** and **Peak Spectra**. In this case, you do not need to open the **Spectra Library Screening** dialog box and click **Apply**.
Analyzing the Peak Purity

Use the PPA window (see Data Representation and Reprocessing PPA: Peak Purity Analysis) to check the peak purity. The PPA window displays the 3D Field of a sample if there is a corresponding raw data file. This is the case if the 3DFIELD channel was selected for Data Acquisition.

The 3D field in the lower right-hand window section has cross-wires. With the mouse, the axes can be moved separately or together. The spectrum or chromatogram extracted along the current y and x-axis will be displayed on the left or above the 3D field.

- Move the y-axis of the cross-wires to successively display all spectra of the active chromatogram.
- Move the x-axis of the cross-wires to display the appearance of a chromatogram at different wavelengths.
- The status bar shows the retention time, wavelength value, and signal height of the current cross wire position.

Peak purity can be evaluated using the following methods:

- Visual Check of Iso Line Plot
- PPI and PPI Match Factor
- Normalized Spectra Overlay
- Peak Inhibition via Virtual Channels
- Multiple Ratio
Visual Check of Iso Line Plot

The visual check of the Iso line plot is a method that allows peak purity evaluation. High peak purity is indicated by:

- All recognizable absorption maxima are located vertically below one another in direction of the wavelength axis.
- The maxima are separated so that the surrounding iso lines do not touch (no overlapping).
- Pure peaks have (local) symmetry or an idealized ellipse shape in the maximum.

PPI and PPI Match Factor

In the chromatogram window of the PPA method, curves for the \textit{PPI (Peak Purity Index)} and the \textit{Peak Purity Match Factor} can be displayed:

- Double-click within the window and select the options Draw PPI and Draw Match from the Chromatogram Plot tab page.

The peak purity index is represented by a purple curve, and the match factor is indicated by a green curve. A distinctive rectangular shape is one criterion (of many) for peak purity. The exact match value at the current mouse pointer position is shown on the status bar. The ideal value is 1000 and requires approximately 80% of the available window height.

PPI, match value, and the corresponding standard deviation (RSD) can be included in a report. The report variables are available in the Peak Purity and Identification category.

The smaller the standard deviation, the more critical the quality of the rectangular curve should be judged; that is, the better the two spectra will match in various points of a peak.
Normalized Spectra Overlay

In a normalized spectra overlay, single spectra of the spectra recorded for the peak are extracted and are compared with each other. Usually, extraction is at the run time of the peak and at a specific peak height in the leading and trailing edges of the peak; for example, at 10% and 50% of the peak height. Comparing spectra that are normalized by the same method is a means of evaluating the peak purity.

The more closely the spectra match, the higher the possibility that the peak is pure. The following are indications for the impurity of a peak:

- The number of relative maxima and minima of two spectra does not match
- The relative maxima are clearly offset against each other
- The height of the relative maxima strongly deviates

However, please note the following:

- Especially near peak limits, spectra have an increased noise level due to the normalization procedure. This applies in particular to the UV range.
- In the case of very long peaks, baseline correction cannot completely compensate for detector drift.
- The spectra shape depends on the solution; that is, the spectra of a peak can only be compared if the mixing ratio was constant during detection.
- It is possible only to compare spectra with the (complete) absorption in the dynamic validity range of the Lambert Beer Law. If the peak maximum, including the baseline spectrum, is considerably above 1 AU, caution is called for.

Tip:

The normalized spectra overlay via peak height is currently possible only on the spectra plot (also see Integration The Spectra Plot). Within the PPA method, the "animated" extraction of spectra is possible. Pressing the CTRL key in the 3D field extracts the current spectrum. If the y-axis of the cross-wires is moved simultaneously, all spectra existing for this range are displayed in the spectra window. A different color indicates the extraction period in the chromatogram.
This process can be repeated; for example, for different retention times within the peak width. If you release the CTRL key between the individual extractions, the spectra extracted per range are displayed in a separate color.

**Peak Inhibition via Virtual Channels**

If two overlapping peaks have different spectra \( s_1(\lambda) \) and \( s_2(\lambda) \) the following equitation is true when the area below the baseline is ignored:

\[
A(\lambda, t) = s_1(\lambda)c_1(t) + s_2(\lambda)c_2(t) \quad (1).
\]

c1 and c2 stand for the time-dependant concentrations of the corresponding components in the flow cell. Then, two wavelengths \( \lambda_1 \) and \( \lambda_2 \) are selected and the following signal is created:

\[
d(t) = A(\lambda_1, t) - K_A(\lambda_2, t) = c_1(t)[s_1(\lambda_1) - K*s_1(\lambda_2)] + c_2(t)[s_2(\lambda_1) - K*s_2(\lambda_2)]. \quad (2),
\]

The \( c_2 \) term disappears provided the appropriate expression was selected for \( K \), that is:

\[
K = s_2(\lambda_1) / s_2(\lambda_2) \quad (3)
\]

This is the channel ratio of the second peak. It can be read off the height ratio of the two peaks if they do not overlap completely. In order to be able to use this approach, the channel ratio of the first peak

\[
K' = s_1(\lambda_1) / s_1(\lambda_2) \quad (4)
\]

must be different from \( K \). If not, the first term in equation (2) will disappear as well. Select the \( \lambda_1 \) and \( \lambda_2 \) wavelength in such a way that the difference between \( K \) and \( K' \), that is:

\[
\Delta K = |K - K'| \quad (5)
\]

is the maximum difference. The best way to determine the appropriate wavelengths is to do so in the PPA Window. After this, the virtual channel \( d(t) \) can be defined. Of course, it is possible to inhibit the first peak in the same way.

If you know the wavelengths for which \( \Delta K \) is the maximum before you record the chromatogram, the two channels, for example, UV_VIS_1 and UV_VIS_2 can be adjusted to those wavelengths. You can then use the following **Program**: 
As already mentioned in the comment line of the program, the following equation is true for this example:

\[ K = 0.3. \]

**Multiple Ratio**

Each channel extracted from a 3D field can be used for performing the ratio test. Especially suited are chromatograms in the range of spectral minima or maxima. If the ratio condition is met, this can indicate, but does not prove peak purity. Performing the test with a larger number of channels does not change this fact.
Selecting the Optimum Integration Path

Chromeleon is capable of calculating the Optimum Integration Path within a 3D field. The calculation is performed automatically. The result can be displayed in the 3D field window of the PPA method.

- Double-click within the window and select the Draw Opt-Int-Path option on the Iso/3D Plot tab page.

  Tip:
  You may also define extraction of the optimum integration path in the Post-acquisition steps view of the PGM Editor (see Control The PGM Editor.) Open the PGM File in which you want to define extraction of the optimum integration path, and then select the Post-acquisition steps view.

A green line in the 3D field indicates the integration path. Similar to chromatograms, it can be saved as a separate channel with variable wavelength.

- Select Extract > Opt. Int. Path to file on the View or context menu and determine the name under which the path is saved as a separate channel or accept the default name (OPTINT).

  Tip:
  In the PGM Editor, follow the steps below: Select Insert line on the context menu to add a new post-acquisition step. The New post-acquisition step dialog box is opened. Select Extract optimum integration path to open the Extract optimum integration path dialog box.

- Select Extract from all samples of current sequence or query option, if the path should be extracted for all samples of the underlying sequence or query. The shape of the path is identical for all samples!

  Tip:
  This option is not provided in the dialog box of the PGM Editor.
Notes:

Chromeleon does not consider rider peaks \( \text{(Type \( \Rightarrow \)} \text{Peak Type)}: \text{Rider}) \) when calculating the optimum integration path.

The channel extracted in this way may have baseline jumps. For distinctly absorbing solvents, they may be due to changes in the wavelength.

If the path should serve as a basis for a \( \text{Wavelength Switch} \) in future samples, the switch times and the selected wavelength values must be entered in a program with exact time specifications. This can also be performed by automatically inserting the data.

- Select \text{Extract > Opt.Int.Path to clipboard} on the \textbf{View} or context menu to copy the data to the clipboard.

- Select the **Name** of the channel, for which the wavelength is automatically switched in the future.

- Enter a value for the **Bandwidth** if several chromatograms should be averaged to one. The bandwidth determines the range of the path. All sections of a chromatogram within this range are averaged to one chromatogram.

- Open a \( \text{PGM File} \) and insert the data at the beginning of the program (\textbf{Commands view}) via the \textbf{Paste} command.

The resulting PGM File could have the following appearance:

```
0.000 UV_VIS_1.Bandwidth = 0
 UV_VIS_1.Wavelength = 210
3.320 UV_VIS_1.Wavelength = 210
4.830 UV_VIS_1.Wavelength = 206
6.100 UV_VIS_1.Wavelength = 272
8.100 UV_VIS_1.Wavelength = 262
9.660 UV_VIS_1.Wavelength = 278
10.480 UV_VIS_1.Wavelength = 250
```

- Enter more commands in the program to complete it. Sort it according to ascending retention times.
Extracting and Exporting Spectra, Chromatograms, and 3D Fields

Spectra
You can copy each spectrum extracted from a 3D field in the PPA method or on the spectra plot (see Integration The Spectra Plot) to the Windows clipboard (Copy command). From the clipboard, you can then paste the spectrum in a spectra library (Paste command). (For information about spectra libraries, refer to Data Representation and Reprocessing Spectra Libraries). Follow the steps below:

- Select Extract > Spectrum to clipboard on the View or context menu to copy the current spectrum from the 3D field of the method PPA to the Windows clipboard.
- Open an existing Spectra Library. Select the command by opening the corresponding LIB file from the Browser, or
- Create a new library via the File> New > Spectra Library commands.
- Select Paste Spectra to save the spectrum and the data in the library.

Chromatograms
From an open 3D field in the method PPA, you can extract a chromatogram of any wavelength:

- Select Extract > Chromatogram to file on the View or context menu to save the active chromatogram as a separate channel.
- Select the wavelength and the bandwidth at which to extract the chromatogram.

Chromeleon will suggest a name for the extracted chromatogram, considering the wavelength. However, you may also enter any other name of your choice. The chromatogram is saved in addition to the raw data of the existing 3D field. Simultaneously, the extracted chromatogram is opened via the Integration method to give the user an overview of the saved data.

In addition, the Extract > Chromatogram to file command provides a special option. Instead of saving one single chromatogram, another chromatogram of the same wavelength can be extracted and saved from all samples of the underlying sequence or query. Enable Extract from all
samples of current sequence or query. Especially in this case, automatically naming the extracted chromatogram (see above) is very useful.

3D Field Data
Select Export > 3DFIELD to include and display the current 3D field raw data in other applications, such as Microsoft Excel. Data is converted into a general ASCII format.
- After you have executed the Export 3DFIELD command, change to the other application and insert the data, using the Paste command. In addition to the pure raw data, additional sample and sequence information is transferred to the application.

**Answering Frequently Asked Questions**

**Question:** How do I perform spectra scanning?

**Answer:** In the Program Wizard, select the 3DField check box on the UV Options page to record the 3D channel for the corresponding samples.

**Question:** How do I change the Detection Parameters, such as Minimum Area or Inhibit Integration?

**Answer:** Enter the parameters on the Detection tab page of the QNT Editor (see Data Representation and Reprocessing The QNT Editor).

**Question:** How do I save the modifications to the layout of the on-screen report?

**Answer:** Modifications to the layout of the on-screen report are saved in the workspace. To save any modifications, select Save Workspace on the Workspace menu. The workspace contains the arrangement of the individual windows. Which information is displayed in the single windows is defined by the information saved in the corresponding file. For example, for the Printer Layout window, the information is saved in the Report Definition File (RDF).
Creating and Using Report Tables

Chromeleon provides numerous options to work with Reports. You can add report tables to the screen report and in the Printer Layout. The related settings are stored in the Report Definition File (RDF).

You can use existing report definition files or create special files to meet your individual requirements.

For more information about how to use report tables in the screen report, refer to Using Report Tables in the Screen Report. For information about how to use report tables in the Printer Layout, refer to Creating Report Tables for the Printout.

Using Report Tables in the Screen Report

Before you can use a report table in the screen report, you have to display the report table (see Displaying a Report.) For more information about how to use report tables in the screen report, refer to:

- Defining the Contents of a Report
- Defining the Appearance of a Report
- Optimizing the Line Height
- Saving a New Report Definition File
- Linking Report Variables
- Calculating the Peak Variable "Amount"
- Adding and/or Renaming a Worksheet
- Displaying the Peak Summary
- Displaying an Audit Trail
- Creating a History Report
- Displaying MS Reports
- Selecting Other Special Reports
- Setting Parameters for Variables (e.g., for the confidence interval)
Displaying a Report

A numerical Report can be included in the Integration, QNT Editor, and PPA method windows.

- Select Show Report on the View menu.

If you have not generated a report before, the default report (called Default) will be opened. The default report contains the following worksheets: Integration, Calibration, Peak Analysis, Summary, and Audit. If you are working with a Photodiode Array Detector, select the default report, DEFLTDAD. This report contains two additional worksheets: Peak Purity and Lib Search.

- To select a worksheet, click the corresponding tab.

Each worksheet includes several default variables that are specific to the selected report type. For example, in an integration report, there are columns for Ret.Time, Area, and Amount. A calibration report contains columns for Offset (c0), Slope (c1), and Curve (c2), etc.

These predefined report sheets can be used for various purposes; no additional input is necessary.

Defining the Contents of a Report

To change the contents of a Report Definition File (RDF), select a command on the Table or context menu:

- Select Insert Column to insert a column in the report table on the left of the current cursor position.

- Select Add Column to add a column to the report table on the utmost right.

Note:

A new column that has been created using the Add Column command has no format yet.

- Select Fix Column to move the selected columns to the far left. Columns of this type are permanently visible, even when scrolling.

- Select Delete Column to delete one or several columns.
• Select **Column Properties** (or double-click the column header) to modify the column properties. You can then replace the current column contents, for example, number of theoretical plates, with a different variable.

• To change the formula of a cell, enable the **Layout Mode** on the **Table** menu. (The Layout Mode command is not available on the context menu.) An edit line appears above the table. In the table, click the cell for which you want to edit the formula. To the left of the edit line, the number of the cell is displayed. Edit the formula as desired. You can also use the **Additional Functions** of the **Report Publisher** module, if your Chromeleon license supports this.

**Tip:**

When Layout Mode is enabled, do not change the format.

**Tip:**

Each column usually shows one report variable. However, it is possible to link several report variables (see **How to ...: Creating and Using Report Tables** [Linking Report Variables]). Mathematical and statistical functions such as SUM, AVERAGE, etc. are only available in the Report and the **Printer Layout together with the Report Publisher**.

• Select **Table Properties** to modify the properties of the entire report. Use this command to sort the table in groups or remove peaks below a certain area value.

**Defining the Appearance of a Report**

To modify the appearance of a report, select the **Table** menu. Then, select **Format >...**

• **Alignment** to position the text horizontally and vertically in a cell or a column.

• **Font** to determine the font, font style, and size.

• **Border** to determine the location, the color, and the shape of the frame.

• **Pattern** to determine the color and the pattern of the cell background.
• **Number Format** to determine the format of the represented values.

• **Autoformat** to design the entire report by selecting a ready-made default template. The *Preview* window shows the appearance of the report in the currently selected format.

![Tip:](image)

*When Layout Mode is enabled, do not change the format.*

### Optimizing the Line Height

Chromeleon allows you to optimize the line height. Do this especially for sample variables, for which the single values are displayed in several lines in one cell:

• Enable **Layout Mode** on the **Table** menu.

• In the left column, double-click the separation line under the line for which you want to adjust the height automatically. (In the picture below, for example, double-click the blue line that separates lines 6 and 7. (Note: The blue color is used in the picture only for illustration purposes; it does not appear in Chromeleon.) This optimizes the height of line 6 so that the entry in the **List of Aggr. Smp.** column is completely displayed.)

<table>
<thead>
<tr>
<th>B8</th>
<th>Dimethyl-Fluoranthene</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>No.</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
(In the example in the picture, the heights of lines 3 to 5 were already adjusted automatically, i.e., optimized. Thus, the list of aggregated samples is completely displayed in each line. The height of lines 6 to 9 was defined by a fixed value so that the lists were not displayed completely.)

Saving a New Report Definition File

You can save all modifications made in a report to a Report Definition File (RDF):

- Select Save Report Definition and then enter the file name under which to save the RDF.

- If you change a default Report Definition File from the Dionex Templates > Report directory, you usually cannot save the new file to this Report folder because the Dionex Templates directory is locked. Save the modified file to a different directory; for example, create a new 'Report' directory under your local datasource.

Tip:

If you do not save the RDF before you exit the screen report, any changes made to the report's layout are lost. There will be no hints as to the loss of these changes because a warning would then have to appear for every other change, as well, e.g., when resizing single windows.

Linking Report Variables

To generate user-defined report variables, use the four basic arithmetic operations or powers to link two or more report variables. Link the single variables, using the formulas of the Report Categories.

How to

- Select a report column, and then select Add Column on the Table menu.

- In the Formula field of the edit box (Add Report Column), enter the formulas you wish to link by mathematical operators.

- Note that the variable names are not identical with their "formulas"; for example, peak height and peak.height). For the correct syntax, refer to Report Categories. You can copy the syntax by selecting the required formula and pressing the CTRL+C. Change to the edit box again and insert the formula by pressing CTRL+V.
Example: To put the peak height in relation to the corresponding \( \Rightarrow \text{Amount} \), use the following expression:

\[
\text{peak.height} / \text{peak.amount}
\]

- You can also use the following operators to link expressions: +, -, x, and ^ (for powers)
- Enter the desired column header in the Header field.
- Click OK to complete your input.

Tip:

Mathematical and statistical functions such as SUM, AVERAGE, etc. are only available in the Report and in the ➔ Printer Layout together with the ➔ Report Publisher!

Calculating the Peak Variable "Amount"

If you wish to check the indicated \( \Rightarrow \text{Amount} \) values, have a look at the respective coefficients of the calibration function first. Then, add the columns offset (c0), slope (c1), and curve (c2), which are all part of the Peak Calibration category.

For the amount calculation of an unknown sample, the inverse function \( f(y) \) of the calibration function \( F(x) \) must be calculated. Calibration functions are calculated as follows:

- Linear:
  \[
f(y) = \frac{1}{c_1} y
\]
- Linear with offset:
  \[
f(y) = -\frac{c_0}{c_1} + \frac{1}{c_1} y
\]
- Quadratic:
  \[
f(y) = \frac{1}{2 c_2} \left( -c_1 \pm \sqrt{c_1^2 + 4 c_2 y} \right)
\]
- Quadratic with offset:
  \[
f(y) = \frac{1}{2 c_2} \left( -c_1 \pm \sqrt{c_1^2 - 4 c_2 (c_0 - y)} \right)
\]
Exponential:

\[ f(y) = \left( \frac{1}{c_0} \right)^{\frac{1}{c_1}} \cdot y^{\frac{1}{c_1}} \]

**Note:**

For ambiguous inverse functions (two possible values for quadratic with or without offset) always use the value which comes "closest" to the X values of the respective calibration. If it is not possible to calculate the expression (c1=0 for linear with or without offset, the radiant < 0 for quadratic with or without offset, or c0=0, or c2=0 for exponential), "n.a." is returned as amount.

If the response factor, dilution factor, weight, and a factor for the *Internal Standard* are available, that is, if they do not equal 1, they have to be considered for the calculation as well (see *Formula for Amount Calculation*).

**Adding and/or Renaming a Worksheet**

You can add new worksheets to the *Report Definition File (RDF)* and define their contents and appearance.

- Select **Insert Report** on the **Table** menu and determine the type of report to be created.
Creating and Using Report Tables

The following reports are available (the order is the same as in dialog box):

**Result Tables**

**Peak Results**
- Calibration Report: Displays all variables required for creating a calibration report on the right.
- Integration Report: Displays all variables required for creating an integration report.

**Sample Results**
- Calibration History: Displays all variables documenting the course of the calibration on the right.
- Peak Summary: Displays all variables required for creating a peak summary.
- SST Summary Report: Displays all variables required for documenting the results of the *System Suitability Test* for the entire sequence.

**Audit Trails**
- Audit Trail (Commands, SST, ...): Displays the Audit Trail of the current sample (see Data Management → Audit Trails).
- MS Status Log Report: Displays the mass spectrometer settings.
- MS Tune Data Report: Displays the tune data of the *Xcalibur raw data file*.

**Spectra Results**
- MS Raw Report: Displays the raw data of the current *Mass Spectrum*.

**Fraction Collection Results**
- Fraction Report: Displays all variables required to create a fraction report.
- Tube Report: Displays the different variables describing the single fraction collection tubes. This also includes the fraction report variables. However, please note that these variables are not selected by default.
Creating and Using Report Tables

**QNT Tables**

**Detection Parameter**
Displays all Detection Parameters of the current sample.

**Peak Table**
Displays all variables that are required for displaying the peak table of the QNT Editor.

**SST Table**
Displays all variables that are required for the representation of the System Suitability Test.

**PGM Tables**

**Commands**
Displays the Program for the current sample.

**Post Acq. Processing**
Displays the Post-Acquisition Steps for the current sample.

**MS Method**
Displays information about the current method of the Mass Spectrometer.

**Miscellaneous Tables**

**Database Query**
Inserts any kind of database queries into the report.

**History Report**
Displays all variables required for creating a History report.

- From the variables that are available on the right-hand side, click those you wish to include in the new report. Click OK to create the desired worksheet.
- In the report, double-click the newly added tab and edit the name.

**Saving**

To save the content and appearance of a report, select Save Report Definition.

**Tip:**

*Please note that the appearance and the contents of the on-screen report needs not to be identical with the actually printed report, the Report Templates. The printout is defined in the Printer Layout. Thus, it allows you to initiate printing independently of what is displayed on screen.*
Displaying the Peak Summary

Use the Summary worksheet in the Report (see Report Tables The Peak Summary Report) to show certain results from all samples.

The required steps are described in How to ...: Creating and Using Report Tables:

Displaying a Report and

Adding and/or Renaming a Worksheet.

The Summary worksheet represents, e.g., data of a specific peak from all samples (generally from a Sequence) while the Integration and Calibration worksheets of the Report Definition File (RDF) list the data of the peaks from one sample.

To display, for example, the amount of different peaks of all samples of a sequence in one table, select Column Properties on the context menu. Select Peak Results from the Categories list, and then select Amount from the Variables list and have Chromeleon display the value for certain peaks (Fixed Peak(s)). The default setting shows the values for the currently Selected Peak. Determine the peak for which the data are displayed by clicking the peak in the above chromatogram.

The default Summary report contains several columns. In addition to the sample name and the retention time, it also includes the Area, Height, ⇒Amount, Types, and Plates columns. When you select a peak in the chromatogram, the values of this peak are included in the Summary report. If the selected peak is not contained in a sample, this line remains empty (n.a. = not available).

Below the sample list, there are the lines Average and Relative Standard Deviation. The average value of a column is calculated and displayed. The relative standard deviation from this value is indicated in percent.

The user can modify the default Summary report at any time. However, it is recommended to keep this report page. If another report is required, create an additional Peak Summary report page with new column assignments.

Note:

Instead of a single sequence, the Summary report can also be started based on a Query. Then, the Summary may include different samples from different sequences.
Displaying an Audit Trail

You can include the sample audit trail (see Data Management \(\text{The Sample Audit Trail}\)) as a worksheet in a Report Definition File (RDF). The worksheet always shows the audit trail for the currently selected sample.

- The Day Time column indicates the time of a command or message.
- The Ret.Time column indicates the corresponding retention time.
- The Command/Message column command shows the command itself, the text of a message, or an event.

To make further settings, select the Table Properties command on the context menu. The Audit Trail Report Properties dialog box is opened; define which the data shall be displayed.

In addition, you can select one of the following Display options:

- **Run only** to display only the entries for the sample run (default option)
- **Preconditions only** to display only the conditions before a sample run
- **Preconditions and Run** to display all entries

The display filter (Filter Level) defines the type and extent of the Audit Trail entries for a sample run.

**Normal:** Only the most important commands and properties are displayed.

**Advanced:** Normal and Advanced level commands and properties are displayed.

**Expert:** Normal, Advanced, and Expert level commands and properties are displayed (for experts only).

**Errors and Warnings:** Only error messages and warnings but no commands are displayed.

You can add the contents of the worksheet to other documents, using the Cut and Paste commands. It is also possible to print the entire audit trail in the Printer Layout.
Using Audit Trail Variables in Other Worksheets

Certain events (such as performing a \textit{Trigger} or changing the wavelength at a specific time) can be included in any Report worksheet.

- Open the corresponding worksheet and select \textbf{Column Properties} on the context menu.
- Select \textbf{Audit Trail} from the \textbf{Categories} list.
- In the \textbf{Variables} field, select one of the audit trail variables. The variables that are available for selection depend on the events listed in the sample audit trail.
- Use the \textbf{Formula} field to display events that are not listed (for example, the system pressure that is recorded using a Log command). In this case, the event variable is appended to the name AUDIT; separated by a period (AUDIT.pressure).
- Click \textbf{OK} to confirm your input.

Your report now includes an additional column for an audit trail variable. Normally, the value for the corresponding peak at the retention time is entered in each line. If there is no value at this time, the value that was recorded last is entered. When forming a gradient, Chromeleon calculates the corresponding values (%A, %B, %C . . .).

If you want to display a specific audit trail event for all peaks in a report at a specific time:
- Select \textbf{Column Properties} and then select an \textbf{Audit Trail} variable.
- Click \textbf{Parameter}.

A dialog box is opened allowing you to enter a retention time. Click \textbf{OK} to confirm the entry. A report column with a fixed retention time is generated. For example, the \textbf{Wavelength} audit trail variable displays the wavelength at time $t$.

However, you can also search for the next associated entry in the Audit Trail. Starting point of the search is the entered retention time. Select \textbf{backward} as \textbf{Search Direction} to find the previous entry before the retention time. Select \textbf{forward} to find the next entry after the entered retention time.
Creating a History Report

The History report is not part of a default report. Therefore, select Insert Report to add a history worksheet to a Report Definition File (RDF) (see How to ...: Creating and Using Report Tables Adding and/or Renaming a Worksheet).

By default, the worksheet shows the history of the current sample. Select Table Properties on the context menu to open the History Report Properties dialog box where you can change the settings:

- On the History Objects tab page, select the object for which to display history entries.
- On the Time Restrictions tab page, specify the time when the history entries to be displayed must have been made.
- On the Operations tab page, determine the changes to be displayed.
- On the Users tab page, determine the user(s) whose changes shall be displayed.
- On the Sorting tab page, define the sorting order for the history entries.

A special layout mode is provided for the history report. Select the Layout Mode on Layout tab page. However, this is only possible if detail columns are available. If detail columns exist, select the Design template mode to display a shortened history report, thus, simplifying layout definition.

Displaying MS Reports

Similar to the History report, the different MS reports are not part of the default Report Definition File (RDF). Select Insert > Chromeleon Report Table to add them as separate worksheets to a report definition file (see How to ...: Creating and Using Report Tables Adding and/or Renaming a Worksheet):

- Select the MS Instrument Info Report to display information about the Mass Spectrometer. If there is no MS data, the following message appears in the report: "No MS Instrument Info found".
- The MS Instrument Method Report indicates the MS method. If there is no MS data, the following message appears in the report: "No MS Instrument Method found."
Note:

The **MS Method** (under PGM tables) indicates the current method. It is possible that both MS methods are identical.

- The **MS Raw Report** shows the raw data (mass, intensity, and relative intensity) of the ➤ **Mass Spectrum** of the current sample. If no MS data is available, the report just says: "No MS Raw Data found."

- The **MS Status Log Report** shows the mass spectrometer settings. If there is no MS data, the report just says: "No MS Status Log found."

- Select the **MS Tune Data Report** to display the tune data of the ➤ Xcalibur raw data file. If there is no MS data, the report just says: "No Tune Data found".

Notes:

If the MS Control option is disabled on your PC, the MS reports will not be displayed in the Insert Report Table dialog.

All MS reports comprise only the default columns. It is not possible to add more columns.

Selecting Other Special Reports

Similar to the ➤ **History** report, the following reports are not part of the default ➤ **Report Definition File (RDF)** either. Select Insert Report to add them as separate worksheets to a report definition file (see How to …: Creating and Using Report Tables ➤ Adding and/or Renaming a Worksheet):

Result Tables

- The **Calibration History** documents the calibration run.

- The **SST Summary Report** shows the results of the ➤ **System Suitability Test** for the entire sequence. The default columns are part of the ➤ **Sample** and ➤ **System Suitability Test** categories. It is also possible to edit the columns or to use different columns for the report.
QNT Tables
• The **Detection Parameter Report** shows the **Detection Parameters** used for the current sample.

• The **Peak Table** report shows certain entries of the peak table of the QNT Editor (such as the expected **Retention Time** or the retention **Window**).

• The **SST Report** shows the parameters used and the results of the System Suitability Test. The default columns are part of the System Suitability Test category.

PGM Tables
• The **Commands** report shows the **Program** of the current sample.

• The **Post-Acquisition Processing** report shows the **Post-Acquisition Steps** of the current sample.

• The **MS Method** shows the current method of the **Mass Spectrometer**.

![Note:]
*The MS Instrument Method Report (under Result Tables) indicates the method that is used for data acquisition. It is possible that both MS method reports are identical.*

Miscellaneous Tables
• Select the **Database Query** report to integrate any kind of database query in the report. Select **Table Properties** on the context menu to open the table properties and specify the datasource in which the query shall be performed. Use **SQL** statements to define the properties for which the query shall be performed.

![Note:]
*The Detection Parameter Report and the Commands, Post-Acquisition Processing, MS Method, and Database Query reports comprise only the default columns. It is not possible to add more columns.*
Setting Parameters for Variables (e.g., for the confidence interval)

You can set special parameters for many of the report variables. For an example, refer to the description below for the limits of the Confidence Interval.

The Parameter button is enabled for those variables for which special parameters can be set.
Click **Parameter** to open the **Parameter Input ...** dialog box. Use this dialog box to make the settings for the displayed report variable:

The **Parameter Input for Upper Confidence Limit** dialog box allows you, for example, to define the probability and the calibration level at which the upper limit of the confidence interval will be computed:

- **Confidence probability**: Select the probability with which the indicated values shall apply via the arrow key. The following probability values are available: 90%, 95%, 98%, 99%, 99.7%, 99.8%, 99.9%, and 99.99%.

- **Compute confidence limit at**: Define the level for which to compute the respective limit of the confidence interval. Select one of the following options:
  - **Lowest calibration level**
  - **Highest calibration level**
  - **Average of all calibration levels**
  - **Reference amount (standard and validation samples only)** for reference values. The corresponding values are given for standard and validation samples only if an entry for the respective peak is available in the Amount column. If a peak has no entry or if the Amount column is not available for a standard or validation sample, **n.a.** is returned.
  - **Computed amount** (for the computed amount of the respective peak in the single samples).
  - **Any fixed value**: Define the Amount value in the right-hand field.
The graphical representation of the confidence interval in the calibration curve is possible as well. For more information, refer to How to ....: Displaying Calibration Curves Indicating the Confidence Interval.

The limits of the confidence interval, which are defined using the corresponding Report variables, are determined as follows: For a given amount, the system determines the intersections with the limiting curves of the confidence interval in the height of the value that is defined via the calibration curve.

The image shows the calibration curve together with the corresponding confidence interval at a probability of 99%. In the above example, the upper and lower limits belonging to a concentration of 6.3 µg/ml are derived. Their values are 6.0 and 6.6 µg/ml, respectively. (The distance between the limiting values and the given Amount value must not necessarily be symmetrical.)
Creating Report Tables for the Printout

Similar to the screen report, you can use report tables in the Printer Layout, also. For information, refer to:

- Inserting and Editing a Table in the Printer Layout
- Inserting a Column into an Existing Table

Users who have the Report Publisher add-on product can use the additional features described in Entering User-defined Formulas. Thus, they have numerous possibilities, e.g., for

- Calculating the Amount Percentage (for Identified Peaks)
- Calculating the Concentration Percentage (in Relation to the Total Concentration)
- Calculating the Retention Time Difference of Two Channels
- Creating Dynamic Columns That Contain Flexible Formulas
- Creating Dynamic Links to Lines Other than the Current Line

Inserting and Editing a Table in the Printer Layout

- Enable Layout Mode on the Edit menu.
- Select Insert > Chromeleon Report Table on the Edit or context menu. The Insert Report Table dialog box appears.
- In the Report Tables field, mark the report table you want to insert. If necessary, click the + character beside the report table groups to display the tables underneath. The columns available for the selected table are displayed in the Columns field.
- Some columns are already marked by default. Select the columns that should be included in the table and deselect all others. Press and hold the Ctrl key to select or deselect several columns simultaneously.
- Clicking OK inserts the table into the worksheet.
- To indicate that the table is a Chromeleon object all four corners of the table are marked by red triangles. The last row(s) are not marked by red triangles because they are no Chromeleon objects.
**Caution:**

If the worksheet already contains a report table, insert the new table above or below the existing one. It is not possible to insert several report tables next to each other.

**Tip:**

You cannot move or copy an entire table. When moving or copying a table, only the current content (= the values) is copied to the clipboard but not the underlying variables! (The red triangles are missing indicating that this table is no longer a Chromeleon object.) Besides, it is not possible to move single columns. Instead, insert a new column at the corresponding position and delete the 'old' column.

- Select a column header and then select **Report Column Properties** on the context menu. Determine the header, the dimension, and the format of the column or of the column values.
- To modify the appearance of a single cell, a table area, or the entire table (font size and style, frame, color, etc.), select the cell, the area or the entire table and then select the corresponding command on the **Format** menu.
- Select the column or the row you want to delete, and then select **Delete Column(s)** or **Delete Row(s)** on the **Edit** menu. To insert additional rows or columns in front of the selected area, select **Insert Row(s)** or **Insert Column(s)** on the **Edit** menu.

**Inserting a “Total” Row**

The new table does not comprise a **Total** row. Insert the Total row as follows:

- Copy any cell from another **Total** row; for example, from another **Printer Layout** table or from an integration report.
- Select the cells of the new table, which should indicate the sum of all cell values of the corresponding column.
- Select **Paste**.

**Tip:**

Proceed in the same way to update any existing entries in the rows **Average** and/or **Rel.Std.Dev** rows. These rows are not marked by red triangles, because they are no Chromeleon objects.
Creating the correct cell reference

The values in the **Total** row must receive the correct cell reference. This is especially important when the new table is longer than the table from which the cell was copied.

- Enable ➤ *Layout Mode* on the *Edit* menu. The edit line is displayed.
- Select the first value in the **Total** row. In the edit line, the corresponding formula appears; for example, =SUM(C10:C22).
- Select the cell range indicated in parentheses in the edit line with the mouse; for example, C10:C22.
- Then, select the actual cell range in the table with the mouse or type the cell range in the edit line via the keyboard.
- Press <Enter> to confirm your input.

The sum cell value is recalculated based on the new cell range. Then perform the individual steps for the remaining sum cell values.

For more information, see ➤ *Inserting a Column into an Existing Table*.

**Inserting a Column into an Existing Table**

To insert a new column into an existing table:

- Enable ➤ *Layout Mode* on the *Edit* menu.
- Select the entire column, including its header and the cell **Total**, to the left of which you want insert the new column:

<table>
<thead>
<tr>
<th>No.</th>
<th>RetTime min</th>
<th>Peak Name</th>
<th>Height mAU</th>
<th>Area mAU Min</th>
<th>Rel.Area %</th>
<th>Amount</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.30</td>
<td>Naphthalene</td>
<td>38.682</td>
<td>10.521</td>
<td>2.90</td>
<td>1.011</td>
<td>BM</td>
</tr>
<tr>
<td>4</td>
<td>7.65</td>
<td>Phenanthrene</td>
<td>207.567</td>
<td>23.654</td>
<td>6.71</td>
<td>1.740</td>
<td>BM</td>
</tr>
<tr>
<td>5</td>
<td>7.97</td>
<td>Anthracene</td>
<td>139.321</td>
<td>18.965</td>
<td>4.49</td>
<td>1.391</td>
<td>MB</td>
</tr>
<tr>
<td>6</td>
<td>8.72</td>
<td>Fluoranthene</td>
<td>2122.275</td>
<td>239.256</td>
<td>72.90</td>
<td>1.017</td>
<td>MB</td>
</tr>
<tr>
<td>7</td>
<td>9.11</td>
<td>Pyrene</td>
<td>264.949</td>
<td>32.078</td>
<td>9.90</td>
<td>1.244</td>
<td>Rd</td>
</tr>
<tr>
<td>8</td>
<td>9.75</td>
<td>Dimethyl-Fluro</td>
<td>10.922</td>
<td>1.391</td>
<td>0.39</td>
<td>1.110</td>
<td>MB</td>
</tr>
<tr>
<td>9</td>
<td>10.29</td>
<td>Chrysene</td>
<td>75.265</td>
<td>9.695</td>
<td>2.73</td>
<td>1.006</td>
<td>EMB</td>
</tr>
<tr>
<td><strong>Total:</strong></td>
<td></td>
<td></td>
<td>2507.362</td>
<td>352.483</td>
<td>96.12</td>
<td>5.721</td>
<td></td>
</tr>
</tbody>
</table>

- Select *Insert Column(s)* on the context menu. A new table column is inserted that also contains a **Total** cell.
Creating and Using Report Tables

- Double-click the header of the new column to open the **Report Column Properties** dialog box. Select a variable from the **Variables** list (Please note: The picture only shows part of the dialog box):

  ![Report Column Properties](image)

- Click **OK** to assign the selected variable to the new column.

- Fill the cell **Total**. Click a different cell in this line, which already contains a value. Copy the cell reference by pressing the Ctrl + C keys and then paste it into the new cell by the pressing Ctrl + V keys. (The format of the copied cell is automatically transferred, too. Adapt the format to the new column if necessary.)

For more information, refer to [Inserting and Editing Tables](#).

### Entering User-defined Formulas

**Tip:**

*In order to use the options described below, the Report Publisher add-on product must be installed on your computer.*

Creating user-defined formulas is analogous to the Microsoft Excel spreadsheet. The following description is intended for users who are not familiar with entering formulas:

**Example 1:**

Let's assume that a table containing two columns (A and B) and three lines (1 to 3) is extended by one column (C), for which there is no Chromelone report variable. Thus, for example, the quotient of the cell contents of columns A and B can be included in column C.
To enter a formula in a cell, select the corresponding cell first. In this example, select the cell C1. Enter the equal sign. The entire input is displayed in the edit line (here indicated in blue print).

\[
\begin{array}{ccc}
C1 &= &\
A & B & C \\
1 & 12 & 5 \\
2 & 17 & 10 \\
3 & 13 & 20 \\
4 & & \\
\end{array}
\]

Select the cell A1, enter a division sign (slash), select the cell B1, and complete your input by pressing <Enter>. The formula \((C1=A1/B1)\) is displayed in the edit line; the cell C1 displays the result of the operation (2.4). The cursor moves to cell C2.

\[
\begin{array}{ccc}
C1 & = & A1/B1 \\
A & B & C \\
1 & 12 & 5 & 2.4 \\
2 & 17 & 10 & \\
3 & 13 & 20 & \\
4 & & \\
\end{array}
\]

Follow the description to output the corresponding results in the cells C2 and C3. To facilitate the procedure, click the cell C1 again, grab the selection frame on the lower right corner, and drag it to the required cells (C2, C3). For calculating the cell values, Chromeleon uses the previously entered formula and automatically creates the correct reference, line by line.

\[
\begin{array}{ccc}
C1 & = & A1/B1 \\
A & B & C \\
1 & 12 & 5 & 2.4 \\
2 & 17 & 10 & 1.7 \\
3 & 13 & 20 & 0.65 \\
4 & & \\
\end{array}
\]

Example 1 (continued)

How to sum the cells of column C in the field C4:

Select the cell C4 and enter an equal sign. Enter the **SUM** command required for adding cell values, and then enter an opening bracket.
<table>
<thead>
<tr>
<th>C4</th>
<th>=SUM(C1:C3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Select all cells (C1, C2, C3) that you want to sum up. Close the bracket after the last cell. Press <Enter> to complete your input.

In addition to the SUM command, many other functions are entered in the same way. Thus, you can form the average (see AVERAGE), express conditions (see IF, True, FALSE), create logical operations (see AND, OR), or enter time values (see TIME, DATE, DAY, YEAR).

**Tip:**

For an alphabetical list of the available formulas, refer to Additional Functions.

**Example 1 (continued)**

Besides, it is also possible to use "fixed references". Contrary to the variable value pairs described above (A1/B1, A2/B2, A3/B3), form the quotient of a variable and a fixed value (A1/C4, A2/C4, A3/C4). In this example, the result is displayed in column D.

Follow the description for Example 1 above to create the first cell reference (D1).
Extend the formula by adding two $ signs. They convert a variable reference into a fixed cell reference.

\[ D1 = \frac{A1}{C4} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>5</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>10</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>20</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When the formula is copied, the reference to cell C4 will be retained. The fields to be calculated (D2 and D3) can then be calculated by simultaneously selecting the cells D1, D2, and D3.

\[ D1 = \frac{A1}{C4} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>5</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>10</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>20</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For practical examples, refer to:

- Calculating the Percentage Value for the Amount (for Identified Peaks)
- Calculating the Percentage Value for the Concentration (in Relation to the Total Concentration)
- Creating Dynamic Columns That Contain Flexible Formulas
- Creating Dynamic Links to Lines Other than the Current Line
Calculating the Amount Percentage (for Identified Peaks)

If you use samples with ‚Internal Standard‘ but wish to calculate the percentage values of the different substances that have been identified in the sample (without internal standard):


2. Select a column that you do not need (in the example below: column D). Select Add Column or Insert Column on the context menu. From the Categories list, select Peak Table, and then select Standard Method from the Variables list.

3. a) Select a different column (here: column G) that you do not need. Double-click the column header to open the related dialog box. Delete the entry in the Formula field. Afterward, delete the entries in the column (except the last line, i.e., the line named Total).

b) In the field G29, enter the formula

\[ \text{IF(OR(D29="ISTD Internal ";D29="ISTD Int/Ext ");"ISTD";F29) \]}

(Observe the space following Internal!) Copy the formula to the following lines.

Tip:

Do not omit the space in the formula behind Internal and Int/Ext, respectively.

4. a) Select another column which you do not need either (here: column H). Press F8 to open the dialog box. Delete the entry in the Formula field. Afterward, delete the entries in the column (except the last line).

b) Enter the formula \[100\times G29/G\$36\] in the field H29 and copy it to the following lines.
Calculating the Concentration Percentage (in Relation to the Total Concentration)

Entering and Calculating the Total Concentration

To calculate the percentage concentration in relation to the total concentration, calculate the total concentration using your exact sample weight (without any added Internal Standards) and the liquid volume.

Enter the concentration, for example, in the Weight column of the sample list. However, it may be better to create a User-defined Column, name the column concentration, and assign Floating Point as the Value Type.
Creating and Using Report Tables

(For more information, refer to How to …: Creating and Managing Files and Data Creating User-defined Columns.) Enter the corresponding total concentrations of the single samples in this column.

Creating the Report Table

1. Double-click a variable in the page header that is not necessarily required (here: H6). For this variable, define the concentration column created before:
2. Follow the description in the previous topic (see How to …: Creating and Using Report Tables Calculating the Percentage Amount (for Identified peaks)). Instead of the formula described there in 4b, enter the following formula (here: in the field H13): 
\[ =IF(G13="ISTD";"ISTD";100*F13/$H$6) \].

Tip:

Unless otherwise defined, enter no spaces before and after ISTD.

The value in the Total line of the %-Amount column indicates the percentage of the substances defined by you in relation of the total concentration:

<table>
<thead>
<tr>
<th>H13</th>
<th>IF(G13=&quot;ISTD&quot;,&quot;ISTD&quot;,100*F13/=$H$6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Control Program: WELL2</td>
</tr>
<tr>
<td>7</td>
<td>Quantif. Method: GS50 S16</td>
</tr>
<tr>
<td>8</td>
<td>Recording Time: 4.1.1954 14:25</td>
</tr>
<tr>
<td>9</td>
<td>Run Time (min): 14.10</td>
</tr>
<tr>
<td>11</td>
<td>No. Ret.Time min Peak Name Standard</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2  5.30  Napthalene ISTD Internal</td>
</tr>
<tr>
<td>14</td>
<td>4  7.62  Phenanthrene External</td>
</tr>
<tr>
<td>15</td>
<td>5  7.96  Anthracene External</td>
</tr>
<tr>
<td>16</td>
<td>6  8.75  Fluoranthene ISTD Internal</td>
</tr>
<tr>
<td>17</td>
<td>7  9.15  Pyrene Int/Ext Dime</td>
</tr>
<tr>
<td>18</td>
<td>8  9.78  Dimethyl-Flou ISTD Int/Ext</td>
</tr>
<tr>
<td>19</td>
<td>9  10.31 Chryseone External</td>
</tr>
<tr>
<td>20</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>270  252  7.71  5.778  95.56</td>
</tr>
</tbody>
</table>

Calculating the Retention Time Difference of Two Channels

If data acquisition is performed with two different detectors (for example, in an APS), the retention times may be different. In this case, the retention time deviation should be documented in a separate column.

A special formula allows you to determine for a peak how the retention time of one channel deviates from the retention time of the current channel.
Note:

You can create the related column in both the Printer Layout and screen report. In this case, the Report Publisher add-on module is not required.

Follow the steps below to subtract the retention time of a channel from the retention time of the current channel:

- Double-click in the header of an unused or newly inserted column to open the Properties Report Column dialog box.
- In the Formula field, enter the following formula (also, refer to the explanation below):
  \[
  (\text{retention}_\text{time} - \text{smp.chm("TIC").peak("By Retention Time", peak.retention_time, 0.100, "AN").retention}_\text{time}) \times 60
  \]
- In the Header field, enter the column header, e.g., "Ret.Diff. (UV-MS)".
- In the Dimension field, enter "s" (for seconds).
- Usually, two positions after the decimal point (i.e., "0.00") will be sufficient.

Explanation and possibly required modifications

To efficiently use the formula, you do not need to understand the formula in detail. It will be sufficient to know the parts you may wish to modify:

- Channel: The formula calculates the retention time difference between the \( TIC \) channel and the current channel for a peak. In the formula, replace TIC with a different channel if you want to subtract the retention time of this channel from the retention time of the current channel.
- Dimension: Usually, the retention times are in minutes. However, the retention time difference is relatively small for one peak. That is why the value is multiplied by a factor of 60 to convert it into seconds. You may delete this factor. In this case, set the entry in the Dimension field to "min".
- Peak detection: The main part of the formula refers to peak detection in another channel: peak("By Retention Time", peak.retention_time, 0.100, "AN"). The expression in brackets finds the peak that is nearest to the expected retention time (\( = N \)) in a windows of \( \pm 0.100 \) min (absolute = \( A \)) around the expected retention time (determined in the peak table of the QNT Editor). This is required to find the peak in a different channel.
Creating Dynamic Columns that Contain Flexible Formulas

Follow the description below to create a table column that contains flexible formulas and dynamically adapts to the number of existing peaks. (This procedure is only important if the table contains columns with report variables and if these columns are next to the newly added column.)

See the following example for information about how to create a column that allows you to check automatically whether the signal noise is below 0.005 mAU:

- Add a new column to the table. In the Printer Layout, new columns are always inserted to the left of the selected column. Select the first field below the header in the column that shall appear to the right of the new column:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sample No.</td>
<td>Sample Name</td>
<td>Noise mAU</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>mAU</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Pyrene</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Sample 1</td>
<td>0.004</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Sample 2</td>
<td>0.004</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>Sample 3</td>
<td>0.004</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>Sample 4</td>
<td>0.004</td>
</tr>
</tbody>
</table>

- On the context menu, select **Insert** and then select **Insert Chromeleon Report Column**.
- The **Insert Report Column** dialog box opens. Select a variable.
- Delete any existing entry in the **Formula** field.
• Click **OK** to exit the dialog. This action automatically selects the first field in the new column.

• Enter the desired formula in the layout line without changing the selection in the report table. Press <Enter> to confirm your entry.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>Sample No.</td>
<td>Sample Name</td>
<td>Noise mA</td>
<td>Noise mA</td>
<td>Amount</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Sample 1</td>
<td>0.004</td>
<td>0.004</td>
<td>1.1078</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Sample 2</td>
<td>0.004</td>
<td>0.004</td>
<td>1.9434</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Sample 3</td>
<td>0.004</td>
<td>0.004</td>
<td>3.6268</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Sample 4</td>
<td>0.004</td>
<td>0.004</td>
<td>8.4621</td>
</tr>
</tbody>
</table>

• Do not change the selection, i.e., the first field below the header is selected in the new column. Place the cursor on the black rectangle on the bottom right corner of the selection frame. The cursor becomes a solid black cross. Left-click and draw the formula into all lines of the selected report table column.

• Double-click in any field in the new column to open the **Report Column Properties** dialog box for the new report column. Edit the **Header** and **Dimension** fields as appropriate:
Creating Dynamic Links to Lines Other than the Current Line

To reference lines in a report table other than the current line, use indirect references instead of direct references such as G6. For indirect references, use the following Report Publisher variables:

- INDIRECT
- ADDRESS

The following formula references the cell G6 from the cell E2:

```
=INDIRECT(ADDRESS(ROW()+4;COLUMN()+2))
```

**Note:**

Use the **ROW()** and **COLUMN()** formulas to return the current line and column numbers.
Preparing the Printout

Use the Printer Layout to prepare your data for the printout. It is saved in the Report Definition File (RDF). To assist you in preparing the first printout and in creating your own report definition files (also called report templates below), Chromeleon provides some default RDF templates. During the Chromeleon installation, the default RDFs are written to the Dionex Templates > Reports directory of your local datasource.

To printout more data that is not included in the default report definition files, Chromeleon provides the possibility to create individual worksheets via the Printer Layout window. These worksheets can be combined and saved as a report template. The results of sample processing can thus be printed in a number of layouts.

For more information, refer to:
- Opening and Editing the Printer Layout
- Saving/Loading a Report Definition File
- Specifying the Pages to be Printed
- Specifying the Printout
- Printing the Results of a Single Sample
- Printing the Results of a Sequence or a Sample Batch
- Setting Print Area and/or Print Title(s)
- Automatically Repeating the Output for the Selected Objects
- Saving the Contents of a Printer Layout Page

In addition, you can use the Printer Layout to create charts (see Creating Charts).

For assistance to change the page format and to create headers and footers refer to:
- Changing the Page Format
- Notes on the Page Setup
Opening and Editing the Printer Layout

To access the Printer Layout, first open the desired sample and then change to the Printer Layout:

- Select and double-click the desired sample in the Browser. The (screen) report for the sample appears.
- Click the Printer Layout icon on the Method toolbar to change to the Printer Layout. The Printer Layout of the corresponding report definition file (RDF) is opened, i.e., the Preferred RDF File of the sequence to which the sample belongs.

Note:

If you open the report definition file in the Browser, e.g. by double-clicking, the Printer Layout is opened with the data that were saved last. In this case, it is not possible to load the desired sample data.

The Printer Layout consists of several (work)sheets. To change to a different sheet, click the desired tab on the bottom edge. The 'default' report definition contains, for example, an Integration tab, a Calibration (Curr. Peak) tab, and a Calibration (Batch) tab. The area of the single sheets is virtually unlimited in horizontal and vertical direction. However, depending on the amount of information, it may comprise different print pages. The different sheets comprise chromatograms, tables, diagrams, calibration curves, or other elements indicating the corresponding values of the current sample.

If you need more variables, chromatograms, tables, etc. than those available in the open Report Definition File, you can insert them into the existing worksheets.

Or else, create a new worksheet:

- Enable Layout Mode on the Edit menu.
- Select Insert Sheet on the Edit menu. An additional worksheet is inserted before the open sheet.

For information about how to edit existing worksheets, refer to:

- Inserting a Chromatogram
- Inserting a Trend, 3D Amperometry, or CV Plot
- Inserting and Deleting Individual Variables
Preparing the Printout

Inserting Text

In addition, you can insert tables in the Printer Layout. For more information, refer to Creating and Using Report Tables. Creating Report Tables for the Printout.

Inserting a Chromatogram

- Enable Layout Mode on the Edit menu.
- Select Insert > Chromatogram on the Edit menu or context menu. The mouse pointer becomes a + sign.
- Draw a rectangular frame of any size. The frame reserves this area for the chromatogram of the current sample.
- To indicate that the chromatogram is a Chromeleon object all four corners of the chromatogram inserted in this way are marked by a red triangle.
- Click the chromatogram to select it completely. You can then move it, or reduce or enlarge it in size.
- Select Chromatogram Properties on the Edit menu or context menu. Format the chromatogram as desired on the corresponding tab pages of the Chromatogram Decoration dialog box (caption, axes, font size, etc.).
- Press the F4 or the SHIFT+F4 to display the chromatogram of the next or previous sample and to check whether the selected settings are appropriate for all chromatograms.

Inserting a Trend, 3D Amperometry, or CV Plot

Inserting a Plot

1. Open the Printer Layout (see Opening and Editing the Printer Layout).
2. Select Layout Mode on the Edit menu.
3. Select the worksheet on which you want to insert the plot, or add a new worksheet (select Insert Sheet on the Edit menu).
4. On the Edit or context menu, select Insert > Trend Plot, Insert > 3D Amperometry Plot, or Insert > CV Plot. The mouse pointer becomes a + sign.

5. Drag the mouse to draw a rectangular frame of the approximate size that you want the plot to be. When you release the mouse, the rectangle will display the selected plot type. To indicate that the plot is a Chromeleon object, all four corners of the plot are marked by a red triangle.

Modifying a Plot
1. To select the complete area, click inside the frame.
2. You can now move, reduce, or enlarge the frame.
3. To define the data and format of the plot, select Trend Plot Properties, 3D Amperometry Plot Properties, or CV Plot Properties on the Edit or context menu.
4. Select the desired options on the corresponding tab pages of the Decoration dialog box.

Inserting and Deleting Individual Variables

Usually, general sample data, such as the sequence name, the corresponding Datasource, the user name, etc. appear at the beginning of a printout or in addition to a table or a chromatogram. To insert more variables:

- Enable Layout Mode on the Edit menu.
- Select a single cell and then select Insert > Chromeleon Report Variable on the Edit menu.
- In the Select Report Variable dialog box, select the variable category from the Categories list and then select a variable from the Variables list.
- Clicking OK includes the variable into the selected cell.
- To indicate that the variable is a Chromeleon object, a red triangle appears in the upper right corner of the cell.
- To modify the appearance of the variable, select the respective cell and then select the corresponding command on the Format menu.
Deleting a Variable

To delete a variable, it is not sufficient to delete the value indicated in the edit line. Proceed as follows:

- Select the cell for which you want to delete the contents.
- Select **Clear** on the context menu or press the **Del** key on the keyboard. The **Clear** dialog box appears.
- Select the **Values** option to delete only the values. Select **All** to delete the formats as well, e.g., the frames assigned to the cell. Click **OK** to clear the cell.
- Check whether the clear action was successful. Click a different cell and then click the cell again, for which you wanted to delete the contents. The edit line is updated for this cell. If the clear action was successful, the edit line does not contain any information.

**Notes:**

*Cells containing an underlying variable can be recognized by the formula name that is displayed in the status line whenever the cell is selected, for example, peak.height. If the selected cell contains only text, the status line is empty.*

*You cannot insert new variables by entering the corresponding formula, for example, *smp.name* for the sample name. Chromeleon interprets formulas that are entered in this way as pure text. Thus, only the text ‘*smp.name*’ appears in the edit line and not the value of the formula, i.e., the name of the corresponding sample.*

**Inserting Text**

You can insert text in any empty text cell of the worksheet. However, the size of the cell limits the length of the text that is displayed in the cell. Note the following:

- When you type longer texts into a cell than permitted by the cell size, the entire text is displayed using the neighboring cells to the right as long as these cells are not used. If the neighboring cells are used, the visible text is ‘cut’ to the cell size; the entire text is displayed only in the edit line.
• Text cells are not marked by a red triangle because they are no Chromeleon objects.

• To insert a line break, select the Wrap Text check box in the Format Cells dialog box. (To open this dialog box, select Alignment on the Format menu.)

• If graphics, such as chromatograms, are inserted, they will always hide the text.

Saving or Loading a Report Definition File

The Printer Layout of a report template (Report Definition File (RDF)) can contain one or several worksheets. If you save or load a Report Definition File, all worksheets included in the Printer Layout are saved or loaded.

• Select Save Report Definition on the context menu to save the Report Definition File and its worksheets under either an existing or a new name.

• Select Load Report Definition on the context menu to open an existing Report Definition File.

Tip:

In addition, a Report Definition File contains various settings of the on-screen report, such as the window size, the type, and number of the columns in a report, axis captions, etc. When you save the Printer Layout, any modifications made to the on-screen report are saved as well.

Specifying the Pages to be printed

To specify which pages of the Printer Layout shall be printed, enable Layout Mode on the Edit menu. Select Batch Report Setup on the File menu to open the Batch Report Setup dialog box:
Click **Conditions** to specify the print conditions for the corresponding worksheet. For example, it would be sensible to print the Summary page only for the last sample of a sequence:
However, you could print the Calibration (Batch) sheet for the Last Sample in a List of Standards.

Tip:

These settings are saved in the report definition file (RDF). They are used as default for Batch Report printing. The same defaults are used for electronically signing sequences (see Electronic Signature).

Specifying the Printout

Before you can print your data, define the printer to be used. In addition, define the headers and footers, margins, etc. on the Print dialog box and the Page Setup dialog box. Select Print Setup and Page Setup on the File menu.

The Print Setup and Page Setup settings are stored separately for each worksheet in a Report Definition file (Integration, Calibration, Peak Analysis, Summary, etc.). Therefore, select the settings for each worksheet separately.

- Select Print Setup on the File menu to determine the printer, the paper size, and the format (portrait or landscape). Having made these settings, a message box appears. Determine whether these settings shall be used only for the current worksheet or for all worksheets of the Printer Layout of the current Report Definition File (RDF).

Tip:

The Print Setup settings selected here only apply to the report definition file of the current sequence. They do not affect the default settings for Windows. On the other hand, changing the default printer, paper size, and format in Windows will not affect the settings specified here.

- Select Page Setup on the File menu to determine the appearance of the headers and footers, the margins, the alignment, etc. You can also set grid lines, determine whether column and/or row headers are displayed, and whether the printout should be in black and white or in color. For more information, refer to How to .... Preparing the Printout Notes on the Page Setup.
Tip:
For technical reasons, direct help information for the Print Setup dialog box is not available.

Also, refer to How to …: Preparing the Printout Saving/Loading a Report Definition File and Saving the Contents of a Printer Layout Page.

Printing the Results of a Single Sample

You can print the results of single samples from either the Printer Layout or the on-screen report (integration plot). For each printout, the Printer Layout pages saved in the Report Definition File (RDF) are used as a template. The results of a single sample or of a sequence are output in the defined way (see Printing the Results of a Sequence or a Sample Batch). Please note that the Report Definition File and the worksheets define only the appearance of the printout, but not the contents. Unless you have already specified the worksheets to be printed, specify them now:

In the Printer Layout

Select Batch Report Setup on the File menu to specify which worksheets shall be printed. The Batch Report Setup dialog box is opened:
Select the corresponding settings on the **Print Sheets** tab page. The available worksheets are listed in the **Sheets** field. Define which pages shall be printed and under which conditions. Click **Conditions...** to define the print conditions. For example, you can specify for which sample type a page shall be printed. For instance, it would be sensible to print a summary report only for the last sample of a sequence.

**In the Report (Screen Report)**

Select **Print** on the **File** menu to print the results of the currently open sample from the on-screen report:

![Print dialog box showing worksheet selection](image)

On the **Print** dialog box, select the worksheet to be printed from the **Using Sheet** drop-down list. The worksheet is always printed with the on-screen results if they are part of the defined view. For example, the current **Mass Spectrum** is only printed if a mass spectrum is part of the selected worksheet.

**Tip:**

In the Printer Layout, you can only select peak spectra but no retention time spectra. If you want to print a retention time spectrum, open the Report, select a spectrum on-screen, and then print a worksheet that includes the spectrum.
Printing the Results of a Sequence or a Sample Batch

You may also print the results of an entire sequence, a Query or a Batch. Unless you have already specified which of the worksheets created in the Printer Layout should be printed, specify the worksheets now.

In the Browser

Click a Sequence or a sample, and then select Batch Report on the File menu. The Batch Report dialog box appears. Select a report definition file from the Use Report Definition drop-down list. Or else, click the "..." button and navigate to the desired file.

The worksheets defined in the Printer Layout of the Report Definition File are listed in the Select sheets to be printed field. Specify which pages shall be printed. To print the pages under certain conditions only, select the Print under certain conditions only option and then click Conditions. Define the print conditions in the Print Conditions dialog box. Click OK to print the entire sequence or the selected samples of a query. To print the entire query, select all samples of a query by clicking the No. field at the top left of the sample list.
Preparing the Printout

On the Control Panel: Printing the Results Directly after Data Acquisition

To print the results directly after data acquisition, select Reporting on the Batch menu. The Reporting tab page of the Batch dialog box appears:

Select the Print/Export Report check box to reopen the Batch Report dialog box (see the picture in the Browser section above). Follow the description in the Browser section. The tab dialog box indicates the printer, the report definition file (RDF), and the channel selected for the printout. Click OK to return to the Reporting tab page. Specify whether each sample shall be printed separately and immediately after data acquisition or whether all samples shall be printed when the batch is finished.

Tip:

The settings made in the Browser or on the control panel are saved in the report definition file of the current sequence. They apply to all sequences that use this report definition file. The same defaults are used for electronically signing the worksheets of these sequences (see Electronic Signature).

For more information, refer to Printing the Results of a Single Sample.
Setting Print Area and Print Title(s)

To print a defined area of a Printer Layout page:

- Press the left mouse button and drag the mouse to select an area.
- Select Printing > Set Print Area on the Format menu.
- Select Printing > Release Print Area on the Format menu to deselect the defined print area. The defined print area is indicated in parentheses behind the command.

When printing a table that exceeds one page, you can print the title on every page:

- Select the entire line(s) for the print title with the left mouse button.
- Select Printing > Set Print Titles on the Format menu.
- Select Printing > Release Print Titles to deselect the set print titles. The set print title area is indicated in parentheses after the command.

Automatically Repeating the Output for the Selected Objects

It is often useful to repeat the output of reports for other channels, samples, and/or peaks. In Chromeleon, you can automatically repeat the output of reports for:

- Each sample of a sequence or selection
- Each peak in a peak table or the current chromatogram
- Each channel of a sample

Follow the steps below:

- Select the lines completely, i.e., in the grey column at the utmost left that indicates the line numbers.

Tip:

Verify for graphic objects that you have selected all lines covered by the object.

- To select more than one area, hold the CTRL key down, and then select the next area by the lines as described above.
• Select **Printing > Set Autorepeat Area** on the **Format** menu to specify the selected area as the area for which the output is automatically repeated.

• The **Autorepeat Area Properties** dialog box is opened. Use this dialog box to define for which channels, samples, and/or peaks the selected area shall be output.

For an example, refer to Automatically Repeating the Output for the Selected Objects: Example.

It depends on the objects in the selected area whether it makes sense to repeat the output for other samples and/or peaks. Therefore, please note:

• The **Repeat Samples** tab page is disabled if at least one **Peak Summary** table and/or one **SST Summary** table is selected.

• The **Print and Repeat Peaks** tab page is disabled if at least one **Integration** table is selected.

You can repeat the output for other channels, samples, and/or peaks when you

• Print a batch

• Sign sequences

• Print interactively from the Printer Layout

**Note:**

*When you repeat the output for channels and peaks, only those objects are replaced for which no fixed channel/peak is specified. A warning appears if the Fixed Channel or Fixed Peak option is selected for objects that shall be output for different channels or peaks.*

*For example, this applies to chromatograms for which the Fixed Channel option is selected on the Channel tab page. (To access the Channel tab page, select Chromatogram Properties on the chromatogram's context menu).*
Automatically Repeating the Output for the Selected Objects: Example

To repeat the output for the header and the table below the chromatogram, select the following lines:
If your sequence contains only two standards of interest, you can specify that the repetition include all standards; refer to the image below. In addition, select the **Page break after each sample** check box to output the second sample on a separate page:

With these settings, the following two pages are output via the **Print** command (**File** menu):
For general information, refer to Automatically Repeating the Output for the Selected Objects.

**Saving the Contents of a Report Definition File**

Chromeleon provides various formats for saving the report data of the current sample:

- To save the active page of the Printer Layout, select **Save as** on the **File** menu. The **Save As** dialog box is opened. Under **Save as type**:
  - Select **Excel ... (*.xls)** to convert your data into the Excel format. Enter the file name and click **Save** to save your data as a separate file. In addition to the values of the table, any graphics and diagrams included in the table are also saved to the new file. If the **Printer Layout** of the **Report Definition File (RDF)** contains several worksheets, the Excel file has the same structure. Please note that different Excel file types are available, depending on the Excel version (Excel V4 or Excel V5 or V7).
  - Select **HTML (*.htm)** to save your data as an HTML page. Graphics and diagrams cannot be converted and saved in HTML format.
  - Select **Tabbed Text (*.txt)** to save your data as pure text. The content of the individual report columns is separated by a tab stop. Graphics and diagrams cannot be converted and saved in Tabbed Text format.
Creating Charts

Tip:

In order to perform the operations described below, verify that the Report Publisher add-on product is licensed.

The Chart Wizard assists you in creating charts:

• Enable Layout Mode on the Edit menu.

• Select the columns and rows that shall be represented in a chart.

• Select Insert > Charts on the context menu. The shape of the mouse pointer changes to a + character.

• Hold down the left mouse button down and draw a rectangle in the size required for the chart.

• The Wizard guides you through the chart creation process. Select the chart type and style and then enter the desired layout settings and axis titles.

• Click Finish to exit the Wizard and insert the chart.

The new chart is displayed in the previously drawn frame. If required, you can edit the chart later. For example, you can change the width, color, and pattern of lines, areas, or captions, smooth curves, or select a different chart type.

• Select a single chart element by (double-) clicking and then double-click the selected element to change it. The Chart Designer is opened. After you have made the desired changes and click OK to apply the changes to the chart.

You can also change the size and position of the entire chart:

• Click inside the chart. Hold down the left mouse button and move the chart to the desired position. Resize the chart by dragging the corresponding size markers.
Changing the Page Format

In the Printer Layout, the page format can be changed as follows:

Define the printer settings

- Select Print Setup on the File menu. The Print Setup dialog box appears.
- In the Paper section, specify the paper size. Click the arrow then select a size from the list. In the Orientation section, select Portrait or Landscape. The size and orientation is used for all pages of the respective printout but is not accepted as default.

Tip:
The settings are only valid for the report definition file of the current sequence. They do not overwrite the default Windows settings. In addition, any change of the default printer, paper size, or format that is made under Windows does not affect the settings made here.

Directly printing in the desired format:

- Select Print on the File menu.
- Click Properties to open the Properties dialog box.
- Select a paper size and orientation.

Notes on the Page Setup

Headers and footers are printed at the upper and lower page margins. Select Page Setup on the File menu. Make the desired settings in the Page Setup dialog box.

Headers and footers can contain text and specific format codes. The syntax is compatible with Microsoft Excel. Observe the order of the single entries. First, define the alignment of the single header and/or footer, using one of the following commands:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&amp;L</td>
<td>Left-aligns the characters that follow</td>
</tr>
<tr>
<td>&amp;C</td>
<td>Centers the characters that follow (default)</td>
</tr>
<tr>
<td>&amp;R</td>
<td>Right-aligns the characters that follow</td>
</tr>
</tbody>
</table>
The default font is Arial 10. You can only define a different font after you have defined the header and/or footer alignment. Define the new font as follows:

- **&B** Bold
- **&I** Italic
- **&U** Underline
- **&S** Strikeout
- **&"fontname"** Uses the specified font
- **&nn** Uses the specified font size

Tip:

If you do not enter these font definitions after the header and/or footer alignment, they will be ignored. You can change the font after each alignment code (&L/&#C/&#R).

Finally, enter the expression to be printed:

- **&A** Prints the current sheet name
- **&D** Prints the current date
- **&T** Prints the current time
- **&F** Prints the Report Definition File (RDF)
- **&P** Prints the page number
- **&P+Number** Prints the following page number: current page + entered number. For example: &P+4 prints page 16 if the current page is page 12 and you entered 4.
- **&s** Prints an ampersand
- **&N** Prints the total number of pages in the document

When entering headers and footers longer than one line, note that the alignment codes (&L, &C, &R) must be column-oriented. Enter all left-aligned rows first, then enter all centered rows, and finally enter all right-aligned rows. To separate rows, press <Ctrl> <Enter>.

In addition to the pre-defined variables above, you can enter variables pertaining to Chromeleon. Enclose these variables in braces.

Example:

&LOperator: {gen.operator}, Timebase: {seq.timebase}, Sequence:{seq.name} &RPage &P of &N

&D
Preparing the Printout

This example produces the following header or footer:

Operator: cmadmin, Timebase: HPLC, Sequence: Calibration  Page 1 of 12
4/6/2002

You can include any Chromeleon variable in the header. However, including sample and sequence variables makes the most sense. The Chromeleon formula variables are identical with the ones generated in the dialog box for entering report variables. Enter the decimal places for numerical variables after the formula. Separate them by ";" (default: 0). Example: {smp.inject_volume;2}. Time entries cannot be formatted.

Note:

All worksheets of the Printer Layout that are selected for printing are considered one single print job; that is, page numbering is consecutive for all worksheets.

Answering Frequently Asked Questions

Question: How can I have the results printed out automatically after the analysis?

Answer: Mark the sequence of interest in the Browser. Select Reporting on the Batch menu and select Print/Export Report by the box. Afterward select an option: Print each sample immediately or Print when the entire batch is finished.

Question: The view in the Printer Layout window and the printed report have a different layout. Why?

Answer: This may happen. There are different ways how to print a sample report. Usually, you will print the report via the Batch Report dialog window. When you print the report in this way, the report definition defined in this dialog is used. When you have the results printed automatically via Reporting as described above, it may happen that the report definition used to display the data in the Printer Layout is different from the report definition used for the printout.

Notes:

When you either select Print on the File menu in the Printer Layout or click the Print icon on the standard toolbar, it is always the current view that is printed.
Question: Where is the used Report Definition File (RDF) saved?
Answer: Some predefined Report Definition Files (RDFs) are available in the Dionex Templates > Reports folder. However, it is not imperative that the used RDF is stored in this folder. To find out where the used RDF is stored, proceed as follows: Mark the sequence of interest in the Browser. Right-click and select Properties on the context menu. In the Preferred Report & Channel section, the entry in the Preferred RDF File field indicates the path of the current report definition file. To determine a different report definition file as preferred RDF, click the Browse button ("...") and navigate to the desired report definition.

The settings of this RDF are then always used when you open a sample of this sequence afterward. However, you can select a different RDF in the on-screen report or in the Printer Layout, using the Load Report Definition command on the Workspace menu.

Notes:
If you select the RDF via Load Report Definition, this does only apply to the current view. The Preferred RDF File of the sequence is not changed.

Question: What do the terms Printer Layout, Report Template, and Report Definition File refer to?
Answer: The Printer Layout is an editor window that allows you to define the content and the layout of the pages to be printed. This information is saved to the Report Definition File (RDF) together with the layout of the on-screen report. Sometimes, the Report Definition File is also referred to as report template.

Question: How can I save the scaling?
Answer: The scaling, too, is saved to the Report Definition File. Select Save Report Definition on the Workspace menu. Afterward, select the previously saved RDF as Preferred RDF File in the properties of the sequence (see above). (Unlike the peak parameters, the scaling is not saved to the QNT File.)

Question: How can I save comments in the report? Where can I enter information about the column I am using?
Answer: Chromeleon provides different possibilities for doing this. For example, you can use the Title field to enter information about the column: Mark the sequence in the Browser and select Properties on the context menu. Afterward, add the Title variable of the $\Rightarrow$Sequence category to the Printer Layout.

Tip:

Keep in mind to update the Title field entry whenever you change the column.

For tips to solve similar questions, refer to How to ...: Preparing the Printout and the corresponding subtopics.
Analyzing 3D Amperometry Data

The ICS-3000 Electrochemical Detector (ED) can collect 3D amperometry data when it is running in integrated amperometry mode. To turn on collection of 3D amperometry data, enable the 3D_Amp channel check box in the Program Wizard or Program Editor. This adds a 3D_Amp.AcqOn command to the control program.

After collecting the 3D data, you can view and analyze it in the 3D amperometry window of any Chromeleon PC that has Release 6.7 or higher installed.

Note:
The 3D Data Acquisition license is required to acquire 3D amperometry data. See Chromeleon (Overview) Chromeleon Licenses.

For more information, refer to:
- Displaying a Sample's 3D Amperometry Data
- Selecting the Integrated or Raw 3D Amperometry View
- Changing the 3D Amperometry Plot Scale
- Viewing Chromatograms in the 3D Amperometry Window
- Viewing I-t Plots in the 3D Amperometry Window
- Editing Integration Intervals
- Extracting a Chromatogram from 3D Amperometry Data
- Exporting a Chromatogram, an I-t Plot, or 3D Amperometry Data

See also, Baseline Correction of I-t Plots

For an overview of 3D amperometry window features, refer to The 3D Amperometry Window.
Displaying a Sample's 3D Amperometry Data

Use one of the following methods to display a sample's 3D amperometry data:

- Select the sample in the Browser and then select Open>3D_Amp from the context menu.
- If the sample is already open in another window (for example, the integration window), select 3D Amperometry on the View menu or click the following icon on the Method toolbar.

Tips:

3D amperometry data collection is available only with the ED electrochemical detector running in integrated amperometry mode and on a Chromeleon PC that has the 3D Data Acquisition license. To turn on collection of 3D amperometry data, enable the 3D_Amp channel on the ED Options tab page of the Program Wizard or PGM Editor.

The 3D amperometry data can also be viewed on a control panel during data acquisition.

Also, refer to:

- Analyzing 3D Amperometry Data
- The 3D Amperometry Window
- The Program Wizard
- The PGM Editor: Device Views

Selecting the Integrated or Raw 3D Amperometry View

The 3D Amperometry Window has two options for viewing chromatographic 3D_Amp data:

- Integrated data view
- Raw data view
Analyzing 3D Amperometry Data

To distinguish between the two views:

- In integrated data view, parallel integration interval line cursors appear on the 3D data and I-t plots. The Y-axis units on the chromatogram displayed above the 3D data plot are nC (nanoCoulombs).

- In Raw data view, a single horizontal line cursor for selecting waveform time is displayed instead of the integration cursors. The Y-axis units on the chromatogram displayed above the 3D data plot are nA (nanoAmps).

To select the view option:

1. Double-click the 3D or I-t plot or select Decoration on the context menu.

2. On the Chromatogram Plot tab page, select either the Show Raw Data option or the Show Integrated Data option.

Also, refer to:

- Analyzing 3D Amperometry Data
- The 3D Amperometry Window
Changing the 3D Amperometry Plot Scale

When you initially open a sample's 3D amperometry data, the window displays the data in full-scale view (i.e., the axes on each plot include the full range of data values from the analysis). There are several methods for adjusting the scale of a plot to zoom in or out to show the data of interest:

**Tip:**
Changing the scale on one of the plots (chromatogram, raw 3D data, or I-t) also changes the scale of the other plots.

- Point to an area on a plot and then drag to define the area to zoom into.
- Select commands from the View or context menu (right-click to open the context menu):
  - **Full Size** Adjusts the scale of all plot axes to include the entire 3D data set.
  - **Autoscale** Adjusts the signal axis optimally for the selected data.
  - **Zoom to Integration Interval** Adjusts the waveform period axis (ms) on the 3D and I-t plots to display only the integrated portion of the data. The response axis (nC) on the chromatogram and 3D plots is adjusted to the range of responses in the integrated data.
  - **Unzoom** Reverses the previous zoom steps one by one.

- Adjust scaling parameters manually using the Decoration dialog box:
  1. Double-click the plot or select Decoration on the context menu to open the dialog box.
  2. Then, go to the General and/or Chromatogram Plot tab pages to adjust scaling parameters:
     - On the General tab page, clear the Autoscale check boxes and then enter the desired values for the Time, Waveform, and Signal axes.
     **Tip:**
     *When the Autoscale check boxes are enabled, the plot axes are adjusted to include the full range of data values from the analysis. Clearing the check boxes lets you enter specific values for each axis.*
     - On the Chromatogram Plot tab page, enter the desired Scale values for the response axis.
In the following examples, the first window shows 3D data in the initial full size scale.

After selecting **Zoom to Integration Interval**, the window looks like this:
The **Scale** parameters on the **General** tab page of the **Decoration** dialog box can be used to adjust the scale further:

**Time:** Adjusted to include only the peaks of interest (no peaks of interest occurred after about 30 minutes).

**Waveform:** Adjusted to the length of the integration interval (done by the **Zoom to Integration Interval** command).

**Signal:** Adjusted to the highest response within the integration interval (done by the **Zoom to Integration Interval** command).
These settings result in the following plot display:

![Plot Display](image)

Also, refer to:

- Analyzing 3D Amperometry Data
- The 3D Amperometry Window
- Viewing Chromatograms in the 3D Amperometry Window

The upper right pane of the 3D amperometry window displays a chromatogram of the selected 3D data. In integration view, the chromatogram is generated by adding responses measured throughout the integration interval to produce one integrated data point per waveform cycle.

In raw data view, the chromatogram is generated by extracting one data point per waveform from the selected waveform period time slice.
Tip:
If the chromatogram pane is not displayed, enable the Show Chromatogram option on the context menu or click the following icon on the Method toolbar.

To select a different chromatogram:
The following methods can be used to select data and generate a different chromatogram:

- In integration view, drag the upper integration interval line cursor on the 3D or I-t plot to move the integration interval. Drag the lower integration interval line cursor to increase or decrease the interval.

  Tip:
  If multiple integration intervals are defined, you must first drag the vertical retention time line cursor into the interval that you want to adjust and then move the integration interval line cursor.

- In raw data view, drag the single horizontal waveform time line cursor to select a different waveform period time from which to generate the chromatogram.

- In integration view, add or delete integration intervals.

- Enable or disable the Autozero.

Also, refer to:
- Analyzing 3D Amperometry Data
- Editing Integration Intervals
- Extracting a Chromatogram
- The 3D Amperometry Window
Viewing I-t Plots in the 3D Amperometry Window

The lower left pane of the 3D amperometry window displays a plot of current (I) vs. waveform time (t). To better visualize this plot, imagine that a vertical slice of the 3D data is taken at retention time (T) and the slice is then laid flat. The left axis is the waveform period (ms) and the bottom axis is the current (nA). When the Waveform is displayed, the top axis on the plot indicates the applied voltage (mV).

Tips:
If the I-t plot pane is not displayed, enable the Show I-t Plot option on the context menu or click the following icon on the Method toolbar.

To display a different I-t plot:
On the 3D or chromatogram plot, drag the vertical retention time line cursor to a new position.

To show or hide the waveform display:
1. Double-click the 3D or I-t plot or select Decoration on the context menu.
2. Select the I-t and Waveform Plots tab.
3. Select the Show waveform check box to display the waveform or clear the check box to hide the waveform display.
Also, refer to:

- Analyzing 3D Amperometry Data
- The 3D Amperometry Window

### Editing Integration Intervals

In addition to editing integration intervals by moving the line cursors in the 3D amperometry window (see Viewing Chromatograms in the 3D Amperometry Window), you can also edit integration intervals on the Chromatogram Plot tab of the Decoration dialog box.

Use the Chromatogram Plot tab page to add or delete intervals and edit existing intervals.

1. Double-click the 3D or I-t plot or select Decoration on the context menu.
2. Select the Chromatogram Plot tab.
3. To add an integration interval, click Insert and then enter the Retention Time (min), the Begin Integration, and the End Integration parameters. See the guidelines below for details.
When you add an integration interval at a particular retention time, the new interval is in effect from that time forward until the next integration interval is specified.

4. To delete an integration interval, select the interval and click **Delete**.

**Note:**

*Integration intervals that were defined in the control Program cannot be deleted. The Retention Time (min) cell for these intervals is disabled (gray).*

**Guidelines for Defining New Integration Intervals**

- The retention time of the last integration interval in the table must be before the end of the run.

- The Begin Integration must be at least 10 ms after the start of the waveform period.

- The End Integration must be at least 10 ms before the end of the waveform period.

- Up to 15 intervals can be defined.

Also, refer to:

- Analyzing 3D Amperometry Data

- The 3D Amperometry Window

**Extracting a Chromatogram from 3D Amperometry Data**

You can extract a chromatogram from 3D_Amp data displayed in the 3D amperometry window.

1. In the 3D amperometry window, select **Extract>Chromatogram to file** from the View or context menu (right-click to open the context menu).

   A dialog box opens with settings for the chromatogram currently displayed in the 3D amperometry window.

2. Enter a **Channel name** in which to save the chromatogram, or retain the default name if you wish to overwrite the existing channel data.
3. Click **OK** to accept these settings and extract the current chromatogram to a separate channel. The chromatogram opens in the integration window.

You can also change the following settings before extracting the chromatogram:

- **Autozero**: When Autozero is enabled, the extracted 3D channel data is adjusted by the signal offset. When disabled, the total 3D channel signal is extracted.

- **Extract Raw Data**: The chromatogram is generated by extracting one data point per waveform from the selected time slice. Enter the time at which to extract the data.

- **Extract Integrated Data**: The chromatogram is generated by calculating one data point per waveform from the selected integration interval(s). Edit the beginning and ending integration times for existing integration intervals, add integration intervals, or delete intervals. See [Editing Integration Intervals](#) for additional information.

- **Extract from all samples of current sequence or query**: A chromatogram is extracted for all of the samples in the sequence or in a list of samples created with a query. Each chromatogram is named with the channel name entered in the **Channel name** field. After you click **OK**, Chromeleon extracts all of the chromatograms and then opens the chromatogram of the selected sample. To view an extracted chromatogram for a different sample, right-click the sample in the Browser, select **Open** from the context menu and select the channel name from the list.

Also, refer to:

- [Analyzing 3D Amperometry Data](#)

- [The 3D Amperometry Window](#)
Exporting a Chromatogram, an I-t Plot, or 3D Amperometry Data

You can export a chromatogram, an I-t plot, or raw 3D Amperometry data from the 3D amperometry window.

1. Select Export>Chromatogram from the View or context menu.
2. Select whether to copy the chromatogram to the Windows clipboard or to a file. A text file containing the data values corresponding to the chromatogram currently displayed in the 3D amperometry window is copied.

Follow the same procedure to export an I-t plot or raw 3D amperometry data.

Also, refer to:

- Analyzing 3D Amperometry Data
- The 3D Amperometry Window
Working with Cyclic Voltammetry Data

You can use the ICS-3000 Electrochemical Detector to perform Cyclic Voltammetry (CV) by issuing commands from a control panel (see Detector Control Performing Cyclic Voltammetry). The recorded data can be viewed in a CV view window. CV data is acquired as a 3D_Amp channel at 1 kHz and then compressed to 20 Hz before it is stored. The data from all the cycles in a run is stored in the manual sequence as a single sample, with a default name of Manual Acquisition.

Note:
The 3D Data Acquisition license is required to acquire and process cyclic voltammetry data.

Also, refer to:
- Opening a Cyclic Voltammetry Data Plot
- Viewing Cyclic Voltammetry Data
- Copying Cyclic Voltammetry Plots

Opening a Cyclic Voltammetry Data Plot

1. To view cyclic voltammetry data plot, right-click the Manual Acquisition sample in the manual sequence in which the data was saved.
2. Select Open on the context menu and then select 3D_Amp from the list of channels.
The data opens in a CV view window.

Also, refer to:

- Viewing Cyclic Voltammetry Data
- Copying Cyclic Voltammetry Plots
Viewing Cyclic Voltammetry Data

Cyclic Voltammetry data is displayed in a CV view window (see Opening a Cyclic Voltammetry Data Plot).

The right pane of the window displays the cyclic Voltammogram. The x-axis is the applied voltage and the y-axis is the detected current. To change the appearance of the plot (for example, to display a grid, change the plot or background colors, change the scale, or change the font) right-click anywhere on the plot and select Decoration on the context menu.

The left pane of the CV view window displays basic information about when and how the data was collected.

Name	The Name assigned to the sample.
Date	The Injection Date/Time.
Comment	Additional sample description (if any).
CV Steps	The steps (the three voltages and the number of seconds they were applied) that define one CV cycle. See Detector Control: Performing Cyclic Voltammetry.

The left pane also provides options for changing the display mode:

- Single CV at cycle # n: Displays one cyclic voltammogram at a time. For example, if the CV run consisted of 6 cycles, you can view voltammograms 1 through 6 individually.
- Average of All CV Cycles: Averages the voltammograms from each cycle in the run and displays the resulting voltammogram.
- Overlay of All CV Cycles: This mode displays all of the voltammograms recorded in the run. Each one is plotted in a different color. To see (or change) the color assigned to each plot, select Decoration from the View or context menu.
- Reversed (Polarographic): Selecting this check box inverts the plot axes. The voltage will be plotted from positive to negative (left to right) and the current from positive to negative (bottom to top).

Also, refer to:

- Opening a Cyclic Voltammetry Data Plot
- Copying Cyclic Voltammetry Plots
Copying Cyclic Voltammetry Plots

You can copy a cyclic voltammetry plot to the Windows Clipboard and then paste it into another application (for example, a Word document).

1. Display the desired plot in the CV view window (see Viewing Cyclic Voltammetry Data).
2. Click the right pane of the CV view window to select the plot.
3. Select Copy on the Edit menu.

Also, refer to:

Opening a Cyclic Voltammetry Data Plot
Viewing Cyclic Voltammetry Data
Using Mass Spectrometers

When used together with the Thermo Finnigan aQa or MSQ Mass Spectrometer, Chromeleon supports MS data acquisition. However, before you can record and process mass spectra, several conditions must be fulfilled. For more information, refer to:

- Creating an MS Program and Sequence
- Creating a PGM File for the MSQ
- Creating MSQ Channels with the MSQ PGM File
- Creating a PGM File for the aQa MS
- Creating aQa MS Channels with the aQa PGM File
- Acquiring MS Data in MCA Mode
- Extracting Mass Traces Online
- Extracting Mass Traces Afterward
- Extracting a Temporary Mass Trace
- Showing Mass Spectra
- Minimizing the Noise of Mass Spectra
- Processing Mass Spectra
- Defining Further QNT Settings for MS

Creating an MS Program and Sequence

Manual data acquisition is not supported for Mass Spectrometers. Therefore, you must prepare a sequence before you can start data acquisition. This requires a control file (PGM File).

Program Wizard (PGM Editor: Commands)

Create a new PGM File, using the Program Wizard (see The Control Program The Program Wizard). If a mass spectrometer is installed in the current timebase, select data acquisition with the MS channel on the Acquisition Options tab page. This action opens the page for MS-specific parameters.
Tip:

Log on to the PC as a main user or as administrator if you wish to create a program for the MSQ mass spectrometer. If you do not log on this way, a No MS device configured error message appears.

Set the parameters required for Mass Trace processing (= MS chromatogram). The Range parameter is the scaling factor for the online display of mass traces on the control panel; for example, Range = 5 allows a maximum value of 100.000 = (1 E+5) counts in the online display. However, the stored data are not affected. The Smoothing parameter determines which type of smoothing filter is used for smoothing MS chromatograms.

In the Points field, define the number of data points to be used for smoothing. Select the number of data points such that the width of the smoothing filter approximately equals the peak’s half width. For example, the following program will be created:

![Program](image-url)
The PGM File that was generated using the PGM Wizard does not include \( \Rightarrow \text{AcqOn/Off (Data Acquisition On/Off)} \) commands for the MS channels. The channels that are needed for mass trace acquisition depend on the contents of the MS method.

The Program Wizard automatically generates the \texttt{wait MS.ready} command before the inject command. This synchronization is required between the mass spectrometer and Chromeleon. If you want to create your own PGM Files manually, always add the \texttt{wait MS.ready} command before the inject command.

If you want to use \( \Rightarrow \text{Blank Run Samples} \), verify that the inject mode is set to \texttt{Inject}. The aQa mass spectrometer will not start data acquisition unless an injection signal is received.

Example:
\begin{verbatim}
Wait MS.Ready
Inject Blank=Inject
\end{verbatim}

On the last wizard page, select the Review the program in a new window option. This action automatically opens the PGM Editor as soon as the new PGM File is saved. Use the PGM Editor to define the mass spectrometer settings for the PGM File. Select the Mass Spectrometer view by clicking the corresponding icon in the left editor section. For information about mass spectrometer methods, refer to Creating a PGM File for the aQa MS or Creating a PGM File for the MSQ.

Sequence

Then, create a sequence for your HPLC or IC system.

a) Using the Sequence Wizard:

Enter the created PGM File in step 4.

b) From a previous sequence:

Copy the PGM File to a new sequence and enter the PGM File in the sample list.

\( \textbf{Tip:} \)

Verify that the Operation property of the aQa mass spectrometer is in the \texttt{On} state. Otherwise, the gas flow and the probe heating are turned off and data acquisition cannot be started.
Then, start data acquisition as usual (see Practical Tips for Device Control | Starting Data Acquisition). The current mass spectrum can be displayed on the Control Panel.

Creating a PGM File for the MSQ

Use the Surveyor MSQ view of the PGM Editor (see Control | The PGM Editor) to create a new instrument method for the MSQ Mass Spectrometer as part of a PGM File. Open this view by clicking this icon on the shortcut bar in the left PGM Editor section:

Tip:

If the PGM File was not created for a timebase that includes a mass spectrometer, neither an MS method nor the MSQ symbol will be available. To use such a PGM File for a timebase that includes a mass spectrometer, select Add MS Instrument Method on the Edit or context menu. This adds the Surveyor MSQ view. From the standard MS methods (Surveyor MSQ Templates) in the dialog box, select an MS method. The appropriate MS method depends on the ionization mode, the MS mode (Full Scan or SIM), and the polarity of the recorded ions. In addition, enter the following command in the Program (Commands view) at the time t = 0.000 min:

0.000 Wait MS.Ready

The Surveyor MSQ view is part of the Xcalibur software and allows you to specify the method used by the MSQ mass spectrometer.

The upper left section shows a runtime preview of the single channels to record. In the Preview section, select:

- All Scans to display all channels.
- Full Scans to display the Full Scan channels (orange) only.
- SIM to display the SIM channels (green) only.

For an overview of the defined channels, including their measurement parameters, select the Parameter option.
If a chromatogram was recorded with one MS channel only, you can also have the chromatogram displayed in the preview. Select Show Method Options to open the method options, and then select a sample by clicking the "..." button under Display.

On the top right, in the Per Method Parameters section, select ESI (Electrospray Ionization) or APCI (Atmospheric Pressure Chemical Ionization) as the ionization mode, depending on your MSQ installation. In addition, enter the nominal temperature on the ion source (range: 0 to 655°C).

In the Full/SIM Scan Events section, enter the MSQ-specific signal parameters for Mass Spectra acquisition:

In the Mass Range field, define the desired mass range (Full Scan). In the Mass field, define the mass. Define the corresponding bandwidth (SIM) in the Span field. In addition, define the duration of the data acquisition (Time Range), the data acquisition rate (Dwell Time (SIM) or Scan Time (Full Scan)), the Polarity, and the ionization voltage (Cone [V]).

**Note:**

For a list of SIM masses for anions, cations, and amines in water, refer to How to …: Using Mass Spectrometers SIM Mass Lists for IC-MS.
In the **Scans** section, select the **Add Full** option to add a new full-scan channel or **Add SIM** to add a new SIM channel. The settings from the preceding channel are adopted. Use the **Create Group** option to group all SIM channels that are recorded in the same retention time window. (To do so, hold down the CTRL key and click to select the SIM channels.) Select **Ungroup** to undo this action. To delete a channel, select the channel, and then click **Delete**.

**Tip:**

*This view of the PGM Editor is part of the Xcalibur software. The Xcalibur Help system provides detailed information about mass spectra acquisition. First, click the question mark (at the top right) and then click the option of interest to open the corresponding Help topic.*

**Tip:**

*When saving the PGM File, only use ASCII characters to name the entire path, i.e., including the datasource and the directories. If you use other characters, too, it may be impossible to start data acquisition.*

For more information, refer to [Creating MSQ Channels with the MSQ PGM File](#).

### Creating MSQ Channels with the MSQ PGM File

Chromeleon creates a channel for each scan event of the MSQ instrument method. In the case of **SIM** groups, this also applies to each sub scan event. The examples below describe which channels Chromeleon creates automatically for the different types of data acquisition with the MSQ.

**Note:**

*For a list of SIM masses for anions, cations, and amines in water, refer to [How to …: Using Mass Spectrometers](#) **SIM Mass Lists for IC-MS**.*
The first example creates four SIM channels plus the TIC channel:

<table>
<thead>
<tr>
<th>Name</th>
<th>Mass</th>
<th>Span</th>
<th>Time Range (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM 1</td>
<td>80.00</td>
<td>1.00</td>
<td>0.00-1.00</td>
</tr>
<tr>
<td>SIM 2</td>
<td>85.00</td>
<td>1.00</td>
<td>0.00-1.00</td>
</tr>
<tr>
<td>SIM 3</td>
<td>90.00</td>
<td>1.00</td>
<td>0.00-1.00</td>
</tr>
<tr>
<td>SIM 4</td>
<td>100.00</td>
<td>1.00</td>
<td>0.00-1.00</td>
</tr>
</tbody>
</table>

The SIM1 channel records the chromatogram at a mass of 80.00 m/z, while the other channels record the same chromatogram at a mass of 85.00 m/z (SIM2), 90.00 m/z (SIM3), and 100.00 m/z (SIM 4).

Data acquisition is performed for all four channels at the same time (0 to 1 min). That is why you can group all four channels. In this case, only SIM channels and the TIC channel would be created.

The next example creates 11 SIM channels (SIM 01 to SIM 11) and the TIC channel:

<table>
<thead>
<tr>
<th>Name</th>
<th>Mass</th>
<th>Span</th>
<th>Time Range (min)</th>
<th>Dwell Time (s)</th>
<th>Polarity</th>
<th>Cone (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM 1</td>
<td>100.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>-ve</td>
<td>200.00</td>
</tr>
<tr>
<td>SIM 2</td>
<td>200.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>+ve</td>
<td>100.00</td>
</tr>
<tr>
<td>SIM 3</td>
<td>300.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>-ve</td>
<td>200.00</td>
</tr>
<tr>
<td>SIM 4</td>
<td>400.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>+ve</td>
<td>100.00</td>
</tr>
<tr>
<td>SIM 5</td>
<td>500.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>-ve</td>
<td>200.00</td>
</tr>
<tr>
<td>SIM 6</td>
<td>600.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>+ve</td>
<td>100.00</td>
</tr>
<tr>
<td>SIM 7</td>
<td>700.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>-ve</td>
<td>200.00</td>
</tr>
<tr>
<td>SIM 8</td>
<td>800.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>+ve</td>
<td>100.00</td>
</tr>
<tr>
<td>SIM 9</td>
<td>900.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>-ve</td>
<td>200.00</td>
</tr>
<tr>
<td>SIM 10</td>
<td>100.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>+ve</td>
<td>200.00</td>
</tr>
<tr>
<td>SIM 11</td>
<td>110.00</td>
<td>1.00</td>
<td>0.00-2.00</td>
<td>1.00</td>
<td>-ve</td>
<td>200.00</td>
</tr>
</tbody>
</table>
The channel assignment is as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Mass [m/z]</th>
<th>Span [m/z]</th>
<th>Name</th>
<th>Mass Range [m/z]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM 1</td>
<td>100</td>
<td>1</td>
<td>SIM_01</td>
<td>99.5 - 100.5</td>
</tr>
<tr>
<td>SIM 2</td>
<td>200</td>
<td>1</td>
<td>SIM_02</td>
<td>199.5 - 200.5</td>
</tr>
<tr>
<td>SIM 3</td>
<td>300</td>
<td>1</td>
<td>SIM_03</td>
<td>299.5 - 300.5</td>
</tr>
<tr>
<td>SIM 4</td>
<td>400</td>
<td>1</td>
<td>SIM_04</td>
<td>399.5 - 400.5</td>
</tr>
</tbody>
</table>

**GROUP 2:** Retention time 2.00 to 3.00 min

SIM 1	100	1	SIM_05	99.5 - 100.5
SIM 2	100	3	SIM_06	98.5 - 101.5
SIM 3	100	5	SIM_07	97.5 - 102.5
SIM 4	150	1	SIM_08	149.5 - 150.5
SIM 5	200		SIM_09	199.5 - 200.5

**Single channels:**

| SIM 1| 99  | 1    | SIM_10| 98.5 - 99.5      |
| SIM 2| 110 | 1    | SIM_11| 109.5 - 110.5    |

The next examples creates 3 TICF channels and the TIC channel:

<table>
<thead>
<tr>
<th>Name</th>
<th>Mass Range</th>
<th>Time Range (min)</th>
<th>Peak Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 1</td>
<td>30.00 to 500.00</td>
<td>0.00 to 1.00</td>
<td>centroid</td>
</tr>
<tr>
<td>FS 2</td>
<td>60.00 to 400.00</td>
<td>2.00 to 4.00</td>
<td>profile</td>
</tr>
<tr>
<td>FS 3</td>
<td>600.00 to 800.00</td>
<td>0.00 to 2.00</td>
<td>centroid</td>
</tr>
</tbody>
</table>

The channel assignment is as follows:

**TICF_1:**

FS 1, Mass range 30.00 to 500.00 m/z; retention time 0.00 to 1.00 min,

**TICF_2:**

FS 2, Mass range 60.00 to 400.00 m/z; retention time 2.00 to 4.00 min,

**TICF_3:**

FS 3, Mass range 600.00 to 800.00 m/z; retention time 0.00 to 2.00 min.

**Tip:**

When saving the PGM File, always use ASCII characters to name the entire path, i.e., including the datasource and the directories. If you use other characters, too, it may be impossible to start data acquisition.
If you notice after data acquisition that a channel is missing, you can extract separate Mass Traces (or mass ranges) from the Mass Spectrum and save them as new channels. (For more information, refer to How to ...: Using Mass Spectrometers Extracting Mass Traces Afterward.)

Creating a PGM File for the aQa MS

Use the Mass Spectrometer view of the PGM Editor (see Control The PGM Editor) to create a new instrument method for the aQa Mass Spectrometer as part of the PGM File. Open this view by clicking this icon on the shortcut bar in the left PGM Editor section:

Tip:

If the PGM File was not created for a timebase that includes a mass spectrometer, neither the MS method nor the Thermo Finnigan aQa symbol will be available. To use such a PGM File for a timebase that includes a mass spectrometer, select the Add MS Instrument Method command to the Edit or context menu. This creates a standard MS method and adds the Mass Spectrometer view. In addition, enter the following command in the Program (Commands view) at the time \( t = 0.000 \) min:

\[ \text{0.000 Wait MS.Ready} \]

The Mass Spectrometer view is part of the Xcalibur software and allows you to specify the method used by the aQa mass spectrometer.

On the Ionization Mode tab page, select Electrospray (Electrospray Ionization) or APCI (Atmospheric Pressure Chemical Ionization) as the ionization mode.

On the Analysis tab page, set the sensitivity of the mass spectrometer via the detector voltage. Via Advanced (from tune file), load a tune file that has been previously defined. To fine-tune the mass spectrometer directly, click Tune.
\textbf{Caution:}

When you use the Xcalibur method editor of Chromeleon, the \textit{Other detectors} section is irrelevant. Do \textbf{not} use this section for data acquisition with other detectors, such as UV detectors! In this case, perform data acquisition as usual.

On the \textbf{Acquisition} tab page, enter the aQa-specific signal parameters for \textit{Mass Spectra} acquisition:

Select the data acquisition mode first: Select \textit{Full-Scan} to acquire the entire mass spectrum for each analyte or \textit{SIM} to obtain MS chromatogram at a defined mass.


**Note:**

For a list of SIM masses for anions, cations, and amines in water, refer to *How to …: Using Mass Spectrometers* | SIM Mass Lists for IC-MS.

In Full-Scan mode, use the **Simultaneous acquisitions** tab page to set the polarity and maximum voltage on the aQa MS for four single channels (≥ TICF channels). In the **Acquisition rate** field, specify the rate for data acquisition; in the **Mass spectrum** field, specify the mass range for which to perform data acquisition.

**Tips:**

This view of the PGM Editor is part of the Xcalibur software. Thus, you can open the Xcalibur help either via the **Help** menu or by clicking **Help**. The Xcalibur help provides detailed information about mass spectra acquisition.

When saving the PGM File, only use ASCII characters to name the entire path, i.e., including the datasource and the directories. If you use other characters, too, it may be impossible to start data acquisition.

For more information, refer to *Creating aQa MS Channels with the aQa PGM File*.

**Creating aQa MS Channels with the aQa PGM File**

The examples below describe which channels Chromeleon creates for the different types of data acquisition with the aQa MS.

**Note:**

For a list of SIM masses for anions, cations, and amines in water, refer to *How to …: Using Mass Spectrometers* | SIM Mass Lists for IC-MS.
The first example creates two SIM channels plus the TIC channel:

The SIM_01 channel records the chromatogram at a mass of 100 amu, while the SIM_02 channel records the corresponding chromatograms at a mass of 200 amu.
The second example creates six SIM channels and the TIC channel:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Mass (amu)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM_01</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SIM_02</td>
<td>100</td>
<td>-80</td>
</tr>
<tr>
<td>SIM_03</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>SIM_04</td>
<td>200</td>
<td>-100</td>
</tr>
<tr>
<td>SIM_05</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>SIM_06</td>
<td>300</td>
<td>80</td>
</tr>
</tbody>
</table>
The third example creates three TICF channels and the TIC channel:

The channel assignment is as follows:

TICF1: positive voltage, 100V
TICF2: positive voltage, 200V
TICF3: negative voltage, -100V.

**Tip:**

*When saving the PGM File, only use ASCII characters to name the entire path, i.e., including the datasource and the directories. If you use other characters, too, it may be impossible to start data acquisition.*
If you notice after data acquisition that a channel is missing, you can extract separate Mass Traces (or mass ranges) from the Mass Spectrum and save them as new channels. (For more information, refer to How to...: Using Mass Spectrometers Extracting Mass Traces Afterward.)

SIM Mass Lists for IC-MS

SIM (Selected Ion Monitoring) is the Mass Spectrometer method used for recording an MS chromatogram at a specific mass-to-charge ratio.

The tables below list the SIM masses for anions, cations, and amines in water. Refer to the appropriate table when entering SIM masses in aQa or MSQ PGM Files, or to identify found masses.

<table>
<thead>
<tr>
<th>m/z</th>
<th>Anion</th>
<th>Detected As</th>
<th>Isotopes (decreasing frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Fluoride</td>
<td>F⁻</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Chloride</td>
<td>Cl⁻</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Formate</td>
<td>HCOO⁻</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Nitrite</td>
<td>NO₂⁻</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Thiocyanate</td>
<td>SCN⁻</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Acetate</td>
<td>CH₃COO⁻</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Bicarbonate</td>
<td>HCO₃⁻</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Nitrate</td>
<td>NO₃⁻</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Chlorite</td>
<td>ClO₂⁻</td>
<td>67/69</td>
</tr>
<tr>
<td>73</td>
<td>Glyoxylate</td>
<td>CHOCOO⁻</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Propionate</td>
<td>CH₃CH₂COO⁻</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Glycolate</td>
<td>HOCH₂COO⁻</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Bromide</td>
<td>Br⁻</td>
<td>79/81</td>
</tr>
<tr>
<td>83</td>
<td>Chlorate</td>
<td>ClO₃⁻</td>
<td>83/85</td>
</tr>
<tr>
<td>m/z</td>
<td>Anion</td>
<td>Detected As</td>
<td>Isotopes (decreasing frequency)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>87</td>
<td>Butyrate</td>
<td>CH₃CH₂CH₂COO⁻</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Pyruvate</td>
<td>CH₃COCOO⁻</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Lactate</td>
<td>CH₃CH(OH)COO⁻</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Oxalate</td>
<td>COOHCoo⁻</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Chloroacetate</td>
<td>ClCH₂Coo⁻</td>
<td>93/95</td>
</tr>
<tr>
<td>95</td>
<td>Methanesulfonate</td>
<td>CH₃SO₃⁻</td>
<td>95/97</td>
</tr>
<tr>
<td>96</td>
<td>Sulfamate</td>
<td>NH₂SO₃⁻</td>
<td>96/98</td>
</tr>
<tr>
<td>97</td>
<td>Sulfate</td>
<td>HSO₄⁻</td>
<td>97/99</td>
</tr>
<tr>
<td>97</td>
<td>Phosphate</td>
<td>H₂PO₄⁻</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Perchlorate</td>
<td>ClO₄⁻</td>
<td>99/101</td>
</tr>
<tr>
<td>101</td>
<td>Valerate</td>
<td>CH₃CH₂CH₂CH₂COO⁻</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Hydroxybutyrate</td>
<td>CH₃CHOHCH₂Coo⁻</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Malonate</td>
<td>COOHCCH₂Coo⁻</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Thiosulfate</td>
<td>HS₂O₃⁻</td>
<td>113/115</td>
</tr>
<tr>
<td>113</td>
<td>Trifluoroacetate</td>
<td>F₃CCOO⁻</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Maleate</td>
<td>COOHCHCHCOCO⁻</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Fumarate</td>
<td>COOHCHCHCOCO⁻</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Succinate</td>
<td>COOHCH₂CH₂Coo⁻</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Bromate</td>
<td>BrO₃⁻</td>
<td>127/129</td>
</tr>
<tr>
<td>127</td>
<td>Dichloroacetate</td>
<td>Cl₂CHCOCO⁻</td>
<td>127/129</td>
</tr>
<tr>
<td>127</td>
<td>Iodide</td>
<td>I⁻</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Selenite</td>
<td>SeO₃⁻</td>
<td>128/126</td>
</tr>
<tr>
<td>131</td>
<td>Glutamate</td>
<td>COOH(CH₂)₂Coo⁻</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Malate</td>
<td>COOHCCH₂CHOHCOO⁻</td>
<td></td>
</tr>
</tbody>
</table>
## Anion Detected As

<table>
<thead>
<tr>
<th>m/z</th>
<th>Anion</th>
<th>Detected As</th>
<th>Isotopes (decreasing frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>Tartrate</td>
<td>COOH(CHOH)₂COO⁻</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Bromoacetate</td>
<td>BrCH₂COO⁻</td>
<td>137/139</td>
</tr>
<tr>
<td>144</td>
<td>Selenate</td>
<td>SeO₄⁻</td>
<td>144/142</td>
</tr>
<tr>
<td>145</td>
<td>Adipate</td>
<td>COOH(CH₂)₄COO⁻</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Bromochloroacetate</td>
<td>BrCICCHCOO⁻</td>
<td>173/171/175</td>
</tr>
<tr>
<td>183</td>
<td>Styrenesulfonate</td>
<td>CH₂CHC₆H₄SO₃⁻</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Citrate</td>
<td>HOOCCH₂COH(COOH)CH₂COO⁻</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Quinate</td>
<td>C₆H₇(OH)₂COO⁻</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Isocitrate</td>
<td>HOOCCHOHCH(COOH)CH₂COO⁻</td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>Dichlorobromoacetate</td>
<td>Cl₂BrCCOO⁻</td>
<td>207/205/209/211</td>
</tr>
<tr>
<td>217</td>
<td>Dibromoacetate</td>
<td>Br₂CHCOO⁻</td>
<td>297/295/293/299</td>
</tr>
<tr>
<td>251</td>
<td>Dibromochloroacetate</td>
<td>Br₃ClCOO⁻</td>
<td>251/253/249/255</td>
</tr>
<tr>
<td>297</td>
<td>Tribromoacetate</td>
<td>Br₃CCOO⁻</td>
<td>297/295/293/299</td>
</tr>
</tbody>
</table>

## Cation and Amine SIM Mass List for IC-MS (in water)

<table>
<thead>
<tr>
<th>m/z</th>
<th>Cation</th>
<th>Detected As</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Ammonium</td>
<td>NH₄⁺</td>
</tr>
<tr>
<td>19</td>
<td>Hydronium</td>
<td>H₃O⁺</td>
</tr>
<tr>
<td>20</td>
<td>Calcium</td>
<td>1/2Ca₂⁺</td>
</tr>
<tr>
<td>23</td>
<td>Sodium</td>
<td>Na⁺</td>
</tr>
<tr>
<td>39</td>
<td>Potassium</td>
<td>K⁺</td>
</tr>
<tr>
<td>46</td>
<td>Ethylamine</td>
<td>CH₃CH₂NH₃⁺</td>
</tr>
<tr>
<td>46</td>
<td>Dimethylamine</td>
<td>(CH₃)₂NH₂⁺</td>
</tr>
<tr>
<td>60</td>
<td>Trimethylamine</td>
<td>(CH₃)₃NH⁺</td>
</tr>
<tr>
<td>m/z</td>
<td>Cation</td>
<td>Detected As</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>60</td>
<td>Guanidine</td>
<td>((\text{NH}_2)_2\text{CNH}_2^+)</td>
</tr>
<tr>
<td>61</td>
<td>Ethanediamine</td>
<td>(\text{NH}_2\text{CH}_2\text{CH}_2\text{NH}_3^+)</td>
</tr>
<tr>
<td>62</td>
<td>Monoethanolamine</td>
<td>(\text{OHCH}_2\text{CH}_2\text{NH}_3^+)</td>
</tr>
<tr>
<td>69</td>
<td>Imidazole</td>
<td>(\text{C}_3\text{H}_6\text{N}_2\text{H}^+)</td>
</tr>
<tr>
<td>74</td>
<td>Diethylamine</td>
<td>((\text{CH}_3\text{CH}_2)_2\text{NH}_2^+)</td>
</tr>
<tr>
<td>74</td>
<td>Dimethylethylamine</td>
<td>((\text{CH}_3)_2\text{(C}_2\text{H}_5\text{)}\text{NH}^+)</td>
</tr>
<tr>
<td>74</td>
<td>Butylamine</td>
<td>(\text{C}_6\text{H}_5\text{NH}_3^+)</td>
</tr>
<tr>
<td>75</td>
<td>Propanediamine</td>
<td>(\text{NH}_2\text{CH}_2\text{CH}_2\text{NH}_3^+)</td>
</tr>
<tr>
<td>76</td>
<td>Methylethanolamine</td>
<td>(\text{HOCH}_2\text{CH/CH}_3\text{NH}_3^+)</td>
</tr>
<tr>
<td>76</td>
<td>Dimethylmethanolamine</td>
<td>(\text{HO(C(CH}_3)_2\text{NH}_3^+)</td>
</tr>
<tr>
<td>76</td>
<td>Propanolamine</td>
<td>(\text{C}_3\text{H}_6\text{OHNH}_3^+)</td>
</tr>
<tr>
<td>80</td>
<td>Pyridine</td>
<td>(\text{C}_5\text{H}_4\text{NH}^+)</td>
</tr>
<tr>
<td>85</td>
<td>Lysidine</td>
<td>(\text{C}_4\text{H}_9\text{N}_2\text{H}^+)</td>
</tr>
<tr>
<td>85</td>
<td>Morpholine</td>
<td>(\text{C}_4\text{H}_9\text{ONH}_2^+)</td>
</tr>
<tr>
<td>88</td>
<td>Methylidieethylamine</td>
<td>(\text{CH}_3\text{(C}_2\text{H}_5)_2\text{NH}^+)</td>
</tr>
<tr>
<td>89</td>
<td>Butanediame (Putrescine)</td>
<td>(\text{H}_2\text{NC}_2\text{H}_4\text{NH}_3^+)</td>
</tr>
<tr>
<td>90</td>
<td>Dimethylethanolamine</td>
<td>(\text{C}<em>9\text{H}</em>{13}\text{NH}^+)</td>
</tr>
<tr>
<td>90</td>
<td>Methylpropanolamine</td>
<td>(\text{C}_4\text{H}_9\text{(OH)NH}_3^+)</td>
</tr>
<tr>
<td>100</td>
<td>Cyclohexylamine</td>
<td>(\text{C}_6\text{H}_11\text{NH}_3^+)</td>
</tr>
<tr>
<td>102</td>
<td>Triethylamine</td>
<td>((\text{CH}_3\text{CH}_2)_3\text{NH}^+)</td>
</tr>
<tr>
<td>103</td>
<td>Pentanediame (Cadaverine)</td>
<td>(\text{H}_2\text{NC}_2\text{H}_5\text{NH}_3^+)</td>
</tr>
<tr>
<td>104</td>
<td>Dimethylamino-2-propanol</td>
<td>((\text{C}_2\text{H}_5\text{OH})(\text{CH}_3)_2\text{NH}^+)</td>
</tr>
<tr>
<td>106</td>
<td>Diethanolamine</td>
<td>(\text{(OHCH}_2\text{CH}_2)_2\text{NH}_2^+)</td>
</tr>
<tr>
<td>m/z</td>
<td>Cation</td>
<td>Detected As</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>118</td>
<td>Diethylethanolamine</td>
<td>C₆H₁₅ONH⁺</td>
</tr>
<tr>
<td>120</td>
<td>Methylglycidolamine</td>
<td>C₅H₁₃O₂NH⁺</td>
</tr>
<tr>
<td>132</td>
<td>Diethylaminopropanol</td>
<td>C₇H₁₇ONH⁺</td>
</tr>
<tr>
<td>146</td>
<td>Spermidine</td>
<td>H₂N(CH₂)₃NH(CH₂)₂NH₃⁺</td>
</tr>
<tr>
<td>150</td>
<td>Triethanolamine</td>
<td>(OHCH₂CH₂)₂NH⁺</td>
</tr>
<tr>
<td>203</td>
<td>Spermine</td>
<td>C₁₀H₂₆N₄H⁺</td>
</tr>
</tbody>
</table>

**Acquiring MS Data in MCA Mode**

Use the MCA (= Multi-Channel Analysis) mode to calibrate the aQa Mass Spectrometer and analyze pure, low-concentration solutions of substances. Usually, the solution in question is provided to the mass spectrometer via infusion.

**Tip:**

The MCA mode is not available for the MSQ.

The MCA mode summarizes all Mass Spectra of the single scans. Only the resulting averaged mass spectrum from each of the scan filters (up to four) is saved when the analysis is finished.

**Caution:**

The MCA mode does not allow recording and showing mass spectra at a defined time of the chromatogram. Therefore, the MCA mode is not suitable for chromatographic analyses!

Data acquisition in MCA mode is as follows:

- Create a PGM File, using the Program Wizard (see The Control Program).
- Verify that the PGM File includes an Inject command even if you do not use an autosampler. Otherwise, data acquisition cannot be started.
• In the PGM Editor (see Control The PGM Editor), open the Acquisition tab page of the Finnigan aQa window. In the Mass spectrum field, select MCA as Peak format.

• Save the PGM File and close the PGM Editor.

• Enter the PGM File in your sequence and start the sequence in a batch.

**Tip:**

> MCA data acquisition is not possible in demo mode!

The Xcalibur window below opens automatically when data acquisition is started:

The status bar indicates the time that passed since the data acquisition was started. The results of the last two scans appear at the top left and right.
As soon as the data acquisition is finished, you can display the results in the Chromeleon report. To display the results click the line at the highest retention time on the chromatogram plot using the Spectra Tool. This action opens the following view:

The chromatogram in the left pane contains one data point only that is at the highest retention time. To illustrate the summing up of the entire acquisition period, it shows one line in the height of the entire counts of all summed up mass spectra. In addition, only one single (entire) mass spectrum is displayed in the right window section.

Tip:

As MCA mass spectra are not spectra from chromatographic peaks, but are formally retention time spectra, they cannot be inserted in the Printer Layout. Therefore, select Print on the File menu to print mass spectra. A dialog box appears. Select the Printer Layout page that contains the mass spectrum.
Extracting Mass Traces Online

It is possible to extract Mass Traces (MS chromatograms) and save them as additional channels. This can be done either during data acquisition (online) or later (see Extracting Mass Traces Afterward).

In the Server Configuration Program, define the required number of Online Mass Extract Channels on the Installed Channels tab page. (Up to 32 channels can be defined.) These channels are automatically named MS_01 to MS_32.

Create a PGM File for data acquisition in Full Scan mode, using the Program Wizard (see The Control Program, The Program Wizard). Each single MS channel needs its own AcqOn/Off command. Define the following parameters for each single MS channel:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FilterIndex</td>
<td>0: NoFilter</td>
<td>n: TICF_0n (MSQ) or TICF_n (aQa) (n = number of the TICF channel configured in the Server Configuration)</td>
<td>0</td>
<td>Selects the filter for extraction. The filter indexes correspond to the nine MSQ filters or the four aQa filters that can be defined in the MS method. 0 = NoFilter means that the TIC channel is used.</td>
</tr>
<tr>
<td>MinMass</td>
<td>0.00 m/z (MSQ) 2.0 m/z (aQa)</td>
<td>2000.00 m/z (MSQ) 1636.0 m/z (aQa)</td>
<td></td>
<td>Minimum mass of interval that will be extracted.</td>
</tr>
<tr>
<td>MaxMass</td>
<td>0.00 m/z (MSQ) 2.0 m/z (aQa)</td>
<td>2000.00 m/z (MSQ) 1636.0 m/z (aQa)</td>
<td></td>
<td>Maximum mass of interval that will be extracted.</td>
</tr>
</tbody>
</table>

These parameters cannot be set using the Program Wizard. Therefore, follow the steps below:

- Open the PGM File.
- Select Command on the Control menu to open the Commands dialog box.
- Select your Mass Spectrometer (listed by the name defined in the Server Configuration).
- Open the mass channel to be extracted; for example, MS_01.
Specify the individual parameters:

- Use the **Upper/Lower Limit** parameters to specify the signal limits.
- You can also extract the trace of the **Base Peak**. In this case, verify that the **BasePeakMode** property is set to **Yes**.

**Tip:**
Do not change the mass trace settings during a run. This might result in confusion. Therefore, Dionex recommends not entering a retention time.

The corresponding section in the **Program** could look as follows:

```
MS_01.MinMass = 149.5
MS_01.MaxMass = 150.5
MS_01.FilterIndex = 1
```

**Tip:**
To start data acquisition, manually enter the following command for the MS_01 channel:  `MS_01.AcqOn`

To stop data acquisition for the MS_01 channel, enter:  `MS_01.AcqOff`

You can display these channels on the **Control Panel** during data acquisition.
Extracting Mass Traces Afterward

If you did not extract a Mass Trace online, during data acquisition (see Extracting Mass Traces Online), you can do this afterward:

Tip:

To view a mass trace before extracting it, extract a temporary mass trace first (see Extracting a Temporary Mass Trace).

1. To extract a mass trace, open the Mass Spectrum from the Integration plot or the QNT Editor. (For more information about the editor, see Data Representation and Reprocessing The QNT Editor.)

Tip:

You may also define mass trace extraction in the Post-acquisition steps view of the PGM Editor (see Control The PGM Editor). Open the PGM File in which you want to define mass trace extraction, and then select the Post-acquisition steps view.

2. Select Extract Mass Trace… on the context menu to open the Extract Mass Trace dialog box:
Tip:

In the PGM Editor, follow the steps below: Select Insert line on the context menu to add a new post-acquisition step. The New post-acquisition step dialog box is opened. Select Extract MS channel to open the Extract Mass Trace dialog box.

3. Select a filter and mass range, as well as the Smoothing type for the MS chromatograms, the number of data points to be used, and the type of the mass trace to be extracted.

4. In the Channel Name box, enter the name for the new channel or accept the default name. Chromeleon creates the suggested name from the Filter Index, the Mass, if indicated, the Smoothing information, and the Trace Type for the mass trace to be extracted.

Note:

If the Trace Type is TIC, Chromeleon does not consider the mass (or the mass range if < 1.00 m/z) for the channel name.

5. To extract the mass trace for all samples in the sequence or Query, select the Apply to all samples in the current sequence or query check box.

Tip:

This option is not available in the Extract Mass Trace dialog box of the PGM Editor.

6. Click Extract to make the new channel available for chromatographic representation.

If you know prior to data acquisition which channels you will need, you can omit this step and record the required channels right from the beginning (see How to: Installing and Configuring Mass Spectrometers Defining the Number of MS Channels in the Administrator Help section) or extract them as described above.

Note:

If you need help identifying found masses, refer to How to: Using Mass Spectrometers SIM Mass Lists for IC-MS.
Extracting a Temporary Mass Trace

Before you extract a Mass Trace (see Extracting Mass Traces Afterward), you can create it temporarily by just clicking the mouse. The following options are available:

Using the mouse pointer

<table>
<thead>
<tr>
<th>Cursor</th>
<th>Activated by</th>
<th>What it does</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placing the pointer near a mass data point or a mass needle.</td>
<td>A temporary MS channel is extracted for the current mass. An existing temporary MS channel will be overwritten.</td>
</tr>
<tr>
<td></td>
<td>Placing the pointer near a mass data point or a mass needle and simultaneously pressing the SHIFT key.</td>
<td>A temporary MS channel is extracted for the current mass. The new channel will overlay existing temporary MS channels.</td>
</tr>
<tr>
<td></td>
<td>Placing the pointer between two mass range delimiters.</td>
<td>This action moves the mass range as desired.</td>
</tr>
<tr>
<td></td>
<td>Placing the pointer on or near a mass range delimiter.</td>
<td>This action moves the left or right delimiter in the desired direction.</td>
</tr>
</tbody>
</table>

On the context menu

To extract a mass trace, click the corresponding mass or right-click the mass range. On the context menu, select Extract Temporary Mass Trace and define the corresponding parameters in the dialog box:
Showing Mass Spectra

The Mass Spectra view can be added to almost all Chromeleon plots (Integration, QNT Editor (see Data Representation and Reprocessing The QNT Editor), Printer Layout) if Xcalibur is installed. To enable the mass spectra view click the following icon:

Or else, select Show Mass Spectra on the View menu:

To add a mass spectrum to the Printer Layout, enable Layout Mode on the Edit menu. Select Insert on the View or context menu, and then select Mass Spectra Plot.

The appearance of the displayed mass spectra may be quite different, depending on which the MS instrument method was used. For more information, refer to How to …: Using Mass Spectrometers Creating a PGM File for the aQa MS or Creating a PGM File for the MSQ. For information about which the parameters should be used in this method to receive a certain mass spectrum, refer to the Xcalibur help.

Note:
MS spectra are displayed one below the other to enhance the clearness of representation. For a large enough representation, enlarge the upper section of the entire window, if necessary.
In the captions of the single mass spectra plots, the peak name (if the mass spectrum of a peak is given) plus the retention time of the mass spectrum is given on the left. On the right, the acquisition mode is given: **Full ms** indicates Full-Scan mode; **SIM ms** indicates SIM mode.

In the caption of full-scan mass spectra, the entire mass range is given in parentheses on the right. The fragmentation voltage that is given in front of the mode is important, as well.

With mass spectra that were acquired in SIM mode, no entire mass spectra are available. These SIM mass spectra are extracted from single mass traces, so the resulting SIM mass spectrum usually shows gaps between the single traces. In the caption, the single mass ranges are given together with the corresponding fragmentation voltage behind the respective mass range (following a @ sign) on the right.

**How to set the MS specific parameters of the view**

Place the pointer on the mass spectrum and right-click to open the context menu. Select **Decoration**, go to the **MS Filter** tab page, and then make the desired settings:
Minimizing the Noise of Mass Spectra

- Mass Spectra usually include more details than UV spectra. However, they often have an increase noise level. Especially with low signal intensity, they are considerably affected by the background spectrum. To use the information of mass spectra in the best possible way, Dionex recommends that you reprocess them as described below. There are two ways:

### Spectra Bunching

To reduce mass spectra noise, you can bunch several single mass spectra to one entire mass spectrum. Spectra bunching can be performed for both peak spectra and retention time spectra.

Use the MS tab page of the QNT Editor to bunch several single spectra to the left and the right of the chromatogram peak together with the peak maximum spectrum to one entire peak spectrum. (For more information about the editor, see Data Representation and Reprocessing The QNT Editor.)

In the chromatogram, define the range for which to display the entire retention time spectrum. Use the Spectra Tool to select a range while left clicking. You can perform this in a UV channel as well.

### Subtracting Background Mass Spectra

Background subtraction of mass spectra eliminates the influence of the background on the mass spectra. The background mass spectrum to be subtracted can be defined either for the entire chromatogram or automatically by Chromeleon for each single peak.

The corresponding setting is made on the MS tab page of the QNT Editor or in the chromatogram. The settings made in the chromatogram are saved to the QNT File of the current sample as well. Thus, your input affects all samples that are evaluated using this QNT File.

For more information, refer to:

- Processing Mass Spectra
- How to …: Working with Chromatograms Subtracting Background Spectra
Tracking the Effects of Background Subtraction

You can track the effects of spectra subtraction directly on the mass spectra plot:

• Select **Decoration** on the context menu to open the mass spectrum decoration and then the select the **Peak Spectra** tab page.

• In the **Background Subtraction Overlay** section, select the **Background Spectrum** to display the subtracted background mass spectrum in addition to the peak and retention time spectra.

• In addition, select the **Original Spectra** to display the respective mass spectrum without subtraction.

Processing Mass Spectra

➢ **Mass Traces** have a relatively high noise level. Therefore, they must be processed before being used further. Chromeleon uses the following algorithm:

• First, the spectrum of the peak maximum is determined by averaging several spectra in the peak maximum on both ends.

• Then, the background spectra of both peak ends are determined, also by averaging several spectra.

• The background peak spectrum (usually at the peak maximum) is then determined via linear interpolation of these two background spectra and is finally subtracted from the single spectrum (usually of the peak maximum).

Tip:

*Only mass spectra recorded with the same filter settings are averaged and subtracted. The filter settings of the Apex mass spectrum of the current peak are used for this. For time spectra, the filter settings of the mass spectrum nearest to the selected retention time are used.*

In the QNT Editor, use the **MS** tab page to specify how mass spectra are formed from individual spectra. (For more information about the editor, see **Data Representation and Reprocessing**.) Select the **Enable Background Subtraction** check box to enable spectrum subtraction:
In the combo box under **Peak Spectrum Bunch**, enter the number of single spectra that shall be bunched to form the spectrum at the peak maximum. A maximum of 99 single spectra can be averaged. For symmetry reasons, it is possible to enter odd numbers only.

Select **Peak Dependent Background Subtraction** to allow automatic background subtraction for each peak.

In the edit fields under **Left Region Bunch** and **Right Region Bunch**, enter the number of spectra to be used to form the two background spectra. You can select up to 99 single spectra. Zero and even numbers are permitted as well. These settings apply to peak spectra and time spectra below peaks.

Select **Fixed Background Subtraction Ranges** to define two fixed ranges for background subtraction for the entire chromatogram. It usually makes sense to set one range at the beginning and the other one at the end of the chromatogram. These settings apply to peak spectra and to all time spectra.

Click **Apply** to accept the settings and calculate the resulting mass spectrum. When the **Show Spectra** view is enabled, the newly calculated mass spectrum is displayed at once.
Note:

Defining the background subtraction manually in the chromatogram affects the settings on the MS tab page. For example, if you select **MS Background Subtraction** on the context menu of the chromatogram, and then select **Fixed Background Ranges**, the corresponding option is automatically selected on the MS tab page of the QNT Editor.

**Defining Further QNT Settings for MS**

Handling the Retention Time Delay as against a second detector

Use the **Delay Time** option on the General tab page to take the retention time difference into account that is due to the time needed by the substances to travel from the first detector, for example, to the MSQ Mass Spectrometer.

For more information, refer to *How to ...: Integrating Chromatograms and Identifying Peaks* Defining the QNT Method for Several Detectors in the Creating a Peak Table section.

Defining Peaks via Mass Spectra

For peak identification via mass spectra, use the six MS columns:

- Mass Peak 1 (as well as Mass Peak 2 and Mass Peak 3)
- MS threshold
- MS filter conditions
- Check MS retention times

For more information, refer to *How to ...: Integrating Chromatograms and Identifying Peaks* Identifying Peaks via Their Mass Spectra (MS Tracking) Detectors.
Collecting Fractions

- *Fraction Collectors* are often used for fraction collection after the detector. The online interpretation of the signal can be used to automate fractionation.

Fractions can be collected for preparative use, if desired. However, in many cases, the objective is further analysis of each fraction. In either case, you can collect the fractions based on the signal. Signal-based fraction collection is quite complex, but the Fraction Collection driver provided by Chromelone facilitates the process. In the Server Configuration program, install the Fraction Collection driver in addition to the device driver for your fraction collector.

**Tips:**

In order to perform fraction collection, a *Fraction* or *Purification* license must be installed.

The Fraction Collection driver also allows you to collect fractions independently of the signal, with a fixed volume at predefined retention times.

For more information about fraction collection, refer to:

- Setting up Fraction Collection
- Enabling Fraction Collection (General Options)
- Setting the Fraction Collection Options
- Selecting the Channel for Fraction Collection (Channel Selection Options)
- Detecting the Peak Start, Peak Maximum, and Peak End (Peak Detection Options)
- Entering More Peak Detection Parameters (Peak Detection Options)
- Determining the Delay Time (Delay and Detector Offsets)
- Editing Signal-Dependent Fraction Collection Parameters
- Editing Signal-Independent Fraction Collection Parameters
Defining the Reactions to Certain Events

Program Example (One Detection Channel)

Program Example (Two Detection Channels)

Fraction Collection Control via an MS

Fraction Collection Control via an MS for Different Samples

Checking the Fraction Collection Status on the Control Panel

Tracking Fraction Collection in the Chromatogram

Tracking Fraction Collection in the Report

If you select the appropriate Post-Acquisition Steps, Chromeleon can create new samples and perform fractionation automatically. This process is also known as Autopurification. Before beginning, verify that a Purification license is installed. For more information, refer to Collecting Fractions Automatically (Autopurification) and to the autopurification manual.

Note:

The Fraction Collection Automation driver from earlier Chromeleon versions is obsolete. It is included on the Chromeleon software CD only for compatibility reasons (Server Configuration program > Add device to timebase > Manufacturers > Obsolete). Dionex recommends that you install the new Fraction Collection driver, instead (Server Configuration program > Add device to timebase > Manufacturers > General).

Setting up Fraction Collection

Before you can collect fractions, you have to set up fraction collection as follows:

Server Configuration

Install the Fraction Collection driver in the desired timebase. (Select Add Device on the context menu, select Generic from the left list box, and then select Fraction Collection from the right list box.) In addition, install the Device Driver for the respective fraction collector.
Determine how the fractions are collected, either in the Program Wizard (see The Control Program The Program Wizard) or on a Control Panel. On a control panel, select Command on the Control menu and then select the required settings under Fraction Collection.

Program Wizard
The Program Wizard assists you in creating a Program for fraction collection control:

- On the Fraction Collection - General Options page, determine the fraction collection period (see PGM Wizard: Fraction Collection - General Options).
- On the Fraction Collection Options page, define the fraction collection control parameters (see Setting the Fraction Collection Options).
- On the Fraction Collection - Channel Selection Options page, determine the channel(s) for peak recognition during fraction collection (see Selecting the Channel for Fraction Collection (Channel Selection Options)).
- On the Peak Detection Options page, specify the peak detection algorithm for fraction collection (see Detecting the Peak Start, Peak Maximum, and Peak End (Peak Detection Options)).
Standard Program Example

If you have not yet saved a FractionCollectionTemplate.pgm, the PGM Wizard creates the following standard program. (The program includes the default fraction collection commands for a single detection channel plus the standard commands.)

```plaintext
;**
;* Definition of triggers for fraction collection starts here.
;**
; Definitions copied from template <Timebase>
\FractionCollectionTemplate!
Trigger FracStart FracStartDetected
EndTrigger
Trigger TubeChange FracTubeChange
EndTrigger
Trigger FracEnd FracEndDetected
EndTrigger
;**
;* Definition of triggers for fraction collection ends here.
;**
PumpDevice = "Pump"
TubeMaxVolume = Unlimited
FractionCollection.TotalNumberInstalled = Unlimited
MaxTubesPerFraction = Unlimited
TubeWrapping = No
TubeChangeDuration 2.0
DelayTime = 0.0
OffsetTime = 0.0
DetectionChannel1.Name = "UV_VIS_1"
PeakStartSlope = 0.500
PeakStartTrueTime = 1.00
PeakStartThreshold = 10.00
PeakStartCurve Off
PeakMaxSlope = 0.000
PeakMaxTrueTime 1.00
PeakEndSlope = -1.000
PeakEndThreshold = 10.00
PeakEndCurve Off
PeakEndTrueTime 1.000
ThresholdNoPeakEnd = 2000.000
BaselineOffset = 0.000
BaselineDrift = 0.000
Flow = 1.00
%B = 0.0
%C = 0.0
%D = 0.0
```
Collecting Fractions

0.000  Autozero
Wait  Frac.Ready and Sampler.Ready
Inject
3DFIELD.AcqOn
UV_VIS_1.AcqOn
CollectFractions = By_Peak
CollectOutsidePeaks = No

10.000 3DFIELD.AcqOff
UV_VIS_1.AcqOff

10.100 End

Note:
To make sure that the fractions are collected exactly, you have to enter and/or consider the actual delay time or the actual delay volume.

For more complex program examples, refer to:
- Program Example (One Detection Channel)
- Program Example (Two Detection Channels)
- Fraction Collection Control via an MS.

For an overview of the fraction collection topics, refer to How to …:
- Collecting Fractions.
Enabling Fraction Collection (General Options)

On the General Options page of the Program Wizard or PGM Editor, determine whether peaks are to be collected depending on peak detection or set the time range for fraction collection. (The Control Program section provides more information about the Program Wizard and PGM Editor.)

When you click Next>, more fraction collection wizard pages are displayed. The settings selected on this page determine which pages are displayed and which program commands are generated:

Off (do not collect at all)

Select this option to disable fraction collection. When this option is selected, no other fraction collection wizard pages are displayed. The program includes the following command:

`CollectFractions = No`

Collect by peak

Select this option to collect fractions depending on peak detector. The program includes the following fraction collection triggers:
Collecting Fractions 649

;*******************************************************************
;* Definition of triggers for fraction collection starts here.
;*******************************************************************
Trigger FracStart FracStartDetected
EndTrigger
Trigger TubeChange FracTubeChange
EndTrigger
Trigger FracEnd FracEndDetected
EndTrigger
;*******************************************************************
;* Definition of triggers for fraction collection ends here.
;*******************************************************************
(...)
CollectFractions = By Peak
CollectOutsidePeaks = No ;(or Yes - see Note below)

Note:

It is also possible to collect fractions outside peaks (CollectOutsidePeaks = Yes). To do so, select the Collect outside peaks check box.

Collect by time

Select this option to collect fractions independent of peak detection. The program includes the following command:

CollectFractions = By_Time

With this option, use the Collection Period input field to specify the time in [s] after which a new tube shall be used. The default setting is 30[s]. The program includes the following command:

CollectPeriod = 30 [s]

Collect all the time

Select this option to collect fractions during the entire chromatogram.

Collect only from ... to ...

Select this option to collect fractions only during a specified period. For example, if the time ranges from 2.000 to 8.000 min and if peak-dependent fraction collection is selected, the program includes the following commands:
Collecting Fractions

2.000 CollectFractions = By_Peak
CollectOutsidePeaks = Yes ;(oder No - see Note)

8.000 CollectFractions = No

**Note:**
It is also possible to collect fractions outside peaks (CollectOutsidePeaks = Yes). To do so, select the **Collect outside peaks** check box.

Restricted time range & user-defined columns

You can use ➤ **User-defined Columns** in the sample list to define when fraction collection starts and stops:

- Create two user-defined columns (see How to ...: Creating and Managing Files and Data ➤ Creating User-defined Columns) in the ➤ **Standard Datasource** of the server.

- Name the two columns, e.g., **FractionStart** and **FractionEnd**:
• Restart the server.

• On the **General Options** page, select **Collect only from ... to**. In the **from** field, select the user-defined column **FractionStart**; in the **to** field, select **FractionEnd**. The following triggers are generated (if peak-dependent fraction collection is enabled):

```
Trigger FractCollectionOn System.Retention > Sample.FractionStart, True=0.0, Hysteresis=0.0
CollectFraction = By Peak
CollectOutsidePeaks = Yes
EndTrigger

Trigger FractCollectionOff System.Retention > Sample.FractionEnd, True=0.0, Hysteresis=0.0
CollectFraction = No
EndTrigger
```

This program starts fraction collection at the retention time entered in the **FractionStart** column for the corresponding sample. Fraction collection is stopped at the retention time from the **FractionEnd** column.

For an overview of the fraction collection topics, refer to **How to ...**: **Collecting Fractions**.
Setting the Fraction Collection Options (Collection Device Options)

On the **Collection Device Options** page of the Program Wizard or PGM Editor, determine the most important parameters for fraction collection. (The **Control Program** section provides more information about the **Program Wizard** and **PGM Editor**.)

![Program Wizard: Fraction Collection - Collection Device Options](image)

**Pump device:** Select the name under which the pump is identified in the installation environment (see **Server Configuration** program). It is usually not necessary to change the default.

*Note:* This entry defines the pump and thus, the pump flow for which the time required to fill the tubes is calculated.

**Max. tube volume:** Enter the maximum tube volume. The allowed range is 0.000000 to 1000.000000 ml or unlimited.

**Max number of tubes per fraction:** Enter the maximum number of tubes per fraction. The allowed range is 0 to 99 or unlimited.

**Total number of tubes:** Enter the total number of fractions. The allowed range is 0 to 9999.
Minimum time for tube change: Enter the time that the tube change must take at least. The allowed range is 1.0 to 100.0 s.

After last tube, return to first Select this check box to return to the first tube after the last tube is filled. If this check box is cleared, the Batch will be aborted when the last tube is reached.

Tip: If this box is checked, be sure to replace the filled tubes with empty ones before the last tube is reached. This is to prevent the next fractions from being collected in tubes already used.

Delay Under Delay, enter the → Delay Time or the Delay Volume between the detector and the Fraction Collector. The delay time is the time that a substance needs to travel from the detector cell of the first detector to the switching valve or to the tube, depending on the device type. The delay volume is the volume between the output of the detector cell of the first detector and the switching valve or to the tube, depending on the device type. (If you have any questions, please contact the device manufacturer.)

Tip: The prerequisite for entering the Delay Time is that the flow is constant. If the flow rate changes, the actual delay time between the detector and the fraction collector would change during the run, which is not supported by the system. If you find it easier to determine the Delay Volume rather than the Delay Time, enter the Delay Volume instead and let the system use the (constant) Flow to calculate the appropriate Delay Time.

Note: If you use several detectors, this delay time entry always refers to the first detector after the column.

For an overview of the fraction collection topics, refer to How to …: Collecting Fractions.
Selecting the Channel for Fraction Collection (Channel Selection Options)

On the Channel Selection Options page of the Program Wizard or PGM Editor, select the channel(s) for fraction collection. (The Control Program section provides more information about the Program Wizard and PGM Editor.)

Select one or more channels to evaluate for fraction collection. Also, select one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All selected channels</td>
<td>(Default) The system starts fraction collection when a peak start is detected in all detection channels. The system stops fraction collection when the end of the first peak is detected.</td>
</tr>
</tbody>
</table>

Note: The program includes the following command:

ChannelEvaluation = All.
Collecting Fractions 655

At least one of the selected channels

The system starts fraction collection when a peak start is detected in at least one detection channel.
The system stops fraction collection when the end of the last peak is detected.

Note:
The program includes the following command:

\[ \text{ChannelEvaluation = Any.} \]

For an overview of the fraction collection topics, refer to How to ...: Collecting Fractions.

Detecting the Peak Start, Peak Maximum, and Peak End (Peak Detection Options)

To ensure that the Fraction Collector fills the desired tube, the peak start, peak maximum, and peak end all must be correctly detected. Select the necessary settings on the Peak Detection Options page of the Program Wizard or PGM Editor, select the channel(s) for fraction collection. (The Control Program section provides more information about the Program Wizard and PGM Editor.)
Peak Start

The prerequisites for detecting the peak start (and hence, the beginning of a fraction) are as follows:

- No peak start has been detected so far.
- Fraction collection and peak detection are enabled via the `CollectFractions = ByPeak`.
- The signal of the detection channel is greater than the signal defined by `PeakStartThreshold`.
- The signal slope is greater than the signal slope defined by `PeakStartSlope`.
- Data acquisition on the selected channel is not yet completed.
- The run itself is not completed yet
- The conditions are fulfilled for the `PeakStartTrueTime`. (The default setting is 1.00 s. The allowed range is 0.00 to 4.00 s.)

The `PeakStartThreshold` and `PeakStartSlope` variables influence the peak detection sensitivity.

The `PeakStartSlope` variable can be changed within broad limits. The higher the value is, the later the peak start is detected. If the detector signal exceeds the `PeakStartThreshold`, the peak is detected only if the slope threshold value is also exceeded.

Chromeleon remembers a peak start so that a peak maximum can be detected next. Thus, a peak maximum can be detected only if a peak start has been detected before.

Peak Maximum

The peak maximum is detected only if

- A peak start has been detected before.
- No peak maximum has been detected yet.
- The signal slope is smaller than the signal slope defined by `PeakMaxSlope`.
- The conditions are fulfilled for the time specified by `PeakMaxTrueTime`. (The default setting is 1.00 s. The allowed range is 0.00 to 4.00 s.)
A peak maximum can be detected only if a peak start has been detected before. Thus, if no peak start has been detected, no maximum will be detected either. The PeakMaxSlope variable is defined as negative slope value as it applies to the tailing side of the peak. The closer the value is to zero, the closer to the peak maximum the PeakMaxRecognition \(\Rightarrow\) Trigger will be executed.

Chromeleon remembers a peak maximum so that a peak end can be detected next. Thus, a peak end can be detected only if a peak maximum has been detected before (unless one of the end-run conditions apply).

**Peak End**

A peak end (and hence the end of a fraction) is detected if:

- The signal slope is less than the signal slope defined by PeakEndSlope and
- The signal of the detection channel is less than the signal defined by TresholdNoPeakEnd and
- A peak maximum has been detected before.

OR:

- The signal of the detection channel is less than the signal defined by PeakEndThreshold and
- A peak maximum has been detected before.

OR:

- A peak start has been detected before and
- Data acquisition on the signal channel has been finished

AND:

- The conditions are fulfilled for the PeakEndTrueTime. (The default setting is 1.00 s. The allowed range is 0.00 to 4.00 s.)

The first group of conditions checks whether the signal is below a limit, which is defined by the ThresholdNoPeakEnd variable. With heavily overloaded detector signals, there is a lot of signal noise, so a peak end and/or start would be detected several times near the top of the peak. The top of the peak could also be formed like a plateau. To inhibit this, set the ThresholdNoPeakEnd variable to a value below this level. If the value is set to Off, this part of the condition will always be true and this check will be disabled. PeakEndSlope delays the peak end.
The second group of conditions uses the signal height criterion. If the signal value falls below **PeakEndThreshold**, the peak is completed.

The third group of conditions completes the current peak in case the data acquisition is disabled.

For more information, refer to:

- Entering More Peak Detection Parameters (Peak Detection Options)
- Defining the Reactions to Certain Events

For an overview of the fraction collection topics, refer to Collecting Fractions.

### Entering More Peak Detection Parameters (Peak Detection Options)

Use the PGM Wizard (see The Control Program The Program Wizard) to enter the basic peak detection parameters as described in Detecting the Peak Start, Peak Maximum, and Peak End (Peak Detection Options). In addition, you can enter special parameters on the Peak Detection Options page.

**Derivative Step**

Use this parameter to determine for which period the signal values are evaluated to determine the slope and curve of the signal. The slope and curve are determined at the associated retention time \( t \) for the range \( (t - \text{DerivStep}/2) \) to \( (t + \text{DerivStep}/2) \). You can have Chromeleon display the retention time on the control panel via the RetentionTime variable (see Checking the Fraction Collection Status on the Control Panel).

(Dimension: s; range: 0.02 to 60.00)

**Note:**

*The higher the DerivStep value is, the lower the noise for the Slope and the Curve.*
PeakStartTrueTime, PeakMaxTrueTime, and PeakEndTrueTime

Use these parameters to set the time in seconds for which the different conditions must be fulfilled. If the conditions are not fulfilled within this time period, the peak start, peak maximum, and peak end cannot be detected.

(Dimension: s; range: 0.0 to 4.0)

Notes:

If you perform smoothing when using a mass spectrometer, calculating a signal value for a channel may take up to 5 seconds. If you do not allow for this time before the peaks reach the fraction collector, peaks cannot be collected. Therefore, set the respective parameter to at least 5 seconds.

In addition, a peak can be detected only after the DerivStep and PeakStartTrueTime (or PeakEndTrueTime) have expired. To make sure that a peak is completely collected as a fraction on an MS detection channel, the following must apply:

5 + PeakStartTrueTime (or PeakEndTrueTime) + DerivStep < DelayTime.

(The Delay Time is the time between the detector (here: an MS) and the Fraction Collector. If necessary, install a longer loop before the fraction collector.)

Shoulder detection

Use the PeakStartCurve and PeakEndCurve parameters to determine the curve in [Signal]/s^2 that must be exceeded so that a shoulder is detected after the peak start (PeakStartCurve). If the value is below this value, a shoulder can be detected after the peak maximum (PeakEndCurve).

(Dimension: [Signal]/s^2; range: 0 to 10^10; default setting: Off)

Tip:

Chromeleon supports these parameters only for the Purification license.

Threshold for PeakEndSlope enabling and disabling

Use the ThresholdDoNotResolve parameter to disable peak end detection via the PeakEndSlope parameter. Determine the threshold above which PeakEndSlope is disabled.

(Dimension: [Signal]/s; range: -10^10 to 10^10; default setting: Off)
If the minimum between these peaks is above the threshold value, a peak end is not detected before. Instead, a new peak is detected and a tube change is triggered when the signal slope is 0.0. The advantage is that the fraction for the first peak is collected until the minimum; the fraction for the second peak is then collected from the minimum.

In the picture, the red horizontal line indicates the threshold value. The solid lines indicate the fractions for which the minimum between the peaks is above the threshold value.

If the minimum is below the threshold value, a peak end is detected before the minimum (via the PeakEndSlope parameter; red descending line). Thus, the first fraction is collected only until the first dotted line. Then, a peak start is detected (red ascending line), so that the second peak is collected only from the second dotted line.

The area between these two lines contains a compound of the two substances. This area is collected as a separate fraction only if the program contains the following line:

```
CollectOutsidePeaks = Yes
```

Peak starts and peak ends that occur underneath the ThresholdDoNotResolveLine are detected as usual (indicated in the picture by the green diagonal lines).

**Drift compensation**

In the Baseline Drift field, enter the baseline drift that is used to correct the signal value. Enter the related baseline offset in [Signal] in the Baseline Offset field. The related thresholds (Peak Start Threshold, Peak End Threshold, and Threshold No Peak End) are compared to the signal value:

\[
\text{Signal value} - (\text{BaselineOffset} + \Delta t \times \text{BaselineDrift})
\]

Whenever Baseline Drift changes, \(\Delta t\) is set to 0. In addition, Baseline Offset is set to the current value of the correction term. Thus, the BaselineDrift value always matches the actual drift.

For an overview of the fraction collection topics, refer to [Collecting Fractions](#).
Determining the Delay Time (Delay and Detector Offsets)

On the **Delay and Detector Offsets** page of the Program Wizard or PGM Editor, enter the delay time or delay volume between the detector and the fraction collector. (The **Control Program** section provides more information about the **Program Wizard** and **PGM Editor**.)

### Delay

Enter the **Delay Time** or the **Delay Volume** between the detector and the **Fraction Collector**. The delay time is the time that a substance needs to travel from the detector cell of the first detector to the switching valve or tube. The delay volume is the volume between the detector cell and the switching valve or tube, respective. (The delay time and/or volume depend on the device type. Contact the device manufacturer for more information.)

**Tip:** The prerequisite for entering the Delay Time is that the flow is constant. If the flow rate changes, the actual delay time between the detector and the fraction collector would change during the run, which is not supported by the system. If you find it easier to determine the Delay Volume rather than the Delay Time, enter the Delay Volume instead and let the system use the (constant) Flow to calculate the appropriate Delay Time.

**Note:** If you use several detectors, this entry always refers to the first detector after the column.
If the system includes several detectors (in the example above, MS and UV), the **Detector Delay Offsets** section appears. Enter the delay time between the first detector after the column and any other detector(s) in the **Delay Time Offset** column. Keep the following in mind:

**Tips:**

*If no channel has been selected for a certain detector in the channel selection field on the Channel Selection Options page, you cannot enter a delay time for this detector.*

*It is not possible to enter a delay time exceeding the time between the first detector and the \( \text{Fraction Collector} \) (also, see \( \text{Setting the Fraction Collection Options} \)).*

For an overview of the fraction collection topics, refer to \( \text{Collecting Fractions} \).

**Editing Signal-Dependent Fraction Collection Parameters**

After you have created a basic program with the PGM Wizard, you can later edit this program in the PGM Editor as described in \( \text{Creating and Modifying PGM Files} \).

Independently of the installed \( \text{Fraction Collector} \), the **Fraction Collection** driver supports several PGM Wizard parameters. These parameters, which are described in the tables below, allow you to start fraction collection in the **PGM File** (or on the **Control Panel**).

Press the F8 key to open the **Commands** dialog box, and then enter the desired parameters in the PGM Editor. You can also establish controls with the desired functionality on the control panel. (For more information, refer to \( \text{How to …: Controlling Devices from the Control Panel} \) \( \text{Modifying a Control Panel} \).)

The tables below list the parameters in the **Commands** dialog box for the associated **DetectionChannel**. (For information about the read-only parameters, refer to \( \text{Checking the Fraction Collection Status on the Control Panel} \).)
Signal-Based Parameters (Min., Max., and Default depend on the detector; here, they are shown for a UV detector)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaselineDrift</td>
<td>-1e10</td>
<td>1e10</td>
<td>Baseline drift in [Signal]/s used to correct the signal value. The specified thresholds (PeakStartThreshold, PeakEndThreshold, and ThresholdNoPeakEnd) are compared to: signal value - (BaselineOffset + ( \Delta t \times \text{BaselineDrift} )) ( \Delta t ) is set to 0 whenever BaselineDrift changes. Baseline Offset is then set to the current value of the correction term. Thus, the BaselineDrift value always matches the actual drift.</td>
</tr>
<tr>
<td>BaselineOffset</td>
<td>-1e10</td>
<td>1e10</td>
<td>Baseline offset in [Signal] used to correct the signal value.</td>
</tr>
<tr>
<td>DerivStep</td>
<td>0.02 s</td>
<td>60.00 s</td>
<td>Time for which the signal values are evaluated to determine the signal slope and the curve.</td>
</tr>
<tr>
<td>Name</td>
<td>N/a</td>
<td>n/a</td>
<td>Name of the signal channel used for peak detection (this may be a Virtual Signal, also).</td>
</tr>
<tr>
<td>OffsetTime</td>
<td>0.0 s</td>
<td>9999.9 s</td>
<td>Retention time offsets between the first detector and other detectors.</td>
</tr>
<tr>
<td>OffsetVolume</td>
<td>0.0 µl</td>
<td>5000.0 µl</td>
<td>Offset volume between the first detector and other detectors. (Based on the flow, the offset volume is converted into the corresponding OffsetTime.)</td>
</tr>
<tr>
<td>PeakEndCurve</td>
<td>0</td>
<td>10^10</td>
<td>Curve in [Signal]/s^2 that must be exceeded for a shoulder to be recognized after the peak maximum.</td>
</tr>
<tr>
<td>PeakEndSlope</td>
<td>-1e10</td>
<td>0.000</td>
<td>The slope value in [Signal]/s must exceed the PeakEndSlope value for the peak end to be recognized.</td>
</tr>
<tr>
<td>PeakEndThreshold</td>
<td>-1e10</td>
<td>1e10</td>
<td>The actual signal value in [Signal] must be below the PeakEndThreshold value for the peak end to be recognized.</td>
</tr>
</tbody>
</table>

**Tip:** Make sure the retention time setting for this command is later than the DelayTime (see below).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PeakEndTrueTime *</td>
<td>0.0 s</td>
<td>4.0 s</td>
<td>The time must be fulfilled for the different conditions for a peak end to be recognized.</td>
</tr>
<tr>
<td>PeakMaxSlope *</td>
<td>-1e10</td>
<td>0</td>
<td>The actual slope value in [Signal]/s must be below the PeakMaxSlope value for the peak maximum to be recognized.</td>
</tr>
<tr>
<td>PeakMaxTrueTime *</td>
<td>0.0 s</td>
<td>4.0 s</td>
<td>The time must be fulfilled for the different conditions for a peak maximum to be recognized.</td>
</tr>
<tr>
<td>PeakStartCurve *</td>
<td>0</td>
<td>10^10</td>
<td>Curve in [Signal]/s^2 that must be exceeded for a shoulder to be recognized after the peak start.</td>
</tr>
<tr>
<td>PeakStartSlope *</td>
<td>0.000</td>
<td>1e10</td>
<td>The actual slope value in [Signal]/s must exceed the PeakStartSlope value for the peak start to be recognized.</td>
</tr>
<tr>
<td>PeakStartThreshold *</td>
<td>-1e10</td>
<td>1e10</td>
<td>The actual signal value in [Signal]/s must exceed the PeakStartThreshold value for the peak start to be recognized.</td>
</tr>
<tr>
<td>PeakStartTrueTime *</td>
<td>0.0 s</td>
<td>4.0 s</td>
<td>The time must be fulfilled for the different conditions for a peak start to be recognized.</td>
</tr>
<tr>
<td>ThresholdDoNot Resolve *</td>
<td>-10^10</td>
<td>10^10</td>
<td>Threshold value for the slope in [Signal]/s above which peak detection via the PeakEndSlope parameter is disabled. Instead, a new peak is detected and a tube change is triggered when the signal slope is 0.0.</td>
</tr>
<tr>
<td>ThresholdNoPeak End *</td>
<td>-1e10</td>
<td>1e10</td>
<td>The actual signal threshold value in [Signal] must be below the ThresholdNoPeakEnd value for the peak end to be recognized. (This parameter supports the PeakEndSlope parameter for peak detection.)</td>
</tr>
</tbody>
</table>

Tips:

* To ignore the parameter for peak detection, set the parameter to Off.

² Set these parameters on the Peak Detection Options page in the PGM Wizard.
Commands

In addition, you can enter the following commands manually for a specified retention time:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManualPeakEnd</td>
<td>Stops the current peak at the specified retention time, independently of the peak detection parameters.</td>
</tr>
<tr>
<td>ManualPeakStart</td>
<td>Starts the next peak at the specified retention time, independently of the peak detection parameters.</td>
</tr>
<tr>
<td>ManualTubeChange</td>
<td>Changes to the next tube at the specified retention time, independently of the peak detection parameters.</td>
</tr>
</tbody>
</table>

For the signal-independent parameters, refer to Editing Signal-Independent Fraction Collection Parameters.

For an overview of the fraction collection topics, refer to Collecting Fractions.

Editing Signal-Independent Fraction Collection Parameters

After you have created a basic program with the PGM Wizard, you can later edit this program in the PGM Editor as described in Creating and Modifying PGM Files.

The following signal-independent parameters are listed in the Commands dialog box under Fraction Collection. (To open the Commands dialog box, press the F8 key in the PGM Editor.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChannelEvaluation</td>
<td>All</td>
<td>Any</td>
<td>Determines how the results of the single detection channels are used for peak detection.</td>
</tr>
<tr>
<td>CollectFractions</td>
<td>No</td>
<td>By_Peak</td>
<td>Performs fraction collection based on peak detection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By_Time</td>
<td>Note: Detected fractions will trigger related events after the delay time, even if CollectFractions is No at that time.</td>
</tr>
<tr>
<td>CollectOutsidePeaks</td>
<td>No</td>
<td>Yes</td>
<td>Performs fraction collection independent of peak detection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Determines whether fractions are collected outside peaks, also.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Min.</td>
<td>Max.</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>DelayTime</td>
<td>0.0 s</td>
<td>9999.9 s</td>
<td>Delay time between the first detector and the Fraction Collector.</td>
</tr>
<tr>
<td>DelayVolume</td>
<td>0.0 µl</td>
<td>5000.0 µl</td>
<td>Delay volume between the first detector and the fraction collector. (Based on the flow, the delay volume is converted into the corresponding DelayTime.)</td>
</tr>
<tr>
<td>MaxTubesPerFraction</td>
<td>0</td>
<td>999</td>
<td>Maximum number of tubes per fraction. If the specified number is reached, no additional tubes are used to collect the current peak. Set this parameter to Unlimited to collect all peaks completely.</td>
</tr>
<tr>
<td>PumpDevice</td>
<td></td>
<td></td>
<td>Pump whose flow is used to convert between time and volume.</td>
</tr>
<tr>
<td>TotalNumberInstalled</td>
<td>0</td>
<td>9999</td>
<td>Number of tubes installed in the rack. If this number is exceeded, the TubePosition parameter is reset to 1 if the TubeWrapping option has been selected. Otherwise, the batch is terminated.</td>
</tr>
<tr>
<td>TubeChangeDuration</td>
<td>1.0</td>
<td>100.0</td>
<td>Time in seconds until the next fraction can be collected.</td>
</tr>
<tr>
<td>TubeMaxVolume</td>
<td>0.000000</td>
<td>1000.000000</td>
<td>Maximum filling volume of the tube in [ml]. If the specified volume is reached, the next tube is filled.</td>
</tr>
<tr>
<td>TubePosition</td>
<td>1</td>
<td>9999</td>
<td>Position of the tube in the current fraction.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Min.</td>
<td>Max.</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>TubeWrapping</td>
<td>No</td>
<td>Yes</td>
<td>If this option is selected, the TubePosition parameter is reset to 1 when TotalNumberInstalled is reached.</td>
</tr>
</tbody>
</table>

**Tips:**

You can set the following properties in the PGM Wizard, also:

Set **CollectFractions** and **CollectOutsidePeaks** on the **General Options** page.

Set **DelayTime** to **TubeWrapping** on the **Peak Detection Options** page,

Set **ChannelEvaluation** on the **Channel Selection** page.

These properties cannot be changed during a peak. Any attempted change will produce the following warning: "Parameters cannot be changed until the current peak has ended. New value will be assigned at peak end." The change will become effective as soon as the current peak ends.

**Tip:**

When performing Autopurification, you can correct the parameters set in the PGM File for all other samples in the sequence on the control panel. Use the corresponding parameters of the Dionex_Purification_Parameters device driver (see Collecting Fractions Automatically (Autopurification) Setting Correction Parameters).

For the signal-dependent parameters, refer to Editing Signal-dependent Fraction Collection Parameters.

In addition to these parameters, various read-only variables are available. These variables are only displayed if you open the Commands dialog box on a control panel. They allow you to check the peak detection status (see Checking the Fraction Collection Status on the Control Panel).

For an overview of the fraction collection topics, refer to Collecting Fractions.
Defining the Reactions to Certain Events

A peak start, peak maximum, and peak end are recognized if certain conditions are fulfilled (see Recognizing Peak Start, Peak Maximum, and Peak End).

If one of these events occurs, Chromeleon issues certain commands to the Fraction Collector. These commands can be defined in the Program. In the respective Trigger block, you can define device-specific actions for your Sample and Fraction Manager or fraction collector.

<table>
<thead>
<tr>
<th>Event</th>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>FracStartDetected</td>
<td>A peak start, which means the start of a new fraction, &quot;arrives&quot; at the switching valve/ tube.</td>
<td>Switch to next fraction.*</td>
</tr>
<tr>
<td></td>
<td>Note:</td>
<td>Switch to collect.</td>
</tr>
<tr>
<td></td>
<td>If, during a peak, a peak start is detected on another channel, a new fraction is also started for ChannelEvaluation = Any.</td>
<td></td>
</tr>
<tr>
<td>FracTubeChange</td>
<td>The tube is filled to the limit.</td>
<td>Switch to next tube.</td>
</tr>
<tr>
<td>FracEndDetected</td>
<td>A peak end, which means the end of a fraction, &quot;arrives&quot; at the switching valve/ tube.</td>
<td>Switch to waste.</td>
</tr>
<tr>
<td></td>
<td>Switch to next fraction.*</td>
<td></td>
</tr>
</tbody>
</table>

* Switching to the next fraction is needed only once. It depends on the type of hardware whether this is better to switch to the first tube of the next fraction at the peak start or at the peak end.

For an overview of the fraction collection topics, refer to Collecting Fractions.
Program Example (One Detection Channel)

A Program for a timebase including a Fraction Collector and one detection channel might look as follows:

-0.300 Flow = 20.000
%B = 10
UV_VIS_1.Step = 0.50
UV_VIS_1.Average = On
UV_VIS_1.MaxAutoStep = 1.0
Pressure.LowerLimit = 10.00
Pressure.UpperLimit = 200.00

;********************************************************************
;*Definition of triggers for fraction collection starts here
;********************************************************************
; Definition copied from template
<Timebase>\FractionCollectionTemplate!
;FracStart: Start of fractionation collection
  Trigger FracStart FracStartDetected
  Collect Log SFM_A.Tray
  EndTrigger

;TubeChange: The fraction is collected to another tube when the current tube is full
  Trigger TubeChange FracTubeChange
  Drain SFM_A.TubePosition = FractionCollection.TubePosition
  Collect EndTrigger

;FracEnd: End of fraction collection
  Trigger FracEnd FracEndDetected
  MovementMode = InterruptAndEject
  Drain SFM_A.TubePosition = FractionCollection.TubePosition
  EndTrigger

;********************************************************************
;*Definition of triggers for fraction collection ends here
;********************************************************************

; Maximum filling volume of a tube in ml:
  PumpDevice = "Pump"
  TubeMaxVolume = 10

; Maximum number of installed fraction tubes:
  FractionCollection.TotalNumberInstalled = 1092
; Basic fraction collection parameters:
MaxTubesPerFraction = Unlimited
TubeWrapping = No

; Delay time between detector output and switching valve or tube:
DelayTime = 0.4
OffsetTime = 0.0
TubeChangeDuration = 2.0 [s]
ChannelEvaluation = All

; Conditions for online peak recognition at program start:
Name = "UV_VIS_1"
; Slope at peak start:
PeakStartSlope = 2.000
; Minimum signal height at peak start:
PeakStartThreshold = 10.00
; Slope after the peak maximum:
PeakMaxSlope = -4.000
; Slope at peak end:
PeakEndSlope = -4.000
; Maximum signal height at peak end:
PeakEndThreshold = 5.00
; Signal must be less than this threshold value before a new peak start can be recognized:
ThresholdNoPeakEnd = 200
; Baseline drift correction:
BaselineOffset = 0.000
BaselineDrift = 0.000

; Separation start with injection:
-0.100 UV.Autozero
0.000 Wait Sampler.Ready
Flow = 20.000
%B = 10
Sampler.Inject
UV_VIS_1.AcqOn

; Basic fraction collection parameters:
CollectFractions = By_Peak

; Gradient program:
Flow = 20.000
%B = 10.0
10.000 %B = 90
13.000 %B = 90
13.000 UV_VIS_1.AcqOff
CollectFractions = No

; Regeneration and equilibration phase of the gradient program:
15.000 Flow = 20.000
%B = 90
16.000 %B = 10
End
Note:

The trigger block used in this program example refers to a preparative application with a Dionex Sample and Fraction Manager (SMF). Besides, the trigger block is intended for a preparative pump.

For more program examples, refer to:

- Program Example (Two Detection Channels)
- Fraction Collection Control via an MS
- Fraction Collection Control via an MS for Different Samples

For an overview of the fraction collection topics, refer to Collecting Fractions.

Program Example (Two Detection Channels)

Tip:

If the Fraction license is installed, Chromeleon supports two detection channels. You need the Purification license if you want to use more than two detection channels.

A Program for a timebase including a Fraction Collector and two detection channels might look as follows:

```
-0.300 Flow = 20.000
%B = 10
UV_VIS_1.Step = 0.50
UV_VIS_1.Average = On
UV_VIS_1.MaxAutoStep = 1.0
Pressure.LowerLimit = 10.00
Pressure.UpperLimit = 200.00

;**
;*Definition of triggers for fraction collection starts here
;**

;Definition copied from template
<Timebase>\FractionCollectionTemplate!
;FracStart: Start of fraction collection
Trigger FracStart FracStartDetected
Collect
Log SFM_A.Tray
EndTrigger
```
;TubeChange: The fraction is collected to another tube when the current tube is full
Trigger TubeChange   FracTubeChange
Drain
SFM_A.TubePosition = FractionCollection.TubePosition
Collect
EndTrigger

;FracEnd: End of fraction collection
Trigger FracEnd   FracEndDetected
MovementMode = InterruptAndEject
Drain
SFM_A.TubePosition = FractionCollection.TubePosition
EndTrigger

;********************************************************************
;*Definition of triggers for fraction collection ends here
;********************************************************************

; Maximum filling volume of a tube in ml:
PumpDevice = "Pump"
TubeMaxVolume = 10

; Maximum number of installed tubes:
FractionCollection.TotalNumberInstalled = 1092

; Basic fraction collection parameters:
MaxTubesPerFraction = Unlimited
TubeWrapping = No
TubeChangeDuration = 2.0 [s]
ChannelEvaluation = All

; Delay time between detector output and switching valve or tube:
DelayTime = 0.8
DetectionChannel2.OffsetTime = 0.0
DetectionChannel3.OffsetTime = 0.0

; Conditions for online peak recognition at program start:
DetectionChannel2.Name = "UV_VIS_1"
;Slope at peak start:
DetectionChannel2.PeakStartSlope = 2.000
;Minimum signal height at peak start:
DetectionChannel2.PeakStartThreshold = 10.00
;Slope after peak maximum:
DetectionChannel2.PeakMaxSlope = -4.000
;Slope at peak end:
DetectionChannel2.PeakEndSlope = -4.000
;Maximum signal height at peak end:
DetectionChannel2.PeakEndThreshold = 5.00
;Signal must be less than this threshold value
;before a new peak start can be recognized
DetectionChannel2.ThresholdNoPeakEnd = 200
;Baseline drift correction:
DetectionChannel2.BaselineOffset = 0.000
DetectionChannel2.BaselineDrift = 0.000
Collecting Fractions

; Conditions for online peak recognition for the 2. detection channel:
DetectionChannel3.Name = "UV_VIS_2"
DetectionChannel3.PeakStartSlope = 2.000
DetectionChannel3.PeakStartThreshold = 10.00
DetectionChannel3.PeakMaxSlope = -5.000
DetectionChannel3.PeakEndSlope = -4.000
DetectionChannel3.PeakEndThreshold = 5.00
DetectionChannel3.ThresholdNoPeakEnd = 200
DetectionChannel3.BaselineOffset = 0.000
DetectionChannel3.BaselineDrift = 0.000

; Separation start with injection:
-0.100 UV.Autozero
0.000 Wait Ready
Flow = 20.000
%B = 10
Sampler.Inject
UV_VIS_1.AcqOn

; Basic fraction collection parameters:
CollectFractions = By_Peak

; Gradient Program:
Flow = 20.000
%B = 10.0
10.000 %B = 90
13.000 %B = 90
13.000 UV_VIS_1.AcqOff
CollectFractions = No

; Regeneration and equilibration phase of the gradient program:
15.000 Flow = 20.000
%B = 90
16.000 %B = 10
End

Notes:
The trigger block used in this program example refers to a preparative application with a Dionex Sample and Fraction Manager (SFM). Besides, the trigger block is intended for a preparative pump.

In the example, DetectionChannel1 has not been used as the first detection channel because '1' and 'l' look almost identical when Courier is the selected font.
For more program examples, refer to:

- Program Example (One Detection Channel)
- Fraction Collection Control via an MS
- Fraction Collection Control via an MS for Different Samples

For an overview of the fraction collection topics, refer to Collecting Fractions.

**Fraction Collection Control via an MS**

*Mass Traces* can be used to selectively collect certain substances in fractions. This selective collection is possible since the occurrence of peaks with data acquisition via *Mass Spectrometers* depends much more selectively on the corresponding masses than it depends on the wavelength with *UV Detectors*.

It is possible to use certain mass traces at specific times to trigger the fraction collection. For this purpose, online extraction of mass traces is required (see How to ...: Using Mass Spectrometers Extracting Mass Traces Online). The following program requires five channels for online extraction of mass traces:

```plaintext
; Definition of the minimum/maximum mass and of the filter index for the channels MS_01 to MS_05:
 MS_01.MinMass = 243.5
 MS_01.MaxMass = 244.5
 MS_01.FilterIndex = 2
 MS_02.MinMass = 145.5
 MS_02.MaxMass = 146.5
 MS_02.FilterIndex = 2
 MS_03.MinMass = 164.5
 MS_03.MaxMass = 165.5
 MS_03.FilterIndex = 2
 MS_04.MinMass = 178.5
 MS_04.MaxMass = 179.5
 MS_04.FilterIndex = 2
 MS_05.MinMass = 192.5
 MS_05.MaxMass = 193.5
 MS_05.FilterIndex = 2
```
;********************************************************************
;*Definition of triggers for fraction collection starts here
;********************************************************************
;Definition copied from template
<Timebase>\FractionCollectionTemplate!
;FracStart: Start of fraction collection
Trigger FracStart  FracStartDetected
Collect Log SFM_A.Tray
EndTrigger

;TubeChange: The fraction is collected to another tube when the current tube is full
Trigger TubeChange  FracTubeChange
Drain
SFM_A.TubePosition = FractionCollection.TubePosition
Collect EndTrigger

;FracEnd: End of fraction collection
Trigger FracEnd  FracEndDetected
MovementMode = InterruptAndEject
Drain
SFM_A.TubePosition = FractionCollection.TubePosition
EndTrigger

;********************************************************************
;*Definition of triggers for fraction collection ends here
;********************************************************************

; Maximum filling volume of a tube in ml:
PumpDevice = "Pump"
TubeMaxVolume = 10

; Maximum number of installed fraction tubes:
FractionCollection.TotalNumberInstalled = 240

; Basic fraction collection parameters:
MaxTubesPerFraction = Unlimited
TubeWrapping = No
TubeChangeDuration = 2.0 [s]
ChannelEvaluation = All

; Delay time between detector output and switching valve or tube:
DelayTime = 0.8
DetectionChannel2.OffsetTime = 0.0
DetectionChannel3.OffsetTime = 0.4

; Conditions for online peak recognition at program start:
CollectFractions = Yes
DetectionChannel2.Name = "UV_VIS_01"
;Slope at peak start [mAU/s]:
DetectionChannel2.PeakStartSlope = 2.000
;Minimum signal height at peak start [mAU]:
DetectionChannel2.PeakStartThreshold = 5000.00
;Slope after peak maximum [mAU/s]:
DetectionChannel2.PeakMaxSlope = -5.000
; Slope at peak end [mAU/s]
DetectionChannel2.PeakEndSlope = -4.000
; Maximum signal height at peak end [mAU]
DetectionChannel2.PeakEndThreshold = 5000.00
; Signal must be less than this threshold value before a new peak start can be recognized [mAU]
DetectionChannel2.ThresholdNoPeakEnd = 10000
; Baseline drift correction:
DetectionChannel2.BaselineOffset = 0.000
DetectionChannel2.BaselineDrift = 0.000

; Conditions for online peak recognition for the MS detection channel:
DetectionChannel3.Name = "MS_01"
DetectionChannel3.PeakStartSlope = 2.000
DetectionChannel3.PeakStartThreshold = 10.00
DetectionChannel3.PeakMaxSlope = -5.000
DetectionChannel3.PeakEndSlope = -4.000
DetectionChannel3.PeakEndThreshold = 5.00
DetectionChannel3.ThresholdNoPeakEnd = 200
DetectionChannel3.BaselineOffset = 0.000
DetectionChannel3.BaselineDrift = 0.000

; Separation start with injection and acquisition start
0.000 UV.Autozero
  Wait Sampler.Ready and MS.Ready
Inject
3DFIELD.AcqOn
UV_VIS_1.AcqOn
MS_01.AcqOn
MS_02.AcqOn
MS_03.AcqOn
MS_04.AcqOn
MS_05.AcqOn

; Basic fraction collection parameters:
CollectFractions = By_Peak

; Change of the detection channel according to the expected substances
3.20 DetectionChannel3 = "MS_02"
3.7 DetectionChannel3 = "MS_03"
4.3 DetectionChannel3 = "MS_04"
5.5 DetectionChannel3 = "MS_05"

; End of data acquisition
10.000 3DFIELD.AcqOff
UV_VIS_1.AcqOff
MS_01.AcqOff
MS_02.AcqOff
Notes:

The trigger block used in this program example refers to the Dionex Sample and Fraction Manager (SFM).

In the example, DetectionChannel1 has not been used as the first detection channel because ‘1’ and ‘I’ look identical when Courier is the selected font.

If the above Program is used, fractions would be collected at the following retention times, provided that a peak occurs within the following mass traces:

<table>
<thead>
<tr>
<th>Retention time-interval [min]</th>
<th>Channel</th>
<th>Mass [m/z]</th>
<th>Positions of the collection vials</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 - 3.200</td>
<td>MS_01</td>
<td>244</td>
<td>1</td>
</tr>
<tr>
<td>3.200 - 3.700</td>
<td>MS_02</td>
<td>146</td>
<td>2</td>
</tr>
<tr>
<td>3.700 - 4.200</td>
<td>MS_03</td>
<td>165</td>
<td>3</td>
</tr>
<tr>
<td>4.200 - 5.500</td>
<td>MS_04</td>
<td>179</td>
<td>4</td>
</tr>
<tr>
<td>5.500 - 10.000</td>
<td>MS_05</td>
<td>193</td>
<td>5</td>
</tr>
</tbody>
</table>

(Usually, the desired mass peak occurs only once within the corresponding time interval - this is assumed in the above table. Otherwise, the positions of the collection vials will change accordingly.)

This program example for mass-controlled fraction collection presumes that the same substances will be collected in all samples. If there are different substances in the samples, fraction collection via a mass channel needs to be adapted accordingly. For more information, refer to Fraction Collection Control via an MS for Different Samples.

For more program examples, refer to:

Program Example (One Detection Channel)

Program Example (Two Detection Channels)

For an overview of the fraction collection topics, refer to Collecting Fractions.
If there are samples with different substances, the procedure described in Fraction Collection Control via an MS has to be changed accordingly.

In this case, Mass Traces have to be extracted online, as well (see How to ...: Using Mass Spectrometers Extracting Mass Traces Online).

1. Define User-defined Columns

Define the User-defined Columns Mass1 to Mass5 and FilterIndex to FilterIndex5 as Integer columns (see How to ...: Creating and Managing Files and Data Creating User-defined Columns). The program part below checks the content of the corresponding user-defined columns during data acquisition and thus allows you to control fraction collection Triggering.

2. Modify the Program

In the example described in Fraction Collection via an MS (see above), replace the corresponding paragraph in the Program with the following program part:

```plaintext
; Definition of the minimum/maximum mass and of the filter index for the channels MS_01 to MS_05:
MS_01.MinMass = sample.mass1-0.5
MS_01.MaxMass = sample.mass1+0.5
MS_01.FilterIndex = sample.filterindex
MS_02.MinMass = sample.mass2-0.5
MS_02.MaxMass = sample.mass2+0.5
MS_02.FilterIndex = sample.filterindex2
MS_03.MinMass = sample.mass3-0.5
MS_03.MaxMass = sample.mass3+0.5
MS_03.FilterIndex = sample.filterindex3
MS_04.MinMass = sample.mass4-0.5
MS_04.MaxMass = sample.mass4+0.5
MS_04.FilterIndex = sample.filterindex4
MS_05.MinMass = sample.mass5-0.5
MS_05.MaxMass = sample.mass5+0.5
MS_05.FilterIndex = sample.filterindex5
```
3. Enter the Values in Sample List

Finally, enter the corresponding values of the single samples into each column of the sample table:

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Pos</th>
<th>Mass 1</th>
<th>*Filter Index 1</th>
<th>Mass 2</th>
<th>*Filter Index 2</th>
<th>Mass 3</th>
<th>*Filter Index 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard 1</td>
<td>R09</td>
<td>149</td>
<td>1</td>
<td>197</td>
<td>1</td>
<td>275</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Standard 2</td>
<td>R09</td>
<td>149</td>
<td>1</td>
<td>197</td>
<td>1</td>
<td>275</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Sample 1</td>
<td>R01</td>
<td>175</td>
<td>0</td>
<td>153</td>
<td>0</td>
<td>235</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Sample 2</td>
<td>R01</td>
<td>175</td>
<td>0</td>
<td>153</td>
<td>0</td>
<td>235</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Sample 3</td>
<td>R01</td>
<td>175</td>
<td>0</td>
<td>153</td>
<td>0</td>
<td>235</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Sample 4</td>
<td>R01</td>
<td>175</td>
<td>0</td>
<td>153</td>
<td>0</td>
<td>235</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Standard 3</td>
<td>D09</td>
<td>149</td>
<td>1</td>
<td>197</td>
<td>1</td>
<td>275</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Standard 4</td>
<td>D09</td>
<td>149</td>
<td>1</td>
<td>197</td>
<td>1</td>
<td>275</td>
<td>1</td>
</tr>
</tbody>
</table>

In this example, the following mass traces are relevant for controlling the 

> Fraction Collector at the corresponding samples:

<table>
<thead>
<tr>
<th>Retention time interval [min]</th>
<th>Channel</th>
<th>Standards Mass [m/z]</th>
<th>Sample 1 /2 Mass [m/z]</th>
<th>Sample 3/4 Mass [m/z]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 - 3.200</td>
<td>MS_01</td>
<td>149 ± 0.5</td>
<td>176 ± 0.5</td>
<td>163 ± 0.5</td>
</tr>
<tr>
<td>3.200 - 3.700</td>
<td>MS_02</td>
<td>197 ± 0.5</td>
<td>153 ± 0.5</td>
<td>215 ± 0.5</td>
</tr>
<tr>
<td>3.700 - 4.200</td>
<td>MS_03</td>
<td>275 ± 0.5</td>
<td>235 ± 0.5</td>
<td>179 ± 0.5</td>
</tr>
</tbody>
</table>

**Note:**

The retention times refer to the program example described in ❯ Fraction Collection Control via an MS (see above).

For an overview of the fraction collection topics, refer to ❯ Collecting Fractions.

**Checking the Fraction Collection Status on the Control Panel**

The Fraction Collection driver supports various properties that allow you to check the fraction collection status on a ❯ Control Panel. These properties are read-only. They are available independently of the installed ❯ Fraction Collector.

On the control panel, create display elements indicating the status of the desired parameter. You can use a Color Box, String Display, Gauge Indicator, or Lamp. (For more information, refer to How to …: Controlling
Devices from the Control Panel and Modifying a Control Panel and the following topics.

The tables below list the properties in the order in which they appear in the dialog box. (For information about the parameters for active fraction collection control, refer to Editing Signal-Dependent Fraction Collection Parameters and Editing Signal-Independent Fraction Collection Parameters.)

### Properties for the single channels

*These properties are available on the Link tab page of the Properties (context menu) for the corresponding control if the associated DetectionChannelIn is selected as Object.*

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve</td>
<td>Indicates the last signal curve in ([\text{Signal}] / \text{s}^2) evaluated by the Fraction Collection driver for peak detection.</td>
</tr>
<tr>
<td>PeakDetectCode</td>
<td>Use this property to have Chromeleon display the peak detection status:</td>
</tr>
<tr>
<td></td>
<td>Unknown (= 0) The status is not defined.</td>
</tr>
<tr>
<td></td>
<td>Ready for Start (= 1) The driver waits for the peak start, i.e., waits until the peak start conditions are fulfilled.</td>
</tr>
<tr>
<td></td>
<td>Start is Detected (= 2) A peak start was detected.</td>
</tr>
<tr>
<td></td>
<td>Ready for Shoulder Up (= 3) A Peak Shoulder may have been detected at the fronting edge of the peak. However, this is not yet clearly detected.</td>
</tr>
<tr>
<td></td>
<td>Max is Detected (= 4) A peak maximum was detected.</td>
</tr>
<tr>
<td></td>
<td>Ready for Shoulder Down (= 5) A peak shoulder may have been detected at the tailing edge of the peak. However, this is not yet clearly detected.</td>
</tr>
<tr>
<td>Waiting for Manual Peak End (= 6)</td>
<td>The Manual Peak Start command was performed. Thus, automatic peak detection is disabled. The driver waits for the Manual Peak End command.</td>
</tr>
</tbody>
</table>

Tip: Chromeleon supports this parameter only for the Purification license.
Properties for the Fraction Collection Driver

Tip:
These properties are available if the selected Object is FractionCollection.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FracEndDetected</td>
<td>Set to Yes when a fraction start is detected. When the fraction end is detected, the property is reset to No. (Delayed)</td>
</tr>
<tr>
<td>FracStartDetected</td>
<td>Set to Yes when a fraction start is detected. When the fraction end is detected, the property is reset to No. (Delayed)</td>
</tr>
<tr>
<td>FractionOn</td>
<td>Set to Yes during fraction collection. (Corresponds to PeakOn, but delayed)</td>
</tr>
<tr>
<td>FractionTubeCount</td>
<td>Number of filled tubes in the current fraction. (Delayed)</td>
</tr>
<tr>
<td>FracTubeChange</td>
<td>Set to Yes when a filled tube is detected. When a filled tube is not detected, the property is automatically reset to No. (Delayed)</td>
</tr>
<tr>
<td>TubeFilling</td>
<td>Volume collected in the current tube. (Delayed)</td>
</tr>
</tbody>
</table>

For an overview of the fraction collection topics, refer to Collecting Fractions.
Tracking Fraction Collection in the Chromatogram

After you have collected fractions during the analysis, it is important that you can later track which substances have been collected in which tube. This is possible in Chromeleon:

- In the chromatogram
- In the report (see Tracking Fraction Collection in the Report.)

In the chromatogram, you can display which fractions have been collected at which time:

You can adapt the appearance of the display according to your requirements. Select Decoration on the context menu. The Chromatogram Decoration dialog box appears. On the Fractions tab page, select the options and thus, determine how the fractions are displayed in the chromatogram:
Note:

The settings in the picture correspond to the settings used for the above chromatogram.

In the Fraction Visualization section, determine how the fractions shall be displayed. Usually, it makes sense to select the Vertical stripes and Fill stripes options. In this way, you can display the exact time assignment of the single peaks to the corresponding fractions.

In the lower section, determine how the fractions shall be labeled. In order to label fractions, select the Label Fractions check box first, and then determine the label in the Formula input field. The following formula has proved a good choice:

\[ F\{\text{frac.number}\} \left( \text{frac.tube(1).position}\right) - \text{frac.tube(frac.nTubes).position} \]

The corresponding label could then read, e.g., "F2 (37-38)". This means that the second fraction was collected in the tubes 37 and 38. (Note: To mark the single tubes in the chromatogram by dotted lines, select the Mark tubes inside fraction or Mark tubes outside fraction check box.) The 'F' in the above formula serves to distinguish fraction labels from peak labels.
Tip:

It is also possible to track fraction collection in the chromatogram during data acquisition. However, in this case, several complex settings are required that must be tailored to the individual installation. A description of these settings goes beyond the scope of this online Help. Therefore, if you need more information, please contact your local Dionex representative.

For an overview of the fraction collection topics, refer to Collecting Fractions.

Tracking Fraction Collection in the Report

You can display fraction collection information in the report at any time. The easiest way is to insert one of the two predefined report tables:

- Double-click to open the desired sequence, and then display the report.
- On the Table menu, select Insert Report.
- The Insert Report Table dialog box appears. Click the '+' characters in front of Result Tables and Fraction Collection Results to display the reports underneath.
- Select one of the two reports:
  - Select the Fraction Report to display an overview of the fractions.
• Select **Tube Report** to add an overview of the single tubes to the report:

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Start</th>
<th>End</th>
<th>Volume</th>
<th>Max.Volume</th>
<th>Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.465</td>
<td>1.560</td>
<td>0.033</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.901</td>
<td>2.035</td>
<td>0.234</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2.735</td>
<td>2.980</td>
<td>0.350</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3.001</td>
<td>3.235</td>
<td>0.426</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3.901</td>
<td>4.200</td>
<td>0.301</td>
<td>1.0</td>
<td>1</td>
</tr>
</tbody>
</table>

The picture shows a standard tube report that was created with the default settings. To insert additional columns:

• Select the column in front of which you want to insert the new column.

• Select **Insert Column** on the context menu. The **Insert Report Column** dialog box appears.

• Select one of the variables provided in the **Fraction** and **Fraction Tube** report categories. These categories provide the variables shown in the first picture plus some more.

• To access the variables of the **Fraction Detection Parameter** category, select the **Channel Parameter** variable of the **Fraction** category.

For a list of all available variables, refer to the following topics in the **Reference Information** section:

⇒ ‘Fraction’ Category

⇒ ‘Fraction Tube’ Category

⇒ ‘Fraction Detection Parameter’ Category

For an overview of the fraction collection topics, refer to **Collecting Fractions**.
Collecting Fractions
Chromeleon supports automatic fraction collection. This is also referred to as **Autopurification**. Autopurification includes three steps:

- Pre-analysis of the preparative samples
- Preparative purification of the remaining samples, based on the pre-analysis results
- Post-analysis of the collected fractions for purity and yield evaluation

In order to perform autopurification, make sure that

1. A **Purification** license is installed.
2. A Dionex Sample and Fraction Manager is installed. (For installation details, refer to **Installing Dionex Devices** in the **HPLC Sample and Fraction Manager (SFM)** in the **Administrator Help** section.)

For general information about fraction collection, refer to **Collecting Fractions**.

For more information about autopurification, refer to:

- **Setting up Autopurification**
- **Creating PGM Files for Autopurification Samples**
- **Using Triggers in Autopurification Programs**
- **Performing Autopurification**
- **Autopurification Samples in the Sample List**
- **Autopurification Samples in the Chromatogram**
- **Autopurification Samples in the Tray Views**
Setting up Autopurification

Before you can collect fractions automatically, you need to take the necessary preparative steps in Chromeleon, using the corresponding files from the Additional_Software_Autopurification CD. First, select the appropriate directory for your installation, e.g., APS_2222_UV_MS.

Windows Explorer

Copy the Dionex_Purification_Parameters.GEN file from the Drivers subdirectory to the Chromel/bin directory.

Tip:
Usually, a Dionex Service Representative or an authorized Dionex distributor copies the file. (Make sure that you do not move any chromatographic files in the Windows Explorer. The reason is that, except for the visible results, processes are performed below the surface.)

Server Configuration

Install the devices in the Server Configuration program. Usually, you have to install the single devices manually. However, for autopurification, Chromeleon provides several predefined device configurations on the CD that is shipped with the product. For example:

APS_2222_UV_MS.CFG (in the cfg file directory)

Select Import on the File menu and import the desired configuration.
Collecting Fractions Automatically (Autopurification)

PGM Files

In the PGM File, define how the single fractions are to be collected. The Programs directory provides different programs as backup files. Select ➢ Restore on the File menu and specify the location to which you want to restore the program(s).

Or else, you may create a program in the Program Wizard (see The Control Program ➢ The Program Wizard). For more information, refer to ➢ Collecting Fractions.

Control Panels

Install the predefined control panels from the Panels directory on the CD to an appropriate location, e.g., the Dionex Templates>Panels directory in the local datasource of the Chromeleon Browser. For example, create an Autopurification folder in this directory.

Reports

In the same way, you may copy the report templates from the Reports directory on the CD to an appropriate location, e.g., the Dionex Templates>Reports directory in the local datasource of the Chromeleon Browser. For example, create an Autopurification folder in this directory.

Demo Data

In addition, demo data backup files are provided in the Demo_data directory. Copy the data to an appropriate location, if required.

For an overview of how to perform ➢ Autopurification, refer to ➢ Collecting Fractions Automatically (Autopurification).
Creating PGM Files for Autopurification Samples

The purification process includes three steps. Therefore, three different PGM Files are required for

1. Pre-analysis of the preparative samples
2. Fraction collection
3. Post-analysis of the collected fractions

No special PGM Files are required for steps 1 and 3. For step 2, use the PGM Wizard to create a program for fraction collection. Follow the steps in How to …: Collecting Fractions Setting up Fraction Collection.

The Dionex_Purification_Parameters device driver supports additional parameters. For more information, refer to:

- Setting the General Parameters for the Dionex_Purification_Parameters Driver
- Setting the Safety Parameters
- Setting the Correction Parameters (Settings Panel)

For an overview of how to perform Autopurification, refer to Collecting Fractions Automatically (Autopurification).

Setting the General Parameters for the Dionex_Purification_Parameters Driver

The Dionex_Purification_Parameters driver supports the following general parameters.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnalOn</td>
<td>When the variable is set to On, the control panel shows that the analytical pump flow is directed through the analytical column.</td>
</tr>
<tr>
<td>AutoCh*</td>
<td>Enables or disables the ARC logic, e.g., on the Operation panel. (ARC logic must be off for isomers.)</td>
</tr>
<tr>
<td>Col1On</td>
<td>(Tandem operation only) When the variable is set to On, the control panel shows that the preparative pump flow is directed through the preparative column 1.</td>
</tr>
<tr>
<td>Col2On</td>
<td>(Tandem operation only) When the variable is set to On, the control panel shows that the preparative pump flow is directed through the preparative column 2.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>FirstRack</td>
<td>Indicates the rack that contains the first fraction tube of a sample (report variable).</td>
</tr>
<tr>
<td>FirstTube</td>
<td>Indicates the first fraction tube of a sample.</td>
</tr>
<tr>
<td>LastRack</td>
<td>Indicates the rack that contains the last fraction tube of a sample.</td>
</tr>
<tr>
<td>LastTube</td>
<td>Indicates the last fraction tube of a sample.</td>
</tr>
<tr>
<td>MSTgtPkEnd*</td>
<td>The variable is set to Yes when the system has detected a target compound (required for the ARC logic).</td>
</tr>
<tr>
<td>MSThrFact</td>
<td>Multiplication factor for absolute threshold values for peak start and peak end in the MS.</td>
</tr>
<tr>
<td>NextImpuls</td>
<td>Controls the impulse transmitter for software function monitoring of the Security and Solvent Monitoring System (SSM).</td>
</tr>
<tr>
<td>PkPrevRunEnd</td>
<td>Indicates whether fractions were collected during the last two runs. If no fractions were collected, you have to reset the variable manually on the Operation panel to allow a new sample to be injected.</td>
</tr>
<tr>
<td>TenPortState</td>
<td>Controls valve switching for two preparative columns in tandem operation.</td>
</tr>
<tr>
<td>ThrMSTgtPkDet*</td>
<td>Absolute threshold value for detecting a target mass in the MS (required for the ARC logic).</td>
</tr>
<tr>
<td>ThrUVTgtPkDet*</td>
<td>Absolute threshold value for detecting a target mass in the UV (required for the ARC logic).</td>
</tr>
<tr>
<td>TrigBusy</td>
<td>Inhibits that several triggers are performed in parallel.</td>
</tr>
<tr>
<td>UVThrFact</td>
<td>Multiplication factor for absolute threshold values for peak start and peak end in the UV.</td>
</tr>
</tbody>
</table>

**Tip:**

On the control panel, you can correct the parameters marked with an asterisk (*) for all other samples of the current sequence, using the corresponding parameters that are supported by the Dionex_Purification_Parameters device driver (see Collecting Fractions Automatically (Autopurification) Setting Correction Parameters).

For an overview of how to perform Autopurification, refer to Collecting Fractions Automatically (Autopurification).
### Setting the Safety Parameters

The Dionex_Purification_Parameters driver supports several parameters that can be used to improve system safety.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disc*</td>
<td>Enables or disables the Disconnect function. If the parameter is set to Yes, all modules are disconnected when the Emergency Program is running.</td>
</tr>
<tr>
<td>LeakOn</td>
<td>Enables or disables leak detection. If the parameter is enabled (Yes), a Message appears when the emergency program is running explaining why the system has stopped when a leak is detected, i.e., when the value is below the PMinAlarm.</td>
</tr>
<tr>
<td>MaxPress</td>
<td>Highest pressure measured in the system (used for early pressure alarm).</td>
</tr>
<tr>
<td>PMaxAlarm*</td>
<td>Upper pressure limit. If the pressure exceeds this value, a warning appears and no sample will be injected.</td>
</tr>
<tr>
<td>PMinAlarm*</td>
<td>Lower pressure limit. When the pressure is below this value, a warning appears and the system is stopped immediately.</td>
</tr>
<tr>
<td>PressAlarm</td>
<td>Enables or disables the pressure alarm. If parameter is set to On, no sample will be injected.</td>
</tr>
<tr>
<td>PressMem</td>
<td>At a specified time during the program run (usually, at the highest pressure), the parameter is assigned the current system pressure.</td>
</tr>
<tr>
<td>RunDone</td>
<td>If the parameter is set to Yes, fractionation is stopped at the end of the sample.</td>
</tr>
</tbody>
</table>

**Tip:**

On the control panel, you can correct the parameters marked with an asterisk (*) for all other samples of the current sequence, using the corresponding parameters that are supported by the Dionex_Purification_Parameters device driver (see Collecting Fractions Automatically (Autopurification) Setting Correction Parameters).

For an overview of how to perform Autopurification, refer to Collecting Fractions Automatically (Autopurification).
Setting the Correction Parameters (Settings Panel)

The Dionex_Purification_Parameters driver supports several parameters that allow you to later change the settings for single fraction collection parameters defined in the PGM File, e.g., if you come across an unfavorable setting for a special parameter when processing a long sequence.

Tip:

Unlike all other properties, the values for these parameters are not reset to the values in the PGM File when a new sample is started. Thus, these values are valid for all other samples.

To change a setting, click Settings on the Administration.pan panel. The Settings sub panel appears.

Tips:

To use the default values for the parameters listed in the panel sections below, click the associated SET DEFAULT VALUES button.

For many parameters, a NOW button is provided. Click this button to apply the new value immediately. In all other cases, the new value is used after the current sample has been processed completely.

The appearance of the panels may vary, depending on the installed version. Therefore, the parameter names listed below may be slightly different from the names on your panel version.

Pressure Monitoring

Enable use of the following pressure monitoring parameters by selecting the Use global parameters for pressure monitoring check box or via the GlobParPressMem parameter in the Commands dialog box:

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper pressure alarm level</td>
<td>PMaxAlarm2</td>
<td>Upper limit for the system pressure. If the pressure exceeds this value, a warning appears and no sample will be injected.</td>
</tr>
<tr>
<td>Lower pressure alarm level</td>
<td>PMinAlarm2</td>
<td>Indicates the lower limit for the system pressure during a run. A pressure below this value indicates a leak. A warning appears and the system is stopped immediately.</td>
</tr>
</tbody>
</table>
Safety

To enable the disconnect function, select the **Disconnect System in Case of Emergency** check box or use the **Disc** command in the **Commands** dialog box. When this function is active, Chromeleon interrupts software control for all modules while the **Emergency Program** is running.

Threshold Values for Fraction Collection

Enable use of the related peak detection parameters by selecting the **Use parameters below for peak detection** check box or via the **GlobParUVDet** or **GlobParMSDet** parameter in the **Commands** dialog box:

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Start Threshold (UV)</td>
<td>UVStartThr</td>
<td>The signal threshold must exceed this value for a peak start to be detected (PeakStartThreshold of Detection Channel1).</td>
</tr>
<tr>
<td>Peak End Threshold (UV)</td>
<td>UVEndThr</td>
<td>The signal value must be below this value for a peak end to be detected (PeakEndThreshold of Detection Channel1).</td>
</tr>
<tr>
<td>Threshold Do Not Resolve (UV)</td>
<td>UVThrRes</td>
<td>Above this threshold value, a new fraction tube is used in the minimum between two peaks if these peaks are not baseline separated (ThresholdDoNotResolve of Detection Channel1).</td>
</tr>
<tr>
<td>Threshold No Peak End (UV)</td>
<td>UVThrNoPkEnd</td>
<td>The signal value must be below this value for a peak end to be detected (PeakEndThreshold of Detection Channel1)</td>
</tr>
<tr>
<td>Peak Start Slope (UV)</td>
<td>UVStartSlp</td>
<td>The slope must exceed this value for a peak start to be detected (PeakStartSlope of Detection Channel1).</td>
</tr>
<tr>
<td>Peak End Slope (UV)</td>
<td>UVEndSlp</td>
<td>The signal slope must be below this value for a peak end to be detected (PeakEndSlope of Detection Channel1)</td>
</tr>
<tr>
<td>Peak Start Curve (UV)</td>
<td>UVStCurv</td>
<td>The curvature in ([\text{Signal}]/s^2) must exceed this value for a peak start to be detected (PeakStartCurve of Detection Channel2).</td>
</tr>
<tr>
<td>Peak End Curve (UV)</td>
<td>UVEndCurv</td>
<td>The curvature in ([\text{Signal}]/s^2) must be below this value for a peak end to be detected (PeakEndCurve of Detection Channel2).</td>
</tr>
<tr>
<td>Option</td>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Peak Start True Time (UV)</td>
<td>UVStTrTi</td>
<td>Time in seconds for which the PeakStart conditions must be fulfilled. Only then, a peak start will be detected (PeakStartTrueTime of Detection Channel1).</td>
</tr>
<tr>
<td>Peak End True Time (UV)</td>
<td>UVEndTrTi</td>
<td>Time in seconds for which the PeakEnd conditions must be fulfilled. Only then, a peak end will be detected (PeakEndTrueTime of Detection Channel1).</td>
</tr>
<tr>
<td>Peak Start Threshold (MS)</td>
<td>MSStartThr</td>
<td>The signal threshold must exceed this value for a peak start to be detected (PeakStartThreshold of Detection Channel2).</td>
</tr>
<tr>
<td>Peak End Threshold (MS)</td>
<td>MSEndThr</td>
<td>The signal threshold must be below this value for a peak end to be detected (PeakEndThreshold of Detection Channel2).</td>
</tr>
<tr>
<td>Threshold No Peak End (MS)</td>
<td>MSThrNoPkEnd</td>
<td>The signal value must be below this value for a peak end to be detected (ThresholdNoPeakEnd of Detection Channel2).</td>
</tr>
<tr>
<td>Peak Start Slope (MS)</td>
<td>MSStartSlp</td>
<td>The slope must exceed this value for a peak start to be detected (PeakStartSlope of Detection Channel2).</td>
</tr>
<tr>
<td>Peak End Slope (MS)</td>
<td>MSEndSlp</td>
<td>The signal slope must be below this value for a peak end to be detected (PeakEndSlope of Detection Channel2).</td>
</tr>
<tr>
<td>Peak Start True Time (MS)</td>
<td>MSStTrTi</td>
<td>Time in seconds for which the PeakStart conditions must be fulfilled. Only then, a peak start will be detected (PeakStartTrueTime of Detection Channel2).</td>
</tr>
<tr>
<td>Peak End True Time (MS)</td>
<td>MSEndTrTi</td>
<td>Time in seconds for which the PeakEnd conditions must be fulfilled. Only then, a peak end will be detected (PeakEndTrueTime of Detection Channel2).</td>
</tr>
</tbody>
</table>

**Tip:**

The parameter names determined for DetectionChannel1 and DetectionChannel2 imply that DetectionChannel1 is a UV channel and DetectionChannel2 is an MS channel.
Fraction collection

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Evaluation &quot;ALL&quot;</td>
<td>ChanEval</td>
<td>Determine how the results of the detection channels are to be used for peak detection: Selecting this check box, activates All, i.e., the condition must be true for all channels. Clearing this check box, activates Any, i.e., the condition must be true for only one channel.</td>
</tr>
</tbody>
</table>

Enable use of the following fraction collection parameters by selecting the use parameters below for fraction collection check box or via the GlobParFr parameter in the Commands dialog box:

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Tubes Installed</td>
<td>MaxTubes</td>
<td>Maximum number of tubes available for fraction collection in the system.</td>
</tr>
<tr>
<td>Tube Max Volume</td>
<td>TbMaxVol</td>
<td>Maximum volume per tube.</td>
</tr>
<tr>
<td>max # Tubes/Fraction</td>
<td>MaxTbPerFr</td>
<td>Maximum number of tubes per fraction.</td>
</tr>
</tbody>
</table>

High throughput

Enable or disable the procedure for increasing the sample throughput:

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC Logic</td>
<td>ARCLogic</td>
<td>Enables or disables ARC logic. (ARC logic must be off for isomers.)</td>
</tr>
<tr>
<td>Injection Mode</td>
<td>InjectMode</td>
<td>Enables or disables overlapping sample preparation.</td>
</tr>
</tbody>
</table>

Threshold values ARC Logic

Enable the following fraction collection parameters by selecting the use parameters below for ARC logic check box or via the GlobParEarlTerm parameter in the Commands dialog box:

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV</td>
<td>ThrUVTgtPkDet2</td>
<td>UV threshold value for a target peak</td>
</tr>
<tr>
<td>MS</td>
<td>ThrMSTgtPkDet2</td>
<td>MS threshold value for a target mass</td>
</tr>
</tbody>
</table>
Continuos Fraction Collection

To enable fraction collection outside of peaks by selecting the Collect outside peaks check box or via the Col Outs parameter in the Commands dialog box.

For an overview of how to perform Autopurification, refer to Collecting Fractions Automatically (Autopurification).

Using Triggers in Autopurification Programs

Using ⇒ Triggers allows performing one or more actions as soon as certain conditions are true. Usually, three triggers are required for fraction collection:

- To start fraction collection
- To change the tube
- To finish fraction collection

For an example, refer to Commands for Controlling Dionex Devices Sample and Fraction Manager: PGM File for Fraction Collection.

Miscellaneous and freely definable conditions allow linking triggers to certain action, thus making them a flexible and versatile tool for controlling and monitoring various functions of the APS-2000 Series systems. For example, you can use a trigger to control and monitor the

- System pressure,
- Correct communication between the system and the software,
- ⇒ARC logic,
- And to transfer various variables from the panel to the program.

For information about special autopurification triggers, refer to the operating instructions for the APS-2000 Series systems.

For an overview of how to perform Autopurification, refer to Collecting Fractions Automatically (Autopurification).
Performing Autopurification

First, create a sequence that contains the samples for fractionation.

Then, have Chromeleon analyze the samples chromatographically to check whether fractionation is appropriate. From the original analytical samples (⇒ Auto Purif. Type = Analytic), Chromeleon can automatically create the necessary preparative samples (Auto Purif. Type = Preparation). Determine the conditions in the Create Purification Samples ➢ Post-Acquisition Step.

Notes:

The Create Purification Samples post-acquisition step is available only if the timebase is connected to the related server, if this server is running, and if a Purification license is installed.

The preparative samples are injected from the same vials/tubes as the original analytical samples.

For more information, refer to:

Creating Preparation-Type Samples

Using Optimized MS Threshold Values

Afterward, fractionation is performed. This step, too, can be monitored chromatographically. Use the Create Fraction Analysis Samples post-acquisition step to create the necessary fractionated samples (Auto Purif. Type = Fraction). Only then will it be possible to chromatographically reanalyze the individual fractions later.

Note:

The Create Fraction Analysis Samples post-acquisition step is available only if the timebase is connected to the related server, if this server is running, and if a Purification license is installed.

For more information, refer to Creating Fraction-Type Samples.

For an overview of how to perform Autopurification, refer to Collecting Fractions Automatically (Autopurification).
Creating Preparation-Type Samples

Preparative samples are required to allow fractionation of the content of a tube or vial. Create preparative samples in the Create Purification Samples > Post-Acquisition Steps. A wizard guides you through the creation process.

Note:
The Create Purification Samples post-acquisition step is available only if the timebase is connected to the related server, if this server is running, and if a Purification license is installed.

The flow chart on the first wizard page illustrates how preparative samples are created. In addition, determine for how many target compounds is searched:
On the second wizard page, define the channel and the target compound:

Select the search criterion for the target compound from the Select Peak… drop-down list:

- by Name:
- by Retention Time:
- by Greatest Height& Threshold: (= Highest peak)
- by Greatest Area& Threshold: (= Peak with the largest area)

In the Mass Spectrometry Settings section, enter the Target Mass in the related input field. In addition, enter the mass range in the Isotope bunch field. If necessary, enter the mass of one or two adducts of the target compound, e.g., with a solvent, in the Adduct Mass 1 and/or Adduct Mass 2 input fields.

On the third wizard page, define the tests to be performed:

- Ion present: Checks whether the target compound is present.
- Mass spectrum purity: Checks whether the target compound is pure enough.
- Amount check: Checks whether the amount of the target compound is sufficient.
- <New customized>: Allows you to define your own test.

For more information about this wizard page, refer to Create Purification Samples: Target Compound X.
Collecting Fractions Automatically (Autopurification) 701

Use the next wizard page to enable special options:

**Use Conditional Program**
Select this check box if you want to define an additional gradient program.

**Optimize MS Threshold for Target Compound X**
(X is a number between 1 and 10) Select this check box if you want to further analyze tailing and fronting of the target compound for a specified channel.

Selecting one of these options and clicking Next takes you to the corresponding wizard page. If you did not select one of these option, clicking Next takes you to the three last wizard pages. Use these pages to determine the properties for the purification sequence and its samples (⇒Auto Purif. Type: Preparation). For more information, refer to the online Help for Create Fraction Analysis Samples: Sequence Properties, Create Fraction Analysis Samples: Sample Properties, and Create Fraction Analysis Samples: Extended Sample Properties. Click Finish to complete creation of the post-acquisition step.

For more information, refer to:

- Performing Autopurification
- Creating Fraction-Type Samples

For an overview of how to perform ➤ Autopurification, refer to ➤ Collecting Fractions Automatically (Autopurification).

### Using Optimized MS Threshold Values

The Purification Sample Wizard supports the input of automatically optimizing threshold values for peak detection. For example, this may be useful in the following situation:

When the ion source of the ➤ Mass Spectrometer is overloaded, it may appear in the MS channel as if a target compound is still eluting from the column. To avoid collecting fractions that do not contain the target compound, you can enter two automatically optimizing MS threshold values for the peak start and peak end on the Optimized MS Threshold TCx page. Follow the steps below:

From the Channel for peak height list, select the channel to be used to determine the retention time at the peak height specified in the Peak Front Evaluation and Peak End Evaluation sections. From the Signal evaluation channel list, select the channel whose signal height at this retention time will be used.
The target channel is the default setting, but you may select a different channel, instead. In addition, you may enter a **Multiplication Factor**. The signal value of this channel is multiplied with this factor.

![Diagram showing signal evaluation](image)

In the example, the ion source is overloaded, resulting in tailing of the peak on the MS channel (contrary to the peak in the UV channel). To check whether the peak exists on the UV channel, Chromeleon first determines the retention time that is exactly between the peak start and peak end on the MS channel. This retention time is also between the peak start and peak end on the UV channel (dashed lines), thus proving that the peak exists on the UV channel, too.

Afterward, Chromeleon determines the retention time at which the signal on the UV channel has reached (in this example) 10% of the maximum on the ascending peak edge (dotted line). Finally, Chromeleon determines the height of the signal on the **Signal evaluation channel** at this retention time. In the example, the signal evaluation channel is the target channel.

In the pre-analysis (i.e., during the analysis of the sample for which the **Auto Purif. Type** is **Analytic**), the signal value is written to the specified **User-defined Column** and evaluated during fraction collection (i.e., during the analysis of the sample for which the Auto Purif. Type is **Preparation**). When the signal value is exceeded during the analysis of the preparation-type sample, a peak is detected and a fraction is collected.
To determine the peak end and thus stop fraction collection, you can enter the height for **Peak Tail Evaluation** in the same way.

---

**Tip:**

Samples consisting of several substances with clearly different degrees of ionization are another example. When a fixed threshold value is used, it is possible that only a small portion (or no portion) of weakly ionizing substances might be collected. However, with an optimized MS threshold, the same portion of substances would be collected even if the ionization degrees were different.

---

### Creating Fraction-Type Samples

When fractionating preparative samples, the samples are chromatographically analyzed. If you want to reanalyze these fractions later again, you need one Chromeleon sample for each fraction. Chromeleon can create the samples automatically during fraction collection via the **Create Fraction Analysis Samples** ➤ **Post-Acquisition Step**. A wizard guides you in creating this step.

---

**Note:**

The Create Fraction Analysis Samples post-acquisition step is available only if the timebase is connected to the related server, if this server is running, and if a **Purification** license is installed.

On the first wizard page, determine which fractions are to be chromatographically reanalyzed:

![Create Fraction Analysis Samples: Fraction Reanalysis](image)

- Reanalyze all tubes
- Reanalyze all tubes that contain the target compound
- Reanalyze only the tube with the target compound trig

Target compounds (R8 or double-click to edit, delete key to remove):

<table>
<thead>
<tr>
<th>Channel</th>
<th>Select Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV_VS_1</td>
<td>by Name: Anthracene</td>
</tr>
<tr>
<td>UV_VS_1</td>
<td>by Greatest Area &amp; Threshold: 10</td>
</tr>
<tr>
<td>TICF_02</td>
<td>by Greatest Height &amp; Threshold: 100000</td>
</tr>
</tbody>
</table>

---
Select:

- **Reanalyze all tubes**: To reanalyze all tubes containing fractionated samples.
- **Reanalyze all tubes that contain the target compound**: To reanalyze only those tubes that contain the target compound.
- **Reanalyze only the tube with the target compound apex**: To reanalyze only the tubes into which the fractions containing the peak maximum of the target compounds were collected.

The **Target Compound** table lists all defined target compounds. Click `<New>` to add a new target compound. The **Select Target Compound Context** dialog box is opened:

Select the search criterion for the target compound from the **Select Peak...** drop-down list. For information about the criteria, refer to: Creating Preparation-Type Samples.

Clicking **Next** takes you to the next wizard page. Determine the properties for the fractionation sequence and its samples (⇒ Auto Purif. Type: Fraction). For more information, refer to the online Help for Create Fraction Analysis Samples: Sequence Properties, Create Fraction Analysis Samples: Sample Properties, and Create Fraction Analysis Samples: Extended Sample Properties. Click **Finish** to complete creation of the post-acquisition step.

For more information, refer to:

- Performing Autopurification
- Creating Preparation-Type Samples

For an overview of how to perform Autopurification, refer to Collecting Fractions Automatically (Autopurification).
Autopurification Samples in the Sample List

Click Display Columns on the context menu to include the following columns in the sample list:

⇒ Auto Purif. Frac (Autopurification Fraction)
⇒ Auto Purif. Ref. (Autopurification Sample Reference)
⇒ Auto Purif. Type (Autopurification Type)

Note:
The columns display the values assigned by Chromeleon. These values are read-only.

The Auto Purif. Type sample variable indicates the Autopurification stage for the associated sample:
1. Analytic = original analytical sample
2. Preparation = preparative sample
3. Fraction = fractionated sample

An identical entry in the Auto Purif. Ref. column of the sample list indicates that the samples of these three sample types belong together.

The fraction ID assigned by Chromeleon appears in the Auto Purif. Frac. column. Chromeleon numbers the fractionated samples so that the order of the samples remains unchanged even if they are moved to a different sequence or folder.

The picture shows an example in which the analytical samples are stored in the sequence 1_Analytic, the preparative samples in the sequence 2_Preparation, and the fractionated samples in the 3_Fractions sequence:

For an overview of how to perform autopurification, refer to Collecting Fractions Automatically (Autopurification).
After $\textit{Autopurification}$ has been performed, you can have Chromeleon display the results of the different samples in the associated chromatograms. The default setting is that all samples of the $\text{Analytic, Preparation, and Fraction } \Rightarrow \text{Auto Purification Types}$ that belong together are displayed:

The topmost chromatogram shows the original analytical sample. If this sample fulfills the conditions determined in the $\text{Create Purification Samples } \Rightarrow \text{Post-Acquisition Steps}$, a preparation-type sample is created and fractionated. The chromatogram for the preparation-type sample is displayed next. The vertical stripes indicate the chromatogram ranges for which fractions were collected.

The individual fractions are chromatographically reanalyzed, based on the conditions determined in the $\text{Create Fraction Analysis Samples}$ post-acquisition step. The chromatogram for the associated fractions is displayed last.

The bottommost chromatogram shows the fraction for the selected peak of the preparative sample. This is either the fraction under the peak maximum or, if no fraction was collected at the peak maximum, the fraction
overlapping most with the peak. If no peak was selected in the preparative chromatogram or if no fraction was collected for the selected peak, the chromatogram for the first peak is displayed.

**Note:**

To display the next or previous sample or channel of the current chromatogram, click the associated icon: Click 🔄 for the next chromatogram, 🔄 for the previous chromatogram, 🔄 for the next channels or 🔄 for the previous channel. If another chromatogram is displayed, the associated chromatograms are updated simultaneously. For example, if Chromeleon displays the next analytical chromatogram, the associated preparative chromatogram and the associated chromatogram of the first fraction are displayed as well.

To change the representation of the single chromatograms, double-click the chromatogram or select **Decoration** on the context menu. The **Chromatogram Decoration** dialog box is opened. On the **Autopurification** tab page, determine which autopurification samples are displayed. On the **Fractions** tab page, determine how fraction collection is displayed in the chromatogram.

Also, refer to 🔄 **Autopurification Samples in the Tray Views**.

For an overview of how to perform autopurification, refer to 🔄 **Collecting Fractions Automatically (Autopurification)**.
Autopurification Samples in the Tray Views

Chromeleon supports two tray views for displaying the different samples and/or fractions. Analytical and preparation-type samples are displayed in the Inject Trays view. To open the Inject Trays view, click the following icon on the Method toolbar: 

Tubes with fraction-type samples are displayed in the Fraction Racks view. To open the Fraction Racks view, click the following icon: 

The default setting is that an overview of the single racks is displayed below the title line, also showing the racks that do not contain samples and/or fractions. The racks and their samples are then displayed below this general overview. The samples and/or fractions are color-coded, based on their Type (Sample Type) and Status.

To change the representation of the samples and/or fractions, double-click the respective tray view or select Properties... on the context menu. The Inject Tray Properties or Fraction Tray Properties dialog box is opened. On the Format tab page, determine the formats in which the trays are displayed. On the Tube Format tab page, define the formats for the vials and/or tubes. Use the Overview tab page to display, hide, and/or format the trays.

Also, refer to Autopurification Samples in the Chromatogram.

For an overview of how to perform Autopurification, refer to Collecting Fractions Automatically (Autopurification).
Simulating Chromatograms

To use Virtual Column to simulate retention data and chromatograms, you first select the analysis parameters (analytes of interest, methodology, column, etc.). Virtual Column then calculates retention data for the selected parameters, and displays the resulting Resolution Response Surface and Virtual Chromatogram.*

Note:

Results obtained with Virtual Column are intended to represent typical results for a particular column type. Because no two columns or systems are identical, the results you obtain in an actual analysis may differ somewhat from the Virtual Column predictions.

Starting Virtual Column

In the Chromeleon Browser, select Virtual Column on the Tools menu.

Tip: You can open more than one Virtual Column window.

Using Virtual Column (Overview)

1. Select an analyte category.
2. Select two or more analytes.
3. Select a column.
4. View the Resolution Response Surface (a plot of the lowest resolution values found at each eluent condition).
5. View the Virtual Chromatogram.

Tip:

Right-click on the Resolution Response Surface to select a different resolution criterion.
For details about how to use Virtual Column, refer to:

- Selecting the Analysis Parameters
- Viewing the Results Table
- Viewing the Resolution Response Surface
- Viewing the Virtual Chromatogram
- Selecting a Resolution Criterion
- Finding the Fastest Chromatogram
- Finding the Global Optimum
- Selecting the Column Quality Assurance Conditions
- Manually Selecting an Eluent Condition
- Saving and Reloading Virtual Column Settings
- Viewing the Eluent Composition
- Modeling Gradient Separations

Note:

Parts of the Virtual Column software were developed jointly by Dionex Corporation and the Australian Centre for Research on Separation Science (ACROSS) at the University of Tasmania, Australia
Selecting the Analysis Parameters

The left side of the Virtual Column window provides controls for selecting the desired analysis parameters.

**Tip:**

To clear selections and return the Virtual Column window to the initial blank state, click Reset All.

1. **Select an Analyte Category.**

To begin a Virtual Column simulation, first select the Analyte Category. The table on the Select Analytes tab lists all analytes in the selected category for which embedded data are available. The example shows the list when Anions is the selected category.

2. **Select the analytes.**

Select the check box for each analyte to be included in the Virtual Chromatogram.

**Tip:**

If you want Virtual Column to calculate retention data for the void dip, or if you want to change its Peak Area, Asymmetry, or Efficiency values, select the Void Dip check box. If the check box is not selected, the void dip is displayed on the Virtual Chromatogram, but retention and resolution data are not calculated for it.
3. **(Optional) Select methodologies.**

After you select two or more analytes, the methodologies and columns available for the selection are displayed. If more than one methodology is shown, you can restrict the column choices by clearing the check boxes from methodologies you do not want to consider.

4. **(Optional) Select a column diameter.**

To restrict the column choices to a particular diameter category, clear the check box for the diameter of column (Standard Bore or Micro Bore) you do not want to consider.

5. **Select a column.**

Select a column from the list. Virtual Column calculates retention and resolution data for the selected parameters and displays the resulting Resolution Response Surface and Virtual Chromatogram. The display defaults to the best Minimum Resolution case (see How to ...: Selecting a Resolution Criterion).

**Note:**

Gradient cases are listed only if a Virtual Column Linear Gradient license is present and a gradient Methodology option is selected.
The following example shows the plot and chromatogram for Fluoride, Chloride, Nitrite, Sulfate, Bromide, and Nitrate when the AS18 column is selected using isocratic conditions.

6. **(Optional) Change the Set Response By option.**

   The default response factor is **Peak Area**. You can change this to **Concentration (mg/l)** or **Concentration (mM)**.

7. **(Optional) Change the Inj. Volume.**

   After you select the **Concentration** option for **Set Response By**, a default injection volume is displayed. You can enter a different value in the edit box.
8. (Optional) Change the Peak Area, Concentration, Asymmetry, and Efficiency Values.

After you select the analytes and choose a column, the Select Analytes table displays the default Peak Area or Concentration, Asymmetry, and Efficiency values for each selected analyte. The values displayed were obtained from the experimental data embedded in Virtual Column. If you have data specific for your system, you can enter those values in the table. Virtual Column uses the new values in retention and resolution calculations.

After entering the values, you can save them to a file for later use (see How to …: Saving and Reloading Virtual Column Settings).

9. (Optional) Change the Temperature.

For some columns, you can select a different temperature to view the effect of a temperature change on the Virtual Chromatogram.

10. (Optional) Change the Gradient Start.

After you select a column for a gradient simulation, a default value for the eluent concentration at the beginning of the gradient is displayed. You can select a different value from the drop-down list.

Note:

See How to …: Modeling Gradient Separations for more information about gradient analyses.

11. (Optional) Change the Flow Rate, Void Volume, and Void Time.

After you select the analytes and choose a column, Virtual Column displays a default flow rate, void volume (also called Dead Volume), and void time (also called Dead Time) for the selected column. You can change the flow rate and/or void volume values to more accurately model your specific system. Changing either value affects the void time (void time = void volume/flow rate).

Note:

If you change the flow rate in Virtual Column, the peak shapes on the virtual chromatogram are not affected. However, under actual operating conditions, peak shapes are affected by changes in the flow rate.
12. (Optional) View the retention data.

To view the calculated retention data, click the Display Results tab. See How to …: Viewing the Results Table for details.

Viewing the Results Table

After you select the analytes and choose a column, click the Display Results tab to view the calculated retention data. The results table lists the calculated results (Retention Time, Retention Factor, and Resolution) for each selected analyte. The analytes are listed in order of ascending retention time. Results are calculated based on the analyte data (peak area or concentration, asymmetry, and efficiency) and on the selected column, temperature, void time, and eluent conditions.

- Retention Time is the time (in minutes) since injection.
- Retention Factor (also called Capacity Factor) is the ratio of the net retention time to the void time (also called Dead Time).
- Resolution is the degree of separation between the current peak and the next peak in the chromatogram.

Viewing the Resolution Response Surface

The Resolution Response Surface is a plot of the lowest resolution values found for the Virtual Chromatogram at each possible eluent condition. Specific features of the plot vary, depending on which resolution criterion is selected (see How to …: Selecting a Resolution Criterion) and on whether the eluent is a single- or dual-species type.
Single-Species Eluents

When a single-species eluent is used, the Resolution Response Surface is represented by a line plot. In this example, the Minimum Resolution criterion is selected.

Dual-Species Eluents

When a dual-species eluent is used, the Resolution Response Surface is represented by a contour plot. In this example, the Minimum Resolution criterion is selected.
Viewing the Virtual Chromatogram

The Virtual Chromatogram simulates an actual analysis, using the currently selected analytes, column, void time, temperature, resolution criterion, and eluent condition. The Virtual Chromatogram is updated whenever the selected analytes or other parameters are changed. The figure below describes the features of the Virtual Chromatogram. In this example, the Minimum Resolution criterion is selected.

Zooming/Unzooming

To zoom into an area of the chromatogram, press the left mouse button and drag to form a box around the area.
To return to the previous view, right-click and select **Unzoom**. To display the full chromatogram in the pane, right-click and select **Full Size**.

**Gradient Profile**

To superimpose the gradient profile (in blue) over the Virtual Chromatogram (in red), right-click and select **Gradient Profile**. This option is available only when a gradient simulation is selected.

**Selecting a Resolution Criterion**

- **Virtual Column** provides three options for determining the optimal eluent condition for peak resolution:
  - **Minimum Resolution**
  - **Normalized Resolution Product**
  - **Resolution Optimized for Analyte**
To select a resolution criterion, right-click on the Resolution Response Surface and select a criterion on the menu, or select an option on the **Criterion** menu on the Chromeleon menu bar.

The sections below describe each resolution criterion. Examples illustrate how each criterion affects the same Virtual Chromatogram. For the examples, the AS18 column was selected and the following list of anions was used: Bromide, Carbonate, Chloride, Fluoride, Nitrate, Nitrite, and Sulfate. **Note:** Carbonate was added to the list to better illustrate the differences among the criteria.

**Minimum Resolution**

When **Minimum Resolution** is selected, Virtual Column finds the least resolved peak pair for the selected eluent condition. The resolution of the entire chromatogram for that eluent condition is defined as the resolution of the least resolved peak pair. All other peak pairs of higher resolution are ignored. **Minimum Resolution** is the default criterion. This option is useful for difficult separations because it optimizes the resolution of any peak pairs that are hard to separate.

In general, a resolution value of at least 1.5 (peak areas overlap less than 0.2%) is regarded as good baseline separation. For many applications, a value of 1.2 (peak areas overlap less than 2%) is considered to be an acceptable separation. A value of 0 indicates that at least two peaks are eluting at the same retention time.
Normalized Resolution Product

When Normalized Resolution Product is selected, Virtual Column finds the eluent condition that provides the most evenly spaced peaks across the entire chromatogram. A normalized resolution product value of 1 indicates that all peaks are evenly resolved across the chromatogram. A value of 0 indicates that at least one peak pair is co-eluting. Normalized Resolution Product is useful for easy separations, as it optimizes the resolution of all peak pairs. However, for more difficult separations, Normalized Resolution Product may find a chromatogram with evenly spaced peaks, but the peaks may not all be resolved.

The normalized resolution product \( r \) is defined by the following equation:

\[
    r = \prod_{i=1}^{n-1} \frac{R_{n,i+1}}{\sum_{i=1}^{n-1} R_{n,i+1}}
\]

where \( n \) is the number of peaks and \( R_{n,i+1} \) is the resolution of peaks \( i \) and \( i+1 \).

Notice that with this example, when the Normalized Resolution Product option is selected, the Carbonate/Nitrite peak pair is no longer resolved.
Resolution Optimized for Analyte

When Resolution Optimized for Analyte is selected, Virtual Column finds the eluent condition that optimizes the resolution of a selected peak. Virtual Column finds the best resolution for the selected analyte. The resolution of the other peaks is not taken into account. Resolution Optimized for Analyte is useful if resolving a particular analyte’s peak is more critical than resolving all other peak pairs.

In this example, Chloride is the selected analyte (indicated by the asterisk next to the Resolution value in the Display Results table and the blue markers on the peak). Notice that, with this option, the Carbonate/Bromide and Nitrate/Sulfate peaks are not resolved.
**Tip:**

When *Resolution Optimized for Analyte* is selected, you can select a different analyte to be optimized by double-clicking the analyte peak on the Virtual Chromatogram.

### Finding the Fastest Chromatogram

*Virtual Column* provides an option that lets you optimize a separation for speed rather than for peak resolution. To select this option, right-click on the Resolution Response Surface and select **Find Fastest Chromatogram** on the menu, or select the option on the **Criterion** menu on the Chromeleon menu bar. Enter the minimum acceptable resolution and click **OK**. Virtual Column finds the eluent condition that gives the fastest chromatogram that satisfies the currently selected resolution criterion.

The example below shows the results of a **Find Fastest Chromatogram** command. The minimum acceptable resolution entered was 1.5. Notice that the eluent concentration selection bar was moved from 24.912 to 29.459 mM and the chromatogram time was reduced from 11.8 to 10.5 minutes.
Finding the Global Optimum

The Virtual Column Find Global Optimum option finds the eluent composition that gives the maximum value for the selected resolution criterion (see How to ... Selecting a Resolution Criterion). To select this option, right-click on the Resolution Response Surface and select Find Global Optimum on the menu, or select the option on the Criterion menu on the Chromeleon menu bar. This option is the default when you select a column or resolution criterion.
Selecting the Column Quality Assurance Conditions

The Virtual Column Column Quality Assurance Conditions option sets the eluent composition to that specified in the production control test performed on every Dionex column before it is shipped. For details about the production test, refer to the column manual.

To select this option, right-click on the Resolution Response Surface and select Column Quality Assurance Conditions on the menu, or select the option on the Criterion menu on the Chromeleon menu bar. This option is available only when an isocratic modeling case is selected.

Note:
The Column Quality Assurance Conditions option changes the eluent composition, but does not affect the analyte selections. If the production test includes more analytes than those selected for display in Virtual Column, the missing analytes are not automatically added to the Virtual Chromatogram.

Manually Selecting an Eluent Condition

To determine the optimum eluent condition, you can select an option (Find Fastest Chromatogram, Global Optimum, or Column Quality Assurance Conditions) on the Virtual Column Criterion menu or you can manually select the eluent condition on the Resolution Response Surface.

To manually select the eluent condition if you are working with a single-species eluent, drag the single vertical bar to the desired eluent concentration (see the example below), or click on the plot where you want to move the bar. The virtual chromatogram is updated to reflect the new concentration.
Note:

If a gradient Methodology option is selected, moving the vertical bar adjusts the gradient slope rather than the eluent concentration.

If you are working with a dual-species eluent, two eluent selection bars are provided: one for total eluent concentration and one for ratio of the species. You can move both bars together or drag each individually. To move both bars, click on the Resolution Response Surface at the desired eluent composition, or point to the intersection of the two bars, wait for the pointer to change to a four-directional arrow and then drag the bars. See the following example.

To move only one of the bars, point to the bar, wait for the pointer to change to a two-directional arrow, and drag the bar to the desired location. Drag the horizontal bar to change the ratio of the species (see the example below) or drag the vertical bar to change the total eluent concentration.
Saving and Reloading Virtual Column Settings

After you have selected analytes and a column, you can save the selected settings to a file to be available for later use. The following information is saved and can be reloaded from the saved file:

- Each analyte's name, peak area or concentration, asymmetry, efficiency, and retention time information
- Resolution criterion
- Injection volume
- Methodologies
- Column name and size
- Temperature
- Eluent concentration at the gradient start
- Flow rate
- System void time and void volume

When you reload the saved file, the settings are restored and the corresponding Resolution Response Surface and Virtual Chromatogram are displayed.

To save settings:

Select Save on the File menu. The .vcol extension is assigned to the saved file.

Tip:

Virtual Column settings files are saved in the ..\My Documents\Virtual Column Custom Files folder.

To reload a saved file:

1. Select Open on the File menu.
2. Select a .vcol file and click OK.

The Load Selected File dialog box opens. This dialog box displays the analyte data saved in the selected .vcol file and gives you the opportunity to choose the data from the saved file that you want loaded into the Virtual Column analyte table.
3. Clear the check box above any column (Peak Area, mg/l, mM, Asymmetry, or Efficiency) that you do not want loaded.

4. Clear the Void Time check box if you do not want the void time loaded.

5. Clear the Inj. Volume check box if you do not want the injection volume loaded.

**Note:**

If you clear a check box in the Load Selected File dialog box, Virtual Column loads the current user interface setting for the item instead of the data from the saved file. If no setting for the item exists (or if the setting is invalid), Virtual Column loads data for the item from the embedded Virtual Column database.

6. Click OK.

**Viewing the Eluent Composition**

- Virtual Column can provide detailed instructions for preparing the eluents corresponding to the currently selected conditions. This option is available only when an isocratic simulation is selected.

1. Select Eluent Composition on the View menu on the Chromeleon menu bar.

   The Eluent Composition dialog box opens.

2. Click the Eluent Species option button to display information for the eluent of interest.

3. Click Print to print the contents of the dialog box.

4. Click Close to exit.

**Modeling Gradient Separations**

- Virtual Column’s gradient predictions are based on gradient data acquired under conditions that equate to zero delay time. This means that the start of the concentration ramp reaches the column at exactly the same moment as the sample, thus eliminating any effects of isocratic elution of the sample before the ramp begins.
If you try to reproduce results obtained in Virtual Column, take into consideration that your results may include a delay time, while those obtained with Virtual Column do not. This should have little effect on the results unless high starting concentrations are used in conjunction with low slopes; in that case, monovalent species with short run times may experience a shift in retention time compared to other species.

**Note:**

*The Chromeleon Virtual Column Linear Gradient license is required to use Virtual Column to simulate gradient separations.*
Device Control
Chromeleon allows you to control several HPLC, IC, and GC devices from various manufacturers. To support the different device functions, you can use the corresponding commands in Chromeleon.

For more information, refer to:

- General Commands for Device Control
- Commands for Controlling Dionex Devices
- Commands and Tips for Third-Party Devices

Also, refer to Practical Tips for Device Control.
Certain commands are used independent of the installed devices, for example:

- **System Commands**
- **General Commands**
- **General Device Commands**

For information about special commands for the respective devices, refer to:

- **Commands for Controlling Dionex Devices**
- **Commands and Tips for Third-Party Devices**

### System Commands

System control comprises all commands that concern the entire chromatographic process or the entire system. The commands are available via both **Command** on the **Control** menu and the **F8** key in the **Commands** view of the PGM Editor. Some commands are available on the toolbar, also.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbortSample</td>
<td>Stop data acquisition and sample; continue the <strong>Batch</strong> with the next sample.</td>
</tr>
<tr>
<td>AbortBatch</td>
<td>Stop data acquisition and batch processing.</td>
</tr>
<tr>
<td>ConsumableChanged</td>
<td>Log in the <strong>Audit Trail</strong> that a consumable has been changed.</td>
</tr>
<tr>
<td>Continue</td>
<td>Continue all operations that are in <strong>Hold</strong> mode.</td>
</tr>
<tr>
<td>EluentChanged</td>
<td>Log in the <strong>Audit Trail</strong> that the solvent has been changed.</td>
</tr>
<tr>
<td>Hold</td>
<td>Freeze a running gradient program, stop data acquisition, and stop batch processing.</td>
</tr>
<tr>
<td>HoldMode</td>
<td>If <strong>Hold</strong> mode is enabled, the timebase waits for an event, e.g., a <strong>Continue</strong> command. In <strong>Hold</strong> mode, the retention time and the pump gradient are stopped. The pump continues to deliver the solvent; the flow rate and the solvent composition remain unchanged.</td>
</tr>
</tbody>
</table>
General Commands

Independent from the installed instruments, Chromeleon supports the following general commands (under the device commands):

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>⇒ Sound</strong></td>
<td>Generate a sound of selectable frequency and duration that is heard on the PC loudspeaker.</td>
</tr>
<tr>
<td><strong>⇒ StopFlow</strong></td>
<td>Stop pump flow, interrupt data acquisition, and stop batch processing.</td>
</tr>
<tr>
<td><strong>StopMode</strong></td>
<td>If Stop mode is enabled, the timebase waits for an event, e.g., a Continue command. In Stop mode, the retention time and the pump flow are stopped.</td>
</tr>
</tbody>
</table>

General Device Commands

Most device commands are specific for a certain type of device or even for a certain device. For example, the **⇒ Flow** command is available for pumps and the **⇒ Inject** command is available for autosamplers. However, some commands are available independent of the device type:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>⇒ Connect</strong></td>
<td>Connects the device to Chromeleon (also, see Connected, Disconnect).</td>
</tr>
<tr>
<td>Connected</td>
<td>Indicates whether the pump is connected to Chromeleon, that is, under computer control (also, see Connect, Disconnect)</td>
</tr>
<tr>
<td><strong>Disconnect</strong></td>
<td>Disconnects the pump from Chromeleon (also, see Connect, Connected).</td>
</tr>
</tbody>
</table>
The following commands and properties appear very often. However, they are not available for every device:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirmwareVersion</td>
<td>Indicates the firmware version of the device (read-only).</td>
</tr>
<tr>
<td>ModelNo</td>
<td>Indicates the device type (read-only).</td>
</tr>
<tr>
<td>Ready</td>
<td>Indicates that the device is ready for operation, i.e., no Autozero is started, the temperature has been reached, no error has occurred (read-only).</td>
</tr>
<tr>
<td>⇒Reset</td>
<td>Resets the device to its initial conditions, as attained after power-up.</td>
</tr>
<tr>
<td>SerialNo</td>
<td>Indicates the serial number of the device (read-only).</td>
</tr>
</tbody>
</table>
Commands for Controlling Dionex Devices

Chromeleon supports all functions and commands of the Dionex devices. This section provides the special commands that Chromeleon supports for the corresponding devices.

For information about the general commands supported for the respective device types and often for third-party devices, too, refer to:

- Dionex Pumps
- Dionex Sample and Fraction Manager
- Dionex Autosamplers
- Dionex Flow Manager and Thermostatted Column Compartments
- Dionex Detectors
- Dionex Ion Chromatography Systems
- Additional Dionex Components

Optimum support for all functions is ensured for Dionex devices. For a list of the third-party devices that are currently supported, refer to Hardware Installation Installing and Controlling Third-Party Devices in the Administrator Help section.

For information about the commands for third-party devices, refer to Commands and Tips for Third-Party Devices.
Dionex Pumps

In addition to the [General Device Commands](#), Chromeleon supports the following commands for controlling HPLC and IC pumps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒ Flow</td>
<td>Enter the desired flow rate.</td>
</tr>
<tr>
<td>⇒ Pressure.Lower/UpperLimit</td>
<td>Sets the pressure limits.</td>
</tr>
<tr>
<td>⇒ WasteLevel</td>
<td>Enter the actual waste level before starting a sequence.</td>
</tr>
</tbody>
</table>

The following additional commands are available for controlling gradient pumps (P680, DP/SP, GP40/GP50, GS50, LPG-3x00, and P580):

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒ %B, %C, %D</td>
<td>Changes the solvent composition, determines the gradient course.</td>
</tr>
<tr>
<td>⇒ %A, %B, %C, %D_Level</td>
<td>Enter the amount of solvent that is available when you start the sequence.</td>
</tr>
</tbody>
</table>

Commands can be selected directly (via the toolbar, menu bar, or a control) or as part of a [Program](#) (programmable button).

They enable delivery of a specific liquid volume of defined composition, as well as starting and holding the pump. The pump is automatically placed on hold as soon as the upper or lower pressure limit is exceeded. Changing the flow rate creates a [Flow Gradient](#), changing the solvent composition creates a [% Gradient](#). Flow and % gradients can be realized simultaneously.

**Tip:**

Dionex GP40/GP50, GS50, IC20/IC25, IP20/IP25, and IS25 pumps do not deliver flow gradient ramps. Instead, changing the flow rate creates a step change; that is, flow rate changes are made immediately, not gradually over time. Refer to [Practical Tips for Device Control](#) Pump Commands for additional information.

**Dionex P680, DP/SP, LPG-3x00, and P580 Pumps**

The Dionex P680, DP/SP, LPG-3x00, and P580 pumps support automatic pre-compression control. The pumps are capable of adjusting to the compressibility of commonly used solvents. In addition, Learn and Freeze commands are available for the P580 pump to extend pre-compression control to unknown solvent types. Pre-compression control is fully
automatic for the P680, DP/SP, and LPG-3x00 pumps. Therefore, the **Learn** and **Freeze** commands are not required.

Command input is identical for the >Low-Pressure Gradient System and >High-Pressure Gradient System.

⚠️ **Caution:**

Chromatography pumps are high-precision instruments! Dry operation or crystallization of buffer solutions within the fluidic system must be avoided. The most common cause of such problems is stopping pump flow without turning off the lamp of an optical detector. The flow cell heats up, and the solvent evaporates. Deposits of substances can result, for example, from the presence of salt in a buffer solution.

For information about special commands for the pumps, refer to

- Dionex P680 HPLC Pump
- Dionex DP/SP IC Pumps
- Dionex LPG-3x00 Micro Pump

**Dionex GP40/GP50, GS50, IC20/IC25, IP20/IP25, and IS25 Pumps**

In addition to the general pump commands, the following commands are available for controlling the isocratic or gradient pumps listed above:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Turns the pump motor on</td>
</tr>
<tr>
<td>Off</td>
<td>Turns the pump motor off</td>
</tr>
<tr>
<td>Prime</td>
<td>Primes the pump</td>
</tr>
</tbody>
</table>

For pump operating specifications, refer to the individual pump operator's manuals.

Also, see:

- Dionex/LC Packings UltiMate Capillary/Nano HPLC Pump
- PP-150 Preparative HPLC Pump
- Controlling Pumps Without a Separate Device Driver
### Dionex P680 HPLC Pump

In addition to the standard pump commands (see [Dionex Pumps](#)), the P680 pumps support the following commands and properties (please note that the display *Filter* level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnalogOut</td>
<td>Determine whether the pressure of the left or right pump is monitored via the Analog Out port on the pump (available for pumps with firmware 2.50.05 or higher).</td>
</tr>
<tr>
<td>CamRevolutionsRight</td>
<td>Indicates the number of revolutions of the camshaft of the right pump block. The CamRevolutionsLeft command is available for HPG pumps only.</td>
</tr>
<tr>
<td>CamRevolutionsLeft</td>
<td></td>
</tr>
<tr>
<td>Curve</td>
<td>Determines the curvature for flow gradients (see Gradient Curves)</td>
</tr>
<tr>
<td>Degasser</td>
<td>Turns the degasser of a P680A LPG-4, SOR-100, or SRD-3x00 solvent rack on or off. The integrated degasser should always be on.</td>
</tr>
<tr>
<td>DegasserVacuum</td>
<td>Reports the status of the solvent rack degasser (P680A LPG-4, SOR-100, or SRD-3x00 only): OK or NotOK (read-only; available for pumps with firmware 2.03 or higher).</td>
</tr>
<tr>
<td>HeadType</td>
<td>Indicates the head type of the pump: Analytical or Semi-Prep (read-only).</td>
</tr>
<tr>
<td>Leak</td>
<td>Indicates the status of the central leak sensor: Ok or Leak (read-only).</td>
</tr>
<tr>
<td>LeakAlarm</td>
<td>On indicates that there is a leak alarm (read only; available for pumps with firmware 2.50.05 or higher).</td>
</tr>
<tr>
<td>LeakAlarmOff</td>
<td>Turns off the acoustic beep for the current alarm (available for pumps with firmware 2.50.05 or higher).</td>
</tr>
<tr>
<td>LeakDelay</td>
<td>Sets the time for how long a leak may occur before the pump shuts down (available for pumps with FW 2.50.05 or higher).</td>
</tr>
<tr>
<td>LeakSensorMode</td>
<td>Specifies how leak detection is performed: Enabled—enables leak detection; an acoustic beep sounds when the leak sensor is activated. Silent—enables leak detection, but no beep sounds when the leak sensor is activated. Disabled—disables leak detection.</td>
</tr>
<tr>
<td>MaximumFlowRamp</td>
<td>Upper limit for the flow rate acceleration (0.1 - 10,000.00 ml/min²)</td>
</tr>
<tr>
<td>ModelVariant</td>
<td>Indicates the variant: Isocratic, LPG, or HPG (read-only)</td>
</tr>
<tr>
<td>Motor</td>
<td>Indicates whether the pump is delivering: On or Off (read-only)</td>
</tr>
<tr>
<td>Pump_Pressure</td>
<td>Commands and properties for the pressure signal (see below)</td>
</tr>
<tr>
<td>Purge</td>
<td>Set to On to enable purging (available for pumps with FW 2.50.06 or higher).</td>
</tr>
<tr>
<td></td>
<td><em>⇒</em></td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PurgeFlow</td>
<td>Enter the flow [in mL/min] to be delivered by the pump during purging (range: 0.000 to 10.000 mL/min or 20.000 mL/min for HPG pumps with enabled Double Flow option; available for pumps with FW 2.50.05 or higher).</td>
</tr>
<tr>
<td>PurgeTime</td>
<td>Specify how long purging shall be performed (0 - 1000 s) (available for pumps with FW 2.50.05 or higher).</td>
</tr>
<tr>
<td>RearSealLeakCounter</td>
<td>Indicates the number of drops that passed the piston seal in the past hour.</td>
</tr>
<tr>
<td>RearSealLeakLimit</td>
<td>Specifies the leak detection threshold for the rear seal wash system. If the limit is met, a message is displayed in the Audit Trail and on the pump.</td>
</tr>
<tr>
<td>RearSealWashPump</td>
<td>Indicates whether the peristaltic pump of the rear seal wash system is running (Active) or not (Idle) (read-only).</td>
</tr>
<tr>
<td>RearSealWashSystem</td>
<td>Turns the rear seal wash system on (Interval or Automatic) or Off. Interval activates rear-seal washing once per hour for five minutes. However, the drop sensor on the liquid reservoir is not active, i.e., monitoring the piston seals for tightness is disabled. Automatic periodically activates rear-seal washing once per hour until the drop sensor has counted 50 drops. The drop sensor is active, i.e., the piston seals are monitored for tightness is enabled. Off turns the rear-seal wash system off.</td>
</tr>
<tr>
<td>SolventRackLeak</td>
<td>Reports whether the leak sensor in the solvent rack detected a leak: Leak or NoLeak (read-only; available for pumps with FW 2.03 or higher).</td>
</tr>
<tr>
<td>WorkLoadLeft</td>
<td>Indicates the workload of the left pump block in [MJ] (read-only). The WorkLoadLeft command is available for HPG pumps only.</td>
</tr>
<tr>
<td>WorkLoadRight</td>
<td>Indicates the workload of the right pump block in [MJ] (read-only).</td>
</tr>
</tbody>
</table>

**Pump_Pressure**

If you have selected the **Pressure Signal(s)** check box on the Devices page in the Server Configuration program, Chromeleon records the pump pressure as a separate channel (**Pump_Pressure**). The following commands and properties are available:

- AcqOn/AcqOff: AcqOn starts data acquisition. AcqOff terminates data acquisition.
- Average: Averages all measured values.
- Delta: Reports the signal’s slope, i.e., the difference between the value and the value one second ago (read-only). This is useful for Triggers.
- MaxAutoStep: Sets the maximum step rate for Step = Auto.
- Step: Set the step for data acquisition.
Equilibration Commands and Properties

**Tip:**
You should use the equilibration commands and properties only for the SmartStart feature.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibration</td>
<td>Reports the equilibration status.</td>
</tr>
<tr>
<td>Ripple</td>
<td>Reports the ripple of the pump pressure.</td>
</tr>
<tr>
<td>UpperLimit</td>
<td>Determine the upper limit for the ripple of the pressure signal in [%]. The upper limit can be any value between 1.0% and 5.0%. The default setting is 3.0%.</td>
</tr>
<tr>
<td>Value</td>
<td>(Read-only) Reports the actual value (usually, this value is averaged over the last 5 minutes.). At the beginning (i.e., after installation of the pump), the value field is empty, indicating that no measurement has been performed yet. Chromeleon calculates the value as soon as a 1-minute segment has been measured and updates the value with each new segment. The value of the property does not change after the measurement and is displayed under Preconditions.</td>
</tr>
<tr>
<td>RippleStatus</td>
<td>Reports the ripple equilibration status of the pump pressure (read-only)</td>
</tr>
<tr>
<td>N/A</td>
<td>Equilibration was not yet performed.</td>
</tr>
<tr>
<td>Measuring</td>
<td>Equilibration is running but the amount of data is not yet sufficient to report a result.</td>
</tr>
<tr>
<td>Good</td>
<td>Equilibration is running or terminated. The values are within the specified limits.</td>
</tr>
<tr>
<td>NotReady</td>
<td>Equilibration is running. The current data is outside the specified limits.</td>
</tr>
<tr>
<td>Failed</td>
<td>Equilibration is completed. The result is outside the specified limits.</td>
</tr>
<tr>
<td>NotTested</td>
<td>The limit was set to 0, thus disabling ripple checking.</td>
</tr>
</tbody>
</table>

StartEquilibration
Starts equilibration. For more information, refer to How to: Equilibrating the Chromatography System.

For information about how to install the pump, refer to Hardware Installation P680 HPLC Pump: Overview in the Administrator Help section.
Dionex DP/SP Pumps

In addition to the standard pump commands (see Dionex Pumps), the DP/SP pumps support the following commands and properties (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CamRevolutionsLeft</td>
<td>Indicates the number of revolutions of the camshaft of the left or right pump block.</td>
</tr>
<tr>
<td>CamRevolutionsRight</td>
<td></td>
</tr>
<tr>
<td>Degasser</td>
<td>Turns the integrated vacuum degassing module on or off. The degassing module normally remains on at all times.</td>
</tr>
<tr>
<td>HeadType</td>
<td>Indicates the head type of the pump: Analytical or Semi-Prep (read-only).</td>
</tr>
<tr>
<td>Leak</td>
<td>Indicates the status of the main leak sensor: Ok or Leak (read-only).</td>
</tr>
<tr>
<td>MaximumFlowRamp</td>
<td>Upper limit for the flow rate acceleration: 0.1 to 10,000.00 ml/min².</td>
</tr>
<tr>
<td>ModelVariant</td>
<td>Indicates the variant: Isocratic or Gradient (read-only).</td>
</tr>
<tr>
<td>Motor</td>
<td>Indicates whether the pump is delivering: On or Off (read-only).</td>
</tr>
<tr>
<td>RearSealLeakCounter</td>
<td>Indicates the number of drops that passed the piston seal in the past hour.</td>
</tr>
<tr>
<td>RearSealLeakLimit</td>
<td>Specifies the leak detection threshold for the rear seal wash system. If the limit is reached, a message is displayed in the Audit Trail.</td>
</tr>
<tr>
<td>RearSealWashPump</td>
<td>Indicates whether the peristaltic pump of the rear seal wash system is running (Active) or not running (Idle) (read-only).</td>
</tr>
<tr>
<td>RearSealWashSystem</td>
<td>Turns the rear seal wash system on (Interval or Automatic) or Off.</td>
</tr>
<tr>
<td></td>
<td>Interval activates rear-seal washing for 5 minutes every hour. During this time, the drop sensor on the liquid reservoir is not active, i.e., the pistons seals are not monitored for tightness. Automatic periodically activates rear-seal washing once per hour until the drop sensor has counted 50 drops. During this time, the drop sensor is active, i.e., the piston seals are monitored for tightness. Off turns off the rear-seal wash system.</td>
</tr>
<tr>
<td>WorkLoadLeft</td>
<td>Indicates the workload of the left pump block in MJ (read-only).</td>
</tr>
<tr>
<td>WorkLoadRight</td>
<td>Indicates the workload of the right pump block in MJ (read-only).</td>
</tr>
</tbody>
</table>
Dionex LPG-3x00 Micro Pump

In addition to the standard pump commands (see Dionex Pumps) and the P680 pump commands (see Dionex P680 HPLC Pump), the LPG-3x00 micro pumps supports the following commands and properties (please note that the display Filter level determines which commands and properties are displayed):

Flow and Pressure commands and properties

Chromeleon supports the following commands and properties only if the pump is connected to a flow splitter. (In the standard configuration of an LPG-3600, Dionex recommends assigning the flow splitter to the right pump (MicroPump).)

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>0.000 - 2500.000</td>
<td>Sets the flow rate [µl/min]. This is the total flow through the column. (The valid range depends on the split ratio.)</td>
</tr>
<tr>
<td>MasterFlow</td>
<td>0.000 - 2500.000</td>
<td>Reports the flow through the master pump, i.e., the flow before the flow splitter, in [µl/min].</td>
</tr>
<tr>
<td>MasterPressure</td>
<td>0 - 500 bar</td>
<td>Reports the pressure of the master pump, i.e., the pressure before the flow splitter. (This property is read-only. The channel is recorded as MicroPump_MasterPressure.)</td>
</tr>
<tr>
<td>*.LowerLimit</td>
<td></td>
<td>Set the lower pressure limit at the master pump. If the pressure exceeds the upper limit for 0.15 seconds or if it is below the lower limit for more than 60 seconds, the system aborts the running batch and starts error handling (see Pressure.Lower/UpperLimit).</td>
</tr>
<tr>
<td>*.UpperLimit</td>
<td></td>
<td>Set the upper pressure limit at the master pump. If the pressure exceeds the lower limit for more than 60 seconds, the system aborts the running batch and starts error handling.</td>
</tr>
<tr>
<td>Pressure</td>
<td>0 - 350 bar</td>
<td>Reports the current column pressure. (This property is read-only. The channel is recorded as ColumnPressure.)</td>
</tr>
<tr>
<td>*.LowerLimit</td>
<td></td>
<td>Set the lower pressure limit at the column. If the pressure exceeds the upper limit or if it is below the lower limit for more than 5 minutes, the system aborts the running batch and starts error handling.</td>
</tr>
<tr>
<td>*.UpperLimit</td>
<td></td>
<td>Set the upper pressure limit at the column.</td>
</tr>
</tbody>
</table>

If the pump has no flow splitter assigned, Flow and Pressure refer directly to the pump outlet. In the standard configuration of an LPG-3600, this is the LoadingPump, which is the left pump.
The table below lists the commands and properties for controlling Dionex devices:

**Table: Commands and Properties**

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>0.000 - 2500.000</td>
<td>Sets the flow rate [µl/min]. This is the total flow through the pump.</td>
</tr>
<tr>
<td>Pressure</td>
<td>0 - 500 bar</td>
<td>Reports the pressure. (This property is read-only. The channel is recorded as LoadingPump_Pressure.)</td>
</tr>
<tr>
<td>*.LowerLimit</td>
<td></td>
<td>Set the lower and upper pressure limits at the loading pump. If the pressure exceeds the upper limit for 0.15 seconds or if it is below the lower limit for more than 60 seconds, the system aborts the running batch and starts error handling (see ⇒Pressure.Lower/UpperLimit).</td>
</tr>
<tr>
<td>*.UpperLimit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Display commands and properties**

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>0 - 100 %</td>
<td>Adapts the brightness of the pump's front panel display to your requirements.</td>
</tr>
<tr>
<td>Contrast</td>
<td>0 - 100 %</td>
<td>Adapts the contrast of the pump's front panel display to your requirements.</td>
</tr>
<tr>
<td>DisplayMode</td>
<td>Left_Master (0), Left_Column (1), Right_Master (2), Right_Column (3), Both (4)</td>
<td>Specifies which information appears on the pump's front panel display.</td>
</tr>
</tbody>
</table>

**Additional commands and properties**

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay2Enabled</td>
<td>Yes (0), No (1)</td>
<td>Determines whether relay 2 can be used in Chromeleon (Yes) or whether it is controlled by the pump for the Left Cam Sync Out signal (No).</td>
</tr>
<tr>
<td>Relay3Enabled</td>
<td>Yes (0), No (1)</td>
<td>Determines whether relay 3 can be used in Chromeleon (Yes) or whether it is controlled by the pump for the Operable Out signal (No).</td>
</tr>
<tr>
<td>Relay4Enabled</td>
<td>Yes (0), No (1)</td>
<td>Determines whether relay 4 can be used in Chromeleon (Yes) or whether it is controlled by the pump for the Right Cam Sync Out signal (No).</td>
</tr>
<tr>
<td>⇒ParkPercentage</td>
<td>0.00 - 100.00 %</td>
<td>Enables peak parking. The flow is reduced to the specified percentage of the current flow.</td>
</tr>
</tbody>
</table>
| PeakParked       | No (0), Yes (1) | Reports the status of peak parking (read-only). Reports Yes while the pump delivers the reduced flow set by ParkPercentage.
<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelfTest</td>
<td>Passed or NotPassed</td>
<td>Performs a self-test.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: You cannot start a batch when the pump did not pass the self-test.</td>
</tr>
<tr>
<td>Standby</td>
<td>NoStandby (0),</td>
<td>Sets the pump into the Standby mode or cancels this mode (NoStandby). The</td>
</tr>
<tr>
<td></td>
<td>Standby (1)</td>
<td>pump remains connected to Chromeleon.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: You cannot start a batch when the pump is in standby mode.</td>
</tr>
</tbody>
</table>

For information about how to install the pumps, refer to Hardware Installation LPG-3x00 Micro Pump: Overview in the Administrator Help section.

Dionex/LC Packings UltiMate Capillary/Nano HPLC Pump

In addition to the standard pump commands (see Dionex Pumps), the pumps of the UltiMate system support the following commands and properties (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CycleTime</td>
<td>Indicates the time in [s] for a switching cycle of the LPG pump proportioning valves; values between 1 and 5s are possible.</td>
</tr>
<tr>
<td>CalibratorType</td>
<td>Indicates the calibrator type, for example, NAN-75 (read-only).</td>
</tr>
<tr>
<td>Description</td>
<td>Optional device description (read-only).</td>
</tr>
<tr>
<td>=&gt;Flow</td>
<td>Indicates the system flow, i.e., flow through the separation column:</td>
</tr>
<tr>
<td></td>
<td>0.000 to 200.000 µl/min</td>
</tr>
<tr>
<td>HeadType</td>
<td>Indicates the pump head (read-only):</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Steel_10ml</td>
</tr>
<tr>
<td></td>
<td>Ceramic_10ml</td>
</tr>
<tr>
<td>InstallationDate</td>
<td>Indicates the installation date (read-only).</td>
</tr>
<tr>
<td>LastHeadRevolutionCounter</td>
<td>Indicates the total number of cycles performed by the corresponding pump head (read-only).</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>LastService Date</td>
<td>Indicates the date when the last service procedure was performed (read-only).</td>
</tr>
<tr>
<td>LastServiceCode</td>
<td>Indicates the code number of the last service (read-only).</td>
</tr>
<tr>
<td>Motor</td>
<td>Turns the pump on or off.</td>
</tr>
<tr>
<td>$\Rightarrow$ParkPercentage</td>
<td>Enables or disables peak parking and sets the new flow to the entered percentage of the previous flow (values: 0 - 100% or Disabled).</td>
</tr>
<tr>
<td>PeakParked</td>
<td>State of peak parking (read-only).</td>
</tr>
<tr>
<td>PowerIndex</td>
<td>Pressure index in [MPah] (read-only) - a measure of pump wear:</td>
</tr>
<tr>
<td></td>
<td>$\int \text{Pressure} , dt$</td>
</tr>
<tr>
<td>Pressure.LowerLimit</td>
<td>If these limits are exceeded/not met for more than 60 seconds, the system aborts the running batch and starts emergency handling (see $\Rightarrow$Pressure.Lower/UpperLimit)</td>
</tr>
<tr>
<td>Pressure.UpperLimit</td>
<td></td>
</tr>
<tr>
<td>TotalPumpCycles</td>
<td>Indicates the total number of pump cycles (read-only).</td>
</tr>
<tr>
<td>TotalVolume</td>
<td>Indicates the total volume in [ml] (read-only).</td>
</tr>
<tr>
<td>TotalWorkingTime</td>
<td>Indicates the total number of power-on hours (read-only).</td>
</tr>
</tbody>
</table>

The UltiMate system splits the flow before the column. Usually, only a part of the flow delivered by the pump is directed through the column. This "system flow" is determined via the Flow command. The flow that must be delivered by the pump to achieve the desired system flow is calculated via the CRP value. The maximum system flow is 200,000 µl/min; the maximum permissible pressure is 400 bar.

The micropump in the UltiMate system is the "master pump." The master pump is responsible for generating the system flow. The four standard parameters for the master pump (before the flow splitter) are Flow, PressureLowerLimit, PressureUpperLimit, and PressureValue. These parameters can be checked separately, if desired, by entering the term "Master" before the command (for example, MasterPressureUpperLimit). The pressure limits for the master pump can be issued separately. The range for the pressure limits corresponds to the range for the pressure limits of the entire system. However, the flow of the master pump can be no more than 0.5 ml/min. With a Bypass Calibrator installed, up to 5 ml/min is possible.

Commands without the Master prefix refer to the values behind the flow splitter, i.e., to the column flow and the column pressure. In this connection, ColumnPressure refers to the column and TrapColumnPressure refers to the precolumn on the Switchos Switching Device.
The following commands and properties are supported for the flow sensor:

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CalibrateCRP</td>
<td>Performs flow measurement and recalculates CRP. (The property is visible only on the Expert level.)</td>
</tr>
<tr>
<td>[When={BeforeFirstSample, BeforeEachSample}]</td>
<td></td>
</tr>
<tr>
<td>Ready</td>
<td>Indicates the state of the flow sensor: Ready or NotReady. (The property is visible only on the Advanced level and is read-only.) (NotReady is indicated during the flow recalibration procedure.)</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates the type of the flow sensor type. (The property is visible only on the Expert level and is read-only.)</td>
</tr>
</tbody>
</table>

For information about how to install the UltiMate pump, refer to Hardware Installation "UltiMate Capillary/Nano HPLC System: Overview" in the Administrator Help section.

Dionex/LC Packings UltiMate Pump: Columns

In addition to the pump commands (see Dionex/LC Packings UltiMate Pump), the following commands and properties are available for controlling columns in the UltiMate system (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BatchNo</td>
<td>64 characters</td>
<td></td>
<td>Column batch number.</td>
</tr>
<tr>
<td>CRP</td>
<td>0.0</td>
<td>2000.0</td>
<td>Factor for calculating the master flow.</td>
</tr>
<tr>
<td>Diameter</td>
<td>Other, 50µm, 75µm, 100µm, 180µm, 300µm, 500µm, 800µm, 1000µm</td>
<td></td>
<td>Internal diameter of the column (required for calculating the CRP value).</td>
</tr>
<tr>
<td>Length</td>
<td>Other, 50mm, 100mm, 150mm, 200mm, 250mm</td>
<td></td>
<td>Column length (required for calculating the CRP value).</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>64 characters</td>
<td></td>
<td>Column manufacturer.</td>
</tr>
<tr>
<td>Material</td>
<td>64 characters</td>
<td></td>
<td>Column material.</td>
</tr>
<tr>
<td>MeasuredFlowRate</td>
<td>0.000 µl/min</td>
<td>10.000 µl/min</td>
<td>Measured flow rate. If set, the CRP value is calculated automatically via the measured flow rate (also, refer to ²).</td>
</tr>
<tr>
<td>ParticleSize</td>
<td>0.0 µm</td>
<td>2000.0 µm</td>
<td>Particle size of the column material.</td>
</tr>
<tr>
<td>PoreWidth</td>
<td>0.0 Å</td>
<td>2000.0 Å</td>
<td>Pore width of the column material.</td>
</tr>
<tr>
<td>SerialNo</td>
<td>64 characters</td>
<td></td>
<td>Column serial number.</td>
</tr>
</tbody>
</table>
### Command/Property

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StationaryPhase</td>
<td>Other, C18_3µm_100A, C18_5µm_100A, C18_3µm_300A, C18_5µm_300A</td>
<td>Stationary phase of the column (required for calculating the CRP value).</td>
<td></td>
</tr>
</tbody>
</table>

² Master flow [ml/min] = CRP*system flow [µl/min]
If possible, this value is automatically calculated from the lookup table (using the settings for Length, Diameter, and Stationary Phase) whenever one of these parameters is changed. Override the value if your column is not mentioned in the table. For more information, refer to Practical Tips for Device Control | Determining the CRP Value.

³ This value is automatically set whenever the StationaryPhase parameter changes. The user can override the value.

The different parameters describing the column material (BatchNo, Manufacturer, Material, ParticleSize, PoreWidth, and SerialNo) are only available from the Advanced level on. All other parameters are available on the Normal | Filter level.

---

### PP-150 Preparative HPLC Pump

In addition to the standard pump commands (see Commands for Controlling Dionex Devices | Dionex Pumps), the commands and properties from the table below are available (please note that the display | Filter level determines which commands and properties are displayed).

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%B, %C, %D</td>
<td>0.0 - 100.0 %</td>
<td>Use %B, %C, and/or %D to determine the solvent composition.</td>
</tr>
<tr>
<td>Flow</td>
<td>0.000 - 9.999 ml/min</td>
<td>Sets the flow rate.</td>
</tr>
<tr>
<td>Motor</td>
<td>On/Off</td>
<td>(Only available for the first pump) Turns the (all) pump(s) on or off</td>
</tr>
<tr>
<td>ModelVariant</td>
<td>Unknown, Isocratic, LPG, HPG</td>
<td>Indicates the pump's operating mode (read-only). Set the operating mode on the Pumps tab page in the Server Configuration program.</td>
</tr>
<tr>
<td>Pressure</td>
<td>0 - 432 bar</td>
<td>Indicates the pressure (read-only).</td>
</tr>
<tr>
<td>Pressure.LowerLimit</td>
<td>0 - 392 bar</td>
<td>Sets the lower pressure limit.</td>
</tr>
<tr>
<td>Pressure.UpperLimit</td>
<td>10 - 432 bar</td>
<td>Sets the upper pressure limit.</td>
</tr>
<tr>
<td>Solvent (Pump: PASV, PBSV, PCSV)</td>
<td>A, B, C, D</td>
<td>(For pumps with connected FCV Solvent Selector) Selects the solvent.</td>
</tr>
</tbody>
</table>
**Tip:**

To use the Motor On/Off, CycleMode, and Solvent properties, you have to enter them manually in the PGM Editor.

Observe the following when creating a program:

- When the pressure unit is psi, always add the entry in brackets, e.g.
  
  PrepPump.Pressure.LowerLimit = 400 [psi]

- Try to avoid ⇒Delay. Instead, use the retention time whenever possible.

- In triggers, use ⇒AbortSample instead of ⇒End.

- Use ⇒Protocol instead of ⇒Message.

For information about how to install the pump, refer to Hardware Installation PP-150 Preparative HPLC-Pump: Overview in the Administrator Help section.

### Controlling Pumps without a Separate Device Driver

In addition to the device drivers for Dionex Pumps, Chromeleon provides many drivers for controlling third-party pumps. For an overview of the different manufacturers whose devices can be controlled by Chromeleon, refer to Hardware Installation Installing and Controlling Third-Party Devices in the Administrator Help section.

Besides, pumps can be controlled for which separate device drivers or serial interfaces are not available (for example, the former Gynkotek M300 pump). Depending on the type of pump to be controlled, the following plug-in boards are available:

1. "Dionex Pump DA Converter (12 Bit)" (for voltage-controlled pumps) or
2. "Dionex Pump Control Card" (for frequency-controlled pumps).

The Administrator Help section provides more information; refer to Hardware Installation:

- Installing the Dionex 12-Bit DAC Card
- Installing the Pump Control Card
In addition, install the respective device driver, for example, DAC Pumps (for voltage-controlled pumps) or Pump Control Board Pump(s) (for frequency-controlled pumps). (For more information, refer to How to …: Configuring the Chromeleon Server Adding, Configuring, or Deleting Components in the Administrator Help section.)

Chromeleon supports the following commands for voltage-controlled pumps (DAC pumps):

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒ Flow</td>
<td>Change the flow rate</td>
</tr>
<tr>
<td>⇒%B, %C, %D</td>
<td>Change the solvent composition, determines the course of the gradient</td>
</tr>
</tbody>
</table>

In addition, a reset can be performed for frequency-controlled pumps, which are installed via the Pump Control Board Pump(s) device driver.
Dionex Sample and Fraction Manager

For information about the different commands, refer to \textit{Sample and Fraction Manager Commands} and/or \textit{Commands for Fraction Collection}.

For additional tips and program examples for the different injection modes, refer to:

\textbullet~\textit{Tips for Injection}

\textbullet~\textit{Overlapping Areas}

\textbullet~\textit{PGM File for Fraction Collection}

For information about how to solve possible problems, refer to \textit{Sample and Fraction Manager: Troubleshooting}

\textbf{Sample and Fraction Manager Commands}

Apart from \textbf{General Device Commands}, the Sample and Fraction Manager supports the following commands and properties (please note that display \textbf{Filter} level determines which commands and properties are displayed):

\textbf{Status properties}

<table>
<thead>
<tr>
<th>Property</th>
<th>Value Range</th>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busy</td>
<td>Busy/Idle</td>
<td>Expert</td>
<td>Indicates whether the device driver has not yet sent all commands or whether execution of a command is yet complete \textit{(read-only)}.</td>
</tr>
<tr>
<td>CPUSerialNo</td>
<td>-</td>
<td>Expert</td>
<td>Indicates the CPU serial number of the connected sampler \textit{(read-only)}.</td>
</tr>
<tr>
<td>DeviceState</td>
<td>Ready/Busy/Init/Error/Unknown</td>
<td>Normal</td>
<td>Indicates the current device status \textit{(read-only)}.</td>
</tr>
<tr>
<td>StatusDescription</td>
<td>-</td>
<td>Normal</td>
<td>Indicates the current action of the sampler. If no action is performed, \textit{Idle} is displayed \textit{(read-only)}.</td>
</tr>
<tr>
<td>Syringe</td>
<td>-</td>
<td>Normal</td>
<td>Indicates the installed syringe type \textit{(read-only)}.</td>
</tr>
</tbody>
</table>
## Commands for Controlling Dionex Devices

### Inject properties

<table>
<thead>
<tr>
<th>Command</th>
<th>Value Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AirVolume</td>
<td>Depends on the volume of the installed syringe; indicated in µl.</td>
<td>Specifies the air volume that is drawn for the <code>Inject</code> and/or <code>WashWithSample</code> commands (in <code>LC_Inject</code> and <code>LC_Overlap</code> mode).</td>
</tr>
<tr>
<td></td>
<td>Special value: Default*</td>
<td></td>
</tr>
<tr>
<td>FillSpeed</td>
<td>Depends on the minimum and maximum speed of the installed syringe; indicated in µl/s.</td>
<td>Fill speed for the preparing fill strokes for the <code>Inject</code> and/or <code>WashWithSample</code> commands.</td>
</tr>
<tr>
<td></td>
<td>Special value: Default*</td>
<td></td>
</tr>
<tr>
<td>FillStrokes</td>
<td>0-99 or Default*</td>
<td>Number of preparing fill strokes for the <code>Inject</code> and/or <code>WashWithSample</code> commands (in <code>LC_Inject</code> and <code>LC_Overlap</code> mode).</td>
</tr>
<tr>
<td>FillVolume</td>
<td>Depends on the syringe volume; indicated in µl.</td>
<td>Fill volume for the single piston strokes (for the <code>WashWithSample</code> command).</td>
</tr>
<tr>
<td></td>
<td>Special value: Default*</td>
<td></td>
</tr>
<tr>
<td>InjectMode</td>
<td>LC_Inject, LC_Overlap</td>
<td>Injection mode. In sample programs, this value must be set prior to the <code>Inject</code> command.</td>
</tr>
<tr>
<td>Injector</td>
<td>List of injection objects for the respective arm of the installed Sample and Fraction Manager</td>
<td>Injector to be used for the <code>Inject</code> and/or <code>WashWithSample</code> commands (in <code>LC_Inject</code> and <code>LC_Overlap</code> mode). The setting is ignored in Custom injection mode.</td>
</tr>
<tr>
<td>InjectSpeed</td>
<td>Depends on the minimum and maximum speed of the installed syringe;</td>
<td>Syringe speed in µl/s for injections to the sample loop (in <code>LC_Inject</code> and <code>LC_Overlap</code> mode).</td>
</tr>
<tr>
<td></td>
<td>Special value: Default*</td>
<td></td>
</tr>
<tr>
<td>NoOfPlungerStrokes</td>
<td>Indicates the number of strokes since the last reset (Value) and maximum allowed number (Max.) as reported by the device. (The property is read-only.)</td>
<td></td>
</tr>
<tr>
<td>NoOfInjects</td>
<td>Indicates the number of injections since the last reset (Value) and maximum allowed number (Max.) as reported by the device. (The property is read-only.)</td>
<td></td>
</tr>
<tr>
<td>Penetration</td>
<td>0 - maximum value of all installed tray types</td>
<td>Defines how deep the needle descends into the vial (parameter for <code>Inject</code>, <code>PrepareThisSample</code>, <code>PrepareNextSample</code>, <code>WashWithSolvent</code>).</td>
</tr>
</tbody>
</table>
### Commands for Controlling Dionex Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Value Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>1 to maximum number of tubes allowed for the trays used in the current configuration.</td>
<td>Defines the absolute position via an index entry, which can be defined as <code>&lt;TrayName&gt; &lt;Tube&gt;</code>. Note: When you select a different position, the <strong>Tube</strong>, <strong>Tray</strong>, and <strong>TrayName</strong> properties are updated automatically.</td>
</tr>
<tr>
<td>PostInjectDelay</td>
<td>0 - 99000 ms or Default*</td>
<td>Time between the injection and the removing of the needle from the injector (<em>in LC_Inject and LC_Overlap mode</em>).</td>
</tr>
<tr>
<td>PreInjectDelay</td>
<td>0 - 99000 ms or Default*</td>
<td>Time between inserting the needle in the injector and injecting the liquid into the sample loop (<em>in LC_Inject mode</em>).</td>
</tr>
<tr>
<td>PullupDelay</td>
<td>0 - 10000 ms or Default*</td>
<td>Indicates the delay time between drawing the liquid into the syringe and dispensing the volume that is not required (<em>for the WashWithSample command</em>).</td>
</tr>
<tr>
<td>Tray</td>
<td>Trayused (read-only - determined via the <strong>Position</strong> property).</td>
<td></td>
</tr>
<tr>
<td>TrayName</td>
<td>String</td>
<td>Indicates the name of the current tray Note: If you select a different tray, the <strong>Tray</strong> property is updated automatically.</td>
</tr>
<tr>
<td>Tube</td>
<td>Number of the current tube in the tray (read-only - determined via the <strong>Position</strong> property)</td>
<td></td>
</tr>
</tbody>
</table>

**Note:**

For the **Default** parameter, the default value set on the respective device is used.

### Command for the analytical SFM

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CloseStack</td>
<td>Closes all stacks that might be open. This might be useful when fraction collection is finished.</td>
</tr>
</tbody>
</table>
### Commands for the LC_Overlap mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepareNextSample</td>
<td>The autosampler fills the sample loop with the next sample, observing the parameters defined in the PGM file for that sample (Volume, Position, Tray, AirVolume, FillSpeed, FillStrokes, and PullupDelay). The syringe then returns to the Park position. This command is ignored for InjectModes other than LC_Overlap. This command is available only after the Inject command in the PGM File.</td>
</tr>
<tr>
<td>PrepareThisSample</td>
<td>The autosampler fills the sample loop with the current sample, observing the parameters defined in the PGM File for the current sample (also, see PrepareNextSample). This command is available only before the Inject command in the PGM File.</td>
</tr>
</tbody>
</table>

For more information, refer to:

- [Commands for Fraction Collection](#)
- [Tips for Injection](#)
- [Overlapping Areas](#)
- [PGM File for Fraction Collection](#)

### Sample and Fraction Manager: Commands for Fraction Collection

Chromeleon supports the following commands and properties for fraction collection with the Sample and Fraction Manager (SFM) (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collect</td>
<td>Moves the syringe to the Collect position.</td>
</tr>
<tr>
<td>Drain</td>
<td>Moves the syringe to the Drain position without ejecting the contents of syringe.</td>
</tr>
<tr>
<td>Eject</td>
<td>Ejects the remaining contents of the syringe before the syringe is moved to the Drain position.</td>
</tr>
</tbody>
</table>
## Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CollectMode</td>
<td>Vertical, SawVertical, Horizontal, SawHorizontal</td>
<td>Indicates the collect mode set on the Options tab page in the Server Configuration program. (The property is read-only.)</td>
</tr>
<tr>
<td>FracTrayName</td>
<td>Available trays</td>
<td>Indicates the name of the tray specified via the TubePosition property. (The property is read-only.)</td>
</tr>
<tr>
<td>FracTrayTube</td>
<td>1 to maximum number of tubes per tray</td>
<td>Indicates the tube index in the tray, referring to the absolute TubePosition. (The property is read-only.)</td>
</tr>
<tr>
<td>MovementMode</td>
<td>StopAndEject, Stop, Collect</td>
<td>Specifies the behavior of the SFM if the TubePosition is changed during collection: StopAndEject: The remaining sample is ejected into the original tube, the SFM moves to the next tube position and continues collecting. Stop: Before moving to the next tube, the syringe moves to the Drain position without ejecting the remaining contents of the syringe. Collect: The syringe moves to the next tube position and continues collecting.</td>
</tr>
<tr>
<td>TotalNumberInstalled</td>
<td>-</td>
<td>Indicates the total number of tubes. This property can be used to set the respective property of the Fraction Collection driver. (The property is read-only.)</td>
</tr>
<tr>
<td>TubePosition</td>
<td>1 to number of tubes</td>
<td>Enter the absolute position of the tube to which the sample arm shall be moved. If this property is set while the SFM is collecting, the behavior depends on the MovementMode setting.</td>
</tr>
</tbody>
</table>

For more information, refer to:

- [Sample and Fraction Manager Commands](#)
- [Tips for Injection](#)
- [Overlapping Areas](#)
- [PGM File for Fraction Collection](#)
Sample and Fraction Manager: Tips for Injection

Chromeleon supports the different parameters for sample loading and injecting.

Parameters supported for sample loading:
- Position, Volume, AirVolume, FillSpeed, FillStrokes, and PullupDelay

Parameters supported for injection:
- PreInjDelay, PostInjDelay, InjSpeed, and Injector.

When performing an inject command, the Sample and Fraction Manager performs the following steps:

1. The sample needle is moved to the specified tube.
2. The specified sample volume is drawn into the syringe.
3. Optional: If the AirVolume parameter is set to a value > 0, air is drawn from outside the tube.

**Note:**
Steps 1 through 3 omitted if they were already performed via the PrepareThisSample or PrepareNextSample commands.

4. The sample needle is moved to the specified injector.
5. The Sample and Fraction Manager (SFM) waits for the Inject Sync signal. (The Inject Sync signal is an SFM synchronization signal.) Set this signal to immediately if no waiting time is required. Alternatively, you can set the signal to an input port of the SFM if the instrument is to wait for a signal from the pump. (For information about the settings, refer to Installing Dionex Devices © HPLC Sample and Fraction Manager: Installation in the Administrator Help section.)
6. The needle is moved into the injector.
7. The sampler pauses for the time specified by PreInjDelay.
8. The injection valve is moved into the Load position.
9. The content of the syringe is dispensed into the sample loop.
10. The sampler pauses for the time specified by PostInjDelay.
11. The injection valve is moved into the Inject position.
12. The needle is moved out of the injector.
13. The needle returns to the Home position.

For more information, refer to:
- Sample and Fraction Manager Commands
- Commands for Fraction Collection
- Overlapping Areas
- PGM File for Fraction Collection

### Sample and Fraction Manager: Overlapping Areas

The Sample and Fraction Manager has two independent arms for which the working areas partly overlap. To prevent collision of the arms in the overlapping area, only one arm is allowed in the area at a time:

For example, if arm 2 is in the overlapping area and arm 1 is to perform an operation in the overlapping area, arm 1 has to wait until arm 2 has completed its operation. Arm 2 is then moved to the Park position and arm 1 can enter and perform its operation in the overlapping area.

This is performed after each operation. To have one arm perform subsequent operations in the overlapping area without being interrupted by the other arm, Chromeleon supports the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| AcquireOverlapArea | Provides exclusive access to the overlapping area; i.e., the other arm cannot enter the overlapping area.  
  **Note:**  
  * If the second arm already has exclusive access to the overlapping area, the first arm will wait until the second arm no longer has exclusive access. |
| ReleaseOverlapArea | Releases the exclusive access right for the overlapping area. The other arm can now enter and perform operations in this area.  
  **Note:**  
  * At the beginning of a sample program, an implicit UnblockOverlap command is performed. |
Example:

2.000 SFM_A.AcquireOverlapArea
; Empty syringe of the SFM_A if necessary:
    SFM_A.Waste
; Wash syringe of the SFM_A:
    SFM_A.Wash
; Wash the SFM_A injector:
    SFM_A.WashInjector
    SFM_A.ReleaseOverlapArea
    SFM_P.PrepareNextSample

This program ensures that the arm of the SFM_A is not returned to the Park position between emptying the syringe and washing the injector. Before starting sample preparation, the arm of the SFM_P waits until the SFM_A has completed its operations and left the overlapping area.

Dionex recommends minimizing the blocking time of the overlapping area because the arm for which the area is blocked cannot perform any other operation until the area is no longer blocked.

**Note:**

If an arm is not connected, Chromeleon does not know its position and thus, assumes that it might be in the overlapping area. That is why the other arm cannot enter the overlapping area. Therefore, always connect both arms even if you want to use only one arm.

For more information, refer to:

- Sample and Fraction Manager Commands
- Commands for Fraction Collection
- Tips for Injection
- PGM File for Fraction Collection
Sample and Fraction Manager: PGM File for Fraction Collection

You can use the left arm of the Sample and Fraction Manager (SFM) for fraction collection. Chromeleon supports the following high-level commands for fractionation: Collect, Drain, Eject, and TubePosition.

A typical program for a timebase with SFM (device name: SFM_A and SFM_P), Fraction Collection driver (device name: Fraction Collection), pump (here: Dionex P680P HPG-4), and detector (here: Dionex UVD340U PDA) if only the UV_VIS_1 channel is used for peak detection could look as follows:

```plaintext
; Preparing the devices for the next sample
-1.000 PumpDevice = "Pump"
 Flow = 50.000
 %B = 0.0
 %C = 0.0
 %D = 0.0
 Pressure.LowerLimit = 0
 Pressure.UpperLimit = 150
 %A.Equate = "%A"
 %B.Equate = "%B"
 %C.Equate = "%C"
 %D.Equate = "%D"
 CollectFractions = Yes
 CollectOutsidePeaks = No

; Preparing the SFM_A for fraction collection
 SFM_A.MovementMode = Interrupt
 SFM_A.TubePosition = FractionCollection.TubePosition
 SFM_P.InjectMode = LC_Overlap

;**
* ; Definition of triggers for fraction collection starts here.
;**
*;
; Note: The Fraction Collection driver increments its TubePosition property before the TubeChange and FracEnd triggers are executed. Thus, the SFM driver only has to synchronize its TubePosition with the fraction collection property.
 Trigger FracStart FracStartDetected
```
; When a new fraction collection starts, the sample needle should be positioned already over the correct tube to start collecting immediately.
Collect
EndTrigger

; Tube change necessary: synchronize SFM_A with fraction collection position
Trigger TubeChange FracTubeChange
SFM_A.TubePosition = FractionCollection.TubePosition
EndTrigger

; Fraction collection ends, the remaining content of the syringe is ejected, the plunger is moved to Drain position, and the arm is moved to next tube to be prepared for next collection
Trigger FracEnd FracEndDetected
Eject
SFM_A.TubePosition = FractionCollection.TubePosition
EndTrigger

;********************************************************************
*; Definition of triggers for fraction collection ends here.
;********************************************************************
*
TubeMaxVolume = 2.000000
FractionCollection.TotalNumberInstalled = FM_A.TotalNumberInstalled
MaxTubesPerFraction = Unlimited
TubeWrapping = No
DelayTime = 1.0
DetectionChannel2.OffsetTime = 0.5
DetectionChannel2.Name = "UV_VIS_1"
DetectionChannel2.PeakStartSlope = 0.500
DetectionChannel2.PeakStartThreshold = 10.00
DetectionChannel2.PeakMaxSlope = 0.000
DetectionChannel2.PeakEndSlope = -1.000
DetectionChannel2.PeakEndThreshold = 10.00
DetectionChannel2.ThresholdNoPeakEnd = 2000.00
DetectionChannel2.BaselineOffset = 0.000
DetectionChannel2.BaselineDrift = 0.000
UV_VIS_1.Wavelength = 225
UV_VIS_1.Bandwidth = 1
UV_VIS_1.RefWavelength = 600
762 Commands for Controlling Dionex Devices

UV_VIS_1.RefBandwidth = 1
UV_VIS_1.Step = Auto
UV_VIS_1.Average = On
UV_VIS_2.Wavelength = 250
UV_VIS_2.Bandwidth = 1
UV_VIS_2.RefWavelength = 600
UV_VIS_2.RefBandwidth = 1
UV_VIS_2.Step = Auto
UV_VIS_2.Average = On
UV_VIS_3.Wavelength = 275
UV_VIS_3.Bandwidth = 1
UV_VIS_3.RefWavelength = 600
UV_VIS_3.RefBandwidth = 1
UV_VIS_3.Step = Auto
UV_VIS_3.Average = On
UV_VIS_4.Wavelength = 300
UV_VIS_4.Bandwidth = 1
UV_VIS_4.RefWavelength = 600
UV_VIS_4.RefBandwidth = 1
UV_VIS_4.Step = Auto
UV_VIS_4.Average = On
3DFIELD.RefWavelength = 600.0
3DFIELD.RefBandwidth = 1.9
3DFIELD.Step = 0.5
3DFIELD.MinWavelength = 200.0
3DFIELD.MaxWavelength = 595.2
3DFIELD.BunchWidth = 1.9

0.000 Flow = 50.000
%B = 0.0
%C = 0.0
%D = 0.0
Autozero
Wait SFM_P.Ready
SFM_P.Inject
UV_VIS_1.AcqOn
UV_VIS_2.AcqOn
UV_VIS_3.AcqOn
UV_VIS_4.AcqOn
3DFIELD.AcqOn

; If the SFM_A does not operate in the overlapping area during fractionation, the SFM_P can be cleaned (not shown here) and the next sample can be prepared if necessary, e.g.
8.000 SFM_P.PrepareNextSample
CollectFractions = No
SFM_A.Wash WashStation=Wash1, Cycles=2
   UV_VIS_1.AcqOff
   UV_VIS_2.AcqOff
   UV_VIS_3.AcqOff
   UV_VIS_4.AcqOff
   3DFIELD.AcqOff

10.20 End

Note:
In the example, DetectionChannel1 has not been used as the first detection channel because ‘1’ and ‘l’ look almost identical when Courier is the selected font.

For more information, refer to:
- Sample and Fraction Manager Commands
- Commands for Fraction Collection
- Tips for Injection
- Overlapping Areas
Sample and Fraction Manager: Troubleshooting

The following problems may occur during operation of the Sample and Fraction Manager:

Missing vial:
If no vial is present at the position from which the Sample and Fraction Manager performs injection, the batch is aborted. The Sample and Fraction Manager may then remain in an inconsistent state.

Therefore, Dionex recommends performing a Home command. If the tray in which the error occurred is part of a tray stack, you have to close the stack drawer manually.

Z collision error:
If the syringe holder collides with another component of the Sample and Fraction Manager while moving in z direction (e.g., because of an incorrect configuration), the instrument reports a z collision error.

First, find and eliminate the cause of the z collision error. Then, perform a Home command to re-calibrate the motor in the x, y, and z directions. The driver cannot perform movement commands until the motor has been recalibrated.

Tip:
The Sample and Fraction Manager is not equipped with collision sensors for the x and y directions. Therefore, stop the batch immediately if you observe a collision in the x or y direction. Afterward, perform the same steps as described for a z collision error.
Dionex Autosamplers

Automatic sample injection with a modern Autosampler has several advantages:

- Efficient processing of large sample batches
- Reproducible and verifiable dosing precision
- Loss-free and bubble-free injection of the sample

In spite of the vast scope of performance, only the "standard" commands (Inject, Position, and Volume) are usually required for automatic control of the Dionex autosamplers:

Standard Commands

In addition to the General Device Commands, Chromeleon supports the following standard autosampler commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒Dispense</td>
<td>Dispenses the previously drawn amount of liquid.</td>
</tr>
<tr>
<td>⇒Draw</td>
<td>Draws the specified amount of liquid.</td>
</tr>
<tr>
<td>⇒Inject</td>
<td>Injects the sample.</td>
</tr>
</tbody>
</table>

The Inject command is not used when the AS or AS50 (USB) is in Concentrate or Sequential Concentrate mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒Mix</td>
<td>Mixes the contents of a vial. (The mixing procedure depends on the autosampler.)</td>
</tr>
<tr>
<td>⇒Position</td>
<td>Indicates the vial position.</td>
</tr>
<tr>
<td>⇒Volume</td>
<td>Sets the volume to be injected.</td>
</tr>
<tr>
<td>⇒Wash</td>
<td>Performs a wash cycle.</td>
</tr>
</tbody>
</table>

For information about the individual autosamplers and their specifications, refer to:

- Dionex ASI-100 Autosampler Series
- Dionex AS/AS50 Autosamplers
- Dionex WPS-3000 Well-Plate Micro Autosampler
- Dionex/LC Packings FAMOS Capillary/Nano HPLC Autosampler
- Dionex GINA 50 Autosampler
## Dionex ASI-100 Autosampler Series

In addition to the standard autosampler commands (see Dionex Autosamplers), the autosamplers of the Dionex ASI-100 series provide many additional commands for controlling autosampler functions, such as the speed with which a sample is drawn (= DrawSpeed), the repeat count for mixing operations (= MixRepeat), or how deep the needle dips into the vial for the washing operations (= WashHeight). You can specify the standard commands further, for example, via the vial whose contents you wish to prepare (= PrepSubject) or via the volume to be used for the Draw, Dispense, and Mix (= PrepVolume) commands. For a list of the supported commands and properties, refer to the table below. (Please note that the display Filter level determines which commands and properties are displayed.)

### Special Commands and Properties

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueSegment</td>
<td>Select the segment type that is used in the blue segment. The following types are available: Analytical - Semiprep - Mini - Eppendorf.</td>
</tr>
<tr>
<td>CoolingPower (ASI-100T/ASI-100PT)</td>
<td>Indicates the cooling power (for diagnosis purposes only).</td>
</tr>
<tr>
<td>DispSpeed</td>
<td>Specify the speed with which the contents of the syringe shall be dispensed.</td>
</tr>
<tr>
<td>DownSpeed</td>
<td>Specify the speed with which the needle moves down.</td>
</tr>
<tr>
<td>DrawSpeed</td>
<td>Specify the speed for filling the syringe.</td>
</tr>
<tr>
<td>ExternalMSV</td>
<td>State of the external valve. The property is available only if the External MSV installed check box has been selected on the Segments &amp; MSV tab page in the Server Configuration program.</td>
</tr>
<tr>
<td>GreenSegment</td>
<td>Select the segment type that is used in the green segment. Available types are: Analytical - Semiprep - Mini - Eppendorf.</td>
</tr>
<tr>
<td>HeatSinkTemperature (ASI-100T/ASI-100PT)</td>
<td>Indicates the heat sink temperature (read-only).</td>
</tr>
<tr>
<td>InjectionCounter</td>
<td>Number of injections.</td>
</tr>
<tr>
<td>InjectMode</td>
<td>Inject Mode. If set to Normal, the autosampler draws the specified volume from the specified position and injects. If set to Mix, the autosampler injects whatever volume is left in the syringe after preceding draw/dispense operations.</td>
</tr>
<tr>
<td>InjectWaitTime</td>
<td>Period between the issuing of the command by Chromelone and the acknowledgement of the autosampler.</td>
</tr>
<tr>
<td>InternalMSV</td>
<td>State of the internal motorized switching valve.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Mix</td>
<td>From the position that is determined via the PrepSubject parameter, the syringe draws and dispenses the volume that is determined via the PrepVolume parameter. If PrepVial is selected as PrepSubject, the PrepVial parameter must be specified as well. The MixRepeat parameter indicates the number of replicates during mixing.</td>
</tr>
<tr>
<td>MixRepeat</td>
<td>Repeat count for draw, dispense, and mix operations for mixing.</td>
</tr>
<tr>
<td>Msv2ToInject</td>
<td>Switch the external valve to Inject.</td>
</tr>
<tr>
<td>Msv2ToLoad</td>
<td>Switch the external valve to Load.</td>
</tr>
<tr>
<td>MsvToInject</td>
<td>Switch the injection valve to Inject.</td>
</tr>
<tr>
<td>MsvToLoad</td>
<td>Switch the injection valve to Load.</td>
</tr>
<tr>
<td>NeedleSealCounter</td>
<td>Needle seal wear.</td>
</tr>
<tr>
<td>PrepareNextSample</td>
<td>Starts the injection procedure for the next sample, if available. However, the injection valve is only switched at the next Inject command (Display Filter level: Advanced).</td>
</tr>
<tr>
<td>PrepareThisSample</td>
<td>Starts the injection procedure for the current sample. However, the injection valve is switched only at the next Inject command (Display Filter level: Advanced).</td>
</tr>
<tr>
<td>PrepHeight</td>
<td>Needle height for draw, dispense and mix operations, specify how deep the needle will dip into the vial for mixing.</td>
</tr>
<tr>
<td>PrepSpeed</td>
<td>Syringe speed for draw and dispense operations for mixing.</td>
</tr>
<tr>
<td>PrepSubject</td>
<td>Specify the subject to be used for draw, dispense, and mix operations. The following subjects are available: PrepVial, SampleVial, WashVial, Air, ReagentAVial, ReagentBVial, ReagentCVial, ReagentDVial. If Air is specified as mix subject, air is drawn in. During Dispense, the needle moves into the needle port and is dispensed there.</td>
</tr>
<tr>
<td>PrepVial</td>
<td>Specify the vial position if PrepVial is selected as PrepSubject (see PrepSubject).</td>
</tr>
<tr>
<td>PrepVolume</td>
<td>Volume to be used for the Draw, Dispense, and Mix.</td>
</tr>
<tr>
<td>PrimeSyringe</td>
<td>Primes the syringe by flushing it several times.</td>
</tr>
<tr>
<td>PumpDevice</td>
<td>Enter the name of the pump for which you want to synchronize the strokes with the autosampler. (This property is available only if you have selected an entry other than &lt;None&gt; from the Sync Inject with pump drop-down list on the Syringe &amp; Stroke Sync tab page in the Server Configuration program.)</td>
</tr>
<tr>
<td>RadialSpeed</td>
<td>The speed of the radial needle movement.</td>
</tr>
<tr>
<td>ReagentACapacity</td>
<td>Specify how often the volume can be drawn from the vial with reagent A (reagent B, C, and D, respectively).</td>
</tr>
<tr>
<td>ReagentAVial</td>
<td>Position of the reagent A (reagent B, C, and D, respectively) vial - is used only if ReagentAVial has been selected as PrepSubject (see PrepSubject).</td>
</tr>
<tr>
<td>RedSegment</td>
<td>Select the segment type that is used in the red segment. Available types are: Analytical - Semiprep - Mini - Eppendorf.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Relay1, 2, 3 or 4</td>
<td>The following commands are available: State (indicates or sets the state of the relay), Duration (when set, the relay's state toggles after the specified time), On (turns the relay on), and Off (turns the relay off).</td>
</tr>
<tr>
<td>Relay3Enabled</td>
<td>Relay 3 mode. If set to Yes, the relay can be controlled by Chromeleon. If set to No, the autosampler controls the relay and the relay indicates whether the autosampler is operable.</td>
</tr>
<tr>
<td>Relay4Enabled</td>
<td>Relay 4 mode. If set to Yes, the relay can be controlled by Chromeleon. If set to No, the relay is controlled by the autosampler and indicates injection.</td>
</tr>
<tr>
<td>SampleHeight</td>
<td>Indicates the height at which the sample is drawn, measured from the vial bottom to the needle tip.</td>
</tr>
<tr>
<td>State</td>
<td>Indicates that the autosampler has injected.</td>
</tr>
<tr>
<td>SyncWithPump</td>
<td>Synchronizes the injection with the cycle of a P680A LPG or P680A DGP-6 pump. (This property is available only if you have selected an entry other than &lt;None&gt; from the Sync Inject with pump drop-down list on the Syringe &amp; Stroke Sync tab page in the &gt; Server Configuration program.)</td>
</tr>
<tr>
<td>Syringe</td>
<td>Indicates the volume of the syringe that is installed in the autosampler.</td>
</tr>
<tr>
<td>SyringeCounter</td>
<td>Indicates the number of syringe movements.</td>
</tr>
<tr>
<td>SyringeDelay</td>
<td>Specify the time the needle shall remain in the vial after loading.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Define the set temperature of the autosampler's tray and hence of the sample. Click the + character to open the command tree; the following commands are available: Value (= actual temperature, read-only), Nominal (= set temperature), UpperLimit, and LowerLimit. With UpperLimit and LowerLimit, the system aborts the batch and starts emergency handling if the nominal temperature is outside these limits.</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>The following settings are available: On (= cooling/heating enabled) and Off (= cooling/heating disabled) (comp. Nominal, Value, HeatSinkTemperature, CoolingPower).</td>
</tr>
<tr>
<td>Test</td>
<td>Moves the needle to the specified vial. If no vial is specified, MixSubject is used (comp. PrepSubject).</td>
</tr>
<tr>
<td>TrayDetection</td>
<td>Turn tray detection (including manual interference monitoring) on or off. When tray detection is enabled, a home run is executed when the tray is installed. If the tray was removed while tray detection was disabled, a self-test must be performed when the tray is installed again. This is to make sure that the sample is injected from the correct position.</td>
</tr>
<tr>
<td>UpSpeed</td>
<td>The speed used to move the needle up.</td>
</tr>
<tr>
<td>Wash</td>
<td>The internal MSV is switched to the Load position, if necessary. The volume specified under WashVolume is drawn from the position specified under WashVial and dispensed into the needle port/waste. The WashSpeed and WashHeight parameters are also considered.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>WaitInput1, 2, 3, or 4</td>
<td>State of the digital input 1, 2, 3, or 4.</td>
</tr>
<tr>
<td>WashHeight</td>
<td>Wash height = distance between the bottom of the wash vial and the needle tip (= the depth with which the needle will dip into the vial).</td>
</tr>
<tr>
<td>WashSpeed</td>
<td>The speed with which the syringe draws the wash volume.</td>
</tr>
<tr>
<td>WashVial</td>
<td>Position of the wash vial.</td>
</tr>
<tr>
<td>WashVialVolume</td>
<td>Total volume of the wash vial.</td>
</tr>
<tr>
<td>WashVolume</td>
<td>Specify the volume to be drawn from the wash vial.</td>
</tr>
</tbody>
</table>

**Note:**

All autosampler inputs are also available as CM input ports so that other device drivers can use them as well (for example, Remote Inject).

For a basic description of Dionex autosamplers, including the standard commands, refer to [Dionex Autosamplers](#).

For information about how to use the commands in practical operation, refer to [Practical Tips for Device Control](#) Autosampler Commands (ASI-100 Series).

For information about how to install the autosamplers of the ASI-100 series, refer to [Hardware Installation](#) ASI-100 HPLC Autosampler Series: Overview in the Administrator Help section.
Dionex AS/AS50 Autosamplers

In addition to the standard autosampler commands (see Dionex Autosamplers), the Dionex AS and AS50 Autosamplers support many additional commands for controlling autosampler functions. The following commands are available (please note that the display Filter level determines which commands and properties are displayed):

**Special Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoorSafetyTime</td>
<td>Displays the amount of time the autosampler door can remain open without aborting the sequence.</td>
</tr>
<tr>
<td>Flush</td>
<td>Flushes the inject port. During the flush cycle, the needle moves to the waste port and expels any fluid. The needle then moves to the inject port and delivers a volume of fluid (see FlushVolume below) for flushing the inject port. The needle then moves to the flush port and delivers a factory-set volume of flush fluid, which washes the outside of the needle.</td>
</tr>
<tr>
<td>FlushVolume</td>
<td>Sets the volume of liquid used for flushing the inject port. If the volume is greater than the sample syringe volume, the AS or AS50 performs multiple syringe strokes until the volume is reached.</td>
</tr>
<tr>
<td>Home</td>
<td>Moves the needle arm to home position.</td>
</tr>
<tr>
<td>InjectionType</td>
<td>Displays the type of injection (full-loop, partial-loop, or partial-loop limited sample) the AS or AS50 is performing.</td>
</tr>
<tr>
<td>LoopSize</td>
<td>Displays the size (volume) of loop installed.</td>
</tr>
<tr>
<td>Prime</td>
<td>Primes the liquid lines.</td>
</tr>
<tr>
<td>PrimeReservoir</td>
<td>Sets the reservoir to be used as a source for priming. The Flush_Reservoir is the default. If the sample preparation option is installed, Reservoir_A through D can be specified.</td>
</tr>
<tr>
<td>PrimeSyringe</td>
<td>Sets the syringe to be used for priming. The Sample syringe is the default. If the sample preparation option is installed, the Prep syringe can be specified.</td>
</tr>
<tr>
<td>PrimeVolume</td>
<td>Sets the volume of liquid used for priming the liquid lines.</td>
</tr>
<tr>
<td>SecondLoopSize</td>
<td>(For AS or AS50 (USB) Simultaneous mode only) Displays the size (volume) of loop installed on the second injection valve.</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>Displays the autosampler serial number.</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the current action being performed by the autosampler.</td>
</tr>
</tbody>
</table>
Commands for Controlling Dionex Devices 771

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>Stops the current process.</td>
</tr>
<tr>
<td>TrayType</td>
<td>Reports the type of sample tray (rack) installed (read-only).</td>
</tr>
</tbody>
</table>

**Special Commands for Sampler Setup**

The following commands set options that remain constant throughout the sample preparation steps and the time-dependent commands of a program.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColumnTemperature</td>
<td>(Only for autosamplers equipped with the thermal compartment) Sets the temperature of the thermal compartment.</td>
</tr>
<tr>
<td>CutSegmentVolume</td>
<td>Sets the volume of sample discarded from each end of the aspirated sample. The middle portion of the sample is positioned in the loop and injected. The CutSegmentVolume is used only for partial-loop injections. To perform a partial-loop injection from a limited amount of sample, specify a CutSegmentVolume of 0. For full-loop injections, the CutSegmentVolume is ignored.</td>
</tr>
<tr>
<td>CycleTime</td>
<td>Sets the time between injections. To set a uniform time between injections, specify a cycle time in minutes (1 to 240). When a cycle time is specified, the autosampler delays sample injection until the specified time has elapsed since the previous injection. If the cycle time is set to 0, the time between injections is determined by the commands in the Program specified for each sample injection in a Sequence.</td>
</tr>
<tr>
<td>SetNeedleHeight</td>
<td>Sets the distance between the needle tip and the vial bottom. Note: This position is used for all functions, except for sample preparation functions that use a separately-specified NeedleHeight (see below).</td>
</tr>
<tr>
<td>SyringeSpeed</td>
<td>Sets the syringe speed. 1 is the slowest speed and 5 is the fastest. Select a slower speed for more viscous samples.</td>
</tr>
<tr>
<td>TrayTemperature</td>
<td>(Only for autosamplers equipped with the sample temperature control option) Sets the temperature of the sample tray.</td>
</tr>
<tr>
<td>WaitForTemperature</td>
<td>(Only for autosamplers equipped with a thermal compartment or a sample temperature control option) Instructs the autosampler to wait for the column or tray temperature to stabilize before proceeding to the next command.</td>
</tr>
</tbody>
</table>
Special Commands for Sample Preparation

The AS and AS50 provide several commands for preparing the sample before injection. The standard AS or AS50 supports eight sample preparation commands. If the autosampler is equipped with the sample preparation option, two additional commands are available.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DelaySP</td>
<td>Pauses sample preparation.</td>
</tr>
<tr>
<td>FlushSP</td>
<td>Flushes the inject port during sample preparation.</td>
</tr>
<tr>
<td>Mix</td>
<td>Mixes the vial contents.</td>
</tr>
<tr>
<td>NeedleHeight</td>
<td>Positions the needle above the vial bottom (used for sample preparation functions only).</td>
</tr>
<tr>
<td>Pipet</td>
<td>Moves sample between vials.</td>
</tr>
<tr>
<td>Concentrate</td>
<td>Loads and injects sample onto the concentrator column.</td>
</tr>
<tr>
<td>ReagentPrime</td>
<td>Primes the injector lines with reagent in preparation for a ReagentFlush.</td>
</tr>
<tr>
<td>ReagentFlush</td>
<td>Flushes reagent onto the concentrator column.</td>
</tr>
</tbody>
</table>

The following commands are available only if the AS or AS50 is equipped with the sample preparation option:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilute</td>
<td>Dilutes the sample with reagent.</td>
</tr>
<tr>
<td>Dispense</td>
<td>Dispenses reagent to a vial.</td>
</tr>
</tbody>
</table>

**Note:**

The **Concentrate**, **ReagentPrime**, and **ReagentFlush** commands require AS or AS50 (USB) Moduleware version 2.0.0 (or later). These commands are not available for the DX-LAN model of the AS50, regardless of which Moduleware version is installed in the autosampler.

Special Commands for Exclusive Access

The exclusive access feature allows one AS or AS50 to be shared by two timebases.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcquireExclusiveAccess</td>
<td>A timebase requests exclusive access to the autosampler as soon as the other timebase relinquishes exclusive access.</td>
</tr>
<tr>
<td>ReleaseExclusiveAccess</td>
<td>A timebase relinquishes exclusive access to the autosampler.</td>
</tr>
</tbody>
</table>
Note:
The DX-LAN model of the AS50 does not support the exclusive access
target. If a program created for or this autosampler includes
AcquireExclusiveAccess and ReleaseExclusiveAccess, the commands
are ignored. However, both the AS and AS50 (USB) autosamplers can run
any program created for the DX-LAN autosampler that includes these
commands.

Sample overlap is not allowed when the autosampler is shared by two
timebases.

Calibration Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DownloadCalibration</td>
<td>Downloads the selected set of calibration values to the autosampler.</td>
</tr>
<tr>
<td>DownloadCalibrationParameter</td>
<td>Selects the set of calibration values (Current, Previous, or Factory) to be downloaded.</td>
</tr>
<tr>
<td>ExtLeakDet</td>
<td>Performs the leak detector calibration on the chromatography or thermal compartment.</td>
</tr>
<tr>
<td>InjPortVolCurVal</td>
<td>Specifies the current volume of the inject port. This value is determined when the inject port is manually calibrated. Calibration is not performed with Chromeleon. See the AS or AS50 operator’s manual for details.</td>
</tr>
<tr>
<td>TrayLeakDet</td>
<td>Performs the autosampler tray leak detector calibration.</td>
</tr>
</tbody>
</table>

Diagnostic Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExtLeakDetTest</td>
<td>Performs a test of the chromatography or thermal compartment leak detector.</td>
</tr>
<tr>
<td>ExtLeakDetTestDate</td>
<td>Reports the date of the leak detector test.</td>
</tr>
<tr>
<td>ExtLeakDetTestResult</td>
<td>Reports the result (pass or fail) of the leak detector test.</td>
</tr>
<tr>
<td>TrayLeakDetTest</td>
<td>Performs a test of the autosampler tray leak detector.</td>
</tr>
<tr>
<td>TrayLeakDetTestDate</td>
<td>Reports the date of the leak detector test.</td>
</tr>
<tr>
<td>TrayLeakDetTestResult</td>
<td>Reports the result (pass or fail) of the leak detector test.</td>
</tr>
</tbody>
</table>

For information about how to use the commands in practical operation,
refer to Practical Tips for Device Control Autosampler Commands
(AS/AS50). For a basic description of Dionex autosamplers, including the
standard commands, refer to Dionex Autosamplers.
### Dionex WPS-3000 Well-Plate Micro Autosampler

In addition to the standard autosampler commands (see Dionex Autosamplers), the Dionex WPS-3000 Autosampler provides additional commands for controlling autosampler functions. The following general commands are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueTray</td>
<td>Reports which sample containers are installed in the blue segment (corresponds to the settings on the Segments tab page in the autosampler's properties).</td>
</tr>
<tr>
<td>BootLoaderVersion</td>
<td>Indicates the bootloader version (read-only).</td>
</tr>
<tr>
<td>Brightness</td>
<td>Adapts the brightness of the autosampler's front panel display to your requirements.</td>
</tr>
<tr>
<td>BufferTubingVolume</td>
<td>Reports the volume of the installed buffer tubing (read-only).</td>
</tr>
<tr>
<td>Contrast</td>
<td>Adapts the contrast of the autosampler's front panel display to your requirements.</td>
</tr>
<tr>
<td>DispenseDelay</td>
<td>Sets the time that the needle shall remain in the sample container after dispensing.</td>
</tr>
<tr>
<td>DispSpeed</td>
<td>Sets the speed at which the sample is expelled for standard injections.</td>
</tr>
<tr>
<td>DrawDelay</td>
<td>Sets the speed at which the sample is drawn for standard injections.</td>
</tr>
<tr>
<td>DrawSpeed</td>
<td>Sets the speed at which the sample is drawn for standard injections.</td>
</tr>
<tr>
<td>FirstTransportVial</td>
<td>Sets the position for the first transport vial. Transport vials are required only for microliter pick-up injections. (Also, see LastTransportVial.)</td>
</tr>
<tr>
<td>FlushVolume</td>
<td>Sets the flush volume that shall be used for the first Full-Loop, Partial-Loop, or microliter pick-up injection.</td>
</tr>
<tr>
<td>FlushVolume2</td>
<td>Sets the flush volume that shall be used for additional injections from the same vial for Full-Loop and Partial-Loop injections when RinseBetweenInjections=No.</td>
</tr>
<tr>
<td>GreenTray</td>
<td>Reports which sample containers are installed in the blue segment (corresponds to the settings on the Segments tab page in the autosampler's properties).</td>
</tr>
<tr>
<td>InitiateChangeSyringe</td>
<td>Initiates the procedure for exchanging the syringe. (Also, see TerminateChangeSyringe.)</td>
</tr>
<tr>
<td>InitiateChangeVial</td>
<td>Rotates the sample containers specified in the Tray field to the front, allowing you to change the vials or plates easily. Select BlueTray, GreenTray, or RedTray to move the corresponding plate or tray to the front. Or else, select BlueVials, GreenVials, or RedVials to move the corresponding segment with the transport vials to the front.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>$\Rightarrow$Inject</td>
<td>Injects the sample. If you have created a user-defined WPS-3000 program, e.g., in the Program Wizard, use the Inject command to start the program. In this case, injection is performed after the $\text{UdpInjectMarker}$ command of the user-defined program.</td>
</tr>
<tr>
<td><strong>Note:</strong> Injection can be performed only if the autosampler is in Not running state. This is usually ensured by the $\text{WaitSampler.Ready}$ command that is generated by the PGM Wizard. If the system detects a different state, the following message appears in the Audit Trail: Abort $\text{hh:mm:ss}$.</td>
<td></td>
</tr>
<tr>
<td>InjectionValveCounter</td>
<td>Counts the number of injection valve movements.</td>
</tr>
<tr>
<td>InjectionValvePosition</td>
<td>Reports the current position of the injection valve: Inject, Load, SwitchToInject, SwitchToLoad, or Unknown.</td>
</tr>
<tr>
<td>InjectMode</td>
<td>Injection mode (for more information, refer to the operating instructions for the instrument): UserProg, Partial, FullLoop, $\mu$lPickUp</td>
</tr>
<tr>
<td>UserProg</td>
<td>The autosampler executes the program or sample preparation steps defined by the user.</td>
</tr>
<tr>
<td>Partial</td>
<td>The syringe volume is injected in part only (recommended: at most 50% of the sample loop volume).</td>
</tr>
<tr>
<td>FullLoop</td>
<td>The syringe volume is injected completely.</td>
</tr>
<tr>
<td>$\mu$lPickUp</td>
<td>The syringe volume is injected completely. However, it contains partly sample volume only. Transport liquid is drawn first, then sample, and then transport liquid again, i.e. the syringe, the sample needle, and both ends of the sample loop are filled with transport liquid. That is why the TransportVial should contain solvent. The sample volume is in the middle of the sample loop.</td>
</tr>
<tr>
<td>InjectValveToInject</td>
<td>Switches the injection valve into the Inject position.</td>
</tr>
<tr>
<td>InjectValveToLoad</td>
<td>Switches the injection valve into the Load position.</td>
</tr>
<tr>
<td>InjectWaitTime</td>
<td>Reports the time that has passed between the issuing of the injection command by Chromeleon and the response from the autosampler.</td>
</tr>
<tr>
<td>LastTransportVial</td>
<td>Sets the position for the last transport vial. Transport vials are required only for microliter pick-up injections. (Also, see $\text{FirstTransportVial}$.)</td>
</tr>
<tr>
<td>Leak</td>
<td>Reports whether the leak sensor detected a leak NoLeak or Leak.</td>
</tr>
<tr>
<td>LeakAlarmOff</td>
<td>Turns off the beep for the current alarm. A new beep sounds when the leak sensor detects another leak.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>LeakSensorMode</td>
<td>The following options are available:&lt;br&gt;<strong>Enabled</strong> - Enables leak detection. If the sensor is activated, a message appears in the Chromeleon Audit Trail and an acoustic beep sounds.&lt;br&gt;<strong>Silent</strong> - Enables leak detection. If the sensor is activated, a message appears in the Chromeleon Audit Trail, but no beep sounds.&lt;br&gt;<strong>Disabled</strong> - Disables leak detection.</td>
</tr>
<tr>
<td>LoopOverfill</td>
<td>(Used only for full-loop injections) The volume of the sample loop and the LoopOverfill factor determine the volume that is drawn in and/or transported through the sample loop before the sample is injected.&lt;br&gt;Example:&lt;br&gt;Loop volume: 5 µl, LoopOverfill: 2 = Volume to be drawn: 10 µl</td>
</tr>
<tr>
<td>LoopVolume</td>
<td>Reports the volume of the installed sample loop (read-only).</td>
</tr>
<tr>
<td>LoopWashFactor</td>
<td>Factor for the loop wash volume. The contents of the buffer loop and the LoopWashFactor determine the loop wash volume. The default factor is 1.</td>
</tr>
<tr>
<td>LowDispersionFactor</td>
<td>Determines the volume for Low Dispersion Injections. The volume is calculated by multiplying the factor with the original sample volume.</td>
</tr>
<tr>
<td>LowDispersionFlow</td>
<td>Sets the flow rate with which the sample is flushed out of the sample loop in Low Dispersion Mode.</td>
</tr>
<tr>
<td>LowDispersionMode</td>
<td>Enables low dispersion mode.</td>
</tr>
<tr>
<td>MotorControllerVersion</td>
<td>Indicates the version of the motor controller (read-only).</td>
</tr>
<tr>
<td>MoveNeedleDown</td>
<td>Moves the needle to the position specified by NeedleHeight.</td>
</tr>
<tr>
<td>MoveNeedleHome</td>
<td>Moves the needle to the topmost position (Home position).</td>
</tr>
<tr>
<td>MoveTo</td>
<td>Moves the needle over the position specified in the Position input field.</td>
</tr>
<tr>
<td>NeedleCounter</td>
<td>Counts the number of needle drive movements.</td>
</tr>
<tr>
<td>NeedleHeight</td>
<td>Determines to which position the needle moves with the MoveNeedleDown command.</td>
</tr>
<tr>
<td>NeedleVolume</td>
<td>Reports the volume of the installed needle (read-only).</td>
</tr>
<tr>
<td>Operable</td>
<td>Reports whether the autosampler is ready to operate.</td>
</tr>
<tr>
<td>Position</td>
<td>Sets the sample position on the carousel.</td>
</tr>
<tr>
<td>PrepareThisSample</td>
<td>Starts the injection procedure for the current sample. However, the injection valve will be switched only at the next injection command.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PrepVial</td>
<td>Sets the position for the sample container used for sample preparation. This position is used for UdpDraw and UdpDispense operations if PrepVial has been selected in the From and/or To fields of the UdpDraw and/or UdpDispense commands.</td>
</tr>
<tr>
<td>PrimeSyringe</td>
<td>Primes the syringe by filling and emptying it. Use PrimeSyringeNumber to determine how often the syringe is primed.</td>
</tr>
<tr>
<td>PrimeSyringeNumber</td>
<td>Specifies how often the syringe is filled and emptied during the PrimeSyringe operation.</td>
</tr>
<tr>
<td>PumpDevice</td>
<td>This property is available only if you have specified on the Segments tab in the autosampler's properties that the injection command be synchronized with the strokes of an LPG-3x00 pump. Usually, the setting from the Segments tab page is displayed by default, e.g., MicroPump or Loading Pump. If you want to change the synchronization assignment for a specific application, enter the pump in the input field. This does not overwrite the default setting on the Segments tab page.</td>
</tr>
<tr>
<td>PuncturerDepth</td>
<td>Sets how deep the puncturer descends into the sample container, measured from the top of the sample container.</td>
</tr>
<tr>
<td>PuncturerDownNeedleDown</td>
<td>Moves the puncturer and needle down.</td>
</tr>
<tr>
<td>PuncturerDownNeedleUp</td>
<td>Moves the puncturer down and the needle up.</td>
</tr>
<tr>
<td>PuncturerUpNeedleDown</td>
<td>Moves the puncturer up and the needle down.</td>
</tr>
<tr>
<td>PuncturerUpNeedleUp</td>
<td>Moves the puncturer and needle up.</td>
</tr>
<tr>
<td>ReadyTempDelta</td>
<td>When the current temperature deviates from the target temperature by more than the ReadyTempDelta, the autosampler is not ready to operate (TemperatureReady = NotReady).</td>
</tr>
<tr>
<td>ReagentX\Vial (where X = A to D)</td>
<td>Sets the position of the sample container with the associated reagent. This position is used for UdpDraw and UdpDispense operations if the associated ReagentXVial has been selected in the From and/or To fields of the Draw and/or Dispense commands.</td>
</tr>
<tr>
<td>RedTray</td>
<td>Reports, which sample containers are installed in the blue segment (corresponds to the settings on the Segments tab page in the autosampler's properties).</td>
</tr>
<tr>
<td>Relay4Enabled</td>
<td>Sets whether relay 4 controls the inject response. If you specify the duration, relay 4 will be active for this time upon each inject. Select Yes for user-defined control, i.e., if you want to control the relay via the Relay_4.On and Relay_4.Off commands.</td>
</tr>
<tr>
<td>Reset</td>
<td>Sets the autosampler to the initial conditions when the instrument was turned on.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>RinsebetweenReinjections</td>
<td>Sets whether a wash cycle is performed after each injection. If set to <strong>Yes</strong>, the system is washed after each injection. If set to <strong>No</strong>, the wash cycle is skipped when the next injection is performed from the same vial.</td>
</tr>
<tr>
<td>Notes:</td>
<td>This command allows you to make several injections from the same vial one after the other without loosing sample between the injections by rinsing. A wash cycle is always performed after the last sample in a sequence.</td>
</tr>
<tr>
<td>SampleHeight</td>
<td>Sets the distance (in mm) between the bottom of the sample container (well-plate, deep-well plate, or vial), as measured from the exterior, and the tip of the needle for a standard injection, defining how deep the needle descends into the container for sampling.</td>
</tr>
<tr>
<td>SelfTest</td>
<td>Performs a self-test.</td>
</tr>
<tr>
<td>Note:</td>
<td>You cannot start a batch when the sampler did not pass the self-test.</td>
</tr>
<tr>
<td>Standby</td>
<td>Sets the autosampler into the <strong>Standby</strong> mode or cancels this mode (<strong>NoStandby</strong>).</td>
</tr>
<tr>
<td>Note:</td>
<td>You cannot start a batch when the sampler is in standby mode.</td>
</tr>
<tr>
<td>State</td>
<td>Reports whether the autosampler has injected: <strong>On</strong> (Injection has been performed) or <strong>Off</strong> (Injection has not yet been performed). (Read-only)</td>
</tr>
<tr>
<td>Status</td>
<td>Indicates which operation the autosampler is currently performing (read-only).</td>
</tr>
<tr>
<td>SyncWithPump</td>
<td>This property is available only if you have specified on the <strong>Segments</strong> tab in the autosampler’s properties that the injection command be synchronized with the strokes of an LPG-3x00 pump. In this case, the setting is <strong>On</strong>. If you want to disable synchronization for a specific application, set the property to <strong>Off</strong>. (Also, see <strong>PumpDevice</strong>.)</td>
</tr>
<tr>
<td>Note:</td>
<td><strong>SyncWithPump</strong> is automatically set to <strong>On</strong> when you change the <strong>PumpDevice</strong> setting.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Syringe</td>
<td>Reports the volume of the installed syringe (read-only).</td>
</tr>
<tr>
<td>SyringeCounter</td>
<td>Counts the number of syringe plunger movements (read-only).</td>
</tr>
<tr>
<td>SyringeValveCounter</td>
<td>Counts the valve movements.</td>
</tr>
<tr>
<td>SyringeValvePosition</td>
<td>Reports the current position of the syringe valve: Needle, Wash, Waste, or Unknown.</td>
</tr>
<tr>
<td>SyringeWashFactor</td>
<td>Factor for the syringe wash volume. The syringe volume and the SyringeWashFactor determine the syringe wash volume. The default factor is 1.</td>
</tr>
<tr>
<td>TempCtrl (WPS-3000T with installed cooling option only)</td>
<td>Temperature control of the sample rack. The following settings are available: On (enables temperature control) or Off (disables temperature control).</td>
</tr>
<tr>
<td>Temperature (WPS-3000T with installed Cooling Option only)</td>
<td>Sets the target temperature for the carousel and thus, for the sample. The temperature can be between 4°C to 50°C (39.2°F to 122°F). Click the ** character beside the name to display the items underneath: Value (reports the actual temperature), Nominal (sets the target temperature), UpperLimit (sets the upper temperature limit), and LowerLimit (sets the lower temperature limit). The system aborts the sample batch and/or starts error handling if the nominal temperature is outside the specified limits.</td>
</tr>
<tr>
<td>TemperatureReady (WPS-3000T with installed Cooling Option only)</td>
<td>Reports whether the autosampler is ready to operate. When Chromeleon reports NotReady, the current temperature deviates from the target temperature by more than the ReadyTempDelta.</td>
</tr>
<tr>
<td>TerminateChangeSyringe</td>
<td>Terminates the procedure for exchanging the syringe (Also, see InitiateChangeSyringe.)</td>
</tr>
<tr>
<td>TransLiquidHeight</td>
<td>Sets how deep the needle descends into the container for sampling (= distance in mm between the bottom of the transport vial, as measured from the exterior, and the tip of the needle.</td>
</tr>
<tr>
<td>TransportVialCapacity</td>
<td>Sets how often transport liquid can be drawn from one transport vial.</td>
</tr>
<tr>
<td><strong>Tip:</strong> Keep in mind that two draw operations are required for microliter pick-up.</td>
<td></td>
</tr>
<tr>
<td>TransportVialUsecount</td>
<td>Reports how often transport liquid was drawn from the transport vials.</td>
</tr>
<tr>
<td><strong>Tip:</strong> Reset the counter to zero after you have refilled the transport vials. If the maximum permissible number of draw operations, as defined with TransportVialCapacity, has been reached, a message (&quot;out of transport liquid&quot;) is logged in the Chromeleon Audit Trail.</td>
<td></td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>TransVialPunctureDepth</td>
<td>Sets how deep the puncturer descends into the transport vial, measured from the top of the transport vial.</td>
</tr>
<tr>
<td>Volume</td>
<td>Sets the injection volume for standard injections.</td>
</tr>
<tr>
<td>Wash</td>
<td>Performs a wash operation.</td>
</tr>
<tr>
<td>WashVolume</td>
<td>Sets the volume that is drawn for the needle wash cycle after an injection.</td>
</tr>
<tr>
<td>WasteSpeed</td>
<td>Sets the syringe speed for expelling liquid to the waste.</td>
</tr>
</tbody>
</table>

For a basic description of Dionex autosamplers, including the standard commands, refer to [Dionex Autosamplers](#).

For more information about the sample preparation commands for the WPS-3000 autosampler, refer to [Dionex WPS-3000 Well-Plate Micro Autosampler: Commands for User-Defined Programs](#).

For information about how to use the commands in practical operation, refer to [Practical Tips for Device Control](#) [Examples for User-Defined Programs for the WPS-3000 Well-Plate Micro Autosampler](#).

For installation instructions for the autosampler, refer to [Hardware Installation](#) [WPS-3000 Well-Plate Micro Autosampler: Overview](#) in the Administrator Help section.
Dionex WPS-3000 Well-Plate Micro Autosampler: Commands for User-Defined Programs

The Dionex WPS-3000 Autosampler provides many sample preparation commands that are used to further define the individual sample preparation steps. The sample preparation commands are accessible from the Advanced level only. Use the Program Wizard to create a user-defined sample preparation program. This program is started by the Inject command.

Chromeleon supports the following sample preparation commands (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UdpAirPump</td>
<td>Sets whether outside air shall be used to dry the needle. Select On or Off.</td>
</tr>
<tr>
<td>Udp⇒Dispense</td>
<td>Dispenses a specified volume of liquid. Make the following settings:</td>
</tr>
<tr>
<td></td>
<td>To: Enter the position to which the specified volume is delivered.</td>
</tr>
<tr>
<td></td>
<td>Volume: Enter the volume to be dispensed (0.0 to 25.0 µl).</td>
</tr>
<tr>
<td></td>
<td>SyringeSpeed: Specify the speed with which the volume is expelled (10 to 8333 nl/s; option: GlobalSpeed here = DispSpeed).</td>
</tr>
<tr>
<td></td>
<td>SampleHeight: Determine how deep the needle descends into the sample container (0 to 40 mm; option: GlobalHeight = SampleHeight).</td>
</tr>
<tr>
<td>Udp⇒Draw</td>
<td>Draws a specified volume of liquid. Make the following settings:</td>
</tr>
<tr>
<td></td>
<td>From: Enter the position from which the specified volume is drawn.</td>
</tr>
<tr>
<td></td>
<td>Volume: Enter the volume to be drawn (0.0 to 25.0 µl).</td>
</tr>
<tr>
<td></td>
<td>SyringeSpeed: Specify the speed with which the volume is drawn (10 to 8333 nl/s; option: GlobalSpeed here = DrawSpeed).</td>
</tr>
<tr>
<td></td>
<td>SampleHeight: Determine how deep the needle descends into the sample container (0 to 40 mm; option: GlobalHeight = SampleHeight).</td>
</tr>
<tr>
<td>UdpInjectMarker</td>
<td>Generates an inject marker pulse. This is required in user-specific programs, i.e., when InjectMode = UserProg. The injection can be performed only after this pulse.</td>
</tr>
<tr>
<td>UdpInjectValve</td>
<td>Switches the injection valve to the specified position: Inje ct or Load.</td>
</tr>
<tr>
<td>UdpMixNeedleWash</td>
<td>Sets the volume that is used for washing the needle during sample preparation.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>UdpMixWait</td>
<td>Sets the time that the system waits between the single sample preparation steps.</td>
</tr>
<tr>
<td>UdpMoveSyringe</td>
<td>Moves the syringe. Enter the volume to be drawn in the Load field; or else, enter the volume to be dispensed in the Unload field. Only set one of these parameters. Enter the speed for the syringe movement in the SyringeSpeed field.</td>
</tr>
<tr>
<td><strong>Tip:</strong></td>
<td>Make sure that both parameters appear in the same line of the PGM File. If they appear in different lines, the PGM File does not pass the Ready Check.</td>
</tr>
<tr>
<td>UdpMoveSyringeHome</td>
<td>Moves the syringe it to its Home position and empties it.</td>
</tr>
<tr>
<td>UdpOutput</td>
<td>Sets the specified output into the defined state. Select the output (Out1 ... Out4) and the state (On or Off) from the associated drop-down lists.</td>
</tr>
<tr>
<td>UdpSyringeValve</td>
<td>Switches the syringe valve to the specified position: Needle, Wash, or Waste.</td>
</tr>
<tr>
<td>UdpWaitInput</td>
<td>Waits until the specified input is in the selected state. Select the input (Inp1 ... Inp4) and the state (Low or High) from the associated drop-down lists.</td>
</tr>
<tr>
<td>UdpWaitStrokeSync</td>
<td>Waits with the execution of a program for InjectMode = UserProg until the pump has sent the synchronization signal. (Also, see PumpDevice, SyncWithPump.)</td>
</tr>
</tbody>
</table>

For a basic description of Dionex autosamplers, including the standard commands, refer to Dionex Autosamplers.

For information about the general commands for the WPS-3000 autosampler, refer to Dionex WPS-3000 Well-Plate Micro Autosampler.

For information about how to use the commands in practical operation, refer to Practical Tips for Device Control Examples for User-Defined Programs for the WPS-3000 Well-Plate Micro Autosampler.
**Dionex/LC Packings FAMOS Capillary/Nano HPLC Autosamplers**

In addition to the standard autosampler commands (see Dionex Autosamplers), the Dionex/LC Packings FAMOS Autosampler provides additional commands for controlling autosampler functions.

The following general commands are available (please note that the display **Filter** level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlarmBuzzer</td>
<td>When set to On, the buzzer will signal error conditions.</td>
</tr>
</tbody>
</table>

**Tip:**

If the buzzer signals an error condition (AlarmBuzzer=On), you have to turn the autosampler off and on again to reset the instrument and continue operation. Therefore, avoid using this command when controlling the autosampler under Chromeleon.

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoolingOnTime</td>
<td>Indicates cooling time (in total) of the autosampler (read-only).</td>
</tr>
<tr>
<td>Dispense</td>
<td>Dispenses a specified volume. The following options are available:</td>
</tr>
<tr>
<td></td>
<td><strong>To</strong>: Sample position to which to dispense the volume.</td>
</tr>
<tr>
<td></td>
<td><strong>Volume</strong>: Volume to dispense (0.0 to 25.0 µl).</td>
</tr>
<tr>
<td></td>
<td><strong>SyringeSpeed</strong>: Speed used to dispense the volume (1 to 9 - optional setting: if the SyringeSpeed is not set, the PrepSpeed will be used instead (see below)).</td>
</tr>
<tr>
<td></td>
<td><strong>SampleHeight</strong>: Height at which the sample is dispensed (0 to 40 mm - see below).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw</td>
<td>Draws a specified volume. The following options are available:</td>
</tr>
<tr>
<td></td>
<td><strong>From</strong>: Sample position from which to draw the volume.</td>
</tr>
<tr>
<td></td>
<td><strong>Volume</strong>: Volume to dispense (0.0 to 25.0 µl).</td>
</tr>
<tr>
<td></td>
<td><strong>SyringeSpeed</strong>: Speed used to draw the volume (1 to 9 - optional setting: if the SyringeSpeed is not set, the PrepSpeed will be used instead (see below)).</td>
</tr>
<tr>
<td></td>
<td><strong>SampleHeight</strong>: Height at which the sample is drawn (0 to 40 mm - see below).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirstTransportVial</td>
<td>Defines the vials to be used for µlPickUp injections. Used together with LastTransportVial.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlushVolume</td>
<td>Flush volume used for FullLoop and PartialLoop injections (0.1 to 25.0 µl).</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Inject</td>
<td>Injects the sample. If you have created a user-defined FAMOS program, e.g., in the <a href="#">Program Wizard</a>, use the <strong>Inject</strong> command to start the program. In this case, injection is performed after the <strong>InjectMarker</strong> command of the user-defined program.</td>
</tr>
<tr>
<td>Note:</td>
<td>Injection can be performed only if the autosampler is in <strong>Not running</strong> state. This is usually ensured by the <strong>WaitSampler.Ready</strong> command that is generated by the PGM Wizard. If the system detects a different state, the following message appears in the Audit Trail: Abort! hh:mm:ss {Sampler} Sampler status must be &quot;Not running&quot; before inject.&quot;</td>
</tr>
<tr>
<td>InjectionCounter</td>
<td>Total number of injections (read-only).</td>
</tr>
<tr>
<td>InjectMode</td>
<td>Injection mode (for more information, refer to the operating instructions for the instrument):</td>
</tr>
<tr>
<td>UserProg</td>
<td>The autosampler executes the program or sample preparation steps defined by the user.</td>
</tr>
<tr>
<td>Partial</td>
<td>The syringe volume is injected in part only (at most 50% of the sample loop volume).</td>
</tr>
<tr>
<td>FullLoop</td>
<td>The syringe volume is injected completely.</td>
</tr>
<tr>
<td>µlPickUp</td>
<td>The syringe volume is injected completely. However, it contains partly sample volume only. Transport liquid is drawn first, then sample, and then transport liquid again, i.e., the syringe, the sample needle, and both ends of the sample loop are filled with transport liquid. That is why the TransportVial should contain solvent. The sample volume is in the middle of the sample loop.</td>
</tr>
<tr>
<td>InjectValve</td>
<td>Injection valve can be in the following positions: <strong>Inject</strong> or <strong>Load</strong>.</td>
</tr>
<tr>
<td>ISS_A / ISS_B_Immediate</td>
<td>Switches the associated valve immediately.</td>
</tr>
<tr>
<td>LastTransportVial</td>
<td>Defines the vials to be used for µlPickUp injections. Used together with <strong>FirstTransportVial</strong>.</td>
</tr>
<tr>
<td>LoopVolume</td>
<td>Volume of the installed loop (read-only).</td>
</tr>
<tr>
<td>LowDispersionFactor</td>
<td>(In Micro mode only) For more information, refer to the FAMOS User's Manual.</td>
</tr>
<tr>
<td>LowDispersionFlow</td>
<td>(In Micro mode only) For more information, refer to the FAMOS User's Manual.</td>
</tr>
<tr>
<td>LowDispersionMode</td>
<td>Enable low dispersion mode (in Micro mode only).</td>
</tr>
<tr>
<td>OperationalMode</td>
<td>Operational mode (Micro or Conventional - also, refer to <strong>Hardware Installation</strong> [Ultimate Capillary/Nano HPLC System: Overview in the Administrator Help section]). Affects some limits, changing resets many operational parameters (read-only).</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Output</td>
<td>Sets the corresponding output to the specified state.</td>
</tr>
<tr>
<td>PowerOnTime</td>
<td>Indicates the time (in total) the autosampler was turned on (read-only).</td>
</tr>
<tr>
<td>PrepSpeed</td>
<td>Speed used as the default syringe speed.</td>
</tr>
<tr>
<td>PrepVial</td>
<td>Sample preparation vial for the Draw and Dispense actions.</td>
</tr>
<tr>
<td>ReagentXVial (where X = A to D)</td>
<td>Position of the vial that contains the reagent X or the transportation fluid when UserProg is selected as Inject Mode.</td>
</tr>
<tr>
<td>RinsebetweenReinjections</td>
<td>If this parameter is set to No, the rinse step is omitted.</td>
</tr>
<tr>
<td>RefScreen</td>
<td>If the command is set to On, the action currently performed by the autosampler is displayed on the instrument.</td>
</tr>
<tr>
<td>SampleHeight</td>
<td>The height at which the sample is drawn or dispensed.</td>
</tr>
<tr>
<td>Status</td>
<td>Status (read-only).</td>
</tr>
<tr>
<td>Syringe</td>
<td>Volume of the installed syringe (read-only).</td>
</tr>
<tr>
<td>SyringeCounter</td>
<td>Total number of syringe movements (read-only).</td>
</tr>
<tr>
<td>SyringeSpeed</td>
<td>Syringe speed used for draw and dispense operations (Low, Normal, or High). The flow depends on the volume of the installed syringe. (For more information, refer to the FAMOS User's Manual.)</td>
</tr>
<tr>
<td>SyringeSpeedFactor</td>
<td>Factor used for scaling the syringe speed (see SyringeSpeed).</td>
</tr>
<tr>
<td>SyringeValve</td>
<td>Can be in the following positions: Needle, Wash, or Waste</td>
</tr>
<tr>
<td>SyringeValveCounter</td>
<td>Counts the valve movements.</td>
</tr>
<tr>
<td>TempCtrl (with installed Cooling Option only)</td>
<td>Temperature control of the sample rack. The following settings are available: On (cooling/heating enabled) or Off (cooling/heating disabled).</td>
</tr>
<tr>
<td>Temperature (with installed Cooling Option only)</td>
<td>You can indicate the nominal temperature for the tray and thus for the sample. The temperature can be between 4°C to 40°C (39.2°F to 104°F). If you open the command tree, the following commands are available: Value (= current tray temperature, read-only), Nominal (= nominal tray temperature), UpperLimit, and LowerLimit. If the current temperature exceeds the limits, the system aborts the batch and starts emergency handling.</td>
</tr>
</tbody>
</table>

**Note:**

This command allows you to make several injections from the same vial one after the other without losing sample between the injections by rinsing.

The flow into or from the syringe is the product of the speed defined by SyringeSpeed and the SyringeSpeedFactor.

Example: SyringeSpeed=Low corresponds to 31.3µl/min for the 25µl syringe), SyringeSpeedFactor=0.5. The resulting flow is 15.65µl/min.
<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TubingVolume</td>
<td>Volume of the installed needle capillary (read-only).</td>
</tr>
<tr>
<td>UseAirSegment</td>
<td>When set to On, an additional air segment is added when loading the sample loop. This reduces sample contamination. (For more information, refer to the FAMOS User's Manual.)</td>
</tr>
<tr>
<td>UseHeadSpace</td>
<td>When set to On, additional pressure is applied to the vial while the sample is transported to the loop. This increases the reproducibility but requires airtight vials and/or well septa. (For more information, refer to the FAMOS User's Manual.)</td>
</tr>
<tr>
<td>➔Wash</td>
<td>Starts the wash cycle.</td>
</tr>
<tr>
<td>WashVolume</td>
<td>Volume used for the wash cycle.</td>
</tr>
</tbody>
</table>

For a basic description of Dionex autosamplers, including the standard commands, refer to [Dionex Autosamplers](#).

For more information about the sample preparation commands for the FAMOS autosampler, refer to [Dionex/LC Packings FAMOS Autosampler: Sample Preparation](#).

For information about how to use the commands in practical operation, refer to [Practical Tips for Device Control](#) Examples for User-Defined Programs for the FAMOS Autosampler (Dionex/LC Packings).

For installation instructions for the FAMOS autosampler, refer to [Hardware Installation](#) FAMOS Capillary/Nano Autosampler: Overview in the Administrator Help section.
Dionex/LC Packings FAMOS Autosampler: Sample Preparation

The Dionex/LC Packings FAMOS Autosampler provides many sample preparation commands that are used to further define the individual sample preparation steps. The sample preparation commands are accessible from the Advanced level only. Use the Program Wizard to create a user-defined sample preparation program. This program is started by the ⇒Inject command.

Chromeleon supports the following sample preparation commands (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CodeOutput</td>
<td>Communicates a code number (between 0 and 15) to the P2 output (VialNo&amp;Marker (TTL)). For more information, refer to the FAMOS User's Manual.</td>
</tr>
<tr>
<td>Compressor</td>
<td>Serves to build up pressure (On) or relieve pressure (Off)</td>
</tr>
<tr>
<td>=&gt;Dispense</td>
<td>Dispenses a specified volume. The following options are available: To: Sample position to which to dispense the volume. Volume: Volume to dispense (0.0 to 25.0 µl). SyringeSpeed: Speed used to dispense the volume (Either select an option (Low, Normal, or High) from the drop-down list or enter the any number between 1 and 9). SampleHeight: Height at which the sample is dispensed (0 to 40 mm).</td>
</tr>
<tr>
<td>=&gt;Draw</td>
<td>Draws a specified volume. The following options are available: From: Sample position from which to draw the volume. Volume: Volume to dispense (0.0 to 25.0 µl). SyringeSpeed: Speed used to draw the volume (Either select an option (Low, Normal, or High) from the drop-down list or enter the any number between 1 and 9). SampleHeight: Height at which the sample is drawn (0 to 40 mm).</td>
</tr>
<tr>
<td>InjectMarker</td>
<td>Required to start injection.</td>
</tr>
<tr>
<td>InjectValve</td>
<td>Injection valve. The valve can be either in Inject or in Load position.</td>
</tr>
<tr>
<td>LabeledVialMarker</td>
<td>Creates another marker pulse for different vials, e.g., standard samples.</td>
</tr>
<tr>
<td>MixWait</td>
<td>Specify the time the system waits between steps (0s (0:00:00h) to 35.999s (9:59:59h))</td>
</tr>
<tr>
<td>MixNeedleWash</td>
<td>Volume used for washing the needle (10 to 9.999µl).</td>
</tr>
</tbody>
</table>
### Command/Property

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoveSyringe</td>
<td>Determines the volume and the speed for loading and dispensing the syringe. For this command, the <strong>Load</strong> and <strong>Unload</strong> parameters are available.</td>
</tr>
<tr>
<td>Tip:</td>
<td>Do not use both parameters in the same line of the PGM File because in this case, the PGM File does not pass the Ready Check.</td>
</tr>
<tr>
<td>MoveSyringeHome</td>
<td>Returns the syringe to its home position.</td>
</tr>
<tr>
<td>Output</td>
<td>Sets the corresponding output to the selected state.</td>
</tr>
<tr>
<td>SSV</td>
<td>Solvent Selection Valve. Specify the <strong>Position</strong>. The following options are available: <strong>Solvent A-D</strong>.</td>
</tr>
<tr>
<td>SyringeValve</td>
<td>Specify the <strong>Position</strong>. The following options are available: <strong>Needle</strong>, <strong>Wash</strong>, or <strong>Waste</strong>.</td>
</tr>
<tr>
<td>Valve_A</td>
<td>Specify the <strong>Position</strong>. The following options are available: <strong>1_2</strong> (concentrating the sample) or <strong>10_1</strong> (eluting the sample concentrated on the pre-column to the analytical column).</td>
</tr>
<tr>
<td>Valve_B</td>
<td>Specify the <strong>Position</strong>. The following options are available: <strong>10_1</strong> (concentrating the sample) or <strong>1_2</strong> (eluting the sample concentrated on the pre-column to the analytical column).</td>
</tr>
<tr>
<td>VialMarker</td>
<td>Generates a marker pulse for sample vials, e.g., unknown samples.</td>
</tr>
<tr>
<td>WaitInput</td>
<td>Defines the incoming signal for which to wait.</td>
</tr>
<tr>
<td>=&gt; Wash</td>
<td>Starts a wash cycle.</td>
</tr>
</tbody>
</table>

For a basic description of Dionex autosamplers, including the standard commands, refer to [Dionex Autosamplers](#).

For information about the general commands for the FAMOS autosampler, refer to [Dionex/LC Packings FAMOS Autosampler](#). (The general FAMOS autosampler commands partly overlap the sample preparation commands listed above.)

For information about how to use the commands in practical operation, refer to [Practical Tips for Device Control](#) [Examples for User-Defined Programs for the FAMOS Autosampler (Dionex/LC Packings)](#).
Dionex GINA 50 Autosamplers

In addition to the standard commands (see Dionex Autosamplers), the Dionex GINA 50 autosampler provides additional commands for controlling autosampler functions such as multiple draw operations (Suck) from one sample, washing the sample loop (Wash), moving the sample needle (NeedleUp), or cooling the sample vials. The following commands are available (note that it depends on the display Filter level which commands are displayed):

Special Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispense:</td>
<td>Dispenses a specified volume; Please note: If position = 101, the autosampler dispenses the volume into the needle port.</td>
</tr>
<tr>
<td>Load</td>
<td>Switches the internal switching valve without moving the needle (also, refer to NeedleUp)</td>
</tr>
<tr>
<td>NeedleUp</td>
<td>Moves the needle up.</td>
</tr>
<tr>
<td>Suck:</td>
<td>Draws a specified volume. Please note: If position = 100, the autosampler draws an air segment from an imaginary air vial.</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>Enables temperature control of the Dionex GINA 50T autosampler. The Gina 50T autosampler is capable of controlling the rack temperature and, thus, the sample temperature within a 15°C range. At room temperature (20°C), maximum sample cooling is to 5°C above zero.</td>
</tr>
</tbody>
</table>

For a general description of the Dionex autosamplers, including the standard commands, refer to Dionex Autosamplers.

For information about how to use the commands in practical operation, refer to Practical Tips for Device Control Autosampler Commands (GINA 50).

For installation instructions for the GINA 50 autosampler, refer to Hardware Installation GINA50 HPLC Autosampler: Overview in the Administrator Help section.
Dionex Flow Manager and Thermostatted Column Compartments

In addition to the General Device Commands, the Temperature property is available for controlling the operating functions of the Dionex Thermostatted Column Compartments:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>For the TCC-100, the range is 5.0…80°C (41° - 186°F). For the FLM-3x00, the range is 5.0…70°C (41° - 158°F). Click the &quot;+&quot; character beside the name to display the items underneath: Value-reports the current temperature. Nominal-sets the nominal temperature. UpperLimit-sets the upper temperature limit LowerLimit-sets the lower temperature limit. If the nominal temperature is not in the limits, the command is not executed.</td>
</tr>
</tbody>
</table>

For information about the special commands and properties available for the TCC-100 and FLM-3x00 thermostatted column compartments, refer to:

- Dionex TCC-100 Thermostatted Column Compartment
- Dionex TCC-100 Thermostatted Column Compartment: Column ID Properties
- Dionex FLM-3x00 Flow Manager and Thermostatted Column Compartment
- Dionex FLM-3x00: Column ID Properties
- Dionex FLM-3x00: Splitter Commands

For an example program, refer to Practical Tips for Device Control Controlling the Column Temperature.
**Dionex TCC-100 Thermostatted Column Compartment**

In addition to the commands supported for the different column compartments, such as Connect, Disconnect, and Temperature (see [Dionex Flow Manager and Thermostatted Column Compartments](#)), Chromeleon supports the following commands and properties (please note that the display **Filter** level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveColumn</td>
<td>Determine for which column the column identification information shall be updated (A or B). The names correspond to the names entered on the <strong>Configuration</strong> tab page in the Server Configuration program.</td>
</tr>
<tr>
<td>Column_A</td>
<td>The column names correspond to the names entered on the <strong>Configuration</strong> tab page in the Server Configuration program. The various column commands and properties allow you to enter and check information about the column. For more information, refer to <a href="#">Dionex TCC-100 Thermostatted Column Compartment: Column ID Properties</a>.</td>
</tr>
<tr>
<td>Column_B</td>
<td></td>
</tr>
<tr>
<td>ColumnOven_Temp</td>
<td>This channel is available only if you have selected the <strong>TemperatureSignal</strong> check box in the TCC-100's properties (on the <strong>Configuration</strong> tab page in the Server Configuration program.) If the check box is selected, Chromeleon records the temperature as a separate channel. The channel's name is the name entered on the <strong>Configuration</strong> tab page in the Server Configuration program. Click the &quot;+&quot; character beside the name to display the items underneath:</td>
</tr>
<tr>
<td></td>
<td><strong>Delta</strong>—reports the signal's slope, i.e., the difference between the current value and the value one second ago. This is useful for triggers.</td>
</tr>
<tr>
<td></td>
<td><strong>Signal</strong>—has the following commands: <strong>Value</strong> (current signal value, read-only), <strong>UpperLimit</strong> and <strong>LowerLimit</strong>. If the current signal value is outside these limits, a warning appears in the Audit Trail.</td>
</tr>
<tr>
<td></td>
<td><strong>AcqOff</strong>—terminates data acquisition.</td>
</tr>
<tr>
<td></td>
<td><strong>AcqOn</strong>—starts data acquisition.</td>
</tr>
<tr>
<td></td>
<td><strong>Retention</strong>—reports the retention time of the signal (read-only).</td>
</tr>
<tr>
<td></td>
<td><strong>MaxAutoStep</strong> = Maximum step rate for Auto Step Mode; range: 0.1 - 5.1 s; default: 5.1 s</td>
</tr>
<tr>
<td></td>
<td><strong>Step</strong>—sets the step for data acquisition; range: 0.01 - 4.80 s; <strong>Auto</strong> selects the best step dynamically</td>
</tr>
<tr>
<td></td>
<td><strong>Average</strong>—averages all measured values over the step interval. Default: On. Off records only the last point of each interval.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Door</td>
<td>Reports whether the compartment door is open or closed (Open or Closed; read-only).</td>
</tr>
<tr>
<td>EquilibrationTime</td>
<td>Range: 0.0...30.0 min. Only if the deviation between the current temperature and the set point specified under ReadyTempDelta does not exceed the EquilibrationTime, the column compartment enters the Ready state (also, see ReadyTempDelta and Ready).</td>
</tr>
<tr>
<td>GasLeak</td>
<td>Reports whether the gas sensor has detected a leak (Ok or Leak; read-only).</td>
</tr>
<tr>
<td>GasLeakSensor</td>
<td>Sets the sensitivity with which the sensor responds to gas in the column chamber. Click the arrow in the GasLeakSensor combo box and select an option from the list: Low, Standard, or High. To turn the sensor off, select Off.</td>
</tr>
<tr>
<td>HardwareVersion</td>
<td>Indicates the compartment's hardware version.</td>
</tr>
<tr>
<td>HumidityLeak</td>
<td>Indicates whether the humidity sensor has detected a leak (Ok or Leak; read-only).</td>
</tr>
<tr>
<td>HumidityLeakSensor</td>
<td>Sets the sensitivity with which the sensor responds to humidity. Click the arrow in the HumidityLeakSensor combo box and select an option from the list: Low, Standard, or High. To turn the sensor off, select Off.</td>
</tr>
<tr>
<td>Leak</td>
<td>Indicates whether at least one leak sensor has detected leakage (Ok or Leak; read-only; also see HumidityLeak and GasLeak).</td>
</tr>
<tr>
<td>LeakSensorState</td>
<td>Reports whether the sensors are ready for leak detection (Ready, NotReady, or Error; read-only).</td>
</tr>
<tr>
<td>MaxPosition</td>
<td>If a column switching valve is installed and if the Internal MSV check box is selected on the Configuration tab page in the Server Configuration program, the maximum number of position of the installed valve is indicated (read-only).</td>
</tr>
<tr>
<td>MsvPosition</td>
<td>If a column switching valve is installed and if the Internal MSV check box is selected on the Configuration tab page in the Server Configuration program, the column switching valve is switched to the desired position (A (1) or B (2)).</td>
</tr>
<tr>
<td>NextColumn</td>
<td>Switches the column switching valve to the next position, directing the flow through the other column.</td>
</tr>
<tr>
<td>Ready</td>
<td>Reports whether the compartment is ready to operate (Ready or NotReady; read-only; also see ReadyTempDelta and EquilibrationTime).</td>
</tr>
<tr>
<td>ReadyTemperatureDelta</td>
<td>Range: 0.0...5.0°C. If the current temperature deviates from the temperature set point by more than the ReadyTempDelta, the column compartment enters the NotReady state. If the ReadyTempDelta is set to 0, Chromeleon does not check whether the temperature set point deviates from the actual temperature (also see Ready and EquilibrationTime).</td>
</tr>
<tr>
<td>SerialNo</td>
<td>Serial number of the column compartment (read-only).</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>TCC_INPUT_1 and/or</td>
<td>Reports the state of the related digital input (On or Off).</td>
</tr>
<tr>
<td>TCC_INPUT_2</td>
<td></td>
</tr>
<tr>
<td>TCC_RELAY_1 and/or</td>
<td>Relay 1 and/or relay 2. Click the &quot;+&quot; character beside the relay name to</td>
</tr>
<tr>
<td>TCC_RELAY_2</td>
<td>display the items underneath:</td>
</tr>
<tr>
<td></td>
<td>State—reports the state of the relay.</td>
</tr>
<tr>
<td></td>
<td>Duration—when set, the relay toggles after the specified time.</td>
</tr>
<tr>
<td></td>
<td>On—turns the relay on.</td>
</tr>
<tr>
<td></td>
<td>Off—turns the relay off</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>Turns temperature control on or off.</td>
</tr>
<tr>
<td>Vendor</td>
<td>Indicates the device manufacturer (read-only).</td>
</tr>
<tr>
<td>WorkingHours</td>
<td>Counts the operating hours of the column thermostat.</td>
</tr>
</tbody>
</table>

For information about column identification, refer to [Dionex TCC-100 Thermostatted HPLC Column Compartment: Column ID Properties](#).

For an example program for the TCC-100, refer to [Practical Tips for Device Control](#) Controlling the Column Temperature.

For information about how to install the TCC-100, refer to [Hardware Installation](#) TCC-100 Thermostatted HPLC Column Compartment: Overview in the Administrator Help section.
Dionex TCC-100 Thermostatted Column Compartment: Column ID Properties

The Dionex TCC-100 Column Thermostat supports the following column ID properties. The column properties appear underneath the column name specified in the Server Configuration program. (Note that the display Filter level determines which properties are displayed.)

Primary column properties

These properties are used for column identification. They are entered once by either the column manufacturer or the user and cannot be changed.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BatchNumber</td>
<td>Batch or lot number of the column.</td>
</tr>
<tr>
<td>CustomId</td>
<td>You can enter any number you want, for example, the column's inventory number. (Note: The number cannot be changed once it is entered.)</td>
</tr>
<tr>
<td>DateOfManufacture</td>
<td>Manufacturing date of the column.</td>
</tr>
<tr>
<td>ProductId</td>
<td>Product number of the column.</td>
</tr>
<tr>
<td>SerialNo</td>
<td>Serial number of the column.</td>
</tr>
</tbody>
</table>

Secondary column properties

The user can enter and later change the following properties if necessary:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CardState</td>
<td>Reports whether the memory card is present:</td>
</tr>
<tr>
<td>NoChip</td>
<td>The card is missing.</td>
</tr>
<tr>
<td>DoorOpened</td>
<td>The door is open. (The card is not writeable while the door is open.)</td>
</tr>
<tr>
<td>UnknownFormat</td>
<td>The card format is unknown.</td>
</tr>
<tr>
<td>BusBlocked</td>
<td>One of the cards is not inserted correctly. Thus, it may happen that another card is not readable although it is correctly.</td>
</tr>
<tr>
<td>DateOfExpiration</td>
<td>Expiration date of the column. If a date has been entered, the current date is compared with the expiration date during injection or at the beginning of batch processing. If the current date exceeds the expiration date or if batch processing starts less than 24 h before the expiration date, a warning appears once per Batch.</td>
</tr>
<tr>
<td>Description</td>
<td>Column description.</td>
</tr>
<tr>
<td>Diameter</td>
<td>Column diameter in [mm].</td>
</tr>
<tr>
<td>FormatChipCard</td>
<td>Select this command to format a chip card that contains invalid or corrupt data.</td>
</tr>
</tbody>
</table>
### Property Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injections Limit</td>
<td>Maximum number of injections allowed for the column.</td>
</tr>
<tr>
<td>Length</td>
<td>Column length in [mm].</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Column manufacturer.</td>
</tr>
<tr>
<td>PackingMaterial</td>
<td>Packing material of the column.</td>
</tr>
<tr>
<td>Particle Size</td>
<td>Particle size in [µm]</td>
</tr>
<tr>
<td>pH Lower Limit</td>
<td>Upper and lower pH limits. If both limits are set to the same value, this</td>
</tr>
<tr>
<td></td>
<td>means that no limit exists.</td>
</tr>
<tr>
<td>pH Upper Limit</td>
<td>If both limits are set to the same value, this means that no limit exists.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> These values are for information purposes only. The device driver</td>
</tr>
<tr>
<td></td>
<td>cannot check the pH value.</td>
</tr>
<tr>
<td>Pressure Upper Limit</td>
<td>If the column pressure exceeds the upper pressure limit, a warning</td>
</tr>
<tr>
<td></td>
<td>appears.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> Accept the default (0.0) if you do not want to have the system</td>
</tr>
<tr>
<td></td>
<td>check the pressure.</td>
</tr>
<tr>
<td>Temp Lower Limit</td>
<td>If the column temperature is above the upper temperature limit or below</td>
</tr>
<tr>
<td></td>
<td>the lower temperature limit, a warning appears. If both limits are set to</td>
</tr>
<tr>
<td></td>
<td>the same value (default: 25°C each), this means that no limit exists.</td>
</tr>
<tr>
<td></td>
<td>(These values also apply to the inactive column.)</td>
</tr>
<tr>
<td>Temp Upper Limit</td>
<td>The column's void volume in [µl]</td>
</tr>
</tbody>
</table>

### System properties

System properties are read-only and cannot be changed by the user. Chromeleon determines and updates the following properties during each injection:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Of First Use</td>
<td>Date of the first injection</td>
</tr>
<tr>
<td>Date Of Last Use</td>
<td>Date of the last injection</td>
</tr>
<tr>
<td>Injections Counter</td>
<td>Number of injections</td>
</tr>
<tr>
<td>Pressure Max</td>
<td>Maximum pressure measured while the column was in use</td>
</tr>
<tr>
<td>Temp Min</td>
<td>Minimum temperature measured while the column was in the column compartment</td>
</tr>
<tr>
<td>Temp Max</td>
<td>Maximum temperature measured while the column was in the column compartment</td>
</tr>
</tbody>
</table>
User properties

The user can change the following properties at any time:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Enter any text to describe the application.</td>
</tr>
<tr>
<td>Comment</td>
<td>Enter any comment text.</td>
</tr>
<tr>
<td>SystemPressure</td>
<td>Name of the device to be used for system pressure measurement.</td>
</tr>
</tbody>
</table>

For information about the special commands supported by the Dionex TCC-100 Thermostatted Column Compartment, refer to Dionex TCC-100 Thermostatted Column Compartment.

For information about the standard commands supported for the different column compartments, refer to Dionex Flow Manager and Thermostatted Column Compartments.
### Dionex FLM-3x00 Flow Manager and Thermostatted Column Compartment

For the flow manager, several subentries appear in the Commands dialog box. They provide the following commands and properties:

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column_1, Column_2</td>
<td>The column names correspond to the names entered on the Components tab page in the Server Configuration program. The various commands and properties allow you to enter and check information about the column. For more information, refer to Dionex FLM-3x00 Flow Manager and Thermostatted Column Compartment: Column ID Properties.</td>
</tr>
<tr>
<td>ColumnOven.Temp</td>
<td>This channel is available only if you have selected the TemperatureSignal check box in the FLM's properties (on the Configuration tab page in the Server Configuration program.) If the check box is selected, Chromeleon records the temperature as a separate channel. The channel's name is the name entered on the Configuration tab page in the Server Configuration program. Click the &quot;+&quot; character beside the name to display the items underneath: Delta—reports the signal's slope, i.e., the difference between the current value and the value one second ago. This is useful for triggers. Signal—has the following commands: Value (current signal value, read-only), UpperLimit and LowerLimit. If the current signal value is outside these limits, a warning appears in the Audit Trail. AcqOff—terminates data acquisition. AcqOn—starts data acquisition. Retention—reports the retention time of the signal (read-only). MaxAutoStep = Maximum step rate for Auto Step Mode; range: 0.1...5.1 s; default: 5.1 s Step—sets the step for data acquisition; range: 0.01...4.80 s; Auto selects the best step dynamically Average—averages all measured values over the step interval. Default: On. Off records only the last point of each interval.</td>
</tr>
<tr>
<td>FLM-3x00_INPUT_1 and/or FLM-3x00_INPUT_2</td>
<td>Reports the state of the related digital input (On or Off). The property is read-only. FLM-3x00_RELAY_1 and/or FLM-3x00_RELAY_2</td>
</tr>
</tbody>
</table>
In addition to the standard column compartment commands, such as Connect, Disconnect, and Temperature, (see Dionex Flow Manager and Thermostatted Column Compartments), the FLM-3x00 supports the following commands and properties (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlowSplitter_1</td>
<td>The splitter name corresponds to the name entered on the Configuration tab page in the Server Configuration program. For information about the commands and properties that are available, refer to Dionex FLM-3x00 Flow Manager and Thermostatted Column Compartment: Flow Splitter Properties.</td>
</tr>
<tr>
<td>Brightness</td>
<td>Adapts the brightness of the pump's front panel display to your requirements (0 - 100 %).</td>
</tr>
<tr>
<td>Contrast</td>
<td>Adapts the contrast of the pump's front panel display to your requirements (0 - 100 %).</td>
</tr>
<tr>
<td>Door</td>
<td>Reports whether the front panel door is open or closed (Open or Closed; read-only). Note: You cannot start a batch when the front panel door is open.</td>
</tr>
<tr>
<td>FlowController1Error</td>
<td>Reports whether the flow splitter 1 is working properly (OK or Error) (read-only).</td>
</tr>
<tr>
<td>FluidLeak</td>
<td>Reports whether the fluid leak sensor has detected a leak (Ok or Leak; read-only).</td>
</tr>
<tr>
<td>FluidLeakSensor</td>
<td>Settings of the fluid leak sensor: Enabled Enables leak detection via the fluid leak sensor. If a leak is detected, a message appears in the Chromleon Audit Trail and an acoustic beep sounds. Silent Enables leak detection. If a leak is detected, a message appears but no beep sounds. Off Disables the leak detection.</td>
</tr>
<tr>
<td>GasLeak</td>
<td>Reports whether the gas sensor has detected a leak (Ok or Leak; read-only).</td>
</tr>
<tr>
<td>GasLeakSensor</td>
<td>Sets the sensitivity with which the sensor responds to gas in the column chamber. Click the arrow in the GasLeakSensor combo box and select an option from the list: Low, Standard, or High (if the sensor is activated, a message appears in the Chromleon Audit Trail and an acoustic beep sounds) or Low_Silent, Standard_Silent, or High_Silent, respectively (a message appears but no beep sounds). To turn the sensor off, select Off.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>HardwareVersion</td>
<td>Indicates the flow manager's hardware version.</td>
</tr>
<tr>
<td>HumidityLeak</td>
<td>Indicates whether the humidity sensor has detected a leak (Ok or Leak; read-only).</td>
</tr>
<tr>
<td>HumidityLeakSensor</td>
<td>Sets the sensitivity with which the sensor responds to humidity. Click the arrow in the HumidityLeakSensor combo box and select an option from the list: Low, Standard, or High (if the sensor is activated, a message appears in the Chromeleon Audit Trail and an acoustic beep sounds) or Low_Silent, Standard_Silent, or High_Silent, respectively (a message appears but no beep sounds). To turn the sensor off, select Off.</td>
</tr>
<tr>
<td>Leak</td>
<td>Indicates whether at least one leak sensor has detected a leakage (Ok or Leak; read-only; also see FluidLeak, GasLeak, and HumidityLeak).</td>
</tr>
<tr>
<td>LeakAlarmOff</td>
<td>Turns off the beep for the current alarm. A new beep sounds when one of the leak sensors detects another leak.</td>
</tr>
<tr>
<td>LeakSensorState</td>
<td>Reports whether the sensors are ready for leak detection (Ready, NotReady, or Error; read-only).</td>
</tr>
<tr>
<td>MSVPosition</td>
<td>(FLM-3300 only) Reports and/or sets the current valve position: Moving, 10_1 - Indicates the fluid connections in the valve: ports 10 and 1 are connected. 1_2 - Indicates the fluid connections in the valve: ports 1 and 2 are connected. NotConnected - The control electronics is not connected; contact Dionex Service.</td>
</tr>
<tr>
<td>MSVPosition_Counter</td>
<td>Counts how often the left and/or right valve was switched since being installed (read-only).</td>
</tr>
<tr>
<td>Ready</td>
<td>Reports whether the instrument is ready to operate (Ready or NotReady; read-only; also see ReadyTempDelta and EquilibrationTime).</td>
</tr>
</tbody>
</table>

**Note:** You cannot start a batch when the flow manager is not ready.

| ReadyTemperatureDelta  | Range: 0.0 - 5.0°C. If the current temperature deviates from the temperature set point by more than the ReadyTempDelta, the flow manager enters the NotReady state. If the ReadyTempDelta is set to 0,Chromeleon does not check whether the temperature set point deviates from the actual temperature (also see Ready and EquilibrationTime). |
| SerialNo               | Serial number of the manager (read-only).                                                                                                                            |
## 800 Commands for Controlling Dionex Devices

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>Sets the flow manager to <strong>Standby</strong> mode or cancels this mode (<strong>NoStandby</strong>) to resume operation (values: <strong>NoStandby</strong> (0), <strong>Standby</strong> (1)).</td>
</tr>
</tbody>
</table>

**Note:**
You cannot start a batch when the flow manager is in standby mode.

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TempCtrl</td>
<td>Turns temperature control <strong>on</strong> or <strong>off</strong>.</td>
</tr>
<tr>
<td>TempReady</td>
<td>Reports whether the temperature is within the defined limits (<strong>Ready</strong> or <strong>NotReady</strong>). (Read-only, also see Temperature.)</td>
</tr>
</tbody>
</table>

**Note:**
You cannot start a batch when the temperature is not within the defined limits.

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ValveLeft</td>
<td>(FLM-3100 and FLM-3200 only) Reports and/or sets the current valve position:</td>
</tr>
<tr>
<td>ValveRight</td>
<td>Moving</td>
</tr>
<tr>
<td></td>
<td>The valve is switching.</td>
</tr>
<tr>
<td></td>
<td>10_1 (or 6-1)</td>
</tr>
<tr>
<td></td>
<td>Indicates the fluid connections in the valve: ports 10 (6) and 1 are connected.</td>
</tr>
<tr>
<td></td>
<td>1_2</td>
</tr>
<tr>
<td></td>
<td>Indicates the fluid connections in the valve: ports 1 and 2 are connected.</td>
</tr>
<tr>
<td></td>
<td><strong>NotConnected</strong></td>
</tr>
<tr>
<td></td>
<td>The control electronics is not connected; contact Dionex Service.</td>
</tr>
<tr>
<td></td>
<td><strong>Error</strong></td>
</tr>
<tr>
<td></td>
<td>An error occurred. Contact Dionex Service.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ValveLeftCounter</td>
<td>(FLM-3100 and FLM-3200 only) Counts how often the left and/or right valve was switched since being installed (read-only).</td>
</tr>
<tr>
<td>ValveRightCounter</td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>Indicates the device manufacturer (read-only).</td>
</tr>
<tr>
<td>WorkingHours</td>
<td>Counts the operating hours of the column thermostat.</td>
</tr>
</tbody>
</table>

For information about column identification, refer to **Dionex FLM-3x00: Column ID Properties**.

For information about the flow splitter commands and properties, refer to **Dionex FLM-3x00: Flow Splitter Commands**.

For information about how to install the flow manager, refer to **Hardware Installation FLM-3x00 Flow Manager and Thermostatted Column Compartment: Overview** in the **Administrator Help** section.
Dionex FLM-3x00: Column ID Properties

The Dionex FLM-3x00 Flow Manager and Thermostatted Column Compartment supports the following column ID properties. The column properties appear underneath the column name specified in the Server Configuration program. (Note that the display filter level determines which properties are displayed.)

**Primary column properties**

These properties are used for column identification. They are entered once by either the column manufacturer or the user and cannot be changed.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BatchNumber</td>
<td>Batch or lot number of the column.</td>
</tr>
<tr>
<td>CustomId</td>
<td>You can enter any number you want, for example, the column’s inventory number. (Note: The number cannot be changed once it is entered.)</td>
</tr>
<tr>
<td>DateOfManufacture</td>
<td>Manufacturing date of the column.</td>
</tr>
<tr>
<td>ProductId</td>
<td>Product number of the column.</td>
</tr>
<tr>
<td>SerialNo</td>
<td>Serial number of the column.</td>
</tr>
</tbody>
</table>

**Secondary column properties**

The user can enter and later change the following properties if necessary:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveColumn</td>
<td>Set to Yes to have Chromelon update the information for the associated column. The name corresponds to the name entered on the Configuration tab page in the Server Configuration program.</td>
</tr>
<tr>
<td>CardState</td>
<td>Reports whether the memory card is present:</td>
</tr>
<tr>
<td></td>
<td><strong>NoChip</strong> The card is missing.</td>
</tr>
<tr>
<td></td>
<td><strong>DoorOpened</strong> The door is open. (The card is not writeable while the door is open.)</td>
</tr>
<tr>
<td></td>
<td><strong>UnknownFormat</strong> The card format is unknown.</td>
</tr>
<tr>
<td></td>
<td><strong>BusBlocked</strong> One of the cards is not inserted correctly. Thus, it may happen that another card is not readable although it is correctly.</td>
</tr>
<tr>
<td>DateOfExpiration</td>
<td>Expiration date of the column. If a date has been entered, the current date is compared with the expiration date during injection or at the beginning of batch processing. If the current date exceeds the expiration date or if batch processing starts less than 24 h before the expiration date, a warning appears once per batch.</td>
</tr>
<tr>
<td>Description</td>
<td>Column description.</td>
</tr>
</tbody>
</table>
### Property Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>Column diameter in [mm].</td>
</tr>
<tr>
<td>FormatChipCard</td>
<td>Select this command to format a chip card that contains invalid or corrupt data.</td>
</tr>
<tr>
<td>Injections_Limit</td>
<td>Maximum number of injections allowed for the column.</td>
</tr>
<tr>
<td>Length</td>
<td>Column length in [mm].</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Column manufacturer.</td>
</tr>
<tr>
<td>PackingMaterial</td>
<td>Packing material of the column.</td>
</tr>
<tr>
<td>ParticleSize</td>
<td>Particle size in [µm]</td>
</tr>
<tr>
<td>pH_LowerLimit</td>
<td>Upper and lower pH limits. If both limits are set to the same value, this means that no limit exists.</td>
</tr>
<tr>
<td>pH_UpperLimit</td>
<td>Note: These values are for information purposes only. The device driver cannot check the pH value.</td>
</tr>
<tr>
<td>Pressure_UpperLimit</td>
<td>If the column pressure exceeds the upper pressure limit, a warning appears.</td>
</tr>
<tr>
<td>Temp_LowerLimit</td>
<td>If the column temperature is above the upper temperature limit or below the lower temperature limit, a warning appears. If both limits are set to the same value (default: 25°C each), this means that no limit exists. (These values also apply to the inactive column.)</td>
</tr>
<tr>
<td>Temp_UpperLimit</td>
<td>Note: Accept the default (0.0) if you do not want to have the system check the pressure.</td>
</tr>
<tr>
<td>VoidVolume</td>
<td>The column's void volume in [µl]</td>
</tr>
</tbody>
</table>

### System properties

System properties are read-only and cannot be changed by the user. Chromeleon determines and updates the following properties during each injection:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DateOfFirstUse</td>
<td>Date of the first injection</td>
</tr>
<tr>
<td>DateOfLastUse</td>
<td>Date of the last injection</td>
</tr>
<tr>
<td>Injections.Counter</td>
<td>Number of injections</td>
</tr>
<tr>
<td>Pressure_Max</td>
<td>Maximum pressure measured while the column was in use</td>
</tr>
<tr>
<td>Temp_Min</td>
<td>Minimum temperature measured while the column was in the column compartment</td>
</tr>
<tr>
<td>Temp_Max</td>
<td>Maximum temperature measured while the column was in the column compartment</td>
</tr>
</tbody>
</table>
User properties

The user can change the following properties at any time:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Enter any text to describe the application.</td>
</tr>
<tr>
<td>Comment</td>
<td>Enter any comment text.</td>
</tr>
<tr>
<td>SystemPressure</td>
<td>Name of the device to be used for system pressure measurement.</td>
</tr>
</tbody>
</table>

For information about the special commands supported by the FLM-3x00, refer to Dionex FLM-3x00 Flow Manager and Thermostatted Column Compartment.

For information about the flow splitter commands and properties, refer to Dionex FLM-3x00: Flow Splitter Commands.

For information about the standard commands supported for the different column compartments, refer to Dionex Flow Manager and Thermostatted Column Compartments.

For information about how to install the flow manager, refer to Hardware Installation FLM-3x00 Flow Manager and Thermostatted Column Compartment: Overview in the Administrator Help section.

Dionex FLM-3x00: Flow Splitter Commands

The FLM-3x00 supports the following commands and properties for flow splitter control (please note that the display Filter level determines which commands and properties are displayed):

Note:

The name specified on the Components page in the Server Configuration program determines the name under which the flow splitter commands and properties appear in the Commands dialog box.
<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActualSplitRatio</td>
<td>Indicates the actual split ratio of the flow splitter. A value of 1000 means that a master flow of 100 µL/min will result in a nano flow of 100 nL/min.</td>
</tr>
<tr>
<td>CardState</td>
<td>Reports whether the flow splitter chip card is present</td>
</tr>
<tr>
<td></td>
<td>- NoChip: The card is missing.</td>
</tr>
<tr>
<td></td>
<td>- DoorOpened: The front panel door is open. (The card is not writeable while the door is open.)</td>
</tr>
<tr>
<td></td>
<td>- UnknownFormat: The card format is unknown.</td>
</tr>
<tr>
<td></td>
<td>- BusBlocked: One of the cards is not inserted correctly. Thus, it may happen that another card is not readable although it is correctly installed.</td>
</tr>
<tr>
<td>Description</td>
<td>Enter any user-specific comment text.</td>
</tr>
<tr>
<td>FSColPressDesired</td>
<td>Sets the desired pressure when FSControlMode is set to Pressure. For test purposes only.</td>
</tr>
<tr>
<td>FSControlMode</td>
<td>Sets the flow control operation mode. The standard operation mode is Auto. All other modes are for test purposes only.</td>
</tr>
<tr>
<td>FSFlowControllerStatus</td>
<td>Reports the flow control status (read-only). This includes the status of the flow sensor (see FSFlowSensorStatus) and the status of the flow splitter valve (see FSValveStatus).</td>
</tr>
<tr>
<td></td>
<td>- OK: The flow splitter is working correctly.</td>
</tr>
<tr>
<td></td>
<td>- PressureLow: The necessary pressure is not built up. This can be due to:</td>
</tr>
<tr>
<td></td>
<td>a) The flow delivered by the pump is too low.</td>
</tr>
<tr>
<td></td>
<td>--Or--</td>
</tr>
<tr>
<td></td>
<td>b) Pressure buildup is insufficient due to, e.g., leakage in the system.</td>
</tr>
<tr>
<td></td>
<td>Inspect the system for signs of leakage. Verify that the configuration settings match the actual system structure.</td>
</tr>
<tr>
<td></td>
<td>- PressureHigh: There is too much backpressure, for example, because a capillary or the column is blocked.</td>
</tr>
<tr>
<td></td>
<td>Perform a self-test for the valve.</td>
</tr>
<tr>
<td></td>
<td>Perform a cleaning cycle for the valve if necessary. Exchange the capillaries and/or column if necessary.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ValveFail</td>
<td>The flow control valve is malfunctioning. Check the valve and perform a cleaning cycle if necessary.</td>
</tr>
<tr>
<td>ValvePositionLimit</td>
<td>The flow control valve does not build up enough pressure. For remedial actions, refer to PressureLow and ValveFail.</td>
</tr>
<tr>
<td>FlowSensorFail</td>
<td>The flow sensor is malfunctioning. Turn the flow manager off and on.</td>
</tr>
<tr>
<td>RegulationError</td>
<td>The control accuracy is insufficient. In most cases, this is due to excessive pump pressure pulsation. Make sure that the pump works bubble-free. Check the valves if necessary.</td>
</tr>
<tr>
<td>FSFlowSensorStatus</td>
<td>Reports the status of the flow sensor (read-only): OK: The flow splitter is working correctly. SensorNotFound: The flow sensor is malfunctioning. TimeoutError: (The exact wording is important only for Dionex Service.) Turn the flow manager off and on. DataTransferError: DataIntervalError: InvalidData: DataFrameError:</td>
</tr>
<tr>
<td>FSValveInit</td>
<td>Resets the flow control actuator; can be used to recover from malfunction (for service purposes only).</td>
</tr>
<tr>
<td>FSValveStatus</td>
<td>Reports the status of the flow splitter valve (read-only): Init: The valve is initializing. OK: The valve is working correctly. OutOfRange: The flow splitter valve is malfunctioning. This error can correspond to the errors described in FSFlowControllerStatus. Refer to the section above for information about remedial actions. PressureLimit: This error is also reported as PressureLow and/or PressureHigh for the FSFlowControllerStatus property. Refer to the sections above for information about remedial actions. PositionLimit: This error is also reported as ValvePositionLimit for the FSFlowControllerStatus property. Refer to the sections above for information about remedial actions.</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>InitFlowControlSelfTest</td>
<td>Starting from zero, the flow control actuator runs a linear ramp with the specified step (StepRate; range 10-100 ms). The resulting course of the column pressure allows you to draw conclusions when an error or fault occurs.</td>
</tr>
<tr>
<td>ProductId</td>
<td>Indicates the product number of the flow splitter.</td>
</tr>
<tr>
<td>SerialNo</td>
<td>Indicates the serial number of the flow splitter.</td>
</tr>
</tbody>
</table>

For information about the special commands supported by the FLM-3x00, refer to Dionex FLM-3x00 Flow Manager and Thermostatted Column Compartment.

For information about the column ID properties, refer to Dionex FLM-3x00: Column ID Properties.

For information about how to install the flow manager, refer to Hardware Installation FLM-3x00 Flow Manager and Thermostatted Column Compartment: Overview in the Administrator Help section.
Dionex Detectors

In addition to the General Device Commands, Chromeleon supports the following standard commands for representing the recorded data. The commands are available for all detectors, even if they supply analog signals, for example, via the UCI Universal Chromatography Interface.

Standard Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcqOn/Off</td>
<td>Start/stop data acquisition.</td>
</tr>
<tr>
<td>Autozero</td>
<td>Automatic autozero.</td>
</tr>
<tr>
<td>AutoAutoscale</td>
<td>Axis/scaling adjustment.</td>
</tr>
<tr>
<td>Average</td>
<td>Average all measured values over the Step interval.</td>
</tr>
<tr>
<td>Delta</td>
<td>Indicates the signal's slope, that is, the difference between the current value and the value one second ago; this is useful for Triggers.</td>
</tr>
<tr>
<td>Lamp</td>
<td>Turns the lamp on or off.</td>
</tr>
<tr>
<td>MaxAutoStep</td>
<td>Sets the maximum step if Step = Auto.</td>
</tr>
<tr>
<td>Step</td>
<td>Step width adjustment</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Sets the wavelength.</td>
</tr>
</tbody>
</table>

For information about special commands and properties available for individual detectors, refer to:

- Dionex UVD 170/340 UV/PDA Detectors
- Dionex PDA-100 Photodiode Array Detector
- Dionex AD20/AD25 Absorbance Detectors
- Dionex UVD-3000 UV Detector
- Dionex/LC Packings UltiMate Capillary/Nano HPLC UV Detector
- Dionex RF2000 Fluorescence Detector
- Dionex CD Conductivity Detector
- Dionex ED Electrochemical Detector
Please note: The Shodex RI-101 Refractive Index Detector is available from Dionex as part of the Summit HPLC System; refer to Commands and Tips for Third-Party Devices Shodex RI-101 Refractive Index Detector.

**Dionex UVD 170/340 UV/PDA Detectors**

In addition to the standard commands available for all detectors (see Dionex Detectors), the UVD 170 and UVD 340 detectors support additional control commands (please note that the display Filter level determines which commands are displayed):

**Special Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>=&gt;Bandwidth</td>
<td>Sets the bandwidth of a UV-VIS channel.</td>
</tr>
<tr>
<td>=&gt;BunchWidth</td>
<td>For UVD 340U only: Averages photodiode signals for 3D field acquisition.</td>
</tr>
<tr>
<td>CheckWavelength</td>
<td>Checks wavelength calibration, using a Holmium-Oxide Filter.</td>
</tr>
<tr>
<td>=&gt;LampIntensity</td>
<td>States the lamp intensity at 254 nm in counts/seconds. The value can be</td>
</tr>
<tr>
<td></td>
<td>used as a comparison value to determine how much the lamp intensity decreased. This requires that the value be first measured when the lamp is new.</td>
</tr>
<tr>
<td>=&gt;RefWavelength</td>
<td>Sets the reference wavelength.</td>
</tr>
<tr>
<td>=&gt;RefBandwidth</td>
<td>Sets the reference bandwidth.</td>
</tr>
</tbody>
</table>

The Dionex UVD 170 and UVD 340 detectors can be completely controlled by Chromeleon, using the above commands. In addition, the following special commands are supported:

**Equilibration command and properties**

**Tip:**

*You should use the equilibration commands and properties only for the SmartStart feature.*
<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift</td>
<td>Reports the signal <a href="#">Drift</a>.</td>
</tr>
<tr>
<td><strong>UpperLimit</strong></td>
<td>Determine the upper limit for the drift in [mAU/h]. The upper limit can be any value between 0.8 and 20.0. The default setting is 3.0.</td>
</tr>
<tr>
<td><strong>Value</strong></td>
<td>(Read-only) Reports the actual value (usually, this value is averaged over the last 5 minutes.): At the beginning (i.e., after installation of the pump), the value field is empty, indicating that no measurement has been performed yet. Chromeleon calculates the value as soon as a 1-minute segment has been measured and updates the value with each new segment. The value of the property does not change after the measurement and displayed under <a href="#">Preconditions</a>.</td>
</tr>
<tr>
<td>DriftEquilibration</td>
<td>(Read-only) Reports drift whether equilibration was successful: <strong>Ok</strong> or <strong>NotOK</strong>.</td>
</tr>
<tr>
<td>DriftStatus</td>
<td>Reports the status of drift equilibration (read-only).</td>
</tr>
<tr>
<td><strong>N/A</strong></td>
<td>Equilibration was not yet performed.</td>
</tr>
<tr>
<td><strong>Measuring</strong></td>
<td>Equilibration is running but the amount of data is not yet sufficient to report a result.</td>
</tr>
<tr>
<td><strong>Good</strong></td>
<td>Equilibration is running or terminated. The values are within the specified limits.</td>
</tr>
<tr>
<td><strong>NotReady</strong></td>
<td>Equilibration is running. The current data is outside the specified limits.</td>
</tr>
<tr>
<td><strong>Failed</strong></td>
<td>Equilibration is completed. The result is outside the specified limits.</td>
</tr>
<tr>
<td><strong>NotTested</strong></td>
<td>The limit was set to 0, thus disabling ripple checking.</td>
</tr>
<tr>
<td>Equilibration</td>
<td>(Read-only) Reports the overall status of equilibration.</td>
</tr>
<tr>
<td>Noise</td>
<td>Reports the <a href="#">Signal Noise</a>.</td>
</tr>
<tr>
<td><strong>UpperLimit</strong></td>
<td>Determine the upper limit for the signal noise in [mAU]. The upper limit can be any value between 0.03 and 0.50. The default setting is 0.10.</td>
</tr>
<tr>
<td><strong>Value</strong></td>
<td>(Read-only) Reports the actual signal noise (usually, this value is averaged over 5 minutes. For more information, refer to Drift.Value above.)</td>
</tr>
<tr>
<td>NoiseEquilibration</td>
<td>(Read only) Reports whether noise equilibration was successful: <strong>Ok</strong> or <strong>NotOk</strong></td>
</tr>
<tr>
<td>NoiseStatus</td>
<td>(Read only) Reports the status of noise equilibration. For more information, refer to DriftStatus above.</td>
</tr>
</tbody>
</table>
### Special Commands for the Dionex UVD 170U/340U Detectors

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LampAge</td>
<td>Indicates the lamp age (in hours).</td>
</tr>
<tr>
<td>LampIgnitions</td>
<td>Indicates the number of lamp ignitions.</td>
</tr>
<tr>
<td>MinLampIntensity</td>
<td>Enter the value for the minimum lamp intensity. If the lamp intensity is below this value, a warning is written to the Audit Trail.</td>
</tr>
<tr>
<td>SnapshotGetSpectrum</td>
<td>For UVD 340U only: Stores the current spectrum in a text file.</td>
</tr>
<tr>
<td>SnapshotResolution</td>
<td>For UVD 340U only: Defines the wavelength resolution for a UV spectrum that is recorded using the <strong>SnapshotGetSpectrum</strong> command. (Range: 0.1 to 20.0 nm).</td>
</tr>
<tr>
<td>SnapshotDirPath</td>
<td>For UVD 340U only: Defines the destination directory for a UV spectrum that is recorded using the <strong>SnapshotGetSpectrum</strong> command.</td>
</tr>
<tr>
<td>SnapshotGetBLSpectrum</td>
<td>For UVD 340U only: Saves the current spectrum as baseline spectrum. The baseline spectrum is always subtracted from the spectrum recorded with the <strong>SnapshotGetSpectrum</strong> command.</td>
</tr>
<tr>
<td>SnapshotClearBLSpectrum</td>
<td>For UVD 340U only: Clears the buffer for baseline spectrum that was recorded using the <strong>SnapshotGetBLSpectrum</strong> command.</td>
</tr>
</tbody>
</table>

**Note:**

Using a registry key, you can define a voltage offset (in millivolt) on the 16-bit DAC card for the analog output of the Dionex UVD 170/340 detector signal. The offset values for all 16-bit DAC channels of the CM server are identical.

Enter the respective offset in millivolt into the registry key:

**Example for 100 millivolt (hexadecimal entry):**

```
[HKEY_LOCAL_MACHINE\Software\Dionex\Chromeleon\drivers\UVD340]
"DAC Offset"=dword:00000064
```

The **Administrator Help** section provides information about how to install the UVD 170 or UVD 340 detector; refer to **Hardware Installation**.

**UVD 170S and UVD 340S HPLC Detectors: Overview**

**UVD 170U and UVD 340U HPLC Detectors: Overview**
Dionex PDA-100 Photodiode Array Detectors

In addition to the standard commands available for all detectors (see Dionex Detectors), the PDA-100 detector provides the additional control commands (please note that the display Filter level determines which commands are displayed):

### UV_VIS Channel Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Rightarrow$ Bandwidth</td>
<td>Sets the bandwidth (the wavelength range at which the chromatogram is measured).</td>
</tr>
<tr>
<td>$\Rightarrow$ Offset Level</td>
<td>Sets the offset for the analog output signal.</td>
</tr>
<tr>
<td>$\Rightarrow$ Recorder Range</td>
<td>Sets the range of a full-scale recorder response (analog output).</td>
</tr>
<tr>
<td>$\Rightarrow$ RefBandwidth</td>
<td>Sets the bandwidth of the reference wavelength (if one is selected). If RefWavelength is Off, the RefBandwidth setting has no effect.</td>
</tr>
<tr>
<td>$\Rightarrow$ RefWavelength</td>
<td>Sets the reference wavelength.</td>
</tr>
</tbody>
</table>

### 3DFIELD Channel Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Rightarrow$ BunchWidth</td>
<td>Determines how many nanometers are averaged when collecting 3D data. Bunching (averaging) the signals of adjacent wavelengths reduces the size of the 3D data stored.</td>
</tr>
<tr>
<td>MaxWavelength</td>
<td>Sets the maximum wavelength of the 3D field.</td>
</tr>
<tr>
<td>MinWavelength</td>
<td>Sets the minimum wavelength of the 3D field.</td>
</tr>
<tr>
<td>RefBandwidth</td>
<td>Sets the bandwidth of the reference wavelength (if one is selected). If RefWavelength is Off, the RefBandwidth setting has no effect.</td>
</tr>
<tr>
<td>RefWavelength</td>
<td>Sets the reference wavelength.</td>
</tr>
</tbody>
</table>

### Other Special Detector Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmbientTemp</td>
<td>Reports the temperature outside the optical assembly.</td>
</tr>
<tr>
<td>AZ_Done</td>
<td>Reports the status of an autozero command (Busy or Done).</td>
</tr>
<tr>
<td>$\Rightarrow$ Data_Collection_Rate</td>
<td>Sets the rate at which Chromeleon collects digital data points from the detector.</td>
</tr>
<tr>
<td>$\Rightarrow$ LampIntensity</td>
<td>Reports the deuterium lamp's intensity at 254 nm in counts/second.</td>
</tr>
<tr>
<td>ModuleAge</td>
<td>Reports (or resets) the number of hours the module has been on.</td>
</tr>
</tbody>
</table>
### Commands for Controlling Dionex Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NegativeAbsorptionLevel</td>
<td>Sets the amount of increased light transmission from autozero (negative absorption) to which the detector responds. This permits peaks to be seen even when the eluent decreases absorbance.</td>
</tr>
<tr>
<td>OpticalBenchTemp</td>
<td>Reports the temperature of the optical bench.</td>
</tr>
<tr>
<td>Rise_Time</td>
<td>Sets how quickly the detector responds to a change in signal.</td>
</tr>
<tr>
<td>TTL_Input_Mode</td>
<td>Sets the TTL input signal mode.</td>
</tr>
<tr>
<td>UV_Lamp</td>
<td>Turns the deuterium lamp on and off.</td>
</tr>
<tr>
<td>UVLampAge</td>
<td>Reports (or resets) the number of hours the deuterium lamp has been on.</td>
</tr>
<tr>
<td>UVLampPowerOnSetting</td>
<td>Selects whether the deuterium lamp is turned on when the device power is turned on. The default setting is On.</td>
</tr>
<tr>
<td>Visible_Lamp</td>
<td>Turns the tungsten lamp on and off.</td>
</tr>
<tr>
<td>VisLampAge</td>
<td>Reports (or resets) the number of hours the tungsten lamp has been on.</td>
</tr>
<tr>
<td>VisLampIntensity</td>
<td>Reports the tungsten lamp's intensity at 520 nm. Reported in counts per second.</td>
</tr>
<tr>
<td>VisLampPowerOnSetting</td>
<td>Selects whether the tungsten lamp is turned on when the device power is turned on. The default setting is On.</td>
</tr>
</tbody>
</table>

### UV Calibration Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DownloadCalibration</td>
<td>Downloads the selected set of calibration values to the detector.</td>
</tr>
<tr>
<td>DownloadCalibration Parameter</td>
<td>Selects the set of calibration values (Current, Previous, or Factory) to be downloaded.</td>
</tr>
<tr>
<td>FilterWheel</td>
<td>Calibrates the filter wheel (not applicable to the USB model of the PDA-100).</td>
</tr>
<tr>
<td>Intensity</td>
<td>Calibrates the intensity of the deuterium lamp.</td>
</tr>
<tr>
<td>LeakDet</td>
<td>Performs the leak detector calibration (not applicable to the USB model of the PDA-100).</td>
</tr>
<tr>
<td>WavelengthCal</td>
<td>Performs a wavelength calibration.</td>
</tr>
<tr>
<td>WavelengthCalDate</td>
<td>Reports the date of the wavelength calibration.</td>
</tr>
<tr>
<td>WavelengthCalResult</td>
<td>Reports the result (pass or fail) of the wavelength calibration.</td>
</tr>
</tbody>
</table>

### UV Diagnostic Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeakDetTest</td>
<td>Performs a test of the leak detector (not applicable to the USB model of the PDA-100).</td>
</tr>
<tr>
<td>LeakDetTestDate</td>
<td>Reports the date of the leak detector test.</td>
</tr>
<tr>
<td>LeakDetTestResult</td>
<td>Reports the result (pass or fail) of the leak detector test.</td>
</tr>
</tbody>
</table>
Commands for Controlling Dionex Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WavelengthVerTest</td>
<td>Performs wavelength verification via the Holmium Oxide Filter.</td>
</tr>
<tr>
<td>WavelengthVerTestDate</td>
<td>Reports the date of the wavelength verification.</td>
</tr>
<tr>
<td>WavelengthVerTestResult</td>
<td>Reports the result (pass or fail) of the wavelength verification.</td>
</tr>
</tbody>
</table>

For information about how to install the detector, refer to Hardware Installation PDA-100 (DX-LAN) Detector: Overview or PDA-100 (USB) Detector: Overview in the Administrator Help section.

Dionex AD20/AD25 Absorbance Detectors

In addition to the standard commands available for all detectors (see Dionex Detectors), Dionex absorbance detectors provide the following commands (please note that the display Filter level determines which commands and properties are displayed):

Special Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Data_Collection_Rate</td>
<td>Sets the rate at which Chromeleon collects digital data points from the detector.</td>
</tr>
<tr>
<td>➤ Rise_Time</td>
<td>Sets how quickly the detector responds to a change in signal.</td>
</tr>
<tr>
<td>➤ UV_Cutover</td>
<td>For AD20 only: Sets the wavelength above which the second order filter is inserted in the light path. Typically, the UV cutover wavelength is 380nm.</td>
</tr>
<tr>
<td>➤ UV_Lamp</td>
<td>Turns the deuterium lamp to Off, Low, or High (AD20 detector), or Off or On (AD25 detector).</td>
</tr>
<tr>
<td>➤ Visible_Lamp</td>
<td>Turns the tungsten lamp to Off, Low, or High (AD20 detector), or Off or On (AD25 detector).</td>
</tr>
<tr>
<td>➤ Wavelength</td>
<td>Sets the wavelength.</td>
</tr>
</tbody>
</table>

Analog Output Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Full_Scale</td>
<td>For AD20 only: Sets the full-scale analog out voltage.</td>
</tr>
<tr>
<td>➤ Mark</td>
<td>Sends a positive pulse to the detector’s analog output as an event marker.</td>
</tr>
<tr>
<td>➤ Offset_Level</td>
<td>Sets the offset for the analog output signal.</td>
</tr>
<tr>
<td>➤ Polarity</td>
<td>Switches the analog output polarity (+/-).</td>
</tr>
<tr>
<td>➤ Recorder_Calibration</td>
<td>For AD25 only: Allows calibration of the recorder’s response to three detector analog output settings (AU, Zero, Full_Scale)</td>
</tr>
<tr>
<td>➤ Recorder_Range</td>
<td>Sets the range of a full-scale recorder response.</td>
</tr>
</tbody>
</table>
### UV Calibration Commands (For AD25 Only)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DownloadCalibration</td>
<td>Downloads the selected set of calibration values to the detector.</td>
</tr>
<tr>
<td>DownloadCalibration Parameter</td>
<td>Selects the set of calibration values (Current, Previous, or Factory) to be downloaded.</td>
</tr>
<tr>
<td>LeakDet</td>
<td>Performs the leak detector calibration.</td>
</tr>
<tr>
<td>WavelengthCal</td>
<td>Performs a wavelength calibration.</td>
</tr>
<tr>
<td>WavelengthCalDate</td>
<td>Reports the date of the wavelength calibration.</td>
</tr>
<tr>
<td>WavelengthCalResult</td>
<td>Reports the result (pass or fail) of the wavelength calibration.</td>
</tr>
</tbody>
</table>

### UV Diagnostic Commands (For AD25 Only)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeakDetTest</td>
<td>Performs a test of the leak detector.</td>
</tr>
<tr>
<td>LeakDetTestDate</td>
<td>Reports the date of the leak detector test.</td>
</tr>
<tr>
<td>LeakDetTestResult</td>
<td>Reports the result (pass or fail) of the leak detector test.</td>
</tr>
<tr>
<td>WavelengthVerTest</td>
<td>Performs a wavelength verification via the ✶Holmium Oxide Filter.</td>
</tr>
<tr>
<td>WavelengthVerTestDate</td>
<td>Reports the date of the wavelength verification.</td>
</tr>
<tr>
<td>WavelengthVerTestResult</td>
<td>Reports the result (pass or fail) of the wavelength verification.</td>
</tr>
</tbody>
</table>
## Dionex UVD-3000 UV Detector

In addition to the standard commands available for all detectors (see [Dionex Detectors](#)), the UVD-3000 detector provides the following control commands (please note that the display ➤Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust_Calibration</td>
<td>Performs wavelength calibration by using an internal test.</td>
</tr>
<tr>
<td>Tip:</td>
<td>The command stops the data acquisition.</td>
</tr>
<tr>
<td>AnalogOffset1</td>
<td>Sets the offset voltage for analog output 1.</td>
</tr>
<tr>
<td>AnalogOffset2</td>
<td>Sets the offset voltage for analog output 2.</td>
</tr>
<tr>
<td>AnalogScale</td>
<td>Sets the sensitivity of the analog outputs.</td>
</tr>
<tr>
<td>➤Autozero</td>
<td>Performs automatic null balancing.</td>
</tr>
<tr>
<td>Tip:</td>
<td>Use this command only before you start data acquisition. For null balancing whenever the wavelength is changed in the program, use AutozeroOnWlChange = On. Use AutozeroOnWlChange = Off to cancel null balancing. Use:</td>
</tr>
<tr>
<td></td>
<td>AutozeroOnWlChange = On</td>
</tr>
<tr>
<td></td>
<td>UV_VIS_1 = 300</td>
</tr>
<tr>
<td></td>
<td>(not: AutozeroOnWlChange = Off)</td>
</tr>
<tr>
<td></td>
<td>UV_VIS_1 = 300</td>
</tr>
<tr>
<td></td>
<td>Autozero)</td>
</tr>
<tr>
<td>AutozeroOnWlChange</td>
<td>When set to On, automatic null balancing is performed whenever the wavelength is changed.</td>
</tr>
<tr>
<td>➤Data_Collection_Rate</td>
<td>Enter the rate at which Chromeleon collects digital data from the detector.</td>
</tr>
<tr>
<td>DemoFileName</td>
<td>Name of the file that is read in the ➤Demo Mode.</td>
</tr>
<tr>
<td>GetDiodeReading</td>
<td>Determines the values for SignalDiode and ReferenceDiode.</td>
</tr>
<tr>
<td>LampType</td>
<td>Indicates the lamp type (read-only).</td>
</tr>
<tr>
<td>ReferenceDiode</td>
<td>Indicates the brightness of the reference signal.</td>
</tr>
<tr>
<td>Response</td>
<td>Time constant. This is the time the detector requires for rising from 10% to 90% in response to a signal step. The constant is used for noise suppression (values: 0.1; 0.2; 0.5; 1; 2; 5, or 10s)</td>
</tr>
<tr>
<td>Tip:</td>
<td>Most noise is suppressed if the Response is 10s. However, for the acquisition of narrow peaks a lower time response will be more appropriate.</td>
</tr>
<tr>
<td>SignalDiode</td>
<td>Indicates the brightness of the measured signal.</td>
</tr>
</tbody>
</table>
**Tip:**

If you perform the >Data Collection Rate command, the default ⇒Step value is set to the reciprocal value. That is why you have to perform the Step command after the Data Collection Rate command if you need a different step.

The **UV_Diagnostic** section provides information about detector operation and service. The entries are read-only:

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LampAge</td>
<td>Reports the total operating hours of the lamp.</td>
</tr>
<tr>
<td>LampIgnitions</td>
<td>Reports the number of lamp starts.</td>
</tr>
<tr>
<td>LampNumber</td>
<td>Indicates the lamp number. (The value is incremented when a new lamp is installed.)</td>
</tr>
<tr>
<td>LampOnTime</td>
<td>Reports how many hours the lamp has been burning since it was turned on.</td>
</tr>
<tr>
<td>LastServiceDate</td>
<td>Reports when the detector was last serviced. (The Dionex Service Engineer enters the date.)</td>
</tr>
<tr>
<td>LastServiceCode</td>
<td>Reports the service code, providing information about the service. (The Dionex Service Engineer sets the code.)</td>
</tr>
<tr>
<td>ManufacturingDate</td>
<td>Reports the detector manufacturing date.</td>
</tr>
<tr>
<td>MotorWorkTime</td>
<td>Reports the total operating hours of the motor.</td>
</tr>
</tbody>
</table>

For information about how to install the detector, refer to **Hardware Installation** 😎**UVD-3000 UV Detector: Overview** in the **Administrator Help** section.
Dionex/LC Packings UltiMate Capillary/Nano HPLC UV Detectors

In addition to the standard commands available for all detectors (see Dionex Detectors), the UltiMate detector provides the following control commands (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust_Calibration</td>
<td>Performs wavelength calibration by using an internal test.</td>
</tr>
<tr>
<td></td>
<td><strong>Tip:</strong> The command stops the data acquisition.</td>
</tr>
<tr>
<td>Data_Collection_Rate</td>
<td>Enter the rate at which Chromeleon collects digital data from the detector.</td>
</tr>
<tr>
<td>DemoFileName</td>
<td>Name of the file that is read in the Demo Mode.</td>
</tr>
<tr>
<td>LampType</td>
<td>Indicates the lamp type: Deuterium or Tungsten (read-only).</td>
</tr>
<tr>
<td>TimeConstant</td>
<td>Time constant. This is the time the detector requires for rising from 10% to 90% in response to a signal step. The constant is used for noise suppression (values: 0.1; 0.2; 0.5; 1; 2; 5, or 10s)</td>
</tr>
<tr>
<td></td>
<td><strong>Tip:</strong> Most noise is suppressed if the Response is 10s. However, for the acquisition of narrow peaks a lower response will be more appropriate.</td>
</tr>
</tbody>
</table>

**Tip:**

If you perform the Data Collection Rate command, the default Step value is set to the reciprocal value. That is why you have to perform the Step command after the Data Collection Rate command if you need a different step.

The UV_Diagnostic section provides information about the detector operation and service. The entries are read-only:

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LampAge</td>
<td>Reports the total operating hours of the lamp.</td>
</tr>
<tr>
<td>LampIgnitions</td>
<td>Reports the number of lamp starts.</td>
</tr>
<tr>
<td>LampNumber</td>
<td>Indicates the lamp number. (The value is incremented when a new lamp is installed.)</td>
</tr>
<tr>
<td>LampOnTime</td>
<td>Reports how many hours the lamp has been burning since it was turned on.</td>
</tr>
</tbody>
</table>
### Dionex RF2000 Fluorescence Detector

In addition to the commands available for various detector types, such as Step, Average, Autozero (see Dionex Detectors), controllable fluorescence detectors allow you to modify the Emission and Excitation wavelengths.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤Emission</td>
<td>Modifies the measuring wavelength.</td>
</tr>
<tr>
<td>➤Excitation</td>
<td>Modifies the excitation wavelength.</td>
</tr>
</tbody>
</table>

In addition, the RF2000 detector supports the Scan mode for recording emission and excitation spectra. For a PGM File example, refer to Practical Tips for Device Control Determining the Optimum Emission Wavelength (RF2000).

For information about the following RF2000 commands, refer to Dionex RF2000 Fluorescence Detector:

- ![Excitation Wavelength](image)
- ![Emission Wavelength](image)
- ![Gain](image)
- ![Response](image)
- ![Sensitivity](image)
- ![Scanning](image)
ScanStart and ScanEnd Wavelengths
ScanSpeed
ScanWithAnalogOutput

For information about how to install the Dionex RF2000 Fluorescence Detector, refer to Hardware Installation RF2000 Fluorescence Detector: Overview in the Administrator Help section.
The Administrator Help section provides information about the pin assignment of the RF2000 cable; refer to RF2000 RS Cable in the Appendix of the Hardware Installation section.

Dionex RF2000 Fluorescence Detector: Excitation Wavelength

Use the Excitation parameter to determine the excitation wavelength of the fluorescence detector. This is the wavelength required to induce a specific substance to fluoresce.
To be able to measure the light emitted by the substance, set the fluorescence detector exactly to this wavelength, using the Emission parameter.

Dionex RF2000 Fluorescence Detector: Emission Wavelength

To be able to measure the light emitted by the substance, set the fluorescence detector exactly to the corresponding wavelength, using the Emission parameter.
To set the wavelength required for excitation, use the Excitation parameter.
**Dionex RF2000 Fluorescence Detector: Gain**

Use the Gain signal parameter to determine the factor by which the analog output signal of the RF2000 fluorescence spectrometer is increased or decreased. Thus, the Gain parameter corresponds to the Range parameter that is supported for other detector types.

**Note:**
The UCI Universal Chromatography Interface ranges from -10V to +10V and thus covers virtually all detector output signals. It is possible to record signals directly, without considering the Gain parameter. If size adjustment is necessary anyway, adjust the size, using the Factor parameter of the signal configuration. (Select the Signals tab page of the fluorescence detector properties in the Server Configuration program).

**Dionex RF2000 Fluorescence Detector: Response**

Response refers to the time the detector requires to reach 98% of the full-scale deflection.

The larger the chosen time interval is, the better is the Signal-to-Noise Ratio, but the lower is the resolution.

**Dionex RF2000 Fluorescence Detector: Sensitivity**

Use the Sensitivity parameter to determine the detector sensitivity. The detector sensitivity increases with a higher Sensitivity value. However, increasing the Sensitivity value also increases the noise; that is, the Signal-to-Noise Ratio decreases.

The RF2000 fluorescence detector supports the following values: LOW, MED, and HIGH.

The actual sensitivity results from the product of the Sensitivity (LOW = 1, MED = 32, HIGH = 1024) and the Gain (1/4/16).
Dionex RF2000 Fluorescence Detector: Scanning

Scanning indicates that the detector is currently in the Scan Mode. The Scan Mode functionality determines optimum values for the \textit{Excitation} and the \textit{Emission} wavelengths. However, determination is not simultaneous. The procedure is described below for the emission wavelength as an example. For a corresponding \textit{Program}, refer to \textit{Practical Tips for Device ControlDetermining the Optimum Emission Wavelength (RF2000)}.

**Scanning**

- Stop the pump flow via the \texttt{Flow = 0} command.
- Execute the \texttt{ScanEmission} command.

The duration of the Scan procedure depends on the wavelength range to be scanned (\textit{Start and End Wavelengths}) and on the scan speed (see \textit{Dionex RF2000 Fluorescence Detector: ScanSpeed}). You can add an LED or a color box to the \textit{Control Panel} to optically indicate whether the detector is scanning.

After completing the actual scan process, the resulting spectrum is saved in the instrument and overwritten with each new recording. To retain the data, Chromeleon saves each scan spectrum automatically to the local datasource. A \textit{Spectra Library} named RF2000 is created in the sequence directory of the associated \textit{Timebase}.

Depending on when the pump flow is stopped and when the scan procedure was started, either a background spectrum or the spectrum of a peak is saved.

- Determine an optimum excitation wavelength (excitation value) in the same way.

\textit{Tip:}

\textit{While the RF2000 Fluorescence Detector is performing a scan operation, it cannot receive any other commands. It is not possible to interrupt the scanning process.}
How to form a difference spectrum
To receive a difference spectrum (current spectrum minus background spectrum):

- Record a background spectrum as described above.
- Use the **Save Background Spectrum** command to save this spectrum also as a separate spectrum in the detector.
- Reset the pump flow to the original value, using the **Flow= ...** command. Continue until the maximum of the peak to be detected is reached.
- Stop the pump flow and record a new spectrum.

The two spectra now exist both in the RF2000 spectra library and as individual spectra that are stored in two different locations in the detector.
- Execute the **GetSpectraDifference** command to receive a difference spectrum.

The detector behaves in the same way as if a Scan procedure has been started. The result of the difference formation is also saved to the RF2000 spectra library. This spectrum indicates the optimum emission or excitation value.

**Tip:**
*The basic requirement for forming difference spectra is that the wavelength range defined by the start wavelength and the end wavelength corresponds to the spectra type (Excitation or Emission).*

**Dionex RF2000 Fluorescence Detector: (Scan)Start and End Wavelengths**

Use the **(Scan)Start** parameter to determine the lower limit of the wavelength range to be scanned. Use the **(Scan)End** parameter to determine the upper limit of range. To set the speed with which the range is scanned, use the **ScanSpeed** parameter (see **Dionex RF2000 Fluorescence Detector: ScanSpeed**).

For more information about the Scan procedure, refer to **Dionex RF2000 Fluorescence Detector: Scanning**.
Dionex RF2000 Fluorescence Detector: ScanSpeed

Use the ScanSpeed parameter to determine the speed with which the determined wavelength range is scanned. The range is defined by the start and end wavelengths (see Dionex RF2000 Fluorescence Detector: (Scan)Start and End Wavelengths).

The following settings are available:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Scan Speed</th>
<th>Required time from 200 to 900 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>(24 nm/min)</td>
<td>1900 sec.</td>
</tr>
<tr>
<td>Medium</td>
<td>(120 nm/min)</td>
<td>370 sec.</td>
</tr>
<tr>
<td>Fast (default)</td>
<td>(600 nm/min)</td>
<td>85 sec.</td>
</tr>
<tr>
<td>Super</td>
<td>(3000 nm/min)</td>
<td>25 sec.</td>
</tr>
</tbody>
</table>

Tip:

While the RF2000 Fluorescence Detector is performing a scan operation, it cannot receive any other commands. It is not possible to interrupt the scanning process.

For more information about the scanning process, refer to Dionex RF2000 Fluorescence Detector: Scanning.

Dionex RF2000 Fluorescence Detector: Scan With Analog Output

Enable Scan With Analog Output to display the scanned spectrum at the integrator or recorder output. On the instrument’s rear panel, these outputs are labeled as follows: INTEG.1V and REC. 10mV or REC. 1mV.

In addition to the standard commands available for all detectors (see Dionex Detectors), Dionex electrochemical detectors provide special commands (see the table below; please note that the display Filter level determines which commands are displayed).

The Data_Collection_Rate command and the analog output commands are available for all Dionex electrochemical detectors in any operating mode.

The Mode command is available only for the ED40/ED50/ED50A detectors. Other special commands depend on the selected operating mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data_Collection_Rate</td>
<td>Sets the rate at which Chromeleon collects digital data points from the detector.</td>
</tr>
<tr>
<td>Mode</td>
<td>(Available only for the ED40/ED50/ED50A) Select the operating mode: conductivity, integrated amperometry, or DC amperometry.</td>
</tr>
</tbody>
</table>

Analog Output Commands (All Modes)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full_Scale</td>
<td>Sets the full-scale analog out voltage.</td>
</tr>
<tr>
<td>Mark</td>
<td>Sends a positive pulse to the detector’s analog output as an event marker.全.symbol</td>
</tr>
<tr>
<td>Offset_Level</td>
<td>Sets the offset for the analog output signal.</td>
</tr>
<tr>
<td>Polarity</td>
<td>Switches the analog output polarity (+/-).</td>
</tr>
<tr>
<td>Recorder_Range</td>
<td>Sets the range of a full-scale recorder response.</td>
</tr>
<tr>
<td>Rise_Time</td>
<td>Sets how quickly the detector responds to a change in signal.</td>
</tr>
</tbody>
</table>
## Special Commands (Conductivity Mode)

The following commands are available for conductivity detectors (CD20/CD25/CD25A, ED40/ED50/ED50A, or IC20/IC25/IC25A):

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS3_Temperature</td>
<td>Sets the DS3 temperature.</td>
</tr>
<tr>
<td>SRS_Current</td>
<td>For CD20/CD25, ED40/ED50, IC20/IC25 only: Sets the current supplied to the SRS.</td>
</tr>
<tr>
<td>Suppressor_Current</td>
<td>For CD25A, ED50A, and IC25A only: Sets the current supplied to the suppressor.</td>
</tr>
<tr>
<td>Suppressor_Type</td>
<td>For CD25A, ED50A, and IC25A only: Sets the installed suppressor.</td>
</tr>
<tr>
<td>Temperature_Compensation</td>
<td>Sets the temperature compensation factor, which is used to stabilize conductivity readings.</td>
</tr>
</tbody>
</table>

## Special Commands (DC Amperometry Mode)

The following commands are available for the ED40/ED50/ED50A detectors in DC amperometry mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>Turns the cell on and off.</td>
</tr>
<tr>
<td>DC_Voltage</td>
<td>Sets the voltage applied to the cell.</td>
</tr>
<tr>
<td>Electrode</td>
<td>Select the type of electrode installed.</td>
</tr>
</tbody>
</table>

## Special Commands (Integrated Amperometry Mode)

The following commands are available for the ED40/ED50/ED50A detectors in integrated amperometry mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>Turns the cell on and off.</td>
</tr>
<tr>
<td>Electrode</td>
<td>Select the reference electrode type.</td>
</tr>
<tr>
<td>Waveform</td>
<td>Define a waveform (a plot of potential vs. time).</td>
</tr>
</tbody>
</table>
Calibration Commands (For CD25A, ED50A, and IC25A Only)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeakDet</td>
<td>Performs the leak detector calibration.</td>
</tr>
<tr>
<td>CondCell</td>
<td>Performs the conductivity cell calibration</td>
</tr>
<tr>
<td>DownloadCalibration</td>
<td>Downloads the selected set of calibration values to the detector.</td>
</tr>
<tr>
<td>DownloadCalibrationParameter</td>
<td>Selects the set of calibration values (Current, Previous, or Factory) to be downloaded.</td>
</tr>
</tbody>
</table>

Diagnostic Commands (For CD25A, ED50A, and IC25A Only)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeakDetTest</td>
<td>Performs a test of the leak detector.</td>
</tr>
<tr>
<td>LeakDetTestDate</td>
<td>Reports the date of the leak detector test.</td>
</tr>
<tr>
<td>LeakDetTestResult</td>
<td>Reports the result (pass or fail) of the leak detector test.</td>
</tr>
</tbody>
</table>
Dionex CD Conductivity Detector

In addition to the standard commands available for all detectors (see Dionex Detectors), the CD provides special commands (see the table below; please note that the display Filter level determines which commands are displayed).

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤DataCollectionRate</td>
<td>Sets the rate at which Chromeleon collects digital data points from the detector.</td>
</tr>
<tr>
<td>FlowStatus</td>
<td>Reports the status of the flow sensor (flow detected or flow not detected).</td>
</tr>
<tr>
<td>PressureStatus</td>
<td>Reports the status of the pressure sensor (over pressure or not over pressure).</td>
</tr>
<tr>
<td>➤Rise_Time</td>
<td>Sets how quickly the detector responds to a change in signal.</td>
</tr>
<tr>
<td>Suppressor_Current</td>
<td>Reports the actual suppressor current.</td>
</tr>
<tr>
<td>Suppressor_CurrentSet</td>
<td>Sets the current supplied to the suppressor and turns on the suppressor (Suppressor_Mode=On)</td>
</tr>
<tr>
<td>Suppressor_Mode</td>
<td>Turns the suppressor on and off.</td>
</tr>
<tr>
<td>Suppressor_Type</td>
<td>Sets the installed ➤Suppressor type.</td>
</tr>
<tr>
<td>Suppressor_Voltage</td>
<td>Reports the suppressor voltage.</td>
</tr>
<tr>
<td>➤Temperature_Compensation</td>
<td>Sets the temperature compensation factor, which is used to stabilize conductivity readings.</td>
</tr>
</tbody>
</table>

Cell Heater Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Selects whether the cell heater is on or off.</td>
</tr>
<tr>
<td>Status</td>
<td>Reports whether the cell heater is under the set temperature, at the set temperature, or over the set temperature.</td>
</tr>
<tr>
<td>TemperatureActual</td>
<td>Reports the actual temperature.</td>
</tr>
<tr>
<td>TemperatureSet</td>
<td>Sets the temperature of the cell heater.</td>
</tr>
<tr>
<td>TemperatureState</td>
<td>Reports the state of the cell heater (Ready or NotReady)</td>
</tr>
</tbody>
</table>

Analog Output Commands (Available only if I/O option is installed)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤Full_Scale</td>
<td>Sets the full-scale analog out voltage.</td>
</tr>
<tr>
<td>➤Mark</td>
<td>Sends a positive pulse to the detector’s analog output as an event marker.</td>
</tr>
<tr>
<td>➤Offset_Level</td>
<td>Sets the offset for the analog output signal.</td>
</tr>
</tbody>
</table>
828 Commands for Controlling Dionex Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarity</td>
<td>Switches the analog output polarity (+/-).</td>
</tr>
<tr>
<td>Recorder_Calibration</td>
<td>Calibrates a recording device.</td>
</tr>
<tr>
<td>Zero</td>
<td>sets the output signal to zero volts.</td>
</tr>
<tr>
<td>Full Scale</td>
<td>sets the output signal to the selected full-scale voltage (10, 100, or 1000 mV).</td>
</tr>
<tr>
<td>Normal</td>
<td>(the default) outputs a signal corresponding to the detector output.</td>
</tr>
<tr>
<td>Recorder_Range</td>
<td>Sets the range of a full-scale recorder response.</td>
</tr>
</tbody>
</table>

Dionex ED Electrochemical Detector

In addition to the standard commands available for all detectors (see Dionex Detectors), the ED provides special commands (see the table below; please note that the display Filter level determines which commands are displayed).

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CellControl</td>
<td>Turns the cell on and off, or turns the dummy cell on and off.</td>
</tr>
<tr>
<td>CellStatus</td>
<td>Reports whether the cell is connected or disconnected.</td>
</tr>
<tr>
<td>DataCollectionRate</td>
<td>Sets the rate at which Chromeleon collects digital data points from the detector.</td>
</tr>
<tr>
<td>DC_Voltage</td>
<td>Sets the voltage applied to the cell.</td>
</tr>
<tr>
<td>Electrode</td>
<td>Select the reference electrode type (AgCl or pH).</td>
</tr>
<tr>
<td>ElectrodeStatus</td>
<td>Reports whether the electrode is connected or disconnected.</td>
</tr>
<tr>
<td>pH</td>
<td>Reports the current pH</td>
</tr>
<tr>
<td>pHAtTime0</td>
<td>Reports the pH at the start of acquisition.</td>
</tr>
<tr>
<td>pH.LowerLimit</td>
<td>Sets the lower limit for pH. An error is reported in the Audit Trail if the pH is lower than this value at the start of acquisition.</td>
</tr>
<tr>
<td>pH.UpperLimit</td>
<td>Sets the upper limit for pH. An error is reported in the Audit Trail if the pH is higher than this value at the start of acquisition.</td>
</tr>
<tr>
<td>Mode</td>
<td>Select the operating mode: IntAmp (integrated amperometry), DC Amp (DC amperometry), or Cyclic (cyclic voltammetry).</td>
</tr>
<tr>
<td>Rise_Time</td>
<td>Sets how quickly the detector responds to a change in signal.</td>
</tr>
<tr>
<td>Waveform</td>
<td>Define a waveform (a plot of potential vs. time).</td>
</tr>
</tbody>
</table>
Commands for Cyclic Voltammetry (for the 3D_Amp Channel)

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV_CycleTime</td>
<td>Sets the time in seconds for one CV cycle, which is the time it takes to go from the CV Low Voltage to the CV High Voltage and then back to the CV Low Voltage. This creates a triangle ( \text{Waveform} ).</td>
</tr>
<tr>
<td>CV_LoVoltage</td>
<td>Sets the lowest voltage to be applied during the CV cycle. This voltage begins and ends the cycle.</td>
</tr>
<tr>
<td>CV_HiVoltage</td>
<td>Sets the highest voltage to be applied during the CV cycle. This is the peak of the triangle waveform.</td>
</tr>
<tr>
<td>CV_Cycles</td>
<td>Sets the number of times to repeat the CV cycle.</td>
</tr>
<tr>
<td>StartCV</td>
<td>Starts the CV run.</td>
</tr>
</tbody>
</table>

Analog Output Commands (Available only if I/O option is installed)

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢Full_Scale</td>
<td>Sets the full-scale analog out voltage.</td>
</tr>
<tr>
<td>➢Mark</td>
<td>Sends a positive pulse to the detector’s analog output as an event marker.</td>
</tr>
<tr>
<td>➢Offset_Level</td>
<td>Sets the offset for the analog output signal.</td>
</tr>
<tr>
<td>➢Polarity</td>
<td>Switches the analog output polarity (+/-).</td>
</tr>
<tr>
<td>Recorder_Calibration</td>
<td>Calibrates a recording device. <strong>Zero</strong> sets the output signal to zero volts. <strong>Full Scale</strong> sets the output signal to the selected full-scale voltage (10, 100, or 1000 mV). <strong>Normal</strong> (the default) outputs a signal corresponding to the detector output.</td>
</tr>
<tr>
<td>➢Recorder_Range</td>
<td>Sets the range of a full-scale recorder response.</td>
</tr>
</tbody>
</table>
Dionex Ion Chromatography Systems

Refer to the following topics for information about control commands for the current Dionex ion chromatography systems:

- Dionex DX-120 Ion Chromatograph
- Dionex ICS-90 Ion Chromatography System
- Dionex ICS-1000/1500/2000 Ion Chromatography System

### Dionex DX-120 Ion Chromatograph

The following commands are available for control of DX-120 operating functions (please note that the display Filter level determines which commands are displayed):

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>If the DX-120 is in Column Mode, the Column command sets the flow path to column A or column B.</td>
</tr>
<tr>
<td>Controlled AC</td>
<td>Turns the AC power outlet on the DX-120 rear panel on and off. This provides on off control of an external accessory connected to the outlet. Refer to the DX-120 operator's manual for cabling instructions.</td>
</tr>
<tr>
<td>Data_Collection_Rate</td>
<td>Sets the rate at which Chromeleon collects digital data points from the detector.</td>
</tr>
<tr>
<td>Eluent</td>
<td>If the DX-120 is in Eluent Mode, the Eluent command selects the eluent reservoir (A or B).</td>
</tr>
<tr>
<td>Eluent Pressure</td>
<td>Turns the pressure to the eluent reservoir(s) on and off.</td>
</tr>
<tr>
<td>Pressure Unit</td>
<td>Select the units of pressure to use (psi or MPa).</td>
</tr>
<tr>
<td>Pump</td>
<td>Turns the pump on and off.</td>
</tr>
<tr>
<td>SRS</td>
<td>Turns the current supplied to the Self-Regenerating Suppressor (SRS) on and off.</td>
</tr>
</tbody>
</table>
Dionex ICS-90 Ion Chromatography System

In addition to the General Device Commands, the following commands are available for control of ICS-90 operating functions (please note that the display Filter level determines which commands are displayed):

Detector Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcqOn/Off</td>
<td>Starts/stops data acquisition.</td>
</tr>
<tr>
<td>Autozero</td>
<td>Automatic autozero.</td>
</tr>
</tbody>
</table>

Pump Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump (on/off)</td>
<td>Turns the pump on or off.</td>
</tr>
<tr>
<td>Pressure.Lower/UpperLimit</td>
<td>Sets pressure limits.</td>
</tr>
</tbody>
</table>

Injection and TTL Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InjectPosition</td>
<td>Sets the injection valve to the inject position.</td>
</tr>
<tr>
<td>LoadPosition</td>
<td>Sets the injection valve to the load position.</td>
</tr>
<tr>
<td>TTL 1</td>
<td>The following commands are available: State (indicates or sets the state of the TTL), On (turns the TTL on), Off (turns the TTL off), and Duration (toggles the TTL’s state after the specified time).</td>
</tr>
</tbody>
</table>

In addition to the commands listed above, calibration and diagnostic commands are also available (see How to …: Performing Validation and Qualification Ensuring System Wellness for details).
Dionex ICS-1000/1500/2000 Ion Chromatography System

In addition to the General Device Commands, the following commands are available for control of ICS-1000/1500/2000 operating functions (please note that the display Filter level determines which commands are displayed).

Pump Commands

In addition to the standard pump commands (see Dionex Pumps), the following commands are available for controlling the ICS-1000/1500/2000 pump.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EluentBottleLevel</td>
<td>Indicates the volume of liquid (in liters) in the eluent reservoir. To ensure the accuracy of this value, enter the volume of liquid in the reservoir each time you fill the reservoir.</td>
</tr>
<tr>
<td>EluentValve</td>
<td>Indicates the eluent valve position (Open or Closed).</td>
</tr>
<tr>
<td>On, Off, Prime</td>
<td>Turns the pump on or off, or starts the pump priming function.</td>
</tr>
<tr>
<td>Pump_InjectValve.InjectPosition</td>
<td>(If no AS50 is installed) Injects the sample</td>
</tr>
</tbody>
</table>

For the ICS ion chromatography system, injection is performed with the Pump_InjectValve.InjectPosition command (if no AS50 is installed). With the Pump_InjectValve.InjectPosition command, an injection is always performed, also for a Blank Run Sample. This is contrary to the autosampler Inject command.

| PumpMode | Indicates whether the pump is on, off, or priming. |

Detector Commands

In addition to the standard detector commands (see Dionex Detectors), the following commands are available for controlling the ICS-1000/1500/2000 detector.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition_Ready</td>
<td>Indicates when the detector is ready to start data acquisition.</td>
</tr>
<tr>
<td>CellTemperature</td>
<td>Sets the temperature of the DS6 conductivity cell.</td>
</tr>
<tr>
<td>Data_Collection_Rate</td>
<td>Set the rate at which Chromeleon collects digital data points from the detector</td>
</tr>
<tr>
<td>DataPolarity</td>
<td>Sets the signal polarity to Normal or Inverted.</td>
</tr>
<tr>
<td>MaxAutoStep</td>
<td>Sets the maximum step rate if Step is set to Auto.</td>
</tr>
</tbody>
</table>
### Commands for Controlling Dionex Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset_Level</td>
<td>(Analog Out) Sets the offset (0 to 100%) applied to the recorder output.</td>
</tr>
<tr>
<td>Polarity</td>
<td>(Analog Out) Sets the recorder output polarity.</td>
</tr>
<tr>
<td>Recorder_Calibration</td>
<td>(Analog Out) Calibrates the recorder output (Normal, Zero or Full-Scale).</td>
</tr>
<tr>
<td>Recorder_Range</td>
<td>(Analog Out) Sets the full-scale output range of the recorder.</td>
</tr>
<tr>
<td>Rise_Time</td>
<td>Sets how quickly the detector responds to a change in signal.</td>
</tr>
<tr>
<td>TotalConductivity</td>
<td>Reports the measured conductivity with no offset applied.</td>
</tr>
</tbody>
</table>

### Column Temperature and Suppressor Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColumnTemperature</td>
<td>Sets the column heater temperature.</td>
</tr>
<tr>
<td>Suppressor_Current</td>
<td>Sets the suppressor current (in mA).</td>
</tr>
<tr>
<td>Suppressor_Mode</td>
<td>Turns the suppressor on or off.</td>
</tr>
<tr>
<td>Suppressor_Type</td>
<td>Selects the type of Suppressor installed.</td>
</tr>
</tbody>
</table>

### Eluent Generator Commands (ICS-2000 only)

In addition to the standard eluent generator commands (see Dionex Eluent Generators), the following commands are available for controlling the ICS-2000 eluent generator.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR_TC</td>
<td>Turns the CR-TC on or off.</td>
</tr>
<tr>
<td>EGCCurrent</td>
<td>Indicates the EGC current value.</td>
</tr>
<tr>
<td>EGCVoltage</td>
<td>Indicates the EGC voltage value.</td>
</tr>
<tr>
<td>Mode</td>
<td>Turns the eluent generator on or off.</td>
</tr>
</tbody>
</table>

### State Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InjectPosition</td>
<td>Sets the injection valve to the inject position.</td>
</tr>
<tr>
<td>LoadPosition</td>
<td>Sets the injection valve to the load position.</td>
</tr>
<tr>
<td>Relay_1, Relay_2</td>
<td>The following commands are available: State (indicates or sets the state of the relay), Closed (closes the relay), Open (opens the relay), and Duration (toggles the relay's state after the specified time). The relay-contact closures are normally open. When the relay is closed, current flows to the connected device (turns on the action).</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>TTL_1, TTL_2</td>
<td>The following commands are available: <strong>State</strong> (indicates or sets the state of the TTL), <strong>Ov</strong> (sets the TTL to zero volts), <strong>5v</strong> (sets the TTL to 5 volts), and <strong>Duration</strong> (toggles the TTL's state after the specified time). The TTL outputs are normally at 5 volts. Setting a TTL output to 0 volts turns on the action in the connected device.</td>
</tr>
</tbody>
</table>

In addition to the commands listed above, calibration and diagnostic commands for the ICS-1000/1500/2000 are also available (see **How to ...: Performing Validation and Qualification** [Ensuring System Wellness](#) for details).
Additional Dionex Components

In addition, Chromeleon supports the Additional components. For a description of the commands and properties supported for these components, refer to:

- Dionex Eluent Generators
- Dionex External MSVs
- Dionex Detector/Chromatography Module
- Dionex Active Flow Splitter (MRA)

**Dionex Eluent Generators**

In addition to the General Device Commands, the following commands are available for controlling the operating functions of Dionex eluent generators (please note that the display Filter level determines which commands are displayed).

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CartridgeExpirationDate</td>
<td>Reports the expiration date of the cartridge (read-only).</td>
</tr>
<tr>
<td>CartridgeNumber</td>
<td>Reports the serial number of the cartridge.</td>
</tr>
<tr>
<td>CartridgeRemainingLifeTime</td>
<td>Reports the percentage of the original ion count remaining in the cartridge (read-only).</td>
</tr>
<tr>
<td>CartridgeType</td>
<td>Reports the cartridge type currently installed (read-only).</td>
</tr>
<tr>
<td>Concentration</td>
<td>Sets the eluent concentration to be generated.</td>
</tr>
<tr>
<td>CR-TC (ICS-2000 and ICS-3000 EG only)</td>
<td>Turns the CR-TC (Continuously Regenerated Trap Column) on or off. The CR-TC removes anionic or cationic contaminants in the eluent or deionized water.</td>
</tr>
<tr>
<td>Curve</td>
<td>Sets the curve number for gradients. Refer to Gradient Curves for an explanation of curve numbers.</td>
</tr>
<tr>
<td>EgcCurrent (ICS-2000 and ICS-3000 EG only)</td>
<td>Indicates the current value of the cartridge (read-only).</td>
</tr>
<tr>
<td>EgcVoltage (ICS-2000 and ICS-3000 EG only)</td>
<td>Indicates the voltage value of the cartridge (read-only).</td>
</tr>
<tr>
<td>Mode (ICS-2000 and ICS-3000 EG only)</td>
<td>Turns the eluent generator on or off.</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>Reports the serial number of the eluent generator (read-only).</td>
</tr>
</tbody>
</table>
For additional information, refer to *Practical Tips for Device Control:*

- Controlling the Eluent Generator Concentration
- Monitoring the Eluent Generator Cartridge Lifetime

### Calibration Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DownloadCalibration</td>
<td>Downloads the selected set of calibration values to the detector.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Selects the set of calibration values (Current, Previous, or Factory) to be downloaded.</td>
</tr>
<tr>
<td>LeakDet</td>
<td>Performs the leak detector calibration. This command is not available for the ICS-3000 EG.</td>
</tr>
</tbody>
</table>

### Diagnostic Commands

The following diagnostic commands are not available for the ICS-3000 EG:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeakDetTest</td>
<td>Performs a test of the leak detector.</td>
</tr>
<tr>
<td>LeakDetTestDate</td>
<td>Reports the date of the leak detector test.</td>
</tr>
<tr>
<td>LeakDetTestResult</td>
<td>Reports the result (pass or fail) of the leak detector test.</td>
</tr>
</tbody>
</table>
External MSVs

In addition to the General Device Commands, the following commands are available for controlling the operating functions of the switching valves (please note that the display Filter level determines which commands are displayed):

<table>
<thead>
<tr>
<th>Command</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>0 Shortest</td>
<td>1 Counterclockwise</td>
<td>2 Clockwise</td>
<td>Defines the direction in which the valve moves to the specified position.</td>
</tr>
<tr>
<td>Home</td>
<td></td>
<td></td>
<td></td>
<td>Moves the valve to position 1. (Note: The command ignores the Direction property.)</td>
</tr>
<tr>
<td>Position</td>
<td>1</td>
<td>Depends on the type.</td>
<td>Read out from the device on connect.</td>
<td>The current position of the valve. (The valve moves to the specified position, obeying the Direction property.)</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td>Tests the valve. (Moves the valve to position 1, steps to all positions, and returns the valve to position 1) Level: Expert.</td>
</tr>
</tbody>
</table>

Dionex Detector/Chromatography Module

In addition to the General Device Commands, the following commands are available for control of DC operating functions (please note that the display Filter level determines which commands are displayed).

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LowerDoor</td>
<td>Reports whether the compartment lower door is open or closed.</td>
</tr>
<tr>
<td>UpperDoor</td>
<td>Reports whether the compartment upper door is open or closed.</td>
</tr>
<tr>
<td>LowerLeakCondition</td>
<td>Reports whether the lower leak sensor is wet or dry.</td>
</tr>
<tr>
<td>UpperLeakCondition</td>
<td>Reports whether the upper leak sensor is wet or dry.</td>
</tr>
</tbody>
</table>
### Temperature Control Commands

The following commands are used for controlling the various DC temperature control zones (conductivity cell, compartment, column, and reaction coil heater).

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcquireExclusiveAccess</td>
<td>Gives exclusive access of the temperature zone to the current timebase. Exclusive access commands allow two timebases to share the same DC temperature zones.</td>
</tr>
<tr>
<td>ReleaseExclusiveAccess</td>
<td>Takes exclusive access of the temperature zone away from the current timebase, to allow another timebase to acquire exclusive access.</td>
</tr>
<tr>
<td>Mode</td>
<td>Selects whether the temperature zone is on or off.</td>
</tr>
<tr>
<td>Status</td>
<td>Reports whether the temperature of the zone is under the set temperature, at the set temperature, or over the set temperature.</td>
</tr>
<tr>
<td>TemperatureActual</td>
<td>Reports the actual temperature.</td>
</tr>
<tr>
<td>TemperatureSet</td>
<td>Sets the temperature of the temperature zone.</td>
</tr>
<tr>
<td>TemperatureState</td>
<td>Reports the state of the temperature zone (Ready or NotReady)</td>
</tr>
</tbody>
</table>

### Injection Valve Control Commands

The following commands are used for controlling the high-pressure injection valves installed in the DC.

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Indicates and can set the valve position (Load or Inject).</td>
</tr>
<tr>
<td>LoadPosition</td>
<td>Switches the valve to position Load.</td>
</tr>
<tr>
<td>InjectPosition</td>
<td>Switches the valve to position Inject.</td>
</tr>
</tbody>
</table>

### High-Pressure Valve Control Commands

The following commands are used for controlling the high-pressure valves installed in the Automation Manager.

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Indicates and can set the valve position (A or B).</td>
</tr>
<tr>
<td>A</td>
<td>Switches the valve to position A.</td>
</tr>
<tr>
<td>B</td>
<td>Switches the valve to position B.</td>
</tr>
</tbody>
</table>
Low-Pressure Valve Control Commands

The following commands are used for controlling the various low-pressure valves installed in the DC.

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Indicates and can set the valve position (Open or Closed).</td>
</tr>
<tr>
<td>Open</td>
<td>Switches the valve to the open position.</td>
</tr>
<tr>
<td>Closed</td>
<td>Switches the valve to the closed position.</td>
</tr>
</tbody>
</table>

Relay Control Commands

The following commands are used for controlling the relay outputs installed in the DC.

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Indicates and can set the relay position (Open or Closed).</td>
</tr>
<tr>
<td>Open</td>
<td>Switches the relay to the open position.</td>
</tr>
<tr>
<td>Closed</td>
<td>Switches the relay to the closed position.</td>
</tr>
</tbody>
</table>

Active Flow Splitter (MRA)

In addition to the General Device Commands, the following commands are available for controlling the operating functions of the flow splitter (please note that the display Filter level determines which commands are displayed):

<table>
<thead>
<tr>
<th>Command</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>1.0</td>
<td>100.0</td>
<td>10.0</td>
<td>Sets the flow in mL/min that shall be split.</td>
</tr>
<tr>
<td>GrooveVolume</td>
<td>0</td>
<td>300</td>
<td>-</td>
<td>Indicates the groove volume in nL (read-only). (The property is available from the Expert level on.)</td>
</tr>
<tr>
<td>Home</td>
<td></td>
<td></td>
<td></td>
<td>Moves the splitter to position 1.</td>
</tr>
<tr>
<td>ModuleType</td>
<td>Text (64 characters), describing the flow splitter type</td>
<td>Read from the splitter upon connect.</td>
<td>Indicates the module type (should be MRA100-000; read-only). (The property is available from the Expert level on.)</td>
<td></td>
</tr>
</tbody>
</table>
## Commands for Controlling Dionex Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RunState</td>
<td>On/Off</td>
<td></td>
<td>Off</td>
<td>Sets the status of the MRA: On splits the flow based on the related parameters.</td>
</tr>
<tr>
<td>SplitFactor</td>
<td>1</td>
<td>59</td>
<td>47</td>
<td>Reports the split factor set on the device (read-only). (The property is available from the Expert level on.)</td>
</tr>
<tr>
<td>SplitRatio.Nominal</td>
<td>100</td>
<td>100000</td>
<td>20000</td>
<td>Sets the nominal split ratio.</td>
</tr>
<tr>
<td>SplitRatio.Value</td>
<td>100</td>
<td>100000</td>
<td>-</td>
<td>Indicates the actual split ratio (read-only). The ratio is calculated from the HPLC flow and SplitRatio.Nominal.</td>
</tr>
<tr>
<td>SwitchCounter</td>
<td></td>
<td></td>
<td></td>
<td>Counts how often the flow splitter switched since the counter was last reset.</td>
</tr>
<tr>
<td>UpperLimit</td>
<td>0</td>
<td>NoLimit; 1000000</td>
<td>NoLimit</td>
<td>If the total number of switches exceeds the upper limit, a warning appears. To disable the function, set the upper limit to NoLimit.</td>
</tr>
<tr>
<td>Value</td>
<td>Reset; 0</td>
<td>10000000</td>
<td>1</td>
<td>Reports the total number of splitter switches. Select Reset to reset the counter to 0.</td>
</tr>
<tr>
<td>SwitchFrequency</td>
<td>0.00</td>
<td>100.00</td>
<td>-</td>
<td>Reports the switching frequency in Hz (read-only). (The property is available from the Expert level on.)</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td>Tests the flow splitter. (Moves the splitter to position 1, steps to all positions, and returns the splitter to position 1). (The property is available from the Expert level on.)</td>
</tr>
</tbody>
</table>
Commands and Tips for Third-Party Devices
Commands and Tips for Third-Party Devices

Chromeleon allows you to control both Dionex devices and numerous third-party devices. For an overview of manufacturers whose instruments can be controlled by Chromeleon, refer to Hardware Installation Installing and Controlling Third-Party Devices in the Administrator Help section.

For many third-party devices, Chromeleon provides the same commands as for the Dionex devices. For more information about the standard commands, refer to Device Control Practical Tips for Device Control (Overview) and Commands for Controlling Dionex Devices.

In addition to the standard commands, several third-party devices support special commands. For information about these commands and other useful tips for the respective instruments, refer to:

- Agilent
- CTC Analytics PAL Samplers
- Finnigan (see ThermoFinnigan/TQ/TSP)
- Fisons AS800 Autosampler
- Gilson
- Hewlett Packard (see Agilent)
- Hitachi (see Merck Hitachi)
- Kontron
- Merck Hitachi
- Perkin Elmer
- Rheodyne Valves
- Shodex Refractive Index Detectors (RI-101, RI-102, RI-104)
Shimadzu HPLC Systems
ThermoFinnigan/TQ/TSP
Valco (= VICI) Valves
Varian
Waters

Agilent (formerly HP): Commands and Tips

For information about the special commands that Chromeleon supports for the different Agilent devices and for tips for practical operation, refer to:

1100 HPLC System
Agilent 1050 HPLC System: UV Detector
6890/6850 GCs
Agilent HP5890 GC: Application

Agilent 1100 HPLC System: Commands and Tips

Refer to the following pages for information about the special commands supported for the Agilent 1100 HPLC System and for tips for practical operation:

General
Pump
Autosampler (G1329)
Wellplate-Sampler (G1367)
Column Compartment
UV Detectors
Fluorescence Detectors
Program Tips
Example for a Derivatization Program

Scan Modes for the Fluorescence Detector

Tips for Lamp Commands

Checking the Solvent Liquid Level

Diagnostic Functions

Troubleshooting

Agilent 1100 HPLC System: General

The following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Firmware version of the module (read-only)</td>
</tr>
<tr>
<td>ModelNo</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Module number (read-only)</td>
</tr>
<tr>
<td>NotReadyCauses</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>String to explain why the module is not yet ready for the next analysis (read-only)</td>
</tr>
<tr>
<td>SerialNo</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Serial number of the module (read-only)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect</td>
<td>Connect the device.</td>
</tr>
<tr>
<td>Disconnect</td>
<td>Disconnect the device.</td>
</tr>
<tr>
<td>Identify</td>
<td>Identify the module. The module LED will flash.</td>
</tr>
<tr>
<td>Reset</td>
<td>Reset the device.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Possible States</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnalysisState</td>
<td>NoAnalysis, Analysis Pending</td>
<td>Retention time state</td>
</tr>
<tr>
<td>AnalysisTime</td>
<td>0 outside of analysis, analysis time in minutes since analysis start.</td>
<td>Retention Time</td>
</tr>
<tr>
<td>ErrorState</td>
<td>NoError Error</td>
<td>Error state</td>
</tr>
</tbody>
</table>
### 846 Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Name</th>
<th>Possible States</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReadyState</td>
<td>NotReady, Ready</td>
<td>Ready state</td>
</tr>
<tr>
<td>Runtime</td>
<td>Prerun, Run, Postrun, Leak, Shutdown</td>
<td>Run time</td>
</tr>
<tr>
<td>TestState</td>
<td>NoTest, Test</td>
<td>Test state</td>
</tr>
</tbody>
</table>

RunTime: 0 outside of run, runtime in minutes since run start.

The **Administrator Help** section provides general information and installation instructions for the 1100 HPLC system; refer to **Hardware Installation**:

- Agilent 1100 HPLC System: Overview
- Agilent 1100 HPLC System: Installation

### Agilent 1100 HPLC System: Pump

In addition to the standard pump commands (see **Commands for Controlling Dionex Devices**), the following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%B, %C, %D</td>
<td>0.0 %</td>
<td>100.0 %</td>
<td>100.0 %A</td>
<td>Compressibility autom., no compensation, 50..150 [1e-6/bar] (Available only for the isocratic and quaternary pumps.)</td>
</tr>
<tr>
<td>Compressibility</td>
<td>autom., no compensation, 50..150</td>
<td>-</td>
<td>50</td>
<td>Compressibility of the left pump [1e-6/bar] (Only for the binary pump)</td>
</tr>
<tr>
<td>LeftPump</td>
<td>autom., no compensation, 50..150</td>
<td>-</td>
<td>50</td>
<td>Compressibility of the left pump [1e-6/bar] (Only for the binary pump)</td>
</tr>
<tr>
<td>Property</td>
<td>Min</td>
<td>Max</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Compressibility RightPump</td>
<td>autom., no compensation, 50..150</td>
<td>-</td>
<td>115</td>
<td>Compressibility of the right pump [1e-6/bar] (Available only for the binary pump.)</td>
</tr>
<tr>
<td>EmptySolventError</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>*</td>
</tr>
<tr>
<td>⇨Flow</td>
<td>0.000 ml/min</td>
<td>10.000 ml/min (quaternary)</td>
<td>0.000 ml/min</td>
<td>(flow &lt; 5 ml/min) 5.000 ml/min (binary)</td>
</tr>
<tr>
<td>Pressure</td>
<td>0.0 bar</td>
<td>400.0 bar (5800 psi)</td>
<td>Min.: 0 Max. 400.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200.0 bar (2900 psi) (else)</td>
<td></td>
<td>(Quaternary LPG pump only) Select the channel from which the pump shall draw liquid first. The pump starts with drawing half the volume required for the composition, then draws the required volume from the other channels, and then draws the second half of the volume required for the first channel. Automatic selects the channel with the maximum percentage.</td>
</tr>
<tr>
<td>PrimaryChannel</td>
<td>autom., A, B, C, D</td>
<td>-</td>
<td>autom.</td>
<td>* (Where X = A1, A2, B1 or B2 for the binary pump and X = A to D for the quaternary pump.)</td>
</tr>
<tr>
<td>SolventFillingX</td>
<td>0.00 l</td>
<td>1000.00 l</td>
<td>n/a</td>
<td>*</td>
</tr>
</tbody>
</table>
### Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolventLeftPump A1, A2</td>
<td>-</td>
<td></td>
<td>A1</td>
<td>Eluent of the left pump. (Available only for the binary pump.)</td>
</tr>
<tr>
<td>SolventNotReady Limit</td>
<td>0.00 l</td>
<td>1000.00 l</td>
<td>0.00 l</td>
<td>*</td>
</tr>
<tr>
<td>SolventRightPump B1, B2</td>
<td></td>
<td>-</td>
<td>B1</td>
<td>Eluent of the right pump. (Available only for the binary pump.)</td>
</tr>
<tr>
<td>Stroke autom., 20..100 µl</td>
<td></td>
<td>-</td>
<td>autom.</td>
<td>Pump stroke (Available only for the isocratic and quaternary pumps.)</td>
</tr>
<tr>
<td>StrokeLeftPump autom., 20..100 µl</td>
<td></td>
<td>-</td>
<td>autom.</td>
<td>Stroke of the left pump. (Available only for the binary pump.)</td>
</tr>
<tr>
<td>StrokeRightPump autom., 20..100 µl</td>
<td></td>
<td>-</td>
<td>autom.</td>
<td>Stroke of the right pump. (Available only for the binary pump.)</td>
</tr>
</tbody>
</table>

* For more information about these commands, refer to [Agilent 1100 HPLC System: Checking the Solvent Liquid Level](#).

#### Diagnostic Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CountDown</td>
<td>Keeps the specified flow rate for the CountDown time. (The default setting is 0.00 min. The allowed range is 0.00 to 99,999.00 min.)</td>
</tr>
<tr>
<td>LeakTestInit</td>
<td>Prepares the pump for the leak test by moving pistons A1 and B1 for the quaternary pump and/or piston 2 for the binary pump to the top of its stroke.</td>
</tr>
<tr>
<td>LeakTestRun</td>
<td>Performs a leak test.</td>
</tr>
</tbody>
</table>

**Tip:**

Dionex recommends performing the command from the related diagnostic panel (see [Agilent 1100 HPLC System Diagnostics: Leak Test](#)).
### Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PressureTest</td>
<td>Performs a pressure test.</td>
</tr>
</tbody>
</table>

**Tip:**
Dionex recommends performing the command from the related diagnostic panel (see [Agilent 1100 HPLC System 1100 Diagnostics: Pump Pressure](#)).

The Administrator Help section provides general information and installation instructions for the 1100 HPLC system; refer to Hardware Installation:

- [Agilent 1100 HPLC System: Overview](#)
- [Agilent 1100 HPLC System: Installation](#)

#### Agilent 1100 HPLC System: Autosampler (G1329)

In addition to the standard autosampler commands (see Commands for Controlling Dionex Devices [Dionex Autosamplers](#)), the following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DispSpeed</td>
<td>10 µl/min or 90 µl/min</td>
<td>1000 µl/min</td>
<td>200 µl/min</td>
<td>Speed for dispensing the sample</td>
</tr>
<tr>
<td>DrawSpeed</td>
<td>10 µl/min or 90 µl/min</td>
<td>1000 µl/min</td>
<td>200 µl/min</td>
<td>Speed for drawing the sample</td>
</tr>
<tr>
<td>Position</td>
<td>0</td>
<td>(Tray dependent)</td>
<td>n/a</td>
<td>Sample vial number</td>
</tr>
<tr>
<td>SampleHeight</td>
<td>-2.5 mm</td>
<td>35 mm</td>
<td>0.0 mm</td>
<td>Needle draw/eject position offset</td>
</tr>
<tr>
<td>Syringe</td>
<td>100 µl</td>
<td>900 µl</td>
<td>as configured</td>
<td>Syringe volume [µl]</td>
</tr>
<tr>
<td>⇒ Volume</td>
<td>0.0 µl</td>
<td>8000.0 µl</td>
<td>5.0 µl</td>
<td>Injection volume</td>
</tr>
<tr>
<td>WashVial</td>
<td>0</td>
<td>Greatest sample position (tray dependent)</td>
<td>0</td>
<td>Wash vial number 0: no wash</td>
</tr>
</tbody>
</table>
### Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒Dispense</td>
<td>Injects the sample into the loop.</td>
</tr>
<tr>
<td>⇒Draw</td>
<td>Draws sample from a vial into the syringe.</td>
</tr>
<tr>
<td>InitiateChangeGripper</td>
<td>Initiates the gripper change by moving the gripper to the front.</td>
</tr>
<tr>
<td>InitiateChangeNeedle</td>
<td>Initiates the needle change by removing the safety covering and moving the needle carrier to an easily accessible mounting position. In addition, the needle is lifted to the uppermost position.</td>
</tr>
<tr>
<td>InitiateChangePiston</td>
<td>Initiates the piston change by releasing the spring on the proportioning unit.</td>
</tr>
<tr>
<td>⇒Inject</td>
<td>Performs an injection (see note below).</td>
</tr>
<tr>
<td>Mix</td>
<td>Mixes the sample using the syringe.</td>
</tr>
<tr>
<td>Repeat/EndRepeat</td>
<td>Repeats the enclosed sample preparation steps.</td>
</tr>
<tr>
<td>TerminateChangeGripper</td>
<td>Terminates the gripper change by returning the gripper to the Home position.</td>
</tr>
<tr>
<td>TerminateChangeNeedle</td>
<td>Terminates the needle changes by returning the needle to the Home position.</td>
</tr>
<tr>
<td>TerminateChangePiston</td>
<td>Terminates the piston change by tensing the spring on the proportioning unit.</td>
</tr>
<tr>
<td>Valve Piston</td>
<td>Switches the injection valve.</td>
</tr>
<tr>
<td>Wait</td>
<td>Waits a given time during the injection program.</td>
</tr>
</tbody>
</table>

### Parameters of the commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispense, parameter: Vial</td>
<td>SampleVial (current sample vial) SampleVialPlus (current sample vial + n) Vial (sample vial No. n) Seat (needle seat) Air</td>
<td>Position of the vial for dispense</td>
</tr>
<tr>
<td>Dispense, parameter: Speed</td>
<td>10 (or 90 µl) to 1000 µl/min Maximum Default (uses DispSpeed)</td>
<td>Speed for dispense or mix</td>
</tr>
<tr>
<td>Draw, parameter: Source</td>
<td>SampleVial (current sample vial) SampleVialPlus (current sample vial + n) Vial (sample vial No. n) Seat (needle seat) Air</td>
<td>Position of the vial for draw</td>
</tr>
<tr>
<td>Draw, parameter: Speed</td>
<td>10 (or 90) to 1000 µl/min Maximum Default (uses DrawSpeed)</td>
<td>Speed for draw</td>
</tr>
<tr>
<td>Draw/Dispense, parameter: Offset</td>
<td>-2.5 to 35.0 mm SampleHeight</td>
<td>Needle draw/eject position offset for draw or dispense</td>
</tr>
</tbody>
</table>
**Commands and Tips for Third-Party Devices**

<table>
<thead>
<tr>
<th>Command</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw, Dispense, Mix parameter: Volume</td>
<td>0.0 to 100.0 µl (or 900.0 µl) Maximum InjectVolume</td>
<td>Volume for draw, dispense, or mix</td>
</tr>
<tr>
<td>Needle, parameter: Vial</td>
<td>SampleVial (current sample vial) SampleVialPlus (current sample vial + n) Vial (sample vial No. n)</td>
<td>Position to which the needle is moved</td>
</tr>
</tbody>
</table>

**Tips:**

The **Inject** command sends a start impulse to all modules. Then the analysis will start with the following steps:

- The detector performs an \( \Rightarrow \) Autozero if the program file contains the corresponding command at the time \( t=0.000 \) min.
- An injection/sample preparation program is executed if the program contains the corresponding commands at the \( t=0.000 \) min.
- The injection will take place and the run will start.

Three different injection programs are available:

<table>
<thead>
<tr>
<th>Standard (injection volume from the respective position)</th>
<th>WashVial=None and no sample preparation commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard (with needle wash)</td>
<td>WashVial=None and no sample preparation commands</td>
</tr>
<tr>
<td>User-defined injection program</td>
<td>If sample preparation commands are given</td>
</tr>
</tbody>
</table>

**Autosampler/Thermostat**

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoActivateSetpoint</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>If set to On, temperature control is automatically enabled right after power-up.</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Turns temperature control on or off.</td>
</tr>
<tr>
<td>Temperature.Nominal</td>
<td>4°C</td>
<td>40°C</td>
<td>20°C</td>
<td>Temperature set point for the air stream.</td>
</tr>
<tr>
<td>Temperature.Value</td>
<td>4°C</td>
<td>40°C</td>
<td>n/a</td>
<td>Current temperature of the air stream.</td>
</tr>
</tbody>
</table>

Also, see [Agilent HPLC System 1100: Wellplate Sampler (G1367)](https://www.agilent.com).
### Diagnostic Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GripperHome</td>
<td>Moves the gripper to home position.</td>
</tr>
<tr>
<td>GripperPick</td>
<td>Picks the vial at the current position.</td>
</tr>
<tr>
<td>GripperPut</td>
<td>Positions the vial at the current position.</td>
</tr>
<tr>
<td>GripperToPosition</td>
<td>Moves the gripper to the specified position.</td>
</tr>
<tr>
<td>NeedleIntoSeat</td>
<td>(For the G1329 autosampler, the commands have no functionality.)</td>
</tr>
<tr>
<td>NeedleIntoVial</td>
<td></td>
</tr>
<tr>
<td>NeedleToPosition</td>
<td></td>
</tr>
<tr>
<td>NeedleUp</td>
<td>Moves the needle to its topmost position.</td>
</tr>
<tr>
<td>PlungerDraw</td>
<td>Draws the plunger to load sample into the sample loop.</td>
</tr>
<tr>
<td>PlungerHome</td>
<td>Moves the plunger back to its home position.</td>
</tr>
<tr>
<td>VialToSeat</td>
<td>Positions the vial in the seat.</td>
</tr>
<tr>
<td>VialToTray</td>
<td>Positions the vial in the tray.</td>
</tr>
<tr>
<td>ValveToBypass</td>
<td>Switches the sample loop into the bypass position.</td>
</tr>
<tr>
<td>ValveToMainpass</td>
<td>Switches the sample loop into the inject position.</td>
</tr>
</tbody>
</table>

For more information about the diagnostic functions for the autosampler, refer to:

- [Agilent 1100 HPLC System Diagnostics: Injector Steps](#)
- [Agilent 1100 HPLC System Diagnostics: Gripper Verification](#)

The **Administrator Help** section provides general information and installation instructions for the 1100 HPLC system; refer to **Hardware Installation**:

- [Agilent 1100 HPLC System: Overview](#)
- [Agilent 1100 HPLC System: Installation](#)
**Agilent 1100 HPLC System: Wellplate Sampler (G1367)**

In addition to the commands supported by the autosampler of the 1100 HPLC System (see [Agilent 1100 HPLC System: Autosampler (1329)]), the wellplate sampler supports the some special commands (please note that the display > Filter level determines which commands and properties are displayed). Please note: For some of the HP 1100 autosampler commands, the ranges and parameters may be different for the wellplate sampler (refer to the table below).

### Special Wellplate Sampler Parameters and Values

<table>
<thead>
<tr>
<th>Command</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Dispense</strong>, parameter: <em>Vial</em></td>
<td>SampleVial (current sample vial) Location (sample position No. n) Seat (needle seat)</td>
<td>Position of the vial for dispense</td>
</tr>
<tr>
<td><strong>Dispense</strong>, Mix parameter: <em>Speed</em></td>
<td>10-1000 µl/min Maximum Default (uses DispSpeed)</td>
<td>Speed for dispense or mix</td>
</tr>
<tr>
<td><strong>DispSpeed</strong></td>
<td>10-1000 µl/min</td>
<td>Speed for ejecting the sample</td>
</tr>
<tr>
<td><strong>Draw</strong>, parameter: <em>Source</em></td>
<td>SampleVial (current sample vial) Location (sample position No. n) Seat (needle seat) Air</td>
<td>Position of the vial for draw</td>
</tr>
<tr>
<td><strong>Draw</strong>, parameter: <em>Speed</em></td>
<td>10-1000 µl/min Maximum Default (uses DrawSpeed)</td>
<td>Speed for draw</td>
</tr>
<tr>
<td><strong>Draw/Dispense</strong>, parameter: <em>Offset</em></td>
<td>-10.0 to 60.0 mm SampleHeight</td>
<td>Needle draw/eject position offset for draw or dispense</td>
</tr>
<tr>
<td><strong>Draw/Dispense</strong>, Mix parameter: <em>Volume</em></td>
<td>0.00-100.00 µl Maximum InjectVolume</td>
<td>Volume for draw, dispense, or mix</td>
</tr>
<tr>
<td><strong>DrawSpeed</strong></td>
<td>10-1000 µl/min</td>
<td>Speed for drawing the sample</td>
</tr>
<tr>
<td><strong>Needle</strong>, parameter: <em>Vial</em></td>
<td>SampleVial (current sample vial) Location (sample position No. n)</td>
<td>Position to which the needle is moved</td>
</tr>
<tr>
<td><strong>SampleHeight</strong></td>
<td>-10.0 to 60.0 mm</td>
<td>Needle draw/eject position offset</td>
</tr>
<tr>
<td><strong>Volume</strong></td>
<td>0.0-100.0 µl</td>
<td>Injection volume</td>
</tr>
<tr>
<td><strong>WashVial</strong></td>
<td>Sample position No. no wash flush (see WashTime)</td>
<td>Wash vial number. If the setting is no wash, no wash cycle will be performed.</td>
</tr>
</tbody>
</table>
Special Wellplate Sampler Commands

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DelayVolumeReduction²</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Enables or disables automatic delay volume reduction.</td>
</tr>
<tr>
<td>EquilibrationTime³</td>
<td>0.0 s</td>
<td>100.0 s</td>
<td>0.0 s (sent to device on connect)</td>
<td>Time until equilibration is complete.</td>
</tr>
<tr>
<td>FlushFactor</td>
<td>1.0</td>
<td>10.0</td>
<td>5.0</td>
<td>Indicates how often the flush port is filled for flushing the needle (exterior).</td>
</tr>
<tr>
<td>PrimePump</td>
<td>1</td>
<td>1000</td>
<td>5</td>
<td>Primes needle for the time specified (in [s]).</td>
</tr>
<tr>
<td>WashRepeat</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>Number of washes when WashVial is set to a vial location.</td>
</tr>
<tr>
<td>WashTime</td>
<td>0.0 s</td>
<td>100.0 s</td>
<td>1.0 s (read from device on connect)</td>
<td>Time to wash when WashVial is set to Flush.</td>
</tr>
</tbody>
</table>

**Tip:**

² Switches the injection valve back to BYPASS after the sample is eluted beyond the injection valve.

³ On connect of the wellplate sampler EquilibrationTime = 0.0 s is sent to the device. If necessary, enter another value explicitly.

<table>
<thead>
<tr>
<th>Command</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash</td>
<td>In = AsMethod, Flush, SampleVial or position of sample</td>
</tr>
<tr>
<td></td>
<td>Time = 0.0 to 100.0 s</td>
</tr>
<tr>
<td></td>
<td>Repeat = 1 to 5</td>
</tr>
<tr>
<td></td>
<td>Offset = -10.0 to 60.0 mm</td>
</tr>
</tbody>
</table>

**Function**

Defines the location of the wash solution. See WashTime required if In = Flush. See WashRepeat required if In > 0 or SampleVial. Height of the needle above the bottom of the vial.
For example, the following parameters are possible for the Wash command:

1. Wash In=Flush  Time=3  
   (Washes for 3 seconds, using the eluent from the flush port.)

2. Wash In=SampleVial  Repeat=2  
   (Washes twice, using the solution from the current sample position.)

3. Wash In=15  Repeat=5  
   (Washes five times, using the solution from sample position 15.)

4. Wash In=AsMethod  
   (With this option, the parameters entered via the WashVial, WashTime, and WashRepeat commands are used.)

Also, see Agilent 1100 HPLC System: Autosampler (G1329).

### Diagnostic Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GripperHome</td>
<td>(For the G1367 autosampler, the commands have no functionality.)</td>
</tr>
<tr>
<td>GripperPick</td>
<td></td>
</tr>
<tr>
<td>GripperPut</td>
<td></td>
</tr>
<tr>
<td>GripperToPosition</td>
<td></td>
</tr>
<tr>
<td>NeedleIntoSeat</td>
<td>Moves the needle into the needle seat.</td>
</tr>
<tr>
<td>NeedleIntoVial</td>
<td>Descends the needle into the vial.</td>
</tr>
<tr>
<td>NeedleToPosition</td>
<td>Moves the needle to the specified position.</td>
</tr>
<tr>
<td>NeedleUp</td>
<td>Moves the needle to its topmost position.</td>
</tr>
<tr>
<td>PlungerDraw</td>
<td>Draws the plunger to load sample into the sample loop.</td>
</tr>
<tr>
<td>PlungerHome</td>
<td>Moves the plunger back to its home position.</td>
</tr>
<tr>
<td>VialToSeat</td>
<td>(For the G1367 autosampler, the commands have no functionality.)</td>
</tr>
<tr>
<td>VialToTray</td>
<td></td>
</tr>
<tr>
<td>ValveToBypass</td>
<td>Switches the sample loop into the bypass position.</td>
</tr>
<tr>
<td>ValveToMainpass</td>
<td>Switches the sample loop into the inject position.</td>
</tr>
</tbody>
</table>

For more information about the diagnostic functions for the autosampler, refer to Agilent 1100 HPLC System Diagnostics: Injector Steps.

The Administrator Help section provides general information and installation instructions for the 1100 HPLC system; refer to Hardware Installation Agilent 1100 HPLC System: Overview and Agilent 1100 HPLC System: Installation.
## Agilent 1100 HPLC System: Column Compartment

In addition to the standard oven commands (see [Commands for Controlling Dionex Devices](#)), the following commands and properties are available (please note that the display [Filter] level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoActivateSetpoint</td>
<td>0 (Off)</td>
<td>1 (On)</td>
<td>0 (Off)</td>
<td>If set to On, temperature control is automatically enabled right after power-up.</td>
</tr>
<tr>
<td>LeftTemperature.Delta or RightTemperature.Delta</td>
<td>0°C</td>
<td>100°C</td>
<td>0.8°C</td>
<td>Temperature deviation permitted for the temperature set point in the left or right column compartment.</td>
</tr>
<tr>
<td>LeftTemperature.Nominal or RightTemperature.Nominal</td>
<td>-5°C</td>
<td>80°C</td>
<td>40°C</td>
<td>Temperature set point for the left or right column compartment.</td>
</tr>
<tr>
<td>LeftTemperature.Value or RightTemperature.Value</td>
<td>-5°C</td>
<td>80°C</td>
<td>40°C</td>
<td>Current temperature of the left column or right compartment.</td>
</tr>
<tr>
<td>Mode</td>
<td>0 (Combined)</td>
<td>1 (Combined)</td>
<td>0 (Combined)</td>
<td>Enables independent control of the right column compartment. If set to Combined, the settings for the left column compartment apply to both compartments.</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>0 (Off)</td>
<td>1 (On)</td>
<td>Off</td>
<td>Turns temperature control on or off.</td>
</tr>
<tr>
<td>Valve</td>
<td>0 (Right Column)</td>
<td>1 (Left Column)</td>
<td>1 (Left Column)</td>
<td>Switches the column selector valve (option).</td>
</tr>
</tbody>
</table>

The Administrator Help section provides general information and installation instructions for the 1100 HPLC system; refer to Hardware Installation:

- [Agilent 1100 HPLC System: Overview](#)
- [Agilent 1100 HPLC System: Installation](#)
### Agilent 1100 HPLC System: UV Detectors

In addition to the standard detector commands (see Commands for Controlling Dionex Devices), the following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoActivateUV_Lamp</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>If set to On, the deuterium lamp is automatically turned on upon power-up.</td>
</tr>
<tr>
<td>UV_Lamp</td>
<td>Off</td>
<td>On</td>
<td>Off, (On in Demo Mode)</td>
<td>Reports the state of the deuterium lamp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FilterMovements</td>
<td>0</td>
<td>UINT_MAX</td>
<td>0 in demo mode, else read from module on connect.</td>
<td></td>
</tr>
<tr>
<td>ReferenceDiodeExposure</td>
<td>0</td>
<td>UINT_MAX</td>
<td>0 in demo mode, else read from module on connect.</td>
<td></td>
</tr>
<tr>
<td>SampleDiodeExposure</td>
<td>0</td>
<td>UINT_MAX</td>
<td>0 in demo mode, else read from module on connect.</td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>Min</td>
<td>Max</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td>--------------</td>
<td>----------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SlitMovements</td>
<td>0</td>
<td>UINT_MAX</td>
<td>0 in demo mode, else read from module on connect.</td>
<td>Slit movement counter. Set the UpperLimit to 0 to disable the associated limit test. (PDA only)</td>
</tr>
<tr>
<td>UvLampIgnitions</td>
<td>0</td>
<td>UINT_MAX</td>
<td>0 in demo mode, else read from module on connect.</td>
<td>UV lamp ignition counter. Set the UpperLimit to 0 to disable the associated limit test.</td>
</tr>
<tr>
<td>UvLampLifetime</td>
<td>0.0h</td>
<td>UINT_MAX/3600</td>
<td>0 in demo mode, else read from module on connect.</td>
<td>Total burn time of the UV lamp [h]. Set the UpperLimit to 0 to disable the associated limit test.</td>
</tr>
<tr>
<td>UvLampOntime</td>
<td>0.0h</td>
<td>UINT_MAX/3600</td>
<td>0 in demo mode, else read from module on connect.</td>
<td>Burn time of the UV lamp since the last time it was turned on. Set the UpperLimit to 0 to disable the associated limit test.</td>
</tr>
<tr>
<td>VisLampIgnitions</td>
<td>0</td>
<td>UINT_MAX</td>
<td>0 in demo mode, else read from module on connect.</td>
<td>VIS lamp ignition counter. Set the UpperLimit to 0 to disable the associated limit test. (DAD only)</td>
</tr>
<tr>
<td>VisLampLifetime</td>
<td>0.0h</td>
<td>UINT_MAX/3600</td>
<td>0 in demo mode, else read from module on connect.</td>
<td>Total burn time of the VIS lamp [h]. Set the UpperLimit to 0 to disable the associated limit test. (DAD only)</td>
</tr>
</tbody>
</table>
### Commands and Tips for Third-Party Devices

#### Property

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisLampOntime</td>
<td>0.0h</td>
<td>UINT_MAX/3600</td>
<td>0 in demo mode, else read from module on connect.</td>
<td>Burn time of the VIS lamp since the last time it was turned on. Set the UpperLimit to 0 to disable the associated limit test. (DAD only)</td>
</tr>
</tbody>
</table>

#### Command

**Autozero**

Performs **Autozero.** The command will be performed immediately when issued manually or at a **Program time <0.000 min.** With a program time of 0.000, the command is executed before the injection program; with a program >0.000, the command is executed at this program time.

#### Name

**DeviceState**

- Idle
- Prepare
- Reset
- Startup
- Whol
- TestWcal
- Scan

**LampState**

- Off
- On
- LampWarmup
- Ignition
- Retry

Detector state.

Lamp state.

#### Diode Array Detector

**Property**

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoactivateVisible_Lamp</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>If set to On, the Tungsten lamp is automatically turned on right after power-up of the detector.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>2nm</td>
<td>400nm</td>
<td>Channel dependent</td>
<td>Signal bandwidth</td>
</tr>
<tr>
<td>BunchWidth</td>
<td>0.01nm</td>
<td>100nm</td>
<td>2nm</td>
<td>Bandwidth of the 3D wavelength</td>
</tr>
</tbody>
</table>
# Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DemoFileName</td>
<td>n/a</td>
<td>n/a</td>
<td>As configured</td>
<td>File name of the demo file. (May contain %d that will be replaced by the sample number)</td>
</tr>
<tr>
<td>MaxAutoStep</td>
<td>0.1s</td>
<td>5.1s</td>
<td>0.1x</td>
<td>Maximum signal and spectra data rate if Step = Auto.</td>
</tr>
<tr>
<td>MaxWavelength</td>
<td>190nm</td>
<td>950nm</td>
<td>400</td>
<td>Maximum 3D wavelength</td>
</tr>
<tr>
<td>MinWavelength</td>
<td>190nm</td>
<td>950nm</td>
<td>190</td>
<td>Minimum 3D wavelength</td>
</tr>
<tr>
<td>PeakWidth</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>Expected minimum peak width (The setting affects the Step: see below).</td>
</tr>
<tr>
<td>RefBandwidth</td>
<td>0;2nm</td>
<td>400nm</td>
<td>Channel dependent</td>
<td>Reference bandwidth (set to 0 if RefWavelength = 0)</td>
</tr>
<tr>
<td>RefWavelength</td>
<td>0;190nm</td>
<td>950nm</td>
<td>Channel dependent</td>
<td>Reference wavelength (0 means: not used)</td>
</tr>
<tr>
<td>SlitWidth</td>
<td>1nm</td>
<td>16nm</td>
<td>4nm</td>
<td>Width of the micro slit (also MWD). A small slit allows using the fine structures of the UV spectrum. A wide slit provides higher sensitivity.</td>
</tr>
<tr>
<td>Step</td>
<td>0.05s</td>
<td>3.2s</td>
<td>0.4s</td>
<td>Signal and spectra data rate (The setting affects the peak width: see below).</td>
</tr>
<tr>
<td>UV_LampRequired</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>If set to On: The detector is not ready for operation if the deuterium lamp is off.</td>
</tr>
<tr>
<td>Visible_Lamp</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Tungsten lamp state</td>
</tr>
<tr>
<td>Visible_LampRequired</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>If set to On: The detector is not ready for operation if the Tungsten lamp is off.</td>
</tr>
<tr>
<td>Wavelength</td>
<td>190nm</td>
<td>950nm</td>
<td>Channel dependent</td>
<td>Signal wavelength</td>
</tr>
</tbody>
</table>

For the PDA/MWD, the relation between the expected peak width and the corresponding step is as follows:

<table>
<thead>
<tr>
<th>Expected peak width [min]</th>
<th>0.00</th>
<th>0.01</th>
<th>0.02</th>
<th>0.05</th>
<th>0.10</th>
<th>0.20</th>
<th>0.40</th>
<th>0.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corresponding step [s]</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
<td>1.60</td>
<td>3.20</td>
</tr>
</tbody>
</table>
For the VWD, the relation is as follows:

<table>
<thead>
<tr>
<th>Expected peak width [min]</th>
<th>0.000</th>
<th>0.005</th>
<th>0.010</th>
<th>0.025</th>
<th>0.050</th>
<th>0.100</th>
<th>0.200</th>
<th>0.400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corresponding step [s]</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.146</td>
<td>0.291</td>
<td>0.582</td>
<td>1.165</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Possible States</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeviceState</td>
<td>Idle, Prepare,</td>
<td>Detector state</td>
</tr>
<tr>
<td></td>
<td>Reset, Startup</td>
<td></td>
</tr>
<tr>
<td>UVLampState</td>
<td>Off, On, Ignition</td>
<td>UV lamp state</td>
</tr>
<tr>
<td>VISLampState</td>
<td>Off, On</td>
<td>VIS lamp state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(DAD only)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnalogAttenuation</td>
<td>-10</td>
<td>1</td>
<td>0</td>
<td>Attenuation of the analog output (signal value that corresponds to the maximum output voltage)</td>
</tr>
<tr>
<td></td>
<td>(= 2^-10 AU)</td>
<td>(= 2 AU)</td>
<td>(= 1 AU)</td>
<td>Note: logarithmic scale</td>
</tr>
<tr>
<td>AnalogOffset</td>
<td>1%</td>
<td>99%</td>
<td>5</td>
<td>Zero offset of the analog output in % of the full output range.</td>
</tr>
<tr>
<td>AnalogRange</td>
<td>0.1V</td>
<td>1.0V</td>
<td>1.0V</td>
<td>Voltage range of the analog output (may be set to 0.1 or 1.0V only).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust_Calibration</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Adjusts the wavelength calibration using the absolute deviations determined by the test.</td>
</tr>
<tr>
<td>D2_Alpha_Deviation</td>
<td>-2.000nm</td>
<td>2.000nm</td>
<td>0</td>
<td>Current deviation of D2 alpha or D2 beta line, ignoring current calibration settings. Valid only after the Test_Calibration command has been executed.</td>
</tr>
</tbody>
</table>
### Commands and Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( D_2 _ \text{Alpha} _ \text{Deviation}_\text{Correction} ) or ( D_2 _ \text{Beta} _ \text{Deviation}_\text{Correction} )</td>
<td>(-2.000 \text{nm})</td>
<td>(2.000 \text{nm})</td>
<td>(0 \text{ in demo mode, else read from module on connect.})</td>
<td>Current calibration setting for the D2 alpha or D2 beta line.</td>
</tr>
<tr>
<td>( D_2 _ \text{Alpha} _ \text{Deviation}_\text{Current} ) or ( D_2 _ \text{Beta} _ \text{Deviation}_\text{Current} )</td>
<td>(-2.000 \text{nm})</td>
<td>(2.000 \text{nm})</td>
<td>(0 \text{ in demo mode, else read from module on connect.})</td>
<td>Current deviation of the D2 alpha or D2 beta line, considering current calibration. Valid only after the \text{Test_Calibration} command has been executed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test_Calibration</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Performs a wavelength calibration test using the D2-alpha and D2-beta lines. You need to remove the flow cell before executing this command. In addition, the UV lamp must be on.</td>
</tr>
</tbody>
</table>

### Diagnostic Commands and Properties

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CellTest</td>
<td>Performs a cell test.</td>
</tr>
<tr>
<td>CellTestEvaluation</td>
<td>Evaluates the cell test by averaging the spectra of all test data. Indicates whether the cell test in the next step is performed with or without cell.</td>
</tr>
<tr>
<td>CellTestInfo</td>
<td></td>
</tr>
<tr>
<td>DarkCurrentTest</td>
<td>Performs a dark current test.</td>
</tr>
<tr>
<td>DarkCurrentTestEvaluation</td>
<td>Evaluates the dark current test by averaging the minimum and maximum values of all selected spectra ranges.</td>
</tr>
<tr>
<td>FilterTest</td>
<td>Performs a holmium filter test.</td>
</tr>
<tr>
<td>IntensityTest</td>
<td>Performs an intensity test.</td>
</tr>
<tr>
<td>IntensityTestEvaluation</td>
<td>Evaluates the intensity test by calculating the minimum and maximum values of the 1024 diodes for all test data.</td>
</tr>
</tbody>
</table>

For more information about the diagnostic functions for the DAD detector, refer to Agilent 1100 HPLC System Diagnostics: DARK CURRENT TEST, CELL TEST, FILTER TEST, and INTENSITY TEST.
The Administrator Help section provides general information and installation instructions for the 1100 HPLC system; refer to Hardware Installation:

Agilent 1100 HPLC System: Overview

Agilent 1100 HPLC System: Installation

Agilent 1100 HPLC System: Fluorescence Detectors

The following command and properties are available (please that it depends on the display Filter level which commands and properties are displayed):

Device Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoActivateLamp</td>
<td>Off</td>
<td>On</td>
<td>If set to On, the lamp is automatically turned on right after power-up.</td>
</tr>
<tr>
<td>BaselineBehavior</td>
<td>Append, Free, Zero</td>
<td></td>
<td>Determines how the baseline behaves after the wavelength or photomultiplier gain has changed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Append: Resets the baseline to the previous position.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free: No adjustment, shifts may occur in the baseline position.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zero: Sets the baseline to 0 LU (luminescence units).</td>
</tr>
<tr>
<td>Dark_Pmt</td>
<td>0</td>
<td>999999</td>
<td>Last value (in counts) for the dark current of the photomultiplier (read-only). The value should not exceed 10000 counts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tip:</strong> This property is used only if an internal calibration was successfully performed via the Test_Calibration command.</td>
</tr>
<tr>
<td>Dark_Reference</td>
<td>0</td>
<td>999999</td>
<td>Last value (in counts) of the dark current for the reference diode (read-only). The value should not exceed 5000 counts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tip:</strong> This property is used only if an internal calibration was successfully performed via the Test_Calibration command.</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>DetectionMode</td>
<td></td>
<td></td>
<td>Specifies the operating mode.</td>
</tr>
<tr>
<td></td>
<td>✓Fluorescence, ✓Phosphorescence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tips:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The property may be set only once and only at retention times &lt;0.000 min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The property can be set to <strong>Phosphorescence</strong> only for detectors with a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>firmware version A.03.6x and higher. In addition, <strong>ScanMode</strong> must be set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to <strong>Off</strong>.</td>
</tr>
<tr>
<td>Emission Deviation_</td>
<td>-12.000</td>
<td>-12.000</td>
<td>Correction value for the emission wavelength as established during</td>
</tr>
<tr>
<td>Absolute</td>
<td></td>
<td></td>
<td><strong>Test_Calibration</strong> as the optimum value (read-only).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tip:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This property is used only if an internal calibration was successfully</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>performed via the <strong>Test_Calibration</strong> command.</td>
</tr>
<tr>
<td>Emission Deviation_</td>
<td>-12.000</td>
<td>-12.000</td>
<td>Currently used correction value for the emission wavelength (read-only).</td>
</tr>
<tr>
<td>Correction</td>
<td></td>
<td></td>
<td><strong>Tip:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This property is used only if an internal calibration was successfully</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>performed via the <strong>Test_Calibration</strong> command.</td>
</tr>
<tr>
<td>EmScanDuration</td>
<td>0</td>
<td>99999</td>
<td>Indicates the time in seconds needed to scan an emission spectrum (read-only).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tip:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To perform meaningful scans, make sure that this time is less than the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>width of the smallest peak. A warning appears if the time exceeds one of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the peak widths defined in the QNT Method.</td>
</tr>
<tr>
<td>EmScanStepSize</td>
<td>1</td>
<td>20</td>
<td>Specifies the wavelength increments at which the detector scans the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>emission spectrum. (You can set this property only if <strong>ScanMode = Emission</strong>.)</td>
</tr>
<tr>
<td>EmScanWhen</td>
<td>None, Apex, AllInPeak, All, AllWithoutSignals</td>
<td></td>
<td>Determines when the scans of an emission spectrum are taken. (You can set this property only if <strong>ScanMode = Emission</strong>.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>For more information, refer to <a href="#">Scan Modes for the Fluorescence Detector</a>.</strong></td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Excitation_Deviation_Absolute</td>
<td>-12.000</td>
<td>-12.000</td>
<td>Correction value for the excitation wavelength as established during Test_Calibration as the optimum value (read-only).</td>
</tr>
<tr>
<td>Tip:</td>
<td></td>
<td></td>
<td>This property is used only if an internal calibration was successfully performed via the Test_Calibration command.</td>
</tr>
<tr>
<td>Excitation_Deviation_Correction</td>
<td>-12.000</td>
<td>-12.000</td>
<td>Currently used correction value for the excitation wavelength (read-only).</td>
</tr>
<tr>
<td>Tip:</td>
<td></td>
<td></td>
<td>This property is used only if an internal calibration was successfully performed via the Test_Calibration command.</td>
</tr>
<tr>
<td>ExScanDuration</td>
<td>0</td>
<td>99999</td>
<td>Indicates the time in seconds needed to scan an excitation spectrum (read-only). (This property can be used only if ScanMode=Excitation.)</td>
</tr>
<tr>
<td>Tip:</td>
<td></td>
<td></td>
<td>To perform meaningful scans, make sure that this time is less than the width of the smallest peak. A warning appears if the time exceeds one of the peak widths defined in the QNT Method.</td>
</tr>
<tr>
<td>ExScanStepSize</td>
<td>1</td>
<td>20</td>
<td>Specifies the wavelength increments at which the detector scans the excitation spectrum. (You can set this property only if ScanMode = Excitation.)</td>
</tr>
<tr>
<td>ExScanWhen</td>
<td>None, Apex, AllInPeak, All, AllWithoutSignals</td>
<td></td>
<td>Determines when the scans of an emission spectrum are taken. (You can set this property only if ScanMode = Excitation.) For more information, refer to Scan Modes for the Fluorescence Detector.</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>FitSpectralRange</td>
<td>No</td>
<td>Yes</td>
<td>When set to <strong>Yes</strong>, the spectral ranges have to be set in such a way that there is always a difference of at least 25 nm between the shortest emission wavelength and the longest excitation wavelength. This avoids that emission is disturbed by stray light. <strong>Tips:</strong> The property may be set only once and only at retention times &lt;0.000 min. A warning appears if, in a program, the distance between the longest excitation wavelength and the shortest emission wavelength is less than 25 nm.</td>
</tr>
<tr>
<td>HighPowerFlashes</td>
<td>0</td>
<td>99999</td>
<td>Number of lamp flashes at high power (in thousands). <strong>HighPowerFlashes.Value</strong> indicates the current value. Set the <strong>HighPowerFlashes.UpperLimit</strong> to 0 to disable the associated limit test.</td>
</tr>
<tr>
<td>LampEnergyReference</td>
<td>Off</td>
<td>On</td>
<td>Set to <strong>On</strong> to compensate for variations in light intensity of the lamp, using a reference diode. This may improve the signal-to-noise ratio.</td>
</tr>
<tr>
<td>LampFlashRate</td>
<td>Standard, Economy</td>
<td>Specifies the rate at which the lamp pulses: <strong>Economy</strong>: 74 Hz - prolongs the lamp life. <strong>Standard</strong>: 296 Hz - increases the detector sensitivity.</td>
<td></td>
</tr>
<tr>
<td>LampOnOnlyDuringRun</td>
<td>No</td>
<td>Yes</td>
<td>Specifies the lamp state when no analysis is running: <strong>Yes</strong>: Turns the lamp off after each analysis. <strong>No</strong>: The lamp keeps burning after each analysis.</td>
</tr>
<tr>
<td>LampRequired</td>
<td>No</td>
<td>Yes</td>
<td>Specifies whether the lamp is required for the next analysis: <strong>Yes</strong>: If the lamp is turned off, the detector is in NotReady state. <strong>No</strong>: The configuration includes several detectors; the fluorescence detector is not required for the next analysis.</td>
</tr>
<tr>
<td>LowPowerFlashes</td>
<td>0</td>
<td>99999</td>
<td>Number of lamp flashes at low power (in thousands). <strong>LowPowerFlashes.Value</strong> indicates the current value. Set the <strong>LowPowerFlashes.UpperLimit</strong> to 0 to disable the associated limit test.</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PeakWidth</td>
<td>&lt;0.005, &gt;0.005, &gt;0.010, &gt;0.025, &gt;0.050, &gt;0.100, &gt;0.200, &gt;0.400</td>
<td>Specifies the detector's response time (in minutes).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tip:</strong> The property may be set only once and only at retention times &lt;0.000 min.</td>
</tr>
<tr>
<td>PeakWidthPD</td>
<td>&lt;0.005, &gt;0.005, &gt;0.010, &gt;0.025, &gt;0.050, &gt;0.100, &gt;0.200, &gt;0.400</td>
<td>Select from which signal width the peak shall be recognized. This setting plus the Threshold (see below) determine the internal peak recognition of the device firmware. For EmScanWhen or ExScanWhen = Apex or AllnPeak, scanning is performed only if a peak is recognized in the first channel. Specifies the expected peak width (in minutes) for the internal peak detector.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tip:</strong> The property may be set only once and only at retention times &lt;0.000 min.</td>
</tr>
<tr>
<td>PhosphorescenceDelay</td>
<td>0.00</td>
<td>5000.00</td>
<td>Specifies the time (in µs) for which the lamp must be on before the detector starts recording data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tips:</strong> This property can be set only if DetectionMode = Phosphorescence. The property may be set only once and only at retention times &lt;0.000 min.</td>
</tr>
<tr>
<td>PhosphorescenceGate</td>
<td>20.00</td>
<td>5000.00</td>
<td>Specifies the time (in µs) during which data is recorded after the lamp was on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tips:</strong> This property can be set only if DetectionMode = Phosphorescence. The property may be set only once and only at retention times &lt;0.000 min.</td>
</tr>
<tr>
<td>PMTGain</td>
<td>0</td>
<td>18</td>
<td>Specifies the photomultiplier gain. (A typical setting is between 10 and 15.) Each step approximately doubles the gain. Use lower values for very high concentrations. Higher values may improve the signal-to-noise ratio.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tip:</strong> The property may be set only once and only at retention times &lt;0.000 min.</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>------</td>
<td>----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive, Negative</td>
<td>Specifies the signal polarity. Set the polarity to the expected signal polarity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tip:</strong> The property may be set only once and only at retention times &lt;0.000 min.</td>
</tr>
<tr>
<td>RemainingLifetime</td>
<td>0</td>
<td>100</td>
<td>Remaining lifetime of the lamp (in percent). RemainingLifetime.Value indicates the current percentage. Set the RemainingLifetime.UpperLimit to 0 to disable the associated limit test.</td>
</tr>
<tr>
<td>ScanEndEmWavelength</td>
<td>281</td>
<td>900</td>
<td>Specifies the emission wavelength at which the scan should end. (This property is used only if ScanMode = Emission.) In addition, the following must be true: ScanEndEmWavelength &gt;ScanStartEmWavelength and &gt;ExWavelength</td>
</tr>
<tr>
<td>ScanEndExWavelength</td>
<td>201</td>
<td>700</td>
<td>Specifies the excitation wavelength at which the scan should end. (This property is used only if ScanMode = Excitation.) In addition, the following must be true: ScanEndExWavelength &gt;ScanStartExWavelength and &lt;EmWavelength</td>
</tr>
<tr>
<td>ScanMode</td>
<td>Off, Emission Excitation</td>
<td>Specifies the scan mode. For more information, refer to Scan Modes for the Fluorescence Detector.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Tips:</strong> The property may be set only once and only at retention times &lt;0.000 min. Changing the mode takes about 5-10 seconds. During this time, the detector is in NotReady state.</td>
</tr>
<tr>
<td>ScanStartEmWavelength</td>
<td>280</td>
<td>899</td>
<td>Specifies the emission wavelength at which the scan should start. (This property is used only if ScanMode = Emission.) In addition, the following must be true: ScanStartEmWavelength &lt;ScanEndEmWavelength and &gt;ExWavelength</td>
</tr>
</tbody>
</table>
### Property

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScanStartExWavelength</td>
<td>200</td>
<td>699</td>
<td>Specifies the excitation wavelength at which the scan should start. (This property is used only if ScanMode = Excitation.) In addition, the following must be true: ScanStartExWavelength &lt; ScanEndExWavelength and &lt; EmWavelength.</td>
</tr>
<tr>
<td>Threshold</td>
<td>0.0001</td>
<td>1^5</td>
<td>Select from which signal height in LU (Luminescence Units) the peak shall be recognized. This setting plus PeakWidthPD (see above) determine the internal peak recognition of the device firmware. For EmScanWhen or ExScanWhen = Apex or AllnPeak, scanning is performed only if a peak is recognized in the first channel. Specifies the height of the smallest expected peak in LU (Luminescence Units). The detector ignores all peaks below this threshold value.</td>
</tr>
</tbody>
</table>

#### Tip:
The default setting is that the current values are read from the detector.

### Device Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abort_Calibration</td>
<td>Aborts the detector's internal calibration procedure. <strong>Tip:</strong> This command can be performed only when the instrument is performing a calibration.</td>
</tr>
<tr>
<td>Adjust_Calibration</td>
<td>After the internal calibration of the detector, you can use this command to update the internal calibration settings, based on the test. That means that the measured Excitation_Deviation_Absolute value is assigned to Excitation_Deviation_Correction and the measured Emission_Deviation_Absolute value to Emission_Deviation_Correction. <strong>Tip:</strong> This command can be used only if an internal calibration was successfully performed via the Test_Calibration command.</td>
</tr>
</tbody>
</table>
870 Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DarkCurrentTest</td>
<td>Performs a dark current test. The results of the last dark current test are saved as properties (Dark_Reference and Dark_Pmt, see above).</td>
</tr>
<tr>
<td><strong>Tip:</strong></td>
<td>This command can be performed only if the detector is idle. In addition, the lamp must be on.</td>
</tr>
<tr>
<td>PmtTest</td>
<td>Calculates an appropriate photomultiplier gain, based on the settings.</td>
</tr>
<tr>
<td><strong>Tip:</strong></td>
<td>This command can be performed only if the detector is idle.</td>
</tr>
<tr>
<td>Scan</td>
<td>Saves the spectrum scan.</td>
</tr>
<tr>
<td><strong>Tip:</strong></td>
<td>This command can be performed only during data acquisition. In addition, verify that ScanMode is not set to Off and that ScanWhen is set to All.</td>
</tr>
<tr>
<td>Test_Calibration</td>
<td>Starts the detector's internal calibration procedure and updates the associated properties with the results.</td>
</tr>
<tr>
<td><strong>Tip:</strong></td>
<td>This command can be performed only if the detector is idle. In addition, the lamp must be on.</td>
</tr>
</tbody>
</table>

### Channel Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EmWavelength</td>
<td>200</td>
<td>700</td>
<td>Emission wavelength in nm</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td></td>
<td>Off: No data is recorded on this channel. This improves the signal-to-noise ratio on the other channels because more single values are averaged.</td>
</tr>
<tr>
<td></td>
<td>ZeroOrder</td>
<td></td>
<td>ZeroOrder: The monochromator grating serves as mirror. The entire emission spectrum is recorded on the channel.</td>
</tr>
<tr>
<td><strong>Tips:</strong></td>
<td>The EmWavelength must be longer than all used excitation wavelengths. In addition, it must be identical for all channels in programs with ScanMode = Excitation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ExWavelength</td>
<td>200 to 700 nm, Off, ZeroOrder</td>
<td></td>
<td>Excitation wavelength in nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Off</strong>: No data is recorded on this channel. This improves the signal-to-noise ratio on the other channels because more single values are averaged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>ZeroOrder</strong>: The monochromator grating serves as mirror. The entire lamp spectrum is used for excitation. Overlaps with the emission wavelength result in increased stray light and thus, in increased background noise.</td>
</tr>
</tbody>
</table>

**Tip:**

The ExWavelength must be shorter than all used emission wavelengths. In addition, it must be identical for all channels in programs with ScanMode = Emission.

**Tip:**

The default setting is that the current values are read from the detector.

For more information, refer to:

- Agilent 1100 HPLC System: Scan Modes for the Fluorescence Detector
- Agilent 1100 HPLC System: Example Programs for the Fluorescence Detector
- Agilent 1100 HPLC System: Tips for Lamp Commands
Agilent 1100 HPLC System: Program Tips

- **Flow ramps** ($\Rightarrow$Flow and $\Rightarrow$%B, %C, %D commands) cannot be executed at negative program times ($t < 0$) or in $\Rightarrow$Programs without an **Inject** command. (The pumps of the 1100 HPLC System do not support this.)

- The $\Rightarrow$Inject command and all **sample preparation** commands are only accepted at the time $t = 0$. The $\Rightarrow$Autosampler of the 1100 HPLC System executes these commands as a block during the transition from Prerun to Run following a possibly specified **UV.Autozero** command.

- Interpretation of the **Inject** command with explicit sample preparation: If sample preparation commands are specified the position of the required inject command among these commands is irrelevant. The actual injection occurs either explicitly via the **Valve ValvePosition=MainpassOnStart** command or automatically at the end of the sample preparation if the command is not given. (See the example below.)

- Changes to the **3D field parameter** may result in an automatic $\Rightarrow$Autozero for the PDA. During the execution of the autozero (see **UV.NotReadyCauses(Prepare)** property), no further command must be given that would result in another autozero. If necessary, this can be achieved via the **Wait UV.Ready** command. During the execution of the autozero, no Run must be started. Therefore, the Program Wizard adds a Wait UV.Ready command before the Inject command.

**Hints for manual program creation**

Programs for the 1100 HPLC System that were developed manually should include a $\Rightarrow$Wait command before the **Inject** command for each module:

```
0.000 UV.Autozero
 Wait UV.Ready and ColumnComp.Ready and
 Sampler.Ready and Pump.Ready

Inject
 3DFIELD.AcqOn
 UV_VIS_1.AcqOn
 UV_VIS_2.AcqOn
```
UV_VIS_3.AcqOn
UV_VIS_4.AcqOn
UV_VIS_5.AcqOn

(These commands are automatically inserted if the Program Wizard is used.)

**Note:**

Generally, a time should be given at the beginning of a program (pump and detector settings, such as at the time “-1.000”) thus defining a time for each command.

**Example for a user-defined wash and injection program**

```
0.000 Valve ValvePosition=Bypass
; Washes from vial 91 to vial 92
 Draw Volume=Maximum, Source=Vial, Vial=91
 Dispense Volume=Maximum, Source=Vial, Vial=92
; Draws the sample
 Draw Volume=InjectVolume, Source=SampleVial
 Needle Function=Seat
 Valve ValvePosition=MainpassOnStart
; Injection performed
; Option: further steps after the injection, e.g., for washing:
 Valve ValvePosition=Bypass
; Washes from vial 91 to vial 92
; Draw Volume=Maximum, Source=Vial, Vial=91
; Dispense Volume=Maximum, Source=Vial, Vial=92
; Valve ValvePosition=Mainpass
 UV.Autozero
 Wait UV.Ready and ColumnComp.Ready and Sampler.Ready and Pump.Ready
 Inject
```

Also, see **Agilent 1100 HPLC System: Program Example for Derivatization**.
Data acquisition

The detectors of the 1100 HPLC System do not always record data until the program end. Thus, it may happen that data acquisition ends approximately 0.3 min before the AcqOff command so that raw data are not available in Chromeleon until the end of the program. (Note: This corresponds to the ChemStation behavior.) To avoid this, perform the End command 0.5 (or more) minutes after the AcqOff command:

```
0.000 InjectWait UV.Ready and ColumnComp.Ready and Sampler.Ready and Pump.Ready
UV_VIS_1.AcqOn(...)7.500 UV_VIS_1.AcqOff8.000 End
```

Example for a shutdown program

To shut down the 1100 HPLC System, use a shutdown program. For example:

```
0.000 Flow = 0
 Wait UV.Ready and ColumnComp.Ready and Sampler.Ready and Pump.Ready
%B = 100
UV_Lamp = Off
UV.Disconnect
End
```

At the end of each Chromeleon sample, the program must make sure (for technical reasons) that all connected modules of the 1100 HPLC System are ready. If you turn off the detector lamp, the unit is no longer ready for operation. Therefore, the UV_Lamp.Off command can be performed only after the readiness for operation has been ensured. However, if you add a UV.Disconnect command to the program, the sample will be finished as expected.

**Note:**

Select Blank as sample type to process the PGM File without an Inject command.

The Administrator Help section provides general information and installation instructions for the 1100 HPLC system; refer to Hardware Installation ☕️ Agilent 1100 HPLC System: Overview and ☕️ Agilent 1100 HPLC System: Installation.
Agilent 1100 HPLC System: Example for a Derivatization Program

The Agilent 1100 HPLC System independently processes sample preparation programs. Thus, time control by Chromeleon is not supported. To wait during sample preparation, you can only use the Sampler.Wait Time command.

0.000 UV.Autozero  
  Flow = 0.450  
  %B = 0.0  
  Wait UV.Ready and ColumnComp.Ready and Sampler.Ready and Pump.Ready

;Derivatization program:  
Sampler.Valve ValvePosition=Bypass  
Draw Volume=5.0, SyringeSpeed=200, Source=Vial, Vial=11  
Draw Volume=1.0, SyringeSpeed=200, Source=Vial, Vial=12  
Draw Volume=0.0, SyringeSpeed=200, Source=Vial, Vial=14  
;Draws the sample:  
Draw Volume=1.0, SyringeSpeed=200, Source=SampleVial  
;Mixes 6 times:  
Mix Volume=8.0, SyringeSpeed=Maximum, Repeat=6, Source=Seat  
Draw Volume=1.0, SyringeSpeed=200, Source=Vial, Vial=13  
Draw Volume=0.0, SyringeSpeed=200, Source=Vial, Vial=15  
;Mixes 3 times:  
Mix Volume=9.0, SyringeSpeed=Maximum, Repeat=3, Source=Seat  
Sampler.Wait Time=0.5 ; falls notwendig  
Sampler.Valve ValvePosition=MainpassOnStart ;;(*)

;Wash program:  
;you can enter additional steps, e.g., to wash the needle.  
These steps are performed only after the injection, i.e.,  
while the sample is running.

Inject  
;Executes the commands of the wash and sample preparation  
programs. Injection to the column is performed only after the  
line (*) has been reached.

Flow = 0.450  
%B = 0  
UV_VIS_1.AcqOn  
UV_VIS_2.AcqOn

In a user-defined wash and/or sample preparation program, verify that you have entered all desired steps. After the =>Inject has been issued,  
Chromeleon starts processing the single steps to prepare injection.  
However, the actual injection is performed only when the Valve ValvePosition=MainpassOnStart command has been reached.
Tip:

Keep in mind that you have to enter the **ValveValvePosition=MainpassOnStart** command as the last step of the sample preparation program.

Also, refer to [Agilent 1100 HPLC System: Program Tips](#).

---

**Agilent 1100 HPLC System: Scan Modes for the Fluorescence Detector**

The [Fluorescence] detector supports the following operating modes:

**ScanMode = Off**: The monochromators are set to a fixed wavelength. In this mode, the detector can acquire the emission signal only for this wavelength. It is possible to change the wavelength setting during a sample run. However, it is not possible to acquire scans. Compared to the other operating modes, data acquisition is performed with the best signal-to-noise ratio.

**ScanMode = Excitation/Emission**: One monochromator is set to a fixed wavelength; the other monochromator rotates at 4000 rpm. In this way, it is possible to perform measurements at different wavelengths quasi-parallel. You can record data from up to four emission channels. In addition, you can determine whether and when you want to perform spectra scans:

- **ScanWhen = None**: No spectra scans are recorded. Use this mode if you want to record data from several channels and no spectra.
- **ScanWhen = AllInPeak** or **Apex** supports data acquisition from several channels and automatically saves the scans, based on peak detection from the fluorescence detector. The **PeakWidthPD** and **Threshold** parameters determine the peak width and the peak height for this. Scanning is performed only if the device firmware recognizes a peak via these parameters.
- **ScanWhen = All**: Spectra are not saved automatically. Nevertheless, a Scan command is provided. You can use this command at any time to save the spectrum (either by using it in a program or by executing a trigger).
**Note:**

If no spectrum is recorded (ScanWhen = None), the signal-to-noise ratio is only slightly lower as for ScanMode = Off. If spectra are recorded (ScanWhen = AllInPeak, Apex, All), the signal-to-noise ratio is approximately half the ratio as for ScanMode = Off.

Also, refer to *Agilent 1100 HPLC: Program Examples for the Fluorescence Detector.*

For information about the commands for fluorescence detector control, refer to *Agilent 1100 HPLC System: Fluorescence Detectors.*

The Administrator Help section provides general information and installation instructions for the 1100 HPLC system; refer to Hardware Installation:

- Agilent 1100 HPLC System: Overview
- Agilent 1100 HPLC System: Installation

*Agilent 1100 HPLC System: Program Examples for the Fluorescence Detector*

1. One channel, no spectra acquisition

Set the operating mode to ScanMode = Off.

```
Fluorescence.PeakWidth = 0.200
ScanMode = Off
Emission_1.ExWavelength = 335
Emission_1.EmWavelength = 390
Emission_1.Step = Auto
Emission_1.Average = On

0.000 Wait Sampler.Ready and Fluorescence.Ready
 Inject
 Emission_1.AcqOn

2.000 Emission_1.AcqOff
 End
```
2. Several channels, no spectra acquisition

Set the operating mode to ScanMode = Emission or Excitation. In addition, set EmScanWhen (and/or ExScanWhen) to None.

**Note:**

Set ExWavelength (or EmWavelength, respectively) to Off for all channels for which data acquisition will not be performed. The other wavelength must be identical for all channels.

```
Fluorescence.PeakWidth = 0.200
ScanMode = Emission
EmScanWhen = None
PeakWidthPD = 0.200
Threshold = 1.000
Emission_1.ExWavelength = 335
Emission_1.EmWavelength = 390
Emission_1.Step = Auto
Emission_1.Average = On
Emission_2.ExWavelength = 335
Emission_2.EmWavelength = 450
Emission_3.ExWavelength = Off
Emission_3.EmWavelength = 390
Emission_4.ExWavelength = Off
Emission_4.EmWavelength = 390
```

0.000 Wait Sampler.Ready and Fluorescence.Ready
Inject
Emission_1.AcqOn
Emission_2.AcqOn

2.000 Emission_1.AcqOff
Emission_2.AcqOff
End

3. Peak-dependent spectra acquisition

Set the operating mode to ScanMode = Emission (or Excitation). In addition, set EmScanWhen (or ExScanWhen, respectively) to Apex (only at the peak maximum) or to AllInPeak (= all spectra during the peaks).
Tip:
Verify that the settings for PeakWidthPD and Threshold match the peaks recorded on the first channel (Emission_1).

```
Fluorescence.PeakWidth = 0.200
ScanMode = Emission
EmScanWhen = Apex
PeakWidthPD = 0.200
Threshold = 1.000
Emission_1.ExWavelength = 335
Emission_1.EmWavelength = 390
Emission_1.Step = Auto
Emission_1.Average = On
Emission_2.ExWavelength = Off
Emission_2.EmWavelength = 390
Emission_3.ExWavelength = Off
Emission_3.EmWavelength = 390
Emission_4.ExWavelength = Off
Emission_4.EmWavelength = 390
```

0.000 Wait Sampler.Ready and Fluorescence.Ready
Inject
Emission_1.AcqOn

2.000 Emission_1.AcqOff
End

4. User-defined spectra acquisition

Set the operating mode to ScanMode = Emission (or Excitation). In addition, set EmScanWhen (or ExScanWhen, respectively) to All:

```
Trigger DoScan Emission_1.Signal > 10.000
Scan
EndTrigger
```

```=`
Fluorescence.PeakWidth = 0.200
ScanMode = Emission
EmScanWhen = All
Emission_1.ExWavelength = 335
Emission_1.EmWavelength = 390
Emission_1.Step = Auto
Emission_1.Average = On
Emission_2.ExWavelength = 340
Emission_2.EmWavelength = 390
Emission_2.Step = Auto
Emission_2.Average = On
Emission_3.ExWavelength = Off
Emission_3.EmWavelength = 390
Emission_4.ExWavelength = Off
Emission_4.EmWavelength = 390
```
0.000  Wait Sampler.Ready and Fluorescence.Ready
      Inject
      Emission_1.AcqOn
      Emission_2.AcqOn

1.000  Scan

2.000  Emission_1.AcqOff
      Emission_2.AcqOff
      End

The DoScan \(\Rightarrow\) Trigger determines that a fluorescence spectrum is recorded when the signal of the \textit{Emission\_1} channel exceeds 10.

Also, refer to \textit{Agilent 1100 HPLC System: Scan Modes for the Fluorescence Detector}.

For information about the commands for fluorescence detector control, refer to \textit{Agilent 1100 HPLC System: Fluorescence Detectors}.

\textbf{Agilent 1100 HPLC System Fluorescence Detector: Tips for Lamp Commands}

Chromeleon supports several commands for defining the state of the Xenon lamp of the fluorescence detector that is installed in the 1100 HPLC System. Depending on the situation, use one of the first three settings in your PGM Files:

1. No data acquisition

The fluorescence detector is available but data acquisition is not performed for fluorescence data (e.g., only UV data are recorded):

\begin{verbatim}
LampRequired = No
Lamp = Off
LampOnOnlyDuringRun = No
\end{verbatim}

\textbf{Tip:}

\textit{If the PGM File contains an Emission\_n.AcqOn command, the PGM File or the batch does not pass the Ready Check.}
2. The lamp is turned on only if required

The fluorescence detector is used for data acquisition. However, the lamp is turned on only if required.

LampRequired = Yes
Lamp = On
LampOnOnlyDuringRun = Yes

The lamp is turned off after each sample. However, the instrument remains ready for operation after the analysis. The lamp is automatically turned on when the next sample is started.

Tip:

It may be necessary to turn on the lamp (i.e., to issue a Lamp=On command) manually before starting the analysis of the first sample; e.g., if the detector is in NotReady state.

3. The lamp is burning permanently

The fluorescence detector is used for data acquisition. The lamp is burning permanently.

LampRequired = Yes
Lamp = On
LampOnOnlyDuringRun = No

Tip:

This reduces the lamp’s life cycle. However, analysis is performed more quickly because the lamp is warmed up only once (at the very beginning); it does not need to warm up before each sample (see 2. above).

4. Not allowed

You should not combine the following commands:

LampRequired = Yes
Lamp = Off
LampOnOnlyDuringRun = No

With this sequence of commands, the Ready Check would fail. The detector remains in NotReady state.
For more information, refer to:

- Agilent 1100 HPLC System: Scan Modes for the Fluorescence Detector
- Agilent 1100 HPLC System: Example Programs for the Fluorescence Detector
- Agilent 1100 HPLC System: Tips for Lamp Commands

### Agilent 1100 HPLC System: Checking the Solvent Liquid Level

For the 1100 HPLC System, you can have Chromeleon check the liquid level for the single solvents and determine the system's reaction if a specified minimum volume is not met. The following commands are available (it depends on the display >Filter level which commands are displayed):

<table>
<thead>
<tr>
<th>Command</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EmptySolventError</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Determine how the system reacts when the SolventNotReadyLimit is not met:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On = The pump is turned off immediately. (The red LED lights.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off = The system waits until processing of the running sample is finished and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>then turns off the pump. The pump is in NotReady state; the yellow LED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lights.</td>
</tr>
<tr>
<td>SolventFillingXX</td>
<td>0.00 l</td>
<td>1000.00 l</td>
<td>n/a</td>
<td>Enter the volume in [l] with which the bottle is originally filled (XX =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1, A2, B1 or B2).</td>
</tr>
<tr>
<td>SolventNotReadyLimit</td>
<td>0.00 l</td>
<td>1000.00 l</td>
<td>0.00 l</td>
<td>Determine the minimum filling volume. If the actual solvent volume is below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>this value a warning appears.</td>
</tr>
</tbody>
</table>

A meaningful setting for SolventNotReadyLimit would be to enter a volume that is large enough so that the last sample can be completely processed in any case. If the EmptySolvent Error is set to Off, even the last sample can be processed when the SolventNotReadyLimit has been reached. The pump is stopped when sample processing is complete.
Tip:

Older pump versions, e.g., with firmware version A.01.06, do not yet support checking the solvent liquid level. For these pumps, select the Disable Solvent Limits Features option on the Options tab page in the Server Configuration program. (For more information about the program, refer to Software Installation and Communication The Server Configuration Program in the Administrator Help section.)

The Administrator Help section provides general information and installation instructions for the 1100 HPLC system; refer to Hardware Installation:

Agilent 1100 HPLC System: Overview

Agilent 1100 HPLC System: Installation
Agilent 1100 HPLC System: Diagnostic Functions

In Chromeleon, the HP1100.pan control panel supports the different diagnostic functions for the Agilent 1100 HPLC system. Click Diagnostic Functions to open the diagnostic panel. To perform a test, click the related button:
Chromeleon supports the following tests:

Pump:
- Pressure Test
- Leak Test

Autosampler:
- Injector Steps
- Gripper Verification

Photodiode Array Detector (DAD):
- Dark Current Test
- Cell Test
- Filter Test
- Intensity Test
Agilent 1100 HPLC System Diagnostics: Pressure Test

The pressure test allows you to test the pressure resistance of the system up to 400 bar. Chromeleon supports this test for the following pumps: G1312 (binary pump) and G1311 (quaternary) pump. To perform the test, click the button for the pump on the main diagnostic panel.

A subpanel is opened, guiding you through the test similar to a wizard:

1. **Isopropanol**
   - Connect a isopropanol solvent reservoir to channel A(2).

2. **Block**
   - Seal the column compartment outlet with a blank nut.

3. **Open valve**
   - Open the purge valve.

4. **Flush**
   - Flush the system, using isopropanol from channel A(2).
     - (Pumps without degasser: Flush 2 minutes. Pumps with degasser: Flush 12 minutes.)

Follow the instructions on the right. (The description below refers to a G1312 pump with solvent selector valve). Clicking **Next >** takes you to the next step.
5. Close valve  Close the purge valve.

6. Run  This step starts the pressure test. The pump delivers at a flow rate of 0.51 ml/min until the pressure reaches 390 bar. The test results appear in the audit trail on the right.

7. Open valve  Open the purge valve and remove the blank nut.

Tips:

To close the subpanel, click Cancel or Finish. This ensures that the pump is in a consistent state afterward.

For more information, refer to the instrument manual for the pump.

Agilent 1100 HPLC System Diagnostics: Leak Test

The leak test allows you to test system leakage. Chromelone supports this test for the following pumps: G1312 (binary pump) and G1311 (quaternary) pump. To perform the test, click the button for the pump on the main diagnostic panel. A subpanel is opened, guiding you through the test similar to a wizard:
Follow the instructions on the right. (The description below refers to a G1312 pump with solvent selector valve). Clicking Next takes you to the next step.

1. **Isopropanol**
   - Connect a isopropanol solvent reservoir to channels A(2) and B(2).

2. **Open valve**
   - Open the purge valve.

3. **Flush**
   - Flush the system with isopropanol from channels A(2) (51%) and B(2) (49%). (Pumps without degasser: Flush 2x2 minutes. Pumps with degasser: Flush 2x12 minutes.)

4. **Close valve**
   - Close the purge valve.

5. **Install cap.**
   - Install the restriction capillary G1313-87305.

6. **Flush**
   - Click the button to flush the system with isopropanol from channels A(2) (50%) and B(2) (50%).

7. **Replace cap.**
   - Replace the restriction capillary with a blank nut.

8. **Open valve**
   - Open the purge valve.

9. **Init pump**
   - Initialize the pump.

10. **Close valve**
    - Close the purge valve.

11. **Run**
    - This step starts the leak test. The LeakTestRun command is slightly different for the binary pump (G1312) and then quaternary pump (G1311). The results appear in the audit trail on the right.

12. **Open valve**
    - Open the purge valve and remove the blank nut.

The leak test includes several ramps and plateaus that are slightly different for the binary pump (G1312) and the quaternary pump (G1311). (For a detailed description, refer to the instrument manual for the pump.)

For the G1311 pump, the leak test is successful:

a) If the pressure reaches a certain value for the plateaus, e.g., 100 bar for the first plateau,

b) If there is no increase in pressure on the first two plateaus, and

c) If the pressure increase on the third plateau does not exceed 2 bar.
**Tips:**

To close the subpanel, click Cancel or Finish. This ensures that the pump is in a consistent state afterward.

For more information, refer to the instrument manual for the pump.

---

**Agilent 1100 HPLC System Diagnostics: Injector Steps**

The injector steps test allows you to check the different injector functions. Chromelone supports this test for the following autosamplers: G1329 and G1367 (wellplate sampler). To perform the test, click the button for the autosampler on the main diagnostic panel.

A subpanel is opened providing buttons for the different steps. First, enter the sample position in and the injection volume in the related input fields:
Click a button to perform the following operations:

**Sampler G1329**

- **Valve to bypass**: Switches the injection valve into the bypass position.
- **Plunger home**: Moves the plunger into the home position.
- **Needle up**: Moves the needle arm to its topmost position.
- **Vial to seat**: Positions the specified vial in the seat.
- **Needle into sample**: Descends the needle into the vial.
- **Draw**: Draws the specified injection volume.
- **Needle up**: Moves the needle arm to its topmost position.
- **Vial to tray**: Returns the vial to the tray.
- **Needle into seat**: Descends the needle into the needle seat.
- **Valve to mainpass**: Switches the valve into the inject position.

**Tip:**

For the **G1367 Wellplate-Sampler**, the needle is moved to the specified sample position. Therefore, the **Move to location** button is available instead of the **Vial to seat** and **Needle into sample** buttons.

- **Move to location**: Moves the needle to the specified position.

**Tip:**

For more information, refer to the instrument manual for the autosampler.
Agilent 1100 HPLC System Diagnostics: Gripper Verification

The gripper verification test allows you to check the different functions of the gripper of the G1329 autosampler. To perform the test, click the button for the autosampler on the main diagnostic panel.

A subpanel is opened providing buttons for the different tests. First, enter the sample position in the **Position** field:

![Gripper Verification Subpanel]

Click a button to perform the following operation:

- **Move to position**  Moves the gripper to the specified position.
- **Pick vial at position**  Picks the vial at the specified position.
- **Put vial at position**  Returns the vial to the specified position.
- **Home**  Moves the gripper to its home position.

**Tip:**

*For more information, refer to the instrument manual for the autosampler.*
Agilent 1100 HPLC System Diagnostics: Dark Current Test

The dark current test allows you to check the dark current of the diode array detector. To perform the test, click **Dark Current Test** on the main diagnostic panel. A subpanel is opened. Click **Start Test** to start the measurement and compare the result to the limits:

![Dark Current Test subpanel](image)

The test is successful when the measured dark current is within the limits. Click **Eval Test** to recheck the measurement.

**Tip:**

For more information, refer to the instrument manual for the diode array detector.
Agilent 1100 HPLC System Diagnostics: Cell Test

The cell test allows you to check the detector flow cell by measuring the light intensity of the deuterium and tungsten lamps over the entire wavelength range (190 - 905 nm). To perform the test, click Cell Test on the main diagnostic panel. A subpanel is opened, listing the test steps. Perform the steps in the listed order:

1. If the flow cell is not yet installed, install the cell. Fill the cell with water.
2. Click Start test with cell to measure the cell’s light intensity.
3. Remove the cell from the light path.
4. Click Start test without cell to measure the light intensity without the cell.

The results appear in the audit trail section of the panel:
The final result is the ratio of the intensity with and without cell (here: 25,000/38,000 = 0.66).

**Tip:**

For more information, refer to the instrument manual for the diode array detector.

---

**Agilent 1100 HPLC System Diagnostics: Filter Test**

The filter test checks the holmium oxide filter of the diode array detector. During the measurement, the holmium oxide filter is first installed in the light path and then removed. To perform the test, click **Filter Test** on the main diagnostic panel.

On the subpanel, click **Start** to start the test.

**Tip:**

For more information, refer to the instrument manual for the diode array detector.
Agilent 1100 HPLC System Diagnostics: Intensity Test

The intensity test allows you to check the intensity of the diode array detector. To perform the test, click Intensity Test on the main diagnostic panel.

A subpanel is opened. Click **Start** to start the measurement and compare the results to the limits:

The test is successful if the measured intensities are within the limits. Click **Eval** to recheck the measurement.

**Tip:**

*For more information, refer to the instrument manual for the diode array detector.*
Agilent 1100 HPLC System: Troubleshooting

- An error occurs if one of the single devices of the HP 1100 HPLC system is turned off while it is still connected; for example:

  [Abort] 08:12:04 {UV} Fatal device notification (configuration change)

  In this case, re-start the Chromeleon server.

- If the pump stops delivering and the red LED lights, although no leak or any other obvious hardware problem could be detected, this may be due to the settings made for checking the solvent liquid level. This also applies if the pump does not return to the Ready state after Motor = On and the yellow LED continues to light. For more information about these commands, refer to Commands and Tips for Third-Party Devices Agilent 1100 HPLC System: Checking the Solvent Liquid Level.

- If the Communication error: LICOP command not acknowledged. (RE0503 command unknown (outdated firmware?)) error message appears after the installation of the pump, select the Disable Sovent Limit Features check box on the Options tab page.

- The following message may appear for detectors:

  [Warning] 15:10:47 1.257 {UV} Raw data delivered by detector has ended prematurely. Finishing acquisition on all channels.

  The reason is that the detectors of the 1100 HPLC System do not always record data until the end of the program. Thus, it may happen that data acquisition ends approximately 0.3 min before the AcqOff command so that raw data are not available in Chromeleon until the end of the program. (Note: This corresponds to the ChemStation behavior.) To avoid this, perform the End command 0.5 (or more) minutes after the AcqOff command:

  0.000 InjectWait UV.Ready and ColumnComp.Ready and Sampler.Ready and Pump.Ready
  UV_VIS_1.AcqOn (...) 7.500 UV_VIS_1.AcqOff 8.000 End

- When connecting, the 1100 HPLC system sends different device notifications to the Audit Trail. Usually, these notifications are for information purposes only. They may facilitate troubleshooting in case of system failure.
• It may happen that the fluorescence detector remains in Not Ready state after the detector and the lamp have been turned on. In this case, the yellow LED on the detector is on and Chromeleon displays the following message: **Initializing excitation monochromator, initializing emission monochromator**. Execute the **Fluorescence.Reset** command to remedy the situation.

• If your system does not reach the Ready state, check the NotReadyCauses property and take appropriate remedial action.

• Dionex recommends performing blank runs with injection. Specify vial that contain solvent as position, and then specify the injection command as follows:

  - **Inject Blank=Inject**

The sampler of the 1100 HPLC system is running as well thus, improving synchronization of the entire system.
## Agilent 1050 HPLC System: UV Detector

The following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

### Device properties and commands

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamp</td>
<td>Off</td>
<td>On</td>
<td>Read from the device on connect (On in Demo Mode).</td>
<td>Lamp state.</td>
</tr>
<tr>
<td>ModelNo</td>
<td>&quot;HP1050VWD&quot;</td>
<td></td>
<td></td>
<td>Type description (read-only)</td>
</tr>
<tr>
<td>PeakWidth</td>
<td>1.600 min</td>
<td>0.530 min</td>
<td>0.053 min</td>
<td>0.026 min</td>
</tr>
<tr>
<td>Response</td>
<td>0.25 s</td>
<td>1.00 s</td>
<td>4.00 s</td>
<td>Set to the corresponding value on connect, based on the PeakWidth setting (4.0 s in Demo mode).</td>
</tr>
</tbody>
</table>

### Channel properties and commands

<table>
<thead>
<tr>
<th>Command/Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒Delta</td>
<td>-2*10^4</td>
<td>2*10^4</td>
<td>Not available.</td>
<td>Signal slope [mAU/s].</td>
</tr>
<tr>
<td>⇒MaxAutoStep</td>
<td>0.1</td>
<td>5.1</td>
<td>0.1</td>
<td>Maximum data rate [s] of signals and spectra when Step = Auto</td>
</tr>
<tr>
<td>Retention</td>
<td>0.000</td>
<td>10^7</td>
<td>Not available.</td>
<td>Retention time [min].</td>
</tr>
<tr>
<td>Signal</td>
<td>-10^4</td>
<td>10^4</td>
<td>Read from the device during data acquisition.</td>
<td>Signal value [mAU].</td>
</tr>
<tr>
<td>⇒Step</td>
<td>0.05</td>
<td>3.2</td>
<td>0.4</td>
<td>Data rate [s] for signal and spectra.</td>
</tr>
<tr>
<td>⇒Wavelength</td>
<td>190</td>
<td>600</td>
<td>Read from the device on connect (254 in Demo mode).</td>
<td>Signal wavelength [nm].</td>
</tr>
</tbody>
</table>
The Administrator Help section provides general information and installation instructions for the 1050 HPLC system; refer to Hardware Installation:

- Agilent HP 1050 HPLC System: Overview
- Agilent HP 1050 HPLC System: Installation

Agilent 6890/6850 GCs: Commands and Tips

For information about the special commands supported for the Agilent 6890/6850 GCs and for tips for practical operation, refer to:

- General
- Injector
- Inlet (General)
- Inlet (Purged Packed EPC, Cool On-Column EPC, ACI, PCM, Volatiles)
- Inlet (Split/Splitless EPC, Gerstel PTV, PTV, CIS3, CSI4)
- Column
- Detectors
- ECD
- FID and FPD
- NPD (Nitrogen Phosphorous Detector)
- TCD (Thermal Conductivity Detector)
- μ-ECD
- Auxiliary Devices
- Application
- PGM File - Entering Pressure or Flow?
### Agilent 6890/6850 GCs: General

The following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient</td>
<td>0°C</td>
<td>450°C in increments of 1.</td>
<td>² (Demo mode: 24°C)</td>
<td>Temperature in the laboratory. (The property is available only if Cryo is selected on the Options configuration tab page.)</td>
</tr>
<tr>
<td>Cryo</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>If set to On, the cryogenic valve operates automatically. If set to Off, the valve is disabled. (The property is available only if Cryo is selected on the Options configuration tab page.)</td>
</tr>
<tr>
<td>CryoFault</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>The oven shuts down if it does not reach the set point temperature after the time specified for cryo operation. (The property is available only if Cryo is selected on the Options configuration tab page.)</td>
</tr>
<tr>
<td>CryoTimeout</td>
<td>0 min</td>
<td>999.99 min in 0.01 increments</td>
<td>² (Demo mode: 0.00 min)</td>
<td>Indicates the time that the GC waits before turning off the cooling if no sample has been injected.</td>
</tr>
<tr>
<td>CryoTimeoutOn</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: On)</td>
<td>Turns on CryoTimeout on or off. (The property is available only if Cryo is selected on the Options configuration tab page.)</td>
</tr>
<tr>
<td>DualOperation</td>
<td>FrontOnly, BackOnly</td>
<td>Shared</td>
<td></td>
<td>Shared enables the dual-inject mode (see Practical Tips for Device Control/GC and Temperature injecting Two GC Samples Simultaneously (6890)).</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>EquilibrationTime</td>
<td>0 min</td>
<td>999.99 min in 0.01 increments</td>
<td>2 (Demo mode: 0.5)</td>
<td>After reaching the desired temperature, the GC waits for the equilibration time. When the equilibration time has passed, the GC is ready.</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Firmware version (20 characters; read-only).</td>
</tr>
<tr>
<td>ModelNo</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Device number, i.e., 6850 or 6890 (20 characters; read-only).</td>
</tr>
<tr>
<td>Oven Type</td>
<td>Fast</td>
<td>Regular</td>
<td>Fast</td>
<td>Regular or fast oven type.</td>
</tr>
<tr>
<td>PrepRun</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Sets the instrument into the PreRun state.</td>
</tr>
<tr>
<td>QuickCool</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>If set to &quot;On&quot;, the oven is cooled faster before the next sample is injected. (The property is available only if Cryo is selected on the Options configuration tab page.)</td>
</tr>
<tr>
<td>Ready</td>
<td>Not Ready</td>
<td>Ready</td>
<td>Depends on the Ready state of the instrument. Demo mode: Ready</td>
<td>Indicates whether the GC is ready for injection (read-only).</td>
</tr>
<tr>
<td>ReportReady</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Status of the instrument; reports whether the instrument is not ready for operation and why.</td>
</tr>
<tr>
<td>RunLog</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Writes the sample protocol to the Audit Trail.</td>
</tr>
<tr>
<td>RunState</td>
<td>Idle, PreRun, Run, PostRun</td>
<td>² (In Demo mode: Idle)</td>
<td>GC state: Idle, PreRun, Run, or PostRun (read-only).</td>
<td></td>
</tr>
<tr>
<td>SerialNo</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Serial number (20 characters; read-only).</td>
</tr>
<tr>
<td>Temperature Value</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the column compartment temperature.</td>
</tr>
<tr>
<td></td>
<td>Depends on the system and installed cryo type; refer to the column compartment temperature section.</td>
<td>-</td>
<td>Current column compartment temperature (read-only).</td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Temperature. Nominal</td>
<td>Depends on the system and installed cryo type; refer to the column compartment temperature section. In increments of 1.</td>
<td></td>
<td>² (Demo mode: 80°C)</td>
<td>Determines the nominal temperature of the column compartment.</td>
</tr>
<tr>
<td>Temperature. UpperLimit</td>
<td>Depends on the system and installed cryo type; refer to the column compartment temperature section. In increments of 1.</td>
<td></td>
<td>² (Demo mode: highest temperature)</td>
<td>The system aborts the sample batch and starts emergency handling when the value is outside the limits.</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: On)</td>
<td></td>
</tr>
</tbody>
</table>
## Agilent 6890/6850 GCs: Injector

The following properties are available (please note that the display level determines which properties are displayed):

### 6890 GC

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Normal</td>
<td>on_column</td>
<td>² (Demo mode: on_column)</td>
<td>Injection mode. Must be set to on_column for cooling on the column inlet. Otherwise, set to Normal. Usually, the correct setting is automatically selected in the Server Configuration program. It is not necessary to change this setting.</td>
</tr>
</tbody>
</table>

### 6850 and 6890 GCs

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>0.0 mm</td>
<td>1.0 mm in increments of 1</td>
<td>0.0 mm</td>
<td>Position of the needle in the vial. The default position is about 3.6 mm from the bottom of the vial. The default position is the reference of all other positions.</td>
</tr>
<tr>
<td>Fan</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Turns the injector fan on and off.</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Firmware version (6 characters, read-only)</td>
</tr>
<tr>
<td>InjectWaitTime</td>
<td>0.0 s</td>
<td>1 E7 s</td>
<td>0.0 s</td>
<td>Time between the inject command and the inject response.</td>
</tr>
<tr>
<td>ModelNo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Model number (8 characters, read-only)</td>
</tr>
<tr>
<td>Position</td>
<td>1</td>
<td>22 or 27 in increments of 1</td>
<td>1</td>
<td>Current sample position on the tablet.</td>
</tr>
<tr>
<td>Post-a</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>Indicates how often the syringe is rinsed with solvent from the solvent reservoir A after the injection.</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Post-b</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>Indicates how often the syringe is rinsed with solvent from the solvent reservoir B after the injection.</td>
</tr>
<tr>
<td>PostDwell</td>
<td>0.00 min</td>
<td>1.00 min in 0.01 increments</td>
<td>0.00 min</td>
<td>Time that the needle remains in the inlet after the injection before it is withdrawn.</td>
</tr>
<tr>
<td>Pre-a</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>Indicates how often the syringe is rinsed with solvent from the solvent reservoir A prior to the injection.</td>
</tr>
<tr>
<td>Pre-b</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>Indicates how often the syringe is rinsed with solvent from the solvent reservoir B prior to the injection.</td>
</tr>
<tr>
<td>PreDwell</td>
<td>0.00 min</td>
<td>1.00 min in 0.01 increments</td>
<td>0.00 min</td>
<td>Time that the needle remains in the inlet before the piston moves to inject the sample.</td>
</tr>
<tr>
<td>Prewash</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>Indicates how often the syringe is rinsed with the sample prior to the injection.</td>
</tr>
<tr>
<td>Pumps</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>Indicates how often the pressure plunger of the syringe is moved up and down while the needle is in the sample. This is to expel gas bubbles and to enhance the reproducibility.</td>
</tr>
<tr>
<td>Speed</td>
<td>Fast</td>
<td>Slow</td>
<td>0</td>
<td>Average piston speed³</td>
</tr>
<tr>
<td>State</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Indicates whether the autosampler has injected (read-only).</td>
</tr>
<tr>
<td>Syringe</td>
<td>5 µl, 10 µl, 25 µl, 50 µl, 100 µl.</td>
<td>0</td>
<td>Indicates the syringe type as specified in the Server Configuration program (read-only).</td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Viscosity</td>
<td>0 s</td>
<td>7 s in increments of 1</td>
<td>0 s</td>
<td>Number of seconds the pressure plunger of the syringe pauses after the pump and injection strokes. This pause allows viscous samples to flow into the vacuum created in the syringe.</td>
</tr>
<tr>
<td>Volume</td>
<td>Fixed volume which corresponds to 2%, 10%, 20%, 30%, 40%, or 50% of the syringe volume.</td>
<td>2% of the volume</td>
<td>Specifies the amount of sample to be injected (in µl).</td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>A-only, B-only, A-and-B² (Demo mode: Off)</td>
<td>² (Demo mode: Off)</td>
<td>Specifies which waste bottles shall be used (alternating).</td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.

³ For information about which plunger speed can be achieved with the Speed command for the different syringes, refer to the table below:

<table>
<thead>
<tr>
<th>Syringe (µl)</th>
<th>Plunger Speed (µl/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fast</td>
</tr>
<tr>
<td>5</td>
<td>3000</td>
</tr>
<tr>
<td>10</td>
<td>6000</td>
</tr>
<tr>
<td>25</td>
<td>15000</td>
</tr>
<tr>
<td>50</td>
<td>30000</td>
</tr>
<tr>
<td>100</td>
<td>60000</td>
</tr>
</tbody>
</table>

In addition, the following commands are available, depending on the filter level:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EraseErrorLog</td>
<td>Deletes the sample error log.</td>
</tr>
<tr>
<td>StopInject</td>
<td>Stops the running injection.</td>
</tr>
</tbody>
</table>

The Administrator Help section provides general information and installation instructions for the 6890 and 6850 GCs; refer to the related topics in the Hardware Installation section.
Agilent 6890/6850 GCs: Inlet (General)

The following commands and properties are available for all inlets:

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TempCtrl</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Specifies the state of the heated zone control: If set to Off, temperature control is disabled. The property is automatically set to On if an assignment is made in the Temperature field.</td>
</tr>
<tr>
<td>Temperature</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the temperature of the heated zone.</td>
</tr>
<tr>
<td>Temperature. Nominal</td>
<td>°C in increments of 1, Depends on the inlet type (see Inlets temperature limits)</td>
<td>² (Demo mode: 250°C)</td>
<td>Specifies the target operating temperature for the heated zone.</td>
<td></td>
</tr>
<tr>
<td>Temperature. Value</td>
<td>Depends on the inlet type (see Inlets temperature limits)</td>
<td>-</td>
<td>Current temperature of the heated zone (read-only).</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Type of the installed inlet: 6890: Purged Packed EPC, Cool On-Column EPC, Split/Splitless EPC, &lt;Other PTV&gt;, Purged Packed, Cool on-Column, Split/Splitless, Unknown/Other, None, ACI, Gerstel PTV, &lt;manual ACI&gt;, PTV, PCM, Gerstel CSI3, &lt;JIB&gt;, Volatiles 6850: Purged Packed EPC, Split/Splitless EPC, Purged Packed, Split/Splitless, None. (33 characters, read-only)</td>
</tr>
</tbody>
</table>

Note:

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.
Additional commands and properties are available, depending on the inlet type:

- **Inlet (Purged Packed EPC, Cool On-Column EPC, ACI, PCM, Volatiles)**
- **Inlet (Split/Splitless EPC, Gerstel PTV, PTV, CIS3, CSI4)**

Also, refer to:

- **Agilent 6890/6850 GCs: PGM File - Entering Pressure or Flow?**

The **Administrator Help** section provides general information and installation instructions for the 6890 and 6850 GCs; refer to **Hardware Installation**:

- **Agilent 6890 GC: Overview**
- **Agilent 6890 GC: Installation**
- **Agilent 6850 GC: Overview**
- **Agilent 6850 GC: Installation**
Agilent 6890/6850 GCs: Inlet (Purged Packed EPC, Cool On-Column EPC, ACI, PCM, Volatiles)

In addition to the general commands described in Inlet (General), the following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the gas flow.</td>
</tr>
<tr>
<td>Flow.Nominal</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min</td>
<td>-</td>
<td>Specifies the target gas flow.</td>
</tr>
<tr>
<td>Flow.Value</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min</td>
<td>-</td>
<td>Measured gas flow (read-only).</td>
</tr>
<tr>
<td>FlowEquilibrationTime</td>
<td>0.00 min</td>
<td>999.99 min</td>
<td>0.00 min</td>
<td>After reaching the desired gas flow, the GC waits the time specified under FlowEquilibrationTime before signaling Ready.</td>
</tr>
<tr>
<td>GasType</td>
<td>Nitrogen, Hydrogen, Helium, Argon Methane, Unknown</td>
<td>-</td>
<td>(Demo mode: Nitrogen)</td>
<td>Gas type.</td>
</tr>
<tr>
<td>Pressure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the gas pressure.</td>
</tr>
<tr>
<td>Pressure.Nominal</td>
<td>0.00 bar</td>
<td>10.00 bar</td>
<td>-</td>
<td>Specifies the target gas pressure.</td>
</tr>
<tr>
<td>Pressure.Value</td>
<td>0.00 bar</td>
<td>10.00 bar</td>
<td>-</td>
<td>Measured gas pressure (read-only).</td>
</tr>
<tr>
<td>Pressure.EquilibrationTime</td>
<td>0.00 min</td>
<td>999.99 min</td>
<td>-</td>
<td>After reaching the desired gas pressure, the GC waits the time specified under Pressure.EquilibrationTime before signaling Ready.</td>
</tr>
</tbody>
</table>

Note:

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.
Also, refer to Agilent 6890/6850 GCs: PGM File - Entering Pressure or Flow?

The Administrator Help section provides general information and installation instructions for the 6890 and 6850 GCs; refer to Hardware Installation:

Agilent 6890 GC: Overview
Agilent 6890 GC: Installation
Agilent 6850 GC: Overview
Agilent 6850 GC: Installation

Agilent 6890/6850 GCs: Inlet (Split/Splitless EPC, Gerstel PTV, PTV, CIS3, CIS4)

In addition to the general commands described in Inlet (General), the following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColumnDefined</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Indicates whether the column is defined (ready-only).</td>
</tr>
<tr>
<td>Flow</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the gas flow.</td>
</tr>
<tr>
<td>Flow.Nominal</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min in 0.1 increments</td>
<td>² (Demo mode: 80.0 ml/min)</td>
<td>Target gas flow.</td>
</tr>
<tr>
<td>Flow.Value</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min</td>
<td>-</td>
<td>Measured gas flow (read-only).</td>
</tr>
<tr>
<td>FlowEquilibration Time</td>
<td>0.00 min</td>
<td>999.99 min in 0.01 increments</td>
<td>² (Demo mode: 0.00 min)</td>
<td>After reaching the desired gas flow, the GC waits the time specified under FlowEquilibration Time before signaling Ready</td>
</tr>
<tr>
<td>GasSaver</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Turns the gas saver on and off.</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>GasSaverFlow</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min</td>
<td>70.0 ml/min</td>
<td>Reduced flow from the split vent when the gas saver is active. The value must be at least 15 ml/min higher than the value for the column flow.</td>
</tr>
<tr>
<td>GasSaverTime</td>
<td>0.00 min</td>
<td>999.99 min</td>
<td>2 (Demo mode: 2.00 min)</td>
<td>Retention time when the gas saver shall become active. The time setting must be after the injection and purge times.</td>
</tr>
<tr>
<td>Mode</td>
<td>Split, Splitless, PulsedSplit, PulsedSplit, SolventVent/Vent</td>
<td>Split, Splitless, PulsedSplit, PulsedSplit, SolventVent/Vent</td>
<td>2 (Demo mode: Split)</td>
<td>Operating mode (split or splitless, with or without pulse).</td>
</tr>
<tr>
<td>Pressure_Nominal</td>
<td>0.00 bar</td>
<td>10.00 bar</td>
<td>1.30 ml/min</td>
<td>Target gas pressure.</td>
</tr>
<tr>
<td>Pressure_Value</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Measure gas pressure (read-only).</td>
</tr>
<tr>
<td>Pressure-EquilibrationTime</td>
<td>0.00 min</td>
<td>999.99 min</td>
<td>0.00 min</td>
<td>After reaching the desired gas pressure, the GC waits the time specified under PressureEquilibration Time before signaling Ready.</td>
</tr>
<tr>
<td>PulsePressure</td>
<td>0.00 bar</td>
<td>10.00 bar</td>
<td>2.00 bar</td>
<td>Inlet pressure during injection: The pressure rises to this value at the start of the sample (PrepRun) and remains at this value until the PulseTime is reached.</td>
</tr>
<tr>
<td>PulseTime</td>
<td>0.00 min</td>
<td>999.99 min</td>
<td>1.00 min</td>
<td>Duration of the pressure pulse.</td>
</tr>
<tr>
<td>PurgeFlow</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min</td>
<td>60 ml/min</td>
<td>Properties related to the flow from the purge vent.</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PurgeTime</td>
<td>0.00 min</td>
<td>999.99 min in increments of 1</td>
<td>² (Demo mode: 0.75 min)</td>
<td>(Only in Splitless mode) Time when the purge valve shall be opened.</td>
</tr>
<tr>
<td>SplitRatio</td>
<td>0.1</td>
<td>7500.00 in 0.1 increments</td>
<td>² (Demo mode: 50.0)</td>
<td>Ratio of the split flow to the column flow. (The column flow is set as a column property.) This property is valid in split mode only if the column is defined.</td>
</tr>
<tr>
<td>VentEndTime</td>
<td>0.00 min</td>
<td>999.99 min in 0.01 increments</td>
<td>² (Demo mode: 0.00 min)</td>
<td>(Only valid in SolventVent mode) Time at which solvent venting ends. The time should be greater than the time needed for all injections.</td>
</tr>
<tr>
<td>VentFlow</td>
<td>0.0 ml/min</td>
<td>1000.00 ml/min in 0.1 increments</td>
<td>² (Demo mode: 0.0 ml/min)</td>
<td>(Only valid in SolventVent mode) Properties related to the flow from the split vent during the vent period (before the VentEndTime).</td>
</tr>
<tr>
<td>VentPressure</td>
<td>0.00 bar</td>
<td>10.00 bar in 0.01 bar Schritten</td>
<td>² (Demo mode: 0.00 bar)</td>
<td>Inlet pressure during the vent period. Set the property to 0 for the lowest possible pressure.</td>
</tr>
</tbody>
</table>

![Note:](image)

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.

Also, refer to Agilent 6890/6850 GCs: PGM File - Entering Pressure or Flow?

The Administrator Help section provides general information and installation instructions for the 6890 and 6850 GCs; refer to the related topics in the Hardware Installation section.
### Agilent 6890/6850 GCs: Column

The following commands and properties are available (please note that the display *Filter* level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>6890: Front, Back, MSD, AED, Unknown</td>
<td>6850: Front, MSD, AED, Unknown</td>
<td>6890: Front for the front detector 6850: Front</td>
<td>Detector to which the column is connected.</td>
</tr>
<tr>
<td>Diameter</td>
<td>0.0 (Unknown) µm</td>
<td>1000.00 µm in 0.01 increments</td>
<td>250.00 µm</td>
<td>Specifies the inner diameter of the column.</td>
</tr>
<tr>
<td>Film Thickness</td>
<td>0.0 (Unknown) µm</td>
<td>1000.00 µm in 0.01 increments</td>
<td>10.00 µm</td>
<td>Specifies the film thickness of the column.</td>
</tr>
<tr>
<td>Flow</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the flow; see PGM File - Entering Pressure or Flow.</td>
</tr>
<tr>
<td>Flow.Nominal</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min in increments of 1</td>
<td>Emulation of the ramp</td>
<td>Specifies the target flow value.</td>
</tr>
<tr>
<td>Flow.Value</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min</td>
<td>-</td>
<td>Current flow value (read-only).</td>
</tr>
<tr>
<td>FlowMode</td>
<td>Pressure-Ctrl</td>
<td>FlowCtrl</td>
<td>PressureCtrl</td>
<td>Defines the pneumatics mode for the pressure or flow profile for the column.</td>
</tr>
<tr>
<td>Inlet</td>
<td>6890: Front, Back, Aux3, Aux 4, Aux 5, Unknown</td>
<td>6850: Front, Aux3, Aux 4, Aux 5, Unknown</td>
<td>6890: Front for the front detector, Back for the back detector 6850: Front</td>
<td>Inlet to which the detector is connected.</td>
</tr>
<tr>
<td>Length</td>
<td>0.0 (Unknown) mm</td>
<td>1000.00 mm in 0.01 increments</td>
<td>30.00 mm</td>
<td>Specifies the column length.</td>
</tr>
</tbody>
</table>
### Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutletPressure</td>
<td>0.0 bar</td>
<td>10.0 bar in increments of 1</td>
<td>² (Demo mode: 1.0 bar)</td>
<td>Specifies the pressure at the column end if the column is neither in the vacuum nor under atmospheric pressure, e.g., if the column is directly connected to an ECD.</td>
</tr>
<tr>
<td>OutletPressure Correction</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Set to On if the column end is neither in the vacuum nor under atmospheric pressure. Specify the pressure at the column end as OutletPressure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the pressure.</td>
</tr>
<tr>
<td>Pressure, Nominal</td>
<td>0.0 bar</td>
<td>10.0 bar in increments of 1</td>
<td>Emulation of the ramp.</td>
<td>Specifies the target pressure value.</td>
</tr>
<tr>
<td>Pressure, Value</td>
<td>0.0 bar</td>
<td>10.0 bar</td>
<td>-</td>
<td>Measured pressure value (read-only).</td>
</tr>
<tr>
<td>VacuumCorrection</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Set to On if the column is connected to the vacuum, i.e., if the column is directly connected to a mass spectrometer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the average linear gas velocity.</td>
</tr>
<tr>
<td>Velocity, Nominal</td>
<td>0 cm/s</td>
<td>1000 cm/s in increments of 1</td>
<td>-</td>
<td>Specifies the desired average target gas velocity.</td>
</tr>
<tr>
<td>Velocity, Value</td>
<td>0 cm/s</td>
<td>1000 cm/s</td>
<td>-</td>
<td>Average linear gas velocity (read-only).</td>
</tr>
</tbody>
</table>

**Note:**

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.

The Administrator Help section provides general information and installation instructions for the 6890 and 6850 GCs; refer to the related topics in the Hardware Installation section.
### Agilent 6890/6850 GCs: Detectors

The following commands and properties are available (please note that the display >Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autozero</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Sets the current detector signal to 0.</td>
</tr>
<tr>
<td>CombinedFlow (_detectors without EPC option)</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min</td>
<td>-</td>
<td>Combined gas flow (makeup + inlet). In this form, the property is available for detectors without EPC option (see Detector configuration tab page).</td>
</tr>
<tr>
<td>CombinedFlow (Detectors with EPC option)</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Properties related to the combined gas flow (makeup + inlet). In this form, the property is available for detectors with EPC option (see Detector configuration tab page).</td>
</tr>
<tr>
<td>CombinedFlow.Nominal</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min</td>
<td>-</td>
<td>Specifies the target combined flow.</td>
</tr>
<tr>
<td>CombinedFlow.Value</td>
<td>0.0 ml/min</td>
<td>1000.0 ml/min</td>
<td>-</td>
<td>Indicates the current combined flow (read-only).</td>
</tr>
<tr>
<td>Data_Collection_Rate</td>
<td>0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0 Hz</td>
<td>² (Demo mode: 1.0 Hz)</td>
<td>The property is available only for instruments with digital data acquisition mode.</td>
<td></td>
</tr>
<tr>
<td>FastPeaks</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>If set to On, the peak width is 0.004 min (8 Hz bandwidth). Otherwise, the peak width is 0.001 min (1.6 Hz bandwidth).</td>
</tr>
<tr>
<td>MakeupFlow</td>
<td>0.0 ml/min</td>
<td>100.0 ml/min</td>
<td>² (Demo mode: 10.0 ml/min)</td>
<td>Properties related to the makeup gas flow (see Front/Back Detector tab page in the Server Configuration program).</td>
</tr>
<tr>
<td>MakeupFlow.Nominal</td>
<td>0.0 ml/min</td>
<td>100.0 ml/min</td>
<td>² (Demo mode: 10.0 ml/min)</td>
<td>Specifies the target makeup gas flow.</td>
</tr>
<tr>
<td>MakeupFlow.Value</td>
<td>0.0 ml/min</td>
<td>100.0 ml/min</td>
<td>-</td>
<td>Current makeup gas flow (read-only).</td>
</tr>
</tbody>
</table>
### Property Table

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MakeupFlowCtrl</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Turns the pneumatics on and off. In this form, the property is available for detectors with EPC option (see Front/Back Detector tab page in the Server Configuration program).</td>
</tr>
<tr>
<td>MakeupMode</td>
<td>Make-up Combined</td>
<td></td>
<td>² (Demo mode: Makeup)</td>
<td>Determine which flow shall be kept constant: Make-p or Combined. (The property is available only for FID; TCD, ECD, µ-ECD, NPD, and FPDs detectors.)</td>
</tr>
<tr>
<td>Range</td>
<td>0</td>
<td>13</td>
<td>² (Demo mode: 0)</td>
<td>(Only for detectors with analog data acquisition mode) Data acquisition range: The smaller the signal is, the smoother is the signal. However, high peaks may be cut off if the range is small.</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Specifies the state of the temperature control. If set to Off, temperature control is disabled. The property is automatically set to On when a temperature value is entered in the Temperature field.</td>
</tr>
<tr>
<td>Temperature Nominal</td>
<td>0</td>
<td>450°C</td>
<td>² (Demo mode: 300°C)</td>
<td>Properties related to the temperature of the heated zone. (The property is available only if Zone is installed on the Detector configuration tab page.)</td>
</tr>
<tr>
<td>Temperature Value</td>
<td>0.0°C</td>
<td>450.0°C</td>
<td>-</td>
<td>Actual temperature of the heated zone (read-only).</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Type</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Installed detector type: 6890: None, FID (flame ionization), TCD (thermal conductivity), ECD (electron capture), NPD (nitrogen phosphorous), FPD (flame photometric), Other, µ-ECD 6850: None, FID, TCD (33 characters, read-only)</td>
</tr>
</tbody>
</table>

**Note:**

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.

The Administrator Help section provides general information and installation instructions for the 6890 and 6850 GCs; refer to Hardware Installation:

- 🌐 Agilent 6890 GC: Overview
- 🌐 Agilent 6890 GC: Installation
- 🌐 Agilent 6850 GC: Overview
- 🌐 Agilent 6850 GC: Installation
### Agilent 6890/6850 GCs: ECD

The following commands and properties are available (please note that the display > Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdjustOffset</td>
<td>Off, On, or Abort</td>
<td></td>
<td>² (Demo mode: On)</td>
<td>Adjusts the reference current until the desired output is reached as defined by the TargetOutput property.</td>
</tr>
<tr>
<td>AnodeFlow (Detectors without EPC option)</td>
<td>0.0 ml/min</td>
<td>12.0 ml/min</td>
<td>² (Demo mode: 0.0 ml/min)</td>
<td>Anode gas flow. (In this form, the property is available only for detectors without EPC option, see the Detector configuration tab page. The property is read-only.)</td>
</tr>
<tr>
<td>AnodeFlow (Detectors with EPC option)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the anode gas flow (The property is available only for detectors with EPC option, see the Detector configuration tab page.)</td>
</tr>
<tr>
<td>AnodeFlow. Nominal</td>
<td>0.0 ml/min</td>
<td>12.0 ml/min</td>
<td>0.0 ml/min</td>
<td>Specifies the target anode gas flow.</td>
</tr>
<tr>
<td>AnodeFlow. Value</td>
<td>0.0 ml/min</td>
<td>12.0 ml/min</td>
<td>-</td>
<td>Current anode gas flow (read-only).</td>
</tr>
<tr>
<td>Anode FlowCtrl (Detectors with EPC option)</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: On).</td>
<td>Turns the pneumatics on and off. In this form, the property is available for detectors with EPC option, see the Front/Back Detector tab page in the Server Configuration program.</td>
</tr>
<tr>
<td>MakeupGasType (Detectors with EPC option)</td>
<td>Nitrogen, Argon Methane, Unknown</td>
<td></td>
<td>² (Demo mode: Nitrogen)</td>
<td>Makeup gas type. (The property is available only for detectors with EPC option, see the Detector configuration tab page.)</td>
</tr>
<tr>
<td>Pulser</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Turns the detector electronics on and off.</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>RefCurrent</td>
<td>0.5 nA</td>
<td>5.0 nA in increments of 1</td>
<td>² (Demo mode: 1.5)</td>
<td>Specifies the desired detector output for the AdjustOffset procedure.</td>
</tr>
<tr>
<td>TargetOutput</td>
<td>20</td>
<td>200 in increments of 1</td>
<td>² (Demo mode: 60)</td>
<td></td>
</tr>
</tbody>
</table>

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.

The Administrator Help section provides general information and installation instructions for the 6890 and 6850 GCs; refer to Hardware Installation:

- Agilent 6890 GC: Overview
- Agilent 6890 GC: Installation
- Agilent 6850 GC: Overview
- Agilent 6850 GC: Installation
### Agilent 6890/6850 GCs: FID and FPD

The following commands and properties are available (please note that the display > Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AirFlow</td>
<td>0.0 ml/min</td>
<td>800.0 ml/min</td>
<td>- (Demo mode: 400.0 ml/min)</td>
<td>Air gas flow. In this form, the property is available only for detectors without EPC option, see the Detector configuration tab page. The property is read-only.</td>
</tr>
<tr>
<td>AirFlow, EPC option</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the air gas flow. In this form, the property is available only for detectors with EPC option, see the Detector configuration tab page.</td>
</tr>
<tr>
<td>AirFlow.Value</td>
<td>0.0 ml/min</td>
<td>800.0 ml/min</td>
<td>-</td>
<td>Current air gas flow (read-only).</td>
</tr>
<tr>
<td>AirFlow. Nominal</td>
<td>0.0 ml/min</td>
<td>800.0 ml/min</td>
<td>0.0 ml/min</td>
<td>Specifies the target air gas flow.</td>
</tr>
<tr>
<td>AirFlowCtrl</td>
<td>Off</td>
<td>On</td>
<td>(Demo mode: Off)</td>
<td>Turns the pneumatics on and off. In this form, the property is available only for detectors with EPC option, see the Detector configuration tab page.</td>
</tr>
<tr>
<td>Electrometer</td>
<td>Off</td>
<td>On</td>
<td>(Demo mode: Off)</td>
<td>Turns the detector electronics on and off.</td>
</tr>
<tr>
<td>Flame</td>
<td>Off</td>
<td>On</td>
<td>(Demo mode: Off)</td>
<td>Turns the flame on and off.</td>
</tr>
<tr>
<td>H2Flow, EPC option</td>
<td>0.0 ml/min</td>
<td>100.0 ml/min</td>
<td>(Demo mode: 30 ml/min)</td>
<td>H2 gas flow. In this form, the property is available only for detectors without EPC option, see the Detector configuration tab page. The property is read-only.</td>
</tr>
<tr>
<td>H2Flow</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the H2 gas flow. In this form, the property is available only for detectors with EPC option, see the Detector configuration tab page.</td>
</tr>
</tbody>
</table>
### 920 Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2Flow. Nominal</td>
<td>0.0 ml/min</td>
<td>100.0 ml/min</td>
<td>In 1er Schritten² (Demo mode: 30 ml/min)</td>
<td>Specifies the target H2 gas flow.</td>
</tr>
<tr>
<td>H2Flow.Value</td>
<td>0.0 ml/min</td>
<td>100.0 ml/min</td>
<td></td>
<td>Current H2 gas flow.</td>
</tr>
<tr>
<td>H2FlowCtrl</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Turns the pneumatics on and off. In this form, the property is available only for detectors with EPC option, see the Detector configuration tab page.)</td>
</tr>
<tr>
<td>LitOffset</td>
<td>0.00 pA</td>
<td>99.9 pA</td>
<td>In increments of 1</td>
<td>If the detector output is below this level, the GC assumes that the flame is no longer burning and tries to reignite the flame.</td>
</tr>
<tr>
<td>MakeupGasType</td>
<td>Nitrogen, Hydrogen, Helium, Argon Methane, Unknown</td>
<td>³ (Demo mode: Nitrogen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OxidizerGasType</td>
<td>Oxygen) Air, Unknown</td>
<td></td>
<td>The property is available only for FPD detectors with EPC option, see the Detector configuration tab page.</td>
<td></td>
</tr>
</tbody>
</table>

**Note:**

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.

The Administrator Help section provides general information and installation instructions for the 6890 and 6850 GCs; refer to Hardware Installation:

- **Agilent 6890 GC: Overview**
- **Agilent 6890 GC: Installation**
- **Agilent 6850 GC: Overview**
- **Agilent 6850 GC: Installation**
### Agilent 6890/6850 GCs: NPD (Nitrogen Phosphorous Detector)

The following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdjustOffset</td>
<td>Off) On) Abort)</td>
<td>² (Demo mode: Off)</td>
<td></td>
<td>Adjusts the reference current until the desired output is reached as defined by the TargetOutput property.</td>
</tr>
<tr>
<td>AirFlow</td>
<td>0.0 ml/min</td>
<td>200.0 ml/min</td>
<td>² (Demo mode: 60.0 ml/min)</td>
<td>Air gas flow. In this form, the property is available only for detectors without EPC option, see the Detector configuration tab page.</td>
</tr>
<tr>
<td>AirFlow</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>Properties related to the air gas flow. In this form, the property is available only for detectors with EPC option, see the Detector configuration tab page.</td>
</tr>
<tr>
<td>AirFlow, Nominal</td>
<td>0.0 ml/min</td>
<td>200.0 ml/min in increments of 1</td>
<td>² (Demo mode: 60)</td>
<td>Specifies the target air gas flow.</td>
</tr>
<tr>
<td>AirFlow, Value</td>
<td>0.0 ml/min</td>
<td>200.0 ml/min in increments of 1</td>
<td>-</td>
<td>Current air gas flow (read-only).</td>
</tr>
<tr>
<td>AirFlowCtrl</td>
<td>Off On</td>
<td>² (Demo mode: On)</td>
<td></td>
<td>Turns the pneumatics on and off. In this form, the property is available only for detectors with EPC option, see the Detector configuration tab page.</td>
</tr>
<tr>
<td>BeadPower</td>
<td>Off On</td>
<td>² (Demo mode: On)</td>
<td></td>
<td>Turns the bead power on and off.</td>
</tr>
<tr>
<td>BeadVoltage</td>
<td>0.000 pA</td>
<td>4.095 pA in 0.001 increments</td>
<td>² (Demo mode: 2.500 pA)</td>
<td>The bead voltage can be set either via AdjustOffset or directly.</td>
</tr>
<tr>
<td>Property</td>
<td>Min.</td>
<td>Max.</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>H2Flow</td>
<td>0.0 ml/min</td>
<td>30.0 ml/min</td>
<td>² (Demo mode: 3.0 ml/min)</td>
<td>H2 gas flow. In this form, the property is available only for detectors without EPC option, see the Detector configuration tab page. The property is read-only.</td>
</tr>
<tr>
<td>H2Flow</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the H2 gas flow. In this form, the property is available only for detectors with EPC option, see the Detector configuration tab page.)</td>
</tr>
<tr>
<td>H2Flow. Nominal</td>
<td>0.0 ml/min</td>
<td>30.0 ml/min</td>
<td>² (Demo mode: 3.0 ml/min)</td>
<td>Specifies the target H2 gas flow.</td>
</tr>
<tr>
<td>H2Flow.Value</td>
<td>0.0 ml/min</td>
<td>30.0 ml/min</td>
<td>-</td>
<td>Current H2 gas flow (read-only).</td>
</tr>
<tr>
<td>H2FlowCtrl</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: On)</td>
<td>Turns the pneumatics on and off. In this form, the property is available only for detectors with EPC option, see the Detector configuration tab page.</td>
</tr>
<tr>
<td>MakeupGasType</td>
<td>Nitrogen)</td>
<td>Hydrogen, Helium, Argon Methane, Unknown</td>
<td>² (Demo mode: Nitrogen)</td>
<td>Makeup gas type. The property is available only for detectors with EPC option, see the Detector configuration tab page.)</td>
</tr>
<tr>
<td>OffsetEquilibration Time</td>
<td>0.00 min</td>
<td>999.99 min</td>
<td>² (Demo mode: 5.00 min)</td>
<td>Specifies how long the detector output must be stable before the AdjustOffset procedure is finished.</td>
</tr>
<tr>
<td>PolVoltage</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: On)</td>
<td>Turns the detector electronics on and off.</td>
</tr>
<tr>
<td>RefCurrent</td>
<td>0.5 nA</td>
<td>50 nA</td>
<td>² (Demo mode: 1.5 nA)</td>
<td>Specifies the target detector output for the AdjustOffset procedure.</td>
</tr>
<tr>
<td>TargetOutput</td>
<td>20</td>
<td>200</td>
<td>² (Demo mode: 50)</td>
<td>Specifies the target detector output for the AdjustOffset procedure.</td>
</tr>
</tbody>
</table>

**Note:**

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.
The **Administrator Help** section provides general information and installation instructions for the 6890 and 6850 GCs; refer to the related topics in the **Hardware Installation** section.

### Agilent 6890/6850 GCs: TCD (Thermal Conductivity Detector)

The following commands and properties are available (please note that the display >Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament</td>
<td>Off</td>
<td>On</td>
<td>1</td>
<td>Turns the filament on and off.</td>
</tr>
<tr>
<td>MakeupGasType</td>
<td>Nitrogen, Hydrogen, Helium, Argon Methane, Unknown</td>
<td>² (Demo mode: Nitrogen)</td>
<td>Makeup gas type. In this form, the property is available only for FID detectors with EPC option, see the Detector configuration tab page.</td>
<td></td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive</td>
<td>Negative</td>
<td>² (Demo mode: Positive)</td>
<td>Set to Negative to invert negative peaks. Set to Positive for normal peaks.</td>
</tr>
<tr>
<td>RefFlow</td>
<td>0.0 ml/min</td>
<td>100.0 ml/min</td>
<td>² (Demo mode: 0.0 ml/min)</td>
<td>Reference gas flow. In this form, the property is available only for detectors without EPC option, see the Detector configuration tab page.</td>
</tr>
<tr>
<td>RefFlow</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the reference gas flow.</td>
</tr>
<tr>
<td>Ref.Flow. Nominal</td>
<td>0.0 ml/min</td>
<td>100.0 ml/min in increments of 1</td>
<td>0.0 ml/min</td>
<td>Specifies the target reference gas flow.</td>
</tr>
<tr>
<td>RefFlow.Value</td>
<td>0.0 ml/min</td>
<td>100.0 ml/min</td>
<td>-</td>
<td>Current reference gas flow (read-only).</td>
</tr>
<tr>
<td>RefFlowCtrl</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: On)</td>
<td>Turns the pneumatics on and off. In this form, the property is available only for detectors with EPC option, see the Detector configuration tab page.</td>
</tr>
</tbody>
</table>
**Note:**

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.

The **Administrator Help** section provides general information and installation instructions for the 6890 and 6850 GCs; refer to related topics in the **Hardware Installation** section.

### Agilent 6890/6850 GCs: µ-ECD

The following commands and properties are available (please note that the display > *Filter* level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdjustOffset</td>
<td>Off, On, Abort</td>
<td></td>
<td>² (Demo mode: Off)</td>
<td>Adjusts the reference current to the desired output as defined by the TargetOutput property.</td>
</tr>
<tr>
<td>MakeupGasType (Detectors with EPC option)</td>
<td>Nitrogen, Argon, Methane, Unknown</td>
<td></td>
<td>² (Demo mode: Nitrogen)</td>
<td>Makeup gas type. The property is available only for detectors with EPC option, see the Detector configuration tab page.</td>
</tr>
<tr>
<td>Pulser</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: On)</td>
<td>Turns the detector electronics on and off.</td>
</tr>
<tr>
<td>RefCurrent</td>
<td>0.5 nA</td>
<td>5.0 nA in 0.1 increments</td>
<td>² (Demo mode: 1.5 nA)</td>
<td>Reference current.</td>
</tr>
<tr>
<td>TargetOutput</td>
<td>20</td>
<td>200 in increments of 1</td>
<td>² (Demo mode: 60)</td>
<td>Specifies the target detector output for the AdjustOffset procedure.</td>
</tr>
</tbody>
</table>

**Note:**

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.

The **Administrator Help** section provides general information and installation instructions for the 6890 and 6850 GCs; refer to related topics in the **Hardware Installation** section.
### Agilent 6890/6850 GCs: Auxiliary Devices

The following commands and properties are available (please note that the display \textit{Filter} level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PresCtrl</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Specifies the state of the pressure control. The property is automatically set to On if an assignment is made in the Pressure field.</td>
</tr>
<tr>
<td>Pressure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Properties related to the gas pressure.</td>
</tr>
<tr>
<td>Pressure.Nominal</td>
<td>0.00 bar</td>
<td>10.00 bar</td>
<td>Downloaded from the instrument.</td>
<td>Specifies the target gas pressure.</td>
</tr>
<tr>
<td>Pressure.Value</td>
<td>0.00 bar</td>
<td>10.00 bar</td>
<td>-</td>
<td>Measured gas pressure (read-only).</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td>Properties related to the temperature of the heated zone.</td>
</tr>
<tr>
<td>Temperature.Nominal</td>
<td>0.0°C</td>
<td>500.0°C</td>
<td>Downloaded from the instrument.</td>
<td>Target operating temperature for the heated zone.</td>
</tr>
<tr>
<td>Temperature.Value</td>
<td>0.0°C</td>
<td>500.0°C</td>
<td>-</td>
<td>Current temperature of the heated zone.</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>Off</td>
<td>On</td>
<td>² (Demo mode: Off)</td>
<td>Specifies the state of the heated zone control. If set to Off, temperature control is disabled. The property is automatically set to On if an assignment is made in the Temperature field.</td>
</tr>
</tbody>
</table>

\textbf{Note:}

² When connecting, Chromeleon reads the value from the instrument and accepts it as default.
Agilent 6890/6850 GCs: Application

Notes on the Device Driver:

General
Experienced 6890/6850 GC users should be able to control the instrument without any problems. In Chromeleon, short descriptions of the GC commands are available in the corresponding Command dialog box or the Properties/Link box.

In Chromeleon, pressure is always stated in bar. Selecting a different pressure unit is not supported. For more information, please contact Dionex Service.

Inlet
The inlet is usually controlled by the use of Inlet.* commands. However, the inlet can be connected to the column via the PGM File or via a direct command, e.g., using

```
Column.Inlet = Front
```

After this command, the column commands also control the inlet. In this case, the command given last applies.

With the following command order

```
Inlet.Flow.Nominal = 20.0
Column.Pressure.Nominal = 5.00
```

the inlet flow is adjusted according to a column pressure of 5.00 bar instead of being set to 20.0 ml per minute.

Also, refer to Agilent 6890/6850 GCs: PGM File - Entering Pressure or Flow?

Column
It is possible to enter column dimensions and connections. However, entering the calibration is currently not possible. If column dimensions and connections are not defined, certain commands, such as Velocity, MakeupMode = Combined, etc., cannot be executed.

It is not recommended to enter the column dimensions and connections in a sample program. However, you should include the parameters in the Audit Trail using the Log command.
Valves
Special valve types (Multiposition, Gas Sampling) are currently not supported. For more information, please contact Dionex Service.

Aux
For the 6850 GC, an auxiliary device can be installed. For the 6890 GC, a maximum of two auxiliary devices for temperature control are supported.

For both GC types, a maximum of three auxiliary devices for pressure control are supported.

Sampler
For the 6890 GC, the extended capabilities of the 7683 autosampler, such as solvent prewashes, are supported. The model 7673 did not support them.

When Chromeleon connects the 6890 GC or 6850 ALS for the first time (see Connect), some (or many) error messages may appear starting with Error log at. These are previous errors recorded by the autosampler. You can simply ignore them. Future versions will show new errors only.

Barcode Reader (only for the 6890 GC): If UseBCR = On, the barcode of the sample is read during the Inject command and is logged in the Audit Trail.

Application
Entering a Temperature Gradient
You can enter a temperature gradient directly, using the Flow command on the Control menu (GC tab page) or by a PGM File.

For the 6890 GC, a temperature profile can be entered with a maximum of six ascents or descents. (The 6890 GC cannot store more steps!) The maximum temperature change (ascent) is up to 120°C per minute, depending on the oven type.

Gradients are entered in the Program Wizard or online in the typical format for GC applications. (The starting and end temperatures are entered as well as the modification rate.) In the program, however, the so-called "base point philosophy" is used (similar to entering a flow or percent gradient in HPLC). Each temperature command is a base point of the gradient program. The wizard automatically converts the entered rates into the base point representation.
However, no gradient is executed before the Inject command. Temperature gradients can only begin after the Inject command. If the program does not contain an Inject command, this does not apply.

Temperature Setting Commands

You can enable or disable temperature control of the oven, the inlet (two inlets for the 6890 GC), and the detector (two detectors for the 6890 GC), using the following commands:

```
0.000 FrontInlet.TempCtrl=On Or = Off
0.000 BackInlet.TempCtrl=On Or = Off
0.000 GC.TempCtrl=On Or = Off
0.000 FrontDetector.TempCtrl=On Or = Off
0.000 BackDetector.TempCtrl=On Or = Off
```

To set the temperature of the single modules, e.g., to 80°C, you have to use the following commands:

```
0.000 FrontInlet.Temperature = 80
0.000 BackInlet.Temperature = 80
0.000 GC.Temperature = 80
0.000 FrontDetector.Temperature = 80
0.000 BackDetector.Temperature = 80
```

Reaching the nominal temperature on the instrument can take some time. Please note that the oven heats faster than the injector and the detector system. As soon as the nominal temperature is reached, the GC sends a Ready signal. An injection via the autosampler is possible only after this signal.

Example:

The following program waits until the nominal temperature 150°C is reached, before the Inject command is executed:

```
0.000 GC.Temperature = 150
 Wait GC.Ready
 Inject
```

Tip:

After the instrument has received the nominal temperature value from Chromeleon, it implements the desired value as fast as possible. When the value is "almost" reached, the Equilibration Time passes until the instrument sends the confirmation message to Chromeleon. You can specify the duration of this time interval using the Equilibration Time parameter in Chromeleon.

The Administrator Help section provides general information and installation instructions for the 6890 and 6850 GCs; refer to the related topics in the Hardware Installation section.

Agilent 6890/6850 GCs: PGM File - Entering Pressure or Flow?

Depending on the inlet (or auxiliary device), you have to define pressure or flow in the PGM file. In addition, this depends on the column dimensions. The GC can calculate the flow from the pressure (or vice versa) only if the column diameter, the column length, and the film thickness are known. In all other cases, you have to enter the values required by the inlet or auxiliary device.

Whether the pressure or the flow must be entered also depends on the control mode to be used by the GC for the separation. The following control modes are available:

- Constant flow
- Constant pressure
- Flow ramp
- Pressure ramp

### Known column dimensions

<table>
<thead>
<tr>
<th>Inlet/AUX</th>
<th>Con. Pressure</th>
<th>Con. Flow</th>
<th>Press. Ramp</th>
<th>Flow Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purge Packed</td>
<td>Pressure</td>
<td>Flow</td>
<td>Pressure</td>
<td>Flow</td>
</tr>
<tr>
<td>Cool On - Column</td>
<td>Pressure</td>
<td>Flow</td>
<td>Pressure</td>
<td>Flow</td>
</tr>
<tr>
<td>Split/Splitless</td>
<td>Pressure</td>
<td>Flow</td>
<td>Pressure</td>
<td>Flow</td>
</tr>
<tr>
<td>PTV</td>
<td>Pressure</td>
<td>Flow</td>
<td>Pressure</td>
<td>Flow</td>
</tr>
</tbody>
</table>
### Inlet/AUX

<table>
<thead>
<tr>
<th>Inlet/AUX</th>
<th>Con. Pressure</th>
<th>Con. Flow</th>
<th>Press. Ramp</th>
<th>Flow Ramp</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI</td>
<td>Pressure</td>
<td>Flow</td>
<td>Pressure</td>
<td>Flow</td>
</tr>
<tr>
<td>Gerstel PTV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CIS3</td>
<td>Pressure</td>
<td>Flow</td>
<td>Pressure</td>
<td>Flow</td>
</tr>
<tr>
<td>JIB</td>
<td>Pressure</td>
<td>Flow</td>
<td>Pressure</td>
<td>Flow</td>
</tr>
<tr>
<td>Volatiles</td>
<td>Pressure</td>
<td>Flow</td>
<td>Pressure</td>
<td>Flow</td>
</tr>
<tr>
<td>AUX</td>
<td>Pressure</td>
<td>Flow</td>
<td>Pressure</td>
<td>Flow</td>
</tr>
</tbody>
</table>

### Tips:

If you want to work with a constant flow but if you do not know the column dimensions, you have to enter pressure instead of the flow nevertheless, e.g., for Cool-On-Column-Inlet. In this case, you have to determine the pressure by trial and error to achieve the desired flow.

Agilent does not support the applications for which the fields in the above table are empty. Agilent does not support the Purge Packed, Cool on Column and Split/Splitless inlets without ECP when the column dimensions are not known.

You can only operate the PTV inlet in the constant pressure/flow and pressure ramp modes if no column dimensions are defined.

You can only operate the Gerstel PTV without control mode.

The Administrator Help section provides general information and installation instructions for the 6890 and 6850 GCs; refer to the related topics in the Hardware Installation section.
**Agilent HP 5890 GC: Application**

**Entering a Temperature Gradient**

You can enter a temperature gradient either directly, using the Flow command on the Control menu (GC tab page) or by a PGM File.

Under Chromeleon, a temperature profile is possible with a maximum of three ascents or descents. (The HP 5890 GC cannot store more steps.) The maximum temperature change (ascent) is 70°C per minute.

When entering a temperature gradient in the Program, the so-called "base point philosophy" is used (similar to entering a flow or percent gradient in HPLC). Each Temperature command is a base point for the gradient program. Understandably, no gradient is executed before the Inject command. Temperature gradients can only begin after the Inject command. If the program does not contain an Inject command, this does not apply.

**Temperature Settings**

Use the following commands to enable or disable temperature control of the injector, oven, and detector:

$$
\begin{align*}
0.00 & \text{ InjectorA.TempCtrl = On or = Off} \\
0.00 & \text{ InjectorB.TempCtrl = On or = Off} \\
0.00 & \text{ GC.TempCtrl = On or = Off} \\
0.00 & \text{ DetectorA.TempCtrl = On or = Off} \\
0.00 & \text{ DetectorB.TempCtrl = On or = Off}
\end{align*}
$$

To set the temperature of the single modules, for example, to 80°C, you have to use the following commands:

$$
\begin{align*}
0.00 & \text{ InjectorA.Temperature = 80} \\
0.00 & \text{ InjectorB.Temperature = 80} \\
0.00 & \text{ GC.Temperature = 80} \\
0.00 & \text{ DetectorA.Temperature = 80} \\
0.00 & \text{ DetectorB.Temperature = 80}
\end{align*}
$$

The temperature of the injector system and the detector should always be approximately 15 - 20°C (59 - 68°F) above the current oven temperature. Reaching the nominal temperature on the instrument can take some time. Please note that the oven heats faster than the injector and the detector system. As soon as the temperature is reached, the GC sends a Ready signal. An injection via the autosampler is possible only after this signal.
Example:
The following program waits until the nominal temperature of 150°C is reached, before the \textit{Inject} command is executed:

\begin{verbatim}
  0.000  GC.Temperature = 150
  Wait  GC.Ready
  Inject
  ....  ............
\end{verbatim}

\begin{itemize}
  \item \textbf{Tip:}
\end{itemize}

After Chromeleon has communicated the nominal temperature value to the instrument, the instrument implements the desired value as fast as possible. If the value is “almost” reached, the \textit{Equilibration Time} passes until the instrument sends the confirmation message to Chromeleon. You can specify the duration of this time interval using the \textit{Equilibration Time} parameter in Chromeleon.

The \textbf{Administrator Help} section provides general information and installation instructions for the 5890 GC; refer to \textbf{Hardware Installation}:

\begin{itemize}
  \item Agilent HP5890 GC: Overview
  \item Agilent HP5890 GC: Installation
\end{itemize}
CTC Analytics: Commands and Tips

The first topic in this section provides information about the different CTC PAL Sampler Commands. For information about the different injection modes, refer to:

- Tips for Injection
- PGM File for LC_Inject Mode
- PGM File for Custom Inject Mode
- Tips for Headspace Operation
- PGM File for HS_Progr Inject Mode

For information about how to solve possible problems, refer to CTC Analytics PAL: Troubleshooting

CTC Analytics PAL Sampler Commands

In addition to General Device Commands, the CTC PAL Samplers support the following commands and properties (please note that the display Filter level determines which commands and properties are displayed):

Status properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value Range</th>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busy</td>
<td>Busy/Idle</td>
<td>Expert</td>
<td>Indicates whether the device driver has sent all commands or whether execution of a command is complete (read-only).</td>
</tr>
<tr>
<td>CPUSerialNo</td>
<td>-</td>
<td>Expert</td>
<td>Indicates the CPU serial number of the connected sampler (read-only).</td>
</tr>
<tr>
<td>DeviceState</td>
<td>Ready/Busy/Init(Error)/Unknown</td>
<td>Normal</td>
<td>Indicates the current device status (read-only).</td>
</tr>
<tr>
<td>StatusDescription</td>
<td>-</td>
<td>Normal</td>
<td>Indicates the current action of the sampler. If no action is being performed, Idle is displayed (read-only).</td>
</tr>
<tr>
<td>Syringe</td>
<td>-</td>
<td>Normal</td>
<td>Indicates the installed syringe type (read-only).</td>
</tr>
</tbody>
</table>
# Inject properties

<table>
<thead>
<tr>
<th>Command</th>
<th>Value Range</th>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgitationOffTime</td>
<td>0-99 s or Default*</td>
<td>Normal</td>
<td>Specifies the period during which the agitator is idle.</td>
</tr>
<tr>
<td>AgitationOnTime</td>
<td>0-99 s or Default*</td>
<td>Normal</td>
<td>Specifies the period during which the agitator is active.</td>
</tr>
<tr>
<td>AgitationSpeed</td>
<td>Depends on the agitator;</td>
<td>Normal</td>
<td>Sets the agitation speed in revolutions per minute and starts the agitator</td>
</tr>
<tr>
<td></td>
<td>indicated in rpm. Special</td>
<td></td>
<td>(Off deactivates the agitator).</td>
</tr>
<tr>
<td></td>
<td>values: Off and Default*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AirVolume</td>
<td>Depends on the volume of the</td>
<td>Normal</td>
<td>Specifies the air volume to be drawn for the Inject and/or WashWithSample commands (in LC_Inject and GC_Inject modes).</td>
</tr>
<tr>
<td></td>
<td>installed syringe; indicated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in µl. Special value: Default*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FillSpeed</td>
<td>Depends on the minimum and</td>
<td>Normal</td>
<td>Fill speed for the preparing fill strokes for the Inject and/or WashWithSample commands.</td>
</tr>
<tr>
<td></td>
<td>maximum speed of the installed syringe; indicated in µl/s. Special value: Default*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FillStrokes</td>
<td>0-99 or Default*</td>
<td>Normal</td>
<td>Number of preparing fill strokes for the Inject and/or WashWithSample commands. (in all injection modes except Custom).</td>
</tr>
<tr>
<td>FillVolume</td>
<td>Depends on the syringe volume; indicated in µl. Special value: Default*</td>
<td>Normal</td>
<td>Fill volume for the single piston strokes (for the Inject command in GC_Inject mode and for the WashWithSample command).</td>
</tr>
<tr>
<td>GCCycleTime</td>
<td>0 - 1440 min</td>
<td>Normal</td>
<td>Specifies the run time for the GC between two injections. In sample programs, this value must be set prior to the Inject command.</td>
</tr>
<tr>
<td>IncubationTime</td>
<td>0 - 1440 min</td>
<td>Normal</td>
<td>Specifies the incubation time for the sample. In sample programs, this value must be set prior to the Inject command (only in HS_Single injection mode).</td>
</tr>
<tr>
<td>IncubTimeOffset</td>
<td>0 - 1440 min</td>
<td>Normal</td>
<td>Additional incubation time with respect to the previous sample in a sequence. This value can be set only once per sequence (only in HS_Progr injection mode).</td>
</tr>
<tr>
<td>Command</td>
<td>Value Range</td>
<td>Filter</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------------</td>
<td>--------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>IncubTimeStart</td>
<td>0 - 1440 min</td>
<td>Normal</td>
<td>Incubation time for the first sample in a sequence. This value can only be set once per sequence (only in <strong>HS_Progr</strong> injection mode).</td>
</tr>
<tr>
<td>InjectMode</td>
<td>LC_Inject Custom (for LC),</td>
<td>Advanced</td>
<td>Injection mode. In sample programs, this value must be set prior to the <strong>Inject</strong> command.</td>
</tr>
<tr>
<td></td>
<td>GC_Inject/HS_Single/HS_Progr/</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Custom (for GC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injector</td>
<td>List of all injection objects for the installed PAL</td>
<td>Normal</td>
<td>Injector to be used for the <strong>Inject</strong> and/or <strong>WashWithSample</strong> commands (for all injection modes except Custom). The setting is ignored in Custom injection mode.</td>
</tr>
<tr>
<td>InjectSpeed</td>
<td>Depends on the min. and max.</td>
<td>Normal</td>
<td>Syringe speed in µl/s for injections to the sample loop/GC inlet (in <strong>LC_Inject, GC_Inject, HS_Single, and HS_Progr</strong> modes).</td>
</tr>
<tr>
<td></td>
<td>speed of the installed syringe;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special value: <strong>Default</strong>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostInjectDelay</td>
<td>0 - 99000 ms or <strong>Default</strong>*</td>
<td>Normal</td>
<td>Time between the injection and the removal of the needle from the injector (in <strong>LC_Inject, GC_Inject, HS_Single, and HS_Progr</strong> modes).</td>
</tr>
<tr>
<td>PreInjectDelay</td>
<td>0 - 99000 ms or <strong>Default</strong>*</td>
<td>Normal</td>
<td>Time between insertion of the needle into the injector and injection of liquid into the sample loop (GC inlet) (in <strong>LC_Inject, GC_Inject, HS_Single, and HS_Progr</strong> modes).</td>
</tr>
<tr>
<td>PreparationTime</td>
<td>0 - 1440 min</td>
<td>Normal</td>
<td>Preparation time. This value is set in <strong>HS_Single</strong> mode at the start time of a new sample (read-only). Corresponds to the remaining incubation time of the running sample (marked green), i.e., the time until the sample is injected.</td>
</tr>
</tbody>
</table>
### Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Value Range</th>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PullupDelay</td>
<td>0 - 10000 ms or <strong>Default</strong>*</td>
<td>Normal</td>
<td>Indicates the delay time between drawing the liquid into the syringe and dispensing the volume that is not required (in GC.Inject mode and for the WashWithSample command).</td>
</tr>
<tr>
<td>Tray</td>
<td>List of all tray objects of the installed PAL</td>
<td>Normal</td>
<td>Tray to be used for Inject (for all injection modes except Custom). Note: If you select a different tray, the TrayName property is updated automatically.</td>
</tr>
<tr>
<td>TrayName</td>
<td>String</td>
<td>Normal</td>
<td>Indicates the name of the current tray Note: If you select a different tray, the Tray property is updated automatically.</td>
</tr>
</tbody>
</table>

* **Note:**

For the **Default** parameter, the default value set by CTC on the respective device is used.
CTC Analytics PAL Samplers: Tips for Injection

CTC PAL samplers support the following injection modes:

**PAL Sampler for LC:**

Standard HPLC injections -- **LC_Inject** injection mode (see ![PGM File for LC_Inject Mode](image))

User-defined HPLC injections -- **Custom** injection mode (see ![PGM File for Custom Inject Mode](image))

**PAL Sampler for GC:**

Standard GC injections -- **GC_Inject** injection mode

Headspace injections -- **HS_Single** and **HS_Progr** injection modes (see ![PGM File for HS_Progr Inject Mode](image))

The table below indicates which parameters must be defined for each injection mode.

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameters for LC_Inject</th>
<th>Parameters for GC_Inject</th>
<th>Parameters for HS_Single and HS_Progr headspace Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preparation</td>
<td>IncubationTime or IncubStartTime/IncubOffset, GCCycleTime</td>
<td>AirVolume = 0</td>
<td></td>
</tr>
<tr>
<td>2. Load</td>
<td>AirVolume</td>
<td>FillVolume</td>
<td>AirVolume = 0</td>
</tr>
<tr>
<td></td>
<td>FillSpeed</td>
<td>FillSpeed</td>
<td>FillSpeed</td>
</tr>
<tr>
<td></td>
<td>FillStrokes</td>
<td>FillStrokes</td>
<td>PullupDelay</td>
</tr>
<tr>
<td></td>
<td>PullupDelay</td>
<td>FillStrokes</td>
<td></td>
</tr>
<tr>
<td>3. Injection</td>
<td>PreInjDelay</td>
<td>PreInjDelay</td>
<td>PreInjDelay</td>
</tr>
<tr>
<td></td>
<td>PostInjDelay</td>
<td>PostInjDelay</td>
<td>PostInjDelay</td>
</tr>
<tr>
<td></td>
<td>InjSpeed</td>
<td>InjSpeed</td>
<td>InjSpeed</td>
</tr>
<tr>
<td></td>
<td>Injector</td>
<td>Injector</td>
<td></td>
</tr>
</tbody>
</table>
When performing an inject command, the LC PAL sampler performs the following steps:

1. The sample needle is moved to the specified vial (in the tray or agitator).
2. The specified sample volume is drawn into the syringe.
3. *Optional:* If the **AirVolume** parameter is set to a value > 0, air is drawn from outside the vial.
4. The sample needle is moved to the specified injector.
5. The sampler waits for the Inject Sync signal. (The Inject Sync signal is a PAL synchronization signal.) Set this signal to *immediately* if no waiting time is required. Alternatively, you can set the signal to the input port of the PAL if the sampler is to wait for a signal from the pump. (For information about the settings, refer to *Installing and Controlling Third-Party Devices* CTC Analytics PAL LC/GC Samplers: Installation in the Administrator Help section.)
6. The needle is moved into the injector.
7. The sampler pauses for the time specified by **PreInjDelay**.
8. The injection valve is moved into the Load position (**LC_Inject** mode only).
9. The content of the syringe is dispensed into the sample loop or the GC inlet.
10. The sampler pauses for the time specified by **PostInjDelay**.
11. The injection valve is moved into the Inject position (**LC_Inject** mode only).
12. The needle is moved out of the injector.
13. The needle returns to the Home position.

**Tip:**

Steps 4 and 5 are omitted in the GC injection mode. Additional steps are required for headspace injections (refer to *Tips for Headspace Operation*).
CTC Analytics PAL Samplers: PGM File for LC_Inject Mode

Use the LC_Inject mode for HPLC standard injections. A typical program might look as follows:

```
; Pump/detector commands
...
; PAL commands
TrayName = Sample.PALTray
; (Prerequisite: User-defined column named PALTray)
 InjectMode = LC_Inject
 Injector = LC_Inj1
 InjectSpeed = 50.00
 FillSpeed = 100.00
 FillStrokes = 2
; Preparation steps of the PAL Sampler
 Wash WashStation=Wash1, WashCycles=1
 WashWithSample WashStation=Wash2, WashCycles=2
; Injection procedure
 0.000 Wait Ready
 Inject
 UV.AcqOn
; Cleansing steps of the PAL Sampler
 Wash WashStation=Wash1, WashCycles=1
 WashInjector WashStation=Wash2, Injector=GC_Inj1, WashCycles=1
10.00 UV.AcqOff
End
```

**Tip:**

You can use the TrayName command only if the corresponding User-Defined Column (here: PALTray) has been defined.

For more information, refer to:

- CTC Analytics PAL Sampler Commands
- Tips for Injection
- PGM File for Custom Inject Mode

For information about how to solve possible problems, refer to CTC Analytics PAL Samplers: Troubleshooting.
CTC Analytics PAL Sampler: PGM File for Custom Inject Mode

The Custom injection mode supports special injections, e.g., from different trays with irregularly distributed sample positions and varying injection volumes. The `Inject` command only defines the injection. You have to define all sample preparation steps and the injection procedure in the PGM File. The `Inject` command is the last command in the injection procedure.

A typical program for the Custom injection mode might look as follows:

```plaintext
; Pump/detector commands
...
;
; PAL commands
InjectMode = Custom
;
; Preparation steps of the PAL Sampler
Wash WashStation=Wash1, WashCycles=1
 WashWithSample, WashCycles=2
;
; Injection procedure
0.000 Wait Sampler.Ready
 GET_SAMPLE Source=Tray01, Index=Sample.Position,
 Sample_Volume = Sample.Volume
 SWITCH_INJ Position = Standby
 SWITCH_INJ Injector=LCInj
 PUT_SAMPLE Destination=LCInj, Index=1
 SWITCH_INJ Position = Active
 SWITCH_INJ Injector=LCInj
 Inject
 (The Inject command completes the injection procedure)
 UV.AcqOn
 ...
;
; Cleansing steps of the PAL Sampler
Wash WashStation=Wash1, WashCycles=1
 WashInjector WashStation=Wash2, Injector=GC_Inj1,
 WashCycles=1
10.00 UV.AcqOff

End
```

For more information, refer to CTC Analytics PAL Sampler Commands, Tips for Injection, and PGM File for LC_Inject Mode. For information about how to solve possible problems, refer to CTC Analytics PAL Samplers: Troubleshooting.
CTC Analytics PAL Samplers: Tips for Headspace Operation

Chromeleon supports two headspace injection modes:

**HS_Single**: Standard headspace injection

**HS_Progr**: Progressive headspace injection

In **HS_Single** mode, the sampler performs a standard headspace injection, including sample preparation. You must specify an incubation time (**IncubationTime** parameter) for every sample in the sequence.

In **HS_Progr** mode, you do not have to explicitly set the incubation time for samples. Instead, you can increase the incubation time of the previous sample by a certain value (**IncubOffset**). The **IncubTimeStart** parameter determines the start of the incubation time of the first sample in a sequence. Thus, the incubation time for the sample number \( n \) is calculated as follows:

\[
\text{IncubTimeStart} \ + \ (n-1) \times \text{IncubOffset}.
\]

**Tip:**

You are not allowed to change the **IncubOffset** or **IncubTimeStart** parameters in a sequence, i.e., they can be set before the start of the sequence or they must have the same value in each sample program that is used in the sequence.

In both modes, Chromeleon needs information about the minimum time difference between two sample injections. Use the **GCCycleTime** parameter to specify the time required by the GC after injection until the instrument is ready for the next injection.

**Tip:**

Make sure the cycle time is long enough for completion of all actions by the GC (injection procedure, chromatographic separation, cleaning, warming up of the inlet, etc.) and the sampler (cleaning before and after injection, preparation of new samples, etc.).

The PAL sampler automatically places the vials in the agitator for sample preparation. After the injection procedure, the vials are moved back to their original positions in the tray.

- If you start a new sequence, make sure that no samples were left in the agitator. If necessary, remove all vials from the agitator manually before starting a new sequence.
**Caution:**
Always run an emergency program to cool down the agitator (or other temperature-controlled components) before removing the samples manually from the agitator.

- If you interrupt a current sequence (immediately or after current sample) or if an abort error occurs, Chromeleon attempts to remove all remaining samples from the agitator. This attempt may fail in case of a general device error. In this case, remove the vials manually.

**Caution:**
Always run an emergency program to cool down the agitator (or other temperature-controlled components) before removing the samples manually from the agitator.

- Chromeleon checks whether the specified GC cycle time of a sample exceeds the program end time minus the start time of the next sample. Nevertheless, Dionex recommends allowing for some extra time.

**Tip:**
The GC may require more time, e.g., to heat up the inlet, column, and/or detector until it has reached the new temperature. In this case, certain commands, such as *Wait* and *Inject*, delay the execution of the program, possibly even beyond the sample incubation time. Therefore, Dionex recommends setting the real time of the GC cycle to *GCCycleTime* and adding 30 to 60 seconds for safety reasons. (You might have to add more time, depending on the GC running conditions; for more information, refer to the GC instruction manual.)

- Do not use the *TRANSP_VIAL* command to transport vials to or from the agitator while the sequence is being processed in HS_Inject mode. The mechanism for sample preparation is not connected with this command. If you use this command while a sample is being processed, Chromeleon may attempt to place a vial in a position that is already occupied or to fetch a vial from a position where no vial is present.

- In headspace injection mode, you can assign the tray to be used either manually or explicitly in the PGM File via the tray name (e.g., TrayName = Tray1 or Tray = Tray1). If you use the *Tray* and *TrayName* parameters, it is not possible to make assignments via user-defined columns or formulae.
• Actions for the current sample have priority over preparation steps for the next sample. Therefore, sample preparation steps are only performed when the sampler is idle. The injection is performed when the PAL sampler has completed sample preparation. Chromeleon does not place a new sample in the agitator if the remaining preparation time for the running sample (marked green) is less than 30 seconds.

• If you use the headspace mode for injection, all samples must use the same injection mode. It is not possible to change the headspace mode during a sequence or use non-headspace and headspace modes in one sequence.

• The following applies to blank samples (the Blank sample type, for which the inject command contains the Skipped parameter) and samples without an inject command: Sample preparation is simulated, i.e., the system waits for the desired incubation time but the sample is not placed in the agitator and no injection is performed.

Note:

The audit trail messages for sample preparation are displayed both in the currently running sample and in the sample that is prepared.

For more information, refer to PGM File for HS_Progr Inject Mode.
CTC Analytics PAL Samplers: PGM File for HS_Progr Inject Mode

GC injections are similar to LC injections. If you want to perform headspace injections, you have to define the appropriate sample preparation steps via the HS_Progr injection mode. A typical program for headspace injections might look as follows:

```
Agitator_Temperature.Nominal = 100.0
Agitator_Temperature.Accuracy = 1.0
TrayName = "Tray1"
Injector = GC_Inj1
InjectMode = HS_Progr
FillStrokes = 3
; Delay times in [ms]:
 PreInjectDelay = 3000
 PostInjectDelay = 5000
; Incubation time for the first sample of a sequence in [min]
 IncubTimeStart = 2.0
; Additional incubation time of the last sample
 IncubTimeOffset = 1.0
; Minimum run time between two injections (buffer: 10min + 1.5min)
 GCCycleTime = 700
; Agitation times in [s]
 AgitationOnTime = 20
 AgitationOffTime = 10
 AgitationSpeed = 250
0.000 Wait Sampler.Ready
 Inject
 UV.AcqOn
; Cleansing steps sampler
 Wash WashStation=Wash1, WashCycles=1
 WashInjector WashStation=Wash2, Injector=GC_Inj1,
 WashCycles=1
10.000 UV.AcqOff
```

Also, refer to Tips for Headspace Operation.
CTC Analytics PAL Sampler: Troubleshooting

The following problems may occur during operation of the PAL sampler:

**Missing vial:**

If no vial is present at the position from which the sampler performs injections, the batch is aborted. Due to a firmware limitation, the sampler may then remain in an inconsistent state.

Therefore, Dionex recommends performing a **Home** command. If the tray in which the error occurred is part of a tray stack, close the stack drawer manually.

**Z collision error:**

If the syringe holder collides with another component of the sampler while moving in the z direction (e.g., because of an incorrect configuration), the sampler reports a z collision error.

First, find and eliminate the cause of the z collision error. Then, perform a **Home** command to recalibrate the motor in the x, y, and z directions. The driver cannot perform movement commands until the motor has been recalibrated.

![Tip:]

*The sampler is not equipped with collision sensors for the x and y directions. Therefore, stop the batch immediately if you observe a collision in the x or y direction. Afterward, perform the same steps described for a z collision error.*

**Aborting a sequence or abort error in headspace mode:**

Unless a z collision error caused the abort error, the driver attempts to remove all samples that are still in the agitator. However, samples may remain in the (heated) agitator. For security reasons, Dionex recommends generating an emergency program for cooling the agitator (or other temperature-controlled components) down to ambient temperature.

![Caution:]

*Always run the emergency program before manually removing the samples from the agitator.*
Fisons AS800/ThermoQuest AS2000 Autosamplers: Commands and Tips

Chromeleon supports the following special commands and parameters for these autosamplers, which are identical in construction (please note that the display $\Rightarrow$ Filter level determines which commands and properties are displayed). Also, refer to the information in the manual shipped with the instrument.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td>Cleans the syringe using the previously defined parameters (see below).</td>
</tr>
<tr>
<td>Inject</td>
<td>Injects the sample using the previously defined parameters (see below).</td>
</tr>
<tr>
<td>StopInject</td>
<td>Aborts a running injection.</td>
</tr>
</tbody>
</table>

**Tip:** Use with Care! Might cause incorrect behavior!

Use the following parameters to specify the **Inject** command in detail. Define all injection parameters before initiating the **Inject** command. Otherwise, they will not take effect.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AirVolume</td>
<td>Select this parameter to specify the volume of air (0.0 - 500.0 (\mu)l) drawn after pulling the syringe needle out of the vial. This reduces evaporation from the syringe needle. The total of AirVolume plus FillingVolume must not exceed the syringe volume.</td>
</tr>
<tr>
<td>CleanCycles</td>
<td>Select this parameter to determine the number of cleaning cycles before injection (0...15). Specify the volume with the FillingVolume parameter.</td>
</tr>
<tr>
<td>Cleaning Cycles before Injection (Pre Inj Clean Cyc) [Solvent A/B/C/D]</td>
<td>Select this parameter to set the number of pre-injection cleaning cycles with solvent A/B/C/D. Please note: Only the solvent that has been specified last is used.</td>
</tr>
<tr>
<td>Cleaning Cycles after Injection (Post Inj Clean Cyc) [Solvent A/B/C/D]</td>
<td>Select this parameter to set the number of post-injection cleaning cycles with solvent A/B/C/D. Please note: Only the solvent that has been specified last is used.</td>
</tr>
<tr>
<td>Delay (PullUpDelayTime)</td>
<td>Select this parameter to determine the delay following the up and down movements of the syringe plunger (0.0 - 15.0 s).</td>
</tr>
<tr>
<td>Delay after (Post Inj Delay Time)</td>
<td>Select this parameter to determine for how long the syringe remains in the injector after the injection (0 - 63 s).</td>
</tr>
<tr>
<td>Delay before (Pre Inj Delay Time)</td>
<td>Select this parameter to determine the delay the syringe remains in the injector before the injection (0 - 63 s).</td>
</tr>
</tbody>
</table>
### Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FillingVolume</strong></td>
<td>Select this parameter to set the sample volume to be used for cleaning and eliminating gas bubbles (see CleanCycles and PullupCount). If the FillingVolume (0.0 - 500.0 µl) is less than the sample volume (Volume), the sample volume will be used instead.</td>
</tr>
<tr>
<td><strong>InjectionSpeed</strong></td>
<td>Select this parameter to determine how fast the sample is injected (1 - 100 µl/s).</td>
</tr>
<tr>
<td><strong>Post Inj Clean Cyc A/B/C/D</strong></td>
<td>Select this parameter to set post-injection cleaning cycles with solvent A/B/C/D. Please note: Only the solvent that has been specified last is used</td>
</tr>
<tr>
<td><strong>PullupSpeed</strong></td>
<td>Select this parameter to determine how fast the sample is drawn (1 - 100 µl/s).</td>
</tr>
<tr>
<td><strong>Pumps (PullupCount)</strong></td>
<td>Select this parameter to determine how often the syringe plunger is moved up and down before the sample is actually drawn up (0...15). This eliminates bubbles and thus, enhances reproducibility.</td>
</tr>
<tr>
<td><strong>Volume (Pre Inj Clean Vol)</strong></td>
<td>Select this parameter to set the pre-injection cleaning volume (0.0 - 500.0 µl).</td>
</tr>
<tr>
<td><strong>With Sample (Position)</strong></td>
<td>Select this parameter to specify the sample that shall be used for cleaning (positions 0...15).</td>
</tr>
</tbody>
</table>

For more information, refer to:

- [Program Example](#)
- [Troubleshooting](#)

The **Administrator Help** section provides installation details; refer to **Hardware Installation**:

- [Fisons AS800 GC Autosampler](#)
- [Thermo Finnigan/TQ/TSP AS2000 GC Autosamplers](#)
Fisons AS800/ThermoQuest AS2000: Program Example

After the ⇒Connect command, the parameter values are initially unknown to Chromeleon (blank fields in the AS800 control panel). You should enter meaningful values before injection. Use one of the Method A/B/C/D buttons on the control panel or specify them in the sample program. (For more information, refer to How to …: Creating and Modifying Programs Creating a Program.) This might be a good starting point:

; Standard 10 µl syringe.
; Injection Volume: 1.0 µL.
PreInjCleanVol = 10.0
PreInjCleanCycA = 3
CleanCycles = 1
PostInjCleanCycC = 0
; PostInjCleanVol = 10.0
PullUpCount = 6
PullUpDelayTime = 2.0
AirVolume = 3.0
FillingVolume = 5.0
AspirationSpeed = 100
InjectionSpeed = 100
PreInjDelayTime = 1
PostInjDelayTime = 2

For the commands supported for these instruments and for additional tips, refer to:

Fisons AS800/ThermoQuest AS2000 Autosamplers

Troubleshooting

The Administrator Help section provides installation details; refer to Hardware Installation:

Fisons AS800 GC Autosampler

Thermo Finnigan/TQ/TSP AS2000 GC Autosampler
Fisons AS800/ThermoQuest AS2000: Troubleshooting

**Note:**

If an error occurs during operation, for example, excessive sample volume, the error is displayed on the instrument only. To continue the analysis, confirm the error message directly on the autosampler by pressing the <Enter>. This is possible after the autosampler keycard has been unlocked in Chromeleon. Use either the Disconnect command or the KeycardUnlocked command. Better yet: Disconnect the autosampler, turn it off and on again, wait until the autosampler is ready, and then reconnect the unit (see ⇒ Connect).

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
<th>Remedial Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing vial</td>
<td>The following messages appears on the instrument's display: End Sample Total Injections 0</td>
<td>Abort the batch.</td>
</tr>
<tr>
<td></td>
<td>In addition, Chromeleon waits forever for an inject response.</td>
<td></td>
</tr>
<tr>
<td>Bad vial</td>
<td>After some retries, a message like this appears on the instrument's display: PLG NDL INJ TUR CNTR</td>
<td>Disconnect the autosampler and press the EXIT key (on the autosampler's keycard). When prompted whether to pause, continue, or abort the sample, select Abort. Abort the batch and reconnect.</td>
</tr>
<tr>
<td></td>
<td>--- BSY --- --- *</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This happens quite easily if the vials are not perfectly crimped.</td>
<td></td>
</tr>
<tr>
<td>Illegal parameter (e.g., Volume/ Position &gt; Max or Air + Sample Volume &gt; Max)</td>
<td>An error message appears on the autosampler's display.</td>
<td>Disconnect the autosampler. Press the autosampler key, as necessary.</td>
</tr>
<tr>
<td>Continuous beep and display cleared</td>
<td>Severe damage may occur (destroyed syringe, vials etc.)!</td>
<td>Turn off the autosampler immediately! Disconnect the autosampler, turn it off and on again, wait until it is ready, and reconnect.</td>
</tr>
<tr>
<td>Strange behavior of any other kind</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the commands supported for these instruments and for additional tips, refer to:

- **Fisons AS800/ThermoQuest AS2000 Autosamplers**
- **Program Example**
Gilson: Commands and Tips

For information about the special commands that Chromeleon supports for the different Gilson devices and for tips for practical operation, refer to:

- Gilson 321 and 322 Pumps
- Gilson 333 and 334 Pumps
- Gilson 202 Fraction Collector (Ext.)/204 Fraction Collector
- Gilson: Injection Modes
- Gilson 156 UV/VIS Detector

Gilson 321 and 322 Pumps

In addition to the standard pump commands (see Commands for Controlling Dionex Devices, Dionex Pumps), the following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>(Min/Max) Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModelNo</td>
<td>N/A</td>
<td>Indicates the model number of the pump (read-only)</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>x.xx</td>
<td>Indicates the pump’s firmware version (read-only)</td>
</tr>
<tr>
<td>ChartOut (321 only)</td>
<td>Possible values: Pressure, Flow, Percentage %A, %B</td>
<td>Determines the property to be monitored via the digital output (pin no. 9).</td>
</tr>
</tbody>
</table>

Pump Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>(Min/Max) Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%A_RefillTime, %B_RefillTime</td>
<td>125 – 1000 ms</td>
<td>Determines how long the piston takes to return to its initial state. Enter a higher value in case of cavitation.</td>
</tr>
<tr>
<td>%A_LiquidCompr, %B_LiquidCompr</td>
<td>0 – 2000 1/Mbar</td>
<td>Determines the solvent compressibility.</td>
</tr>
</tbody>
</table>
### Prime Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StartPriming</td>
<td>PumpHead parameter</td>
<td>Starts a priming sequence for the specified pump head.</td>
</tr>
<tr>
<td></td>
<td>(possible values:</td>
<td>Note: After performing the StartPriming command, no other command or property</td>
</tr>
<tr>
<td></td>
<td>RightHead,</td>
<td>is allowed until the StopPriming command was performed.</td>
</tr>
<tr>
<td></td>
<td>LeftHead)</td>
<td></td>
</tr>
<tr>
<td>StopPriming</td>
<td>-</td>
<td>Finishes a running priming sequence.</td>
</tr>
</tbody>
</table>

### Maintenance Counters

- **Right_PistonSeal**, **Left_PistonSeal**
  - 0 - 65534 h: Maintenance counter for the right or left piston seal (read-only)

- **Right_Piston**, **Left_Piston**
  - 0 - 65534 h: Maintenance counter for the right or left piston (read-only)

- **Right_OutletValve**, **Left_OutletValve**
  - 0 - 65534 h: Maintenance counter for the right or left outlet valve (read-only)

- **Right_InletValve**, **Left_InletValve**
  - 0 - 65534 h: Maintenance counter for the right or left inlet valve (read-only)

- **Right_Actuator**, **Left_Actuator**
  - 0 - 65534 h: Maintenance counter for the right or left actuator (read-only)

### Further Information

**Tip:**

For more information, for example, about the empirical compressibility correction values for the Gilson 321 and 322 pumps, refer to the pump’s User’s Guide.

For information about how to install these pumps, refer to Hardware Installation Gilson 321 and 322 Pumps: Installation in the Administrator Help section.
**Gilson 333 and 334 Pumps**

In addition to the standard pump commands (see Commands for Controlling Dionex Devices), the following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>(Min/Max) Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModelNo</td>
<td>N/A</td>
<td>Indicates the model number and firmware version of the master pump (read-only)</td>
</tr>
<tr>
<td>ChartOut</td>
<td>Possible values: Pressure, Flow, Percentage %A, %B, %C</td>
<td>Determines the property to be monitored via the digital output (pin no. 9).</td>
</tr>
</tbody>
</table>

### Selection of Predefined Solvents

- **%A_UseSolvent** (%B_UseSolvent, %C_UseSolvent; only available if a second/third pump is installed)
  - The property is visible only if the SVB is enabled for the pump.

- **%A_Type, %B_Type, %C_Type** (%B_… and %C_…; only available if a second/third pump is installed)
  - If the SVB is enabled for a pump, e.g., A, four properties are available for this pump:
    - **%A1_Type … %A4_Type**
    - **%A1_K0, %B1_K0, %C1_K0** (%B_… and %C_…; only available if a second/third pump is installed)
    - Indicators the type of the used solvent. If you change this property, the _K0 and _X0 properties (see below) are also changed unless the setting is Custom.

- **%A_K0, %B_K0, %C_K0** (%B_… and %C_…; only available if a second/third pump is installed)
  - If the SVB is enabled for a pump, e.g., A, four properties are available for this pump:
    - **%A1_K0 … %A4_K0** 0 … 2000 1/Mbar
  - Specifies the empirical compressibility correction K0 for the selected solvent (for the Gilson 333 and 334 pumps, refer to the Reference Information section of the pump's User's Guide). This value can only be changed if the corresponding Type property is set to Custom. The value is adapted again if the Type property is reset to a value other than Custom.
Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Property</th>
<th>(Min/Max) Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%A_X0, %B_X0, %C_X0</td>
<td>0 ... 2000 1/Mbar</td>
<td>Specifies the liquid compressibility X0. This value can only be changed if the corresponding Type property is set to Custom. The value is adapted again if the Type property is reset to a value other than Custom.</td>
</tr>
</tbody>
</table>

If the SVB is enabled for a pump, e.g., A, four properties are available for this pump:

%A1_X0 ... %A4_X0

If the SVB is enabled for a pump, e.g., A, four properties are available for this pump:

%A1_X0 ... %A4_X0

‘Type’ sub-property of the %A (%B, %C) property Possible values: Custom or one of the predefined solvents of the Gilson 333 pump

This type refers to the currently selected solvent of a pump. If you change this property, e.g., for pump %A, the type of the selected solvent is changed as well. For example, if %A_UseSolvent=Solvent2 the %A2_Type is also changed (plus the compressibility, unless the Type setting is Custom.

Maintenance Counters

%A<x>Count_PistonSeal, <x>='R', 'L' 0 - 65535 h | Maintenance counter for the right (R) or left (L) piston seal (read-only) |
%A<x>Limit_PistonSeal, <x>='R', 'L' 0 - 65535 h | Counter limit for the right (R) or left (L) piston seal (read-only) |
%A<x>Count_Piston, <x>='R', 'L' 0 - 65535 h | Maintenance counter for the right (R) or left (L) piston (read-only) |
%A<x>Limit_Piston, <x>='R', 'L' 0 - 65535 h | Counter limit for the right (R) or left (L) piston (read-only) |
%A<x>Count_OutChkValve, <x>='R', 'L' 0 - 65535 h | Maintenance counter for the right (R) or left (L) outlet valve (read-only) |
%A<x>Limit_OutChkValve, <x>='R', 'L' 0 - 65535 h | Counter limit for the right (R) or left (L) outlet valve (read-only) |
%A<x>Count_InlChkValve, <x>='R', 'L' 0 - 65535 h | Maintenance counter for the right (R) or left (L) inlet valve (read-only) |
%A<x>Limit_InlChkValve, <x>='R', 'L' 0 - 65535 h | Counter limit for the right (R) or left (L) inlet valve (read-only) |

Tip:

For more information, for example, about the empirical K0 compressibility correction values for the Gilson 333 and 334 pumps, refer to the pump’s User’s Guide.

For information about how to install these pumps, refer to Hardware Installation Gilson 333 and 334 Pumps: Installation in the Administrator Help section.
Gilson 202 Fraction Collector (Ext.)/204 Fraction Collector

The following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>(Min/Max) Values</th>
<th>Purpose/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModelNo</td>
<td>N/A</td>
<td>Indicates the model number (for the Gilson 202 including the firmware version; (read-only).</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>N/A</td>
<td>Indicates the firmware version</td>
</tr>
<tr>
<td>ValvePosition</td>
<td>Possible values:</td>
<td>Switches the fractionation valve to the Drain or Collect position (The property is available only if a fractionation valve is installed.)</td>
</tr>
<tr>
<td>RackType</td>
<td>Possible values:</td>
<td>Indicates the used rack type, specified in the Server Configuration program (read-only).</td>
</tr>
<tr>
<td>TubePosition</td>
<td>Range: 1 … n.</td>
<td>Moves the collect head to the specified position.</td>
</tr>
<tr>
<td>MovementMode</td>
<td>Possible values:</td>
<td>In Secure mode, the fractionation valve switches to the Drain position before the collect head starts moving and switches back to the Collect position when the tube position has been reached. If the fractionation valve is already in the Drain position, the instrument does not automatically switch to the Collect position. (The property is available only if a fractionation valve is installed.)</td>
</tr>
<tr>
<td></td>
<td>normal and secure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default: secure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose/Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Moves the collect head to the Home position (drain outlet)</td>
</tr>
<tr>
<td>Next</td>
<td>Moves the collect head to the next tube. If the collect head is positioned at the last tube, it moves to the first one.</td>
</tr>
<tr>
<td>Drain</td>
<td>If the rack type is code 10, the collect head is positioned over the central rack hole. For all other rack types, the fractionation valve is switched to the Drain position. (The property is available only if a fractionation valve is installed or if Code 10 is selected as the rack type.)</td>
</tr>
</tbody>
</table>
Further Information

For information about how to install the Gilson 202 fraction collector with the Gilson 202 Fraction Collector (ext.) device driver and the Gilson 204 fraction collector with the Gilson 204 Fraction Collector device driver, refer to installation instructions & Gilson 202 Fraction Collector (Ext.)/204 Fraction Collector: Installation in the Administrator Help section.

## Gilson: Injection Modes

Chromeleon supports the following injection modes:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto:</td>
<td>Default setting. Depending on the injection volume, either the entire loop (Total Loop) or a section of it (Partial Loop) is filled with the sample.</td>
</tr>
</tbody>
</table>
| Total Loop:| The entire injection loop is filled with the sample liquid; the injection volume therefore corresponds to the injection loop. If the syringe volume is larger than the loop volume, it is possible to use a higher volume than the loop volume (\( {\text{IntoLoopFactor}} > 1 \)). The volume exceeding the loop volume is used to pre-wash the injection loop with the sample liquid. To prevent dilution effects, the volume extracted from the sample reservoir can be larger than the volume injected into the loop (Sample Factor > 1). The sample liquid remaining in the syringe after the injection (= excessive volume) is then dispensed during the final wash cycle. \( V_S \leq F_I \times V_S \leq F_S \times V_S \)  
\( V_S \): Sample volume  
\( F_I \): IntoLoopFactor  
\( F_S \): Sample Factor |
| Partial Loop: | Only a part of the injection loop is filled with the sample liquid. The injection volume is therefore smaller than the volume of the injection loop. To compensate for the dead volume between the injection port and the injection loop, it is possible to inject a small quantity of solvent after the sample. The volume of this injection can be specified under Push Volume. Please note: \( V_S \leq V_S + V_P \leq V_I \)  
\( V_S \): Sample volume  
\( V_P \): Push volume  
\( V_I \): Injection volume |
### Gilson 156 UV/VIS Detector

In addition to the standard detector commands (see [Commands for Controlling Dionex Devices](#)), the following commands and properties are available (please note that the display filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min/Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModelNo</td>
<td>N/A</td>
<td>Indicates the model number (read-only).</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>N/A</td>
<td>Indicates the firmware version (read-only).</td>
</tr>
<tr>
<td>VisLampAge</td>
<td></td>
<td>Age of the VIS lamp</td>
</tr>
</tbody>
</table>
| VisLampAge.Value| 0 .. 9999 [h] | Current value  
                        | The allowed input is to reset the value to 0.                            |
| VisLampAge.UpperLimit | 0 .. 9999 [h] | Upper limit  
                        | If the burning hours exceed the upper limit, an error message appears. Enter 0 to disable this check. |
| UVLampAge       |         | Age of the UV lamp                                                         |
| UVLampAge.Value | 0 .. 9999 [h] | Current value  
                        | The allowed input is to reset the value to 0.                            |
| UVLampAge.UpperLimit | 0 .. 9999 [h] | Upper limit  
                        | If the burning hours exceed the upper limit, an error message appears. Enter 0 to disable this check. |
| LampSaver       | On / Off | Set to On to have Chromelon automatically turn off a lamp that is not used. This may increase the lamp's lifetime. |
| Reference       | -99999999 .. 99999999 | Indicates the current of the reference absorption in µFS (µ full scale; read-only). This value is for control only and not for data acquisition. |
### LampIntensity

<table>
<thead>
<tr>
<th>Property</th>
<th>Min/Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-9999999 .. 9999999</td>
<td>Indicates the measured absorption current in μFS (μ full scale; read-only). This value is for control only and not for data acquisition.</td>
</tr>
</tbody>
</table>

| Mode       | single / dual    | Toggle between single-channel and dual-channel mode.                         |

### Channel Characteristics

<table>
<thead>
<tr>
<th>Property</th>
<th>Min/Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>190 .. 700 [nm]</td>
<td>Wavelength at which the channel records the signal.</td>
</tr>
</tbody>
</table>

| Response   | 0.0 / 4.0 .. 99.0 (single mode) | Time in seconds required by the detector until the signal reaches 98% of full scale. (Note: In single mode, the minimum value can be 0.0 s.) |
|           | 4.0 .. 99.0 (dual mode)         |                                                                             |

| Range      | 0.001 .. 2.000 | Measuring range in [AU]                                                      |
Kontron (Bio-Tek): Commands and Tips

For information about the special commands that Chromeleon supports for the different Kontron devices, refer to:

- Kontron 465 Autosampler
- Kontron SFM 25 Fluorescence Detector

Kontron 465 Autosampler

In addition to the standard autosampler commands (see Dionex Autosamplers), Chromeleon supports the following Kontron 465 commands for pre-column derivatization (please note that the display Filter level determines which commands and properties are displayed). Also, refer to the information in the manual shipped with the instrument.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StartPosition</td>
<td>Returns to the start position.</td>
</tr>
<tr>
<td>GetReagent</td>
<td>The reagent is withdrawn from a pre-defined position.</td>
</tr>
<tr>
<td>Mix</td>
<td>Mixes the reagents.</td>
</tr>
<tr>
<td>AddReagentAndMix</td>
<td>The reagent is added and mixed with the sample.</td>
</tr>
<tr>
<td>AirSegment</td>
<td>Draws an air segment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReagentPosition</td>
<td>Position of the reagent.</td>
</tr>
<tr>
<td>ReagentVolume</td>
<td>Reagent volume to be used.</td>
</tr>
<tr>
<td>AirVolume</td>
<td>Air volume to be drawn up after pulling the syringe needle out of the vial.</td>
</tr>
<tr>
<td>MixingVolume</td>
<td>Mixing volume.</td>
</tr>
</tbody>
</table>

Tip:

The prerequisite for controlling this instrument is that the Extended Device Control feature must licensed on your system.

For more information, refer to Hardware Installation Kontron Autosamplers in the Administrator Help section.
Kontron SFM25 Fluorescence Detector

Chromeleon supports the following special commands and parameters for the Kontron SFM25 Fluorescence Detector (please note that the display Filter level determines which commands and properties are displayed). Also, refer to the information in the manual shipped with the instrument.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoblank</td>
<td>Sets the zero value of the amplifying factor.</td>
</tr>
<tr>
<td>Calibrate</td>
<td>Sets the maximum value of the amplifying factor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HighVoltage</td>
<td>Enter the maximum output voltage (100...999V). Pressing Calibrate command automatically sets the value of the voltage.</td>
</tr>
<tr>
<td>Factor</td>
<td>Enter the multiplying factor (0.01...10.00). Pressing Autoblank automatically calculates and stores the value.</td>
</tr>
</tbody>
</table>

For more information, refer to Hardware Installation Kontron SFM25 Fluorescence Detector in the Administrator Help section.
Merck Hitachi: Commands and Tips

For information about the special commands that Chromeleon supports for the different Merck Hitachi devices and for tips for practical operation, refer to:

- LaChrom HPLC System: Tips
- Merck Hitachi Pumps: Program Example
- Merck Hitachi Autosamplers
- Merck Hitachi AS4000: Program Example

Merck Hitachi LaChrom HPLC System: Tips

Chromatogram (Detector)
The detector allows negative signals to pass up to 250 mV only. Thus, Chromeleon displays negative signals only up to 250 mV, although the detector displays values up to 500 mV.

Rack Display (Autosampler)
If the rack you selected in the Server Configuration is not the one used in the current sequence, the Browser displays the wrong rack.

Merck Hitachi Pumps: Program Example
To avoid overloading the Merck pumps with too fast a sequence of commands, allow for at least 0.1 min between the individual commands. For a program example for the L6200 pump, see below:

```
-0.100 Pressure.LowerLimit = 0
 Pressure.UpperLimit = 400
%A.Equate = "%A"
%B.Equate = "%B"
%C.Equate = "%C"
```
Commands and Tips for Third-Party Devices

;******** Detector commands: *************
UV_VIS_1.Mode = UV
UV_VIS_1.Range = 0.200
UV_VIS_1.Response = 1.0
UV_VIS_1.Step = Auto
UV_VIS_1.Average = On
UV_VIS_1.Wavelength = 260

0.000  UV_VIS_1.Autozero
  Flow = 1.000
  %B = 10
  %C = 0
  Inject
UV_VIS_1.AcqOn
  Flow = 1.000
  %B = 10
  %C = 0

;The gradient starts after 0.1 minutes to avoid overload the pump
with too fast a sequence of commands:
0.100  %B = 10
10.000  %B = 90
15.000  %B = 90
16.000  %B = 10
30.000  UV_VIS_1.AcqOff
  Flow = 1.000
  %B = 10
  %C = 0
End

For an overview of the Merck Hitachi pumps (L6200/L6210 and L6250),
refer to Hardware Installation Merck Hitachi L6200/L6210 and L6250
Pumps: Overview in the Administrator Help section.
### Merck Hitachi Autosamplers

#### Supported Autosamplers

For **Autosampler**... *controlled via*... use device driver

<table>
<thead>
<tr>
<th>Model</th>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS2000</td>
<td>RS-232</td>
<td>Merck Hitachi AS2000 Autosampler</td>
</tr>
<tr>
<td>AS4000</td>
<td>RS-232</td>
<td>Merck Hitachi AS4000 Autosampler</td>
</tr>
<tr>
<td>L7250</td>
<td>RS-232</td>
<td>Merck Hitachi L7250 Autosampler</td>
</tr>
<tr>
<td>L7250</td>
<td>D-Line</td>
<td>Merck Hitachi L7200/L7250 AS (D-Line)</td>
</tr>
<tr>
<td>L7200</td>
<td>D-Line</td>
<td>Merck Hitachi L7200/L7250 AS (D-Line)</td>
</tr>
</tbody>
</table>

#### Supported Device Properties

In addition to the standard autosampler commands (see **Dionex Autosamplers**), the Merck Hitachi autosampler support the following commands and properties (please note that the display **Filter** level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>AS2000</th>
<th>AS4000</th>
<th>L7250</th>
<th>L7200</th>
</tr>
</thead>
<tbody>
<tr>
<td>InjectPortWashes</td>
<td>0-20</td>
<td>0-20</td>
<td>0-20</td>
<td>0-20³</td>
</tr>
<tr>
<td>InjectPortWashSpeed</td>
<td>1 (Low) ... 5 (High)</td>
<td>1 (Low) ... 5 (High)</td>
<td>1 (Low) ... 5 (High)³</td>
<td></td>
</tr>
<tr>
<td>NeedleWashes</td>
<td>1-20</td>
<td>1-20</td>
<td>1-20</td>
<td>1-20³</td>
</tr>
<tr>
<td>NeedleWashSpeed</td>
<td>1 (Low) ... 5 (High)</td>
<td>1 (Low) ... 5 (High)</td>
<td>1 (Low) ... 5 (High)³</td>
<td></td>
</tr>
<tr>
<td>WasteVolume</td>
<td>Not supported</td>
<td>Not supported</td>
<td>0-4000.0 µl</td>
<td>0-4000.0 µl²</td>
</tr>
<tr>
<td>WashVolume</td>
<td>10.0-100.0 µl</td>
<td>10.0-1000.0 µl</td>
<td>10.0-1000.0 µl</td>
<td>10.0-1000.0 µl</td>
</tr>
<tr>
<td>LeadVolume</td>
<td>0-100.0 µl</td>
<td>0-1000.0 µl</td>
<td>0-1000.0 µl</td>
<td>0-500.0 µl²</td>
</tr>
<tr>
<td>RearVolume</td>
<td>0-100.0 µl</td>
<td>0-1000.0 µl</td>
<td>0-1000.0 µl</td>
<td>0-500.0 µl²</td>
</tr>
<tr>
<td>FeedVolume</td>
<td>0-100.0 µl</td>
<td>0-1000.0 µl</td>
<td>0-1000.0 µl</td>
<td>0-500.0 µl²</td>
</tr>
<tr>
<td>DeadVolume</td>
<td>0-100.0 µl</td>
<td>0-1000.0 µl</td>
<td>0-1000.0 µl</td>
<td>0-500.0 µl²</td>
</tr>
<tr>
<td>Syringe</td>
<td>0-100.0 µl</td>
<td>0-1000.0 µl</td>
<td>0-1000.0 µl</td>
<td>Not supported</td>
</tr>
<tr>
<td>InjectionMethod</td>
<td>0 (Compatibility) 1 (Cut) 2 (All)</td>
<td>0 (Compatibility) 1 (Cut) 3 (FullLoop)</td>
<td>0 (Compatibility) 1 (Cut) 3 (FullLoop)³</td>
<td></td>
</tr>
<tr>
<td>SyringeSpeed</td>
<td>1 (Low) ... 5 (High)</td>
<td>1 (Low) ... 5 (High)</td>
<td>1 (Low) ... 5 (High)</td>
<td></td>
</tr>
<tr>
<td>NeedleDownSpeed</td>
<td>1 (Slow) ... 2 (Fast)</td>
<td>1 (Slow) ... 2 (Fast)</td>
<td>1 (Slow) ... 2 (Fast)</td>
<td></td>
</tr>
<tr>
<td>VolSyringe</td>
<td>1 (100µl) - 2 (500 µl)</td>
<td>1 (100 µl) - 5 (5000 µl)</td>
<td>1 (100 µl) - 5 (5000 µl)</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Property</th>
<th>AS2000</th>
<th>AS4000</th>
<th>L7250</th>
<th>L7200</th>
</tr>
</thead>
<tbody>
<tr>
<td>PumpPlungerWash</td>
<td>Not supported</td>
<td>Not supported</td>
<td>0 (No) or 1 (Yes)</td>
<td>0 (No) or 1 (Yes)³</td>
</tr>
<tr>
<td>VolOptionalSyringe</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NumberOfDilutors</td>
<td>Not supported</td>
<td>1 or 2</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Dilutor</td>
<td>Not supported</td>
<td>1 or 2</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>RackCode</td>
<td>1 - 16</td>
<td>1 - 16</td>
<td>1 - 16</td>
<td>Not supported</td>
</tr>
<tr>
<td>Volume</td>
<td>1 - 500.0 µl</td>
<td>1 - 5000.0 µl</td>
<td>1 - 5000.0 µl</td>
<td>1 - 500.0 µl</td>
</tr>
<tr>
<td>Position</td>
<td>1 - 100</td>
<td>1 - 200</td>
<td>1 - 200</td>
<td>1 - 200</td>
</tr>
</tbody>
</table>

² If one of these properties is set, all other settings that are marked with ² are set, too. Check the parameters sent to the autosampler with extra care.

³ If one of these properties is set, all other settings that are marked with ³ are set, too. Check the parameters sent to the autosampler with extra care.

Supported Device Commands

<table>
<thead>
<tr>
<th></th>
<th>AS2000</th>
<th>AS4000</th>
<th>L7250</th>
<th>L7200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect (/Disc.)</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Disconnect</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Aspirate (see Aspiration)</td>
<td>0 - 500.0 µl, Speed</td>
<td>Dilutor, 0 - 5000.0 µl, Speed</td>
<td>0 - 5000.0 µl, Speed</td>
<td>Not supported</td>
</tr>
<tr>
<td>Dispelse (Dispense)</td>
<td>0 - 500.0 µl, Speed</td>
<td>Dilutor, 0, 5000.0 µl, Speed</td>
<td>0-5000.0 µl, Speed</td>
<td>Not supported</td>
</tr>
<tr>
<td>GotoTube</td>
<td>1 - 100, RackCode</td>
<td>1 - 200, RackCode</td>
<td>1 - 200, RackCode</td>
<td>Not supported</td>
</tr>
<tr>
<td>GotoWashPort</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>GotoInjectPort</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>MoveNeedle</td>
<td>X:0-163.0 mm, Y:0-68.0 mm, Z:0-38.0 mm</td>
<td>X:0-244.0 mm, Y:0-163.0 mm, Z:0-57.0 mm</td>
<td>X:0-156.0 mm, Y:0-156.0 mm, Z:0-57.0 mm</td>
<td>Not supported</td>
</tr>
<tr>
<td>Height</td>
<td>Z:0-38.0 mm</td>
<td>Z:0-57.0 mm</td>
<td>Z:0-57.0 mm</td>
<td>Not supported</td>
</tr>
<tr>
<td>GotoSyringePos</td>
<td>0 - 500.0 µl, Speed</td>
<td>Dilutor, 0, 5000.0 µl, Speed</td>
<td>0 - 5000.0 µl, Speed</td>
<td>Not supported</td>
</tr>
<tr>
<td>GotoSValvePos</td>
<td>0 (Bottle) or 1 (Needle)</td>
<td>0 (Bottle) or 1 (Needle)</td>
<td>0 (Bottle) or 1 (Needle)</td>
<td>Not supported</td>
</tr>
<tr>
<td>GotoValvePos</td>
<td>0 (Inject) or 1 (Load)</td>
<td>0 (Inject) or 1 (Load)</td>
<td>0 (Inject) or 1 (Load)</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
## Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th></th>
<th>AS2000</th>
<th>AS4000</th>
<th>L7250</th>
<th>L7200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Reset</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Wash</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>WashPumpPlunger</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Supported*</td>
<td>Not supported</td>
</tr>
<tr>
<td>Inject</td>
<td>Supported - see below</td>
<td>Supported - see below</td>
<td>Supported - see below</td>
<td>Supported</td>
</tr>
<tr>
<td>Wash_X</td>
<td>Supported - see below</td>
<td>Not supported</td>
<td>Supported - see below</td>
<td>Not supported</td>
</tr>
<tr>
<td>WashDil_X</td>
<td>Not supported</td>
<td>Supported - see below</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>GotoOpValvePos</td>
<td>Not supported</td>
<td>Not supported</td>
<td>0 (Inject) or 1 (Load)*</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

### Inject Programs

**AS2000**  
**AS4000**  
**L7250**  

Depending on the current value of the **Syringe** device property, three different programs are internally executed during processing an `⇒ Inject` command. For AS2000 and L7250 the dilutor property always equals 1.

1. **Syringe>0**
   - GotoSyringe
     - SyringePos=0
       - Speed=<$current value of property Speed$>
       - Dilutor=<$current value of property Dilutor$>
   - GotoSValve
     - ValvePos=Bottle
       - Dilutor=<$current value of property Dilutor$>
   - GotoSyringe
     - SyringePos=<$current value of property Syringe$>
       - Speed=<$current value of property Speed$>
       - Dilutor=<$current value of property Dilutor$>
   - GotoInject
     - PortNumber=<$current value of property Position$>
       - RackCode=<$current value of property RackCode$>
     - Aspirate
       - AspirateVol=<$current value of property Volume$>
         - Speed=<$current value of property Speed$>
         - Dilutor=<$current value of property Dilutor$>
     - GotoInjectPort
   - GotoValve
     - ValvePos=Load
   - GotoSyringe
     - SyringePos=0
       - Speed=<$current value of property Speed$>
       - Dilutor=<$current value of property Dilutor$>
   - GotoValve
     - ValvePos=Inject

2. **Syringe=0**
   - GotoOpValve
     - ValvePos=Load
   - GotoSyringe
     - SyringePos=0
       - Speed=<$current value of property Speed$>
       - Dilutor=<$current value of property Dilutor$>
   - GotoValve
     - ValvePos=Inject

3. **Syringe=1**
   - GotoOpValve
     - ValvePos=Load
   - GotoSyringe
     - SyringePos=0
       - Speed=<$current value of property Speed$>
       - Dilutor=<$current value of property Dilutor$>
   - GotoValve
     - ValvePos=Inject
Syringe=0  GotoTube    TubeNumber=<current value of property Position>
  RackCode=<current value of property RackCode>
Aspirate  AspirateVol=<current value of property Volume>
  Speed=<current value of property Speed>
  Dilutor=<current value of property Dilutor>
GotoInjectPort
  GotoValvePos ValvePos=Load
  GotoSyringePos SyringePos=0
  Speed=<current value of property Speed>
  Dilutor=<current value of property Dilutor>
  GotoValvePos ValvePos=Inject
  Syringe=0

L7200  Based on the current parameter settings, the autosampler performs an injection.
The Inject command transmits the vial number and the sample volume only.

### Wash Programs

**AS2000**  This is the program that is run when the extended wash command (Wash_X resp. WashDil_X) is executed. For AS2000 and L7250 the dilutor property always equals 1.  

GotoWashPort  
  GotoSValvePos SValvePos=Bottle  
    Dilutor=<current value of property Dilutor>
  GotoSyringePos SyringePos=<current value of property Syringe>
    Speed=<current value of property Speed>
    Dilutor=<current value of property Dilutor>
  GotoSValvePos SValvePos=Needle  
    Dilutor=<current value of property Dilutor>
  GotoSyringePos SyringePos=0  
    Speed=<current value of property Speed>
    Dilutor=<current value of property Dilutor>
GotoInjectPort  
  GotoSValvePos SValvePos=Bottle  
    Dilutor=<current value of property Dilutor>
  GotoSyringePos SyringePos=<current value of property Syringe>
    Speed=<current value of property Speed>
    Dilutor=<current value of property Dilutor>
GotoS Valve Pos S Valve Pos = Needle
Dilutor = <current value of property Dilutor>
Goto Syringe Pos Syringe Pos = 0
Speed = <current value of property Speed>
Dilutor = <current value of property Dilutor>

L7200 not supported

The Administrator Help section provides more information about the different autosampler types; refer to Hardware Installation:

- Merck Hitachi AS2000 and AS4000 Autosamplers: Overview
- Merck Hitachi L7250 Autosampler: Overview
- Merck Hitachi L7200 Autosampler: Overview

Merck Hitachi AS4000: Program Example

To avoid stressing the Merck Autosamplers with a fast succession of commands, allow at least 0.1 min between the individual commands. A program example for the AS4000 could look as follows:

```
;******* Pump Commands: ****************
Pressure.LowerLimit = 2
Pressure.UpperLimit = 200
%A.Equate = "Water"
%A.Type = Automatic

;******* Detector Commands: ****************
UV_VIS_1.Wavelength = 254
UV_VIS_1.Bandwidth = 1
UV_VIS_1.Step = 0.20
UV_VIS_1.Average = On
UV_VIS_1.RefWavelength = 600
UV_VIS_1.RefBandwidth = 1
Flow = 0.300
```
Commands and Tips for Third-Party Devices  

;******** Autosampler Commands: ********************
; (Allow for at least 0.1 min between the individual commands to avoid stressing the autosampler with a rapid succession of commands)
-2.100 Home
   Wash

-1.600 LeadVolume = 30.0
-1.550 RearVolume = 30.0
-1.500 Height Z = 0.0, NeedleSpeed = Fast
   Aspirate DilutorNumber = 1, SyringePos = 5.0, PlungerSpeed = VeryFast
; Aspirate 5 µl air

   GotoTube RackCode = 1, TubeNumber = Position
; Go to the sample vial
   Aspirate DilutorNumber = 1, SyringePos = LeadVolume + Volume + RearVolume, PlungerSpeed = VeryFast
; Aspirate sample from sample vial
   Height Z = 0.0, NeedleSpeed = Fast
   Aspirate DilutorNumber = 1, SyringePos = 5.0, PlungerSpeed = VeryFast
; Aspirate 5 µl air

-1.000 GotoWashPort
; Wash outside of needle

-0.500 GotoInjectPort
   Dispense DilutorNumber = 1, SyringePos = 5.0 + LeadVolume + 14.9, PlungerSpeed = VeryFast
; Dispense air + leadVolume + dead volume
   GotoValvePos ValvePos = Load
   Dispense DilutorNumber = 1, SyringePos = Volume, PlungerSpeed = VeryFast
; Dispense injection volume
   Syringe = -1

0.000 UV.Autozero
Inject
UV_VIS_1.AcqOn
; do not execute another program, Inject switches the valve only
    GotoWashPort
    Home

8.000 UV_VIS_1.AcqOff

    End

The Administrator Help section provides more information about the different autosampler types; refer to Hardware Installation:

- Merck Hitachi AS2000 and AS4000 Autosamplers: Overview
- Merck Hitachi L7250 Autosampler: Overview
- Merck Hitachi L7200 Autosampler: Overview
Perkin Elmer: Commands and Tips

For information about the special commands that Chromeleon supports for the different Perkin Elmer devices and for tips for practical operation, refer to:

- Autosystem (XL) and Clarus 500 GCs
- TurboMatrix Headspace Sampler

**Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Commands and Tips**

Chromeleon supports special commands for the Perkin Elmer Autosystem (XL) and Clarus 500 gas chromatographs. For more information, refer to:

- General
- Sampler
- Inlet
- Column
- Detectors

For application examples, refer to:

- Changing the Syringe Type
- PSplit Valve Control for PSS and CAP Inlets
- Pressure and Flow Ramps

If problems occur, refer to **Troubleshooting**.

For an overview of the Autosystem GC series and Clarus 500, refer to **Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Overview** in the Administrator Help section.

For installation details, refer to **Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Installation** in the Administrator Help section.
### Perkin Elmer Autosystem (XL) and Clarus 500 GCs: General

The following commands and properties are available (please note that the display > Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data_Collection_Rate</td>
<td>1.625Hz, 3.125Hz, 6.25Hz, 12.5Hz, 25Hz</td>
<td>Sets the data collection rate. (Level: Advanced or higher)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The property cannot be changed during data acquisition.</td>
</tr>
<tr>
<td>EquilibrationTime</td>
<td>0 min 99.0 min in 0.01 increments</td>
<td>After reaching the desired start values (temperature and/or flow), the GC waits for the equilibration time. When the equilibration time has passed, the GC is ready.</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>n/a n/a</td>
<td>Indicates the firmware version. (Level: Expert or higher).</td>
</tr>
<tr>
<td>OvenReady</td>
<td>Not Ready</td>
<td>Indicates whether the oven has reached the target temperature (read-only).</td>
</tr>
<tr>
<td>RampState</td>
<td>Initial, Time1, Ramp1, Time2, ..., Ramp3, Time4, Unknown</td>
<td>Indicates the current phase of the oven’s temperature range (read-only; level: Advanced or higher).</td>
</tr>
<tr>
<td>Ready</td>
<td>Not Ready</td>
<td>Indicates whether the GC is ready for injection (read-only).</td>
</tr>
<tr>
<td>RunState</td>
<td>PowerUp, OvenOff, NotReady, Equilibration, PreRun, Ready, Running, Hold, Unknown</td>
<td>Indicates the GC state (read-only; level: Advanced or higher).</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>Off On</td>
<td>Enables or disables temperature control for the oven.</td>
</tr>
<tr>
<td>Temperature</td>
<td>- -</td>
<td>Properties related to the column oven.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Notes:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A PGM File can include a maximum of 3 temperature ramps. The temperature can be changed between 0 and 45°C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a temperature is set, TempCtrl is automatically set to On.</td>
</tr>
</tbody>
</table>
In addition, Chromeleon supports the following commands and/or properties if the Autosystem GC includes a PPC:

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPCAlarm</td>
<td>On or Off</td>
<td>Enables or disables the PPC alarm. (Level: Advanced or higher)</td>
</tr>
<tr>
<td>PPCVersion</td>
<td></td>
<td>Indicates the firmware part number and version of the PPC. (Level: Expert or higher)</td>
</tr>
<tr>
<td>PressUnit</td>
<td>kpa, psig, or bar</td>
<td>Indicates the pressure unit used for the PPC settings. (Level: Advanced or higher; read-only). Select the unit on the Components tab page in the Server Configuration program.</td>
</tr>
</tbody>
</table>

For an overview of the Autosystem GC series and Clarus 500, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Installation in the Administrator Help section.
Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Sampler

The following commands and properties are available for autosampler control (please note that the display filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FillStrokes</td>
<td>0-15</td>
<td>Specifies how often the syringe is filled with sample before the syringe content is drawn for injection. (Level: Advanced or higher)</td>
</tr>
<tr>
<td>InletPosition</td>
<td>Injector1-Injector2 (if available)</td>
<td>Specifies the inlet used for the injection.</td>
</tr>
<tr>
<td>PostWash</td>
<td>0-15</td>
<td>Specifies how often the syringe is filled with solvent and dispensed to the waste after the injection. (Level: Advanced or higher)</td>
</tr>
<tr>
<td>PreWash</td>
<td>0-2</td>
<td>Specifies how often the syringe is filled with solvent and dispensed to the waste before the injection. (Level: Advanced or higher)</td>
</tr>
<tr>
<td>Ready</td>
<td>Ready/NotReady</td>
<td>Set to Ready when the internal autosampler is ready for injection, i.e., when it has finished its prewash cycle. (Level: Advanced or higher)</td>
</tr>
<tr>
<td>SampleWash</td>
<td>0-15</td>
<td>Specifies how often the syringe is filled with sample and emptied to the waste before the injection is performed. (Level: Advanced or higher)</td>
</tr>
<tr>
<td>Status</td>
<td>Unknown, Ready, Priority, Running, Sampling, Pause, Clean</td>
<td>Indicates the current status of the autosampler (read-only; level: Advanced or higher).</td>
</tr>
<tr>
<td>Syringe</td>
<td>0.1 - 50µl</td>
<td>Indicates the syringe type (read-only). Chromeleon reads the type from the GC.</td>
</tr>
<tr>
<td>SyringeSpeed</td>
<td>Normal, Fast, OnColumn</td>
<td>Sets the syringe speed for the injection: Normal: 1 s, Fast: 0.3 s, OnColumn: 7.5 s</td>
</tr>
<tr>
<td>Visc_Delay</td>
<td>0-15 s</td>
<td>Specifies the time in seconds that the autosampler waits after the piston has moved back (can be set according to the sample's viscosity).</td>
</tr>
</tbody>
</table>
For an overview of the Autosystem GC series and Clarus 500, refer to Hardware Installation: Installing and Controlling Third-Party Devices ⊗Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices ⊗Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Installation in the Administrator Help section.

Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Inlet

The following commands and properties are available for inlet control (please note that the display ➤Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FollowOven</td>
<td>On or Off</td>
<td>(Only for PPS and POC injectors) If the property is set to On, the inlet temperature follows the oven temperature (+5°C).</td>
</tr>
<tr>
<td>InletType</td>
<td>PKD, CAP, GSV, PSSO, PSSI, POCI, POCO</td>
<td>Indicates the inlet type (read-only): PKD: Packed column</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAP: Capillary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GSV: Gas Sampling Valve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSSO: Split/Splitless follow oven</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSSI: Split/Splitless</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POCI: On Column</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POCO: On Column follow oven</td>
</tr>
<tr>
<td>Ready</td>
<td>Ready/NotReady</td>
<td>Set to Ready when the inlet heating component is ready (level: Advanced or higher). (If a PPC is installed, the SplitStatus setting must also be Ready.)</td>
</tr>
<tr>
<td>Status</td>
<td>None, Ready, NotReady, FilamentOver, Unknown</td>
<td>Indicates the current status of the associated heating component (read-only; level: Advanced or higher).</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>On or Off</td>
<td>Enables or disables temperature control for the inlet.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Without PTR: 100 - 450°C or 50 - 450°C CAP/PKD (50 - 350°C for GSV)</td>
<td>Properties related to the column oven.</td>
</tr>
<tr>
<td></td>
<td>With PTR: -99 - 500°C</td>
<td><img src="image" alt="Note:" /> If a temperature is set, TempCtrl is automatically set to On.</td>
</tr>
<tr>
<td>Property</td>
<td>Range/Values</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Temperature.</td>
<td>Nominal</td>
<td>Sets the nominal temperature. For the PSSI and POCI, this command sets a temperature ramp, instead. A maximum of two inlet temperature ramps are allowed.</td>
</tr>
<tr>
<td>Temperature.</td>
<td>Value</td>
<td>Indicates the current temperature (read-only)</td>
</tr>
</tbody>
</table>

In addition, Chromeleon supports the following commands and/or properties if the Autosystem GC includes a PPC:

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PurgeCtrlMode</td>
<td>Auto, Fixed</td>
<td>Sets the purge flow compensation mode (level: Advanced or higher). (For more information, refer to the manual for the instrument.)</td>
</tr>
<tr>
<td>PurgeFlow</td>
<td>0.0 -100.0 ml/min</td>
<td>Sets the split flow offset value to compensate the reduction of the split flow due to septum purge flow (level: Advanced or higher). (The property can be set only if PurgeCtrlMode = Fixed.)</td>
</tr>
<tr>
<td>SplitCtrlMode</td>
<td>Flow, Ratio</td>
<td>Sets the split control mode. Specifies whether the flow or the flow ratio is controlled.</td>
</tr>
<tr>
<td>SplitFlow</td>
<td>0 - 500 ml/min</td>
<td>Sets the target value for the total split flow. (The property can be set only if SplitCtrlMode = Flow.)</td>
</tr>
<tr>
<td>SplitRatio</td>
<td>1-6000</td>
<td>Sets the target value for the split ratio. (The property can be set only if SplitCtrlMode = Ratio.)</td>
</tr>
<tr>
<td>SplitStatus</td>
<td>NotUsed, Ready,</td>
<td>Indicates the current split status (read-only; level: Advanced or higher).</td>
</tr>
<tr>
<td></td>
<td>NotReady, Alarm,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>TotalSplitFlow</td>
<td>0 – 500 ml/min</td>
<td>Indicates the current total flow (split flow + purge flow; read-only).</td>
</tr>
</tbody>
</table>

For an overview of the Autosystem GC series and Clarus 500, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Installation in the Administrator Help section.
Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Column

The following commands and properties are available for column control (please note that the display >Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>0 - 99.99 ml/min</td>
<td>(For SetPointUnit = flow)</td>
</tr>
<tr>
<td>Flow Nominal</td>
<td>Observe the restrictions for ramps.</td>
<td>Sets the target value for the gas flow. This does not include control: If the actual flow deviates too much from nominal flow, the column enters NotReady state.</td>
</tr>
<tr>
<td>Flow Value</td>
<td>Observe the restrictions for ramps.</td>
<td>Indicates the current gas flow (read-only).</td>
</tr>
<tr>
<td>GasType</td>
<td>He, N2, H2, AR/CH4, Air</td>
<td>Indicates the type of the used gas (as set in the Server Configuration program; read-only).</td>
</tr>
<tr>
<td>PressureCtrl</td>
<td>On or Off</td>
<td>Turns gas pressure control on or off.</td>
</tr>
<tr>
<td>Pressure</td>
<td>0-6.89 bar; 0-100 psig; 0-689 kPa (The unit depends on the PPC pressure unit set in the Server Configuration program.)</td>
<td>(For SetPointUnit = flow) Properties related to the gas pressure.</td>
</tr>
<tr>
<td>Pressure Nominal</td>
<td>Sets the nominal pressure. This does not include control: If the actual gas pressure deviates too much from the nominal pressure, the column enters NotReady state.</td>
<td></td>
</tr>
<tr>
<td>Pressure Value</td>
<td>Indicates the current pressure (read-only).</td>
<td></td>
</tr>
<tr>
<td>Ready</td>
<td>Ready or NotReady</td>
<td>Indicates whether the carrier unit is ready. The carrier unit is ready when the set pressure (or flow or speed; set in the Server Configuration program) has been reached. (The property is read-only.)</td>
</tr>
<tr>
<td>SetPointUnit</td>
<td>None, psig, kPa, flow</td>
<td>Indicates the value of interest and the unit used for observing the gas flow (read-only). The property can be set on only on the device.</td>
</tr>
</tbody>
</table>
In addition, Chromeleon supports the following commands and/or properties if the Autosystem GC includes a PPC:

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CapCtrlMode</td>
<td>On/Off</td>
<td>(Only for PSS and CAP inlets) Enables or disables capillary column control (level: Advanced or higher).</td>
</tr>
<tr>
<td>Diameter</td>
<td>50 - 1000 µm</td>
<td>Specifies the diameter of the capillary column (level: Advanced or higher).</td>
</tr>
<tr>
<td>Flow</td>
<td>0 - 99.99 ml/min</td>
<td>Properties related to the carrier flow. Observe the restrictions for ramps (see below ²)</td>
</tr>
<tr>
<td>Diameter</td>
<td>50 - 1000 µm</td>
<td>Specifies the diameter of the capillary column (level: Advanced or higher).</td>
</tr>
<tr>
<td>Flow</td>
<td>0 - 99.99 ml/min</td>
<td>Properties related to the carrier flow. Observe the restrictions for ramps (see below ²)</td>
</tr>
<tr>
<td>Flow.Nominal</td>
<td></td>
<td>(Only if CapCtrlMode is set to On and if FlowMode is set to Flow) Sets the nominal flow.</td>
</tr>
<tr>
<td>Flow.Value</td>
<td>On/Off</td>
<td>Indicates the current flow (read-only).</td>
</tr>
<tr>
<td>FlowCtrl</td>
<td></td>
<td>Enables or disables carrier flow.</td>
</tr>
<tr>
<td>FlowMode</td>
<td>for CAP, PSS : Off, Press/OvenTrack, Flow, Velocity, Pressure For POC, PKD: Off, Pressure, Flow</td>
<td>Sets the flow control mode (level: Advanced or higher).</td>
</tr>
<tr>
<td>Length</td>
<td>1.00-200.0 m</td>
<td>Specifies the length of the capillary column (level: Advanced or higher).</td>
</tr>
<tr>
<td>Pressure</td>
<td>0-6.89 bar; 0-100 psig; 0-689 kPa (The unit depends PPC pressure unit set in the Server Configuration program) Observe the restrictions for ramps (see below ²)</td>
<td></td>
</tr>
<tr>
<td>Pressure.Nominal</td>
<td></td>
<td>(Only if CapCtrlMode is set to On and if FlowMode is set to Pressure) Sets the nominal gas pressure.</td>
</tr>
<tr>
<td>Pressure.Value</td>
<td></td>
<td>Indicates the current gas pressure (read-only):</td>
</tr>
<tr>
<td>Ready</td>
<td>Ready/NotReady</td>
<td>Indicates Ready if the PPC is ready or if the specified carrier gas is not used (read-only).</td>
</tr>
<tr>
<td>Property</td>
<td>Values</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
<td>----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Status</td>
<td>NotUsed, Ready, NotReady, Alarm</td>
<td>Indicates the current status of the PPC for the specified carrier gas.</td>
</tr>
<tr>
<td>VacuumCorrection</td>
<td>On/Off</td>
<td>(Only for PPS and CAP inlets) Turns vacuum compensation on or off (level: Advanced or higher).</td>
</tr>
</tbody>
</table>

**Note:**

This property can be set only if CapCtrlMode is set to On.

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>0 - 200.0 cm/s</td>
<td>Properties related to the carrier flow.</td>
</tr>
<tr>
<td>Velocity.Nominal</td>
<td></td>
<td>(Only if CapCtrlMode is set to On and if FlowMode is set to Velocity) Sets the nominal flow.</td>
</tr>
<tr>
<td>Velocity.Value</td>
<td></td>
<td>Indicates the current speed (read-only)</td>
</tr>
</tbody>
</table>

² Observe the following restrictions when you run ramps:

- The single steps must be between 0 and 999.
- A PGM File can include a maximum of 4 ramp commands, depending on the FlowMode settings: Flow, Pressure, or Velocity).
- Maximum ramp steepness:
  - Pressure ramps: 0-6.89 bar/min or 0-99.9psig/min
  - Flow ramps: 0-99.9 ml/min²
  - Speed rams: 0-200.0 cm/(s·min)

For an overview of the Autosystem GC series and Clarus 500, refer to **Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Overview** in the Administrator Help section.

For installation details, refer to **Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Installation** in the Administrator Help section.
Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Detectors

The following commands and properties are available for detector control (please note that the display ➤Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation</td>
<td>1, 2, 4, 8, 16, 32, 64, (and 128, 256, ... 65536 if Output is set to Recorder in the Server Configuration program))</td>
<td>Sets the detector attenuation.²</td>
</tr>
<tr>
<td>AZCompensation</td>
<td>On or Off</td>
<td>Enables or disables the ➤Autozero-option.²</td>
</tr>
<tr>
<td>DetectorType</td>
<td>Output, FID, ECD, TCD</td>
<td>Indicates the detector type (read-only). Select the detector type in the Server Configuration program: FID: Flame Ionization Detector ECD: Electron Capture Detector TCD: Thermal Conductivity Detector</td>
</tr>
<tr>
<td>FlameThreshold</td>
<td>0.00-9.99 mV</td>
<td>Flame threshold for evaluating whether the detector flame is lit. If the signal exceeds this value, the GC assumes that the flame is lit. Otherwise, the flame is ignited automatically. (Level: Advanced or higher)</td>
</tr>
<tr>
<td>Range</td>
<td>1, 20 (FID) 1 (ECD) -4 - 4 (TCD)</td>
<td>Sets the detector output range.²</td>
</tr>
<tr>
<td>Ready</td>
<td>Ready or NotReady</td>
<td>Indicates whether the detector is ready (read-only; level: Advanced or higher). If a PPC is installed, the status of the gas flows is taken into account, also.</td>
</tr>
<tr>
<td>Retention</td>
<td>0 - 10^8 min</td>
<td>Indicates the retention time.</td>
</tr>
<tr>
<td>Signal</td>
<td>-10000 - 10000mV</td>
<td>Indicates the current signal value (read-only).</td>
</tr>
<tr>
<td>Status</td>
<td>None, Ready, NotReady, FilamentOver, Unknown</td>
<td>Indicate the detector status (read-only; level: Advanced or higher).</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>On/Off</td>
<td>Turns the heating component of the detector on or off.</td>
</tr>
<tr>
<td>Property</td>
<td>Range/Values</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Temperature</td>
<td>100-450°C (FID, ECD) 100-350°C (TCD)</td>
<td>Properties related to the detector temperature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: If a temperature is set, TempCtrl is automatically set to On.</td>
</tr>
<tr>
<td></td>
<td>Sets the nominal temperature.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indicates the current temperature (read-only)</td>
<td></td>
</tr>
<tr>
<td>TimeConstant</td>
<td>50 ms (not for the ECD), 200ms, 800ms</td>
<td>Specifies the time constant for the noise filter of the related detector.</td>
</tr>
</tbody>
</table>

2 If the value is entered manually or at time t=0, the value used at the beginning of the run is adapted.

**Tip:**

If a value is entered at another time, this value remains valid until the next setting or the beginning of the next GC run.

In addition, Chromeleon supports the following commands and/or properties if the Autosystem GC includes a PPC:

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Gasname&gt;</td>
<td>0–500 ml/min</td>
<td>&lt;Gasname&gt; is the gas specified on the Detectors tab page in the Server Configuration program, e.g., He, N2, H2, Ar/CH4, or Air.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note:</strong> You can enter the gas name on the Detectors tab page in the Server Configuration program.</td>
</tr>
<tr>
<td></td>
<td>Sets the nominal flow for the associated gas (level: Advanced or higher).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indicates the current flow for the associated gas (read-only; level: Advanced or higher).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indicates the gas type in the PPC module (read-only; level: Advanced or higher).</td>
<td>Note: The gas type is set in the Server Configuration program.</td>
</tr>
<tr>
<td>Property</td>
<td>Values</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>&lt;GasName&gt;_&lt;Status&gt;</td>
<td>NotUsed, Ready, NotReady, Alarm</td>
<td>Indicates the current status in the PPC module (read-only; level: Advanced or higher).</td>
</tr>
</tbody>
</table>

For an overview of the Autosystem GC series and Clarus 500, refer to 
installation Instructions: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Installation in the Administrator Help section.

Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Changing the Syringe Type

You may change the syringe type for the internal autosampler without the need to reconfigure the device driver in the Server Configuration program:

1. Disconnect the GC in Chromeleon (Disconnect command).
2. Exchange the syringe, as described in the instrument's manual.
3. Set the new syringe type on the GC's display, as described in the instrument's manual.
4. Reconnect the GC in Chromeleon (Connect command). Verify that the Syringe property of the internal autosampler indicates the correct type.

For an overview of the Autosystem GC series and Clarus 500, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Installation in the Administrator Help section.
Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Split Valve Control for PSS and CAP Inlets

If you have a Perkin Elmer capillary split inlet installed, the GC cannot control the split valve automatically, neither with split programs nor with splitless programs. To control the split valve manually, enter the initial value and operate the valve during analysis. Please note: CAP = not programmable, PSS = programmable.

In split mode, the split valve remains open during the entire analyzing process (the usual setting in Chromeleon is Split1 or Split2, for inlets 1 or 2). Therefore, it is sufficient to set the valve to On at the retention time 0.000 min.

```
0.000 Split1.On
 Inject
 GC_1.AcqOn
 ...
```

In Splitless mode, the split valve remains closed during injection and is opened afterward; e.g.:

```
-0.500 Split1.Off ; (optional)
0.000 Split1.Off ; (necessary)
 Inject
 GC_1.AcqOff
 ...
1.000 Split1.On ; (enables the split flow to purge the inlet)
 ...
2.000 GC_1.AcqOff
```

For more information about how to control the various split modes, refer to the Perkin Elmer operating manuals for the instruments.

For an overview of the Autosystem GC series and Clarus 500, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Installation in the Administrator Help section.
Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Pressure and Flow Ramps

Programming pressure ramps is very similar to programming temperature ramps. Different modes available for controlling the pressure of the carrier gas and the inlet but not all possible combinations are allowed. Therefore, Dionex recommends specifying the various properties in each PGM file. **Ready Check** then verifies whether the various PGM settings represent a valid combination.

The examples below show common combinations for a PPC column and a capillary inlet with a pressure controlled split flow. For more information, refer to **PPC Fundamentals** in the Perkin Elmer operating manual for the instrument.

**Constant Pressure/pressure ramps for PPC columns:**

```plaintext
GC_1.TempCtrl = On
GC_1.Temperature.Nominal = 100

; setting of the pressure modes
Column_1.CapCtrlMode = On
Column_1.FlowMode = Pressure
Column_1.VacuumCorrection = Off

0.000 Column_1.Pressure = 10.0
Wait GC.Ready
Inject
GC_1.AcqOn
Column_1.Pressure = 10.0

0.500 Column_1.Pressure = 10.0 ; pressure ramp
1.500 Column_1.Pressure = 15.0 ; pressure ramp
2.000 Column_1.Pressure = 15.0 ; pressure ramp
GC_1.AcqOff
End
```

**In PressOvenTrack mode**, you can define pressure modes that follow the oven temperature to hold the column flow constant. In this mode, you may enter only an initial pressure value:

```plaintext

; setting of the pressure modes:
Column_1.CapCtrlMode = On
Column_1.FlowMode = PressOvenTrack
Column_1.VacuumCorrection = Off

...
Commands and Tips for Third-Party Devices

0.000 Column_1.Pressure = 10.0 ; initial pressure value
 Wait GC.Ready
 Inject
 GC_1.AcqOn
 ...
2.000 GC_1.AcqOff
 End

Use the following modes to realize flow and velocity ramps:

Column_1.FlowMode = Flow

and

Column_1.FlowMode = Velocity.

Split flow control allows you to run step gradients, to specify the absolute flow, or to define the split ratio. For a split injection in a flow-controlled program (flow mode), refer to the example below. In the example, the split flow is increased after 0.5 minutes. (For more information on split and splitless injection techniques, refer to the Perkin Elmer operating manual for the instrument.)

; setting of the pressure modes
Column_1.CapCtrlMode = On
Column_1.FlowMode = Pressure
Column_1.VacuumCorrection = Off
Injector_1.SplitCtrlMode = Flow
; uses absolute split flow
Injector_1.PurgeMode = Fixed
; uses a fixed purge flow
Injector_1.PurgeFlow = 6.0
; sets the purge flow to 6.0 ml/min
 ...
; Program
0.000 Column_1.Pressure = 10.0
 Valve1.On
 ; split valve is open
 Injector_1.SplitFlow = 50.0
 ; sets the initial split flow
 Wait GC.Ready
 Inject
 GC_1.AcqOn
0.500 Column_1.Pressure = 10.0; pressure ramp
 Injector_1.SplitFlow = 200.0 ; increases the split flow
1.500 Column_1.Pressure = 15.0; pressure ramp
2.000 Column_1.Pressure = 15.0; pressure ramp
 GC_1.AcqOff
 End
For an overview of the Autosystem GC series and Clarus 500, refer to *Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Overview* in the Administrator Help section.

For installation details, refer to *Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Installation* in the Administrator Help section.

Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Troubleshooting

Problem: Missing Connection

It is not possible to connect the GC with Chromeleon, e.g., with a panel.

Explanation:

Each time you connect the GC, the driver compares the actual configuration with the configuration entered in the Server Configuration program. If those configurations do not match, the connection cannot be established.

Solution:

Change the settings in the Server Configuration program according to the installed hardware.

Problem: Missing vials

It depends on the instrument whether you the cause for the error is eliminated automatically (Clarus 500) or whether it must be eliminated manually (Autosystem (XL)):

Autosystem (XL):

Chromeleon cannot remedy the situation automatically. The GC stops sample processing but remains in Ready state. Chromeleon remains in Waiting for inject response state.

Solution:

Abort and restart the batch.
Clarus 500:
Chromeleon automatically remedies the situation for the Clarus 500. An error message is logged in the Audit Trail. Chromeleon skips the sample and continues processing with the next sample. The status for the missing sample is **Interrupted**.

Note:
If a wash vial or a waste vial is missing, Chromeleon automatically aborts the batch because the remaining samples are affected as well. Correct execution of the analysis cannot be guaranteed. Place the missing wash or waste vial on the rack and restart the batch.

For an overview of the Autosystem GC and Clarus 500, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices Perkin Elmer Autosystem (XL) and Clarus 500 GCs: Installation in the Administrator Help section.
Perkin Elmer TurboMatrix Headspace Sampler: Commands and Tips

Chromeleon supports special commands for the Perkin Elmer TurboMatrix Headspace sampler; refer to

- State
- Options
- Temperatures
- Time Programs
- Oven
- Pressure

For more information, practical examples, and tips, refer to:

- Single and Progressive Injection Modes
- Program Example
- MHE Mode
- Tips

For an overview of the Elmer TurboMatrix Headspace Sampler, refer to Installing and Controlling Third-Party Devices Perkin Elmer TurboMatrix Headspace Sampler: Overview in the Administrator Help section.

For installation details, refer to Installing and Controlling Third-Party Devices Perkin Elmer TurboMatrix Headspace Sampler: Installation in the Administrator Help section.
Perkin Elmer TurboMatrix Headspace Sampler: State

In addition to the General Commands described in the General Commands for Device Control section, the following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busy</td>
<td>Busy or Idle</td>
<td>Busy indicates that the device driver still has to send commands to the sampler or that the commands are not yet performed completely (read-only).</td>
</tr>
<tr>
<td>DeviceState</td>
<td></td>
<td>Indicates the state in which the sampler is (read-only):</td>
</tr>
<tr>
<td>Initializing</td>
<td></td>
<td>The sampler is initializing (start/reset).</td>
</tr>
<tr>
<td>Standby</td>
<td></td>
<td>The sampler is idle.</td>
</tr>
<tr>
<td>Preparation</td>
<td></td>
<td>The sampler prepares for a new run.</td>
</tr>
<tr>
<td>Equilibration</td>
<td></td>
<td>The sampler performs equilibration.</td>
</tr>
<tr>
<td>GCNotReady</td>
<td></td>
<td>The GC is not ready for operation.</td>
</tr>
<tr>
<td>Thermostating</td>
<td></td>
<td>The sampler is thermostating.</td>
</tr>
<tr>
<td>Pressurizing</td>
<td></td>
<td>Pressure is build up.</td>
</tr>
<tr>
<td>ExtThermostat</td>
<td></td>
<td>Thermostating is exceeded.</td>
</tr>
<tr>
<td>Injecting</td>
<td></td>
<td>The sampler is performing an injection.</td>
</tr>
<tr>
<td>WaitingForWithdraw</td>
<td></td>
<td>Time between the end of the injection and the withdrawal of the needle.</td>
</tr>
<tr>
<td>Venting</td>
<td></td>
<td>The sample is being vented.</td>
</tr>
<tr>
<td>Analyzing</td>
<td></td>
<td>A sample analysis is in progress.</td>
</tr>
<tr>
<td>RunBackflush</td>
<td></td>
<td>Backflushing is performed.</td>
</tr>
<tr>
<td>Finishing</td>
<td></td>
<td>The sample run is finished.</td>
</tr>
<tr>
<td>BackflushCal</td>
<td></td>
<td>Backflush calibration is performed.</td>
</tr>
<tr>
<td>GasLeakTest</td>
<td></td>
<td>A gas leak test is performed.</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>A fault or error has occured.</td>
</tr>
<tr>
<td>EconomyMode</td>
<td></td>
<td>The sampler is in the economy mode.</td>
</tr>
<tr>
<td>CryoFocus</td>
<td></td>
<td>A cryo focus test is performed.</td>
</tr>
<tr>
<td>ValveLeakTest1</td>
<td></td>
<td>The first valve leak test is performed.</td>
</tr>
<tr>
<td>ValveLeak_Test2</td>
<td></td>
<td>The second valve leak test is performed.</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>Unknown.</td>
</tr>
</tbody>
</table>

Chromeleon does not yet support the following states:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PressurizeVial</td>
<td>The vial is being pressurized (cryo trap).</td>
</tr>
<tr>
<td>DecayPressToTrap</td>
<td>The pressure buildup in the cryo trap is decayed.</td>
</tr>
<tr>
<td>TrapDesorb</td>
<td>Desorption of the trap.</td>
</tr>
<tr>
<td>TrapHold</td>
<td>The cryo trap process is hold.</td>
</tr>
<tr>
<td>TrapDryPurge</td>
<td>The cryo trap is being purged.</td>
</tr>
<tr>
<td>TrayGCAnalysis</td>
<td>A GC analysis of the tray is performed.</td>
</tr>
<tr>
<td>InsertNeedle</td>
<td>The needle is inserted.</td>
</tr>
<tr>
<td>RemoveNeedle</td>
<td>The needle is removed.</td>
</tr>
<tr>
<td>TrapLeakTest</td>
<td>A trap leak test is performed.</td>
</tr>
</tbody>
</table>
Tip:

Please refer to the instrument manual for more information about the State properties.

For more commands and properties that Chromeleon supports for the TurboMatrix Headspace sampler, refer to:

Options
Temperatures
Time Programs
Oven
Pressure

Perkin Elmer TurboMatrix Headspace Sampler: Options

The following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CryoFocus</td>
<td>Off, On</td>
<td>Enables or disables cryo cooling. (This property is available only if cryo cooling is installed on the device and configured in Chromeleon.)</td>
</tr>
<tr>
<td>FlowRate</td>
<td>0.01 - 50 ml/min</td>
<td>Determines the expected flow rate. The sampler uses this setting to calculate the time required for injecting the specified volume.</td>
</tr>
</tbody>
</table>
| InjectMode | Single, Progressive, MHE | Determines the injection mode. For more information, refer to:
<p>| | | Single and Progressive Injection Modes |
| | | Program Example |
| | | MHE Mode |
| InjectionsPerVial | 1 - 9 | Specifies the number of injections to be performed from the same vial. |
| InjectWaitTime | | Indicates the time between the Inject command in Chromeleon and the response to Chromeleon from the autosampler (read-only). |</p>
<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>1 - 16</td>
<td>Indicates the sample position (read-only). The position is set in the sequence; it depends on the type: TM16, TM40, TM110.</td>
</tr>
<tr>
<td>Shaker</td>
<td>Off, On</td>
<td>Enables or disables the shaker. (This property is available only if the shaker is installed on the device and configured in Chromeleon.)</td>
</tr>
<tr>
<td>VentingTime</td>
<td>1 - 60s</td>
<td>Specifies how long the vial is vented.</td>
</tr>
<tr>
<td>VialVenting</td>
<td>Off, On</td>
<td>Specifies whether the vial is vented.</td>
</tr>
<tr>
<td>Volume</td>
<td>0 - 9.99 ml</td>
<td>Indicates the injection volume (read-only). The injection volume is set in the sequence.</td>
</tr>
<tr>
<td>WaterTrap</td>
<td>Off, On</td>
<td>Enables or disables the water trap. (This property is available only if cryo cooling is installed on the device and configured in Chromeleon.)</td>
</tr>
</tbody>
</table>

Tip:

Please refer to the instrument manual for more information about the Options properties.

For more commands and properties that Chromeleon supports for the TurboMatrix Headspace sampler, refer to:

- **State**
- **Temperatures**
- **Time Programs**
- **Oven**
- **Pressure**
Perkin Elmer TurboMatrix Headspace Sampler: Temperatures

The following commands and properties are available (please note that the display ➤Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CryoTemperature</td>
<td></td>
<td>Properties for the cryo cooling temperature. (The properties are available only if Cyro-Focus is installed on the device and configured in Chromeleon.)</td>
</tr>
<tr>
<td>CryoTemperature. Nominal</td>
<td>-180 to -10°C</td>
<td>Sets the nominal temperature for cryo cooling.</td>
</tr>
<tr>
<td>CryoTemperature. Value</td>
<td>-180 to -10°C</td>
<td>Reports the current temperature of the cryo cooling (read-only).</td>
</tr>
<tr>
<td>FollowOven</td>
<td>On or Off</td>
<td>(Name on the sampler: Track Oven)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the property is set to Off, you can set NeedleTemperature, OvenTemperature, and TransferTemperature separately.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting the property to On defines the OvenTemperature. Any settings for the NeedleTemperature and TransferTemperature are ignored. The target temperature for the needle heating and the transfer temperature is automatically set to a value that is 5°C higher than the OvenTemperature.</td>
</tr>
<tr>
<td>NeedleTempCtrl</td>
<td>On or Off</td>
<td>Enables or disables needle heating.</td>
</tr>
<tr>
<td>NeedleTemperature</td>
<td>On or Off</td>
<td>Properties related to the temperature for the needle heater (when FollowOven is set to Off).</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td>NeedleTempCtrl is automatically set to On when the corresponding temperature command is performed.</td>
</tr>
<tr>
<td>NeedleTemperature. Nominal</td>
<td>35 to 210°C</td>
<td>Sets the target temperature for needle heating.</td>
</tr>
<tr>
<td>NeedleTemperature. Value</td>
<td>35 to 210°C</td>
<td>Indicates the actual needle temperature (read-only).</td>
</tr>
<tr>
<td>OvenTempCtrl</td>
<td>On or Off</td>
<td>Turn the incubation oven on or off.</td>
</tr>
<tr>
<td>Property</td>
<td>Range/Values</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>OvenTemperature</td>
<td></td>
<td>Properties related to the temperature of the incubation oven.</td>
</tr>
<tr>
<td>OvenTemperature. Nominal</td>
<td>35 to 210°C</td>
<td>Sets the target temperature for the incubation oven.</td>
</tr>
<tr>
<td>OvenTemperature. Value</td>
<td>35 to 210°C</td>
<td>Indicates the current temperature of the incubation oven (read-only).</td>
</tr>
<tr>
<td>TransferTempCtrl</td>
<td>On or Off</td>
<td>Enables or disables transfer line heating.</td>
</tr>
<tr>
<td>TransferTemperature</td>
<td></td>
<td>Properties related to transfer line heating (when FollowOven is set to Off).</td>
</tr>
<tr>
<td>TransferTemperature. Nominal</td>
<td>35 to 210°C</td>
<td>Sets the target temperature for transfer line heating.</td>
</tr>
<tr>
<td>TransferTemperature. Value</td>
<td>35 to 210°C</td>
<td>Indicates the actual transfer line temperature (read-only).</td>
</tr>
</tbody>
</table>

For more commands and properties that Chromeleon supports for the TurboMatrix Headspace sampler, refer to:

- State
- Options
- Time Programs
- Oven
- Pressure
Perkin Elmer TurboMatrix Headspace Sampler: Time Programs

The following commands and properties are available (range: 0.1 to 999.9 min; please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCCycleTime</td>
<td>Sets the GC cycle time (on the device: cycle time). The range 0.1 to 999.99 min. The GC cycle time is the minimum time between the start of a GC run and the time when the GC is ready for the next injection.</td>
</tr>
<tr>
<td></td>
<td>Note: A error message appears when the GC cycle time is shorter than the time between two injections (PGM end time for the current sample and PGM start time for the next sample).</td>
</tr>
<tr>
<td>IncubationTime</td>
<td>Sets the incubation time (on the device: Thermostatting Time and Thermo). The range is 0.1 to 999.99 min.</td>
</tr>
<tr>
<td>InjectTime</td>
<td>Indicates the injection time (read-only). The injection volume and the column flow allow you to determine the injection time.</td>
</tr>
<tr>
<td>PostCryoTime</td>
<td>If Cryo-Focus is installed on the device and configured in Chromeleon (CryoFocus = On), the parameter sets the time between the injection and the end of cooling (range: 0.1 to 99.99 min).</td>
</tr>
<tr>
<td>PreCryoTime</td>
<td>If Cryo-Focus is installed on the device and configured in Chromeleon (CryoFocus = On), the parameter sets the time between the start of cooling and the injection (range: 0.1 to 99.99 min).</td>
</tr>
<tr>
<td>PreparationTime</td>
<td>Indicates the estimated preparation time, i.e., the time until the next injection (read-only).</td>
</tr>
<tr>
<td>PressTime</td>
<td>Sets the time for sample pressurizing (on the device: Pressurization time and Pressurize). The range is 0.1 to 999.99 min.</td>
</tr>
<tr>
<td>WithdrawTime</td>
<td>Sets the time between the end of the injection cycle and the withdrawal of the needle from the sample (= venting). The range is 0.1 to 99.99 min.</td>
</tr>
</tbody>
</table>

For more commands and properties that Chromeleon supports for the TurboMatrix Headspace sampler, refer to:

- State, Options, Temperatures, Oven, and Pressure.
Perkin Elmer TurboMatrix Headspace Sampler: Oven

The oven supports 15 different positions for sample conditioning. A new sample is always placed at position 0. Injection is performed from position 2. The following properties are available on the Expert Filter level:

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_IncTime<i></td>
<td>-1000 to 1000 min</td>
<td>If the oven position is occupied, the variable reports the remaining incubation time (read-only).</td>
</tr>
<tr>
<td>_Occupied<i></td>
<td>Off, On</td>
<td>Set to On if the oven position is occupied. If the position is free, the setting is Off. (This property is read-only.)</td>
</tr>
<tr>
<td>_Vial<i></td>
<td>0 to 14, 0='Empty'</td>
<td>If the oven position is occupied, the variable reports the number of the related sample (read-only).</td>
</tr>
</tbody>
</table>

Where: <i> = 0 to 14

For more commands and properties that Chromeleon supports for the TurboMatrix Headspace sampler, refer to:

State, Options, Temperatures, Oven, and Pressure.

Perkin Elmer TurboMatrix Headspace Sampler: Pressure

The following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColumnPressure</td>
<td></td>
<td>Properties related to the column pressure.</td>
</tr>
<tr>
<td>Column Pressure. Nominal²</td>
<td>0.00 - 4.00 bar, 0 - 400 kPa or 0 - 60.0 psig</td>
<td>Sets the target pressure in the column.</td>
</tr>
<tr>
<td>Column Pressure. Value²</td>
<td>0.00 - 4.00 bar, 0 - 400 kPa or 0 - 60.0 psig</td>
<td>Indicates the current column pressure (read-only).</td>
</tr>
<tr>
<td>HighPressInject</td>
<td>On or Off</td>
<td>Enables or disables high-pressure injection mode (on the device: Hi Psi Inject).</td>
</tr>
</tbody>
</table>

Note:

This property is available only if you have selected the Programmable Pneumatic (PPC) check box on the Options tab page in the Server Configuration program.
<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InjectPressure²</td>
<td>0.00 - 4.00 bar</td>
<td>Sets the pressure for high-pressure injections (HighPressInject = On) for the time between the start of the pressure period and sample venting (withdrawing the needle).</td>
</tr>
<tr>
<td></td>
<td>0 - 400 kPa or 0 - 60.0 psig</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

This property is available only if you have selected the Programmable Pneumatic (PPC) check box on the Options tab page in the Server Configuration program.

When HighPressInject is set to Off, the device does not use this value.

Notes²:

The sampler accepts Chromleon pressure commands only in psi. That is why Chromleon must convert bar or kPa to psig before sending these commands to the sampler. This conversion may result in minor rounding differences, e.g., 120 kPa in Chromleon is transferred to the sampler as 119.9 kPa.

The range of 0 - 60 psi (or 0 - 413.7 kPa) corresponds to the range that can be set on the device.

For more commands and properties that Chromleon supports for the TurboMatrix Headspace sampler, refer to:

- State
- Options
- Temperatures
- Oven
- Pressure
Perkin Elmer TurboMatrix Headspace Sampler: Single and Progressive Injection Modes

The Perkin Elmer TurboMatrix Headspace Sampler supports different injection modes:

- **Single mode** (in routine operation: all samples are thermostated the same time)
- **Progressive mode** (for method generation: increasing thermostatting time)
- **MHE mode** (for multiple injections from the same vial; refer to MHE Mode)

In Single and Progressive modes, the sampler assumes that the injection volume and the parameters are identical for all samples and that the vial positions are incremented. To achieve optimum sample overlapping, Dionex recommends taking this into account when creating a sequence in Chromeleon.

However, in Chromeleon, the parameters can vary for each sample. This allows you, e.g., to process the samples with different PGM Files or to vary the injection volumes. Chromeleon regards this as independent sampler runs. Sample overlapping is possible only in the single sampler runs.

This is especially important in Progressive mode. In this mode, the sample uses the **IncubationTime** parameter as the thermostatting time for the first sample in the sampler sequence. The thermostatting time for the other samples in the sampler run is prolonged, based on the sample number: Sample n is thermostatted n times as long as sample 1.
Example:

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Inj Vol</th>
<th>Program</th>
<th>Method</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test 1</td>
<td>Unknown</td>
<td>3</td>
<td>4.0 PET/Single</td>
<td>GC_23</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Test 2</td>
<td>Unknown</td>
<td>4</td>
<td>4.0 PET/Single</td>
<td>GC_23</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Test 3</td>
<td>Unknown</td>
<td>5</td>
<td>4.0 PET/Single</td>
<td>GC_23</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Test 4</td>
<td>Unknown</td>
<td>6</td>
<td>4.0 PET/Single</td>
<td>GC_23</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Test 5</td>
<td>Unknown</td>
<td>3</td>
<td>3.0 PET/Single</td>
<td>GC_23</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Test 6</td>
<td>Unknown</td>
<td>4</td>
<td>3.0 PET/Single</td>
<td>GC_23</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Test 7</td>
<td>Unknown</td>
<td>5</td>
<td>3.0 PET/Single</td>
<td>GC_23</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Test 8</td>
<td>Unknown</td>
<td>6</td>
<td>3.0 PET/Single</td>
<td>GC_23</td>
<td>Single</td>
<td></td>
</tr>
</tbody>
</table>

Setting the **IncubationTime** to 10 min results in the following thermostating times for the single samples:

- **No.** 1 2 3 4 5 6 7 8
- **Time [min]** 10 20 30 40 10 20 30 40

The injection volume changes after the 4th sample. Thus, a new sampler run starts with the 5th sample. In this run, the Chromeleon sample no. 5 is the first sample.

For a program example for the single or progressive injection mode, refer to [Perkin Elmer TurboMatrix Headspace Sampler: Program Example](#).

For tips for practical operation, refer to [Perkin Elmer TurboMatrix Headspace Sampler: Tips](#).

For an overview of the Elmer TurboMatrix Headspace Sampler, refer to [Installing and Controlling Third-Party Devices](#) in the Administrator Help section.

For installation details, refer to [Installing and Controlling Third-Party Devices](#) in the Administrator Help section.
Perkin Elmer TurboMatrix Headspace Sampler: Program Example

Below please find a typical PGM File for the Single and Progressive Injection Modes

; Specify the injection mode
 InjectMode = Single ; or 'Progressive'
 InjectionsPerVial = 1

; Sample thermostatting
 IncubationTime = 6.5 [min]
 OvenTemperature = 59 [°C]

; GC cycle time: The time should be sufficiently longer than the PGM run time so that the GC has enough time to reset the temperature and the flow to the initial values and to get ready for the next injection
 GCCycleTime = 13.5 [min]

; Remaining time program
 PressTime = 0.2 [min]
 WithdrawTime = 0.3 [min]
 VialVenting = On
 VentingTime = 5 [s]

; Temperatur program: e.g., set all temperature separately
 FollowOven = Off
 NeedleTemperature = 60 [°C]
 TransferTemperature = 62 [°C]

; Pressure, e.g., high-pressure injection
 HighPressInject = On
 CarrierPressure = 100.0 [kPa]
 InjectPressure = 110.0 [kPa]

; You can then enter the GC settings
; ...

; The injection procedure starts:
 0.000 Wait Sampler.Ready AND GC.Ready
 Inject

; the following commands refer to GC analysis
; ...

12.000 End
After making some modification, you can use this program for the MHE mode, also. For information about the modifications, refer to MHE Mode.

For tips for practical operation, refer to Perkin Elmer TurboMatrix Headspace Sampler: Tips.

For an overview of the Elmer TurboMatrix Headspace Sampler, refer to Installing and Controlling Third-Party Devices Perkin Elmer TurboMatrix Headspace Sampler: Overview in the Administrator Help section.

For installation details, refer to Installing and Controlling Third-Party Devices Perkin Elmer TurboMatrix Headspace Sampler: Installation in the Administrator Help section.

Perkin Elmer TurboMatrix Headspace Sampler: MHE Mode

In MHE mode (= Multiple headspace extraction), multiple injections are performed from the same vial. Use the Sequence Wizard to create such a sequence (3 injections per vial), e.g.:

![Sequence Wizard interface]

The PGM file for the MHE mode is similar to the PGM File for the other injection modes (see Program Example). The only difference is that you have to specify in the program file how often the injection shall be performed from the same vial, in addition to the sequence. The entry must match the setting in the sequence. Otherwise, the Ready Check fails.
; Specify the injection mode
InjectMode = MHE
InjectionsPerVial = 3
; Sample thermostatting
IncubationTime = 6.5
OvenTemperature = 59 [°C]

Tip:

In MHE mode, avoid explicitly setting a cycle time (GCCycleTime). The sampler uses the IncubationTime as cycle time. Thus, you only need to set the cycle time. Even if you set the GCCycleTime explicitly, the sampler uses the IncubationTime, instead. (Note: The selected GCCycleTime would be saved in the device and thus, it would then be used as preset cycle time in programs for Single and/or Progressive mode.)

For information about the other two injection modes, refer to Perkin Elmer TurboMatrix Headspace Sampler: Single and Progressive Injection Modes.

For tips for practical operation, refer to Perkin Elmer TurboMatrix Headspace Sampler: Tips.

For an overview of the Elmer TurboMatrix Headspace Sampler, refer to Installing and Controlling Third-Party Devices Perkin Elmer TurboMatrix Headspace Sampler: Overview in the Administrator Help section.

For installation details, refer to Installing and Controlling Third-Party Devices Perkin Elmer TurboMatrix Headspace Sampler: Installation in the Administrator Help section.
Perkin Elmer TurboMatrix Headspace Sampler: Tips

Injection time

You can set an injection time on the sampler. In Chromeleon, it is not possible to explicitly set the injection time. However, the relationship between the injection time and the injection volume is as follows:

\[
\text{Injection time (min)} = \frac{\text{volume (ml)}}{\text{column flow (ml/min)}},
\]

Therefore, to determine the injection time, specify the Volume and the ColumnFlow.

Note:

Besides, the injection time is indicated in Chromeleon via the InjectTime property.

Missing vials

When the sampler detects a missing sample vial, it does not interrupt the run. The sampler waits for the time specified for that sample and continues with the next sample afterward.

Chromeleon, too, notices that a vial is missing and
• Logs the missing sample in the Audit Trail.
• Sets the sample status to Interrupted.
• Does not start the GC run.
• Continues the run with the next sample as soon as the sampler is in Ready state.

Blank Run Samples

The TurboMatrix Headspace sampler does not know blank run samples. The sampler injects every specified sample. If a Chromeleon sequence includes a blank run sample, Chromeleon splits the sequence into several subsequences and the sampler then processes them one after the other. When the blank run sample is processed, the sampler is in Standby mode.
In the example (injection mode: Single), the sequence would be split into three subsequences:

1. Samples 1 2
2. Samples 4 through 6
3. Sample 8

When sample 3 and 7 are processed, the sample is in Standby mode.

Tips:

In Progressive mode, only the first sample of a Chromeleon sequence can be a blank run sample.

It is not possible in MHE mode to enter single samples as blank run sample. All samples that are injected from the same vial must be defined as blank run samples, instead.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>In. Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sample 1</td>
<td>Unknown</td>
<td>3</td>
<td>2.00</td>
</tr>
<tr>
<td>2</td>
<td>Sample 2</td>
<td>Unknown</td>
<td>4</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>Sample 3</td>
<td>Blank</td>
<td>5</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>Sample 4</td>
<td>Unknown</td>
<td>6</td>
<td>2.00</td>
</tr>
<tr>
<td>5</td>
<td>Sample 5</td>
<td>Unknown</td>
<td>7</td>
<td>2.00</td>
</tr>
<tr>
<td>6</td>
<td>Sample 6</td>
<td>Unknown</td>
<td>8</td>
<td>2.00</td>
</tr>
<tr>
<td>7</td>
<td>Sample 7</td>
<td>Blank</td>
<td>9</td>
<td>2.00</td>
</tr>
<tr>
<td>8</td>
<td>Sample 8</td>
<td>Unknown</td>
<td>10</td>
<td>2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>In. Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MHE 4_1</td>
<td>Unknown</td>
<td>4</td>
<td>2.00</td>
</tr>
<tr>
<td>2</td>
<td>MHE 4_2</td>
<td>Unknown</td>
<td>4</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>MHE 4_3</td>
<td>Unknown</td>
<td>4</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>MHE 5_1</td>
<td>Blank</td>
<td>5</td>
<td>2.00</td>
</tr>
<tr>
<td>5</td>
<td>MHE 5_2</td>
<td>Blank</td>
<td>5</td>
<td>2.00</td>
</tr>
<tr>
<td>6</td>
<td>MHE 5_3</td>
<td>Blank</td>
<td>5</td>
<td>2.00</td>
</tr>
<tr>
<td>7</td>
<td>MHE 6_1</td>
<td>Unknown</td>
<td>6</td>
<td>2.00</td>
</tr>
<tr>
<td>8</td>
<td>MHE 6_2</td>
<td>Unknown</td>
<td>6</td>
<td>2.00</td>
</tr>
<tr>
<td>9</td>
<td>MHE 6_3</td>
<td>Unknown</td>
<td>6</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Interrupting a batch

1. When a batch was started, Chromeleon combines as many samples as possible in a sampler method and sends the associated data to the sampler so that the sampler can start a run with overlapping sample preparation (thermostatting). For all samples sent to the sampler that have not yet been injected, the sample status is **Preparing**.

 When a batch is interrupted, the status for samples having the status **Preparing** changes to **Interrupted**. It is irrelevant whether the samples are already in the oven.

2. When a batch is interrupted with the **Abort after current sample** option, Chromeleon waits until the sampler has finished the current injection cycle, i.e., until the sampler is in **GCAnalysis** or **Finishing** state.

 It may happen that another sample vial is moved into the oven for preparation even if no injection can be performed. You cannot prevent this because the sampler does not allow you to stop the preparation without interrupting the entire run.

Actual incubation time

The actual incubation time may be different from the specified time. This may happen, e.g., when, after the previous run was finished, the GC does not enter the **Ready** state in time before the next injection. Chromeleon records the status of the oven and the devices to determine how long the single sample vials were actually incubated. When a sample was injected, i.e., after it was pressurized, Chromeleon logs the actual incubation time in the Audit Trail:

```
11:44:48 0.000 IncubationTime = 6.6
11:44:48 0.000 Wait Sampler Ready and GC Ready
11:45:03 0.000 [Sample] Vial 2 has been moved to the oven, thermostatting has started.
11:47:17 0.000 [Sample] Vial 4 has been moved to the oven, thermostatting has started.
11:59:27 0.000 [Sample] Vial 5 has been moved to the oven, thermostatting has started.
11:59:30 0.000 [Sample] Vial 5 has been moved to the oven, thermostatting has started.
11:58:38 0.000 Wait finished
11:58:48 0.000 Check
11:58:48 0.000 [Sample] Injecting from vial position 5.
11:59:48 0.000 [Sample] Injection Volume is 2.00 mL.
11:59:59 0.000 [Sample] Set Inject Ready.
11:59:59 0.000 GC Ready
11:59:59 0.000 IncubationTime = 5.6
```
Tips:

In almost all cases, the actual incubation time will be slightly different from the specified time because Chromeleon receives data from the sampler only every second. Thus, a measuring error of at least 1 second (≈ 0.017 min) can be expected. In addition, data processing in the sampler must be considered so that the measuring error may be some hundredth minutes.

To include the actual incubation time in the report, use the **Real Incubation Time (Sampler)** variable that is available in the **Audit Trail** category.

Inject synchronization

The injection process starts by pressurizing the sample (device state: **Pressurize**). (The sampler sends the **GC start run** signal when the device status changes from **Pressurize** to **Injecting**. Chromeleon sets the sampler to **Ready** when the pressure phase starts and sends an **Inject Response** signal when starting the injection.)

For information about the different injection modes, refer to Perkin Elmer TurboMatrix Headspace Sampler:

- Single and Progressive Injection Modes
- Program Example
- MHE Mode

For an overview of the Elmer TurboMatrix Headspace Sampler, refer to **Installing and Controlling Third-Party Devices** Perkin Elmer TurboMatrix Headspace Sampler: **Overview** in the **Administrator Help** section.

For installation details, refer to **Installing and Controlling Third-Party Devices** Perkin Elmer TurboMatrix Headspace Sampler: **Installation** in the **Administrator Help** section.
Rheodyne Valves: Commands and Tips

The Rheodyne External MSV driver supports the following commands (please note that the display Filter level determines which commands are displayed):

<table>
<thead>
<tr>
<th>Command</th>
<th>Min.</th>
<th>Max.</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>1</td>
<td>Depends on the type.</td>
<td>Read out from the device on connect.</td>
<td>The current position of the valve. (The valve moves to the specified position, obeying the Direction property.)</td>
</tr>
<tr>
<td>Direction</td>
<td>0</td>
<td>Shortest</td>
<td>0</td>
<td>Defines the direction in which the valve moves to the specified position.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Counterclockwise</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Clockwise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td></td>
<td></td>
<td>Move to position 1.</td>
<td>Moves the valve to position 1. (Note: The command ignores the Direction property.)</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td>Test</td>
<td>Tests the valve. (Moves the valve to position 1, steps to all positions, and returns the valve to position 1)</td>
</tr>
<tr>
<td>ModelNo</td>
<td></td>
<td>Text string (64 characters) describing the valve type.</td>
<td>Read out from the device on connect.</td>
<td>Read-only - Expert level.</td>
</tr>
<tr>
<td>SerialNo</td>
<td></td>
<td>Text string (64 characters) indicating the serial number</td>
<td>Read out from the device on connect.</td>
<td>Read-only - Expert level.</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td></td>
<td>Text string (64 characters) indicating the firmware number</td>
<td>Read out from the device on connect.</td>
<td>Read-only - Expert level.</td>
</tr>
</tbody>
</table>

It is not possible to check the serial number for the Rheodyne LabPro driver. Also, note that the following properties are available instead of the Direction property:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StepCounterClockwise</td>
<td>Moves the valve counterclockwise to the next position (Level: Advanced).</td>
</tr>
<tr>
<td>StepClockwise</td>
<td>Moves the valve clockwise to the next position (Level: Advanced).</td>
</tr>
</tbody>
</table>
Shimadzu HPLC Systems: Commands and Tips

For information about the special commands that Chromeleon supports for the Shimadzu LC-10A and LC-2010 HPLC systems and for tips for practical operation, refer to:

- **System Settings**
- **Pump**
- **Autosampler**
- **Inject Synchronization**
 (relates only to the Shimadzu LC-10A HPLC System)
- **SIL-10ADvp Sample Preparation**
 (relates only to the Shimadzu LC-10A HPLC System)
- **Column Oven**
- **UV/VIS Detector**
- **General Tips**
- **Troubleshooting**

For program examples for sample preparation with the SIL-10ADvp autosampler, which is part of the LC-10A HPLC system, refer to:

- **Program Example for the Standard Injection Mode**
- **Program Example for the Reagent Injection Mode**
- **Program Example for the Dilution Injection Mode**

Tip:

You can only set the injection mode if you have selected the **Prep Loop** option on the **Sampler** tab page in the Server Configuration program.
Shimadzu LC-10A and LC-2010 HPLC Systems: System Settings

The table below lists the commands and properties that are available for the Shimadzu LC-10A and LC-2010 HPLC Systems (please note that the display \textit{Filter} level determines which commands and properties are displayed).

\textbf{Note:}

The names of the Shimadzu commands and properties may be slightly different, depending on version of your system.

<table>
<thead>
<tr>
<th>Shimadzu</th>
<th>Chromeleon</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Activated</td>
<td>No, Yes</td>
<td>Activates or deactivates the instrument or system. Reactivate the system if it was deactivated, e.g., because the pressure was below the pressure limit.</td>
</tr>
<tr>
<td>EXT_S</td>
<td>ExternalStart</td>
<td>None, AllRuns, InjOnly</td>
<td>Determines which program starts are signalled by the START output (relay 1 on the system controller).</td>
</tr>
<tr>
<td>INJ_IN</td>
<td>WaitForRemoteStart</td>
<td>Run, Sync</td>
<td>Run: The autoinjector injects the samples immediately after drawing them. Sync: The injector waits for the manual injection signal before injecting the sample (read-only).</td>
</tr>
<tr>
<td>Shimadzu</td>
<td>Chromeleon</td>
<td>Values</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>STATUS</td>
<td>Status</td>
<td></td>
<td>Indicates the overall instrument or system status. The instrument or system is:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PURGE</td>
<td>purging.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAUSE</td>
<td>in Pause mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HOLD</td>
<td>in Hold mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RUN</td>
<td>running.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ERROR</td>
<td>An error has occurred.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WAIT_OVEN</td>
<td>waiting for the column oven.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OVEN_NOT_READY</td>
<td>The oven is not yet ready for operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRANSMIT</td>
<td>transmitting data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WAIT_DP</td>
<td>waiting for INJ_IN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRETREAT</td>
<td>busy with sample preparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STOP</td>
<td>stopped.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RINSE</td>
<td>rinsing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>READY</td>
<td>ready for operation.</td>
</tr>
</tbody>
</table>

For information about how to install the Shimadzu HPLC Systems, refer to [Hardware Installation](#) Shimadzu LC-2010 HPLC System: Installation and [Shimadzu LC-10A HPLC System: Installation](#) in the Administrator Help section.
Shimadzu LC-10A and LC-2010 HPLC Systems: Pump

In addition to the standard pump commands (see Commands for Controlling Dionex Devices, Dionex Pumps), the commands and properties from the table below are available (please note that the display Filter level determines which commands and properties are displayed).

Note:
The names of the Shimadzu commands and properties may be slightly different, depending on version of your pump.

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒%B, %C, %D</td>
<td>0.0 - 100.0 %</td>
<td>Use %B, %C, and/or %D to determine the solvent composition.</td>
</tr>
<tr>
<td>CycleMode (Shimadzu: LPGE,M)</td>
<td>Auto, OneCycle, FourCycles</td>
<td>(Only available for LC-2010 and only for Pump_A in quaternary LPG pumps) Sets the cycle mode.</td>
</tr>
<tr>
<td>Degasser (Shimadzu: DEGAS)</td>
<td>On / Off</td>
<td>(Only for LC-2010) Turns the degasser on or off.</td>
</tr>
<tr>
<td>⇒Flow</td>
<td>0.000 - 9.999 ml/min</td>
<td>Sets the flow rate.</td>
</tr>
<tr>
<td>Motor</td>
<td>On/Off</td>
<td>(Only available for the first pump) Turns the (all) pump(s) on or off</td>
</tr>
<tr>
<td>ModelVariant</td>
<td>Unknown, Isocratic, LPG, HPG</td>
<td>Indicates the pump’s operating mode (read-only). Set the operating mode on the Pumps tab page in the Server Configuration program.</td>
</tr>
<tr>
<td>Pressure</td>
<td>0 - 432 bar</td>
<td>Indicates the pressure (read-only).</td>
</tr>
<tr>
<td>Pressure.LowerLimit</td>
<td>LC-10A: 0 - 392 bar, LC-2010: 0 - 343 bar</td>
<td>Sets the lower pressure limit.</td>
</tr>
<tr>
<td>Pressure.UpperLimit</td>
<td>LC-10A: 10 - 432 bar, LC-2010: 10 - 378 bar</td>
<td>Sets the upper pressure limit.</td>
</tr>
<tr>
<td>Solvent (Shimadzu: PASV, PBSV, PCSV)</td>
<td>A, B, C, D</td>
<td>(For pumps with connected FCV Solvent Selector) Selects the solvent.</td>
</tr>
</tbody>
</table>

Tips:

To use the Motor On/Off, CycleMode, and Solvent properties, you have to enter them manually in the PGM Editor.
The **CycleMode**, **Degasser**, and **Solvent** properties supported by Chromeleon correspond to the Shimadzu **LPGE.M, DEGAS, and PASV, PBSV, and PCSV** properties (see the table above).

For information about how to install the Shimadzu HPLC Systems, refer to Hardware Installation Shimadzu LC-2010 HPLC System: Installation and Shimadzu LC-10A HPLC System: Installation in the Administrator Help section.

Shimadzu LC-10A and LC-2010 HPLC Systems: Autosampler

In addition to the standard autosampler commands (see Commands for Controlling Dionex Devices Dionex Autosamplers), the commands and properties from the table below are available (please note that the display Filter level determines which commands and properties are displayed).

Note:

The names of the Shimadzu commands and properties may be slightly different, depending on version of your autosampler.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purge</td>
<td>Purges the autosampler.</td>
</tr>
<tr>
<td>Wash</td>
<td>Washes the needle.</td>
</tr>
</tbody>
</table>

The table below lists the Shimadzu autosampler properties that are supported by Chromeleon.

Tip:

In Chromeleon, you can set the tray in the server configuration program, based on the Shimadzu MTPTRAY property. Sample processing in Chromeleon (Shimadzu MTP S.ORD property) is performed column by column.
<table>
<thead>
<tr>
<th>Shimadzu</th>
<th>Chromeleon</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Volume</td>
<td>Standard syringe: 0.1-100.0 µl 2ml syringe: 0.1-2000 µl</td>
<td>Injection volume</td>
</tr>
<tr>
<td>CLTEMP</td>
<td>Temperature</td>
<td>1-35 µl/s</td>
<td>(Only for the SIL-HTC) Sets the temperature for the cooling unit.</td>
</tr>
<tr>
<td>DIPTIME</td>
<td>WashDuration</td>
<td>0-60 s</td>
<td>(Only for the SIL-HTC/10ADvp:) Sets the duration for the needle wash.</td>
</tr>
<tr>
<td>INJCNT</td>
<td>Injections Count</td>
<td>-</td>
<td>Counts the injections (read-only).</td>
</tr>
<tr>
<td>NDLSTK</td>
<td>NeedleStroke</td>
<td>17-54 mm</td>
<td>Sets the distance that the needle moves down when drawing sample.</td>
</tr>
<tr>
<td>P.MAXT</td>
<td>PurgeTime</td>
<td>SIL-HTA/HTC: 0.1 - 25.0 s SIL-10ADvp: 0.1 - 10.0 s</td>
<td>(Only for the LC-10A) Sets the time for which the autosampler is purged.</td>
</tr>
<tr>
<td>RINSE.MODE</td>
<td>WashMode</td>
<td>NoWash WashBeforeSample WashAfterSample Both</td>
<td>Determines when the needle is washed.</td>
</tr>
<tr>
<td>RNSSPD</td>
<td>WashSpeed</td>
<td>1-35 µl/s</td>
<td>Sets the speed with which the syringe draws the volume for washing the needle.</td>
</tr>
<tr>
<td>RNSVOL</td>
<td>WashVolume</td>
<td>1-2000 µl</td>
<td>Sets the volume with which the needle is washed.</td>
</tr>
<tr>
<td>SILNRNS</td>
<td>Wash_Counter</td>
<td>-</td>
<td>(Only for the LC-2010) Counts the needle wash operations (read-only).</td>
</tr>
<tr>
<td>SILNVLR</td>
<td>HighPressure ValveRotations</td>
<td>-</td>
<td>(Only for the LC-2010) Counts the rotations of the high-pressure valve (read-only).</td>
</tr>
<tr>
<td>SILNLVR</td>
<td>LowPressure ValveRotations</td>
<td>-</td>
<td>(Only for the LC-2010) Counts the rotations of the low-pressure valve (read-only).</td>
</tr>
<tr>
<td>SMPSD</td>
<td>SyringeSpeed</td>
<td>0.1-15.0 µl/s</td>
<td>Sets the speed with which the syringe draws the sample.</td>
</tr>
</tbody>
</table>
Tips:

To use the Purge and Wash commands or the NeedleStroke, WashVolume, WashSpeed, SyringeSpeed, PurgeTime, WashMode, and WashDuration properties, you have to enter them manually in the PGM Editor.

The NeedleStroke, WashVolume, WashSpeed, SyringeSpeed, Temperature, PurgeTime, WashMode, and WashDuration properties are allowed only once in the program. Besides, they are allowed only at the time $t = 0.000$ min. Otherwise, an error message appears during the Ready Check.

Washing is always performed between two injections. Chromeleon waits for this either at the end of sampling or before the next injection.

For information about how to install the Shimadzu HPLC Systems, refer to Hardware Installation Shimadzu LC-2010 HPLC System: Installation and Shimadzu LC-10A HPLC System: Installation in the Administrator Help section.
Shimadzu LC-10A HPLC System: Inject Synchronization

<table>
<thead>
<tr>
<th>Mode</th>
<th>Injection</th>
<th>Standard Sample</th>
<th>Blank Run Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shimadzu sampler installed in Chromeleon</td>
<td>Shimadzu Sampler (i.e., the program includes the Sampler.Inject command)</td>
<td>WaitForRemoteStart is not allowed. Chromeleon starts a 1-sample batch (i.e., a batch that contains one sample) on the system controller (SCL). The autosampler draws and injects the sample.</td>
<td>WaitForRemoteStart is not allowed. Chromeleon starts a 0-sample batch (i.e., a batch that does not contain a sample) on the system controller (SCL). Via the driver's internal inject port, Chromeleon generates an inject response upon the SCL start.</td>
</tr>
<tr>
<td>No Shimadzu sampler installed in Chromeleon</td>
<td>Manual injection via the SCL’s contact input (i.e., an inject port is assigned)</td>
<td>WaitForRemoteStart must be set. Chromeleon starts a 1-sample batch on the SCL from the position "-1". The SCL waits until the contact is closed.</td>
<td>WaitForRemoteStart must be set. Chromeleon starts a 0-sample batch on the SCL. The SCL does not wait until the contact is closed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromeleon changes the inject port state upon SCL start. The manual injection device detects this change and generates an inject response.</td>
<td>Chromeleon changes the inject port state upon SCL start. The manual injection device does not wait for a change of the inject port state. An inject response is generated immediately, instead.</td>
</tr>
</tbody>
</table>

![Tip:](image)

The two cases described for No sampler installed in Chromeleon are true for Sampler installed in Chromeleon, also.
Shimadzu LC-10A HPLC System: SiL-10ADvp Sample Preparation

To perform sample preparation when the SiL10ADvp autosampler is part of the LC-10A HPLC System, you have to select the injection mode first.

Note:

The names of the Shimadzu commands and properties may be slightly different, depending on version of your autosampler.

<table>
<thead>
<tr>
<th>Shimadzu Property</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR.MODE InjectMode</td>
<td>Standard, Advanced, Dilution, Reagent</td>
<td>Sets the mode for sample preparation.</td>
</tr>
</tbody>
</table>

Note:

The Dilution and Reagent modes are not available for titer plates.

Dilution and Reagent modes

Chromeleon supports the following properties (please note that the display filter level determines which properties are displayed):

<table>
<thead>
<tr>
<th>Shimadzu</th>
<th>Chromeleon</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUBBLING</td>
<td>Bubbling</td>
<td>On/Off</td>
<td>On: Turns bubbling on, directing air through the sample.</td>
</tr>
<tr>
<td>MIXCNT</td>
<td>MixRepeat</td>
<td>1-10</td>
<td>Counts the mix operations after the diluent was added.</td>
</tr>
<tr>
<td>MIXVOL</td>
<td>PrepVolume</td>
<td>1-1000 µl</td>
<td>Sets the volume that is drawn and dispensed for a mix operation.</td>
</tr>
<tr>
<td>REACTM</td>
<td>PrepTime</td>
<td>0.1 - 120.0 min</td>
<td>Sets the time that the system waits after the mix operation has been completed.</td>
</tr>
<tr>
<td>S.VIAL</td>
<td>SourceVial</td>
<td>Depends on the rack type.</td>
<td>Specifies the sample container from which the injection is performed. (It is also possible to mix several substances in that container.) UpperHalf: Specifies the corresponding position in the upper half of the rack. R101, R102, R103: Additional reagent vials (if available on the rack)</td>
</tr>
</tbody>
</table>
Only Dilution mode:

In addition to the parameters listed in Dilution and Reagent modes above, Chromeleon supports the following properties (please note that the display Filter level determines which properties are displayed):

<table>
<thead>
<tr>
<th>Shimadzu</th>
<th>Chromeleon</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.VIAL</td>
<td>DiluentVial</td>
<td>Depends on the rack type.</td>
<td>Vial for the diluent Bottle: Large bottle R101, R102, R103: Additional reagent vials (if available on the rack)</td>
</tr>
<tr>
<td>D.FACT</td>
<td>DilutFactor</td>
<td>2-50</td>
<td>Ratio between the diluent and the original sample in the injected sample.</td>
</tr>
<tr>
<td>T.VOL</td>
<td>TotalVolume</td>
<td>200-1000 µl</td>
<td>Sets the volume that is to be present in the vial after dilution. (This volume should exceed the injection volume.)</td>
</tr>
</tbody>
</table>

Only Reagent mode

In addition to the parameters listed in Dilution and Reagent modes above, Chromeleon supports the following properties:

<table>
<thead>
<tr>
<th>Shimadzu</th>
<th>Chromeleon</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.VOL</td>
<td>SourceVolume</td>
<td>1-1000 µl</td>
<td>Specifies the volume drawn from the vial. Reagent vials UpperHalf: Specifies the corresponding position in the upper half of the rack. R101, R102, R103: Additional reagent vials (if available on the rack)</td>
</tr>
<tr>
<td>VIAL1</td>
<td>ReagentAVial</td>
<td>Depends on the rack type.</td>
<td></td>
</tr>
<tr>
<td>VIAL2</td>
<td>ReagentBVial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIAL3</td>
<td>ReagentCVial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOL1</td>
<td>ReagentAVolume</td>
<td>1-1000 µl</td>
<td>Specifies the volume drawn from the reagent vial.</td>
</tr>
<tr>
<td>VOL2</td>
<td>ReagentBVolume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOL3</td>
<td>ReagentCVolume</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For program examples, refer to:

- Program Example for the Standard Injection Mode
- Program Example for the Reagent Injection Mode
- Program Example for the Dilution Injection Mode
Tip:
You can set the injection mode only if you have selected the Prep Loop option on the **Sampler** tab page in the Server Configuration program.

For information about how to install the Shimadzu HPLC Systems, refer to **Hardware Installation** [Shimadzu LC-2010 HPLC System: Installation](#) and [Shimadzu LC-10A HPLC System: Installation](#) in the **Administrator Help** section.

Shimadzu LC-10A and LC-2010 HPLC Systems: Column Oven

In addition to the standard oven commands (see **Commands for Controlling Dionex Devices** [Dionex Flow Manager and Thermostatted Column Compartments](#)), the commands and properties from the table below are available (please note that the display **Filter** level determines which commands and properties are displayed):

Note:
The names of the Shimadzu commands and properties may be slightly different, depending on version of your column oven.

<table>
<thead>
<tr>
<th>Shimadzu</th>
<th>Chromeleon</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVEN</td>
<td>TempCtrl</td>
<td>On/Off</td>
<td>Enables or disables temperature control.</td>
</tr>
<tr>
<td>OVEN.T</td>
<td>Temperature.Nominal</td>
<td>CTO-10A: 4-80°C</td>
<td>Temperature setpoint for the column oven</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LC-2010: 4-60°C</td>
<td></td>
</tr>
<tr>
<td>ROOM</td>
<td>AmbientTemperature</td>
<td>5-85°C</td>
<td>(Only for the vp module) Indicates the ambient temperature (read-only).</td>
</tr>
<tr>
<td>TEMPm</td>
<td>Temperature.Value</td>
<td>CTO-10A: 4-85°C</td>
<td>Current temperature of the column oven</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LC-2010: 4-65°C</td>
<td></td>
</tr>
<tr>
<td>T.MAX</td>
<td>Temperature.Upper</td>
<td>CTO-10A: 5-85°C</td>
<td>Sets the upper temperature limit. Chromeleon aborts the sample batch and</td>
</tr>
<tr>
<td></td>
<td>Limit</td>
<td>LC-2010: 5-65°C</td>
<td>starts emergency handling if the current value exceeds the temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>limit.</td>
</tr>
</tbody>
</table>
Tips:
You cannot set Temperature.Nominal and TempCtrl for retention times <0.000 min.

Each program may include only one Temperature.UpperLimit setting. In addition, the setting must be entered at the time t = 0.000 min. Otherwise, an error message appears during the Ready Check.

Setting Temperature.Nominal automatically sets TempCtrl to On. If TempCtrl was set to Off before, Log.TempCtrl=On appears in the Audit Trail.

For information about how to install the Shimadzu HPLC Systems, refer to Hardware Installation Shimadzu LC-2010 HPLC System: Installation and Shimadzu LC-10A HPLC System: Installation in the Administrator Help section.

Shimadzu LC-10A and LC-2010 HPLC Systems: UV/VIS Detector

In addition to the standard detector commands (see Commands for Controlling Dionex Devices Dionex Detectors), the commands and properties from the table below are available (please note that the display Filter level determines which commands and properties are displayed):

Note:
The names of the Shimadzu commands and properties may be slightly different, depending on version of your detector.

<table>
<thead>
<tr>
<th>Shimadzu</th>
<th>Chromeleon</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACELL.T</td>
<td>CellTemp.Value</td>
<td>(Only for the LC2010) Indicates the current cell temperature (read-only).</td>
<td></td>
</tr>
<tr>
<td>ACELL.T</td>
<td>CellTemp.Nominal</td>
<td>Off, Low (40°C), High (50°C)</td>
<td>(Only for the LC2010) Sets the nominal cell temperature.</td>
</tr>
<tr>
<td>AD2TIME</td>
<td>UV.LampOnTime</td>
<td></td>
<td>Counts the operating hours of the UV (D2) lamp (read-only).</td>
</tr>
<tr>
<td>ADUAL</td>
<td>UV.Mode²</td>
<td>Single, Dual</td>
<td>See below</td>
</tr>
<tr>
<td>Shimadzu</td>
<td>Chromeleon</td>
<td>Range</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>ALAMP</td>
<td>UV.UV_Lamp</td>
<td>Off/On</td>
<td>Specifies which lamp is to be turned on. Only one lamp at a time can be burning.</td>
</tr>
<tr>
<td></td>
<td>UV.Visible_Lamp</td>
<td></td>
<td>Tip: Changing from the UV lamp to the VIS lamp takes some time. Therefore, make sure that this does not interfere with sample processing.</td>
</tr>
<tr>
<td>AREFENG</td>
<td>ReferenceEnergy</td>
<td></td>
<td>Indicates the light energy in [mV] in the reference beam (read-only).</td>
</tr>
<tr>
<td>ARESP</td>
<td>UV.Response²</td>
<td>0.05; 0.1; 0.5; 1.0; 1.5; 2.0; 3.0; 6.0; 9.0; 10.0</td>
<td>Sets the time in [s] required by the detector until it reaches full scale (98%).</td>
</tr>
<tr>
<td>ASMPENG</td>
<td>SampleEnergy</td>
<td></td>
<td>Indicates the light energy in [mV] in the sample beam (read-only).</td>
</tr>
<tr>
<td>A wave</td>
<td>UV_VIS_1.Wavelength²</td>
<td>SPD-10Avp and LC2010: 190-600 nm</td>
<td>Specifies the wavelength for the channel.</td>
</tr>
<tr>
<td>A wave 2</td>
<td>UV_VIS_2.Wavelength²</td>
<td>SPD-10Avp: D2: 190-370 nm W: 371-900 nm</td>
<td></td>
</tr>
<tr>
<td>AW TIME</td>
<td>VisLampOnTime</td>
<td></td>
<td>Counts the operating hours of the VIS (tungsten) lamp (read-only).</td>
</tr>
<tr>
<td>AZERO</td>
<td>UV.Autozero</td>
<td></td>
<td>Performs autozero.</td>
</tr>
</tbody>
</table>

Tips:

To use the **UV_Lamp**, **Visible_Lamp**, **Mode**, and **Response** commands, you have to enter them manually in the Commands view of the PGM Editor. This also applies to any additional Autozero commands.

You cannot set **UV_VIS_X.Wavelength**, **UV.Lamp**, **UV.Response**, and **UV.Autozero** for retention times <0.000 min.

Data acquisition can be started only at the retention time t = 0.000 min.

The system automatically performs an Autozero command at t = 0.1 min. Therefore, leaps may occur in the absorption at the beginning of the chromatogram.

The wavelengths must be appropriate for the lamp that is currently burning: When the UV (D2) lamp is burning, both wavelengths must be between 190 and 370 nm. For the SPD-10Avp with tungsten lamp, both wavelengths must be between 371 and 700 nm or between 701 and 900 nm. For the
LC-2010 and the SPD-10Avp with tungsten lamp, both wavelengths must be between 371 and 600 nm. If the one or both wavelengths are not in these ranges, an Abort message appears during the Ready Check and the program does not start.

Manual data acquisition is limited to 100 min. Chromeleon automatically aborts manual data acquisition on all channels after that time.

2 Single Wavelength Mode and Dual Wavelength Mode

To perform data acquisition on two channels (dual wavelength mode: Mode = Dual), two channels must be enabled on the UV/VIS tab page in the Server Configuration program. If only one channel is enabled, the UV.Mode property is not available. Thus, the detector runs always in single wavelength mode (Mode = Single).

If two channels were enabled, the mode depends on the number and type of the channels to be recorded. If two channels are requested for data acquisition, the detector runs in dual wavelength mode. If only the first channel is requested (UV_VIS_1), the detector runs in single wavelength mode. However, if only the second channel is requested for data acquisition (UV_VIS_2), dual wavelength mode is required to make the second channel available. If the detector is configured only for channel 2, a warning appears during the Ready Check. It is still possible to start the program.

When the detector runs in dual wavelength mode, the sampling step is 1.2 s per channel. Therefore, this mode is appropriate only if the width of the smallest peak is at least 7.2 s at 50% of the peak height.

Response settings <= 1.0s are allowed only in single wavelength mode. In all other cases, an error message appears during the Ready Check and the program cannot start.

When the mode is changed, Chromeleon automatically disconnects and reconnects the HPLC system. Thus, changing the mode is possible only if no other program is running. When the mode is changed, instrument settings may be reset to the default settings. Therefore, a warning appears for each program that changes the mode. However, the program can be started, nevertheless.

For information about how to install the Shimadzu HPLC Systems, refer to Hardware Installation Shimadzu LC-2010 HPLC System: Installation and Shimadzu LC-10A HPLC System: Installation in the Administrator Help section.
Shimadzu LC-10A and LC-2010 HPLC Systems: General Tips

LC-10A and LC-2010
- When the system is operated in stand-alone mode, the system conditions, such as the oven temperature, are reset to the initial values at the end of the sample program (called Time Program by Shimadzu).
 - **If Chromeleon controls the HPLC System, the system conditions entered last are retained.**
- Chromeleon also disconnects and automatically reconnects to the HPLC System when you change the **Mode** parameter (single or dual wavelength) for the **UV detector**. This may take some time. After reconnect, an audible beep sounds. Make sure that this process does not interfere with sample processing.

LC-10A
- Parameter settings changed on the instrument in stand-alone operation are lost when Chromeleon connects to the instrument. Chromeleon always restores the preset values when connecting to the instrument.
- Changes made in Chromeleon do not appear immediately on the ANALYSIS FILE and TIME PROGRAM menus on the System Controller. To see the changes, exit and reenter the corresponding display. The MONITOR menu is updated immediately. However, the nominal values are not displayed.
- Depending on the desired operation (with either the Shimadzu sampler or a manual injection valve), Chromeleon sets the **WaitForRemoteStart** property automatically to the appropriate value for the selected option.
- Chromeleon disconnects and automatically reconnects to the HPLC System when you change the setting for **ExternalStart** or when Chromeleon changes the setting for the **WaitForRemoteStart** property (see above). Make sure that this process does not interfere with sample processing.
- To change from the UV lamp to the VIS lamp takes considerable time. Make sure that this process does not interfere with sample processing.
LC-2010

- If the HPLC System detects an error or if data acquisition is active, you cannot connect to Chromeleon.

- Parameter settings changed on the instrument in stand-alone operation are lost when Chromeleon connects to the instrument. Chromeleon always restores the preset values when connecting to the instrument:

 - WashDuration: 0
 - WashMode: NoWash
 - PurgeTime: 25.0
 - WashSpeed: 35
 - WashVolume: 200
 - SyringeSpeed: 15.0
 - NeedleStroke: 52
 - SourceVial: UpperHalf
 - DiluentVial: Bottle
 - TotalVolume: 400
 - Sampler.DilutionFactor: 2
 - MixRepeat: 3
 - PrepVolume: 200
 - Bubbling: On
 - PrepTime: 1.0
 - SourceVolume: 100
 - ReagentAVolume: 100
 - ReagentBVolume: 100
 - ReagentCVolume: 100
 - ReagentAVial: None
 - ReagentBVial: None
 - ReagentCVial: None

- Changes made in Chromeleon do not appear immediately on the METHOD menu. To see the changes, exit and reenter the corresponding display. The MONITOR menu is updated immediately. However, the nominal values are not displayed.

For information about how to install the Shimadzu HPLC Systems, refer to Hardware Installation Shimadzu LC-2010 HPLC System: Installation and Shimadzu LC-10A HPLC System: Installation in the Administrator Help section.
Shimadzu LC-10A HPLC System: Program Example for the Standard Injection Mode

Tip:

The Shimadzu devices support only programs that start at the time \(t = 0.000 \) min. It is not possible to perform commands at negative retention times. If the program includes a command at a negative retention time, an abort error occurs during the Ready Check.

The following program is an example for sample preparation with the Shimadzu SIL-10ADvp autosampler in Standard injection mode:

; Pump settings:
 Pressure.LowerLimit = 2
 Pressure.UpperLimit = 150
 %A.Equate = "Water"
 %B.Equate = "Methanol"
 Flow = 1.000
 %B = 80.0

; Detector settings:
 Mode = Dual
 Response = 2.00
 UV_VIS_1.Wavelength = 272
 UV_VIS_1.Step = 0.20
 UV_VIS_1.Average = On
 UV_VIS_2.Wavelength = 254
 UV_VIS_2.Step = 0.20
 UV_VIS_2.Average = On

; The following autosampler settings are valid for each InjectMode:
 WashMode = WashAfterSample
 ; Determines when the needle is washed (Options: NoWash, WashBeforeSample (before injection), WashAfterSample (after injection), Both (before and after injection)
 WashSpeed = 35
 ; Syringe speed when washing the needle
 WashVolume = 1
 ; Volume used for washing the sample loop
 SyringeSpeed = 15.0
; Speed with which the syringe draws the sample
NeedleStroke = 52
; Indicates how deep the needle moves into the vial when drawing the sample
Position = 0
Volume = 5
; You can specify the vial position in the PGM File or in the sample list of the sequence.
InjectMode = Standard
; Injection and data acquisition:
0.000 UV.Autozero
 Inject
 UV_VIS_1.AcqOn
 UV_VIS_2.AcqOn

10.000 UV_VIS_1.AcqOff
 UV_VIS_2.AcqOff
 End

For other example programs, refer to:

Shimadzu LC-10A HPLC System: Program Example for the Reagent Injection Mode

Shimadzu LC-10A HPLC System: Program Example for the Dilution Injection Mode

For information about how to install the Shimadzu HPLC Systems, refer to Hardware Installation Shimadzu LC-2010 HPLC System: Installation and Shimadzu LC-10A HPLC System: Installation in the Administrator Help section.
Shimadzu LC-10A HPLC System: Program Example for the Reagent Injection Mode

Tip:
The Shimadzu devices support only programs that start at the time \(t = 0.000 \) min. If the program includes a command at a negative retention time, an abort error occurs during the Ready Check.

You can only set the injection mode if you have selected the Prep Loop option on the Sampler tab page in the Server Configuration program.

The following program is an example for sample preparation with the Shimadzu SIL-10ADvp autosampler in Reagent injection mode:

```plaintext
; Pump settings:
  Pressure.LowerLimit = 2
  Pressure.UpperLimit = 150
  %A.Equate = "Water"
  %B.Equate = "Methanol"
  Flow = 1.000
  %B = 80.0

; Detector settings:
  Mode = Dual
  Response = 2.00
  UV_VIS_1.Wavelength = 272
  UV_VIS_1.Step = 0.20
  UV_VIS_1.Average = On
  UV_VIS_2.Wavelength = 254
  UV_VIS_2.Step = 0.20
  UV_VIS_2.Average = On

; Settings for the Reagent InjectMode:
  InjectMode = Reagent
  SourceVial = 51
  SourceVolume = 20

; 20 µl of air is automatically drawn first, and then the source volume, e.g., 20 µl, is drawn from position 51. Finally, 30 µl (= source volume + 10 µl) are delivered to the injection vial (defined position).
```
Afterward, a Wash command is executed for the sample loop and the needle, using the settings for WashVolume and WashSpeed.

```
ReagentAVial = 30
ReagentAVolume = 5
ReagentBVial = 31
ReagentBVolume = 10
ReagentCVial = 32
ReagentCVolume = 15
```

For each reagent, 20 µl of air is automatically drawn first, and then the reagent volume, e.g. AVolume = 5 µl, is drawn from the indicated position. The reagent volume + 10 µl (here = 15 µl) are then delivered to the injection vial (defined position).

; For each reagent, 20 µl of air is automatically drawn first, and then the reagent volume, e.g. AVolume = 5 µl, is drawn from the indicated position. The reagent volume + 10 µl (here = 15 µl) are then delivered to the injection vial (defined position).

For each reagent, 20 µl of air is automatically drawn first, and then the reagent volume, e.g. AVolume = 5 µl, is drawn from the indicated position. The reagent volume + 10 µl (here = 15 µl) are then delivered to the injection vial (defined position).

; Each time after a reagent has been delivered to the injection vial, a Wash command is performed for the sample loop and the needle, using the settings for WashVolume and WashSpeed. After the last reagent has been delivered to the injection vial, the contents of the vials is mixed; no additional wash cycle is performed. For information about the general commands, refer to the previous topic: Program Example for the Standard Injection Mode.

```
Position = 0
Volume = 5
```

; The position of the injection vial is the position at which the sample and the reagent are mixed and from which injection is performed. You can specify the position in the PGM File or in the sample list of the sequence.

; Settings for the mixing cycle
```
MixRepeat = 3
PrepVolume = 25
```

; Number of mixing cycles that are performed after the SourceVolume and the Reagent have been delivered to the injection vial. The PrepVolume is drawn and expelled for each mixing cycle.

; If Bubbling is set to On, the PrepVolume is used as volume.

; After all mixing cycles have been performed, a Wash command is executed for the sample loop and the needle, using the settings for WashVolume and WashSpeed.
```
PrepTime = 1.0
```

; Indicates the time the system waits after the mixing cycles have been completed (here: 1.0 min).
; Injection and data acquisition:
0.000 UV.Autozero
 Inject
 UV_VIS_1.AcqOn
 UV_VIS_2.AcqOn
10.000 UV_VIS_1.AcqOff
 UV_VIS_2.AcqOff
End

For another example program, refer to Shimadzu LC-10A HPLC System: Program Example for the Dilution Injection Mode.

For information about how to install the Shimadzu HPLC Systems, refer to Hardware Installation Shimadzu LC-2010 HPLC System: Installation and Shimadzu LC-10A HPLC System: Installation in the Administrator Help section.

Shimadzu LC-10A HPLC System: Program Example for the Dilution Injection Mode

Tip:
The Shimadzu devices support only programs that start at the time \(t = 0.000 \) min. If the program includes a command at a negative retention time, an abort error occurs during the Ready Check.

You can only set the injection mode if you have selected the Prep Loop option on the Sampler tab page in the Server Configuration program.

The following program is an example for sample preparation with the Shimadzu SIL-10ADvp autosampler in Dilution injection mode:

; Pump settings:
 Pressure.LowerLimit = 2
 Pressure.UpperLimit = 150
 %A.Equate = "Water"
 Flow = 1.000
 %B = 0.0
; Detector settings:
 Mode = Dual
 Response = 2.00
 UV_VIS_1.Wavelength = 272
 UV_VIS_1.Step = 0.20
 UV_VIS_1.Average = On
 UV_VIS_2.Wavelength = 254
 UV_VIS_2.Step = 0.20
 UV_VIS_2.Average = On

; Settings for the Dilution InjectMode
; The commands below are necessary to allow the autosampler execute
the desired actions:
 InjectMode = Dilution
 SourceVial = 30
; 20 µl of air is automatically drawn first, and then the calculate
source volume, e.g., 200 µl, is drawn from position 30. Finally, 210
µl (= source volume + 10 µl) are delivered to the injection vial
(defined position).
; Afterward, a Wash command is executed for the sample loop and the
needle, using the settings for WashVolume and WashSpeed. For
information about the general commands, refer to the previous topic:

Program Example for the Standard Injection Mode.

 DiluentVial = 51
; 20 µl of air is automatically drawn first, and then the calculated
DilutVolume, e.g. 200 µl, is drawn from the position 51. Afterward,
410 µl (= DilutVolume + 10 µl) are then delivered to the injection
vial (defined position).

 TotalVolume = 600
; Volume that shall be delivered to the injection vial after dilution
(should exceed the injection volume).

 DilutFactor = 3
; Ratio between the diluent/sample ratio in the resulting mixture. If
the total volume is 600 µl and if the dilution factor is 3, 200 µl
are drawn from the SourceVial and 400 µl are drawn from the diluent
vial and delivered to the injection vial.

 Position = 0
 Volume = 5

; The position of the injection vial is the position at which the
sample and the reagent are mixed and from which injection is
performed. You can specify the position in the PGM File or in the
sample list of the sequence.
MixRepeat = 3
PrepVolume = 300
Bubbling = Off
PrepTime = 1.0

; Injection and data acquition:
0.000 UV.Autozero
 Inject
 UV_VIS_1.AcqOn
 UV_VIS_2.AcqOn
3.000 UV_VIS_1.AcqOff
 UV_VIS_2.AcqOff
End

For another example program, refer to Shimadzu LC-10A HPLC System: Program Example for the Reagent Injection Mode.

For information about how to install the Shimadzu HPLC Systems, refer to Hardware Installation Shimadzu LC-2010 HPLC System: Installation and Shimadzu LC-10A HPLC System: Installation in the Administrator Help section.

Shimadzu LC-10A and LC-2010 HPLC Systems: Troubleshooting

LC-10A and LC2010

- If communication to the Chromeleon cannot be re-established after a fatal communication error, the Chromeleon sever might not run stable afterward (due to the Shimadzu software). Restart the server to solve the problem.

- When communication to Chromeleon is interrupted, the instrument may be in KEYLOCK state afterward. In this case, it is not possible to control the instrument by Chromeleon. Cancel KEYLOCK state by pressing the F5 key from the System Controller's Main menu and enter the system password.

- Chromeleon uses the ANALYSIS FILE #0 file and the associated TIME PROGRAM. Thus, changes made while the instrument is operated in stand-alone mode are lost when you reconnect to Chromeleon later.
LC-10A

- **Error:** "[Abort] {HPLC_System} Fatal Instrument Error (NOT LINKED, 0)."

- **Cause:** This error occurs if the server configuration includes an instrument that is not connected to the LC-10A system.

- **Remedial action:** Adapt the server configuration to the actually installed instruments.

- **Error:** "[Error] 09:00:58 {HPLC_System} Error in task Remote: Configuration settings mismatch with the actual connection."

- **Cause:** This error may occur if the operating mode set in the server configuration on the **Pumps** tab page does not match the setting on the instrument.

- **Remedial action:** Check and change the operating mode on the device if necessary:
 1. Press the key 1 to open the ANALYSIS FILE menu.
 2. Press the F3 key (T.PROG) to open the TIME PROGRAM menu.
 3. Press F1 (P.CTRL), and then use the F1 - F4 key to select the operating mode (ISO, B.GE, T.GE, LPGE).

LC-2010

- When configuring the LC_2010 HPLC System for the first time in the Chromleon Server Configuration program, the following error may occur:

- "[Error] 10:50:51 {HPLC_System} Error in task PollCfg: Configuration settings mismatch with the actual HPLC system." This error may indicate that you have installed an LC-10A HPLC System in Server Configuration program. Uninstall the LC-10A HPLC System and install the LC-2010 HPLC System instead.

- "[Error] 10:51:27 {HPLC_System} Error in task PollCfg: Invalid Parameter." This error may indicate that self-test of the LC-2010 HPLC system failed. Check the system and press **CE** or restart the system if necessary.
• "[Error] 17:51:25 {HPLC_System} Error in task Remote: Invalid function." This error may indicate that the LC-2010 HPLC System was not in Ready state when the Connect command was issued. Check the system; stop data acquisition, or perform a SIL rinse operation if necessary.

• In very rare cases, it may happen that the LC-2010 displays "Calculating..." and seems to be frozen. You may have to wait some time until the system responds again. If you do not want to wait, you may turn the system off and on again and perform the following steps:

 Tip:

 If you perform these steps, ALL settings, including the communication, start, and shutdown settings, are reset to the factory defaults. This means that you have to reenter all settings on the system (for example, the settings described in the Device Settings section in the Administrator Help section: Hardware Installation Shimadzu LC-2010 HPLC System: Installation).

 1. Press the [VP] key.
 2. Press the [F4](CALIB) key.
 3. Enter the login ID "00000" on the system.
 4. Press the [F2](OK) key.
 5. Select "7: Initialize Parameters."
 6. Press the [Enter] key.
 7. Press the [F2](OK) key.
 8. Restart the system.

• Problem: Only 100 µl are injected although the injection volume is larger than 100 µl and the 2000 µl syringe was configured in the Server Configuration program.

 Reason: The 100 µl injection was set on the device. Set the 2000 µl syringe on the device, following the steps in the Device Settings section in the Shimadzu LC-2010 HPLC System: Installation topic in the Administrator Help section.
For a list of error messages that might appear in Chromeleon refer to the Error Levels tab page in the Server Configuration program.

For information about how to install the Shimadzu LC-10A HPLC System, refer to Hardware Installation Shimadzu LC-10A HPLC System: Installation in the Administrator Help section.
Shodex Refractive Index Detectors (RI-101, RI-102, RI-104): Commands and Tips

Tips:

The Shodex RI-101 Refractive Index Detector is available from Dionex as part of the Summit HPLC System whereas the RI-102 and RI-104 detectors are not. However, the commands listed below are also supported for the Shodex RI-102 and RI-104 detectors.

In addition to the commands available for various detector types, such as *Step,* *Average,* and *Autozero* (see [Dionex Detectors]), the Shodex RI-101 Refractive Index Detector supports the following commands and properties (please note that the display *Filter* level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline_Shift</td>
<td>0 mV</td>
<td>500 mV</td>
<td>Baseline offset (10 mV increments only). (Display level: Advanced)</td>
</tr>
<tr>
<td>DemoFileName</td>
<td></td>
<td></td>
<td>Name of the standard demo file (Display level: Expert. The property is read-only.)</td>
</tr>
<tr>
<td>Drift</td>
<td>0 nRIU/h</td>
<td>9990 nRIU/h</td>
<td>Drift value (Display level: Advanced. The property is read-only.)</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>"1.06"</td>
<td></td>
<td>Standard firmware version.</td>
</tr>
<tr>
<td>Integrator_Range</td>
<td>125 µRIU/V or 500 µRIU/V</td>
<td></td>
<td>Voltage scale for analog integrator output (display level: Advanced)</td>
</tr>
<tr>
<td>LampAge</td>
<td>0 h</td>
<td>99999 h</td>
<td>Lamp age (The value should not exceed 2000h. Display level: Advanced. The property is read-only.)</td>
</tr>
<tr>
<td>LampVoltage</td>
<td>0.0V</td>
<td>9.9V</td>
<td>Lamp voltage (The value should not exceed 4.5V. Display level: Advanced. The property is read-only.)</td>
</tr>
<tr>
<td>Noise</td>
<td>0 nRIU</td>
<td>9990 nRIU</td>
<td>Noise value (Display level: Advanced. The property is read-only.)</td>
</tr>
<tr>
<td>NotReadyCauses</td>
<td>Text string (128 characters)</td>
<td></td>
<td>Explanation of why the device is not ready (read-only).</td>
</tr>
<tr>
<td>Property</td>
<td>Minimum</td>
<td>Maximum</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Polarity</td>
<td>Plus</td>
<td>Minus</td>
<td>Output polarity (Display level: Advanced)</td>
</tr>
<tr>
<td>Purge</td>
<td>Off</td>
<td>On</td>
<td>Controls the purge valve.</td>
</tr>
<tr>
<td>Recorder_Range</td>
<td>0.25 µRIU</td>
<td>512.00 µRIU</td>
<td>Voltage scale for full-scale analog recorder output. Only powers of 2 are allowed. (Display level: Advanced)</td>
</tr>
<tr>
<td>Rise_Time</td>
<td>0.10, 0.25, 0.50, 1.00, 1.50, 2.00, 3.00, 6.00 s</td>
<td>Rise time constant.</td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>0 µRIU</td>
<td>999 µRIU</td>
<td>Validation span (The value should be between 487 and 537 µRIU. Display level: Advanced. The property is read-only.)</td>
</tr>
<tr>
<td>TemperatureDelta</td>
<td>-99°C</td>
<td>99°C</td>
<td>Temperature delta (also see: Temperature.Nominal and Temperature.Value. Display level: Advanced. The property is read-only.)</td>
</tr>
<tr>
<td>Temperature.Nominal</td>
<td>30°C</td>
<td>50°C</td>
<td>Temperature set point.</td>
</tr>
<tr>
<td>Temperature.Value</td>
<td>0°C</td>
<td>99°C</td>
<td>Measured temperature.</td>
</tr>
</tbody>
</table>

For information about how to install the Shodex RI-detectors, refer to [Hardware Installation](https://example.com) **Shodex HPLC Refractive Index Detectors (RI-101, RI-102, RI-104): Overview** in the Administrator Help section.
Thermo Finnigan/TQ/TSP: Commands and Tips

For information about the special commands that Chromeleon supports for the different Thermo Finnigan/TQ/TSP devices and for tips for practical operation, refer to:

- Surveyor MSQ Mass Spectrometer
- aQa Mass Spectrometer
- Trace and Focus GCs
- AS3000 and AI3000 GC Autosamplers
- AS3500/AS3000 Autosamplers: Sample Preparation
- UV1000 Detector
- UV2000 Detector
- UV3000 Detector
- UV6000 PDA Detector
- FL2000 and FL3000 Fluorescence Detectors

For the commands supported for the ThermoQuest AS2000 Autosampler, which corresponds to the Fisons AS800 autosampler, refer to Fisons AS800/ThermoQuest AS2000 Autosamplers.
Thermo Finnigan/TQ/TSP Surveyor MSQ Mass Spectrometer

TIC, SIM, and MS Channel Properties and Commands

These channels are standard data channels with the following properties (please note that the display ➔Filter level determines which properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔AcqOn/Off</td>
<td>-</td>
<td>-</td>
<td>MS_n only Starts and stops data acquisition.</td>
</tr>
<tr>
<td>MinMass</td>
<td>0.00 m/z</td>
<td>2000.00</td>
<td>Read-only Minimum mass recorded in this trace. (SIM channels only)</td>
</tr>
<tr>
<td>MaxMass</td>
<td>0.00 m/z</td>
<td>2000.00</td>
<td>Read-only Maximum mass recorded in this trace. (SIM channels only)</td>
</tr>
<tr>
<td>Polarity</td>
<td>Negative</td>
<td>Positive</td>
<td>Read-only Polarity</td>
</tr>
<tr>
<td>SourceVoltage</td>
<td>0 V</td>
<td>200 V</td>
<td>Read-only Maximum voltage.</td>
</tr>
<tr>
<td>FilterIndex</td>
<td>0: NoFilter</td>
<td>n (dep. on installation): 9 (TIC/MS) 41 (SIM)</td>
<td>Read-only Extraction filter. The filter corresponds to the filters defined in the MS method. For 0 = NoFilter, the TIC channel is used.</td>
</tr>
<tr>
<td>➔Filter</td>
<td>n/a</td>
<td>n/a</td>
<td>Read-only Filter string as used in Thermo Finnigan MSQ method.</td>
</tr>
<tr>
<td>BasePeakMode</td>
<td>No</td>
<td>Yes</td>
<td>MS only Extracts ➔Base Peak chromatograms during data acquisition</td>
</tr>
<tr>
<td>➔Delta</td>
<td>-</td>
<td>-</td>
<td>Read-only Signal change (difference between the current value and the value one second before).</td>
</tr>
</tbody>
</table>

Tip:

Support for data acquisition is not available. Thus, the Step, MaxAutoStop, and Average commands cannot be set. Manual data acquisition is not possible, either. In addition, acquisition is started at the time 0.000 and stopped at the end of the program for all channels that deliver data according to an MSQ method file. These channels do not appear in the Program Wizard or on the control panel.
Device Properties and Commands

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready</td>
<td>Ready, Busy</td>
<td>Read-only</td>
<td></td>
<td>Indicates whether the spectrometer is busy or idle.</td>
</tr>
<tr>
<td>Operation</td>
<td>On, Off, Standby</td>
<td>Off</td>
<td></td>
<td>Indicates whether the spectrometer is busy or idle.</td>
</tr>
<tr>
<td>Status</td>
<td>n/a</td>
<td>Read-only</td>
<td></td>
<td>Indicates the spectrometer's operational status.</td>
</tr>
<tr>
<td>Range</td>
<td>1 (for exp(1) Counts)</td>
<td>10 (for exp(10) Counts)</td>
<td></td>
<td>Scaling range used for online signal plot during data acquisition. (Can be set only before data acquisition starts.)</td>
</tr>
<tr>
<td>Smoothing</td>
<td>None, Gaussian, Boxcar</td>
<td>None</td>
<td></td>
<td>Smoothing algorithm. Note: This parameter is used by Xcalibur raw data extraction during online and post-run channel extraction.</td>
</tr>
<tr>
<td>SmoothingPoints</td>
<td>3, 5, 7, 9, 11, 13, 15</td>
<td>3</td>
<td></td>
<td>Number of data points used for smoothing. Note: This parameter is used by Xcalibur raw data extraction during online and post-run channel extraction.</td>
</tr>
<tr>
<td>HardwareVersion</td>
<td>n/a</td>
<td>Read-only</td>
<td></td>
<td>The mass spectrometer's hardware version. Note: This value is available only after the first raw data acquisition.</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>n/a</td>
<td>Read-only</td>
<td></td>
<td>The spectrometer’s firmware version. Note: This value is available only after the first raw data acquisition.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connect</td>
<td>Connects the device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnect</td>
<td>Disconnects the device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>Resets the device to the defaults</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For troubleshooting information, refer to

Thermo Finnigan/TQ/TSP Surveyor MSQ: Troubleshooting

Problem: Interruption of the Xcalibur server

Grounding of the USB cable and connector on the MSQ is intermittent and can interrupt the Xcalibur server. Interruption of the Xcalibur server results in the following symptoms:

- The Xcalibur Manual Tune software spinning "tune note" stops spinning. This indicates that communication is interrupted between the MSQ and the PC; the MSQ can neither be controlled nor transmit values to the Chromeleon.

 Tip:

 The MSQ communicates with the PC via the USB port. Communications function is monitored with the Xcalibur Manual Tune software with a spinning "tune note" in the upper right corner of the screen. Spinning of the "tune note" is the primary indication that the Xcalibur server is operational.

- The Xcalibur Manual Tune spectra section "freezes". This, too, indicates that communication between the MSQ and the PC is interrupted.

Solution:

1. Restart the Xcalibur server, following the steps below:
 - Exit Xcalibur Manual Tune.
 - Reset the MSQ by depressing the hardware reset button on the MSQ's rear panel.
Commands and Tips for Third-Party Devices

- Restart Xcalibur Manual Tune and observe the active Xcalibur server. The MSQ makes an audible beep, the spinning "tune note" in the upper right corner of Manual Tune will be spinning, and the MSQ can be controlled and transmits values to Chromeleon.

2. Ensure that the length of the USB cable between the MSQ and PC is of minimum length (preferably 2 meters or less).

3. Ensure that the MSQ USB connector is grounded. Temporarily insert a conductive material, such as a paper clip or similar, between the MSQ USB connector and the sheet metal panel from which it protrudes. If the Xcalibur server interrupt problem does not re-occur, a more permanent solution would be to utilize a powered USB hub. (A suitable product is available, for example, from Belkin.) Install the hub between the MSQ and PC, using USB cables of minimum length.

Problem: Leakage on the return-valve

If the LC pump continues running after shutting down the MSQ, the non-return valve can leak inside the instrument. This is problem especially for high flow applications.

The Turbo pump controller is located directly below the non-return valve. When the non-return valve leaks, it does so onto the controller and pools on the main chassis bottom. In extreme cases, such a leak can cause the Turbo pump controller to fail. In minor cases, the leak causes the inside of the MSQ to be unsightly.

Solution:

A non-return valve removal kit and instruction sheet is available from Dionex. Contact the Callcenter at Callcenter@Dionex.com or 1-800-346-6390. Removal of the valve takes 30 to 60 minutes and can be performed during any other scheduled service.

Note:

The removal kit includes an apparatus to provide a continuous nitrogen leak into the MSQ source, when the instrument is not in operation. This configuration consumes more nitrogen and customers may need to take measures to conserve nitrogen when supply is limited. In these cases, Dionex recommends turning off nitrogen at the source when the instrument is not in use.
Closely monitor the level of the waste in the source waste bottle and/or leave the source door open slightly when the MSQ is not in use. This will prevent waste from being drawn back into the source when the instrument is turned off.

Problem: No data acquisition for Blank Run Samples
The Inject command of the PGM File is not performed for Blank Run samples (sample type: Blank) because it is not required. However, the MSQ needs this signal from the sample to start data acquisition.

Solution:
There are two possible solutions:

1. For Blank Run Samples (sample type: Blank), inject the solvent that is in the sample loop. Specify the Inject command as follows:

 Inject Blank=Inject

2. To analyze blank run samples without an injection, connect a relay, e.g., from the pump or detector, to the IN1 digital input on the Surveyor MSQ User Interface, using the black and the red wire of the three-core cable from the MSQ’s accessory kit. In addition, add the following line to the PGM File directly after the Inject command, e.g.:

 Pump_Relay_1.Open Duration=1.00

Note:
This example refers to Relay_1 on the pump.
Thermo Finnigan/TQ/TSP aQa Mass Spectrometer

TIC and SIM Channel Properties and Commands

These channels are standard data channels with the following properties (please note that the display \(\text{Filter level} \) determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinMass</td>
<td>2.00</td>
<td>1636.00</td>
<td>Minimum mass recorded in this trace. (SIM channels only)</td>
</tr>
<tr>
<td>MaxMass</td>
<td>2.00</td>
<td>1636.00</td>
<td>Maximum mass recorded in this trace. (SIM channels only)</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive</td>
<td>Positive</td>
<td>Polarity</td>
</tr>
<tr>
<td>SourceVoltage</td>
<td>0 V</td>
<td>200 V</td>
<td>aQa max voltage. (SIM channels only)</td>
</tr>
<tr>
<td>SourceVoltage</td>
<td>0 V</td>
<td>200 V</td>
<td>aQa max voltage range. (TIC/TICF channels only)</td>
</tr>
<tr>
<td>BasePeakMode</td>
<td>No</td>
<td>Yes</td>
<td>Extracts (\text{Base Peak}) chromatograms during data acquisition</td>
</tr>
<tr>
<td>Filter</td>
<td>n/a</td>
<td>n/a</td>
<td>Filter string as used in Thermo Finnigan aQa method.</td>
</tr>
</tbody>
</table>

Tip:

Support for data compression is not available. Thus, the \text{Step, MaxAutoStop, and Average} commands cannot be set. Manual data acquisition is not possible, either. In addition, acquisition is started at the time 0.000 and stopped at the end of the program for all channels that deliver data according to an aQa method file. These channels do not appear in the Program Wizard or on the control panel.

Device Properties and Commands

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready</td>
<td>Ready, Busy</td>
<td></td>
<td>Read-only</td>
<td>Indicates whether the spectrometer is busy or idle.</td>
</tr>
<tr>
<td>Operation</td>
<td>On, Off, Standby</td>
<td>Off</td>
<td></td>
<td>Indicates whether the spectrometer is busy or idle.</td>
</tr>
<tr>
<td>Status</td>
<td>n/a</td>
<td>Read-only</td>
<td></td>
<td>Indicates the spectrometer's operational status.</td>
</tr>
<tr>
<td>Property</td>
<td>Min</td>
<td>Max</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Range</td>
<td>1 (for exp(1) Counts)</td>
<td>10 (for exp(10) Counts)</td>
<td>Scaling range used for online signal plot during data acquisition. (Can be set only before data acquisition starts.)</td>
<td></td>
</tr>
<tr>
<td>Smoothing</td>
<td>None, Gaussian, Boxcar</td>
<td>None</td>
<td>Smoothing algorithm. Note: This parameter is used by Xcalibur raw data extraction during online and post-run channel extraction.</td>
<td></td>
</tr>
<tr>
<td>SmoothingPoints</td>
<td>3, 5, 7, 9, 11, 13, 15</td>
<td>3</td>
<td>Number of data points used for smoothing. Note: This parameter is used by Xcalibur raw data extraction during online and post-run channel extraction.</td>
<td></td>
</tr>
<tr>
<td>HardwareVersion</td>
<td>n/a</td>
<td>Read-only</td>
<td>The mass spectrometer's hardware version. Note: This value is available only after the first raw data acquisition.</td>
<td></td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>n/a</td>
<td>Read-only</td>
<td>The spectrometer's firmware version. Note: This value is available only after the first raw data acquisition.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>=>Connect</td>
<td>Connects the device</td>
</tr>
<tr>
<td>Disconnect</td>
<td>Disconnects the device</td>
</tr>
<tr>
<td>=>Reset</td>
<td>Resets the device to the defaults</td>
</tr>
</tbody>
</table>
Thermo Finnigan/TQ/TSP Trace and Focus GC Commands

Lots of commands are available for the individual options of the Trace and Focus GCs. Only the most important of them are described below (please note that the display Filter level determines which commands and properties are displayed). They are common to the respective device types (for example, the different detectors). For a short description of all GC commands, refer to the corresponding Command dialog box (press the F8 key in the program) or the Properties/Link box.

<table>
<thead>
<tr>
<th>Command</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryo (Trace GC only)</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>ON: The cryo valve will operate when needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OFF: The cryo valve is disabled. (The property is</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>visible only if the cryo option is enabled.)</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>Turns the oven's temperature control on or off.</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td>The allowed maximum temperature change is</td>
</tr>
<tr>
<td>.Nominal</td>
<td>30</td>
<td></td>
<td>50</td>
<td>Nominal oven temperature in [°C].</td>
</tr>
<tr>
<td>Note 1</td>
<td></td>
<td></td>
<td></td>
<td>Nominal oven temperature in [°C].</td>
</tr>
<tr>
<td>.Value</td>
<td>70</td>
<td></td>
<td>N/A</td>
<td>Actual oven temperature in [°C] (read-only).</td>
</tr>
<tr>
<td>.UpperLimit</td>
<td>70</td>
<td></td>
<td>350</td>
<td>Upper limit for the oven temperature in [°C].</td>
</tr>
<tr>
<td>Note 1</td>
<td></td>
<td></td>
<td>450</td>
<td>Upper limit for the oven temperature in [°C].</td>
</tr>
<tr>
<td>.LowerLimit</td>
<td>30</td>
<td></td>
<td>30</td>
<td>Lower limit for the oven temperature in [°C].</td>
</tr>
<tr>
<td>Note 1</td>
<td></td>
<td></td>
<td>50°C</td>
<td>Lower limit for the oven temperature in [°C].</td>
</tr>
</tbody>
</table>

Note 1: Trace GC: Depending on the cryo settings, the minimum temperature can be 30°C, -55°C, or -99°C.

Note 2: Trace GC: Depending on the cryo settings, the maximum temperature can be 450°C or 500°C.
Focus GC: Depending on the cryo settings, the maximum temperature can be 350°C.
Inlet

<table>
<thead>
<tr>
<th>Command</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TempCtrl</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>Turns temperature control on or off.</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.Nominal</td>
<td>30 (Trace)</td>
<td>450 (Trace)</td>
<td>50 (Trace)</td>
<td>Nominal inlet temperature in [°C]</td>
</tr>
<tr>
<td>.Value</td>
<td>30 (Trace)</td>
<td>450 (Trace)</td>
<td>N/A</td>
<td>Actual inlet temperature in [°C] (read-only).</td>
</tr>
<tr>
<td>Mode</td>
<td>N/A</td>
<td>N/A</td>
<td>Split</td>
<td>Inlet mode: Split or Splitless</td>
</tr>
</tbody>
</table>

Detector(s)

<table>
<thead>
<tr>
<th>Command</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>=>Autozero</td>
<td></td>
<td></td>
<td></td>
<td>Sets the signal output to 0.</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>Turns temperature control on or off.</td>
</tr>
<tr>
<td>Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.Nominal</td>
<td>30 (Trace)</td>
<td>450 (Trace)</td>
<td>150</td>
<td>Nominal detector temperature in [°C]</td>
</tr>
<tr>
<td>.Value</td>
<td>30 (Trace)</td>
<td>450 (Trace)</td>
<td>N/A</td>
<td>Actual detector temperature in [°C] (read-only).</td>
</tr>
</tbody>
</table>

Column(s)

<table>
<thead>
<tr>
<th>Command</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PressureCtrl</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>Turns the control of the column gas pressure on or off.</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.Nominal</td>
<td>0.03</td>
<td>10.00</td>
<td>N/A</td>
<td>Nominal pressure in the column [bar].</td>
</tr>
<tr>
<td>.Value</td>
<td>0.03r</td>
<td>10.00</td>
<td>N/A</td>
<td>Actual pressure in the column [bar] (read-only).</td>
</tr>
<tr>
<td>FlowCtrl</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>Turns the column flow control on or off.</td>
</tr>
<tr>
<td>Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.Nominal</td>
<td>0.0</td>
<td>50.0 (Trace)</td>
<td>N/A</td>
<td>Nominal flow in the column [ml/min].</td>
</tr>
<tr>
<td>.Value</td>
<td>0.0</td>
<td>50.0 (Trace)</td>
<td>N/A</td>
<td>Actual flow in the column [ml/min].</td>
</tr>
</tbody>
</table>
The Administrator Help section provides more information about the Trace and Focus GCs. Refer to Hardware Installation:

Thermo Finnigan/TQ/TSP Trace GC: Overview and Thermo Finnigan/TQ/TSP Trace GC: Installation.

Thermo Finnigan/TQ/TSP Focus GC: Overview and Thermo Finnigan/TQ/TSP Focus GC: Installation.

Thermo Finnigan/TQ/TSP Trace GC: Application

General
The Thermo Finnigan Trace GC uses a packet-oriented, binary data format to communicate with the PC via the RS-232 interface. When the GC is connected in Chromeleon, Chromeleon enables remote mode for the GC and locks the GC keypad. When Chromeleon terminates the connection to the GC, the GC switches back to local mode after 30 seconds.

The GC will not start communication by itself; it will only respond to commands and requests sent by Chromeleon.

Sampler
Using the AS2000 autosampler with the GC: If a sample vial is missing at the position specified in the sequence, the autosampler treats this as a Blank Run Sample (refer to the AS2000 manual, page 118). However, the sequence will not be stopped.

If the GC is waiting for an inject response from the autosampler and suddenly becomes Not Ready due to gas supply or flow problems, an error message appears and the sequence is stopped.
Thermo Finnigan/TQ/TSP Trace GC: Setting the Temperature

Entering a Temperature Gradient

To enter a temperature gradient, use a Program.

For the Thermo Finnigan Trace GC, a temperature profile can be entered with a maximum of six ascents or descents. The maximum temperature change (ascent) is up to 120°C per minute (1200°C/min for the Trace UltraFast), depending on the oven type.

Gradients are entered in the Program Wizard in the typical format for GC applications. (The starting and end temperatures are entered, as well as the modification rate.) In the program, however, the so-called "base point philosophy" is used (similar to entering a flow or percent gradient in HPLC). Each temperature command is the base point of the gradient program. The wizard automatically converts the entered rates into the base point representation.

An Inject command is indispensable. No gradient is executed before the Inject command. Thus, temperature gradients can only begin after the Inject command.

Temperature Setting

Reaching the nominal temperature on the instrument can take some time. Please note that the oven heats faster than the injector and the detector system. As soon as all temperatures and the specified pressure and flow parameter are reached, the GC sends a Ready signal. An injection from the autosampler is possible only after this signal.

Example:

The following program waits until the nominal temperature (150°C) is reached before the Inject command is executed:

```
0.000  GC.Temperature = 150
    Wait  GC.Ready
    Inject
    .......  ............
```
Tip:

After the instrument has received the method parameters from Chromeleon, it implements the desired value as quickly as possible. When the value is "almost" reached, the **Equilibration Time** passes until the instrument sends the confirmation message to Chromeleon. You can specify the duration of this time interval, using the **Equilibration Time** parameter in Chromeleon.

Thermo Finnigan/TQ/TSP: AS3000 and AI3000 Autosampler Commands

Chromeleon supports the following special commands and parameters for these autosamplers (please note that the display ➔ **Filter** level determines which commands and properties are displayed). Also, refer to the information in the manual supplied with the instrument.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td>Cleans the syringe using the previously defined parameters (see below).</td>
</tr>
<tr>
<td>Inject</td>
<td>Injects the sample using the previously defined parameters (see below).</td>
</tr>
<tr>
<td>Recalibrate</td>
<td>Performs the start procedure again, allowing the autosampler to recalibrate the internal positions, such as injector, wash vials, tray. This command is required when a new tray was installed.</td>
</tr>
<tr>
<td>StopInject</td>
<td>Aborts a running injection.</td>
</tr>
</tbody>
</table>

Use the following parameters to specify the **Inject** command in detail. Define all injection parameters before initiating the **Inject** command. Otherwise, they will not take effect!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AirVolume</td>
<td>Select this parameter to specify the volume of air (0.0 - 3.0 µl) drawn after pulling the syringe needle out of the vial. This reduces evaporation from the syringe needle. The total of AirVolume plus Volume must not exceed the syringe volume.</td>
</tr>
<tr>
<td>DrawSpeed</td>
<td>Select this parameter to determine how fast the sample is drawn (slow or fast).</td>
</tr>
<tr>
<td>FillStrokes</td>
<td>Select this parameter to determine how often the syringe plunger is moved up and down before the sample is actually drawn up (0...15). This eliminates bubbles and thus, enhances reproducibility.</td>
</tr>
<tr>
<td>InjectWaitTime</td>
<td>Set the time between the injection command and the response from the autosampler (0 - 10.000.000 s)</td>
</tr>
</tbody>
</table>
1046 Commands and Tips for Third-Party Devices

Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PostInjDelayTime</td>
<td>Select this parameter to determine how long the syringe remains in the injector after the injection (0 - 63 s).</td>
</tr>
<tr>
<td>PostWash</td>
<td>Select this parameter to set the number of post-injection cleaning cycles (0 - 15).</td>
</tr>
<tr>
<td>PostWashVial</td>
<td>Specify which vial(s) is(are) used for washing the syringe after the injection with the solvent(s): A, B, C, D, A+B, C+D.</td>
</tr>
<tr>
<td>PreInjDelayTime</td>
<td>Select this parameter to determine the delay the syringe remains in the injector before the injection (0 - 63 s).</td>
</tr>
<tr>
<td>PreWash</td>
<td>Select this parameter to set the number of pre-injection cleaning cycles (0 - 15).</td>
</tr>
<tr>
<td>PreWashVial</td>
<td>Specify which vial(s) is(are) used for washing the syringe before the injection with the solvents: A, B, C, D, A+B, C+D.</td>
</tr>
<tr>
<td>SampleDepth</td>
<td>Specify how deep the needle descends into the vial when drawing the sample for injection (bottom or half).</td>
</tr>
<tr>
<td>SampleWash</td>
<td>Select this parameter to determine the number of cleaning cycles with sample before injection (0...15).</td>
</tr>
<tr>
<td>State</td>
<td>Indicates the status of the autosampler (read-only): On = the injection has been performed Off = the injection has not yet been performed</td>
</tr>
</tbody>
</table>

For more information, refer to [Hardware Installation Thermo Finnigan/TQ/TSP AS3000 and AI3000 GC Autosamplers](#) in the Administrator Help section.

Thermo Finnigan/TQ/TSP AS3500/AS3000 Autosamplers: Sample Preparation

Follow these guidelines to ensure successful sample preparation with an AS3500 or AS3000 Autosampler:

- Place extra vials in the three positions after the sample vial position (FirstVial+1, FirstVial+2, and FirstVial+3).
- When you create the Program, make sure the sample prep steps are in the correct order and that all required steps are present. The AS3500/AS3000 Basic Template example program (see below) lists the sample prep steps in the order they should be run and identifies the required steps.
- Make sure that each dilution cycle includes all of the required steps.
• Specify the desired final volume in the Add step.
• To skip any step (except the Add step), set its volume to 0.
• To perform an operation on the target vial (but not make a delivery to it), set the Add step's volume to 0. This is useful, for example, when you want to mix or heat the contents of a vial.
• Make sure the volume specified in the Add step in a given dilution cycle is less than or equal to the sum of the PickUpLg and the Load volumes.
• Remember that the autosampler only injects from the FirstVial, which is specified in the Pos. column of the sequence.

Example AS3500/AS3000 Sample Preparation Programs

1. AS3500/AS3000 Basic Template

; Basic Template for sample preparation
; Injection will be made from FirstVial
; Optionally specify Reagent positions
ReagentA = A35
ReagentB = B35
ReagentC = C35

; Required to tell autosampler prep is starting. Must be first command!
PrepStart ; required

; Prep steps defined. Up to 4 sets. Must be done in this exact order!
PrepLoad Volume=0.0, Reservoir=Solvent_1;optional
PrepPickUp1 Volume=0.0, Reservoir=FirstVial+1;optional
PrepPickUp2 Volume=0.0, Reservoir=FirstVial+2;optional
PrepPickUpLg Volume=0.0, Reservoir=FirstVial+3;optional
PrepAdd Volume=0.0, Reservoir=FirstVial;required
PrepMix PreHeatMix=0.00, Heat=0.00, PostHeatMix=0.00 ;optional
PrepWait Time = 0.00 ;optional
PrepRemove Volume=0.0, SampleHeight=2.0;optional
PrepRetvial ; required
PrepMovearm ; required
PrepFlush ; required
PrepFlushBtl ; required
;Repeat previous commands for additional 3 cycles
;...
; required end of prep steps. Must be last commands!
PrepFlushP Volume=0.0, Solvent=Solvent_1 ;optional
PrepEnd ; required

0.000 Inject ; Required for sample prep to execute.
End

2. AS3500/AS3000 Dilution Template

; Template is a dilution program that you can use to perform a 1:5 dilution
; Injection will be made from FirstVial

; Required to tell sampler prep is starting Must be first command!
PrepStart ; required

; Prep steps defined. Up to 4 sets. Must be done in this exact order!
PrepLoad Volume=500.0, Reservoir=Solvent_1;optional
PrepPickUp1 Volume=100.0, Reservoir=FirstVial1+1 ;optional
PrepPickUp2 Volume=0.0, Reservoir=FirstVial1+1;optional
PrepPickUpLg Volume=0.0, Reservoir=FirstVial1+1;optional
PrepAdd Volume=500, Reservoir=FirstVial;required
PrepMix PreHeatMix=0.50, Heat=0.00, PostHeatMix=0.00 ;optional
PrepWait Time = 0.00 ;optional
PrepRemove Volume=0.0, SampleHeight=0.0;optional
PrepRetvial ; required
PrepMovearm ; required
PrepFlush ; required
PrepFlushBtl ; required

; required end of prep steps. Must be last commands!
PrepFlushP Volume=0.0, Solvent=Solvent_1 ;optional
PrepEnd ; required

0.000 Inject ; Required for sample prep to execute.
End
3. AS3500/AS3000 DABS-CL Template

; Template heats your samples to a given temperature
; Injection will be made from FirstVial

; Turn on heater and set to desired temperature for mix/heat step
Heater = On
HeaterTemperature = 65

; Optionally specify Reagent positions
ReagentA = A35
ReagentB = B35
ReagentC = C35

; Required to tell autosampler prep is starting. Must be first command!
PrepStart ; required

; Prep steps defined. Up to 4 sets. Must be done in this exact order!
; Cycle 1
PrepLoad Volume=200.0, Reservoir=Solvent_1 ;optional
PrepPickUp1 Volume=100.0, Reservoir=ReagentA ;optional
PrepPickUp2 Volume=40.0, Reservoir=ReagentB ;optional
PrepPickUpLg Volume=0.0, Reservoir=ReagentC ;optional
PrepAdd Volume=140, Reservoir=FirstVial ;required
PrepMix PreHeatMix=0.30, Heat=4.50, PostHeatMix=0.30 ;optional
PrepWait Time = 0.00 ;optional
PrepRetvial ; required
PrepMoveArm ; required
PrepFlush ; required
PrepFlushBtl ; required
; Cycle 2
PrepLoad Volume=1000.0, Reservoir=Solvent_1 ;optional
PrepPickUp1 Volume=0.0, Reservoir=ReagentA ;optional
PrepPickUp2 Volume=0.0, Reservoir=ReagentB ;optional
PrepPickUpLg Volume=0.0, Reservoir=ReagentC ;optional
PrepAdd Volume=860, Reservoir=FirstVial+1 ;required
PrepMix PreHeatMix=0.30, Heat=0.00, PostHeatMix=0.00 ;optional
PrepWait Time = 0.00 ;optional
PrepRemove Volume=0.0, SampleHeight=0.0 ;optional
PrepRetvial ; required
PrepMovearm ; required
PrepFlush ; required
PrepFlushBtl ; required

; required end of prep steps. Must be last commands!
PrepFlushP Volume=0.0, Solvent=Solvent_1 ;optional
PrepEnd ; required

0.000 Inject ; Required for sample prep to execute.

End

4. AS3500/AS3000 Rainbow Template

; Prepares four samples
; Injection will be made from FirstVial
; Setup Reagent positions
ReagentA = A35
ReagentB = B35

; Required to tell autosampler prep is starting. Must be first prep command!
PrepStart ; required

; Prep steps defined. Up to 4 sets. Must be done in this exact order!
; Cycle 1
PrepLoad Volume=1000.0, Reservoir=Solvent_1 ;optional
PrepPickUp1 Volume=30.0, Reservoir=Reagent_B;optional
PrepPickUp2 Volume=0.0, Reservoir=Reagent_A;optional
PrepPickUpLg Volume=0.0, Reservoir=FirstVial;optional
PrepAdd Volume=1000.0, Reservoir=FirstVial ;required
PrepMix PreHeatMix=0.50, Heat=0.00, PostHeatMix=0.00 ;optional
PrepWait 0 ;optional
PrepRemove Volume=0.0, SampleHeight=2.0;optional
PrepRetvial ; required
PrepMovearm ; required
PrepFlush ; required
PrepFlushBtl ; required
; Cycle 2
PrepLoad Volume=1000.0, Reservoir=Solvent_1 ;optional
PrepPickUp1 Volume=20.0, Reservoir=Reagent_B;optional
<table>
<thead>
<tr>
<th>Commands and Tips for Third-Party Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepPickUp2 Volume=10.0, Reservoir=Reagent_A;optional</td>
</tr>
<tr>
<td>PrepPickUpLg Volume=0.0, Reservoir=FirstVial;optional</td>
</tr>
<tr>
<td>PrepAdd Volume=1000.0, Reservoir=FirstVial+1;required</td>
</tr>
<tr>
<td>PrepMix PreHeatMix=0.50, Heat=0.00, PostHeatMix=0.00;optional</td>
</tr>
<tr>
<td>PrepWait 0;optional</td>
</tr>
<tr>
<td>PrepRemove Volume=0.0, SampleHeight=2.0;optional</td>
</tr>
<tr>
<td>PrepRetvial ;required</td>
</tr>
<tr>
<td>PrepMovearm ;required</td>
</tr>
<tr>
<td>PrepFlush ;required</td>
</tr>
<tr>
<td>PrepFlushBtl ;required</td>
</tr>
<tr>
<td>;Cycle 3</td>
</tr>
<tr>
<td>PrepLoad Volume=1000.0, Reservoir=Solvent_1;optional</td>
</tr>
<tr>
<td>PrepPickUp1 Volume=10.0, Reservoir=Reagent_B;optional</td>
</tr>
<tr>
<td>PrepPickUp2 Volume=20.0, Reservoir=Reagent_A;optional</td>
</tr>
<tr>
<td>PrepPickUpLg Volume=0.0, Reservoir=FirstVial;optional</td>
</tr>
<tr>
<td>PrepAdd Volume=1000.0, Reservoir=FirstVial+2;required</td>
</tr>
<tr>
<td>PrepMix PreHeatMix=0.50, Heat=0.00, PostHeatMix=0.00;optional</td>
</tr>
<tr>
<td>PrepWait 0;optional</td>
</tr>
<tr>
<td>PrepRemove Volume=0.0, SampleHeight=2.0;optional</td>
</tr>
<tr>
<td>PrepRetvial ;required</td>
</tr>
<tr>
<td>PrepMovearm ;required</td>
</tr>
<tr>
<td>PrepFlush ;required</td>
</tr>
<tr>
<td>PrepFlushBtl ;required</td>
</tr>
<tr>
<td>;Cycle 4</td>
</tr>
<tr>
<td>PrepLoad Volume=1000.0, Reservoir=Solvent_1;optional</td>
</tr>
<tr>
<td>PrepPickUp1 Volume=0.0, Reservoir=Reagent_B;optional</td>
</tr>
<tr>
<td>PrepPickUp2 Volume=30.0, Reservoir=Reagent_A;optional</td>
</tr>
<tr>
<td>PrepPickUpLg Volume=0.0, Reservoir=FirstVial;optional</td>
</tr>
<tr>
<td>PrepAdd Volume=1000.0, Reservoir=FirstVial+3;required</td>
</tr>
<tr>
<td>PrepMix PreHeatMix=0.50, Heat=0.00, PostHeatMix=0.00;optional</td>
</tr>
<tr>
<td>PrepWait 0;optional</td>
</tr>
<tr>
<td>PrepRemove Volume=0.0, SampleHeight=2.0;optional</td>
</tr>
<tr>
<td>PrepRetvial ;required</td>
</tr>
<tr>
<td>PrepMovearm ;required</td>
</tr>
<tr>
<td>PrepFlush ;required</td>
</tr>
<tr>
<td>PrepFlushBtl ;required</td>
</tr>
</tbody>
</table>
5. AS3500/AS3000 Linear Template

; Template allows you to do linear dilutions
; Injection will be made from FirstVial

; Required to tell autosampler prep is starting. Must be first prep command!
PrepStart ; required

; Prep steps defined. Up to 4 sets. Must be done in this exact order!
; Cycle 1
PrepLoad Volume=1000.0, Reservoir=Solvent_1;optional
PrepPickUp1 Volume=100.0, Reservoir=FirstVial+3 ;optional
PrepPickUp2 Volume=0.0, Reservoir=FirstVial ;optional
PrepPickUpLg Volume=0.0, Reservoir=FirstVial ;optional
PrepAdd Volume=1000.0, Reservoir=FirstVial+2 ;required
PrepMix PreHeatMix=0.30, Heat=0.00, PostHeatMix=0.00 ;optional
PrepWait 0 ;optional
PrepRemove Volume=0.0, SampleHeight=2.0;optional
PrepRetvial ; required
PrepMovearm ; required
PrepFlush ; required
PrepFlushBtl ; required
; Cycle 2
PrepLoad Volume=1000.0, Reservoir=Solvent_1 ;optional
PrepPickUp1 Volume=50.0, Reservoir=FirstVial+3;optional
PrepPickUp2 Volume=0.0, Reservoir=FirstVial;optional
PrepPickUpLg Volume=0.0, Reservoir=FirstVial;optional
PrepAdd Volume=1000.0, Reservoir=FirstVial+1 ;required
PrepMix PreHeatMix=0.30, Heat=0.00, PostHeatMix=0.00 ;optional
PrepWait 0 ;optional
PrepRemove Volume=0.0, SampleHeight=2.0 ;optional
PrepRetvial ; required
PrepMovearm ; required
PrepFlush ; required
PrepFlushBtl ; required
; Cycle 3
PrepLoad Volume=1000.0, Reservoir=Solvent_1 ;optional
PrepPickUp1 Volume=5.0, Reservoir=FirstVial+3;optional
PrepPickUp2 Volume=0.0, Reservoir=FirstVial;optional
PrepPickUpLg Volume=0.0, Reservoir=FirstVial;optional
PrepAdd Volume=1000.0, Reservoir=FirstVial ;required
PrepMix PreHeatMix=0.30, Heat=0.00, PostHeatMix=0.00 ;optional
PrepWait 0 ;optional
PrepRemove Volume=0.0, SampleHeight=2.0 ;optional
PrepRetvial ; required
PrepMovearm ; required
PrepFlush ; required
PrepFlushBtl ; required
; required end of prep steps. Must be last of the prep commands!
PrepFlushP Volume=0.0, Solvent=Solvent_1 ;optional
PrepEnd ; required

0.000 Inject ; Required for sample prep to execute.

End
Thermo Finnigan/TQ/TSP UV1000 Detector

The following commands and properties are available (please note that the display ³Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AvailableLamps</td>
<td>None</td>
<td>UV & VIS</td>
<td>UV-lamp only</td>
<td>Indicates which lamps are available (read-only).</td>
</tr>
<tr>
<td>Range</td>
<td>0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0</td>
<td>1.0000</td>
<td>Amplifying factor in [AUFS] for the output signal.</td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>0.0</td>
<td>5.0</td>
<td>1.0</td>
<td>Time constant. Indicates the time needed by the detector to reach 98% of full-scale.</td>
</tr>
<tr>
<td>Wavelength</td>
<td>190 nm</td>
<td>800 nm</td>
<td>254 nm</td>
<td>Wavelength at which the detector measures the signal:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UV lamp: 190 - 380 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VIS lamp: 366 - 800 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Both lamps: 190 - 800 nm</td>
</tr>
<tr>
<td>ZeroOnLambdaChange</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Determines whether the detector ³Autozeros every time the wavelength is changed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV_LampOn</td>
<td>Turns the deuterium lamp on.</td>
</tr>
<tr>
<td>UV_LampOff</td>
<td>Turns the deuterium lamp off.</td>
</tr>
<tr>
<td>Visible_LampOn</td>
<td>Turns the tungsten lamp on.</td>
</tr>
<tr>
<td>Visible_LampOff</td>
<td>Turns the tungsten lamp off.</td>
</tr>
</tbody>
</table>

Tip:

After a ³Reset command, it takes 90 seconds until the detector is ready to execute further commands.
Thermo Finnigan/TQ/TSP UV2000 Detector

The following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>0.0</td>
<td>5.0</td>
<td>1.0</td>
<td>Time constant. Indicates the time needed by the detector to reach 98% of full-scale.</td>
</tr>
</tbody>
</table>

Vendor-Specific Commands and Properties

Common to both channels

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0.0005 AUFS</td>
<td>3.0000 AUFS</td>
<td>1.0000 AUFS</td>
<td>Amplifier gain for the output signal</td>
</tr>
<tr>
<td>Wavelength</td>
<td>190 nm</td>
<td>800 nm</td>
<td>254 nm</td>
<td>Wavelength at which the detector measures the signal. Legal range: see DetectionMode.</td>
</tr>
</tbody>
</table>
Thermo Finnigan/TQ/TSP UV3000 Detector

The following commands and properties are available (please note that the display >Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcquisitionMode</td>
<td>Single Wavelength</td>
<td>Multi Wavelength</td>
<td>N/A</td>
<td>Changes the data acquisition mode.</td>
</tr>
<tr>
<td>Connected</td>
<td>Disconnected</td>
<td>Connected</td>
<td>N/A</td>
<td>Indicates whether the detector is connected.</td>
</tr>
<tr>
<td>UV_Lamp</td>
<td>Off</td>
<td>On</td>
<td>N/A</td>
<td>Turns the deuterium lamp on or off ($\lambda = 190 - 365$ nm)</td>
</tr>
<tr>
<td>UV_Lamp_Intensity</td>
<td>Intensity_low</td>
<td>Intensity_OK</td>
<td>N/A</td>
<td>Indicates whether the deuterium lamp intensity is too low or OK (read-only)</td>
</tr>
<tr>
<td>Visible_Lamp</td>
<td>Off</td>
<td>On</td>
<td>N/A</td>
<td>Turns the tungsten lamp on or off ($\lambda = 366 - 800$ nm)</td>
</tr>
<tr>
<td>Visible_Lamp_Intensity</td>
<td>Intensity_low</td>
<td>Intensity_OK</td>
<td>N/A</td>
<td>Indicates whether the tungsten lamp intensity is too low or OK (read-only)</td>
</tr>
</tbody>
</table>

Channel-specific Commands and Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>0.0</td>
<td>9.9</td>
<td>1.0</td>
<td>Time constant. Indicates the time needed by the detector to reach 98% of full-scale.</td>
</tr>
<tr>
<td>$\Rightarrow Wavelength$</td>
<td>190 nm</td>
<td>800 nm</td>
<td>254 nm</td>
<td>Wavelength at which the detector measures the signal.</td>
</tr>
</tbody>
</table>

All other channel properties and commands correspond to the standard detector commands (refer to Practical Tips for Device Control Detector Commands).

Notes:

The Range property provided by the TSP UV3000 (analog data acquisition) driver is not required for digital data acquisition; thus, it is not available with the TSP UV3000 (digital data acquisition) driver.
Due to extensive communication during the Connect procedure, it may take up to 1 min until the instrument is finally connected. The corresponding message is logged in the Audit Trail.

Tip:
The device driver does not support the Scan mode of the detector. Therefore, it is not possible to acquire single spectra.

Thermo Finnigan/TQ/TSP: Troubleshooting

Why can't you start the data acquisition?

Is an AS3500 or an AS3000 autosampler installed for which Inj Hold Active has been set to HI? Set this option to LO; otherwise, data acquisition cannot start.

Why does the batch abort?

a) The batch aborts due to a communication timeout.

b) A TSP device is not ready for communication.

In both cases, the reason may be that TSP devices communicate via the Start and/or Stop input. Make sure that no cables are connected to these inputs or remove them if necessary.

AS350 and AS300:

Why can it take some time until the program is started?

Chromeleon needs to Wait for the Equilibration Time or Wait for Temperature that is set on the instrument until the autosampler can inject. Reduce the Equilibration Time if your system needs less time to equilibrate or disable the Wait for Temperature option. For more information, refer to the device manual.

Only UV3000:

Why doesn't the UV detector respond?

Due to the extensive communication during connecting the device (following the Connect command), it may take up to 1 min until the device finally responds. The respective message is logged in the Audit Trail.
UV2000, UV1000, P2000, P4000, AS3500, and AS3000:

How to cure a communication error?

The Communication error while sending may occur periodically in the Audit Trail. In this case, reduce the input buffer of the COM port to Low:

Under Windows 2000 (or correspondingly under another Windows system), open the Device Manager via Settings > Control Panel > System > Hardware. Double-click the respective COM port and open the Advanced Settings dialog box by clicking Advanced on the Settings tab page. Reduce the input buffer as far as possible and confirm the input by clicking OK. Disconnect and reconnect the device in Chromeleon.

Only UV1000:

Why is a command not executed?

Have 90 s passed since the last reset? Otherwise, the command cannot be executed because the detector is not yet ready.
Thermo Finnigan/TQ/TSP UV6000 PDA Detector

The following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data_Collection_Rate</td>
<td>0.5 Hz</td>
<td>20.0 Hz</td>
<td>1.0 Hz</td>
<td>Indicates the data collection rate for the channels.</td>
</tr>
<tr>
<td>(For more information, refer</td>
<td></td>
<td></td>
<td></td>
<td>to Data Collection Rate in the Glossary section.)</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>Text</td>
<td></td>
<td></td>
<td>Indicates the module’s firmware version (read-only)</td>
</tr>
<tr>
<td>Read from the device on connect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise_Time</td>
<td>0.0 s</td>
<td>10.0 s</td>
<td>2.0 s</td>
<td>Indicates the response time after a signal has been changed.</td>
</tr>
<tr>
<td>XY_Lamp</td>
<td>Off</td>
<td>On</td>
<td>N/A</td>
<td>Turns the tungsten/deuterium lamp on and off.</td>
</tr>
<tr>
<td>XY_LampAge</td>
<td>0 h</td>
<td>9999 h</td>
<td>Periodically read from the device.</td>
<td></td>
</tr>
<tr>
<td>XY_LampReplacedAt</td>
<td>Date</td>
<td></td>
<td>Date string (periodically read from the device)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>string</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tip: When the Data Collection Rate command is executed, the default ⇒ Step value is set to the reciprocal value. Thus, you must issue the Step command after the Data Collection Rate command, if you need a different step.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒ Autozero</td>
<td>Sets the detector signal to 0.</td>
</tr>
<tr>
<td>⇒ Connect</td>
<td>Connects the PDA detector to Chromeleon.</td>
</tr>
<tr>
<td>Disconnect</td>
<td>Disconnects the PDA detector from Chromeleon.</td>
</tr>
<tr>
<td>⇒ Reset</td>
<td>Resets the PDA detector to the defaults.</td>
</tr>
<tr>
<td>XY_LampReset</td>
<td>Resets the XY_LampReplacedAt counter to now.</td>
</tr>
</tbody>
</table>
Commands and Properties of UV Channels

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Allows signal averaging.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1 nm</td>
<td>121 nm</td>
<td>1 nm</td>
<td>(Odd values only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Read from the device on connect.</td>
</tr>
<tr>
<td>MaxAutoStep</td>
<td>0.01 s</td>
<td>5.10 s</td>
<td>5.10 s</td>
<td>Indicates the maximum step for Step = Auto</td>
</tr>
<tr>
<td>Step</td>
<td>Auto</td>
<td>5.10 s</td>
<td>Auto</td>
<td>Indicates the time interval between data points.</td>
</tr>
<tr>
<td>Wavelength</td>
<td>190 nm</td>
<td>800 nm</td>
<td>254 nm</td>
<td>Indicates the wavelength at which the detector measures the signal.</td>
</tr>
</tbody>
</table>

Tip:

After a **Reset** command, it takes 90 s until the detector is ready to execute another command.

Commands and Properties of the 3D Field

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>1 nm</td>
<td>121 nm</td>
<td>1 nm</td>
<td>Indicates the bandwidth for all wavelengths in the spectrum² (odd values only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Read from the device on connect.)</td>
</tr>
<tr>
<td>BunchWidth</td>
<td>1 nm</td>
<td>2 nm</td>
<td>4 nm</td>
<td>Indicates the distance between the wavelengths in the spectrum².</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 nm</td>
<td>10 nm</td>
<td>(Read from the device on connect.)</td>
</tr>
<tr>
<td>MaxWavelength</td>
<td>190 nm</td>
<td>800 nm</td>
<td>800 nm</td>
<td>Indicates the upper limit of the measuring range.</td>
</tr>
<tr>
<td>MinWavelength</td>
<td>190 nm</td>
<td>800 nm</td>
<td>190 nm</td>
<td>Indicates the lower limit of the measuring range.</td>
</tr>
<tr>
<td>Step</td>
<td>0.05 s</td>
<td>0.10 s</td>
<td>0.20 s</td>
<td>Indicates the time interval between recorded spectra.</td>
</tr>
<tr>
<td></td>
<td>0.25 s</td>
<td>0.50 s</td>
<td>1.00 s</td>
<td>(Read from the device on connect.)</td>
</tr>
<tr>
<td></td>
<td>2.00 s</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tip:

For example, to scan the wavelengths between 400 nm and 500 nm with a BunchWidth of 10 nm, you can select the following bandwidths, e.g., 11 nm or 5 nm.

a) 11 nm

Select a bandwidth of 11 nm to scan the following wavelength ranges:

b) 5 nm

Select a bandwidth of 5 nm to scan the following wavelength ranges:

In this case, the wavelength ranges 403-407, 413-417, 423-427 nm etc. are not scanned.

Thermo Finnigan/TQ/TSP UV6000 Detector:
Troubleshooting

How can you turn on the lamps?

The PDA detector does not automatically turn on the lamps at power-up. To turn on the lamps, connect the PDA detector to Chromeleon, and issue the corresponding commands.

Why can't you reconnect the PDA detector?

It is not always possible to reconnect the PDA detector after a breakdown in communication. In this case, turn the detector off and on before reconnecting.

Why can't you start the data acquisition?

Is an AS3500 or an AS3000 autosampler installed for which Inj Hold Active has been set to HI? Set this option to LO; otherwise, data acquisition cannot start.
Why does the batch abort?

a) The batch aborts due to a communication timeout.

b) A TSP device is not ready for communication.

In both cases, the reason may be that TSP devices communicate via the Start and/or Stop input. Make sure that no cables are connected to these inputs or remove them if necessary.

Thermo Finnigan/TQ/TSP: FL2000 and FL3000 Fluorescence Detectors

The following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnOut_1_Offset,</td>
<td>-50; -20; -10; -5; -2;</td>
<td>-1; 0; 1; 2; 5; 10; 20;</td>
<td>Offset on the analog output. (This value is added to the associated measured value.)</td>
</tr>
<tr>
<td>AnOut_2_Offset</td>
<td></td>
<td>50 %FS</td>
<td></td>
</tr>
<tr>
<td>AnOut_1_Range,</td>
<td>500; 200; 100; 50;</td>
<td>20; 10; 5; 2; 1; 0,5;</td>
<td>Output range for the analog output</td>
</tr>
<tr>
<td>AnOut_2_Range</td>
<td></td>
<td>0; 0,2; 0,1; 0,05; 0,02;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,01 FUFS</td>
<td></td>
</tr>
<tr>
<td>DetectionMode</td>
<td>Fluorescence,</td>
<td></td>
<td>Operating mode of the detector.</td>
</tr>
<tr>
<td></td>
<td>Phosphorescence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamp</td>
<td>Off</td>
<td>On</td>
<td>Turns the lamp or or off. (Note: It is not possible to turn the lamp off during data acquisition. Also, it is not possible to start data acquisition if the lamp is off.)</td>
</tr>
<tr>
<td>LampFlashRate</td>
<td>20 Hz</td>
<td>100 Hz</td>
<td>Pulse rate of the xenon lamp (20 Hz prolongs the lamp's life cycle; 100 Hz increases the sensitivity for the measurements)</td>
</tr>
<tr>
<td>NumberOfScans*</td>
<td>2 - 32 (in 2 nm increments)</td>
<td></td>
<td>This property is available only for the FL3000. It specifies how often the monochromator shall repeat each scan for averaging.</td>
</tr>
<tr>
<td>PmtVoltage</td>
<td>0, 500, 600, 700, 800, 900, 1000 V</td>
<td></td>
<td>Specifies the voltage applied to the photomultiplier tube (PMT). (The PMT's sensitivity increases proportional to the applied voltage. However, higher voltages shorten the PMT's life cycle.)</td>
</tr>
<tr>
<td>Property</td>
<td>Min</td>
<td>Max</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ScanEndEmWavelength*</td>
<td>200 - 650 nm</td>
<td>(or 800 nm;</td>
<td>This property is available only for the FL3000. Emission wavelength at the end of the scan. (ignored for ScanMode = Excitation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in 2 nm increments)</td>
<td></td>
</tr>
<tr>
<td>ScanEndExWavelength*</td>
<td>200 - 650 nm</td>
<td>(in 2 nm increments)</td>
<td>This property is available only for the FL3000. Excitation wavelength at the end of the scan (ignored for ScanMode = Emission)</td>
</tr>
<tr>
<td>ScanMode</td>
<td>Excit.</td>
<td>Emission</td>
<td>This property is available only for the FL3000. Scan mode:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Excitation: The emission wavelength is constant; the excitation monochromator scans the wavelengths.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Emission: The excitation wavelength is constant; the emission monochromator scans the wavelengths.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delta: Both monochromators perform the scans simultaneously; the difference between the wavelengths is constant.</td>
</tr>
<tr>
<td>ScanStartEmWavelength*</td>
<td>200 - 650 nm</td>
<td>(or 800 nm;</td>
<td>This property is available only for the FL3000. Emission wavelength at the beginning of the scan (ignored for ScanMode = Excitation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in 2 nm increments)</td>
<td></td>
</tr>
<tr>
<td>ScanStartExWavelength*</td>
<td>200 - 650 nm</td>
<td>(in 2 nm increments)</td>
<td>This property is available only for the FL3000. Excitation wavelength at the beginning of the scan (ignored for ScanMode = Emission)</td>
</tr>
<tr>
<td>ScanStepSize</td>
<td>2, 4, 8, 16 nm</td>
<td></td>
<td>This property is available only for the FL3000. Specifies the step for the wavelength scan.</td>
</tr>
</tbody>
</table>
Tip:

If the value for NumberOfScans and/or for the area to be scanned, specified by either ScanStartEmWavelength and ScanEndEmWavelength or ScanStartExWavelength and ScanEndExWavelength, is too large, it may happen that the sample is interrupted and the batch is stopped. (The reason is that the firmware does not respond.) In this case, turn the instrument off and on again.

Command	**Description**
Scan | This property, which is available only for the FL3000, starts the scan for the emission and/or excitation wavelength. Scanning is possible only during the run of a PGM File. During the run of a PGM File, manual scanning is possible only if the detector provides enough storage capacity. A scan can start only after the previous baseline scan is finished (see ScanAutozero).

Tip:
The chromatogram is disturbed during the scan.

ScanAutozero | This property, which is available only for the FL3000, starts the baseline scan for the emission and/or excitation wavelength. A baseline scan can start only after the previous baseline scan is finished.

Data acquisition channel

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutozeroOnWlChange</td>
<td>Off, On</td>
<td></td>
<td>If the setting is On, autozeroing is performed each time the wavelength (see EmWavelength and ExWavelength) is entered. Tip: Autoszeroing is performed each time the wavelength is changed, even if the new value is the same as the previous one.</td>
</tr>
<tr>
<td>EmWavelength</td>
<td>200 - 650 nm (or 800 nm; in 2 nm increments)</td>
<td>Emission wavelength</td>
<td></td>
</tr>
<tr>
<td>ExWavelength</td>
<td>200 - 650 nm (in 2 nm increments)</td>
<td>Excitation wavelength</td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 s</td>
<td>Specifies the response time for the detector (see Response).</td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>Min</td>
<td>Max</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Signal.UpperLimit</td>
<td>-1000</td>
<td>1000 FU</td>
<td>Upper and lower signal limit.</td>
</tr>
<tr>
<td>Signal.LowerLimit</td>
<td></td>
<td></td>
<td>Tip: If the actual value is above the upper limit or if it is below the lower limit, Chromeleon aborts the batch and starts emergency handling.</td>
</tr>
<tr>
<td>Signal.Value</td>
<td>-1000</td>
<td>1000 FU</td>
<td>Indicates the current signal value.</td>
</tr>
</tbody>
</table>

Tip:

After a **Reset** command, it takes 90 s until the detector is ready to execute another command.

Also, refer to [Thermo Finnigan/TQ/TSP: FL2000 and FL3000 Fluorescence Detectors: Different Names in Firmware and Chromeleon](#)
Thermo Finnigan/TQ/TSP: FL2000 and FL3000
Fluorescence Detectors: Different Names in Firmware and Chromeleon

For consistency reasons, the names of some Chromeleon properties and commands are different from the names used in the instrument's firmware:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Chromeleon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamp Status:</td>
<td>Lamp:</td>
<td>The instrument provides two additional lamp modes:</td>
</tr>
<tr>
<td>On, Off, Run, Off@End</td>
<td>On, Off</td>
<td>Run (The lamp is turned on at the beginning of the sample run; it is turned off at the end of the run.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off@End (The lamp is turned off at the end of the sequence.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The device driver does not support these modes because you can control the lamp by the corresponding commands in the PGM File.</td>
</tr>
<tr>
<td>Scan</td>
<td>Scan</td>
<td>This command corresponds to 'Scan' entry on the instrument's COMMANDS menu (manual scanning).</td>
</tr>
<tr>
<td>Scan Zero</td>
<td>ScanAutozero</td>
<td>The Chromeleon command corresponds to the 'Scan Zero' command on the instrument's COMMANDS menu (manual baseline scanning).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The first ScanAutozero command that is included in the PGM File at a non-negative time is not executed immediately. The time is downloaded to the instrument as Autozero Time parameter. The instrument performs the Autozero command at this time.</td>
</tr>
<tr>
<td>Autozero Time</td>
<td>Support via the ScanAutozero command (see above)</td>
<td>Chromeleon sets this parameter always to Off because Chromeleon can perform automatic scanning more reliably by using Trigger Commands.</td>
</tr>
<tr>
<td>Auto Spectra:</td>
<td>AutozeroOnWIChange</td>
<td>Chromeluminescence. Use one of the two modes and turn off the lamp.</td>
</tr>
</tbody>
</table>

Fluor | Fluorescence |
Phos | Phosphorescence |
Tip:

After a Reset command, it takes 90 s until the detector is ready to execute another command.

Also, refer to Thermo Finnigan/TQ/TSP: FL2000 and FL3000 Fluorescence Detectors

Thermo Finnigan/TQ/TSP: FL2000 and FL3000
Detectors: Troubleshooting

Why does the batch and the sample abort and the detector does not respond?

If the value for NumberOfScans and/or for the area to be scanned, specified by either ScanStartEmWavelength and ScanEndEmWavelength or ScanStartExWavelength and ScanEndExWavelength, is too large, it may happen that the sample is interrupted and the batch is stopped. (The reason is that the firmware does not respond.) Turn the instrument off and on again.

Why does the batch abort?

a) The batch aborts due to a communication timeout.

b) A TSP device is not ready for communication.

In both cases, the reason may be that TSP devices communicate via the Start and/or Stop input. Make sure that no cables are connected to these inputs or remove them if necessary.

Why doesn't the fluorescence detector respond?

Due to the extensive communication during connecting the device (following the Connect command), it may take up to 1 min until the device finally responds. The respective message is logged in the Audit Trail.
Valco Valves: Commands and Tips

The Two-Position Valve has two valve positions (A and B). The Multi-Position Valve has up to 16 valve positions (1, 2, 3, ...16). The valve is switched to position A (Two-Position Valve) or position 1 (Multi-Position Valve) when connecting to Chromelone.

Valve Commands and Properties

In addition to the standard commands, the following commands and properties are available (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>Clockwise or Counterclockwise</td>
<td>Direction in which the valve is switched.</td>
</tr>
<tr>
<td></td>
<td>(Available only for the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-Position Valve.)</td>
<td></td>
</tr>
<tr>
<td>FirmwareDate</td>
<td></td>
<td>Firmware date (read-only).</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td></td>
<td>Firmware version (read-only).</td>
</tr>
<tr>
<td>FlipDelay</td>
<td>0 to 65.000 ms</td>
<td>Delay time for the Flip command.</td>
</tr>
<tr>
<td></td>
<td>(Available only for the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two-Position Valve.)</td>
<td></td>
</tr>
<tr>
<td>MaxPosition</td>
<td>4, 6, 8, 10, 12, 16</td>
<td>Maximum number of positions (read-only).</td>
</tr>
<tr>
<td></td>
<td>(Available only for the</td>
<td>The property is set on the General tab page in</td>
</tr>
<tr>
<td></td>
<td>Multi-Position Valve.)</td>
<td>the Server Configuration program.</td>
</tr>
<tr>
<td>Position</td>
<td>A or B</td>
<td>Current valve position.</td>
</tr>
<tr>
<td></td>
<td>1 through MaxPosition,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>respectively.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flip</td>
<td>Switches the valve to the opposite position, waits for</td>
</tr>
<tr>
<td></td>
<td>the time specified by the FlipDelay property, and then</td>
</tr>
<tr>
<td></td>
<td>returns to the original position.</td>
</tr>
<tr>
<td></td>
<td>(Available only for the Two-Position Valve.)</td>
</tr>
<tr>
<td>Home</td>
<td>Switches the Two-Position Valve to position A.</td>
</tr>
<tr>
<td></td>
<td>Switches the Multi-Position Valve to position 1.</td>
</tr>
<tr>
<td>Reset</td>
<td>Performs a Disconnect command, and then a Connect</td>
</tr>
<tr>
<td></td>
<td>command.</td>
</tr>
<tr>
<td>Toggle</td>
<td>Switches the valve to the other position.</td>
</tr>
<tr>
<td></td>
<td>(Available only for the Two-Position Valve.)</td>
</tr>
</tbody>
</table>

For an overview of the Valco valves, refer to **Hardware Installation Valco Valves** in the Administrator Help section.
Varian: Commands and Tips

For information about the special commands that Chromeleon supports for the different Varian devices and for tips for practical operation, refer to:

Varian 3800 GC:
- General
- Sampler
- Injector
- Column
- Detectors
- Troubleshooting

Varian 3400 and 3600 GCs:
- Varian 3400 and Varian 3600 GCs
- Different Names in Firmware and Chromeleon
- Detectors
- Different Names in Firmware and Chromeleon
- Tips for Operation
- Troubleshooting
Varian 3800 GC: General

In addition to the **General Device Commands**, the Varian 3800 GC supports the following commands and properties (please note that the display ➔ *Filter* level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtmosphericPressure</td>
<td>0.000 - 2.067 bar</td>
<td>Indicates the atmospheric pressure (if cryo cooling is installed) Enables or disables cryo cooling.</td>
</tr>
<tr>
<td>Cryo</td>
<td>Off On</td>
<td>(If cryo cooling is installed) Enables or disables cryo cooling.</td>
</tr>
<tr>
<td>CryoHasTimeout</td>
<td>Yes, No</td>
<td>(If cryo cooling is installed) = Yes if the temperature zone did not reach the target temperature, despite Cryo*.</td>
</tr>
<tr>
<td>CryoTimeout</td>
<td>0.01 - 999.99 min</td>
<td>(If cryo cooling is installed) Time that the GC waits before turning off the cooling if no sample has been injected.</td>
</tr>
<tr>
<td>CryoThreshold</td>
<td>30-450°C</td>
<td>(If cryo cooling is installed) Temperature above which the GC shall use cryo for cooling.</td>
</tr>
<tr>
<td>EndRunTime</td>
<td>0.01 - 999.99 min</td>
<td>Actual run time of the current program*.</td>
</tr>
<tr>
<td>Fault</td>
<td>Fault, OK</td>
<td>Indicates whether a fault occurred in the GC*.</td>
</tr>
<tr>
<td>OvenFault</td>
<td>Fault, OK</td>
<td>Indicates whether a fault occurred in the column oven*.</td>
</tr>
<tr>
<td>OvenPower</td>
<td>On, Off</td>
<td>Indicates whether the column oven is on*.</td>
</tr>
<tr>
<td>OvenReady</td>
<td>Ready, NotReady</td>
<td>Indicates whether the column oven has reached the target temperature and is ready*.</td>
</tr>
<tr>
<td>ProtocolVersion</td>
<td>n/a</td>
<td>Protocol version of the instrument* (must be '7').</td>
</tr>
<tr>
<td>RunState</td>
<td>NotReady, Equilibrating, Stabilizing, Monitoring, Ready, Running</td>
<td>Indicates the status of the GC*.</td>
</tr>
<tr>
<td>RunTime</td>
<td>0.01 - 999.99 min</td>
<td>Indicates the actual retention time during sample processing.</td>
</tr>
<tr>
<td>StabilizationTime</td>
<td>0.00 - 10.00 min</td>
<td>Time that the GC waits after reaching the target temperature*.</td>
</tr>
<tr>
<td>Temperature</td>
<td>-99°C - 450°C</td>
<td>Properties related to the column oven temperature.</td>
</tr>
</tbody>
</table>
Varian 3800 GC: Sampler

In addition to the General Device Commands and the standard autosampler commands (see Dionex Autosamplers), the Varian 3800 GC supports the following commands and properties (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property/Command</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbortWashVial</td>
<td>I, II, III</td>
<td>(Only 8400) Wash vial that is used when the injection was aborted.</td>
</tr>
<tr>
<td>AdvanceTray</td>
<td>Yes, No</td>
<td>Sets whether both injections are performed from the same tray (No) or whether the second injection is performed from the next tray (Yes).²</td>
</tr>
<tr>
<td>AirPlugAfterSample</td>
<td>0.0 - 5.0 µl (5µl syringe)</td>
<td>Volume of the air gap after the sample.³</td>
</tr>
<tr>
<td></td>
<td>0.0 - 10.0 µl (10µl syringe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 - 100 µl (100µl syringe)</td>
<td></td>
</tr>
<tr>
<td>Buzzer</td>
<td>On, Off</td>
<td>(Only 8400) Turns the buzzer on or off at the beginning of the injection cycle.</td>
</tr>
<tr>
<td>CleanBetweenInjections</td>
<td>Yes, No</td>
<td>Sets whether a wash cycle is performed between injections (Yes).</td>
</tr>
</tbody>
</table>

* Note: These properties are read-only.

For an overview of the Varian 3800 GC, refer to Hardware Installation: Installing and Controlling Third-Party Devices Varian 3800 GC: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices Varian 3800 GC: Installation in the Administrator Help section.
Property/Command

<table>
<thead>
<tr>
<th>Property/Command</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depths (or Depth_2)</td>
<td>0 - 100 %</td>
<td>(Only 8400 if the injection port 1 (or 2) is enabled in the configuration) Sets how deep the syringe needle descends into the injector.</td>
</tr>
<tr>
<td>FillStrokes</td>
<td>0 - 99</td>
<td>Number of piston strokes for filling the syringe</td>
</tr>
<tr>
<td>FillVolume</td>
<td>0.0 - 5.0 µl (5µl syringe) 0.0 - 10.0 µl (10µl syringe) 0.0 - 100 µl (100µl syringe)</td>
<td>Volume with which the syringe is to be filled</td>
</tr>
<tr>
<td>FirstInjectorUsed</td>
<td>Position_1, Position_2</td>
<td>Sets which injector is used first for the injection. (If only one injector is installed, the property is read-only.)</td>
</tr>
<tr>
<td>Home</td>
<td>(Only 8400)</td>
<td>Recalibrates the sampler's Home position</td>
</tr>
<tr>
<td>InjectionDelay</td>
<td>0.0 - 10.0 min</td>
<td>Determines how long the sampler waits between injections</td>
</tr>
<tr>
<td>InjectionMode</td>
<td>Split_Splitless, On_Column, Neat, Viscous, Volatile, User_DEFINED</td>
<td>Only if the injection mode is set to User Defined, all sample parameter can be controlled in Chromeleon.</td>
</tr>
<tr>
<td>InjectorPosition</td>
<td>Position_1, Position_2, Both</td>
<td>Sets which injector is used first for the injection. (If only one injector is installed, the property is read-only.)</td>
</tr>
<tr>
<td>InjectWaitTime</td>
<td>0.0 - 10000000.0</td>
<td>Indicates the time between the Inject command in Chromeleon and the response to Chromeleon from the autosampler.</td>
</tr>
<tr>
<td>IntStd_AirGap</td>
<td>On, Off</td>
<td>(Only 8400 for the Viscous, Volatile, and User_DEFINED injection modes) Enables usage of an air gap for the internal standards.</td>
</tr>
<tr>
<td>IntStd_Delay</td>
<td>0.0 - 9.9 s</td>
<td>(Only 8400 for the Viscous, Volatile, and User_DEFINED injection modes) Delay time for the internal standards.</td>
</tr>
<tr>
<td>IntStd_Enable</td>
<td>On, Off</td>
<td>(Only 8400 for the Viscous, Volatile, and User_DEFINED injection modes) Enables usage of an internal standard.</td>
</tr>
</tbody>
</table>

Tip:

Select this command when a mechanical error occurred after the sampler accessed a position.
<table>
<thead>
<tr>
<th>Property/Command</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntStd_Position</td>
<td>I, II, III</td>
<td>Position of the internal standard.</td>
</tr>
<tr>
<td>IntStd_Speed</td>
<td>0.1 - 25.0 µl/s (5µl syringe)</td>
<td>(Only 8400 for the Viscous, Volatile, and User Defined injection modes) Speed with which an internal standard is drawn.</td>
</tr>
<tr>
<td></td>
<td>0.1 - 50.0 µl/s (10µl syringe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 - 100 µl/s (100µl syringe)</td>
<td></td>
</tr>
<tr>
<td>IntStd_Volume</td>
<td>0.0 - 4.9 µl (5µl syringe)</td>
<td>(Only 8400 for the Viscous, Volatile, and User Defined injection modes) Volume of the internal standards.</td>
</tr>
<tr>
<td></td>
<td>0.0 - 9.9 µl (10µl syringe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 - 99 µl (100µl syringe)</td>
<td></td>
</tr>
<tr>
<td>PlungerStrokes.Upperlimit</td>
<td>1 - 10000</td>
<td>(Only 8400) Sets the upper limit for the number of plunger strokes.</td>
</tr>
<tr>
<td>PlungerStrokes.Value</td>
<td>0 - 10000</td>
<td>(Only 8400) Indicates the number of plunger strokes. The property can be reset to 0 after a piston has been exchanged.</td>
</tr>
<tr>
<td>PostWash</td>
<td>0 - 99</td>
<td>(Only 8400) Sets how often the syringe is washed with solvent after the injection.</td>
</tr>
<tr>
<td>PreWash</td>
<td>0 - 99</td>
<td>(Only 8400) Sets how often the syringe is washed with solvent before the injection.</td>
</tr>
<tr>
<td>SampleAirGap</td>
<td>On, Off</td>
<td>Enables usage of an air gap for samples.</td>
</tr>
<tr>
<td>SampleDepth</td>
<td>0 - 100 %</td>
<td>(Only 8400) Sets how deep the syringe needle descends into the sample vial.</td>
</tr>
<tr>
<td>SampleWash</td>
<td>0 - 99</td>
<td>(Only 8400) Sets how often the syringe is filled with sample before the injection.</td>
</tr>
<tr>
<td>SecondInjectionVolume</td>
<td>0.1 - 5.0 µl (5µl syringe)</td>
<td>(Only 8400 if both injection ports are enabled in the configuration) Sets the volume for the second injection.</td>
</tr>
<tr>
<td></td>
<td>0.1 - 10.0 µl (10µl syringe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1 - 100 µl (100µl syringe)</td>
<td></td>
</tr>
<tr>
<td>SolventDepth</td>
<td>0 - 100 %</td>
<td>(Only 8400) Sets how deep the syringe needle descends into the solvent vial.</td>
</tr>
<tr>
<td>SolventPlug_AirGap</td>
<td>On, Off</td>
<td>Enables usage of an air gap for solvent plugs³.</td>
</tr>
<tr>
<td>SolventPlug_Delay</td>
<td>0.0 - 9.9 s</td>
<td>Delay time for solvent plugs³.</td>
</tr>
<tr>
<td>Property/Command</td>
<td>Range/Values</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| SolventPlug_Speed | 0.1 - 25.0 µl/s (5µl syringe)
0.1 - 50.0 µl/s (10µl syringe)
1 - 100 µl/s (100µl syringe) | Speed with which the solvent plugs are drawn³. |
| SolventPlug_Volume | 0.0 - 5 µl (5µl syringe)
0.0 - 10 µl (10µl syringe)
0.0 - 100 µl (100µl syringe) | Solvent plug volume³. |
| Speed_1 (or Speed_2) | 1 - 30 % (Only 8400 if the injection port 1 (or 2) is enabled in the configuration) | Sets how fast the syringe needle descends into the injector. |
| State | On, Off (Only 8400) | Indicates whether the sampler has injected. |
| Status | Ready, Running, Suspended, Resetting (Only 8400) | Indicates the autosampler status*. |
| SyringeVolume | 5µl, 10µl, 100µl | Indicates the syringe volume*. |
| VialDetect | On, Off (Only 8400) | If VialDetect = On (default setting), the sample checks whether a sample vial is available at the next position. If the vial is missing, the injection is aborted. If VialDetect = Off, no error message is logged if the vial is missing. |
| Visc_Delay | 0.0 - 9.9 s | Delivery time for viscous samples³. |
| Visc_DispenseSpeed | 0.1 - 25.0 µl/s (5µl syringe)
0.1 - 50.0 µl/s (10µl syringe)
1 - 100 µl/s (100µl syringe) | Speed with which viscous samples are dispensed³. |
| Visc_DrawSpeed | 0.1 - 25.0 µl/s (5µl syringe)
0.1 - 50.0 µl/s (10µl syringe)
1 - 100 µl/s (100µl syringe) | Speed with which viscous samples are drawn³. |
<p>| Visc_PostInjectionDelay | 0.0 - 99.9 s | Time that the needle remains in the injector after a viscous sample was injected³. |</p>
<table>
<thead>
<tr>
<th>Property/Command</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visc_PreInjectionDelay</td>
<td>0.0 - 99.9 s</td>
<td>Time that the needle remains in the injector before a viscous sample is injected³.</td>
</tr>
<tr>
<td></td>
<td>⇒ Volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1 - 5.0 µl (5µl syringe)</td>
<td>Injection volume.</td>
</tr>
<tr>
<td></td>
<td>0.1 - 10.0 µl (10µl syringe)</td>
<td>An error message appears if the total injection volume (Volume + IntStd_Volume + SolventPlug_Volume + AirPlugAfterSample) exceeds the syringe volume.</td>
</tr>
<tr>
<td></td>
<td>0.1 - 100 µl (100µl syringe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For the 8100/8200: Max. ¾ of the syringe volume</td>
<td></td>
</tr>
<tr>
<td>WashCycles</td>
<td>0 - 10 (Only 8400)</td>
<td>Sets how often the syringe is washed after an abort.</td>
</tr>
<tr>
<td>WashSpeed</td>
<td>0.1 - 25.0 µl/s (5µl syringe)</td>
<td>(Only 8400) Sets the speed with which the wash volume is drawn.</td>
</tr>
<tr>
<td></td>
<td>0.1 - 50.0 µl/s (10µl syringe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 - 100 µl/s (100µl syringe)</td>
<td></td>
</tr>
<tr>
<td>WashVials</td>
<td>I, II, III, I_II, I_III, I_II_III (Only 8400)</td>
<td>Sets from which wash vial(s) the wash solvent is drawn.</td>
</tr>
<tr>
<td>WashVolume</td>
<td>0.1 - 5.0 µl (5µl syringe)</td>
<td>Wash volume.</td>
</tr>
<tr>
<td></td>
<td>0.1 - 10.0 µl (10µl syringe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1 - 100 µl (100µl syringe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For 8100/8200: maximum ¾ of the syringe volume</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

* These properties are read-only.

² Chromeleon supports these properties only if the injection port setting on the Sampler tab page in the Server Configuration is **Injection ports = Position 1 and 2.**
Chromeleon supports these properties only for the 8400 in the **User_DEFINED** injection mode. An error message is displayed if these properties are set in an injection mode other than User_DEFINED:

For an overview of the Varian 3800 GC, refer to Hardware Installation: Installing and Controlling Third-Party Devices Varian 3800 GC: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices Varian 3800 GC: Installation in the Administrator Help section.

Varian 3800 GC: Injector

In addition to the General Device Commands, the Varian 3800 GC supports the following injector commands and properties (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConstantFlow</td>
<td>0.0 - 50.0 ml/min</td>
<td>(Only if a type 1 electronic flow control (EFC) is installed) Nominal value for a constant flow rate.</td>
</tr>
<tr>
<td>ConstantFlowMode</td>
<td>On, Off</td>
<td>(Only if an EFC type 1 is installed) Enables or disables ConstantFlow. If ConstantFlowMode is disabled and Pressure.Nominal is not in the allowed range, the nominal pressure is set to the minimum pressure of 0.007 bar.</td>
</tr>
<tr>
<td>Cryo</td>
<td>On, Off</td>
<td>(Only if a cooling element is installed) Turns the cooling element on or off.</td>
</tr>
<tr>
<td>CryoTimeout</td>
<td>Off, 0.01 - 999.99 min</td>
<td>(Only if a cooling element is installed) Time that the GC waits before turning off the cooling if no sample was injected.</td>
</tr>
<tr>
<td>CryoThreshold</td>
<td>30 - 450°C</td>
<td>(Only if a cooling element is installed) Temperature above which the GC shall use cryo for cooling.</td>
</tr>
<tr>
<td>Description</td>
<td>On-Column Injector, Universal Capillary Injector, Split/Splitless Capillary Injector, EFC only</td>
<td>Indicates the inlet type*. EFC_only means that only EFC is installed (without injector).</td>
</tr>
<tr>
<td>Property</td>
<td>Range/Values</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>EFCFault</td>
<td>Fault, OK</td>
<td>(Only if electronic flow control (EFC) is installed) Indicates an error in the injector EFC.</td>
</tr>
<tr>
<td>EFCReady</td>
<td>Ready, NotReady</td>
<td>(Only if EFC is installed) Indicates whether the injector EFC has reached the target temperature and/or flow and is ready.</td>
</tr>
<tr>
<td>EFCType</td>
<td>None, 1, 3, 4, Generic (Reserved)</td>
<td>Indicates the type of injector electronic flow control (EFC).</td>
</tr>
<tr>
<td>Flow</td>
<td>Properties related to the total flow</td>
<td></td>
</tr>
<tr>
<td>Flow.Value</td>
<td>1.0 - 1000.0 ml/min</td>
<td>(Only if EFC type 1 and 3 is installed) Indicates the current flow*.</td>
</tr>
<tr>
<td>Flow.Nominal</td>
<td>0.1 - 100.0 ml/min</td>
<td>(Only if EFC type 3 is installed) Sets the target flow.</td>
</tr>
<tr>
<td>GasSaverFlow</td>
<td>1 - 100 ml/min</td>
<td>(Only if EFC type 1 is installed) Sets the minimum gas flow to which the flow is reduced.</td>
</tr>
<tr>
<td>GasSaverTimeout</td>
<td>0.00 .. 999.99 min</td>
<td>(Only if EFC type 1 is installed) Time after which the gas flow is reduced to the minimum gas flow (see GasSaverFlow).</td>
</tr>
<tr>
<td>Mode</td>
<td>Split, Splitless</td>
<td>(Only for 1079 and 1177 with EFC) Indicates split or splitless mode.</td>
</tr>
<tr>
<td>OvenFault²</td>
<td>Fault, OK</td>
<td>Fault indicates a fault in the injector oven.</td>
</tr>
<tr>
<td>OvenReady²</td>
<td>Ready, NotReady</td>
<td>Ready indicates whether the injector oven reached the target temperature and is ready.</td>
</tr>
<tr>
<td>Pressure</td>
<td>Properties related to the column pressure.</td>
<td></td>
</tr>
<tr>
<td>Pressure.Value</td>
<td>0.007 - 6.894 bar</td>
<td>(Only if EFC type 1 and 3 is installed) Indicates the current pressure in the column head*.</td>
</tr>
<tr>
<td>Pressure.Nominal</td>
<td>0.007 - 6.894 bar</td>
<td>(Only if EFC type 1 is installed) Sets the injector target pressure. The pressure range can be programmed; the allowed range is 0.007 to 27.576 bar/min in 8 increments (including the first value).</td>
</tr>
<tr>
<td>PulseEnable</td>
<td>On, Off</td>
<td>(Only if EFC type 1 is installed) Enables or disables the pressure pulse.</td>
</tr>
<tr>
<td>PulsePressure</td>
<td>0.007 - 6.894 bar</td>
<td>(Only if EFC type 1 is installed) Sets the target value for the pressure pulse.</td>
</tr>
<tr>
<td>PulseTime</td>
<td>0.01 - 5.00 min</td>
<td>(Only if EFC type 1 is installed) Sets the duration of the pressure pulse.</td>
</tr>
<tr>
<td>Property</td>
<td>Range/Values</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>SplitRatio</td>
<td>1 - 10000</td>
<td>(Only for the 1079 and 1177 with EFC). Sets the split ratio. The ratio can be programmed; a maximum of six increments (including the first value) is allowed. An error message appears if the SplitRatio is set for SplitMode = Splitless.</td>
</tr>
<tr>
<td>SplitlessVentFlow</td>
<td>0 - 500 ml/min</td>
<td>(Only if EFC type 1 is installed) System flow when the split valve is closed.</td>
</tr>
<tr>
<td>Temperature² Value²</td>
<td>-99°C - 450°C</td>
<td>Indicates the current temperature*. Properties related to the injector temperature indicates the current temperature*.</td>
</tr>
<tr>
<td>Temperature² Nominal²</td>
<td>-99°C - UpperLimit</td>
<td>Sets the target temperature. If the temperature exceeds this value, Chromeleon aborts the batch and starts emergency handling.</td>
</tr>
<tr>
<td>Temperature² UpperLimit²</td>
<td>50 - 450°C</td>
<td>Indicates the inlet type*. EFC_only means that only EFC is installed (without injector).</td>
</tr>
<tr>
<td>Type</td>
<td>1041, 1079, 1177, EFC only</td>
<td>Indicates the inlet type*. EFC_only means that only EFC is installed (without injector).</td>
</tr>
</tbody>
</table>

Notes:

* These properties are read-only.

² These properties are available only if a heating zone was specified for the associated injector in the Server Configuration program.

For an overview of the Varian 3800 GC, refer to Hardware Installation: Installing and Controlling Third-Party Devices Varian 3800 GC: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices Varian 3800 GC: Installation in the Administrator Help section.
Varian 3800 GC: Column

In addition to the General Device Commands, the Varian 3800 GC supports the following column commands and properties (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0 - 999 µm</td>
<td>Inner column diameter (read-only; for packed columns, the entry is 0 µm).</td>
</tr>
<tr>
<td>Flow</td>
<td>0.0 - 999.99 min</td>
<td>Indicates the flow rate in the column (read-only).</td>
</tr>
<tr>
<td>GasType</td>
<td>He, H2, N2</td>
<td>Type of the carrier gas (read-only).</td>
</tr>
<tr>
<td>Length</td>
<td>0.00 - 250 m</td>
<td>Column length (read-only; for packed columns, the entry is 0.00 m).</td>
</tr>
<tr>
<td>Mode</td>
<td>Standard, Rapid_MS</td>
<td>Column mode.</td>
</tr>
<tr>
<td>SeptumPurgePressure</td>
<td>0.007 .. 6.894 bar</td>
<td>Pressure at the column's purge head septum (read-only).</td>
</tr>
<tr>
<td>SeptumPurgeFlow</td>
<td>0.1 ..100.0 ml/min</td>
<td>Flow rate at the column's purge head septum (read-only).</td>
</tr>
<tr>
<td>Velocity</td>
<td>0.0 - 999.99 cm/s</td>
<td>Linear velocity in the column (read-only).</td>
</tr>
</tbody>
</table>

For an overview of the Varian 3800 GC, refer to Hardware Installation: Installing and Controlling Third-Party Devices Varian 3800 GC: Overview in the Administrator Help section.

For installation details, refer to Hardware Installation: Installing and Controlling Third-Party Devices Varian 3800 GC: Installation in the Administrator Help section.
Varian 3800 GC: Detectors

In addition to the [General Device Commands](#) and the standard detector commands (see [Dionex Detectors](#)), the Varian 3800 GC supports the following detector commands and properties (please note that the display *Filter* level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AirFlow</td>
<td></td>
<td>Properties related to the air flow.</td>
</tr>
<tr>
<td>AirFlow. Value</td>
<td>0 - 500 ml/min</td>
<td>(Only for type 11 or type 12 electronic flow control (EFC)) Current air flow (read-only).</td>
</tr>
<tr>
<td>AirFlow.Nominal</td>
<td>0 - 500 ml/min</td>
<td>(Only for type 11 or type 12 EFC) Sets the target air flow.</td>
</tr>
<tr>
<td>BalancePercentage</td>
<td>-100 - 100 %</td>
<td>Balance percentage for the bridge (read-only). The property is set during Autozero in such a way that the signal value is 0.</td>
</tr>
<tr>
<td>Baseline</td>
<td>-10^8 - 10^8 mV</td>
<td>Current baseline value (read-only).</td>
</tr>
<tr>
<td>BeadCurrent</td>
<td>2.4 - 3.8 A</td>
<td>(Only TSD) Sets the current at the bead.</td>
</tr>
<tr>
<td>BeadPower</td>
<td>On, Off</td>
<td>(Only TSD) Turns the bead power on or off (read-only).</td>
</tr>
<tr>
<td>CellContactPotential</td>
<td>-800 - 800V</td>
<td>(Only ECD) Cell contact voltage.</td>
</tr>
<tr>
<td>CellCurrentSelection</td>
<td>N2_High, N2_Standard, CAP, AR_CH4, ZERO</td>
<td>(Only ECD) Selection of the cell current, based on the gas type.</td>
</tr>
<tr>
<td>Channel1_GasType</td>
<td>Helium Makeup, Nitrogen Makeup, Argon Makeup</td>
<td>(Only for type 11, 12, or 14 EFC) Type of the carrier gas in channel 1 (read-only)</td>
</tr>
<tr>
<td>Channel2_GasType (Type 11 or 12 EFC)</td>
<td>Hydrogen</td>
<td>(Only for type 11 or type 12 EFC) Type of the carrier gas in channel 2 (read-only)</td>
</tr>
<tr>
<td>Channel2_GasType (Type 14 EFC)</td>
<td>Helium Makeup, Nitrogen Makeup, Argon Makeup, Helium Reference, Nitrogen Reference, Argon Reference</td>
<td>(Only for type 14 EFC) Type of the carrier gas in channel 2 (read-only)</td>
</tr>
<tr>
<td>Channel3_GasType</td>
<td>Air</td>
<td>(Only for type 11 or type 12 EFC) Type of the carrier gas in channel 3 (read-only)</td>
</tr>
<tr>
<td>CheckFlameOut</td>
<td>On, Off</td>
<td>(Only FID) Enables the check whether the flame is burning.</td>
</tr>
<tr>
<td>Property</td>
<td>Range/Values</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Description</td>
<td>Flame Ionization Detector,</td>
<td>Detector type (read-only)</td>
</tr>
<tr>
<td></td>
<td>Thermal Conductivity Detector,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermionic Specific Detector,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electron Capture Detector</td>
<td></td>
</tr>
<tr>
<td>DetFault</td>
<td>Fault, OK</td>
<td>Fault indicates a detector error.</td>
</tr>
<tr>
<td>DetReady</td>
<td>Ready/NotReady</td>
<td>Indicates whether the detector has reached the initial condition and is ready.</td>
</tr>
<tr>
<td>EFCFault</td>
<td>Fault, OK (Only if EFC is installed)</td>
<td>(Only if EFC is installed) Indicates an error in the detector EFC (read-only)</td>
</tr>
<tr>
<td>EFCReady</td>
<td>Ready, NotReady (Only if EFC is installed)</td>
<td>Indicates whether the detector EFC has reached the target flow and is ready (read-only).</td>
</tr>
<tr>
<td>EFCType</td>
<td>None, 11, 12, 15, 16</td>
<td>Indicates the type of detector electronic flow control (read-only; electronic flow control = EFC)</td>
</tr>
<tr>
<td>Electronics</td>
<td>On, Off</td>
<td>(FID, TCD, and ECD) Turns the electronic elements of the detector on or off.</td>
</tr>
</tbody>
</table>

Note:

If the electronic elements are off, the GC can be Ready even if, e.g., the flame of the FID is not burning.

<table>
<thead>
<tr>
<th>FilamentCurrent</th>
<th>0 .. 500 mA</th>
<th>(Only TCD) Indicates the current of the filament (read-only).</th>
</tr>
</thead>
<tbody>
<tr>
<td>FilamentTemperature. Nominal</td>
<td>0 - 490°C</td>
<td>(Only TCD) Sets the target temperature for the filament.</td>
</tr>
<tr>
<td>FilamentTemperature. UpperLimit</td>
<td>390°C or 490°C</td>
<td>(Only TCD) Upper limit for the filament temperature (read-only).</td>
</tr>
<tr>
<td>FilamentTemperature. Value</td>
<td>0 - 490°C</td>
<td>(Only TCD) Current temperature of the filament (read-only).</td>
</tr>
<tr>
<td>GasType</td>
<td>He, N2_Ar</td>
<td>Type of the carrier gas.</td>
</tr>
<tr>
<td>HydrogenFlow</td>
<td>Properties related to the hydrogen flow</td>
<td></td>
</tr>
<tr>
<td>HydrogenFlow. Value</td>
<td>0 - 500 ml/min</td>
<td>(Only for type 11 or type 12 EFC) Current flow (read-only)</td>
</tr>
<tr>
<td>HydrogenFlow. Nominal</td>
<td>0 - 500 ml/min</td>
<td>(Only for type 11 or type 12 EFC) Sets the target hydrogen flow.</td>
</tr>
<tr>
<td>MakeupFlow</td>
<td>Properties related to the carrier gas flow.</td>
<td></td>
</tr>
<tr>
<td>MakeupFlow. Value</td>
<td>0 - 50 ml/min</td>
<td>(Only for type 11, 12, or 14 EFC) Current carrier gas flow (read-only)</td>
</tr>
</tbody>
</table>
Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Property</th>
<th>Range/Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MakeupFlow. Nominal</td>
<td>0 - 50 ml/min (Type 11, 12, or 14 EFC)</td>
<td>(Only for type 11, 12, or 14 EFC) Sets the carrier gas target flow.</td>
</tr>
<tr>
<td>OvenFault</td>
<td>Fault, OK</td>
<td>Fault indicates a detector oven error.</td>
</tr>
<tr>
<td>OvenReady</td>
<td>Ready/NotReady</td>
<td>Indicates whether the detector oven has reached the target temperature and is ready.</td>
</tr>
<tr>
<td>Polarity</td>
<td>Negative, Positive</td>
<td>Sets the detector polarity. The polarity can be programmed in up to 7 increments (including Range and Autozero).</td>
</tr>
<tr>
<td>Range</td>
<td>9, 10, 11, 12 (FID, TSD) 0.05, 0.5, 5.0 (TCD) 1, 10 (ECD)</td>
<td>Sets the output range of the detector. The range can be programmed in up to 7 increments (including Polarity and Autozero).</td>
</tr>
<tr>
<td>ReferenceFlow. Value</td>
<td>0 - 100 ml/min</td>
<td>Properties related to the reference gas flow (read-only)</td>
</tr>
<tr>
<td>ReferenceFlow. Nominal</td>
<td>0 - 100 ml/min</td>
<td>(Only for type 14 EFC) Current reference gas flow (read-only)</td>
</tr>
<tr>
<td>Signal</td>
<td>Signal.LowerLimit - Signal.UpperLimit</td>
<td>Current detector signal (read-only)</td>
</tr>
<tr>
<td>Signal.LowerLimit</td>
<td>-10^8 mV bis 10^8 mV</td>
<td>Lower limit for the detector signal (read-only)</td>
</tr>
<tr>
<td>Signal.UpperLimit</td>
<td>-10^8 mV bis 10^8 mV</td>
<td>Upper limit for the detector signal (read-only)</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>On / Off</td>
<td>Turns the detector oven on or off.</td>
</tr>
<tr>
<td>Temperature. Nominal</td>
<td>-99 - Upperlimit</td>
<td>Sets the target temperature for the detector.</td>
</tr>
<tr>
<td>Temperature. Upperlimit</td>
<td>50 - 450°C</td>
<td>Upper limit for the detector temperature (read-only)</td>
</tr>
<tr>
<td>Temperature. Value</td>
<td>-99 - 450°C</td>
<td>Current detector temperature (read-only)</td>
</tr>
<tr>
<td>TimeConstant</td>
<td>Slow, Fast</td>
<td>Sets the time constant for the noise filter of the detector.</td>
</tr>
<tr>
<td>Type</td>
<td>FID, ECD, TCD, TSD</td>
<td>Indicates the detector type (read-only).</td>
</tr>
</tbody>
</table>

Note:
This range also refers to digital signals.

For an overview of the Varian 3800 GC, refer to **Hardware Installation: Installing and Controlling Third-Party Devices** in the Administrator Help section.

For installation details, refer to **Hardware Installation: Installing and Controlling Third-Party Devices** in the Administrator Help section.
Varian 3800 GC: Troubleshooting

Problem:
The gas chromatograph does not start after reconfiguration has been performed in the Ethernet setup. This may be due to errors in the Ethernet configuration.

Solution:
Follow the steps below:

1. Uninstall the network card. Please note that the network card is located behind the EPROM card. Therefore, uninstall the EPROM card first.
2. Reinstall the EPROM card.
3. Start the gas chromatograph.
4. Reconfigure the gas chromatograph as follows:
 - Set BOOTP to No.
 - Enter the associated network address in the Network Address field. Verify that no other PC or device is already using this address.
 - In addition, make sure that the subnet mask is identical to the subnet mask of the PC and that the gateway addresses and the IP addresses of the gas chromatograph and the PC are identical as well.
5. Restart the instrument via Save+Exit (without the network card) to check whether the instrument accepted the changes.
6. Turn the instrument off.
7. Reinstall the network card.
8. Reconnect and restart the instrument.
Problem:
It looks as if changes to different parameters, such as ConstFlowMode, ConstFlow, and Pulse are not transmitted to the instrument.

Solution:
The method that is displayed on the instrument is not the method that is actually used. Set Active Method on the instrument to display the currently used method.

Tip:
In addition, set Edit Method to Method 8. This ensures that Method 8, which is used by Chromeleon, is displayed in any case.

Varian 3400 and Varian 3600 GCs
The Varian 3400 GC and Varian 3600 GC device drivers support the following commands and properties (please note that the display ➤Filter level determines which commands and properties are displayed):

Columns and Main Device

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CausesForNotReady</td>
<td>N/a</td>
<td>N/a</td>
<td>N/a</td>
<td>Indicates why the driver is not in Ready state (read-only).</td>
</tr>
<tr>
<td>Connected</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Indicates whether the GC is connected to Chromeleon.</td>
</tr>
<tr>
<td>CryoHasTimeout</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Indicates whether a cryogenic coolant time out occurs (read-only).</td>
</tr>
<tr>
<td>CryoTimeout</td>
<td>2.00</td>
<td>650.00</td>
<td>650.00</td>
<td>If no run starts after the specified time (in [min]), cooling is stopped to save coolant. To disable CryoTimeout, set the property to Infinite.</td>
</tr>
<tr>
<td>CryoToColumn</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Turns cryogenic cooling for the column thermostat on and off.</td>
</tr>
<tr>
<td>CryoToInjector</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Turns cryogenic cooling for the injector on and off. (For the Varian 3400 GC, this is an Injector property.)</td>
</tr>
</tbody>
</table>
Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModelNo</td>
<td>N/a</td>
<td>N/a</td>
<td>N/a</td>
<td>Indicates the model number (read-only). This property is available only for the Varian 3600 GC.</td>
</tr>
<tr>
<td>Ready</td>
<td>N/a</td>
<td>N/a</td>
<td>N/a</td>
<td>Indicates whether the GC is ready for injection (read-only).</td>
</tr>
<tr>
<td>StabilizationTime</td>
<td>0.00</td>
<td>650.00</td>
<td>2.00</td>
<td>After reaching the desired temperature, the GC waits for the specified time (in [min]) before indicating Ready.</td>
</tr>
<tr>
<td>StabilizationTimeRemainder</td>
<td>N/a</td>
<td>N/a</td>
<td>N/a</td>
<td>Indicates how much time of the StabilizationTime is left (read-only). This property is available only for the Varian 3600 GC.</td>
</tr>
<tr>
<td>SystemState</td>
<td>N/a</td>
<td>N/a</td>
<td>N/a</td>
<td>Indicates the current GC status: Run, Equilibrate, Stabilize, Wait, Sample, Test, RunEnd, or ERROR (read-only).</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Turns the oven on or off.</td>
</tr>
<tr>
<td>Temperature.UpperLimit</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>Sets the maximum temperature for the oven.</td>
</tr>
<tr>
<td>Temperature.Nominal</td>
<td>²</td>
<td>²</td>
<td>²</td>
<td>Sets the nominal temperature for the oven.</td>
</tr>
<tr>
<td>Temperature.Value</td>
<td>-99°C</td>
<td>420°C</td>
<td>50°C</td>
<td>Indicates the actual temperature of the oven (read-only).</td>
</tr>
</tbody>
</table>

² The values depend on the device settings.

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒Connect</td>
<td>Connects the GC to Chromeleon.</td>
</tr>
<tr>
<td>Disconnect</td>
<td>Disconnects the GC from Chromeleon.</td>
</tr>
<tr>
<td>⇒Reset</td>
<td>Resets the GC.</td>
</tr>
</tbody>
</table>

Auxiliary Heater

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TempCtrl</td>
<td>Off</td>
<td>On</td>
<td>²</td>
<td>Turns the auxiliary heater on and off.</td>
</tr>
<tr>
<td>Temperature.Nominal</td>
<td>²</td>
<td>²</td>
<td>²</td>
<td>Sets the nominal temperature of the auxiliary heater.</td>
</tr>
<tr>
<td>Temperature.UpperLimit</td>
<td>²</td>
<td>²</td>
<td>²</td>
<td>Sets the maximum temperature of the auxiliary heater.</td>
</tr>
<tr>
<td>Temperature.Value</td>
<td>-99°C</td>
<td>420°C</td>
<td>50°C</td>
<td>Indicates the actual temperature of the auxiliary heater (read-only).</td>
</tr>
</tbody>
</table>

² The values depend on the device settings.
Autosampler

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AirDry</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Enables or disables air drying after the injection.</td>
</tr>
<tr>
<td>Depth</td>
<td>0%</td>
<td>100%</td>
<td>90%</td>
<td>Sets how deep the needle moves into the vial: 0%: septum height; 100%: to the bottom of the vial.</td>
</tr>
<tr>
<td>InjectWaitTime</td>
<td>0.0</td>
<td>10000000.0</td>
<td>N/a</td>
<td>Indicates the time delay [sec] between the injection command and the inject response.</td>
</tr>
<tr>
<td>LowerAirGap</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Sets whether an air gap is used below the sample.</td>
</tr>
<tr>
<td>Position</td>
<td>101</td>
<td>412</td>
<td>101</td>
<td>Indicates the position of the vial used for injection. Range: 101 ... 112; 201 ... 212; 301 ... 312; 401 ... 412</td>
</tr>
<tr>
<td>PostDwell</td>
<td>0.00</td>
<td>10.0</td>
<td>0.10</td>
<td>Sets the time [min] that the needle remains in the injection port after the injection.</td>
</tr>
<tr>
<td>PreDwell</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>Sets how long ([min]) the needle stays in the injection port before the injection.</td>
</tr>
<tr>
<td>Purge</td>
<td>N/a</td>
<td>N/a</td>
<td>A_only</td>
<td>Sets which solvent bottles are used for the washing process: A_only, B_only, A_then_B, or No_wash (For the Varian 3400 GC, this is an Injector property.)</td>
</tr>
<tr>
<td>SamplerStatus</td>
<td>N/a</td>
<td>N/a</td>
<td>N/a</td>
<td>Indicates the current state of the autosampler: ERROR, Searching, Washing, Sampling, Injecting, Waiting, Stop_Pin_Found, No_Vial, or Not_in_method (read-only).</td>
</tr>
<tr>
<td>SolventPlug</td>
<td>0.0 µl</td>
<td>3.0 µl</td>
<td>0 µl</td>
<td>Sets the solvent volume for the injection.</td>
</tr>
<tr>
<td>Speed</td>
<td>0.2</td>
<td>10.0</td>
<td>5.0</td>
<td>Sets the average injection speed [µl/sec]</td>
</tr>
<tr>
<td>State</td>
<td>Off</td>
<td>On</td>
<td>N/a</td>
<td>Indicates whether the autosampler has injected the sample.</td>
</tr>
<tr>
<td>UpperAirGap</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Sets whether an air gap is used above the sample.</td>
</tr>
<tr>
<td>Volume</td>
<td>z²</td>
<td>z²</td>
<td>z²</td>
<td>Sets the injections volume.²</td>
</tr>
</tbody>
</table>

² The values depend on the syringe volume. The Varian 3600 GC supports a variable syringe volume.
Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇨ Inject</td>
<td>Performs an injection.</td>
</tr>
</tbody>
</table>

Injector

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow.Nominal<sup>2</sup></td>
<td>0</td>
<td>100</td>
<td>40</td>
<td>Sets the nominal carrier gas flow [ml/min]</td>
</tr>
<tr>
<td>Flow.Value<sup>3</sup></td>
<td>0</td>
<td>100</td>
<td>N/a</td>
<td>Indicates the actual carrier gas flow [ml/min] (read-only).</td>
</tr>
<tr>
<td>Pressure.Nominal<sup>3</sup></td>
<td>0</td>
<td>60</td>
<td>15</td>
<td>Sets the nominal carrier gas pressure [psi].</td>
</tr>
<tr>
<td>Pressure.Value<sup>3</sup></td>
<td>0</td>
<td>60</td>
<td>N/a</td>
<td>Indicates the actual carrier gas pressure [psi] (read-only).</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Turns the injector heater on or off.</td>
</tr>
<tr>
<td>Temperature.Nominal<sup>2</sup></td>
<td>²</td>
<td>²</td>
<td>²</td>
<td>Indicates the nominal temperature of the injector heater.</td>
</tr>
<tr>
<td>Temperature.UpperLimit<sup>2</sup></td>
<td>²</td>
<td>²</td>
<td>²</td>
<td>Sets the maximum temperature of the injector heater.</td>
</tr>
<tr>
<td>Temperature.Value</td>
<td>-99°C</td>
<td>420°C</td>
<td>50°C</td>
<td>Indicates the actual temperature of the injector heater (read-only).</td>
</tr>
</tbody>
</table>

² The values depend on the device settings.

³ These properties are available only if you have selected the Injector Flow Control or Injector Pressure Control option on the Components tab page in the Server Configuration program.

Valve (available only for the Varian 3600 GC)

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>0.00</td>
<td>59999.90</td>
<td>N/a</td>
<td>When set, the relay switches after the indicated time [sec].</td>
</tr>
<tr>
<td>State</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Indicates and sets the valve’s state.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Turns the valve off.</td>
</tr>
<tr>
<td>On</td>
<td>Turns the valve on.</td>
</tr>
</tbody>
</table>
Also, refer to Varian 3400 3600 GCs: Different Names in Firmware and Chromeleon.

For an overview of the Varian 3400 GC, refer to Hardware Installation Varian 3400 GC in the Administrator Help section.

For an overview of the Varian 3600 GC, refer to Hardware Installation Varian 3600 GC in the Administrator Help section.

Varian 3400 and 600 GCs: Different Names in Firmware and Chromeleon

Tip:

Dionex recommends avoiding manual input on the device. Chromeleon cannot read all settings from the device. Therefore, manual settings on the device may lead to errors in the program.

For consistency reasons, the names of some Chromeleon properties and commands are different from the names used in the instrument's firmware:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant To Injector</td>
<td>CryoToInjector</td>
</tr>
<tr>
<td>Coolant To Column</td>
<td>CryoToColumn</td>
</tr>
<tr>
<td>Fault 39</td>
<td>CryoHasTimeout</td>
</tr>
<tr>
<td>Coolant Time Out²</td>
<td>CryoTimeout</td>
</tr>
<tr>
<td>div. fault codes</td>
<td>CausesForNotReady</td>
</tr>
<tr>
<td>Thermal Stabilize Time³</td>
<td>StabilizationTime</td>
</tr>
<tr>
<td>Column Oven On/Off</td>
<td>TempCtrl</td>
</tr>
<tr>
<td>Column Temp Limit³</td>
<td>Temperature.UpperLimit</td>
</tr>
<tr>
<td>Initial Column Temp</td>
<td>Temperature.Nominal</td>
</tr>
</tbody>
</table>

Tip:

² Chromeleon cannot read Coolant Time Out and Thermal Stabilize Time from the instrument. Therefore, these setting are overwritten when Chromeleon connects to the instrument and when the sample is started. Please do not set these parameters on the instrument.
Auxiliary oven

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary Oven On</td>
<td>TempCtrl</td>
</tr>
<tr>
<td>Auxiliary Temp Limit</td>
<td>Temperature.UpperLimit</td>
</tr>
<tr>
<td>Initial Aux Temp</td>
<td>Temperature.Nominal</td>
</tr>
</tbody>
</table>

Autosampler

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/S Solvent Plug Size</td>
<td>SolventPlug</td>
</tr>
<tr>
<td>A/S Lower Air Gap</td>
<td>LowerAirGap</td>
</tr>
<tr>
<td>A/S Upper Air Gap</td>
<td>UpperAirGap</td>
</tr>
<tr>
<td>A/S Air Dry After Wash</td>
<td>AirDry</td>
</tr>
<tr>
<td>A/S Solvent Select</td>
<td>Purge</td>
</tr>
<tr>
<td>Vial Needle Depth</td>
<td>Depth</td>
</tr>
<tr>
<td>A/S Residence Time</td>
<td>PostDwell</td>
</tr>
<tr>
<td>A/S Hot Needle Time</td>
<td>PreDwell</td>
</tr>
<tr>
<td>A/S Uptake Speed</td>
<td>Speed</td>
</tr>
</tbody>
</table>

Injector

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>Pressure.Nominal</td>
</tr>
<tr>
<td>Flow</td>
<td>Flow.Nominal</td>
</tr>
<tr>
<td>Injector Oven On/Off</td>
<td>TempCtrl</td>
</tr>
<tr>
<td>Injector Temp Limit</td>
<td>Temperature.UpperLimit</td>
</tr>
<tr>
<td>(Initial) Injector Temp</td>
<td>Temperature.Nominal</td>
</tr>
</tbody>
</table>

Valve (available only for the Varian 3600 GC)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Relays</td>
<td>State</td>
</tr>
</tbody>
</table>

Tip:

³ **Chromeleon cannot read the temperature limits from the instrument. Therefore, these setting are overwritten when Chromeleon connects to the instrument and when the sample is started. Please do not change the temperature limits on the instrument.**

For detailed information about the different commands and the allowed minimum and maximum values, refer to [Varian 3400 and 3600 GCs](#).
Varian 3400 and Varian 3600 GCs: Detectors

The Varian 3400 and 3600 GC device drivers support the following commands and properties for the different detectors (please note that the display Filter level determines which commands and properties are displayed):

General Detector Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>Sets the attenuation of the detector signal</td>
</tr>
<tr>
<td>Baseline</td>
<td>-1315.80</td>
<td>1315.80</td>
<td>N/a</td>
<td>Indicates the actual baseline value.</td>
</tr>
<tr>
<td>TempCtrl</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Turns the detector heater on or off.</td>
</tr>
<tr>
<td>Temperature.Nominal</td>
<td>z</td>
<td>z</td>
<td>On</td>
<td>Sets the nominal temperature for the detector heater.</td>
</tr>
<tr>
<td>Temperature.UpperLimit</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>Sets the maximum temperature for the detector heater.</td>
</tr>
<tr>
<td>Temperature.Value</td>
<td>99°C</td>
<td>420°C</td>
<td>50°C</td>
<td>Indicates the actual temperature of the detector heater (read-only).</td>
</tr>
<tr>
<td>Type</td>
<td>TCD, FID, TSD, or ECD</td>
<td>N/a</td>
<td>Indicates which type of detector is installed.</td>
<td></td>
</tr>
</tbody>
</table>

The values depend on the device settings.

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autozero</td>
<td>Sets the current detector signal to 0.</td>
</tr>
</tbody>
</table>

Thermal Conductivity Detector (TCD)

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FilamentTemp</td>
<td>50°C</td>
<td>390°C</td>
<td>50°C</td>
<td>Sets the temperature of the TCD filament.</td>
</tr>
<tr>
<td>Polarity</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Sets the polarity of the detector signal.</td>
</tr>
<tr>
<td>Range</td>
<td>5</td>
<td>500</td>
<td>500</td>
<td>Range for the output signal: 5, 50, 500.</td>
</tr>
</tbody>
</table>
Flame Ionization Detector (FID)

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>10^8</td>
<td>10^{12}</td>
<td>10^8</td>
<td>Range for the output signal.</td>
</tr>
</tbody>
</table>

Thermionic Specific Detector (TSD)

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeadCurrent</td>
<td>2400</td>
<td>3800</td>
<td>2400</td>
<td>Indicates the current bead power [mA].</td>
</tr>
<tr>
<td>BeadPower (TSD_BeadPower)</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Turns the TSD bead power on or off.</td>
</tr>
<tr>
<td>Range</td>
<td>10^8</td>
<td>10^{12}</td>
<td>10^8</td>
<td>Range for the output signal.</td>
</tr>
</tbody>
</table>

Electron Capture Detector (ECD)

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>Range for the output signal (allowed values: 1 and 10).</td>
</tr>
</tbody>
</table>

Also, refer to Varian 3400 3600 GC Detectors: Different Names in Firmware and Chromeleon.

For an overview of the Varian 3400 GC, refer to Hardware Installation Varian 3400 GC in the Administrator Help section.

For an overview of the Varian 3600 GC, refer to Hardware Installation Varian 3600 GC in the Administrator Help section.
Varian 3400 and 3600 GC Detectors: Different Names in Firmware and Chromeleon

For consistency reasons, the names of some Chromeleon properties and commands are different from the names used in the instrument's firmware:

General Detector Properties

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector A/B Oven On</td>
<td>TempCtrl</td>
</tr>
<tr>
<td>Detector Temp Limit(^2)</td>
<td>Temperature.UpperLimit</td>
</tr>
<tr>
<td>Detector Temp</td>
<td>Temperature.Nominal</td>
</tr>
<tr>
<td>Initial Attenu</td>
<td>Attenuation</td>
</tr>
</tbody>
</table>

\(^2\) **Tip:**

Chromeleon cannot read the temperature limits from the instrument. Therefore, these setting are overwritten when Chromeleon connects to the instrument and when the sample is started. Please do not change the temperature limits on the instrument.

Thermal Conductivity Detector (TCD)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCD Filament Temp Off</td>
<td>FilamentTemp</td>
</tr>
<tr>
<td>Initial Range</td>
<td>Range</td>
</tr>
<tr>
<td>Polarity Positive</td>
<td>Polarity</td>
</tr>
</tbody>
</table>

Flame Ionization Detector (FID) and Electron Capture Detector (ECD)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Range</td>
<td>Range</td>
</tr>
</tbody>
</table>

Thermionic Specific Detector (TSD)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Chromeleon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead Power On</td>
<td>BeadPower</td>
</tr>
<tr>
<td>Bead Current In Amps</td>
<td>BeadCurrent</td>
</tr>
<tr>
<td>Initial Range</td>
<td>Range</td>
</tr>
</tbody>
</table>

For detailed information about the different commands and the allowed minimum and maximum values, refer to [Varian 3400 and 3600 GCs: Detectors](#).
Varian 3400 and 3600 GCs: Tips for Operation

Method

For the 3600 GC:
The driver always uses Method 1. The method is automatically activated and overwritten with the settings in Chromeleon.

For the 3400 GC:
The driver for the Varian 3400 GC cannot identify whether a reset was performed on the instrument or a different method was selected. Therefore, Dionex recommends that you always activate Method 1 before Chromeleon connects to the instrument and that you do not change this setting while Chromeleon controls the instrument.

Setting Properties

You can set properties only if the GC is not in Sample, Run, or RunEnd mode. If you set a property for the 3400 GC although the GC is in one of the above modes, execution is postponed until the GC is no longer in this mode. A message is written to the Audit Trail. If you set a property for the 3600 GC although the GC is in one of the above modes, a message is written to the Audit Trail but the command will not be executed.

The only commands and properties that can be used after an Inject command are: temperature gradients for the column oven, Acquisition On/Off, Delta, Average, and Step. Therefore, define all properties that are required for the method before the Inject command. A Reset command can always be sent.

If you want to include the temperature for an isocratic column oven in a program, define the desired temperature before and after the Inject command, and at the final program time. Otherwise, runtime calculation will not be correct.

Example:

```
0.000  GC.Temperature = 100
        Wait GC.Ready
        Inject
              GC.Temperature = 100
30.000  GC.Temperature = 100
        End
```
Entering a Temperature Gradient

Temperature gradients can be defined only for the column heater.

Enter the temperature gradient either directly, by selecting the Flow command on the Control menu, or via a Program.

Chromeleon supports a temperature profile with up to four ascents. The maximum change in temperature is 50°C per minute. Descending temperature profiles are not supported. The GC returns to the initial temperature when the gradient is completed.

3600 GC: Flow / Pressure

The gas chromatograph maintains a constant pressure or flow for column A or column B, depending on the value that was entered last. This is how the column is selected.

Example:

If the following command was entered last:

\[\text{Injector}_B.\text{Flow} = 1 \]

the flow for column B is kept constant at 1 ml/min.

For an overview of the Varian 3400 GC, refer to Hardware Installation Varian 3400 GC in the Administrator Help section.

For an overview of the Varian 3600 GC, refer to Hardware Installation Varian 3600 GC in the Administrator Help section.
Varian 3400 and 3600 GCs: Troubleshooting

Problem: The GC does not reach the Ready state
In addition, the following message appears in Chromeleon: GC.CausesForNotReady=Remote_In.

Solution:
Disable the Remote input on the device. Select Set Checks on the Configuration menu and set Wait for ext. device ready? to No.

Error messages in Chromeleon:

(GC) Communication Error: Bad Response to "0" command 0
Problem: The instrument uses a method from the GC's method table.

The error message is repeated until Chromeleon disconnects from the instrument.

Solution: On the instrument, delete all references to Method 1:
Select Method 1.

Press Delete/Section Table and select Section or Table, and then select Method 1. Select the section you want to delete (here: Column). The following message should appear on the instrument: Section Cleared.

Repeat these steps for the Injection Port, Autosampler, and Detector sections of the instrument.

If you want to use a Varian GC method (instrument) in Chromeleon, you have to add an autosampler. Select Build/Modify, and then select Method 1. Enable the autosampler in the method by selecting the autosampler and adding it to Method 1.
(GC) Communication Error: Bad Response to XB?22@DS Command:
XB?22@DS COMMAND (or … to XC?22@DX Command: XC?22@DS
COMMAND)

Problem: No autosampler has been defined in the Varian GC method (on
the instrument).

Solution: Add the autosampler to the Varian GC method in Single mode.
Select the autosampler on the instrument's panel via
Build/Modify > Method 1 > Autosampler > Add Autosampler
Section > Yes.

(GC) Communication Error: Bad Response to "Read Flag Not Ready"
Command: ;B?22@DS COMMAND (or C?22@DS COMMAND)

Problem: Communication error due to incompatible EPROM or Varian GC
CPU board.

Solution: Replace the four outdated EPROMs with EPROMs version 03-
910617-00 Rev. 1 or higher.

Autosampler not present:

Problem: Communication error with the autosampler, mainly due to a bad
connection.

Solution: Disconnect the autosampler from the power source and connect
the brown autosampler cable to the CPU board.
Waters: Commands and Tips

For information about the special commands that Chromeleon supports for the different Waters devices and for tips for practical operation, refer to:

- Alliance 2690/2695 HPLC Modules
- Alliance 2790/2795 HPLC Modules
- 717plus Autosampler
- 996 and 2996 PDA Detectors
- 2487 UV Detector

For troubleshooting information, refer to:

- Waters Instruments: Troubleshooting
- GPIB-Connected Devices: Troubleshooting
Waters Alliance 2690/2695 HPLC Modules: Commands and Tips

In addition to the standard commands (refer to Practical Tips for Device Control Pump and Flow Control), the Waters 2690/2695 Separation Module device driver supports the following commands and properties (please note that the display Filter level determines which commands and properties are displayed):

Pump Commands and Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BubbleDetection²</td>
<td>Off</td>
<td>On</td>
<td>Checks the System for gas bubbles in the flow path, can return an error message and perform a bubble reduction procedure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The following settings are required on the instrument: In the Default method, set the Alarms/Bubble detect field to Alert User, Stop Funct, or StopFlow as described in the instrument's manual on page 1 (Mobile Phase).</td>
</tr>
<tr>
<td>Curve</td>
<td>convex</td>
<td>concave</td>
<td>Gradient Curve (Default: linear)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: If the gradient defined by Curve is steeper than the one defined by the MaxAcceleration parameter, the actually performed gradient can be different from the gradient defined here. In this case, a warning appears. This is always the case for step gradients.</td>
</tr>
<tr>
<td>MaxAcceleration²</td>
<td>0.01 min</td>
<td>30.00 min</td>
<td>Sets the time needed by the pump to reach the maximum flow rate of 10 ml/min. The property serves to protect the column from major pressure changes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>It is connected with the MaximumFlowRamp property:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MaxAcceleration = 10 / MaximumFlowRamp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Default: 0.01 min. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>Property</td>
<td>Min</td>
<td>Max</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>MaximumFlowRamp</td>
<td>0.34</td>
<td>1000.0</td>
<td>Sets the maximum flow rate increase in [ml/min²]. The property serves to protect the column from major pressure changes. It is connected with the MaxAcceleration property: MaximumFlowRamp = 10 / MaxAcceleration (Default: 1000.00 ml/min². The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>Pressure.LowerLimit</td>
<td>0.0</td>
<td>344.70</td>
<td>Upper and lower pressure limits. For the pressure limits to take effect, the following setting is required on the instrument: In the Default method, set the Alarms/Min. and Alarms/Max fields to Alert User, Stop Funct. or StopFlow as described in the instrument's manual on page 1 (Mobile Phase). The limits entered last in Chromelone are valid (not the values set on the instrument).</td>
</tr>
<tr>
<td>Pressure.UpperLimit²</td>
<td></td>
<td>344.70</td>
<td>(= 5000 psi)</td>
</tr>
<tr>
<td>PrimaryPressure</td>
<td>-3.45</td>
<td>380</td>
<td>Sets the pressure after the first piston chamber. (The property is read-only and visible only on the Expert level.)</td>
</tr>
<tr>
<td>StrokeVolume²</td>
<td>Auto;</td>
<td>25 µL;</td>
<td>Sets the volume delivered with each piston stroke. (Default: Auto. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td></td>
<td>50 µL;</td>
<td>100 µL</td>
<td></td>
</tr>
<tr>
<td>⇒StopFlow,</td>
<td></td>
<td></td>
<td>When using these commands for the pump of the Alliance system, please note: When the Stop command is executed while a gradient program is running, the Continue command does not restart the gradient. Instead, the pump is started with constant solvent composition and constant flow rate.</td>
</tr>
<tr>
<td>⇒Continue</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tip:

² It is not possible to change the property during an injection, during gradient runs, or at negative retention times.
Note:

As described in the instrument's manual, negative pressure readings are possible for the pressure behind the first piston chamber (PrimaryPressure property).

Degasser Commands and Properties

The standard degasser of the Waters Alliance 2690/2695 HPLC module is a Helium degasser. Select the following property to specify which solvent reservoirs shall be helium sparged and set the sparge rate for each reservoir:

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeliumSparge_A to HeliumSparge_D²</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>If the sparge rate is set to 100% for a specific reservoir, the solvent in this reservoir is helium sparged all the time. If the sparge rate is less than 100%, the corresponding valve turns on and off according to the desired percentage.</td>
</tr>
</tbody>
</table>

The standard degasser of the Waters Alliance 2690/2695 XE HPLC modules is a vacuum degasser (In-Line Degasser). Specify the degassing mode:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degasser Mode²</td>
<td>Normal</td>
<td>Off</td>
<td>Normal: The degasser turns on and off, depending on the pressure. Continuous: The degasser is always on. Off: The degasser is always off.</td>
</tr>
<tr>
<td></td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tip:

² It is not possible to change the setting during an injection, during gradient runs, or at negative retention times.
The **Pressure** property indicates the current pressure:

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degasser Pressure</td>
<td>-1.0</td>
<td>1.0</td>
<td>Indicates the pressure (in bar) measured by the degasser. (The property is read-only.)</td>
</tr>
</tbody>
</table>

Injector Commands and Properties

For information about the standard autosampler commands, refer to **Control Dionex Autosampler**.

In addition, the Waters 2690/2695 Separation Module device driver supports the following commands and properties (please note that the display >Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InjectWaitTime</td>
<td>0</td>
<td>1E+7</td>
<td>Indicates the time in seconds between the inject command from Chromeleon and the inject response from the autosampler to Chromeleon (read-only)</td>
</tr>
<tr>
<td>LoopPressure</td>
<td>-3.45</td>
<td>380</td>
<td>Indicates the pressure (in bar) in the sample loop (The property is read-only and visible only on the Expert level.)</td>
</tr>
<tr>
<td></td>
<td>Ready</td>
<td>NotReady</td>
<td>Ready Indicates the state of the autosampler. (It depends on the state of the sample temperature control if WaitForTemperature = Yes).</td>
</tr>
<tr>
<td>SampleHeight²</td>
<td>0.0 mm</td>
<td>20.0 mm</td>
<td>Indicates the distance of the needle tip from the bottom of the sample vial (default: 0.0 mm).</td>
</tr>
<tr>
<td>SyringeSpeed²</td>
<td>Fast (5.0 ml/min)</td>
<td>Normal (2.5 ml/min)</td>
<td>Slow (1.0 ml/min)</td>
</tr>
<tr>
<td>WaitForTemperature²</td>
<td>No</td>
<td>Yes</td>
<td>Specifies whether the autosampler waits for the sample temperature control.</td>
</tr>
</tbody>
</table>

Tip:

² *It is not possible to change the setting during an injection, during gradient runs, or at negative retention times.*
Note:
As described in the instrument's manual, negative pressure readings are possible for the sample loop pressure (LoopPressure property).

Column Heater and Sample Temperature Control Commands and Properties

For information about the standard commands for temperature control, refer to Practical Tips for Device Control Temperature Control (On/Off) and Controlling the Temperature.

In addition, the following properties allow you to determine, e.g., the maximum allowed deviation of the actual temperature from the expected temperature:

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTempDeviation²</td>
<td>0°C</td>
<td>10°C</td>
<td>5°C</td>
<td>If the actual column temperature deviates from the expected temperature by more than the set value, an error message appears. The following setting is required on the instrument: Follow the description in the instrument's manual to set the Column Temperature/On error field to Alert User, Stop Funct, or StopFlow. For the column oven, this setting is made on page 4 (Column); for sample temperature control, it is made on page 2 (Sample).</td>
</tr>
</tbody>
</table>
| ⇒Ready² | NotReady | Ready | Ready | Indicates the state of the column heater. The heater is Ready:
• when temperature control (TempCtrl) is Off
• when the difference between the actual temperature and the target temperature is equal or less than 2°C for at least 30 minutes. |
| TempCtrl² | Off | On | Off | Sets the state of the temperature control. (Temperature control is active only if TempCtrl = On.) |
Property Table

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature.Nominal²</td>
<td>20°C (4°C)</td>
<td>60°C (40°C)</td>
<td>20°C</td>
<td>Sets the target operating temperature (sample temperature control). The temperature must be at least 5°C above ambient.</td>
</tr>
<tr>
<td>Temperature.Value²</td>
<td>0°C</td>
<td>80°C</td>
<td></td>
<td>Indicates the actual temperature. (The property is ready-only.)</td>
</tr>
</tbody>
</table>

Note:

For better understanding, [°C] is used as unit, even though [K] would be correct to indicate temperature differences.

Tip:

² The temperature control commands of the column oven can be used only if an injection is made. In all other cases, e.g. for Blank Run Samples, an error message appears.

It is not possible to change the MaxTempDeviation setting during an injection, during gradient runs, or at negative retention times.

The standard relay commands are available to control the relays of the Waters Alliance 2690 and 2695 HPLC modules (refer to Practical Tips for Device Control Relay, TTL, and Remote Input Commands).

For information about how to install the Waters Alliance 2690 and 2695 HPLC modules, refer to Hardware Installation Waters Alliance 2690/2695 HPLC Modules: Installation in the Administrator Help section.

For an overview of the Waters Alliance 2690 and 2695 HPLC modules, refer to Hardware Installation Waters Alliance 2690/2695 HPLC Modules: Overview in the Administrator Help section.
Waters Alliance 2790/2795 HPLC Modules: Commands and Tips

The Alliance 2790/2795 Separation Module device driver supports several modules. For information about the corresponding commands and properties, refer to:

- HPLC System
- Pump and Degasser
- Injector
- Column Heater and Sample Temperature Control
- Overlapping Sample Preparation

Waters Alliance 2790/2795: HPLC System

In addition to the standard commands (refer to Practical Tips for Device Control General Device Commands), the Waters 2790/2795 Separation Module device driver supports the following commands and properties for the HPLC System (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChartOut²</td>
<td>GradA, GradB, GradC, GradD, FlowRate, SampleLoopPressure, SystemPressure, PrimaryHeadPressure, VacuumLevel, SampleTemperature, ColumnTemperature</td>
<td>Sets the type of the analog signal that is transmitted from the Chart Out output. The available options depend on the system configuration. The following options are available only if the corresponding module is installed:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>VacuumLevel</td>
<td>Degasser</td>
</tr>
<tr>
<td>SampleTemperature</td>
<td>Sample Heater</td>
</tr>
<tr>
<td>ColumnTemperature</td>
<td>Column Heater</td>
</tr>
</tbody>
</table>

LogStatus² | On, Off | If the property is set to On, each change of the instrument's status is logged in the Audit Trail. (The default setting is Off. The property is visible only on the Advanced level.) |
<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrecolumnVolume²</td>
<td>0.0 to 10,000.0</td>
<td>Specifies the solvent volume in [µl] that is pumped through the column before injection is started. (The default setting is 0.0 µl. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>Status</td>
<td>(80 characters)</td>
<td>Indicates the status of the HPLC system.</td>
</tr>
<tr>
<td>Vendor</td>
<td></td>
<td>Indicates the manufacturer (here: Waters).</td>
</tr>
</tbody>
</table>

Tips:

² It is not possible to change the property during injection or during a gradient run.

³ The signal condition depends on the selected ChartOut option:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Parameter at 0 mV (min)</th>
<th>Parameter at 2000 mV (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColumnTemperature</td>
<td>20°C</td>
<td>60°C</td>
</tr>
<tr>
<td>FlowRate</td>
<td>0.000 ml/min</td>
<td>10.000 ml/min</td>
</tr>
<tr>
<td>GradA - GradD</td>
<td>0.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>PrimaryHeadPressure</td>
<td>-3.45 bar (-50 psi)</td>
<td>380 bar (5500 psi)</td>
</tr>
<tr>
<td>SampleLoopPressure</td>
<td>-3.45 bar (-50 psi)</td>
<td>380 bar (5500 psi)</td>
</tr>
<tr>
<td>SampleTemperature</td>
<td>4°C</td>
<td>40°C</td>
</tr>
<tr>
<td>SystemPressure</td>
<td>-3.45 bar (-50 psi)</td>
<td>380 bar (5500 psi)</td>
</tr>
<tr>
<td>VacuumLevel</td>
<td>-0.0 bar</td>
<td>0.34 bar (4.91 psi)</td>
</tr>
</tbody>
</table>

Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StopOperation</td>
<td>Stops a previously started operation (e.g., by the SysPrep or WetPrime commands (see below) or by the PrimeSyringe command, see [Waters Alliance 2790/2795 HPLC Modules: Injector]). (The command is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>SysPrep</td>
<td>Performs system preparation including priming the fluid components of the systems, rinsing the syringe, and washing the needle. (The command is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>WetPrime</td>
<td>Primes the fluid components of the system with the currently selected flow rate and for 100.0 minutes. Use the StopOperation command to stop priming. (The command is visible only on the Advanced level.)</td>
</tr>
</tbody>
</table>
For information about how to install the Waters Alliance 2790 and 2795 HPLC modules, refer to Hardware Installation Waters Alliance 2790/2795 HPLC Modules: Installation in the Administrator Help section.

For an overview of the Waters Alliance 2790 and 2795 HPLC modules, refer to Hardware Installation Waters Alliance 2790/2795 HPLC Modules: Overview in the Administrator Help section.

Waters Alliance 2790/2795: Pump and Degasser

In addition to the standard commands (refer to Practical Tips for Device Control Pump and Flow Control), the Waters 2790/2795 Separation Module device driver supports the following pump commands and properties (please note that the display Filter level determines which commands and properties are displayed):

Pump Commands and Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BubbleDetection²</td>
<td>Off</td>
<td>On</td>
<td>Checks the system for gas bubbles in the flow path, can return an error message and perform a bubble reduction procedure. The following settings are required on the instrument: In the Default method, set the Alarms/Bubble detect field to Alert User, Stop Funct, or StopFlow as described in the instrument's manual on page 1 (Mobile Phase).</td>
</tr>
<tr>
<td>Continue</td>
<td></td>
<td></td>
<td>see StopFlow</td>
</tr>
<tr>
<td>Curve</td>
<td>convex</td>
<td>concave</td>
<td>Gradient Curve (Default: linear)</td>
</tr>
</tbody>
</table>

Note:

If the gradient defined by Curve is steeper than the one defined by the MaxAcceleration parameter, the actually performed gradient can be different from the gradient defined here. In this case, a warning appears. This is always the case for step gradients.
<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
</table>
| MaxAcceleration² | 0.01 | 30.00 | Sets the time needed by the pump to reach the maximum flow rate of 10 ml/min. The property serves to protect the column from major pressure changes. The property is connected with the MaximumFlowRamp property:
 MaxAcceleration = 10 / MaximumFlowRamp
 (Default: 0.01 min. The property is visible only on the Advanced level.) |
| MaximumFlowRamp | 0.34 | 1000.0| Maximum flow rate increase in [ml/min²]. This property serves to protect the column from major pressure changes. This property is connected with the MaxAcceleration property as follows:
 MaximumFlowRamp = 10 / MaxAcceleration
 (Default: 1000.00 ml/min². The property is visible only on the Advanced level.) |
| Pressure.LowerLimit | 0.0 | 344.70| Upper and lower pressure limits. For the pressure limits to take effect, the following setting is required on the instrument: In the Default method, set the Alarms/Min. and Alarms/Max fields to Alert User, Stop Funct. or StopFlow as described in the instrument's manual on page 1 (Mobile Phase). The limits entered last in Chromeleon are valid (not the values set on the instrument). |
| Pressure.UpperLimit² | — | 380 | Indicates the current pump pressure.
 Pressure after the first piston chamber (The property is read-only and visible only on the Expert level.) |
| StrokeVolume² | Auto; 25 µL; 50 µL; 100 µL | Volume delivered with each piston stroke (Default: Auto. The property is visible only on the Advanced level.) |
1108 Commands and Tips for Third-Party Devices

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒StopFlow,</td>
<td></td>
<td></td>
<td></td>
<td>When using these commands for the pump of the Alliance system, please note: When the Stop command is executed while a gradient program is running, the Continue command does not restart the gradient. Instead, the pump is started with constant solvent composition and constant flow rate.</td>
</tr>
<tr>
<td>⇒Continue</td>
<td></td>
<td></td>
<td></td>
<td>Tip:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>It is not possible to change the property during an injection, during gradient runs, or at negative retention times.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>As described in the instrument’s manual, negative pressure readings are possible for the pressure behind the first piston chamber (PrimaryPressure property).</td>
</tr>
</tbody>
</table>

Degasser Commands and Properties

The standard degasser of the Waters Alliance 2790/2795 HPLC modules is a Helium degasser. Select the following property to specify which solvent reservoirs shall be helium sparged and set the sparge rate for each reservoir:

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeliumSparge_A to</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>If the sparge rate is set to 100% for a specific reservoir, the solvent in this reservoir is helium sparged all the time. If the sparge rate is less than 100%, the corresponding valve turns on and off according to the desired percentage.</td>
</tr>
<tr>
<td>HeliumSparge_D²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The standard degasser of the Waters Alliance 2790/2795 XE HPLC modules is a vacuum degasser (In-Line Degasser). Specify the degasssing mode:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degasser Mode²</td>
<td>Normal,</td>
<td>Off</td>
<td>Normal: The degasser turns on and off, depending on the pressure. Continuous: The degasser is always on. Off: The degasser is always off.</td>
</tr>
</tbody>
</table>
Tip: It is not possible to change the setting during an injection, during gradient runs, or at negative retention times.

The **Pressure** property indicates the current pressure:

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degasser Pressure</td>
<td>0.0</td>
<td>1.0</td>
<td>Indicates the pressure (in bar) measured by the degasser. (The property is read-only.)</td>
</tr>
</tbody>
</table>

For information about how to install the Waters Alliance 2790 and 2795 HPLC modules, refer to Hardware Installation on Waters Alliance 2790/2795 HPLC Modules: Installation in the Administrator Help section.

For an overview of the Waters Alliance 2790 and 2795 HPLC modules, refer to Hardware Installation on Waters Alliance 2790/2795 HPLC Modules: Overview in the Administrator Help section.
Waters Alliance 2790/2795: Injector

For information about the standard autosampler commands, refer to Control Dionex Autosampler.

In addition, the Waters 2790/2795 Separation Module device driver supports the following commands and properties (please note that the display Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CheckPlateHeight²</td>
<td>Off</td>
<td>On</td>
<td>When set to On, the needle position sensor determines the plate height before the first injection is performed from this plate. The value is checked against the range of values allowed for this plate type. (The default setting is Off. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>FullLoopOverfill²</td>
<td>1.0%</td>
<td>99.9%</td>
<td>Only in InjectMode = FullLoop (see below). Specifies the excess volume drawn to rinse the loop when the loop is filled with the sample. (The default setting is 4%. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>InjectWaitTime</td>
<td>0</td>
<td>1E+7</td>
<td>Indicates the time in seconds between the inject command from Chromeleon and the inject response from the autosampler to Chromeleon. (The property is read-only.)</td>
</tr>
<tr>
<td>InjPortWashTime²</td>
<td>0, 1, 2, ..., 9999</td>
<td>Specifies the time in seconds for inject port washing. (The default setting is 6. The property is visible only on the Advanced level.)</td>
<td></td>
</tr>
<tr>
<td>InjectMode²</td>
<td>PartialLoop; FullLoop</td>
<td>Determines the injection mode. (The default setting is FullLoop.)</td>
<td></td>
</tr>
<tr>
<td>LoopPressure</td>
<td>-3.45</td>
<td>380</td>
<td>Indicates the pressure (in bar) in the sample loop (The property is read-only and visible only on the Expert level.)</td>
</tr>
<tr>
<td>NeedleWashTime²</td>
<td>0, 1, 2, ..., 9999</td>
<td>Specifies in seconds how long the exterior of the needle is washed. (The default setting is 15. The property is visible only on the Advanced level.)</td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>Min</td>
<td>Max</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>PrepDelay³</td>
<td>0.0</td>
<td>Loop volume</td>
<td>Determines in seconds how long it may take until the loop is completely filled. (The default setting is 0.0. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>PrepSubject³</td>
<td>Vial positions Sample_Vial, Air, Sample_Vial ± number (relative addressing)</td>
<td>15</td>
<td>Determines which vial is used for Draw, Dispense, and Mix operations. If set to Air, the needle first draws air, and then dispenses the air into the needle port. (The default setting is 15. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>PrepVolume³</td>
<td>0, 1, 2, ... 9999</td>
<td></td>
<td>Determines the volume [µl] to be used for the Draw, Dispense, and Mix commands. (The default setting is 10.0. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>PrimeSyringe</td>
<td></td>
<td></td>
<td>Primes the syringe by flushing it.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tip: After priming the syringe, always perform a Wait Sampler.Ready command.</td>
</tr>
<tr>
<td>PurgeVolume³</td>
<td>0, 1, 2, ... 9999</td>
<td></td>
<td>Determines the volume [µl] to be used for purging. (The default setting is 100. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>Ready³</td>
<td>NotReady</td>
<td>Ready</td>
<td>State of the autosampler (depends on the state of the sample temperature control if WaitForTemperature = Yes).</td>
</tr>
<tr>
<td>SampleHeight²</td>
<td>0.0 mm</td>
<td>20.0 mm</td>
<td>Indicates the distance of the needle tip from the bottom of the sample vial (default: 0.0 mm).</td>
</tr>
<tr>
<td>SampleOverlapped²</td>
<td>Off</td>
<td>On</td>
<td>When set to On, the current sample will be prepared while the previous sample is still analysed. (The default setting is Off. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>SeekWellBottom²</td>
<td>Off</td>
<td>On</td>
<td>Can be enabled only if SampleHeight = 0.0 (see above). When set to On, the needle detects the well bottom for a specified plate before the first injection is performed. This value is stored for the subsequent injections from this plate. When a different plate is used, the measurement is performed again. (The default setting is Off. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>State</td>
<td>Off</td>
<td>On</td>
<td>Indicates On when the autosampler has injected a sample. (The property is read-only.)</td>
</tr>
<tr>
<td>Property</td>
<td>Min</td>
<td>Max</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>SyringeSpeed²</td>
<td>Fast (5.0 ml/min)</td>
<td>Normal (2.5 ml/min)</td>
<td>Defines the drawing speed of the syringe. The speed depends on the installed syringe type. The values correspond to a standard 250 µL syringe.</td>
</tr>
<tr>
<td></td>
<td>Slow (1.0 ml/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaitForTemperature²</td>
<td>No</td>
<td>Yes</td>
<td>Specifies whether the autosampler waits for the sample temperature control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flushes the autosampler.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tip: After priming the syringe, always perform a Wait Sampler.Ready command.</td>
</tr>
<tr>
<td>WashCycle²</td>
<td>0, 1, 2, ... 9</td>
<td></td>
<td>Sets the number of wash cycles to be performed. (The default setting is 1. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>WashFrequency²</td>
<td>Never, EveryInject,</td>
<td>EveryWell</td>
<td>Determines when a wash cycle shall be performed. The following options are available: Never, EveryInject, EveryWell. (The default setting is EveryInject. The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WashSequence²</td>
<td>PurgeWash,</td>
<td>PurgeWashPump</td>
<td>Determines the wash sequence for the needle. (The default setting is PurgeWash. The property is visible only on the Advanced level.)</td>
</tr>
</tbody>
</table>

Tips:

² It is not possible to change the setting during an injection, during gradient runs, or at negative retention times.

³ It is not possible to change the setting during sample analysis.

Note:

As described in the instrument’s manual, negative pressure readings are possible for the sample loop pressure (LoopPressure property).
Injector Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw³</td>
<td>Draws the PrepVolume from the PrepSubject (see above). (The command is available only on Advanced level.)</td>
</tr>
<tr>
<td>Tips:</td>
<td>Up to 16 Draw commands are allowed per injection.
Always use a Mix command after a sequence of Draw commands.</td>
</tr>
<tr>
<td>LoopOffline³</td>
<td>Switches the sample injection valve after the injection. Thus, the loop is no longer part of the flow path. Preparation of the next sample can be started. (The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>Tip:</td>
<td>Make sure to issue the command only after the previous sample has completely left the loop.</td>
</tr>
<tr>
<td>Mix³</td>
<td>Starts sample preparation. (The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>Tips:</td>
<td>No further Draw commands are allowed after a Mix command.
Always use a Mix command after a sequence of Draw commands.</td>
</tr>
<tr>
<td>PrimeSyringe</td>
<td>Fills the syringe with the purge solvent. (The property is visible only on the Advanced level.)</td>
</tr>
<tr>
<td>Tip:</td>
<td>The command uses the values set for PurgeVolume and WashCycle.</td>
</tr>
</tbody>
</table>

³ It is not possible to change the setting during sample analysis.

For information about how to install the Waters Alliance 2790 and 2795 HPLC modules, refer to **Hardware Installation** **Waters Alliance 2790/2795 HPLC Modules: Installation** in the Administrator Help section.

For an overview of the Waters Alliance 2790 and 2795 HPLC modules, refer to **Hardware Installation** **Waters Alliance 2790/2795 HPLC Modules: Overview** in the Administrator Help section.
Waters Alliance 2790/2795: Column Heater and Sample Temperature Control

For information about the standard commands for temperature control, refer to Practical Tips for Device Control Temperature Control (On/Off) and Controlling the Temperature.

In addition, the following properties allow you to determine, e.g., the maximum allowed deviation of the actual temperature from the expected temperature:

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTempDeviation²</td>
<td>0°C</td>
<td>10°C</td>
<td>5°C</td>
<td>If the actual column temperature deviates from the expected temperature by more than the set value, an error message appears. The following setting is required on the instrument: Follow the description in the instrument’s manual to set the Column Temperature/On error field to Alert User, Stop Funct, or StopFlow. For the column oven, this setting is made on page 4 (Column); for sample temperature control, it is made on page 2 (Sample).</td>
</tr>
</tbody>
</table>
| Ready² | NotReady| Ready | Ready | Indicates the state of the column heater. The column heater is Ready
• when temperature control (TempCtrl) is Off or
• when the difference between the actual temperature and the target temperature is equal or less than 2°C for at least 30 minutes. |
| Temperature.Nominal² | 20°C | 60°C | 20°C | Sets the target operating temperature (sample temperature control). The temperature must be at least 5°C above ambient. |
| Temperature.Value² | 0°C | 80°C | | Indicates the actual temperature. (The property is ready-only.) |
| TempCtrl² | Off | On | Off | Sets the state of the temperature control. (Temperature control is active only if TempCtrl = On.) |
Note:
For better understanding, [°C] is used as unit, even though [K] would be correct to indicate temperature differences.

Tip:
² The temperature control commands of the column oven can be used only if an injection is made. In all other cases, e.g. for Blank Run Samples, an error message appears.

It is not possible to change the MaxTempDeviation setting during an injection, during gradient runs, or at negative retention times.

The standard relay commands are available to control the relays of the Waters Alliance 2790 and 2795 HPLC modules (refer to Practical Tips for Device Control Relay, TTL, and Remote Input Commands).

For information about how to install the Waters Alliance 2790 and 2795 HPLC modules, refer to Hardware Installation Waters Alliance 2790/2795 HPLC Modules: Installation in the Administrator Help section.

For an overview of the Waters Alliance 2790 and 2795 HPLC modules, refer to Hardware Installation Waters Alliance 2790/2795 HPLC Modules: Overview in the Administrator Help section.
Waters Alliance 2790/2795: Overlapping Sample Preparation

The following program is an example for overlapping sample preparation with the Alliance 2790/2795 HPLC Modules and a Waters 996 or 2996 PDA Detector:

```plaintext
SampleHeater.TempCtrl = Off
ColumnOven.TempCtrl = Off
Pressure.LowerLimit = 1.0
Pressure.UpperLimit = 345.0
%A.Equate = "%A"
%B.Equate = "%B"
%C.Equate = "%C"
%D.Equate = "%D"
3DFIELD.MaxWavelength = 799.6
3DFIELD.MinWavelength = 190.0
3DFIELD.BunchWidth = 1.2
3DFIELD.Step = 1.0
UV_VIS_1.Wavelength = 272
UV_VIS_1.Bandwidth = 1.2
UV_VIS_1.Step = 0.50
UV_VIS_1.Average = Off
ExposureTime = Auto
Interpolate656nm = On
Flow = 1
%B = 0.0
%C = 0.0
%D = 0.0
Curve = 5

; Optional for overlapping sample preparation:
; SampleOverlapped = On

InjectMode = PartialLoop

; The following commands are used to fill the syringe as follows:
10.0 µl air, 5.0 µl sample, 10 µl reagent, and again 10.0 µl air:
PrepSubject = Air
PrepVolume = 10.0
Draw

PrepSubject = Sample_Vial
PrepVolume = 5.0
Draw

PrepSubject = 2_F8
```
; For this example: The reagent is in vial 2_F8 of a 48-vial rack
 PrepVolume = 10.0
 Draw
 PrepSubject = Air
 PrepVolume = 10.0
 Draw
 Mix
; The Mix command is required to complete the sample preparation
 commands:
 0.000 Autozero
 Wait UV.Ready and Sampler.Ready and ColumnOven.Ready and
 HPLC_System.Ready
 Inject
 3DFIELD.AcqOn
 UV_VIS_1.AcqOn

 5.000 3DFIELD.AcqOff
 UV_VIS_1.AcqOff

 End

Tips:

The SampleOverlapped = Off command is required to disable overlapping
sample preparation.

It is not possible to prepare the first sample after a blank sample or after a
run without injection while the previous sample is being analyzed.

The PrepSubject = Air command can be specified only as the first and/or
the last PrepSubject command.

For more information, also refer to Practical Tips for Device Control
 Overlapping Samples.
Waters 717plus Autosampler

For information about the standard autosampler commands, refer to Device Control Dionex Autosamplers.

In addition, Chromeleon supports the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SyringeVol</td>
<td>25, 250, 2500</td>
<td></td>
<td>Indicates the syringe volume (read-only).</td>
</tr>
<tr>
<td>InjectWaitTime</td>
<td>0</td>
<td>1E+7</td>
<td>Sets the time between the inject command and the inject response in seconds. The default setting is 0 s.</td>
</tr>
<tr>
<td>LoopPressure</td>
<td>-3.45</td>
<td>380</td>
<td>Indicates the pressure (in bar) in the sample loop (read-only). This property is available only on Expert level.</td>
</tr>
</tbody>
</table>

Note:

As described in the instrument's manual, negative pressure readings are possible for the sample loop pressure (LoopPressure property).

For an overview of the Waters autosampler, refer to Hardware Installation Waters 717plus Autosampler: Overview in the Administrator Help section.
Waters 996 and 2996 PDA Detectors

Tip:

Before data acquisition can start, the detector needs some time to load the parameter settings. That is why a Wait command is required before data acquisition is started.

In addition to the standard commands, the Waters 996 PDA detector supports the following commands and properties (please note that the display ➔Filter level determines which commands and properties are displayed):

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExposureTime</td>
<td>Auto; 11 ms</td>
<td>500 ms</td>
<td>Time during which a single diode is exposed to light. (The value cannot exceed the Step value - see below.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tip: Do not change the default ('Auto') unless absolutely required.</td>
</tr>
<tr>
<td>Interpolate656nm</td>
<td>Off</td>
<td>On</td>
<td>On: To protect the lamp the signal at 656.1 nm (Balmer line for deuterium) is ignored (visible only on the Expert level).</td>
</tr>
<tr>
<td>Lamp</td>
<td>Off</td>
<td>On</td>
<td>Turns the lamp on or off.</td>
</tr>
</tbody>
</table>

UV Channel Commands

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔Average</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Allows signal averaging.</td>
</tr>
<tr>
<td>➔Bandwidth</td>
<td>1.2 nm</td>
<td>30 nm</td>
<td>1.2 nm</td>
<td>Indicates the interval between two data points. (The value must exceed the ExposureTime value.)</td>
</tr>
<tr>
<td>➔Step</td>
<td>Auto, 0.01 s</td>
<td>4.80 s</td>
<td>Auto</td>
<td>Indicates the wavelength at which the detector measures the signal.</td>
</tr>
<tr>
<td>➔Wavelength h</td>
<td>190 nm</td>
<td>800 nm</td>
<td>240.0 nm</td>
<td></td>
</tr>
</tbody>
</table>

Tip:

After a Reset command, it takes 90 s until the detector is ready to execute further commands.
Commands and Properties of the 3D Field

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BunchWidth</td>
<td>1.2 nm</td>
<td>60 nm</td>
<td>1.2 nm</td>
<td>Describes the bandwidth of a bunch of diodes.</td>
</tr>
<tr>
<td>MaxWavelength</td>
<td>MinWavelength</td>
<td>799.6 nm</td>
<td>799.6 nm</td>
<td>Indicates the upper limit of the measuring range. (The setting cannot be changed during data acquisition.)</td>
</tr>
<tr>
<td>MinWavelength</td>
<td>190.0 nm</td>
<td>MaxWavelength</td>
<td>190.0 nm</td>
<td>Indicates the lower limit of the measuring range. (The setting cannot be changed during data acquisition.)</td>
</tr>
<tr>
<td>Step</td>
<td>0.1 s</td>
<td>0.2 s</td>
<td>0.5 s</td>
<td>1.0 s</td>
</tr>
</tbody>
</table>

Note:

Due to the minimum Bunch Width of 1.2 nm, the minimum and/or maximum wavelength can only have the following value: 190.0 nm + n*1.2 nm (where n = integer). If you enter a different value, the next lower value is used for the minimum wavelength and the next higher value is used for the maximum wavelength. This is logged in the Audit Trail.

The standard relay commands are available to control the relays of the Waters 996 and 2996 PDA detectors (refer to Practical Tips for Device Control Relay, TTL, and Remote Input Commands).

For an overview of the Waters 996 and 2996 PDA detectors, refer to Hardware Installation Waters 996 and 2996 PDA Detectors: Overview in the Administrator Help section.

For information about how to install the Waters 996 and 2996 PDA detectors, refer to Hardware Installation Waters 996 and 2996 PDA Detectors: Installation in the Administrator Help section.
Waters 2487 UV Detector

Tip:
Before data acquisition can start, the detector needs some time to load the parameter settings. That is why a Wait command is required before data acquisition is started.

In addition to the standard commands, the Waters 2487 UV Detector provides the following commands (please note that the display Filter level determines which commands are displayed):

<table>
<thead>
<tr>
<th>Command</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data_Collection_Rate (For more information, refer to > Data Collection Rate in the Glossary.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamp</td>
<td>Off</td>
<td>On</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commands and Properties of UV Channels

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutozeroOn EventIn²</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>AutozeroOn WlChange²</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Allows signal averaging.</td>
</tr>
<tr>
<td>FilterTime Constant³</td>
<td>0.0 s</td>
<td>99.0 s</td>
<td>1.0 s</td>
<td>Time constant for the selected noise filter.</td>
</tr>
<tr>
<td>FilterType</td>
<td>None</td>
<td>RC</td>
<td>Hamming</td>
<td>Filter type used to reduce analog and digital signal noise.</td>
</tr>
<tr>
<td>Signal. Upper/LowerLimit</td>
<td>-10^10 mAU</td>
<td>10^10 mAU</td>
<td>0</td>
<td>Indicates the upper and lower limit for the signal.</td>
</tr>
<tr>
<td>Step</td>
<td>Auto, 0.01 s</td>
<td>4.80 s</td>
<td>Auto</td>
<td>Interval between two data points.</td>
</tr>
<tr>
<td>Wavelength h</td>
<td>190 nm</td>
<td>700 nm</td>
<td></td>
<td>Wavelength at which the detector measures the signal (see the Troubleshooting section).</td>
</tr>
</tbody>
</table>
Tips:

² It is only possible to change the *Filtertype*, *AutozeroOnEventIn*, and *AutozeroOnWlChange* properties once in the PGM File during negative retention times.

³ It is not possible to change the time constant for the selected filter during data acquisition.

For an overview of the Waters 2487 UV detector, refer to **Hardware Installation 🌐 Waters 2487 UV Detector: Overview** in the Administrator Help section.

For information about how to install the Waters 2487 UV detector, refer to **Hardware Installation 🌐 Waters 2487 UV Detector: Installation** in the Administrator Help section.

Waters Instruments: Troubleshooting

Waters 2690/2695 or 2790/2795 Separation Modules:

a) A Separation Module (Alliance 2690/2695 or 2790/2795 modules) and the Chromeleon audit trail report a communication error with another Waters instrument, e.g., The instrument stops due to error circumstances or user interaction: Absorbance detector fault.

Cause: The reason is that both Chromeleon and the Separation Module attempt to control this instrument.

Remedial action: Disconnect the other Waters instrument from the Separation Module, and then perform the following steps on the Separation Module (the example refers to a detector):

1. In the main window, press the **Develop Method** key to open the **Method** window.

2. Use the arrow key to select the <**Default**> method. Confirm your selection by pressing <Enter>.
3. Press the **Next** key until the **Detectors** window is opened:

![Detectors Window](image.jpg)

4. Use the arrow keys to select the first detector and press <Enter>.
5. Use the arrow keys to select the <Not used> option and press <Enter>.
6. If necessary, repeat steps 4 and 5 for all other detectors.
7. Press the **Exit** key to open the **Save Method** dialog box.
8. Select **Yes** to save the method.
9. In the main window, select **Default Method**.
10. Make sure that the other parameters in the method, e.g., extreme flow rates, selected solvents, etc., do not cause any damage.
11. Start the method.
12. Immediately stop the method.

b) No injection is performed although the Inject command was executed. **Conditioning Column** and a countdown are displayed on the instrument's display. The injection is not performed either after the countdown time has expired.

Remedial action: On the **Condition Column** menu on the instrument, set the conditioning time to 0:

1. Press **Menu/Status** to open the **Status** dialog.
2. From the **Method** field, select the column conditioning method.
3. Press the Direct Function key.

4. Select Condition Column and confirm by pressing OK. The Condition Column dialog box is opened.

5. (Option) Specify the column that is currently conditioned if applicable.

6. Set the time to 0 and confirm with OK.

Waters 2487 UV Detector:

When you enter a wavelength, the following warning can appear: "Wavelengths will span 370 nm during acquisition. The order filter will not be used. Do you really want to execute this command?"

Reason: The detector automatically uses a filter for wavelengths above 370 nm. In this way, unwanted UV light is filtered out. For measurements at or below 370 nm, the filter is automatically removed. The warning appears when the measuring wavelength of one channel is above 370 nm while the measuring wavelength of the other channel is below or equal to 370 nm.

Remedial Action: Click Yes to confirm the warning. Data acquisition is performed at the selected wavelengths without a filter. However, in this case, it may happen that errors occur in the data recorded at the higher wavelength, due to unwanted UV light. Or else, click No to use two wavelengths that are both either above or equal to 370 nm or below 370 nm.

Also, refer to **GPIB-Connected Devices: Troubleshooting.**

For an overview of the different Waters instruments for which device drivers are available in Chromeleon, refer to **Hardware Installation Waters** in the Administrator Help section.
GPIB-Connected Devices: Troubleshooting

Communication Error

A communication error may occur when you install a driver in the Server Configuration program. Possible reasons are:

- The instrument is either turned off or disconnected from the mains.
- An invalid address has been assigned to the instrument.
- Only for the Waters Separation Modules (2690/2695 or 2790/2795): The Controlled by Millennium 32 option has not been enabled on the module. (The Administrator Help section provides more information; refer to Hardware Installation Waters Alliance 2690/2965 HPLC Modules: Installation, Device Settings section.)
- The instrument is not yet completely initialized.
- There are problems with the cable.
- The instruments are not connected in series. One or more instruments are connected in a star structure.
- One or more of the instruments are turned off.
- There are more than 20 devices connected.
- The cable length between two instruments exceeds 4 meters.
- The average cable length between the separate instruments connected to a bus exceeds 2 meters.

Remedy the situation, and then reinstall the driver in the Chromeleon Server Configuration.

Problems with Cables

If problems occur with a cable, follow the steps below:

1. Turn the instruments off.
2. Perform the following steps in succession for the individual instruments:
 - Connect only one instrument to the PC.
 - Make sure that the GPIB address for the connected instrument is correct.
• Wait until the instrument has completely initialized.
• Try to connect the instrument from a Chromeleon panel.

3. If you cannot connect to the instrument from Chromeleon, the reason is mainly that the cable is defective. Turn off the instrument and replace the cable.

Also, refer to Waters Instruments: Troubleshooting.
Practical Tips for Device Control

In addition to the standard commands of the Program, which are easily created with the Program Wizard (see The Control Program), Chromeleon supports various additional Control Commands. For more information about these commands and the command syntax, refer to:

- Pump and Flow Control
- Autosampler Control
- Detector Control
- IC Control
- GC and Temperature Control
- Component Controller Control
- Special Commands, Relay Control, and Miscellaneous

- Transfer the structure and syntax of the commands that you want to use to your program file.
- Use Cut & Paste to install the command directly from online Help at the appropriate position in the standard program.
- Specify the time when to execute each command.
- Save the result of your input as a PGM File.
Pump and Flow Control

The following commands are available for pump and/or flow control. For the "simple" commands, refer to Pump Commands.

For more information, refer to:

- Setting the Flow Rate
- Determining the Solvent Composition
- Determining a Gradient
- Determining Pressure and Pressure Limits
- Starting/Stopping the Pump Flow
- Holding the Pump Flow

In addition, refer to the following information about

- Recording the Pump Pressure
- Setting Automatic Pre-Compression Control (P580)
- Viewing Leak Sensor and Workload Status.
- Parking Peaks

You can use an Active Flow Splitter (MRA) to split the flow. For a typical program example, refer to Splitting the Flow (Program Example).
Pump Commands

The following commands are supported for pump and/or flow control:

Hold/Continue Gradient

0.000 HoldMode = On / Off

Alternatively, the following short command is valid:

0.000 ⇒Hold or 0.000 ⇒Continue

Stop Pump Flow/Gradient

0.000 StopMode = On or 0.000 ⇒StopFlow

Determining Pressure Limits (see ⇒Pressure.Lower/UpperLimit)

0.000 Pressure.LowerLimit = Value[bar, MPa, psi]
0.000 Pressure.UpperLimit = Value[bar, MPa, psi]

Note:

The pressure unit (bar, MPa, or psi) depends on the pump type.

Generating a Flow or % Gradient

The flow or solvent value determined for the time t is continually adjusted to the following flow or solvent command. If the two values coincide, the flow or solvent value is kept at a specific level (see ramp profile 0 to 1), if they differ from each other, the value is modified. The difference between the two time values corresponds to the length of the ramp (see ramp profile 1 to 2min).

0.000 %B.Value = 20
1.000 %B.Value = 20
2.000 %B.Value = 50
3.000 %B.Value = 50

Ramp Profile
Tip:

Dionex GP40/GP50, IP20/IP25, IC20/IC25/IC25A, GS50, and IS25 pumps do not deliver flow gradient ramps. Instead, changing the flow rate between one time value and the next results in an immediate change in the flow rate (step change).

To determine a sharp increase, two different values must be defined at the same time. The start and end values must be entered at the exact times (see rectangle profile at the time t=1min).

<table>
<thead>
<tr>
<th>Time</th>
<th>%B.Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>20</td>
</tr>
<tr>
<td>1.000</td>
<td>20</td>
</tr>
<tr>
<td>1.000</td>
<td>40</td>
</tr>
<tr>
<td>2.000</td>
<td>40</td>
</tr>
<tr>
<td>2.000</td>
<td>20</td>
</tr>
<tr>
<td>3.000</td>
<td>20</td>
</tr>
</tbody>
</table>

Rectangle Profile

By combining the just mentioned possibilities, any multi-step gradient profile can be realized. For example:

<table>
<thead>
<tr>
<th>Time</th>
<th>%B.Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>20</td>
</tr>
<tr>
<td>0.500</td>
<td>20</td>
</tr>
<tr>
<td>1.500</td>
<td>40</td>
</tr>
<tr>
<td>2.000</td>
<td>40</td>
</tr>
<tr>
<td>2.000</td>
<td>30</td>
</tr>
<tr>
<td>2.500</td>
<td>30</td>
</tr>
<tr>
<td>2.500</td>
<td>20</td>
</tr>
</tbody>
</table>

Multi-Step Profile

Instead of the arbitrarily selected quantity %B used in these examples, any other solvent (see ⇒%B, %C, %D) or the flow rate can be changed.

Creating a Non-Linear Gradient Ramp (Dionex GP40/GP50/GS50 pumps only)

A Curve command (also, refer to Gradient Curves) instructs the pump to apply the selected curve number when adjusting the solvent composition between two retention times. In the example below, the Curve = 8 command at 2 min creates a concave ramp between 1 and 2 min.
Consecutive commands with identical solvent compositions generate an isocratic segment, regardless of the curve number selected (see 0 to 1 min and 2 to 3 min below).

<table>
<thead>
<tr>
<th>Time</th>
<th>%B.Value</th>
<th>Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2.000</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>3.000</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Non-Linear Ramp Profile

Setting the Flow Rate

The \RightarrowFlow rate is set via the corresponding controls on the control panel (slider, edit field, or button). For more information about the control panel, see Control The Control Panel.

- To set a higher or lower flow rate, use the mouse to move the gauge slider in the desired direction.
- Enter the desired flow rate value in the edit field via the keyboard. Confirm your input by pressing <Enter> (Return).
- Click a button to execute the assigned function.
- Alternatively, select Flow on the Control menu.

It is also possible to include the Flow command in the \RightarrowProgram (see How to: Creating and Modifying Programs Creating a Program). Example:

```
0.000  Pump.Flow   = Value[ml/min%] ;HPLC/IC pump
0.000  InjectorB.flow = Value[ml/min%] ;GC HP5890
```

Several Flow commands result in a \RightarrowFlow Gradient. For a description on how to enter gradients, refer to Determining a Gradient.
Determining the Solvent Composition

Manually

For non-controlled pumps, solvent composition (see ⇒%B, %C, %D) is set directly on the instrument (also, refer to the Operating Instructions of the instrument).

For controlled pumps, Chromeleon features the appropriate controls (sliders, edit fields, switches, etc.). Depending on the control panel layout, you can set the values for %B, %C, and %D via either a slider or an edit field.

- Use the mouse to move the slider of a gauge in the desired direction.
- Type a value in an edit field and press <Enter>.
- To determine a gradient, select ⇒Flow on the Control menu (also, see Determining a Gradient).

Programmed

To change the solvent composition via the program, enter the following commands in the ➔Program:

```
t=.... %B.Value = Value[%]
t=.... %C.Value = Value[%]
t=.... %D.Value = Value[%]
```

If you enter the command several times for at least one component, this input results in a ➔% Gradient.

For more information, refer to How to: Creating and Modifying Programs Creating a Program.
Determining a Gradient

There are two ways how to determine a gradient. You can do this either manually on a control panel or automatically via a program:

Manual Input

Different dialog boxes are provided for each device for which a gradient can be determined. Use these dialog boxes to enter the device-specific settings. You can determine:

- ⇒ Flow and % gradients for HPLC and IC pumps.
- Temperature, pressure, and flow gradients for gas chromatographs.

A gradient can be run either as a ramp or as a Step Gradients (in IC, also as a Gradient Curve).

- Select Flow on the Control menu or press <CTRL> + <F>. Make the necessary settings in the dialog box.
- For HPLC/IC, determine the desired gradient on the Gradient tab page. For gas chromatographs, select a gradient on the GC and Column1 and Column2 tab pages.

Programmed Input

The easiest way to create a new program is to use the Program Wizard (see The Control Program The Program Wizard). To open the wizard, select New on the File menu, and then select Program File.

HPLC/IC

On the Pump Options page, select Multi-Step Gradient. The Flow Gradient Options dialog box appears. This dialog box corresponds to the Gradient page during manual input.

GC

On the GC Options page (or the Front/Back Inlet Options tabs), click the arrow next to the Type field, and then select Ramped Temperature from the list. This setting allows you to program a temperature gradient. In the same way, you can program flow and pressure gradients. Select Ramped Flow or Ramped Pressure on the Column1 Options and Column2 Options pages.
Entering "Basic points"

HPLC/IC

- In the **Retention** column, enter the time (relative to the injection time) of the desired modification.
- In the **Flow** column, enter the new value for the flow rate.
- In the %B, %C, and/or %D columns, enter the new value for the delivered solvent composition. %A is the difference between the total of the entered values and 100%.
- For Dionex GP40, GP50, and GS50 pumps only: Enter a value in the **Curve** column to determine whether the pump delivers a linear or **Curved Gradient**. Curve 5 (the default) is linear; curves 1 - 4 are convex upward and curves 6 - 9 are concave upward.
- Click **Insert Line** to append another line to the table. After appending the first new line, further lines are appended automatically, as necessary. Enable or disable this option by selecting or deselecting **Autom. Append New Lines** on the context menu.
- Click **Delete Line** to remove unnecessary lines from the table.
- If an entry is invalid, the input in the corresponding cell is displayed in red color. Invalid entries must be corrected immediately.
- Click **Clean Up** to delete superfluous information from a previously selected area.
- To calculate missing values between two or more time values can, click **Interpolate**. The values are automatically added to the table.
- Select **Fill Column** on the context menu to fill the cells in the column with the currently selected value. Only the cells below the selected value are filled.

In a graphical representation, each flow and solvent value of the value table is represented as a point. By interpolation between the basic points of a column, an area gradient profile is created. The solvent areas are represented in the color of the corresponding caption; the flow rate is displayed as a thin line.
Direct Input into a Program

If you know the \textit{Program} syntax, you can directly determine the gradient in the program. Entering the \texttt{⇒%B, %C, %D, ⇒Flow,} and \texttt{Temp.} commands in the program allows you to change the solvent composition, flow rate, and temperature at a precise time. The gradient profile results from the change in value of a certain quantity at the time \(t \).

\textbf{Tip:}

The Dionex GP40/GP50, IP20/IP25, IC20/IC25/IC25A, GS50, and IS25 pumps do not deliver flow gradient ramps. Instead, changing the flow rate between one time value and the next, results in an immediate change in the flow rate (step change).

\textbf{Example:} The three different profiles are realized via the commands listed below the profiles.

\begin{itemize}
\item \textbf{Rectangle Profile}
\item \textbf{Ramp Profile}
\item \textbf{Multi-Step Profile}
\end{itemize}

For a rectangle profile, indicate exactly how long the specific solvent composition is valid. If the composition is changed at the same time as another percent command is defined, the change in solvent composition is executed immediately. The solvent percentage achieved is then maintained until replaced by another command.

To realize an increase over a longer period, the start value and end value must be specified with the precise time. The difference between the two time values corresponds to the duration of the increase (see ramp profile).

You can realize any multi-step gradient profile by combining the above-mentioned possibilities.

For more information about how to enter basic points in GC, refer to \textit{Determining a Gradient (GC)}.
Determining Pressure and Pressure Limits

Pressure

The operating pressure can only be determined for gas chromatographs. It depends on the layout of the control panel which type of control is used to set the pressure.

- Determine the pressure via the corresponding slider or type the value in the input field.

For other devices, such as Dionex IC and HPLC pumps, the current operating pressure can be displayed on a control panel.

Pressure Limits

Some device drivers provide the possibility to determine the upper and lower pressure limits.

- Type the corresponding value in the input field.

Or

- Position the slider for the upper and lower pressure limits with the mouse pointer. Assign different colors to the controlling sliders so that they indicate whether a pressure limit is exceeded or whether it is within the selected limits (see How to: Controlling Devices from the Control Panel Modifying a Control).

If defined ⇒ Pressure Limits, for example, of an HPLC pump, are exceeded, Chromeleon automatically turns off the flow, issues an error message, and stops the sample batch, as necessary. In addition, all operations are logged in the Audit Trail.

It is also possible to determine the pressure limits by entering the following commands in the Program:

\[
\begin{align*}
0.000 & \ X.\text{Pressure}_\text{LowerLimit} = \text{Value[bar, MPa, psi]} \\
0.000 & \ X.\text{Pressure}_\text{UpperLimit} = \text{Value[bar, MPa, psi]}
\end{align*}
\]

where X refers to the name of the instrument defined in the Server Configuration. The pressure unit depends on the pump type.
Starting and Stopping the Pump Flow

- Select ⇒StopFlow to stop the pump flow and the ➤Gradient formation. During a running ➤Batch, batch processing is stopped.
- Select ⇒Continue to resume the pump flow, a running gradient program, or batch processing.

Tip:
The ⇒Hold command interrupts gradient formation and automatic batch processing, but not the pump flow.

Holding the Pump Flow

- Select ⇒Hold to interrupt ➤Gradient formation or a running batch. During a running ➤Batch, sample processing is stopped.

In Hold mode, the pump delivers a constant flow rate and solvent composition until a stop or a ⇒Continue command is entered.

Recording the Pump Pressure

To determine whether signal variations are related to pressure variations, that is, whether the pump causes those variations, Dionex recommends that you record the pump pressure as an additional signal.

Hardware Configuration

To display the pump pressure, an analog pressure output must be available on your pump. In addition, a ➤UCI-100 Universal Chromatography Interface is required. Connect the pressure output of your pump to one of the free channels of the UCI-100.

Tip:
If you do not have a UCI-100 installed, a virtual channel can be used to record the pump pressure. If you use a virtual channel, note the greater distance between the measured values (⇒Step). For an example, refer to Program Examples for Virtual Channels.
Server Configuration

P680:

On the General tab page, select the Pressure Signal check box to record the pump pressure. Chromeleon generates the Pump_Pressure channel for data acquisition.

Other Pumps:

Add an Integrator Driver to the devices of the corresponding timebase. Name the unassigned signal, for example, Pump_Pressure, and click Change.

Select the channel to which the pressure output of your pump is connected as AD Port. Enter under Factor how many bar correspond to an output voltage of 1 mV. For example, enter 0.5 bar/mV (0.5 bar = 50 kPa = 7.25 psi) for the Dionex P580 pump or 5 bar/mV (5 bar = 500 kPa = 72.5 psi) for the Dionex M480 pump.
You can now record data for the **Pump_Pressure** channel. Data acquisition can also be defined in the ➔PGM File or by selecting ➔AcqOn on the **Control** menu on the ➔Control Panel.

Panel

- When you are on the signal plot of your panel, select **Signals** on the context menu.
- Select a signal in the **Available Signals** field (that is, for the above example, select **Pressure**).
- When starting the data acquisition, select the **Pump_Pressure** channel and define the ➔Step (see ➔Starting Data Acquisition).

Setting Automatic Pre-Compression Control (P580)

The better the pump is set to the varying compressibility of the different components of the solvents, the lower the pump's pulsation. Automatic pre-compression control of the Dionex P580 pump considers the varying compressibility of different solvents. Automatic pre-compression control can also be used for unknown solvents.

With low-pressure gradients and isocratic pumps, pre-compression control is fully automatic. On the ➔Control Panel, select **Commands** on the **Control** menu. Select the pump and the solvent components one after the other and assign the component type **Automatic**.

The high-pressure gradient pumps must "learn" the automatic pre-compression control. Select **Commands** on the **Control** menu. Select the pump and the solvent component. Assign the solvent type **Custom**. Deliver 100% of this solvent at 1 ml/min and a backpressure of approximately 100 bar (= 10 MPa = 1450 psi). Select **Commands** on the **Control** menu and issue the ➔Learn command. Observe the pressure signal for at least 10 minutes. Issue the corresponding pump ➔Freeze command to save the optimum pre-compression setting when the pressure fluctuations from the pump are minimal.

Tip:

*During the **Learn** phase, the backpressure should correspond to the maximum pressure in normal operation. If the backpressure is less than 25°bar (= 2.5 MPa = 362.5 psi) during this phase, pre-compression control cannot be set correctly! Increase the backpressure, for example, by*
installing a second column or a longer capillary before the detector. Again, wait for approximately 10 minutes before saving the pre-compression value using the Freeze command.

Change the flow to 100% of the next solvent and set the pre-compression control as described above.

For a detailed description, refer to the P580 Operating Instructions.

Viewing Leak Sensor and Workload Status

The Dionex P580 pump allows you to display the status of the leak sensor. In addition, you can display the Cumulated Workload.

To create the corresponding controls, follow the description in How to: Controlling Devices from the Control Panel:

- Modifying a Control Panel
- Modifying a Control
- Linking a Control to a Device

Select Commands on the Control menu. Under Pump, select Leak to display the status of the leak sensor. Click Cumulated WorkLoad to display the total workload [in mega joule, MJ] of the pump.

Peak Parking

The UltiMate system pump allows peak parking, for example, to increase the Mass Spectrometer acquisition time while the peak elutes. The ParkPercentage enables peak parking. Select the PeakParked property to display the peak parking state.

Peak parking is similar to the behavior of the StopFlow command:

- The Gradient program is interrupted.
- Usually, the pump flow is reduced (but not turned off).

However, unlike the behavior of the StopFlow command:

- Data Acquisition (see Acquisition On/Off) is not interrupted.
- A running Batch is not stopped.
Select **ParkPercentage** to enable and disable peak parking. The following value disables peak parking:

0.000 ParkPercentage = Disabled

ParkPercentage > 0.00 sets the flow to the following relative value during PeakParked state:

\[
\text{current flow} \times \text{ParkPercentage}.
\]

The PeakParked state is entered whenever the signal at the pump’s START IN input changes from Open to Closed (edge trigger) and continues until the signal changes from Open to Closed again:

![PeakParked State Diagram]

At each sample start, the PeakParked state is reset.

Tip:

Peak parking freezes the gradient with its current composition and reduced flow while data acquisition continues. Make sure that data acquisition is long enough (that is, the expected running time of the chromatogram + expected time for peak parking). Therefore, with peak parking the retention times do not correspond to the expected times. In addition, Audit Trail entries and gradient plots are no longer synchronized.
Splitting the Flow (Program Example)

The Dionex Active Flow Splitter (MRA), which is usually part of an APS system for Autopurification, splits the HPLC flow and directs the smaller portion to a Mass Spectrometer. The following program is a typical example for how to set up flow splitting in a PGM File:

```plaintext
. . .
3DFIELD.Step = 0.5 [s]
Pump.Flow = 50.000 [ml/min]
; MRA settings: Communicate the used flow rate and the target value for the split ratio
; Caution: You might find it useful to add an implicit assignment, such as MRA.Flow = Pump.Flow. However, this is not possible as most pumps do not deliver the target value immediately. The Flow property always sets the actual flow.
; Therefore, you have to set the MRA flow explicitly:
MRA.Flow = 50.000 [ml/min]
MRA.SplitRatio = 20000
Autozero
Wait Ready
Inject
UV_VIS_1.AcqOn
; To minimize wear, start the MRA after the injection if possible:
MRA.RunState = On
. . .
; You can change the split ratio during a run.
1.300 MRA.SplitRatio = 100000
. . .
2.600 MRA.SplitRatio = 20000
. . .
10.000 UV_VIS_1.AcqOff
; To minimize wear, stop the MRA after a run if possible
MRA.RunState = Off
End
```
Autosampler Control

Depending on the Autosampler type, different commands are available. For an overview of the individual commands that are available for the different Dionex autosamplers, refer to:

- Autosampler Commands (GINA 50)
- Autosampler Commands (ASI-100 Series)
- Autosampler Commands (AS/AS50)
- Examples for User-Defined Programs for the WPS-3000 Well-Plate Micro Autosampler
- Examples for User-Defined Programs for the FAMOS Autosampler (LC Packings)

The following pages provide detailed information about:

- Injecting a Sample
- Setting Up Remote Injection
- Priming the Syringe (ASI-100 Series)
- Defining Sample Preparation Steps (AS/AS50)
- Overlapping Samples
- Injecting Two Samples Simultaneously
- Opening the AS/AS50 Door during Operation
- Monitoring the Status of the AS/AS50
Autosampler Commands (GINA 50)

Suck (see **Draw/**Dispense Sample**

<table>
<thead>
<tr>
<th>Time</th>
<th>Command</th>
<th>Position</th>
<th>Volume [µl]</th>
<th>Duration [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>Suck</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>0.000</td>
<td>Dispense</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
</tbody>
</table>

Note:

In the case of the Dionex Autosampler GINA 50, the corresponding operations can be synchronized with Chromeleon via a remote input and the Suck and Dispense commands. The device automatically reports the completion of each operation to Chromeleon. In the Program, the wait command **Sucked** must be inserted. All following commands are executed only after the autosampler confirmed the execution of the Suck command, that is, after the sample has been drawn. The program performs this independently of the time required by the autosampler for the suck and dispenses processes. This is shown in the following example:

<table>
<thead>
<tr>
<th>Time</th>
<th>Command</th>
<th>Position</th>
<th>Volume [µl]</th>
<th>Duration [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>Suck</td>
<td>20</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>0.000</td>
<td>Wait</td>
<td></td>
<td></td>
<td>Sucked</td>
</tr>
<tr>
<td>0.000</td>
<td>Suck</td>
<td>21</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>0.000</td>
<td>Wait</td>
<td></td>
<td></td>
<td>Sucked</td>
</tr>
<tr>
<td>0.000</td>
<td>Dispense</td>
<td></td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>0.000</td>
<td>Wait</td>
<td></td>
<td></td>
<td>Sucked</td>
</tr>
<tr>
<td>0.000</td>
<td>=>Inject</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description of the program part: First, the Autosampler GINA 50 draws 30 µl solution from **Position** 20 and afterward draws 30 µl solution from position 21. The entire drawn volume is dispensed in the current vial (current = last position if no other position is specified). Then, the injection volume, which has been specified in the sample list, is drawn and injected from there.

Short command syntax:

<table>
<thead>
<tr>
<th>Time</th>
<th>Command</th>
<th>Position</th>
<th>Volume [µl]</th>
<th>Duration [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>Suck</td>
<td>20, 30</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>Wait</td>
<td></td>
<td>Sucked</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>Suck</td>
<td>21, 30</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>Wait</td>
<td></td>
<td>Sucked</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>Dispense</td>
<td></td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>0.000</td>
<td>Wait</td>
<td></td>
<td>Sucked</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>Inject</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relative Sample Location

The Dionex Autosampler GINA 50 is capable of executing the suck and the dispense commands relative to a certain sample position. The **Position+Location** is entered in the field **Position** of the **Suck** or **Dispense** commands. In the program this is expressed as follows:

```
0.000 Suck Position = 20, Volume = 30, Duration = 0
0.000 Wait Sucked
0.000 Suck Position = Position+10, Volume = 30, Duration = 0
0.000 Wait Sucked
0.000 Dispense Position = Position+20, Volume = 60, Duration = 0
0.000 Wait Sucked
```

Description of the program part: The autosampler takes 30 µl of solution from position 20, moves 10 positions from the current position in the sample list, and takes 30 µl of solution from there. Then, the 60-µl solution is dispensed into a vial that is located 20 positions from the current sample vial.

Air Segment

For the Dionex GINA 50 Autosampler, the input position = 100 is an imaginary **Air Vial** from which a certain air volume can be drawn as a separating segment; for example:

```
0.000 Suck Position = 20, Volume = 30, Duration = 0
0.000 Wait Sucked
0.000 Suck Position = 100, Volume = 30, Duration = 0
0.000 Wait Sucked
0.000 Suck Position = 21, Volume = 30, Duration = 0
0.000 Wait Sucked
```

Description of the program part: After 30 µl of solution is sucked from position 20, 30 µl of air is sucked before another 30 µl of solution is sucked from position 21. Thus, the two solutions do not encounter each other.

Note:

Only use the Segment command in combination with the Dispense command, as otherwise the sucked air volume is also injected.
Dispense in Needle Seat

Entering position 101 in a Dispense command enables dispensing the volume contained in the needle into the needle seat of the Autosampler and thus into the waste container.

```
0.000 Dispense Position = 101, Volume = 60, Duration = 0
```

Wash Injection Loop

Select the ⇒Wash command to rinse the injection loop of the Gina 50 autosampler with solvent. This corresponds to the normal solvent flow during the Inject command.

```
0.000 DEVICENAME.Wash Or
0.000 Wash
```

Lift/Lower Sample Needle

Select the ⇒NeedleUp command to lift the sample needle. When lifting the needle, an active Wash process is automatically interrupted, i.e., solvent flow is not through the injection loop any longer but directly from the pump to the column.

```
0.000 NeedleUp
```

Execute the Wash command to lower the needle again and direct the solvent flow through the sample loop again (for more information see ➢Autosampler).

```
0.000 Wash
```

The combination of the two commands prevents crystallization of substances in the sample loop.

For an overview of the individual commands for the GINA 50, refer to Commands for Controlling Dionex Devices.Dionex GINA 50 Autosamplers.

Also, refer to ➢Autosampler Commands (ASI-100 Series).
Autosampler Commands (ASI-100 Series)

Many commands of the Dionex ASI-100 Autosamplers (ASI-100 T and ASI-100 PT= with temperature control) are similar to those of the GINA 50 (see Autosampler Commands (GINA 50)). However, there are some important differences, which are described below:

Sample Positions

The sample vials are situated in three different segments, which are distinguished by color. Within the segments, the vials are situated in different rows. Thus, the sample Positions are indicated as follows:

Letters according to their color describe the individual segments: R, G, or B (indicating the red, green, and blue segment, respectively). The different rows are described from the outer to the inner row: A, B, C, or D. The individual positions within the respective rows are numbered counterclockwise. For example, the RA1 position is located in the outer row of the red segment (also, refer to the Operating Instructions for the ASI-100 Series).

Autosampler Configuration

Specify the device configuration before starting the actual program. It is important to define the sample positions for the reagents and the wash liquid. These positions are valid throughout the entire running time of the program:

0.000 Sampler.ReagentAVial BB1
0.000 Sampler.ReagentBVial BC1
0.000 Sampler.ReagentCVial BA1
0.000 Sampler.WashVial G99
0.000 Sampler.PrepVial R99

The following commands define the number of draw and dispense actions (for the Mix command):

0.000 Sampler.MixRepeat 3

⇒Draw, ⇒Dispense Sample, ⇒Mix

Before issuing the Draw, Dispense, or Mix command, specify the vial (depending on the selected option - see below) from which to draw and/or dispense and the volume to draw and/or dispense (the latter for the Mix command):
The following options are available for the **PrepSubject** command:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepVial</td>
<td>Actual mixing vial position (current PrepVial value)</td>
</tr>
<tr>
<td>Sample_Vial</td>
<td>Vial for the actual sample in the sample list (current Sampler.Position value)</td>
</tr>
<tr>
<td>WashVial</td>
<td>Vial containing the wash liquid (current Sampler.WashVial value)</td>
</tr>
<tr>
<td>Air</td>
<td>Air (with the Draw command) and needle port (with the Dispense command), respectively</td>
</tr>
<tr>
<td>ReagentA (B, C or D)</td>
<td>Reagents A (B, C, or D) (actual Sampler.ReagentAVial value)</td>
</tr>
</tbody>
</table>

Some commands need to be synchronized with Chromleon, that is, the autosampler automatically reports completion of the respective operation to Chromleon. In addition, the **Sampler.Ready** wait condition must be part of the ➪ **Program**. The following commands are executed only after the autosampler has confirmed that the command has been executed. This applies to the **Draw**, **Dispense**, **Mix**, **Test**, and ➪ **Wash** commands and is illustrated below:

0.000 PrepSubject Sample_Vial
0.000 PrepVolume 30
0.000 Draw
0.000 Wait Sampler.Ready
0.000 PrepSubject ReagentA
0.000 PrepVolume 30
0.000 Draw
0.000 Wait Sampler.Ready
0.000 PrepSubject MixVial
0.000 PrepVolume 60
0.000 Dispense
0.000 Wait Sampler.Ready
0.000 ➪Inject Position = PrepVial

Description of the program part: First, the autosampler draws 30 µl of solution from the current sample vial, and, upon completion, 30 µl of solution from the reagent A vial. The entire volume drawn is dispensed into the MixVial. The injection volume, which has been specified in the sample list, is then drawn and injected from this position.
Air Segment

To draw an air segment, specify that the PrepSubject be Air. For example, use the following program part to draw two samples separated by an air segment. The air segment prevents early mixing in the needle and makes sure that an exactly defined reaction time is met.

```
0.000 PrepSubject    ReagentA
0.000 PrepVolume     100
0.000 Draw
0.000 Wait           Sampler.Ready
0.000 PrepSubject    Air
0.000 PrepVolume     5
0.000 Draw
0.000 Wait           Sampler.Ready
0.000 PrepSubject    Sample_Vial
0.000 PrepVolume     100
0.000 Draw
0.000 Wait           Sampler.Ready
0.000 PrepSubject    MixVial
0.000 PrepVolume     205
0.000 Dispense
0.000 Wait           Sampler.Ready
```

Description of the program part: Having drawn 100 µl of reagent A, 5 µl of air is drawn first before another 100 µl of sample is drawn from the vial. Thus, the two solutions encounter each other in the mixing vial only.

Relative Sample Location

1. **Different rings:** The autosampler can execute commands relative to a given sample position. Type the description "Position + relative entry" in the **Position** field of the **Draw** or **Dispense** commands. In the program, this is expressed as follows (if the current position is in the RA ring):

```
0.000 PrepSubject    Sample_Vial
0.000 PrepVolume     30
0.000 Draw
0.000 Wait           Sampler.Ready
0.000 Position       Position + RB1 - RA1
0.000 PrepSubject    Sample_Vial
0.000 PrepVolume     30
0.000 Draw
0.000 Wait           Sampler.Ready
0.000 Position       Position + RC1 - RB1
0.000 PrepSubject    Sample_Vial
0.000 PrepVolume     60
0.000 Dispense
0.000 Wait           Sampler.Ready
0.000 Inject         Volume=30
```
Description of the program part: The autosampler draws 30 µl of solution from the actual sample vial, moves to the respective position in the RB ring, and draws 30 µl of solution from this position as well. Then, the 60 µl solution is dispensed into the vial at the respective position in the RC ring. For example, if the current sample is situated at position RA3, another 30 µl will be drawn from position RB3, and the entire volume of 60 µl will be dispensed at position RC3. After that, 30 µl are injected from position RC3.

Note:

To complete the program, the PrepSubject command is repeated with the Sample_Vial argument. However, this command is not required, as Chromeleon keeps the latest setting. The second command (= PrepVolume) could also be omitted, as it only repeats the argument "30."

2. Different segments: You can also place the samples to derivate into the red segment, for example, and execute the mixing process with a reagent in the corresponding sample vial in the green segment using the following commands:

```
0.000 Sampler.PrepVial Position + GA1 - RA1
0.000 PrepSubject PrepVial
0.000 Mix
```

The first line specifies that the corresponding vial in the green segment be used as the mixing vial for the sample in the red segment. For example, if you wish to process the sample at position RB5, mixing takes place at position GB5.

3. Incrementing the positions: Another way is to increment the positions. Use the following example to define a position 5 after the current position for MixSubject:

```
0.000 Sampler.PrepVial Position + 5
0.000 PrepSubject PrepVial
0.000 Mix
```

For example, if you wish to process the sample from position RB3, the vial at position RB8 is the mixing vial.
Wash Needle

Use the **Wash** command to rinse the autosampler's needle with the wash liquid. The wash volume is drawn and dispensed into the needle seat.

0.000 WashVolume Value [µl]
0.000 Wash

For an overview of the individual commands for the ASI-100 Autosamplers, refer to **Commands for Controlling Dionex Devices**:** Dionex ASI-100 Autosampler Series**.

Autosampler Commands (AS/AS50)

Sample Loading and Injection

With the AS and AS50 autosamplers, sample loading and injection are two distinct events. The **Load** command switches the injection valve to the load position and moves the sample from the AS or AS50 inject port into the sample loop. The **Inject** command switches the injection valve to the inject position, which directs the pump flow through the loop. The sample is then transported from the loop to the column.

Tip:

Clicking the **Inject** button on the control panel sends both the **Load** and the **Inject** commands to the autosampler.

Note:

If the AS or AS50 is in Simultaneous mode, separate **Valve.LoadPosition** and **Valve.InjectPosition** commands are required (in addition to the **Load** and **Inject** commands). See the description of Simultaneous mode below for details.

Flush the Inject Port

The **Flush** and **Wait** commands must be in the order shown. We recommend that these commands occur either before any other **Autosampler** commands or after all other autosampler commands.

Flush Volume = Value [µl]
Wait FlushState
Autosampler Options

All AS and AS50 autosampler option commands must be grouped together in the Program. Place them at the beginning of the program, before t = 0.000. You do not need to specify event times for the option commands.

Devicename.NeedleHeight = Value [mm]
Devicename.CutSegmentVolume = Value [µl]
Devicename.SyringeSpeed = Value
Devicename.ColumnTemperature = Off / Value [°C]
Devicename.TrayTemperature = Off / Value [°C]
Devicename.Cycle = Value

Sample Preparation

All AS and AS50 sample prep commands (Pipet, Mix, FlushSP, DelaySP, SetNeedleHeight, Dilute, Dispense, Concentrate, ReagentPrime, and ReagentFlush) must be grouped together in the program. Place them at the beginning of the program, after the AS and AS50 option commands and before t=0.000. You do not need to specify event times for the sample prep commands. Include a Wait SampleReady command after the sample prep commands to allow them to be completed before injection.

Note:
The Dilute and Dispense commands are available only if the AS or AS50 is equipped with the sample preparation option. The Concentrate, ReagentPrime, and ReagentFlush commands require AS or AS50 (USB) Moduleware version 2.0.0 (or later). These commands are not available for the DX-LAN model of the AS50, regardless of which Moduleware version is installed in the autosampler.

In the example below, 20 µl are pipetted from vial 1 and delivered to vial 10. 200 µl are dispensed from reservoir A into vial 10. The contents of vial 10 is mixed by drawing in and expelling 100 µl of the vial contents. The mixing cycle is repeated 5 times.
Note:

Due to limitations here, commands are shown on two lines. In an actual program, one command must be entered on one line.

```plaintext
Sampler.Pipet  Volume = 20.0,  SourceVial = 1, 
                DestinationVial = 10
SamplerDispense Volume = 200.0,  SourceReservoir = 
                Reservoir_A,  DestinationVial = 10
Sampler.Mix    SourceVial = 10,  NumberOfTimes = 5, 
                Volume = 100.0
Wait           SampleReady
```

Also refer to [Defining Sample Preparation Steps](#).

ReagentFlush Applications

The AS or AS50 (USB) runs in Concentrate or Sequential Concentrate
mode when the mode is selected on the autosampler front panel and a
concentrator column is installed. The default ReagentFlush program for
these modes contains the following parameters:

- The **Concentrate** command is automatically listed on the first line of
 the **Sample Prep Options** page. You may add sample prep steps
 before or after this line.

- The program does not include the **Load**, **Inject**, or **Wait InjectState**
 commands.

- The **Sampler.InjectValve.InjectPosition** command is located after
 the **Wait CycleTimeState** command at time 0.00.

- The **BeginOverlap** command is inserted at 5.00 minutes. Sample
 overlap normally begins after the **Wait InjectState** command; however,
 since ReagentFlush programs do not include the **Inject** and **Wait
 InjectState** commands, sample overlap will start at the time specified
 for **BeginOverlap**.

You may add sample prep commands before or after the **Concentrate**
command. You may add or delete the **Concentrate**, **ReagentPrime**,
ReagentFlush, and **BeginOverlap** commands as needed.

A program may include multiple **Concentrate**, **ReagentPrime**, and
ReagentFlush commands. However, if the program includes multiple
BeginOverlap commands, all but the first **BeginOverlap** command is
ignored.
Make sure the multiple Concentrate or ReagentFlush commands do not exceed the volume of sample or reagent in the vial specified in the sequence.

In the following example program for the Concentrate mode, commands for the ReagentFlush function are in bold. If the Sequential Concentrate mode is selected, the program must also include exclusive access commands that allow the autosampler to be shared by two timebases.

Also, refer to Sharing an Autosampler.

Note:

Due to limitations here, commands are shown on two lines. In an actual program, one command must be entered on one line.

```
Flush Volume = 100
Wait FlushState
NeedleHeight = 2
CutSegmentVolume = 0
SyringeSpeed = 3
ColumnTemperature = 15
CycleTime = 0
Pipet Volume = 20.0, SourceVial = CurrentVial, DestinationVial = CurrentVial
Mix SourceVial = CurrentVial, NumberOfTimes = 5, Volume = 250.0
FlushSP Volume = 250.0
DelaySP Time = 0.0
Dispense Volume = 1000.0, SourceReservoir = Reservoir_A, DestinationVial = CurrentVial
WaitForTemperature False
Concentrate ValvePosition = LoadPosition
ReagentPrime Volume = 10000.0, SourceVial = CurrentVial, ValvePosition = NoChange
ReagentFlush Volume = 5000.0, SourceVial = CurrentVial, ValvePosition = NoChange
Wait SampleReady
0.000 Wait CycleTimeState
Sampler.InjectValve.InjectPosition
0.100 Home
5.000 BeginOverlap
30.000 End
```
Relative Vial Location

In the sample preparation commands, a vial location can be specified either as an absolute position or as a relative position. In relative positioning, the CurrentVial is the current sample vial position, specified in the sample list in the Sequence. In the example below, 20 µl of liquid are pipetted from the current sample vial and then expelled into the vial, 1 position past the current vial.

Sampler.Pipet Volume = 20.0, SourceVial = CurrentVial, DestinationVial = CurrentVial+1

Sample Overlap

If the AS or AS50 Sample Overlap option is enabled in the Server Configuration, the autosampler performs the following commands for the next sample in a sequence, while data acquisition is occurring for the currently running sample in the sequence:

- Flush
- Autosampler Option Commands (ColumnTemperature, TrayTemperature, WaitForTemperature, SyringeSpeed, CycleTime, SetNeedleHeight, CutSegmentVolume)
- Sample Prep Commands (Pipet, Mix, DelaySP, FlushSP, NeedleHeight, Dilute, Dispense, Concentrate, ReagentPrime, ReagentFlush)

When the autosampler is preparing a sample, the Status field in the sequence displays Preparing and the sample line is highlighted in yellow. A message is also logged in the Audit Trail.

Sample overlap is not allowed when the autosampler is running in the Sequential or Sequential Concentrate mode.

Also, refer to Overlapping Samples.

Cycle Time

Cycle time controls the time between injections. When a cycle time is specified, the autosampler delays sample injection until the specified time has elapsed since the previous injection. This is accomplished with the Wait CycleTimeState command. When running a batch, the Wait CycleTimeState command in the first PGM File in the batch is ignored.
The following example sets a cycle time of 30 minutes.

```
Cycle = 30
0.000 Sampler.Load
Wait CycleTimeState
Sampler.Inject
```

Priming the Liquid Lines

The **Prime** command is used to prime the flush reservoir line to the sampling valve and the sample transfer line. In addition, if the sample prep option is installed, the **Prime** command is used to prime the lines from each installed reagent reservoir. The following example uses the prep syringe to prime the line to reservoir A with 2000 µl.

```
0.000 Sampler.Prime Volume=2000, PrimeReservoir=Reservoir_A, PrimeSyringe=Prep
```

Simultaneous Mode

If the Simultaneous mode is selected on the AS or AS50 front panel, the program includes additional commands for controlling two injection valves. The additional commands are used to switch the position of each valve during sample injection.

In the following example, an AS50 is connected to two ICS-2000 systems. Each ICS-2000 is equipped with an injection valve; no injection valves are installed in the AS50.

```
0.000 Pump_InjectValve.LoadPosition
Pump_InjectValve_2.LoadPosition
Load
Wait CycleTimeState
Pump_InjectValve.InjectPosition
Pump_InjectValve_2.InjectPosition
Pump_ECD.Autozero
Pump_ECD_2.Autozero
Inject
Wait InjectState
```

Note:

For an overview of the individual commands for the autosamplers, refer to [Dionex AS/AS50 Autosamplers](#).
Examples for User-Defined Programs for the WPS-3000 Autosampler

The user-defined program is loaded and executed at the autosampler's start time (Sampler.Inject command) even if the program steps appear prior to that command in the program file. Make sure that the user-defined program includes an UdpInjectMarker command at the appropriate position so that the system recognizes that an injection has been made.

The following programs are typical application examples for the WPS-3000 Autosampler:

0. User-defined standard program

;User defined program (UDP) template for WPS-3000 sampler
;****** PLEASE DO NOT EDIT ******
0.000 InjectMode = UserProg
Sampler.ReagentAVial= R1
Sampler.ReagentBVial= R2
Sampler.ReagentCVial= R3
Sampler.ReagentDVial= R4
Sampler.PrepVial= RA1
Sampler.UdpDraw From=SampleVial, Volume=5, SyringeSpeed=50, SampleHeight=2
Sampler.UdpDispense To=PrepVial, Volume=5, SyringeSpeed=100, SampleHeight=2
Sampler.UdpDraw From=ReagentAVial, Volume=10, SyringeSpeed=50, SampleHeight=2
Sampler.UdpDispense To=PrepVial, Volume=10, SyringeSpeed=2000, SampleHeight=2
Sampler.UdpMixWait Duration=10
Sampler.UdpDraw From=PrepVial, Volume=5, SyringeSpeed=50, SampleHeight=2
Sampler.UdpInjectValve Position=Inject
Sampler.UdpInjectMarker
Inject
;starts the above program and waits for the inject response.
Acquisition On
...
4.000 Acquisition Off
End
1. Drawing a sample volume of 1 µl

;User defined program (UDP) template for WPS-3000 sampler
;****** PLEASE DO NOT EDIT ******
0.000 InjectMode = UserProg
UdpInjectValve Position=Load
UdpSyringeValve Position=Needle
UdpDraw From=SampleVial, Volume=1.0, SyringeSpeed=50, SampleHeight=2
UdpMixWait Duration=5
UdpDraw From=SampleVial, Volume=0.0, SyringeSpeed=50, SampleHeight=2
UdpDraw From=ReagentAVial, Volume=25, SyringeSpeed=50, SampleHeight=2
UdpMixWait Duration=5
UdpInjectValve Position=Inject
UdpInjectMarker ;generates an Inject Response during the program run
UdpMixWait Duration=5
UdpDraw From=ReagentAVial, Volume=0.0, SyringeSpeed=50, SampleHeight=2
UdpSyringeValve Position=Waste
UdpMoveSyringeHome SyringeSpeed=2000
UdpSyringeValve Position=Needle
UdpMixNeedleWash Volume=50
Inject ;starts the above program and waits for the inject response.
Acquisition On ...
4.000 Acquisition Off
End

2. Sample preparation with 2 reagents

;User defined program (UDP) template for WPS-3000 sampler
;****** PLEASE DO NOT EDIT ******
0.000 InjectMode = UserProg
UdpDraw From=ReagentAVial, Volume=20.0, SyringeSpeed=50, SampleHeight=2
UdpMixWait Duration=5
UdpDraw From=ReagentAVial, Volume=0.0, SyringeSpeed=50, SampleHeight=2
UdpDispense To=SampleVial, Volume=20.0, SyringeSpeed=2000, SampleHeight=2
UdpMixWait Duration=5
UdpDraw From=ReagentBVial, Volume=10.0, SyringeSpeed=50, SampleHeight=2
UdpMixWait Duration=5
Practical Tips for Device Control

UdpDraw From=ReagentBVial, Volume=0.0, SyringeSpeed=50, SampleHeight=2
UdpMixWait Duration=5
UdpDispense To=SampleVial, Volume=10.0, SyringeSpeed=2000, SampleHeight=2
UdpMixWait Duration=10
UdpInjectValve Position=Inject
UdpSyringeValve Position=Needle
UdpDraw From=SampleVial, Volume=3.0, SyringeSpeed=50, SampleHeight=2
UdpMixWait Duration=5
UdpInjectValve Position=Load
UdpDraw From=SampleVial, Volume=5.0, SyringeSpeed=50, SampleHeight=2
UdpMixWait Duration=5
UdpInjectValve Position=Inject
UdpInjectMarker ;generates an inject response during the program run
UdpMixWait Duration=5
UdpDraw From=SampleVial, Volume=0.0, SyringeSpeed=50, SampleHeight=2
UdpSyringeValve Position=Waste
UdpMoveSyringeHome SyringeSpeed=2000
UdpSyringeValve Position=Needle
UdpMixNeedleWash Volume=50
Inject ;starts the above program and waits for the inject response.
Acquisition On ...

3. Gel extraction

;User defined program (UDP) template for WPS-3000 sampler
;****** PLEASE DO NOT EDIT ******
0.000 InjectMode = UserProg
UdpDraw From=SampleVial, Volume=5.0, SyringeSpeed=50, SampleHeight=2
UdpDispense To=PrepVial, Volume=5.0, SyringeSpeed=2000, SampleHeight=2
UdpDraw From=ReagentAVial, Volume=5.0, SyringeSpeed=50, SampleHeight=2
UdpDispense To=SampleVial, Volume=5.0, SyringeSpeed=2000, SampleHeight=2
UdpMixWait Duration=10
UdpDraw From=SampleVial, Volume=5.0, SyringeSpeed=50, SampleHeight=2
UdpDispense To=PrepVial, Volume=5.0, SyringeSpeed=2000, SampleHeight=2
UdpDraw From=ReagentBVial, Volume=5.0, SyringeSpeed=50, SampleHeight=2
UdpDispense To=PrepVial, Volume=5.0, SyringeSpeed=2000, SampleHeight=2
UdpMixWait Duration=10
UdpDraw From=SampleVial, Volume=5.0, SyringeSpeed=50, SampleHeight=2
UdpDispense To=PrepVial, Volume=5.0, SyringeSpeed=2000, SampleHeight=2
UdpMixWait Duration=5
UdpInjectValve Position=Inject
UdpSyringeValve Position=Needle
UdpDraw From=SampleVial, Volume=1.0, SyringeSpeed=50, SampleHeight=2
UdpMixWait Duration=5
UdpInjectValve Position=Load
UdpDraw From=PrepVial, Volume=5.0, SyringeSpeed=50, SampleHeight=2
UdpMixWait Duration=5
UdpInjectValve Position=Inject
UdpInjectMarker

;generates an inject response during the program run
UdpMixWait Duration=5
UdpDraw From=SampleVial, Volume=0.0, SyringeSpeed=50, SampleHeight=2
UdpSyringeValve Position=Waste
UdpMoveSyringeHome SyringeSpeed=2000
UdpSyringeValve Position=Needle
UdpMixNeedleWash Volume=50

Inject
;starts the above program and waits for the inject response
Acquisition On
...
4.000 Acquisition Off
End

Notes:

Use the PGM Wizard to create a user-defined program. You can either create a new user-defined program or use an existing program as a template for the new one.

Each user-defined program must include an UdpInjectMarker command. If this command is not included, a message appears in the PGM Wizard.
For an overview of the individual commands that are available for the WPS-3000 autosampler, refer to **Commands for Controlling Dionex Devices**.

For information about the sample preparation commands supported by the autosampler, refer to **Dionex WPS-3000 Well-Plate Micro Autosampler: Commands for User-Defined Programs**.

Examples for User-Defined Programs for the FAMOS Autosampler (LC Packings)

The user-defined program is loaded and executed at the autosampler's start time (**Sampler.Inject** command) even if the program steps appear prior to that command in the program file. Make sure that the user-defined program includes an **InjectMarker** command at the appropriate position so that the system recognizes that an injection has been made:

The following programs are typical application examples for the FAMOS HPLC Autosampler:

0. User-Defined Standard Program

```plaintext
;User-defined program (UDP) template for FAMOS autosampler
;****** PLEASE DO NOT EDIT *******
Sampler.ReagentAVial= 1
Sampler.ReagentBVial= 2
Sampler.ReagentCVial= 3
Sampler.ReagentDVial= 4
Sampler.PrepVial= A1
Sampler.Draw From=SampleVial, Volume=5, SyringeSpeed=Low, SampleHeight=0
Sampler.Dispense To=PrepVial, Volume=5, SyringeSpeed=Low, SampleHeight=0
Sampler.Draw From=ReagentAVial, Volume=10, SyringeSpeed=Low, SampleHeight=0
Sampler.Dispense To=PrepVial, Volume=10, SyringeSpeed=Low, SampleHeight=0
Sampler.MixWait Duration=10
Sampler.Draw From=PrepVial, Volume=5, SyringeSpeed=Low, SampleHeight=0
Sampler.InjectValve Position=Inject
InjectMarker
```
1. Drawing a Sample Volume of 1 µl

;User-defined program (UDP) template for FAMOS autosampler
;****** PLEASE DO NOT EDIT *****
0.000 InjectMode = UserProg
InjectValve Position=Load
SyringeValve Position=Needle
Draw From=SampleVial, Volume=1.0
MixWait Duration=5
Draw From=SampleVial, Volume=0.0
Draw From=ReagentAVial, Volume=25
MixWait Duration=5
InjectValve Position=Inject
InjectMarker
; generates an inject response during the program run
MixWait Duration=5
SyringeValve Position=Waste
MoveSyringeHome
SyringeValve Position=Needle
MixNeedleWash Volume=50

Inject ; starts the above program and waits for the inject response

Acquisition On
...
4.000 Acquisition Off
End

2. Sample Preparation with 2 Reagents

;User-defined program (UDP) template for FAMOS autosampler
;****** PLEASE DO NOT EDIT *****
0.000 InjectMode = UserProg
Draw From=ReagentAVial, Volume=20.0
MixWait Duration=5
Draw From=ReagentAVial, Volume=0.0
MixWait Duration=5
Dispense To=SampleVial, Volume=20.0
MixWait Duration=10
Draw From=ReagentBVial, Volume=10.0
MixWait Duration=5
Draw From=ReagentBVial, Volume=0.0
MixWait Duration=5
Dispense To=SampleVial, Volume=10.0
MixWait Duration=10

InjectValve Position=Inject
SyringeValve Position=Needle
Draw From=SampleVial, Volume=3.0
MixWait Duration=5
3. Gel Extraction

;User-defined program (UDP) template for FAMOS autosampler
;****** PLEASE DO NOT EDIT ******

0.000 InjectMode = UserProg

Draw From=SampleVial, Volume=5.0
Dispense To=PrepVial, Volume=5.0
Draw From=ReagentAVial, Volume=5.0
Dispense To=SampleVial, Volume=5.0
MixWait Duration=10

Draw From=SampleVial, Volume=5.0
Dispense To=PrepVial, Volume=5.0
Draw From=ReagentBVial, Volume=5.0
Dispense To=PrepVial, Volume=5.0
MixWait Duration=10

Draw From=SampleVial, Volume=5.0
Dispense To=PrepVial, Volume=5.0
MixWait Duration=5
InjectValve Position=Inject
SyringeValve Position=Needle
Draw From=SampleVial, Volume=1.0
MixWait Duration=5
InjectValve Position=Load
Draw From=PrepVial, Volume=5.0
MixWait Duration=5
InjectValve Position=Inject
InjectMarker
; generates an inject response during the program run
MixWait Duration=5

MixNeedleWash Volume=50

Inject ; starts the above program and waits for the inject response

Acquisition On

4.000 Acquisition Off

End

Tips:

If the previous action was Draw or Dispense, the needle slowly returns to its start position while the MixWait command is executed. For the needle to remain at its current position, enter another Draw or Dispense command with "Volume=0.0" as shown in the above program examples.

Notes:

Use the PGM Wizard to create a user-defined program. You can either create a new user-defined program or use an existing program as a template for the new one.

Each user-defined program must include an InjectMarker command. If this command is not included, a message appears in the PGM Wizard.

For an overview of the individual commands that are available for the FAMOS autosampler, refer to Commands for Controlling Dionex Devices Dionex/LC Packings FAMOS Autosampler.

For information about the sample preparation commands supported by the FAMOS autosampler, refer to Commands for Controlling Dionex Devices Dionex/LC Packings FAMOS Autosampler: Sample Preparation.
Injecting a Sample

Injections can be performed:

- Manually
- Via an Autosampler
- Automatically (the injection is programmed)

Click the corresponding control on the control panel or select Inject... on the Control menu to open the Inject dialog box. Determine how much of a substance is injected (⇒ Volume) and from which Autosampler ⇒ Position.

Then, issue the ⇒ Inject command.

Reporting the end of the injection process to Chromeleon completes successful injection. If a hand-operated valve is used, this is via a contact closure relay. Modern autosamplers automatically send the message via the serial interface or a DX-LAN. When Chromeleon has received this message, the retention time is started.

Hand-operated valve (manual injection):

A μl-syringe is used to inject the sample into the needle seat of the hand-operated valve. In this way, it reaches the sample loop (Load). By switching the valve (Inject), the solvent flow is directed to the sample loop, and the sample enters the high-pressure circuit of the system. If correctly connected (via a Remote Input), switching the hand-operated valve triggers the Inject signal and thus the timer. Very exact operation is possible if the injected volume corresponds to the sample loop size. In this case, the sample loop is completely filled. When switching the valve, the exact volume of the sample loop is injected without any loss.

Autosampler (manual injection):

The autosampler can be operated via the input panel on the instrument or via the PC. Controlling the autosampler via the PC is a very convenient method. However, this is only possible if the autosampler is connected with Chromeleon via an RS-232 interface, the DX-LAN, or USB (Universal Serial Bus).
• Select ⇒Inject on the Control menu and determine the ⇒Volume and the ⇒Autosampler position for the injection.

• If your control panel provides the corresponding controls, enter the Volume and Position parameters directly in the corresponding edit box and click the Load/Inject button.

The time required by the autosampler to inject the sample can be indicated optically. Link a color area or a lamp with the Inject Wait property (for more information, refer to How to: Controlling Devices from the Control Panel Linking a Control to a Device). In a controlled system, the pump is set to ⇒Hold during injection.

Automatic injection:
• Enter the Inject command at the time \(t = 0.000 \) in the Program.

If the command is executed by an autosampler that is controlled by Chromeleon, the autosampler returns a signal to Chromeleon when injection is completed. Then, the timer is started.

Tip:

With the AS and AS50 autosamplers, sample loading and injection are two distinct events. Therefore, include a Load command in the program at \(t = 0.000 \) and then the Inject command. See Autosampler Commands (AS/AS50) for details.

When injecting via a hand-operated valve or an autosampler that is not controlled by Chromeleon, the data system also waits for a signal before it starts the timer. For example, with a hand-operated valve, the signal is returned after the valve has switched from Load to Inject, that is, program execution is delayed until the injection is actually performed. This type of automatic injection requires connection of a remote input or remote start device via remote inputs (TTL or relay) and configuration of a remote inject device. See Setting Up Remote Injection.

Tip:

As an Inject signal is not specified, there can only be one injection unit per timebase, that is, install either a hand-operated valve or an autosampler.
Setting Up Remote Injection

If Chromeleon does not directly control the injection valve, a Remote Inputs (remote start) device can be set up that communicates to Chromeleon that injection was performed. The setup procedure is as follows: Connect the remote input device via TTL or relay, install and configure a remote inject device in the Timebase, and add an Inject command to the Program.

Tip:
For the UI20, remote injection can be triggered by the remote input or by pressing the Run button on the UI20 front panel. For the DX-120, remote injection can only be triggered by the remote input. The Load/Inject button on the DX-120 front panel is disabled during remote control.

Connect the Remote Input Device (TTL or Relay Connections)

The remote input of the remote input (remote start) device must be connected via TTL or a relay to the injection valve or to another device, e.g., an Autosampler. Only then, the device can communicate to Chromeleon that injection was performed. When injection is performed, the injection valve or autosampler sends a signal to the remote input device and the remote input device then communicates to Chromeleon that injection was performed.

Example Connections: AS40 and DX-120

Tip:
For detailed TTL and relay connection instructions, refer to the operator’s manual for each device.

The following connections allow completely automated control of the AS40 and DX-120.

1. Connect the Relay Control Ready Out pin on the AS40 rear panel to the Inject TTL Input pin on the DX-120 rear panel.
2. Connect the Ready Out Ground pin on the AS40 to the TTL Inputs Ground pin on the DX-120.
3. Connect the **Load** pin on the AS40 to the **TTL 1 Out** pin on the DX-120.

4. Connect the **Load Ground** pin on the AS40 to the **TTL Outputs Ground** pin on the DX-120.

Configure a Remote Inject Device

1. Open the Server Configuration.

2. Select the timebase in which the remote input device is configured.

3. Select **Add Device** on the **Edit** or context menu. The **Add device to timebase** dialog box appears.

4. Select **General** from the **Manufacturers** list box, and then select **Remote Inject** from the **Devices** list and click **OK**.

 The Properties dialog box for the Remote Inject device appears.

5. The default device name is **InjectValve**. You can accept the default name or enter a different one.

6. From the **Inject Port** drop-down list, select the remote input device that was connected through TTL or relay. Click **OK**.

Add an Inject Command to the Program

Add the following command to the PGM File. (If you use the Program Wizard (see **Control** [The Program Wizard]), the command is added automatically).

```
0.000 Inject
```
When Chromeleon executes the program, it runs the commands that occur before the Inject command and then waits for the signal from the remote input device. A message in the audit trail is displayed: "Wait for inject response on remote start." When the inject signal occurs, program execution resumes.

Example PGM File: AS40 and DX-120

```plaintext
Data_Collection_Rate 5.00
Pump = On
SRS = On
EluentPressure = On
Column = A
ECD_TTL_1.State = 5v  Note 1
Wait RinseComplete  Note 2
-0.100 ECD_TTL_1.State = 0v  Note 3
0.000 ECD.Autozero  Note 4
Inject  Note 5
ECD_1.AcqOn

10.000 ECD_1.AcqOff

End
```

Notes:

1. TTL Out 1 turned off.
2. The TTL_1 5v and TTL_1 0v commands must be separated by one or more commands or they must occur at different times in the program.
3. TTL Out 1 turned on. AS40 Load Cycle starts.
4. Program execution waits until inject signal is received.
5. AS40 Ready Out signals the DX-120 Inject TTL Input. Injection occurs. Program execution resumes.
Priming the Syringe (ASI-100 Series)

The **PrimeSyringe** command allows removing air from the syringe without dismantling the syringe from the instrument. The steps of the PrimeSyringe procedure (see below) are automatically performed 5 times with the wash liquid. Then, repeat the procedure with the eluent.

Before performing the **PrimeSyringe** command:

- Make sure that the **pump flow is off**. Else, the pump would deliver eluent to the wash vial when the injection valve switches into the Inject position (see step 3).

- Set the **WashSpeed** and the **DispSpeed** to values that correspond to the installed syringe. (Note: When a wash vial is used, the WashSpeed command is required instead of the DrawSpeed command.)

The recommended settings and the required time are listed in the table below:

<table>
<thead>
<tr>
<th>Syringe</th>
<th>100 µL</th>
<th>250 µL</th>
<th>1000 µL*</th>
<th>2500 µL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>WashSpeed [µL/s]</td>
<td>5</td>
<td>10</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>DispSpeed [µL/s]</td>
<td>5</td>
<td>10</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>SyringeDelay [s]</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Duration of the prime syringe cycle [min]</td>
<td>Approx. 5</td>
<td>Approx. 6</td>
<td>Approx. 7 (5 x 1000µl)</td>
<td>Approx. 9 (5 x 2500µl)</td>
</tr>
</tbody>
</table>

* Usually no PrimeSyringe command is required to remove gas bubbles from syringes with a volume of 1000 or 2500 µL. It is usually sufficient to inject the entire syringe volume of eluent.

- Fill the wash vial with the wash liquid. Enter the vial position in Chromeleon (**WashVial**).

Dionex recommends using isopropanol (2-propanol) for the PrimeSyringe cycle and repeating the cycle with the starting eluent of the next sample.
The ASI-100 automatically performs the following steps:

1. The injection valve is switched into the Load position. The eluent flow is from the pump through the valve directly to the column; the eluent does not get into contact with the needle or the syringe. In addition, the needle descends into the wash vial:

![Diagram 1]

2. The syringe is completely filled:

![Diagram 2]
3. The injection valve is switched into the Inject position; the needle remains in the wash vial and the contents of the syringe is dispensed into the waste:

![Diagram](image1)

4. The injection valve is switched into the Load position

The above steps are performed five times. The wash liquid reaches the syringe, removes existing gas bubbles, and exchanges the syringe content:

![Diagram](image2)

Tip:

The PrimeSyringe command exchanges the liquid in the autosampler completely. Therefore, you may also use the PrimeSyringe procedure when switching between incompatible applications, such as between reversed-phase and normal-phase applications.
Afterward, the needle returns to the needle port and the injection valve is switched into the Inject position. Although most of the wash liquid is exchanged with the current eluent and the needle and the needle port are filled again with eluent, the segment between the syringe and the waste remains filled with the wash liquid:

Therefore, repeat the procedure using the eluent to precondition the valve and syringe with the eluent, too. (Note: Use the starting eluent without buffer additives to avoid deposits.)
Defining Sample Preparation Steps (AS/AS50)

Sample preparation steps for the AS and AS50 Autosamplers are part of a PGM File and can be defined using the Program Wizard (see Control The Program Wizard).

Perform the following functions from the Sampler Options dialog box in the Program Wizard.

Defining a New Sample Preparation Step
1. Select a Function from the list and then select the parameter values for the function (see the table below).
2. Click Insert to add the step to the list.
 The new step is added above the currently selected step (if any).

Changing an Existing Step
1. Select the step in the list.
2. Make the required changes, for example, select a new function and enter the function’s parameters, or change the parameters for the current function.
3. Click Enter.

Tip:
To delete a step, select it, and click Delete.

<table>
<thead>
<tr>
<th>Sample Prep Functions</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| Pipet | Move sample between vials | Source: the vial from which to pick up the sample volume
Volume: the amount (µl) of sample to be pipetted
Destination: the vial in which to add the sample volume |
| Mix | Mix the contents of a vial by repeatedly drawing and expelling a volume of the vial contents | Vial: the vial to be mixed
Volume: the amount (µl) of the vial contents to draw and expel
Cycles: the number of times to draw and expel the specified volume |
| Flush | Flush inject port during sample preparation | Volume: the amount (µl) to flush through the inject port |
| Delay | Pause sample preparation | Delay Time: the number of minutes to pause |
Sample Prep Functions

<table>
<thead>
<tr>
<th>Sample Prep Functions</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needle</td>
<td>Position needle above vial bottom</td>
<td>Height: the distance (mm) from the vial bottom</td>
</tr>
<tr>
<td></td>
<td>(Available only with the AS or AS50 sample preparation option) Dilute sample with reagent</td>
<td>Concentrate Source: the vial that contains the concentrated sample Concentrate Volume: the amount of concentrated sample to be diluted Diluent Source: the reservoir that contains the diluent Diluent Volume: the amount of diluent to be used Destination: the vial into which the concentrated sample and diluent are added</td>
</tr>
<tr>
<td>Dilute</td>
<td>Dilute sample with reagent</td>
<td></td>
</tr>
<tr>
<td>Dispense</td>
<td>(Available only with the AS or AS50 sample preparation option) Dispense reagent to a vial</td>
<td>Source: the reservoir from which to dispense reagent Volume: the amount of reagent to dispense Destination: the vial into which reagent is dispensed</td>
</tr>
<tr>
<td>Concentrate</td>
<td>(Available only when the AS or AS50 is in Concentrate mode) Load and inject sample onto the concentrator column</td>
<td>Valve Position: the position of the injection valve</td>
</tr>
<tr>
<td>ReagentPrime</td>
<td>(Available only when the AS or AS50 is in Concentrate mode) Prime the injection valve lines with reagent</td>
<td>Source: the reservoir from which to pick up reagent Volume: the amount of reagent used for priming Valve Position: the position of the injection valve</td>
</tr>
<tr>
<td>ReagentFlush</td>
<td>(Available only when the AS or AS50 is in Concentrate mode) Flush reagent onto the concentrator column</td>
<td>Source: the reservoir from which to pick up reagent Volume: the amount of reagent to flush through the concentrator Valve Position: the position of the injection valve</td>
</tr>
</tbody>
</table>

Note:

The **Concentrate**, **ReagentPrime**, and **ReagentFlush** commands require AS or AS50 (USB) Moduleware version 2.0.0 (or later). These commands are not available for the DX-LAN model of the AS50, regardless of which Moduleware version is installed in the autosampler.

Also, refer to [Entering Sample Preparation Vial Positions](#) and [Overlapping Samples](#).
Entering Sample Preparation Vial Positions

In sample preparation operations for the AS and AS50 autosamplers, a vial position can be specified either as an absolute position or as a relative position.

To specify an absolute position, enter the number of the vial’s position in the tray. Valid numbers depend on the tray type in use: 1 to 100 for the 2 ml tray; 1 to 49 for the 10 ml plastic tray.

To specify a relative position, select **CurrentVial** for the current sample vial, **CurrentVial+1** for one vial past the current vial, **CurrentVial+2** for two vials past the current vial, and so on, up to **CurrentVial+9**.

Some operations let you specify **FlushPort** instead of a vial.

Overlapping Samples

To reduce the time between injections, some devices (for example, the AS50 and the CC80 Component Controller) support overlapping sample preparation. This means that the sample preparation steps are performed for the next sample while the current sample is still being analyzed.

When the device finishes the overlapped functions, the program pauses, if necessary, to finish the currently running sample. Then, the remaining commands in the overlapped sample’s program are executed.

The sequence (displayed in the Browser) indicates that sample overlap is being performed. The sample currently being analyzed has a green background and the ⇒ Status Running. The sample being simultaneously prepared has a yellow background and the status Preparing. This sample has not yet been injected. Therefore, the ⇒ Inj. Date/Time column is empty:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Pos</th>
<th>Inj. Vol</th>
<th>Status</th>
<th>Inj. Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard1</td>
<td>Standard</td>
<td>91</td>
<td>5.0</td>
<td>Finished</td>
<td>25.11.2003 11:42:07</td>
</tr>
<tr>
<td>2</td>
<td>Sample1</td>
<td>Unknown</td>
<td>4</td>
<td>5.0</td>
<td>Running</td>
<td>25.11.2003 11:45:18</td>
</tr>
<tr>
<td>3</td>
<td>Sample2</td>
<td>Unknown</td>
<td>2</td>
<td>5.0</td>
<td>Preparing</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sample3</td>
<td>Unknown</td>
<td>3</td>
<td>5.0</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sample4</td>
<td>Unknown</td>
<td>4</td>
<td>5.0</td>
<td>Single</td>
<td></td>
</tr>
</tbody>
</table>

In this example, the first unknown sample (‘Sample 1’) is being analyzed while the next sample (‘Sample 2’) is being prepared.
Note:
Sample overlap is disabled if the AS or AS50 is shared by two timebases or if the autosampler is running in Sequential or Sequential Concentrate mode.

Details about how sample overlapping is performed and which commands are required depend on the device. For more information, refer to:

- Autosampler Commands (AS/AS50)
- Defining Sample Preparation Steps (AS/AS50)
- Component Controller Control

Also, refer to Commands and Tips for Third-Party Devices Waters Alliance 2790/2795: Overlapping Sample Preparation.

Injecting Two Samples Simultaneously

Some autosamplers (for example, an AS or AS50 (USB) in the Simultaneous mode) can deliver sample to two independent ion chromatography (IC) systems. The two IC systems and the autosampler are configured into a single timebase and each system is assigned a unique device name and channel. This lets you monitor and control both systems from one Control Panel and run all samples in one sequence.

For plumbing connections, refer to the autosampler operator’s manual or the simultaneous injection kit instructions.

To set up simultaneous injections in Chromeleon, follow these basic steps:

1. In the Server Configuration program, create a timebase that includes both systems and the AS or AS50 (if used).
2. Assign a unique name to each device in the timebase. For example, if the timebase includes two ICS-2000 systems, name the second system, Pump_ECD_2. In addition to renaming the device, also rename any signals and other devices associated with system #2 (for example, the detector signals, TTLs, relays, and eluent generator).

Tip:

Although you can assign any unique device and signal names to system #2, adding _2 to the default names will allow the timebase to be connected to the template control panels (described below) without errors.
3. In the Browser, open a simultaneous injection control panel and then connect the timebase to the panel. For example, to open a simultaneous injection control panel for a timebase with two ICS-2000 systems and an AS50 autosampler, go to the Dionex Templates\Panels\Dionex_IC\ICS-2000 System Panels folder and double-click the ICS-2000_System_Simultaneous_AS50.pan file.

4. Create sequences, PGM Files, and QNT Files for simultaneous injections. Follow these guidelines:
 - Create one sequence that includes calibration standards for both systems and the unknown samples.
 - Create a PGM File for the unknown samples that includes commands for controlling both systems.
 - Calibrate each system separately by creating separate calibration PGM Files.
 - Create a single QNT File that includes the components from both systems. Use the Duplicate Column command on the Peak Table, Amount Table, and Peak Tracking pages of the method to create two extra Ret. Time columns; associate each column with a different channel.

Also, refer to:

- Autosampler Control
- Autosampler Commands (AS/AS50)
- How To: Integrating Chromatograms and Identifying Peaks
- Defining the QNT Method for Several Detectors
Sharing an Autosampler

Two timebases can share a single AS or AS50 (USB) when:

- The Sequential or Sequential Concentrate mode is selected on the autosampler front panel.
- The diverter valve is installed in the autosampler.
- The autosampler is configured as a shared device in the Server Configuration program.
- The program includes commands that specify when each timebase has exclusive access to the autosampler.

Note:

The DX-LAN model of the AS50 does not support the exclusive access feature. If a program created for this autosampler includes `AcquireExclusiveAccess` or `ReleaseExclusiveAccess`, the command is ignored. However, both the AS and AS50 (USB) autosamplers can run any program created for the DX-LAN autosampler that includes these commands.

To ensure that the autosampler commands for a timebase are exercised before it yields access to the next timebase, insert the `AcquireExclusiveAccess` command immediately before the first autosampler command (Flush or Prime) and the `ReleaseExclusiveAccess` command immediately after the last autosampler command or property (e.g., TTL or Relay). Thus, a timebase does not have to finish data acquisition before the next timebase can acquire access to the autosampler. If you want one timebase to control the autosampler for an entire sequence, you may omit the `ReleaseExclusiveAccess` command from all but the last program in the sequence.

When the autosampler is in Sequential or Sequential Concentrate mode, a `DiverterValve.Position` command is automatically added immediately after the `AcquireExclusiveAccess` command.
In the following example program, commands required for exclusive access are in bold.

```plaintext
Pressure.LowerLimit = 0
Pressure.UpperLimit = 5000
%A.Equate = "%A"
%B.Equate = "%B"
%C.Equate = "%C"
%D.Equate = "%D"

AcquireExclusiveAccess
DiverterValve.Position_1
Flush Volume = 100
Wait FlushState
NeedleHeight = 2
CutSegmentVolume = 0
SyringeSpeed = 3
TrayTemperature = 10
CycleTime = 0
WaitForTemperature = False
Data_Collection_Rate = 5.0
Temperature_Compensation = 1.7
DS3_Temperature = 35
SRS_Current = 100
Wait SampleReady
Flow = 1.00
%B = 0.0
%C = 0.0
%D = 0.0
Curve = 5
0.000 Load
Wait CycleTimeState
Autozero
Inject
Wait InjectState
ECD_1.AcqOn
1.000 Sampler_TTL_1.0v
ReleaseExclusiveAccess
30.000 ECD_1.AcqOff
End
```

For an overview of the individual commands for the autosamplers, refer to Dionex AS/AS50 Autosamplers.
Opening the AS/AS50 Door during Operation

Normally, the Autosampler door must remain closed while the AS or AS50 is running a batch. If the door is opened inadvertently, the sampling arm stops immediately and the batch is aborted. There are certain times during operation, however, when the autosampler is not busy, and it is safe to open the door. Chromeleon monitors operation and informs you when you can open the door without aborting the batch.

First, press the Door button on the AS or AS50 front panel. If the autosampler is busy, a message in the Audit Trail window informs you that it is currently not safe to open the door.

When the autosampler is no longer busy, a message informs you that it is now safe to open the door. A timer then begins counting down the time remaining in which it is safe to have the door open. It continues counting down after the door is opened. The door must be closed again before the timer reaches zero, or the batch will be aborted.

If, after pressing the Door button, you decide you do not want to open the door, you can either allow the timer to expire or press any button on the autosampler’s front panel to reset the timer to zero.

Note:

To display the timer on the control panel, place a string display, gauge slider, or gauge indicator Control on the control panel (see Layout Toolbar). Then, link the control to the object property, DoorSafetyTime. For more information, refer to How to: Controlling Devices from the Control Panel Linking a Control to a Device.
Monitoring the Status of the AS/AS50

The Autosampler Status control on a Control Panel displays the action currently being performed by the AS or AS50 autosampler: Idle, Preparing to run, Injecting, and so on.

To add the autosampler status to a control panel, place a string display Control on the panel (see Layout Toolbar). Then, link the control via the Link tab page to the Sampler object property, Status.
Detector Control

The detector type determines which commands are available. For an overview of the individual commands available for Dionex UV and PDA detectors, refer to Detector Commands. For more information, refer to:

- Starting Data Acquisition
- Defining Signals, Signal Parameters, Axis Decoration, etc.
- Modifying Signal Parameters (Overview)
- Determining Wavelength Switching
- Determining the Optimum Emission Wavelength (RF2000)
- Recording Fluorescence Spectra (RF2000)
- Defining a Waveform (Overview)
- Controlling a Suppressor
- Performing Cyclic Voltammetry

In addition, you can View or Reset the Lamp Age.

Detector Commands

Modifying Signal Parameters

<table>
<thead>
<tr>
<th>Channelname</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>On / Off</td>
</tr>
<tr>
<td></td>
<td>Bandwidth</td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td>Wavelength</td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td>Step</td>
<td>Value [s] / Auto</td>
</tr>
</tbody>
</table>

Tip:

Select the Step in such a way that 20 to 50 data points are placed on the narrowest relevant peak in your chromatogram. If you acquire more data points than necessary, this will consume more storage space and slow down data processing and the integration might become incorrect, especially when baseline noise is high. This may also happen when using the Step = Auto option.
Note:
To implement Wavelength Switching, define a new wavelength for a channel at the switch time.

Switching Detector ⇒ Lamp

0.000 Devicename.Lamp = On / Off

Switching Detector Lamps On/Off

AD20 Detector

0.000 Devicename.UV_Lamp = Low / High / Off
0.000 Devicename.Visible_Lamp = Low / High / Off

AD25 and PDA-100 Detector

0.000 Devicename.UV_Lamp = On / Off
0.000 Devicename.Visible_Lamp = On / Off

Selecting the Detection Mode

ED40, ED50, and ED50A, Detectors

0.000 Devicename.Mode = Conductivity / IntAmp / DCamp

ICS-3000 ED Detectors

0.000 Devicename.Mode = IntAmp / DCamp / Cyclic

Turning the Amperometry Cell On/Off

ED40, ED50, ED50A Detector in Amperometry Mode

0.000 Devicename.Cell = On / Off

ICS-3000 ED Detector

0.000 Devicename.CellControl = On / Off
Selecting the Reference Electrode (ED and ED40/ED50/ED50A Detector in Amperometry Mode)

0.000 Devicename.Electrode = pH / AgCL

Starting Data Acquisition

- Click the ⇒AcqOn/Off button on the toolbar and determine the channels to record via the automatically displayed dialog box.

- Click the button again to stop data acquisition.

Alternatively, the command can be performed via the Control menu or the corresponding button on the Desktop. Each signal (channel) selected during the start of data acquisition is stored in a separate raw data file.

- Open the context menu from the signal plot to influence the representation of the signals (Autoscale, Replot from Beginning, Chromatogram Overlay) or the type of the recorded data (signal parameters) via the context menu.

Defining Signals, Signal Parameters, Axis Decoration, etc.

Right-click a signal plot to open the context menu. Select:

- **Signals** to determine the signals to be displayed.

- **Axis/Decoration** to display axis decoration, units, timebase names, signal parameters, a grid, the signal value, or the retention time.

- **Chrom. Overlay** to display a comparable chromatogram.

Press the F1 key for context-sensitive help.
Modifying Signal Parameters (Overview)

Manually or directly:
- Move the mouse pointer to the signal plot on a control panel.
- Right-click a signal plot and select Signal Parameters.
- Select the tab page of the signal or channel for which you want to change the parameters. Signals of different types have different Signal Parameters.
- MS parameters are not available in this dialog box. Define them in a separate METH file.

Programmed or indirectly:
In controlled systems, the parameters can be enabled/disabled during chromatogram run time at exact times.
- Select Command on the Control menu, select the signal to modify, and then define its signal parameters - or else
- Enter the corresponding command in a Program that is executed in automatic Batch processing.

For more information, also refer to:
- Modifying the Signal Parameters of a UV Channel
- Modifying the Signal Parameters of a 3D Field
- Displaying the Signal Parameters of a Mass Channel

For an example for modifying signal parameters, refer to Determining Wavelength Switching.
Modifying the Signal Parameters of a UV Channel

Modify one or several signal parameters to improve the signals provided by the UV Detector:

<table>
<thead>
<tr>
<th>Signal Parameter</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒Average</td>
<td>Averaging.</td>
<td>Use this parameter to improve the signal-to-noise ratio.</td>
</tr>
<tr>
<td>⇒Bandwidth</td>
<td>Changes the bandwidth with which the signal is recorded. If necessary, increase the bandwidth to improve the Signal to Noise Ratio.</td>
<td></td>
</tr>
<tr>
<td>Delta</td>
<td>Indicates the difference between the current signal value and the signal value one second before. The value cannot be changed.</td>
<td></td>
</tr>
<tr>
<td>MaxAutoStep</td>
<td>Sets the maximum step width for the auto setting. The highest possible value is the default: 5.1 s.</td>
<td></td>
</tr>
<tr>
<td>⇒Polarity</td>
<td>Changes the polarity of the output signal. For some detectors, you can use this parameter to change the polarity of the output signal.</td>
<td></td>
</tr>
<tr>
<td>Retention</td>
<td>Indicates the current retention time. The value cannot be changed.</td>
<td></td>
</tr>
<tr>
<td>Signal Value</td>
<td>Indicates the current value of a Signal. Use UpperLimit and LowerLimit to set the signal acquisition limits. If signal acquisition limits are not met, the running batch is stopped and the Emergency Program is started.</td>
<td></td>
</tr>
<tr>
<td>⇒Step</td>
<td>Changes the step. Select the step such that the narrowest peak contains approximately 20 datapoints.</td>
<td></td>
</tr>
<tr>
<td>⇒RefBandwidth (Reference Bandwidth)</td>
<td>Changes the reference bandwidth. If necessary, increase the bandwidth to improve the signal-to-noise ratio.</td>
<td></td>
</tr>
<tr>
<td>⇒Wavelength</td>
<td>Changes the recorded wavelength. Note the possibilities for wavelength switching (see Determining Wavelength Switching).</td>
<td></td>
</tr>
</tbody>
</table>
Modifying the Signal Parameters of a 3D Field

Modify one or several signal parameters of a ➤Photodiode Array Detector to improve the size and the quality of a ➤3D Field:

<table>
<thead>
<tr>
<th>Signal Parameter</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒BunchWidth</td>
<td>Shows the current value of the bunch width.</td>
<td>Increasing the value improves the signal-to-noise ratio. However, the resolution decreases.</td>
</tr>
<tr>
<td>MaxWavelength</td>
<td>Determines the upper/lower limit of the 3D field.</td>
<td>Use these parameters to limit the size of the 3D field to the essential section.</td>
</tr>
<tr>
<td>MinWavelength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⇒RefWavelength (Reference Wavelength)</td>
<td>Changes the reference wavelength.</td>
<td>If necessary, increase the bandwidth to improve the ➤Signal-to-Noise Ratio.</td>
</tr>
<tr>
<td>⇒RefBandwidth (Reference Bandwidth)</td>
<td>Changes the reference bandwidth.</td>
<td>If necessary, increase the bandwidth to improve the signal-to-noise ratio.</td>
</tr>
<tr>
<td>Retention</td>
<td>Indicates the current retention time.</td>
<td>The value cannot be modified.</td>
</tr>
<tr>
<td>⇒Step</td>
<td>Changes the step.</td>
<td>Select the step such that the narrowest peak contains approximately 20 datapoints</td>
</tr>
</tbody>
</table>

Determining Wavelength Switching

➤Wavelength Switching is realized by time-precise modification of the ➤Wavelength (UV detector) or ➤Emission, and ➤Excitation (fluorescence detector) signal parameters.

- For each wavelength switch, enter the time, the channel, and the new parameter value in the ➤Program, for example, for the channel of a fluorescence detector:

```
10.000 UV_VIS1.Wavelength = 280 nm
10.000 UV_VIS2.Wavelength = 320 nm
```

or

```
10.000 Emission.ExWavelength = 240 nm
10.000 Emission.EmWavelength = 295 nm
```

In addition to changing the wavelength once, you may as well record spectra, for example, using the RF2000 fluorescence detector. For an example PGM File for the scan procedure with the RF2000 detector, refer to ➤Determining the Optimum Emission Wavelength (RF2000).
Determining the Optimum Emission Wavelength (RF2000)

Fluorescence detectors not only allow you to automatically change the wavelength from time to time (see Determining Wavelength Switching), but also to scan the entire range of the spectrum. Thus, spectra acquisition is possible for determining the optimum emission and excitation wavelengths. For more information, refer to Recording Fluorescence Spectra (RF2000).

The PGM File below assists you in finding the optimum values for the emission wavelength (that is, the Emission parameter). Start the chromatographic analysis using the same conditions as before. Decrease the pump flow to 0.000 ml/min as soon as you reach the peak for which to optimize the emission wavelength (in the example below: 5.370 min) and then start scanning.

```
-0.1 Pressure.LowerLimit = 0
Pressure.UpperLimit = 400
%A.Equate = "%A"
%A.Type = Automatic
%B.Equate = "%B"
%B.Type = Automatic
%C.Equate = "H2O/MeOH 80/20"
%C.Type = Automatic
%D.Equate = "%D"
%D.Type = Automatic
Flow = 1.000
%B = 0.0
%C = 100.0
%D = 0.0
Emission.ExWavelength = 275
Emission.EmWavelength = 350
Emission.Gain = 1.0
Emission.Response = 0.5
Emission.Sensitivity = Low
Emission.Step = Auto
Emission.Average = On
```

0.000 Emission.Autozero
Inject
Emission.AcqOn
You receive the usual chromatogram until 5.370 min. From 5.370 min on, the emission spectrum of the substance currently being in the flow cell is recorded. The excitation wavelength of 275 nm is kept.

Stop the pump flow at the corresponding retention time to optimize the emission wavelength for all other peaks as well. Determine the optimum \textit{Excitation} wavelength in the same way.

\section*{Recording Fluorescence Spectra (RF2000)}

It is \textit{not} possible to record spectra simultaneously with the \textit{Emission} signal. Single spectra scans are performed, instead. To guarantee a stable status in the flow cell stop the pump flow while the scans are performed.

The duration of the scans depends on the scan speed and the scan range. A scan from 200 to 900 nm with the scan speed \textit{Fast} takes approximately 85 seconds. The result of a scan is either an emission spectrum or an excitation spectrum. These spectra are automatically saved in a \textit{Spectra Library}. A library called \textit{RF2000.LIB} is created in the timebase directory of the local datasource. If a scan is performed during sample processing, a library with the same name is saved in the associated sequence.
Emission Spectrum

To scan an emission spectrum:
- Stop the pump flow via the `Flow=0` command.
- Execute the `ScanEmission` command. Depending on when the pump flow was stopped and when the scan procedure was started, either a background spectrum or a peak spectrum is saved.
- Perform the analog procedure to determine an optimum $Excitation$ value.

Difference Spectrum

To record a difference spectrum:
- Record a background spectrum as described above.
- Select `Save Background Spectrum` to save this spectrum separately in the detector.
- Reset the pump flow to the original value via the `Flow= ...` command. Continue until the maximum of the peak to detect is reached.
- Stop the pump flow and record a new spectrum.

The two spectra now exist in the RF2000 spectra library and as individual spectra in two different storage locations within the detector.
- Execute the `GetSpectraDifference` command to receive a difference spectrum.

The detector behaves as if a `Scan` procedure was started. The result of the difference formation is also saved to the RF2000 spectra library. This spectrum indicates the optimum emission or excitation value.

Tip:

The basic requirement for forming difference spectra is the correspondence between the wavelength range defined by the start wavelength and the end wavelength, as well as the spectra type (Excitation or Emission).

For an example program, refer to Determining the Optimum Emission Wavelength (RF2000).
Displaying the Signal Parameters of a Mass Channel

Different channel types are available for Mass Spectrometers:

- TICF channels (TICF_01 to TICF_09 for the MSQ or TICF_1 to TICF_4 for the aQa: data acquisition in Full-Scan mode)
- SIM channels (SIM_01 to SIM_32: data acquisition in SIM mode)
- TIC channel (total of all TICF or SIM channels)
- MS_01 to MS_32 channels (data acquisition in full-scan mode)

Almost no parameters for mass spectrometer channels can be changed from the Control Panel. Select Axis/Decoration on the context menu of the signal plot to display the following parameters for the channels of a mass spectrometer:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter</td>
<td>Filter of the MS method (METH file).</td>
<td>No input possible, not even in the F8 dialog box.</td>
</tr>
<tr>
<td>FilterIndex</td>
<td>Number of the Filter of the MS method.</td>
<td>Only for the MS_01 to MS_32 channels (press F8): Select the number of the desired filter (1-9 for the MSQ or 1-4 for the aQa):</td>
</tr>
<tr>
<td>Min/MaxMass</td>
<td>Limits of the mass range that is acquired in this channel.</td>
<td>Only for MS channels MS_01 to MS_32 (press the F8 key): Enter the lower and/or upper mass range limit.</td>
</tr>
<tr>
<td>Polarity</td>
<td>Ionization polarity of the mass spectrometer.</td>
<td>No input possible, not even in the F8 dialog box.</td>
</tr>
<tr>
<td>Source Voltage</td>
<td>Voltage of the ion source of the mass spectrometer.</td>
<td>No input possible, not even in the F8 dialog box.</td>
</tr>
</tbody>
</table>
Press the F8 key or select **Commands** on the **Control** menu to display the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta</td>
<td>Difference between the current signal value and the signal value one second before.</td>
<td>The value cannot be changed.</td>
</tr>
<tr>
<td>Retention</td>
<td>Indicates the current retention time.</td>
<td>The value cannot be changed.</td>
</tr>
<tr>
<td>Signal</td>
<td>Value indicates the current value of a Signal. UpperLimit and LowerLimit define the signal acquisition limits.</td>
<td>If signal acquisition limits are not met, the running batch is stopped and the emergency program is started.</td>
</tr>
</tbody>
</table>

Defining a Waveform (Overview)

A *Waveform* must be defined when a Dionex electrochemical detector is used in *Integrated Amperometry Mode*. Waveform definitions are part of a *Program* and can be defined using the Program Wizard. Waveforms can also be entered manually into the program. The steps for defining a waveform using the Program Wizard vary, depending on the model of electrochemical detector being used.

For details, see:

- Defining a Waveform for an ED40, ED50, or ED50A Electrochemical Detector
- Defining a Waveform for an ICS-3000 Electrochemical Detector (ED)

Also, refer to:

- The Control Program
- The Program Wizard
- How to: Creating and Modifying Programs
- Manually Editing a PGM File in the Commands View
Defining a Waveform for an ED40, ED50, or ED50A Electrochemical Detector

You can select a preprogrammed waveform from the Program Wizard, or define a custom waveform.

1. In the Select Waveform Options dialog box of the Program Wizard, select Custom to create a new waveform, or select a preprogrammed waveform from the list.

 ![Note:]

 The selected waveform must match the electrode. For guidelines, see Selecting a Default Waveform for Integrated Amperometry.

2. Click Next>.

 The Waveform Options dialog box appears. If you selected a preprogrammed waveform, the selected waveform’s time, potential, and integration settings are displayed in the waveform table. If necessary, the settings can be modified now (see below). The waveform can also be modified in the resulting program after completing the Program Wizard.

3. For each step in the waveform, enter or edit the parameters listed below, and then click Enter.

 Time (Sec) The time at which to apply the selected potential.

 ![Tip:]

 The maximum waveform period (the length of time from the first step in the waveform to the last) is 2 seconds. However, because only 1 data point can be collected per waveform period, the actual maximum length of a waveform period depends on the Data Collection Rate. The relationship is as follows:

 data collection rate x waveform period ≤ 1

 For example, if the data collection rate is 5 Hz (5 points per second), the longest waveform period allowed is 0.2 seconds. To create a longer waveform, reduce the data collection rate.

 Potential (V) The potential to apply between the reference and working electrode.

 Integration The Integration Interval option:

 - **No-Change** keeps the setting selected in the previous step
 - **Begin** starts integration at this point
 - **End** stops integration

 ![Tip:]

 Each waveform must have one integration interval. Integration cannot begin at the first step or end at the last step in the waveform.
4. Select the Reference Electrode Mode.

5. Enter the **pH Lower Limit** and **pH Upper Limit**.
 The pH is read at the start of each injection.

Note:

For guidelines when setting the reference electrode mode and pH limits, see [Selecting the Reference Electrode Mode with Alkaline Eluents](#).

Tips:

To delete a step, select it in the waveform table and click **Delete**.

To edit an existing step, select it in the waveform table; change the time, potential, and/or integration settings; and press <Enter>.

Also, refer to:

- The Control Program
- The Program Wizard
- How to: Creating and Modifying Programs
- Manually Editing a PGM File in the Commands View
- Defining a Waveform for an ICS-3000 Electrochemical Detector (ED)

You can select a preprogrammed Waveform from the Program Wizard or PGM Editor, or define a custom waveform.

1. Go to the **ED Options** dialog box of the Program Wizard or PGM Editor.

2. In the **Waveform Selector** table, select the waveform to be edited or select <New Waveform>.

Tip:

In the PGM Editor, an asterisk (*) before a waveform name indicates that Chromeleon is reading the waveform definition directly from the program (i.e., there is no associated waveform file for this waveform).
3. Click Edit.

The Waveform Editor appears. If you selected an existing waveform, a plot of the waveform is displayed, with the waveform’s times, potentials, and other settings displayed in the table below. If you did not select a waveform, you can select one now from the Waveform list or you can begin creating a new waveform.

4. Follow the guidelines below to edit an existing waveform or create a new one:
 • To add a new line to the end of the list, click Append.
 • To add a new line above an existing line, select the existing line and click Insert.
 • To delete a line, select the line and click Delete.
 • To edit parameters for each line, select the parameter and type or select the new value. Then, press <Enter> or <Tab>.
 • To update the plot with the new value(s), click Apply.

5. For each step in the waveform, enter the following parameters:

 Time (ms) The time at which to apply the selected voltage.

 Tip: The absolute maximum waveform period is 2 sec. However, for 2D data, because only 1 data point is generated per waveform period, the effective maximum length of a waveform period depends on the Data Collection Rate. The relationship is as follows:

 \[
 \text{data collection rate} \times \text{waveform period} \leq 1
 \]

 For example, if the data collection rate is 5 Hz (5 points per second), the longest waveform period allowed is 0.2 s (200 ms). To create a longer waveform, reduce the data collection rate.

 Voltage (mV) The voltage to apply between the reference and working electrode.

 Gain Region Select whether to turn the Gain Region on or off.

 Ramp Select either a Ramp or a Step change:

 Ramp is a gradual change in potential from this step in the waveform to the next step.

 Step is an immediate change in potential at this step.
For example, enter the following information to define the waveform steps shown in the above example:

<table>
<thead>
<tr>
<th>Time</th>
<th>Voltage</th>
<th>Ramp/Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>-0.10</td>
<td>Step</td>
</tr>
<tr>
<td>0.20</td>
<td>-0.10</td>
<td>Ramp</td>
</tr>
<tr>
<td>0.25</td>
<td>0.35</td>
<td>Step</td>
</tr>
<tr>
<td>0.40</td>
<td>0.60</td>
<td>Step</td>
</tr>
</tbody>
</table>

Integration

The >Integration Interval option:
- **On** starts or continues integration
- **Off** stops integration or keeps integration off (if it was turned off in a previous step)

Tip:

Each waveform must have one integration interval. Integration cannot begin at the first step or end at the last step in the waveform.

6. After all of the steps have been entered, save the waveform. If you are creating a new waveform or editing one of the default waveforms, enter a new name before saving. The default waveforms provided with Chromeleon are read-only.

Also, refer to:

- The Control Program 📚 The Program Wizard
- Control 📚 The PGM Editor
- How to: Creating and Modifying Programs 📚 Manually Editing a PGM File in the Commands View
- 📚 Selecting a Default Waveform for Integrated Amperometry
Using the Reference Electrode with Alkaline Eluents

The reference electrode inside the ED and ED40/ED50/ED50A cell is a combination pH/Ag/AgCl electrode. Selection of the Reference Electrode Mode is one of the steps in Defining a Waveform. If you select the Ag mode, only the Ag/AgCl part of the electrode is used. If you select the pH mode, the entire pH/Ag/AgCl electrode is used.

There are several important considerations:

• The same pH/Ag/AgCl combination electrode is used in both reference modes (Ag and pH).

• The Ag/AgCl half-cell is more commonly used as the cell reference electrode. However, if the pH changes during a separation, then use the pH reference mode instead of the Ag mode.

• When selecting the pH mode, always correct the waveform for pH dependence (0.059 V/pH unit). See Correcting a Waveform for pH Dependence for details.

• The pH readout matters, even if the reference mode is Ag.

When used with alkaline eluents, the reference potential undergoes a gradual change. As the silver chloride layer on the silver wire is converted to a mixture of silver oxide and hydroxide, the value of the reference potential gradually increases. This gradual change is indicated by the changes in pH readout when pumping a known composition of mobile phase.

For example, the pH readout for 60 mM sodium hydroxide should be approximately 12.8. It thus follows, from the Nernst equation, that a change in pH from 12.8 to 13.3 corresponds to approximately 30 mV of change in the reference potential. By calibrating the pH reference electrode only once, during initial installation, and by monitoring the pH readout, you can determine the status of the reference electrode. On the other hand, repeating the calibration will cause an electronic adjustment of the constant and slope of the Nernst equation in the detector electronics. Hence, the pH readout will be corrected with each recalibration, but the reference potential drift will not be apparent.

Also refer to How to: Performing Validation and Qualification Calibrating the pH Reference Electrode.
Note:

The reference electrode is a consumable item and should be replaced whenever the potential has changed by more than 30 mV (typically, after 3 months of use). Continued use of a defective reference electrode will cause a passivation (loss of detection response) of the working electrode, and may result in delays and unnecessary service calls.

Chromeleon compares the pH value at the beginning of each chromatographic run with the upper and lower pH limits you selected when defining the waveform. If the pH reading falls outside this range, a warning message appears in the Audit Trail. You may want to set the pH limits to define a narrow range and rely on the "out of range" warning to detect any unacceptable shift in the reference potential. To avoid receiving this warning, set the pH limits to a very broad range; for example, 7 to 14.

Recommendations for Specific Operating Conditions

<table>
<thead>
<tr>
<th>Operating Conditions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>The mobile phase composition is identical at the beginning</td>
<td>Calibrate the reference electrode only after installation of a new electrode.</td>
</tr>
<tr>
<td>of each run and pH <12.8</td>
<td>Set the pH upper and lower limits to values 0.5 higher and lower, respectively, than the known and constant initial pH. Replace the reference electrode when the "out of range" warning appears in the Audit Trail.</td>
</tr>
<tr>
<td></td>
<td>This mode of operation can be used for all CarboPac PA10 and AminoPac PA10 applications; it can also be used with the CarboPac PA1 when running isocratic monosaccharide separations.</td>
</tr>
<tr>
<td>The initial mobile phase composition changes from run to</td>
<td>Calibrate the reference electrode only after installation of a new electrode.</td>
</tr>
<tr>
<td>run and/or the initial pH >12.8</td>
<td>Test the reference electrode at least twice a week, as follows:</td>
</tr>
<tr>
<td></td>
<td>1. Replace the column with a length of narrow diameter PEEK tubing. The tubing must generate at least 500 psi at the flow rate for your application.</td>
</tr>
</tbody>
</table>

Note:

Testing the pH with PEEK tubing (instead of a column) eliminates re-equilibration periods between the high pH of actual eluents and lower pH during the reference electrode testing.
2. Set the pH limits to 11.5 and 12.5.
3. Pump an eluent composition having pH 12.0 (for example, 90% water and 10% of 100 mM NaOH).
4. When testing is completed, do the following:
 - Reset the eluent composition.
 - Specify a pH range that is wide enough, for example, 7 to 14, to avoid receiving warning messages.
 - Reconnect the column.

This electrode test with PEEK tubing can be used for all CarboPac MA1 applications; it can also be used for some separations, such as, sialic acids, with the CarboPac PA1.

Also, refer to **Selecting a Default Waveform for Integrated Amperometry**.

Selecting a Default Waveform for Integrated Amperometry

The following waveforms are provided with Chromeleon. You can use these waveforms as is, or modify them for your own applications. If you modify one of the default waveforms, you must save it with a different name. The default waveforms are read-only.

<table>
<thead>
<tr>
<th>Waveform</th>
<th>Working Electrode*</th>
<th>Reference Electrode</th>
<th>Mode**</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates (std. quad. potential)</td>
<td>Au disposable (P/N 060139; pkg. of 6)</td>
<td>Au (P/N 044112)</td>
<td>Ag/AgCl</td>
<td>Can be used with disposable gold electrodes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohols, Formic Acid, Glycols</td>
<td>Pt (P/N 044113)</td>
<td></td>
<td>Ag/AgCl</td>
<td>Use with platinum electrodes only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amino Acids (pH reference)</td>
<td>Au disposable (P/N 060082; pkg. of 6)</td>
<td></td>
<td>pH/Ag/AgCl</td>
<td>For research tasks (e.g., waveform development, separation optimization), use non-disposable gold electrode Au (P/N 055832)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amino Acids (Ag reference)</td>
<td>Au disposable (P/N 060082; package of 6)</td>
<td></td>
<td>Ag/AgCl</td>
<td>For research tasks (e.g., waveform development, separation optimization), use non-disposable gold electrode Au (P/N 055832).</td>
</tr>
</tbody>
</table>
Practical Tips for Device Control

<table>
<thead>
<tr>
<th>Waveform</th>
<th>Working Electrode*</th>
<th>Reference Mode**</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>Au (P/N 044112)</td>
<td>Ag/AgCl</td>
<td>Discontinued waveform. DO NOT use with disposable gold electrodes; dissolves gold and can cause reproducibility problems.</td>
</tr>
</tbody>
</table>

* Working electrode only (does not include complete electrode cell).
** The same combination electrode (P/N 044198) is used for the pH/Ag/AgCl and Ag/AgCl reference modes.

Correcting a Waveform for pH Dependence

At a mobile phase pH of 7, the reference potential of the entire electrode is the same as that of the Ag/AgCl half-cell. As the mobile phase pH is increased, the pH half-cell potential decreases approximately 0.059 V per pH unit. For example, at a mobile phase pH of 12, the reference potential of the pH half-cell would be -0.295 V relative to the Ag/AgCl half-cell. Therefore, at pH 12, the potentials applied to the working electrode must be raised approximately 0.3 V when switching from the "Ag" reference to the "pH" reference.

For example, two default waveforms for amino acids are provided with Chromeleon: one for use with the Ag reference electrode mode and one for the pH mode. The waveforms are identical except that in the pH mode waveform, the potentials are raised by 0.33 V, to compensate for an eluent with a pH of 12.7.

![Waveform Editor](image)
Also, refer to:

- **Defining a Waveform**
- **Selecting a Default Waveform for Integrated Amperometry**

Performing Cyclic Voltammetry

The ICS-3000 ED can be used for Cyclic Voltammetry (CV) detection. This mode is available only by issuing commands from a Control Panel. Cyclic voltammetry commands cannot be programmed into a PGM File.

Note:

A 3D data license is required to acquire and process cyclic voltammetry data.

Before you begin:

Data from a CV run is stored in the manual sequence in the timebase. In order to ensure all data is saved and data from one cyclic voltammetry run does not overwrite the data from a previous run, make sure the datasource does not have multiple sample status enabled.
To do this:

1. On the Browser, right-click the datasource name and select **Properties** from the context menu.

2. On the **General** tab page, clear the **Enable Sample Status Multiple** check box, if it is selected.

3. In the **manual** sequence, select **Single** for the **Sample Status** of the manual sample. Press **Enter**.

4. Select **Save** on the **File** menu to save the sequence change.

Setting up and starting the CV run:

1. On the panel tabset, click the **EC Detector** tab, or on the Browser, open the ED control panel and connect to the **Timebase** in which the ED is configured; see **How to: Controlling Devices from the Control Panel** Opening a Control Panel.

2. Enter the following CV parameters:

 - **CV Cycle Time**
 Enter the time in seconds for one CV cycle, which is the time it takes to go from the **CV Low Voltage** to the **CV High Voltage** and then back to the **CV Low Voltage**. This creates a triangle **Waveform**.

 - **CV Low Voltage**
 Enter the lowest voltage to be applied during the CV cycle. This voltage begins and ends the cycle.

 - **CV High Voltage**
 Enter the highest voltage to be applied during the CV cycle. This is the peak of the triangle waveform.

 - **CV Cycles**
 Enter the number of times (2 or more) to repeat the CV cycle

3. To start the CV run, click **Start CV**. The **Mode** automatically switches to **CV**.

4. The run continues until all of the specified **CV Cycles** are completed. At the end of the run, the mode, waveform, and voltage settings that were in effect before the start of the CV run are restored.

5. After the run is complete, view the data in the CV view window (see **Viewing Cyclic Voltammetry Data**).
Defining Step and Average

The time interval between two recorded data points is referred to as \(\text{Step}\).

The smaller the selected step, the more data points will be recorded, thus (generally) ensuring a more precise result. As this increases required storage capacity, Dionex recommends a good compromise between the required information and the capacity.

For intelligent minimization of the required storage capacity, the individual instruments, for example, Dionex detectors, support the setting \(\text{Step} = \text{Auto}\). However, Dionex recommends that you select a fixed step because an automatic step may result in a faulty integration.

In combination with the \(\Rightarrow \text{Average}\) parameter, the step can optimize the signal-to-noise ratio. See the following example:

Example: A detector delivers 100 values per channel (A and B) and per second. For channel A, the setting \(\text{Step} = 0.1\); \(\text{Average} = \text{ON}\) is selected, and for channel B \(\text{Step} = \text{Auto}\); \(\text{Average} = \text{ON}\).

Channel A:

A step of 0.1 corresponds to a sampling rate of 10 values/s. This means that out of the 100 values that are available, only every tenth value is stored. If the \(\text{Average}\) signal parameter is \(\text{ON}\), the values recorded per step are averaged. From 10 values, one average value is formed and is stored. For channel A, one signal value per second is stored.

Channel B:

\(\text{Step} = \text{Auto}\) means that the Chromeleon decides depending on events, how many values should be recorded per second. As a different number of values is recorded at different times, a varying number of values is averaged in the final value.

Tip:

Use \(\text{Step} = \text{Auto}\) for fast sample chromatograms for which you do not know the peak width to be expected. For a precise and reproducible analysis, a fixed step should be used.
Viewing or Resetting the Lamp Age

The PDA-100 detector allows you to display the number of hours the UV and visible lamps have been on. In addition, the lamp age can be reset to 0, if new lamps are installed.

The lamp age commands are available from the **Command** dialog box. Select **Command** on the **Control** menu. Under **UV**, select **UVLampAge** or **VisibleLampAge**. The total number of hours the lamp has been on is displayed. The number of hours can also be changed from this dialog box.

The UV and Visible lamp ages can also be displayed on the **Control Panel**. To do this, place a string display **Control** on the control panel (see **Layout Toolbar**). Then, on the **Link** tab page, link the control to the UV object property: **UVLampAge** for the UV lamp or **VisibleLampAge** for the visible lamp.

For more information, refer to:
- Modifying a Control Panel
- Modifying a Control
- Linking a Control to a Device

Controlling a Suppressor

The commands used for controlling a **Suppressor** differ, depending on the model of conductivity detector used and the type of suppressor installed:

<table>
<thead>
<tr>
<th>Detector Model</th>
<th>SupportedSuppressor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD20, CD25, ED40, ED50, IC20, and IC25</td>
<td>SRS</td>
</tr>
<tr>
<td>Command</td>
<td></td>
</tr>
<tr>
<td>SRS_Current =Off, 50, 100, 300, 500 (mA)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detector Model</th>
<th>Supported Suppressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands</td>
<td></td>
</tr>
<tr>
<td>Suppressor_Type =AAES, CAES, ASRS_4mm, ASRS_2mm, ASRS MS, CSRS_4mm, CSRS_2mm, SRS-MPIC</td>
<td></td>
</tr>
<tr>
<td>Suppressor_Current =mA</td>
<td></td>
</tr>
</tbody>
</table>
Example
Suppressor_Type = AAES
Suppressor_Current = 20 [mA]

Detector Model	Supported Suppressor(s)
ICS-3000 CD | AES, SRS

Commands
Suppressor_Type = AAES, CAES, ASRS_4mm, ASRS_2mm, ASRS MS, CSRS_4mm, CSRS_2mm, SRS-MPIC
Suppressor_CurrentSet = mA

Example
Suppressor_Type = AAES
Suppressor_CurrentSet = 20 [mA]

The following table lists the operating current range for the suppressors.

<table>
<thead>
<tr>
<th>Suppressor Type</th>
<th>Current Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAES</td>
<td>0.0...150 [mA]</td>
</tr>
<tr>
<td>CAES</td>
<td>0.0...150 [mA]</td>
</tr>
<tr>
<td>ASRS_4mm</td>
<td>0.0...500 [mA]</td>
</tr>
<tr>
<td>ASRS_2mm</td>
<td>0.0...150 [mA]</td>
</tr>
<tr>
<td>ASRS MS</td>
<td>0.0...150 [mA]</td>
</tr>
<tr>
<td>CSRS_4mm</td>
<td>0.0...300 [mA]</td>
</tr>
<tr>
<td>CSRS_2mm</td>
<td>0.0...110 [mA]</td>
</tr>
</tbody>
</table>

Note:

The Program Wizard guides you in setting the recommended current for the suppressors. The Wizard supplies a recommended current based on the eluent concentration and flow rate settings. Chromeleon automatically enters the recommended current into the Program and applies that current to the suppressor. To ensure the optimal performance of the suppressor, always accept the recommended current setting.

For more information, refer to:
- Setting Atlas Suppressor Currents
- Setting SRS Suppressor Currents
- Setting SRS-MPIC Suppressor Currents
Setting Atlas Suppressor Currents

For optimal suppressor performance, it is important to use the recommended suppressor currents for the target applications. The Chromeleon Program Wizard (see The Control Program The Program Wizard) guides you in setting the recommended current for the Atlas Electrolytic Suppressor. The wizard supplies a recommended current based on the eluent concentration and flow rate settings (see the table below). Chromeleon automatically enters the recommended current into the Program and applies that current to the Atlas Electrolytic Suppressor.

Caution:
It is possible to override the recommended current settings in the wizard by entering an alternate current value in the program file. However, to ensure the optimal performance of the suppressor, avoid applying excess current to it. Excess operating current leads to excess heat generation, which can reduce the suppressor lifetime and cause higher chromatographic baseline noise.

Atlas Electrolytic Suppressors have a maximum suppression capacity of 25 mN eluent at 1.0 ml/min, which is equivalent to 12.5 mM sodium carbonate for anion separations or 25 mM methanesulfonic acid (MSA) for cation separations at 1.0 ml/min.

Tip:
For gradient separations, use the highest eluent concentration in the gradient when you enter the eluent concentration in the wizard.

Examples of Recommended Operating Currents for Atlas Electrolytic Suppressors:

<table>
<thead>
<tr>
<th>Column</th>
<th>Eluent</th>
<th>Flow Rate (ml/min)</th>
<th>Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-mm AS4A-SC</td>
<td>1.8 mM Na2CO3/1.7 mM NaHCO3</td>
<td>2.00</td>
<td>36</td>
</tr>
<tr>
<td>2-mm AS4A-SC</td>
<td>1.8 mM Na2CO3/1.7 mM NaHCO3</td>
<td>0.50</td>
<td>9</td>
</tr>
<tr>
<td>4-mm AS9-HC</td>
<td>9.0 mM Na2CO3</td>
<td>1.00</td>
<td>60</td>
</tr>
<tr>
<td>2-mm AS9-HC</td>
<td>9.0 mM Na2CO3</td>
<td>0.25</td>
<td>15</td>
</tr>
<tr>
<td>4-mm AS14</td>
<td>3.5 mM Na2CO3/1.0 mM NaHCO3</td>
<td>1.20</td>
<td>32</td>
</tr>
<tr>
<td>2-mm AS14</td>
<td>3.5 mM Na2CO3/1.0 mM NaHCO3</td>
<td>0.30</td>
<td>8</td>
</tr>
<tr>
<td>3-mm AS14A</td>
<td>8.0 mM Na2CO3/1.0 mM NaHCO3</td>
<td>0.5</td>
<td>28</td>
</tr>
<tr>
<td>4-mm CS12A</td>
<td>22 mM MSA</td>
<td>1.00</td>
<td>72</td>
</tr>
<tr>
<td>3-mm CS12A-5 μm</td>
<td>20 mM MSA</td>
<td>0.50</td>
<td>32</td>
</tr>
<tr>
<td>2-mm CS12A</td>
<td>22 mM MSA</td>
<td>0.25</td>
<td>18</td>
</tr>
</tbody>
</table>
For other column and eluent conditions, the recommended current for the Atlas electrolytic suppressors can be calculated using the following equation:

\[
\text{Current (mA)} = 2 \times 1.67 \times (mN \times \text{flow rate (ml/min)}) \times [\text{eluent (mN)}]
\]

For anion separations:

\[
[\text{eluent (mN)}] = 2 \times [CO_3^{2-} \text{ (mM)}] + [HCO_3^- \text{ (mM)}] + [OH^- \text{ (mM)}]
\]

For cation separations:

\[
[\text{eluent (mN)}] = 2 \times [H_2SO_4 \text{ (mM)}] + [MSA \text{ (mM)}]
\]

(Where: [] enclosing an ion or eluent indicates concentration.)

The following table lists the maximum operating currents for the Atlas Electrolytic Suppressors under various column diameter and flow rate conditions.

Maximum Operating Currents for the Atlas Electrolytic Suppressors:

<table>
<thead>
<tr>
<th>Separation Column</th>
<th>Flow Rate (ml/min)</th>
<th>Maximum Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-mm column</td>
<td>0.25 to 0.50</td>
<td>30</td>
</tr>
<tr>
<td>3-mm column</td>
<td>0.50 to 1.00</td>
<td>50</td>
</tr>
<tr>
<td>4-mm column</td>
<td>1.00 to 2.00</td>
<td>100</td>
</tr>
</tbody>
</table>

Once the recommended suppressor current is determined, turn on the pump flow and apply the current to the suppressor.

Setting SRS Suppressor Currents

For optimal suppressor performance, it is important to use the recommended suppressor currents for the target applications. The Chromeleon Program Wizard (see The Control Program The Program Wizard) guides you in setting the recommended current for the Self-Regenerating Suppressors (SRS). The wizard supplies a recommended current based on the eluent concentration and flow rate settings (see the table below). Chromeleon automatically enters the recommended current into the Program and applies that current to the SRS.
Caution:

It is possible to override the recommended current settings in the wizard by entering an alternate current value in the program file. However, to ensure the optimal performance of the suppressor, avoid applying excess current to it. Excess operating current leads to excess heat generation, which can reduce the suppressor lifetime and cause higher chromatographic baseline noise.

The maximum suppression capacity of the Self-Regenerating Suppressors varies, depending on the suppressor type and the flow rate. The table below indicates the absolute maximum suppression capacity for each SRS, regardless of flow rate. The required capacity for an application is calculated as \([\text{ml eluent}] / \text{ml/min flow rate}\) and cannot exceed the absolute maximum dynamic capacity of the specific suppressor. For example, the 4-mm ASRS cannot suppress 200 mM at 2.0 ml/min.

<table>
<thead>
<tr>
<th>Suppressor</th>
<th>Absolute Maximum Suppression Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-mm ASRS</td>
<td>200 (\mu\text{equiv/min at 1.0 ml/min})</td>
</tr>
<tr>
<td>2-mm ASRS</td>
<td>50 (\mu\text{equiv/min at 0.25 ml/min})</td>
</tr>
<tr>
<td>4-mm CSRS</td>
<td>110 (\mu\text{equiv/min at 1.0 ml/min})</td>
</tr>
<tr>
<td>2-mm CSRS</td>
<td>37.5 (\mu\text{equiv/min at 0.25 ml/min})</td>
</tr>
</tbody>
</table>

Tip:

For gradient applications, select the highest eluent concentration in the gradient when you enter the eluent concentration in the wizard.

Examples of Recommended Operating Currents for Self-Regenerating Suppressors:

<table>
<thead>
<tr>
<th>Column</th>
<th>Eluent</th>
<th>Flow Rate (ml/min)</th>
<th>Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-mm AS4A-SC</td>
<td>1.8 mM Na2CO3/1.7 mM NaHCO3</td>
<td>2.00</td>
<td>26</td>
</tr>
<tr>
<td>2-mm AS4A-SC</td>
<td>1.8 mM Na2CO3/1.7 mM NaHCO3</td>
<td>0.50</td>
<td>7</td>
</tr>
<tr>
<td>4-mm AS9-HC</td>
<td>9.0 mM Na2CO3</td>
<td>1.00</td>
<td>44</td>
</tr>
<tr>
<td>2-mm AS9-HC</td>
<td>9.0 mM Na2CO3</td>
<td>0.25</td>
<td>11</td>
</tr>
<tr>
<td>4-mm AS14</td>
<td>3.5 mM Na2CO3/1.0 mM NaHCO3</td>
<td>1.20</td>
<td>24</td>
</tr>
<tr>
<td>2-mm AS14</td>
<td>3.5 mM Na2CO3/1.0 mM NaHCO3</td>
<td>0.30</td>
<td>6</td>
</tr>
<tr>
<td>3-mm AS14A</td>
<td>8.0 mM Na2CO3/1.0 mM NaHCO3</td>
<td>0.5</td>
<td>21</td>
</tr>
<tr>
<td>4-mm CS12A</td>
<td>22 mM MSA</td>
<td>1.00</td>
<td>65</td>
</tr>
<tr>
<td>3-mm CS12A-5 (\mu\text{m})</td>
<td>20 mM MSA</td>
<td>0.50</td>
<td>59</td>
</tr>
</tbody>
</table>
For other conditions, the recommended current for the Self-Regenerating Suppressors can be calculated using the following equations.

For anion separations:

\[
\text{Current (mA)} = 2.47 \left(mA \frac{\text{min}}{mN \times ml} \right) \times [\text{eluent (mN)}] \times \text{flow rate (ml / min)}
\]

\[
[\text{eluent (mN)}] = 2 \times [CO_3^{2-} (mM)] + [HCO_3^- (mM)] + [OH^- (mM)]
\]

For cation separations:

\[
\text{Current (mA)} = 2.94 \left(mA \frac{\text{min}}{mN \times ml} \right) \times [\text{eluent (mN)}] \times \text{flow rate (ml / min)}
\]

\[
[\text{eluent (mN)}] = 2 \times [SO_4^{2-} (mM)] + [MSA (mM)]
\]

(Where: [] enclosing an ion or eluent indicates concentration.)

The following table lists the maximum operating currents for the suppressors under various column diameter and flow rate conditions.
Practical Tips for Device Control

Maximum Operating Currents for the Self-Regenerating Suppressors:

<table>
<thead>
<tr>
<th>Suppressor</th>
<th>Maximum Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-mm ASRS</td>
<td>500</td>
</tr>
<tr>
<td>2-mm ASRS</td>
<td>150</td>
</tr>
<tr>
<td>4-mm CSRS</td>
<td>300</td>
</tr>
<tr>
<td>2-mm CSRS</td>
<td>110</td>
</tr>
</tbody>
</table>

Once the recommended suppressor current is determined, turn on the pump flow and apply the current to the suppressor.

Setting SRS-MPIC Suppressor Currents

The Chromeleon Program Wizard (see The Control Program The Program Wizard) displays the valid current settings for Self-Regenerating Suppressors (SRS) operating in the MPIC (mobile phase ion chromatography) Suppression Mode. For optimal suppressor performance, it is important to use the recommended suppressor currents for the target applications. The sections below indicate the recommended current for anion and cation applications, based on the eluent concentration and flow rate.

Caution:

It is possible to override the recommended current settings in the wizard by entering an alternate current value in the program file. However, to ensure the optimal performance of the suppressor, avoid applying excess current to it. Excess operating current leads to excess heat generation, which can reduce the suppressor lifetime and cause higher chromatographic baseline noise.

ASRS-MPIC Suppressor

The ASRS-ULTRA can be used for suppression of MPIC (ion-pairing) eluents when operating in the MPIC Suppression Mode. The MPIC Suppression Mode is a combination of the AutoSuppression External Water Mode augmented with a chemical regenerant, such as, sulfuric acid.

During operation in the MPIC Suppression Mode, the ASRS-ULTRA uses an applied current and a constant source of dilute sulfuric acid solution from a pressurized bottle delivery system. The table below lists the concentrations and flow rates of standard eluents for anion MPIC...
separations and the current levels and regenerant flow rates required to suppress them.

4-mm ASRS-ULTRA in the MPIC Suppression Mode:

<table>
<thead>
<tr>
<th>Eluent Eluent</th>
<th>Eluent Flow Rate (ml/min)</th>
<th>Current (mA)</th>
<th>Regenerant Flow Rate (ml/min)*</th>
<th>Sulfuric Acid Regenerant Concentration (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfuric Acid</td>
<td>0.5-2.0</td>
<td>50/100</td>
<td>3-5</td>
<td>5-10</td>
</tr>
<tr>
<td>0.1-2.0 mM Tetrabutylammonium Hydroxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0-5.0 mM Tetrabutylammonium Hydroxide</td>
<td>0.5-1.0</td>
<td>100/300</td>
<td>5-8</td>
<td>10</td>
</tr>
<tr>
<td>1.1-1.5</td>
<td>300/500</td>
<td>5-8</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

* The flow rate is measured volumetrically with a graduated cylinder (with the power on).

Tip:

For the lower eluent concentration in a given range, choose a correspondingly lower current setting; for a higher eluent concentration, choose a higher current setting. Higher current settings require the application of higher pressure to the pressurized regenerant delivery bottle to maintain adequate regenerant flow.

For complete operating instructions, refer to the manual for the 4-mm ASRS-ULTRA.

CSRS-MPIC Suppressor

The CSRS-ULTRA can be used for suppression of MPIC (ion-pairing) eluents when operating in either the AutoSuppression External Water Mode or the MPIC Suppression Mode; the appropriate mode depends on the specific MPIC application. The MPIC Suppression Mode is a combination of the AutoSuppression External Water Mode augmented with a chemical regenerant, if necessary (for example, boric acid). During operation in the MPIC Suppression Mode, the CSRS-ULTRA uses an applied current and a constant source of regenerant from a pressurized bottle delivery system.

The separation of alkanolamines by ion-pairing using the CSRS-ULTRA requires the addition of 10 mM boric acid to the regenerant. This increases the degree of ionization of the alkanolamines, thereby increasing their conductivity. Do not use boric acid regenerant for the separations of the fully-ionized alkali and alkaline earth metal salts; the borate ion will displace the hydroxide counter ion and lower the conductivity response.
The table below lists the concentrations and flow rates of standard eluents for cation MPIC separations and the current levels and regenerant flow rates required to suppress them.

4-mm CSRS-ULTRA in the MPIC Suppression Mode: Matching the Current Setting and Regenerant Flow Rate

<table>
<thead>
<tr>
<th>Eluent</th>
<th>Eluent Flow Rate (ml/min)</th>
<th>Current (mA)*</th>
<th>Regenerant** Flow Rate (ml/min)***</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1-2.0 mM Hexanesulfonic Acid</td>
<td>0.5-1.0</td>
<td>50/100</td>
<td>3-5</td>
</tr>
<tr>
<td>2.0-5.0 mM Hexanesulfonic Acid</td>
<td>0.5-1.0</td>
<td>100/300</td>
<td>5-8</td>
</tr>
<tr>
<td>1.1-2.0 mM Octanesulfonic Acid</td>
<td>0.5-1.0</td>
<td>50/100</td>
<td>3-5</td>
</tr>
<tr>
<td>2.0-5.0 mM Octanesulfonic Acid</td>
<td>0.5-1.0</td>
<td>100/300</td>
<td>3-5</td>
</tr>
<tr>
<td>0.1-2.0 mM Nonafluoropentanoic Acid</td>
<td>0.5-1.0</td>
<td>50/100</td>
<td>3-5</td>
</tr>
<tr>
<td>2.0-5.0 mM Nonafluoropentanoic Acid</td>
<td>0.5-1.0</td>
<td>100/300</td>
<td>3-5</td>
</tr>
</tbody>
</table>

* For optimal results, choose a current setting of 300 mA or less. Operating the 4-mm CSRS-ULTRA at current settings over 300 mA can shorten the life of the suppressor.

** The regenerant is deionized water or boric acid.

*** The flow rate is measured volumetrically with a graduated cylinder (with the power on).

Tip:

For the lower eluent concentration in a given range, choose a correspondingly lower current setting; for a higher eluent concentration, choose a higher current setting. Higher current settings require the application of higher pressure to the pressurized regenerant delivery bottle to maintain adequate regenerant flow.

For complete operating instructions, refer to the manual for the 4-mm CSRS-ULTRA.

Controlling an MMS Suppressor

Refer to the MicroMembrane Suppressor manual for operating conditions for the MMS, including the Displacement Chemical Regeneration mode.
IC Control

For the control commands for the DX-120, ICS-90, or ICS-1000/1500/2000, refer to:

- Controlling a DX-120 Ion Chromatograph
- Controlling an ICS-1000/1500/2000 Ion Chromatography System
- Controlling an ICS-90 Ion Chromatography System

The following pages provide details on:

- Controlling the Eluent Generator Concentration
- Monitoring the Eluent Generator Cartridge Lifetime
- Monitoring the DX-120 Operating Status

Controlling a DX-120 Ion Chromatograph

The following commands are available for controlling DX-120 operating functions:

- **Controlled AC**: Turn the AC power outlet on the DX-120 rear panel on and off. This provides on off control of an external accessory connected to the outlet. See the DX-120 operator’s manual for cabling instructions.
- **Column/Eluent**: If the DX-120 is in `Column Mode`, the Column command sets the flow path to column A or column B. If the DX-120 is in `Eluent Mode`, the Eluent command selects the eluent reservoir (A or B).

 Note:

 These commands are active only if the DX-120 is equipped with the dual-column option.
- **Data Collection Rate**: Sets the `Data Collection Rate` of the detector.
- **Eluent Pressure**: Turns the pressure to the eluent reservoir(s) on and off.
- **Pressure Unit**: Selects the units of pressure to use (psi or MPa).
- **Pump**: Turns the pump on and off.
- **SRS**: Turns the current supplied to the `Self-Regenerating Suppressor (SRS)` on and off.

These commands can be included in a `Program`, executed directly from the Commands dialog box (to do so, select Command… on the Control menu), or linked to a `Control` on the control panel.
To link a command to a control, place an edit box or switch control on the control panel (see ➤Layout Toolbar). Then, link the control to the desired object property. For example, to turn the DX-120 pump on and off from the control panel, link the Pump object property to a switch control. For more information, refer to How to: Controlling Devices from the Control Panel ➤Linking a Control to a Device.

The corresponding commands in the program are as follows:

```
0.000 ControlledAC =On/Off
0.000 Column =A/B
; Only for a DX-120 equipped with the dual-column option.
0.000 Data_Collection_Rate =Value [Hz]
0.000 Eluent =A/B
; Only for a DX-120 equipped with the dual-column option.
0.000 EluentPressure =On/Off
0.000 PressureUnit =psi/MPa
0.000 Pump =On/Off
0.000 SRS =On/Off
```

Controlling an ICS-1000/1500/2000 Ion Chromatography System

Commands for controlling the ICS-1000, ICS-1500, or ICS-2000 can be included in a ➤Program (see the examples below), or executed directly from either the ➤Control ➤Panel or the Commands dialog box (select Command... on the Control menu). For a list and description of the commands used most often, refer to Commands for Controlling Dionex Devices ➤ICS-1000/1500/2000 Ion Chromatography System. Also see the Commands dialog box for a complete list of commands.

The following programs are created with the Program Wizard (see The Control Program ➤The Program Wizard).

Program for an ICS-1000:

```
Pump_ECD.Pressure.LowerLimit = 200
Pump_ECD.Pressure.UpperLimit = 3000
Pump_ECD.%A.Equate = "%A"
Pump.InjectValve.LoadPosition
Pump_ECD.Data_Collection_Rate = 5.0
Pump_ECD.CellTemperature = 35.0
Pump_ECD.ColumnTemperature = 30.0
```
Suppressor_Type = AAES
; Carbonate = 3.5
; Bicarbonate = 1.0
; Hydroxide = 0.0
; Recommended Current = 33
Suppressor_Current = 33
Pump_ECD.Flow = 1.20

-2.300 Pump_ECD_Relay_1.Closed Duration=138.00
; For AS40 injection. Replace this line with the following for manual injection
; -0.100 Message "Load the sample into the injection loop, press OK to continue"
0.000 Pump_ECD.Autozero
ECD_1.AcqOn
Pump_InjectValve.InjectPosition Duration=30.00
15.000 ECD_1.AcqOff
End

Note:
The program above assumes that the ICS-1000's TTL output is connected to the AS40's Load Relay. Refer to the ICS-1000 and AS40 operator's manuals for connection details.

Program for an ICS-2000:

Pump_ECD.Pressure.LowerLimit = 200
Pump_ECD.Pressure.UpperLimit = 3000
Pump_ECD.%A.Equate = "%A"
Pump_InjectValve.LoadPosition
Pump_ECD.Data_Collection_Rate = 5.0
Pump_ECD.CellTemperature = 35.0
Pump_ECD.ColumnTemperature = 30.0
Suppressor_Type = ASRS_4mm
; Carbonate = 0.0
; Bicarbonate = 0.0
; Hydroxide = 12.0
; Tetraborate = 0.0
; Other eluent = 0.0
; Recommended Current = 30
Suppressor_Current = 30
EluentGenerator.Concentration = 12.0
Pump_ECD.Flow = 1.00
Practical Tips for Device Control

-2.300 Pump_ECD_Relay_1.Closed Duration=138.00
 ; For AS40 injection. Replace this line
 with the following for manual injection
 ;-0.100 Message "Load the sample into
 the injection loop, press OK to
 continue"
0.000 Pump_ECD.Autozero
 ECD_1.AcqOn
 Pump_InjectValve.InjectPosition Duration=60.00
15.000 ECD_1.AcqOff
End

Note:
The program above assumes that the ICS-2000’s TTL output is connected
to the AS40’s Load Relay. Refer to the ICS-2000 and AS40 operator’s
manuals for connection details.

Controlling an ICS-90 Ion Chromatography System

Commands for controlling the ICS-90 can be included in a Program (see
the examples below), or executed directly from either the Control Panel or
the Commands dialog box (select Command… on the Control menu). For
a list and description of the commands used most often, refer to
Commands for Controlling Dionex Devices ICS-90 Chromatography System. Also see the Commands dialog box for a
complete list of commands.

The following programs are created with the Program Wizard (see The
Control Program The Program Wizard). They are identical, except for
the method used to load the sample loop.

Program for an ICS-90 connected to an AS40 autosampler:

 Pump = On
 MeasuredFlowRate = 1
 ;Record the flow rate set from the hardware
 Pressure.LowerLimit = 0
 Pressure.UpperLimit = 3000
-2.000 Pump_ECD_TTL_1. 0v Duration=
 ;Turn on TTL 1 for 120 seconds,
 ;AS40 load cycle started
0.000 Pump_ECD.Autozero
InjectPosition Duration=
 60.00
;Set the injection valve to the inject position
;for 60 seconds
ECD_1.AcqOn
30.000 ECD_1.AcqOff
End

Note:

The program above assumes that the ICS-90’s TTL output is connected to the AS40’s Load Relay. Refer to the ICS-90 and AS40 operator’s manuals for connection details.

Program for manual injections:

```
Pump = On
MeasuredFlowRate = 1
Pressure.LowerLimit = 0
Pressure.UpperLimit = 3000
0.000 Pump_ECD.Autozero
Message "Manually inject the sample and click OK to continue. If you are using an autosampler remove this command from the Program file."
  InjectPosition  Duration=
  60.00
ECD_1.AcqOn
30.000 ECD_1.AcqOff
End
```
Controlling the Eluent Generator Concentration

The eluent concentration generated by the Eluent Generator can be set manually or controlled via a Program. The allowable eluent concentration depends on several factors. Refer to the appropriate section below for details.

To determine the maximum eluent concentration for your application, refer to the column manual. Dionex column manuals are included on the Dionex Reference Library CD-ROM.

EG40, EG50, or ICS-2000 Eluent Generator

These products can generate eluent concentrations from 0.1 to 100 mM. The maximum concentration (X) depends on the pump flow rate and is calculated as:

- 0.1 to 100 mM at 0.1 to 1.0 ml/min
- 0.1 to X mM at 1.0 to 3.0 ml/min
 where X mM = 100/Flow Rate in ml/min

Apart from the flow rate, the suppressor and the EluGen cartridge type determine the maximum eluent concentration possible for a particular application.

ICS-3000 EG: Single-Cartridge Configuration or Independent Dual-Cartridge Configuration

In the single-cartridge configuration, the EG contains one EluGen cartridge. In the independent dual-cartridge configuration, the EG contains two EluGen cartridges that are being operated independently on separate systems (each cartridge is linked to a different pump). The following table indicates the allowable concentration range for each cartridge in this configuration.

<table>
<thead>
<tr>
<th>EluGen Cartridge</th>
<th>Eluent Concentration Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2CO3</td>
<td>0.1 to 15 mM, 0.1 < Flow ≤ 1.0 ml/min</td>
</tr>
<tr>
<td></td>
<td>0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min</td>
</tr>
<tr>
<td></td>
<td>X = 15/Flow</td>
</tr>
<tr>
<td>KOH</td>
<td>0.1 to 100 mM, 0.1 < Flow ≤ 1.0 ml/min</td>
</tr>
<tr>
<td></td>
<td>0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min</td>
</tr>
<tr>
<td></td>
<td>X = 100/Flow</td>
</tr>
</tbody>
</table>
EluGen Cartridge | Eluent Concentration Range | Comment
---|---|---
LiOH | 0.1 to 80 mM, 0.1 < Flow ≤ 1.0 ml/min 0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min X = 80/Flow |
MSA | 0.1 to 100 mM, 0.1 < Flow ≤ 1.0 ml/min 0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min X = 100/Flow |
NaOH | 0.1 to 100 mM, 0.1 < Flow ≤ 1.0 ml/min 0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min X = 100/Flow |
Electrolytic pH Modifier | Not applicable; the Electrolytic pH Modifier is available for selection only for the linked dual-cartridge configuration. |

ICS-3000 EG: Linked Dual-Cartridge Configuration

In the linked dual-cartridge configuration, the EG contains two EluGen cartridges, linked to a single pump, that work together. The allowable concentration for each linked cartridge is less than when the cartridge is defined as independent. The following table indicates the allowable total concentration for each cartridge in this configuration.

EluGen Cartridges	Eluent Concentration Range	Comment
K2CO3/Electrolytic pH Modifier | 0.1 to 15 mM, 0.1 < Flow ≤ 1.0 ml/min 0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min X = 15/Flow | The Electrolytic pH Modifier’s eluent concentration must be less than or equal to the K2CO3 cartridge’s eluent concentration, but must not exceed 10 mM.
The eluent concentration range for each cartridge is cut by 50%. |
KOH/KOH | 0.1 to 50 mM, 0.1 < Flow ≤ 1.0 ml/min 0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min X = 50/Flow |
KOH/MSA | 0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min |
KOH/NaOH | X = 50/Flow |
MSA/MSA | 0.1 to 50 mM, 0.1 < Flow ≤ 1.0 ml/min 0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min X = 50/Flow |
MSA/NaOH | 0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min |
NaOH/NaOH | 0.1 to 50 mM, 0.1 < Flow ≤ 1.0 ml/min 0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min X = 50/Flow |
LiOH/LiOH | 0.1 to 40 mM, 0.1 < Flow ≤ 1.0 ml/min 0.1 to X mM, 1.0 < Flow ≤ 3.0 ml/min X = 40/Flow |

The eluent concentration range for each cartridge is cut by 50%.
Manually Setting the Eluent Generator Concentration

1. Open the control panel for the Timebase; see How to: Controlling Devices from the Control Panel Opening a Control Panel.

2. Move the Concentration slider to select a value or enter the value into the edit field.

- or -

Enter the concentration from the Commands dialog box. To do this, select Command on the Control menu. Under EluentGenerator, select the Concentration command.

Programming the Eluent Generator Concentration

Commands for setting the eluent concentration can be added to a program (see Control The Control Program).

You can use the Program Wizard to enter the concentration command(s). With the wizard, you can enter a single concentration value for the entire analysis or program a ramp or multi-step gradient in which the generated concentration of eluent changes over time. When completing the wizard, click the Help button on the EluentGenerator Options tab page to display details about the eluent generator and gradient options.

Note:
The ICS-2000 Gradient Generator license is required in order to create eluent gradients with the ICS-2000.

Monitoring the Eluent Generator Cartridge Lifetime

Chromeleon monitors the lifetime status of the EluGen cartridge currently being used by the eluent generator and displays the information on the Control Panel and in the Chromeleon Server Configuration program.

The Remaining Lifetime (Ion Count) or Remaining Life (%) represents the percentage of the original ion capacity remaining in the cartridge. The ion percentage is counted down in 1% increments. At 10%, Chromeleon logs a warning each time the cartridge is used. At 0%, Chromeleon displays a message that the ion count is depleted; the cartridge must then be replaced before operation can be continued.
The **Expiration Date** is 2 years from the date of manufacture. One month before expiration, Chromeleon logs a warning each time the cartridge is used. Although you can continue to operate with the cartridge after the expiration date, performance may be impaired until a new cartridge is installed.

To view the cartridge lifetime status information from the Server Configuration program:

1. In the **Server Configuration** program, select the EG40 or EG50 Eluent Generator, the ICS-2000 that contains the eluent generator, or the ICS-3000 EG.
2. Select **Properties** on the **Edit** menu.
3. For an EG40 or EG50, select the **Pump Link & Cartridge** tab.
4. For an ICS-2000, select the **Eluent Generator** tab.
5. For an ICS-3000 EG, select the **Cartridges** tab.

Monitoring the DX-120 Operating Status

You can monitor the status of many DX-120 operating functions on the control panel. For example, the control panel can include **Controls** displaying the current DS4 temperature set point and status, the current flow rate, and the **SRS** status.

To add the corresponding controls to the control panel and link the desired status functions, follow the description in **How to: Controlling Devices from the Control Panel**:

- **Modifying a Control Panel**
- **Modifying a Control**
- **Linking a Control to a Device**

The following DX-120 functions can be monitored on the control panel.

<table>
<thead>
<tr>
<th>DX-120 Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Configuration</td>
<td>Indicates whether the DX-120 is configured with a single- or dual-column set.</td>
</tr>
<tr>
<td>DS4 Status</td>
<td>Indicates whether the current DS4 temperature is under, at (ready), or over the temperature set point.</td>
</tr>
<tr>
<td>DS4 Temperature</td>
<td>Displays the current DS4 temperature set point.</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>Displays the pump flow rate.</td>
</tr>
</tbody>
</table>
** DX-120 Function ** | ** Description **
--- | ---
Full Scale | Indicates the microSiemens output (100 or 1000) of a full-scale detector response.
Pressure | Displays the current pump pressure transducer reading.
SRS Status | Indicates the status of the SRS, not installed, off, or the selected operating current (if on).
System Mode | Indicates whether the DX-120 is in Column Mode or Eluent Mode.

** Tips:**

The Chromeleon reports the status of the above DX-120 functions only. Except for the system mode, values for these functions are selected with DIP-switches on the DX-120. Refer to the DX-120 operator’s manual for more information. The system mode is selected in the DX-120 Properties dialog box (Mode tab page) in the Server Configuration.

For functions that can be controlled by Chromeleon, refer to Controlling a DX-120 Ion Chromatograph.

Monitoring the ICS-1000/1500/2000 Operating Status

You can monitor the status of many ICS-1000/1500/2000 operating functions on the control panel. For example, the control panel can include Controls displaying the current pump flow rate, DS6 conductivity cell temperature, eluent generator status, and amount of eluent in the reservoir.

To add the corresponding controls to the control panel and link the desired status functions, follow the description in How to: Controlling Devices from the Control Panel:

- Modifying a Control Panel
- Modifying a Control
- Linking a Control to a Device
The following ICS-1000/1500/2000 functions can be monitored on the control panel.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%A_Value</td>
<td>Indicates the partial flow of a component, expressed as a percentage of the total flow.</td>
</tr>
<tr>
<td>Acquisition_Ready</td>
<td>Indicates whether the ICS-1000/1500/2000 is ready to begin data acquisition.</td>
</tr>
<tr>
<td>CellTemperature</td>
<td>Indicates the DS6 conductivity cell temperature.</td>
</tr>
<tr>
<td>ColumnTemperature</td>
<td>Indicates the column temperature; available only if the column heater option is installed.</td>
</tr>
<tr>
<td>DegasCycleOff, DegasCycleOn</td>
<td>Indicates whether the degas cycle is off or on; available only if the vacuum degas option is installed.</td>
</tr>
<tr>
<td>DegasMode</td>
<td>Indicates the degas mode setting (Always Off, Always On, Cycle, or Monitor); available only if the vacuum degas option is installed.</td>
</tr>
<tr>
<td>DegasPressure</td>
<td>Indicates the degas pressure (in psi); available only if the vacuum degas option is installed.</td>
</tr>
<tr>
<td>EGC1_Connected, EGC2_Connected</td>
<td>Indicates whether the corresponding eluent generator cartridge is connected or disconnected (ICS-2000 only).</td>
</tr>
<tr>
<td>EgcCurrent</td>
<td>Indicates the operating current of the eluent generator cartridge (in mA) (ICS-2000 only).</td>
</tr>
<tr>
<td>EgcVoltage</td>
<td>Indicates the eluent generator cartridge voltage (ICS-2000 only).</td>
</tr>
<tr>
<td>EluentBottleLevel</td>
<td>Indicates the volume of liquid (in liters) in the eluent reservoir.</td>
</tr>
<tr>
<td>EluentValve</td>
<td>Indicates whether the eluent valve is open or closed.</td>
</tr>
<tr>
<td>Pressure</td>
<td>Indicates the current pump pressure transducer reading.</td>
</tr>
<tr>
<td>Rise_Time</td>
<td>Indicates the filter rise time to apply to the recorder output.</td>
</tr>
<tr>
<td>SuppressorStatus</td>
<td>Indicates whether the suppressor is on, off, or not installed. If the suppressor is on, the selected operating current is displayed.</td>
</tr>
<tr>
<td>SuppressorVoltage</td>
<td>Indicates the suppressor voltage.</td>
</tr>
<tr>
<td>TotalConductivity</td>
<td>Indicates the measured conductivity (with no offset applied).</td>
</tr>
<tr>
<td>TTL_Input_Function_1, TTL_Input_Function_2, TTL_Input_Function_3, TTL_Input_Function_4</td>
<td>Indicates the function assigned to the corresponding TTL input.</td>
</tr>
<tr>
<td>TTL_Input_Mode</td>
<td>Indicates the TTL input mode setting.</td>
</tr>
</tbody>
</table>

Note:

Chromeleon reports the status of the above ICS-1000/1500/2000 functions. For a list of functions that can be controlled by Chromeleon, refer to Controlling an ICS-1000/1500/2000 Ion Chromatography System.
GC and Temperature Control

Flow and pressure control is an important aspect of gas chromatographs. For more information, refer to

- Flow/Pressure Control for Gas Chromatographs
- Determining a Gradient (GC).

The Agilent 6890 GC and the 7673 and 7683 GC autosamplers support simultaneous injection of two samples. For more information, refer to:

- Commands and Properties for Dual Operation (6890)
- Injecting Two GC Samples Simultaneously (6890)
- Injecting Two GC Samples Simultaneously (7673 and 7683 Autosamplers).

Some instruments support temperature control. For general information, refer to:

- Temperature Control (On/Off)
- Controlling the Temperature

For information about how to control a column thermostat, refer to

- Controlling the Column Temperature

Flow/Pressure Control for Gas Chromatographs

Gas chromatographs can operate at a constant gas flow or at a constant pressure. It is possible to switch from one mode to the other.

Two mutual switches are assigned the property FlowMode. Setting the flow and the pressure is in the corresponding mode via a separate control (gauge or edit field).
Determining a Gradient (GC)

For basic information about how to determine a gradient, refer to Determining a Gradient.

How to enter basic points for GC:
- Select the initial temperature in the Init line.
- In the Iso Time column, enter for how long this temperature shall be maintained.
- In the next line, select the ramp (Rate in °C/min) to be used to change the temperature. In the Temperature column, select the temperature that the GC should reach with this first ramp. In the ISO Time column, reenter for how long this temperature shall be maintained.

You can program up to six temperature ramps.

In the same way, you can use the FrontInlet and BackInlet pages to determine a temperature gradient for an inlet. A temperature gradient can be determined for PTV and Cool on Column inlets.

For example, for the HP 6890, you can use the Column1 and Column2 pages to define flow and pressure gradients. Select Type: Ramped Flow to program a low gradient. Or else, select Type: Ramped Pressure to program a pressure gradient. The gradient will then be displayed in the color indicated at the top right.

Tip:

After the program run, each sample is automatically reset to the original state, i.e., for example, the initial temperature is restored. Restoring the initial temperature in this way is usually the quicker way, compared to setting the corresponding cool-down command in the program.
Commands and Properties for Dual Operation (6890)

In dual operation mode, the 6890 GC allows you to simultaneously inject two samples from different positions, and thus doubling the sample throughput. To work in dual operation mode, you have to install and configure the 6890 GC as described in Installation Instruction Agilent 6890 GC: Dual Operation in the Administrator Help section.

After you have installed the GC as described, the following commands and devices will be available in the PGM Editor, depending on the timebase:

The commands and properties for the GC and the sampler are listed under both timebases. For the sampler, this is above all UseTray. For the GC, these are temperature commands and properties. (Note: The single commands and properties have been removed from the above picture; they are usually listed in the Commands dialog box between the EraseErrorLog and Connect commands.) The commands that are available for both timebases must be identical for simultaneously running samples, i.e., they must be identical in the related PGM Files.

In addition, only commands and properties are listed for the devices that are actually installed in the timebase. For example, the commands and properties for the following devices appear under the first timebase (here: 6890_A):
• Front injector (default name: FrontInjector)
• Front inlet (FrontInlet)
• First column (Column1)
• Front detector (GC_1)

Under the second timebase (here: 6890_B), the commands and properties appear for the following devices:
• Back injector (BackInjector)
• Back inlet (BackInlet)
• Second column (Column2)
• Back detector (GC_2).

For information about how to perform dual injection, refer to Injecting Two GC Samples Simultaneously (6890).

Injecting Two GC Samples Simultaneously (6890)

To double the sample throughput, the 6890 GC supports dual operation mode, allowing you to simultaneously inject two samples from different positions. The following conditions must be met:
• The GC must be fitted with the required hardware components.
• The GC must be installed in two timebases (refer to Hardware Installation: Third-Party Devices Agilent 6890 GC: Dual Operation in the Administrator Help section).
• The PGM Files for the two timebases must match.
• A batch must be available for each timebase.

After the installation, follow the steps below to set up dual injection:
Creating two PGM Files

Create a PGM File for each timebase, observing the following:

Enable dual operation with the following command (this is also possible from the control panel):

\[
\text{DualOperation} = \text{Shared}
\]

Tip:

When a batch is running, it is not possible to perform manual commands in Shared mode (exceptions: RunLog, ReportReady und PrepRun). To control the GC via manual commands while a batch is running, assign the GC to only one timebase:

\[
\text{DualOperation} = \text{FrontOnly or BackOnly}
\]

- Make sure that all commands and properties shared between the timebases (see [Commands and Properties for Dual Operation](6890)) have the same values at the same retention times. This is especially important for the temperature.
- Commands and properties that are assigned to only one timebase can be set independently of the setting in the PGM File for the other timebase.
- The Inject command is an exception: It must be available in both programs at the same time. (In special cases, it may be missing in both programs; it must not be missing in only one program.)

Creating a sequence and a batch for each timebase

Keep in mind it is not possible to simultaneously inject two samples from the same vial (except if UseTray = No).

It is not necessary that the batches include the same number of samples. If all samples of one batch are processed, sample processing will continue for the remaining samples of the other batch.

Tip:

It is also possible to add new samples or sequences to the finished batch and restart the batch. Sample processing is resumed when the next sample of the running batch is started.
Starting batches

When DualOperation is set to Shared, a batch must be started on both timebases simultaneously:

- Start the batch on one timebase.
- A message may appear in the Audit Trail telling you to start a batch on the other timebase, too.
- Start the batch on the other timebase.
- Both batches run synchronized. The ReadyCheck checks that the shared properties, temperature gradient, and run time for the sample pairs match and that the injections are performed from different positions.

Note:

- **Observe the following restrictions:**
 - **The Ready Check is possible for both timebases only if the batch on the other timebase is already running.**
 - **The Ready Check can check only the active sequences.**
 - **The Ready Check can see changes to the running sequence on the other timebase only when you stop and restart the batch on the other timebase.** (If the Ready Check reports an error on the other timebase, follow the steps below):
 - **In the timebase for which the error was reported.**
 - Stop the batch.
 - Eliminate the error.
 - For the first sample, set the status from Interrupted to Single.
 - Restart the batch.
 - Return to the original timebase.
 - Run the Ready Check once again.

For information about how to install the 6890, refer to **Hardware Installation 🚀 Agilent 6890 GC: Overview** in the **Administrator Help** section.
Injecting Two GC Samples Simultaneously (7673 and 7683 Autosamplers)

To double the sample throughput, the Agilent 7673 and 7683 GC autosamplers support dual injection, allowing you to simultaneously inject two samples from different sample positions.

Note:

The Dionex AS and AS50 autosamplers also support simultaneous injection of samples. Refer to Practical Tips for Device Control: Autosampler Control [Autosampler Commands (AS/AS50)].

Use the following command to enable or disable the dual injection:

```
DualInject = On/Off
```

If DualInject is set to On, both injectors inject simultaneously. The master injector is always the injector mentioned in the Inject command. For example, the front injector is the master injector if the command is:

```
0.000 Front.Inject
```

The master injector injects from the sample position defined in the sequence. The sample position for the other injector (the so-called slave injector) needs to be defined separately, via either the Fixed Offset or the UDC method.

Fixed Offset Method

The Fixed Offset method defines the sample position from which to inject, relative to the position from which the Master Injector injects:

```
DualInject = On
Rear.Position = FrontPosition + 25
0.000 Front.Inject
```

Dionex recommends reserving the first and third quadrant for the Front Injector and the second and fourth quadrant for the Rear Injector.

To run a chromatogram with one sample only, use a different PGM File including "DualInject = Off" for the corresponding sample.
UDC Method

For the UDC method, a User-Defined Column is required for the datasource named; for example, RearPosition. Value type "Integer", Minimum "1", Maximum "100." The "empty values are possible" option should be enabled. In this column, enter the sample position from which the slave injector (in this case, the Rear Injector) will inject.

The corresponding program lines read as follows:

```
DualInject = On/Off
Rear.Position = Sample.RearPosition
0.000 Front.Inject
```

Use the UDC method to define a separate sample position for each injection. If the Rear Injector will not be performing an injection, leave the corresponding cell empty. (This is only possible if the "empty values are possible" option is enabled for the column.)

For information about how to install the Dual Inject option of the 7673 and 7683 autosamplers, refer to Installation Instruction in the Administrator Help section.

For information about how to install the autosampler, refer to Agilent GC Autosamplers: Flow Chart in the Administrator Help section.

Temperature Control (On/Off)

Assign TempCtrl property to a Control on a control panel, e.g., to a switch, to turn temperature control for the corresponding instrument on and off (see How to: Controlling Devices from the Control Panel Linking a Control to a Device). The actual temperature is set by an additional control (see Practical Tips for Device Control: GC and Temperature Control Controlling the Temperature).

Instruments providing temperature control include column ovens, autosamplers (Dionex ASI-100 T and ASI-100 PT), specific detectors, and gas chromatographs (HP 5890).
You can also enable the temperature control via a Program. The corresponding command syntax is:

```
0.000 X.TempCtrl=On or
0.000 X.TempCtrl=Off
```

Where X is the name under which the corresponding instrument is listed in the Server Configuration program; for example:

```
0.000 GC.TempCtrl=On or
0.000 Sampler.TempCtrl=On
```

Controlling the Temperature

Instruments providing temperature control, such as column ovens, autosamplers (Dionex ASI-100T and ASI-100 PT), or gas chromatographs (HP 5890), can be operated directly by Chromeleon if the corresponding device driver supports this function. The prerequisite is that temperature control of the instrument has been enabled (see Practical Tips for Device Control: GC and Temperature Control Temperature Control (On/Off)).

You can then control the temperature of the instrument by using the corresponding Control (gauge or edit field) on the Control Panel.

Note:

To do so, assign the Temperature property to the control. For more information, refer to How to: Controlling Devices from the Control Panel Linking a Control to a Device

Manual Cooling

- Move the slider with the mouse to the desired temperature value.
- Enter the nominal temperature in an edit field.
- A slider can have an additional gauge for the upper and lower temperature limits. Chromeleon monitors the set temperature range.
- Point to the gauge to display the exact value of the set temperature.
If an instrument reports that the set temperature value was actually reached (Ready), this can be made visible via an LED on the control panel (see Practical Tips for Device Control: Special Commands, Relay Control, and Miscellaneous The Ready Signal).

Programmed Cooling
In the Program, the temperature of an instrument can be adjusted as follows:

```
0.000 TempCtrl = On/Off
; This command enables and disables the temperature control.
0.000 X.Temperature = Value[°C]
; This command sets the nominal temperature.
; X corresponds to name of the instrument as defined in the "Server Configuration" program.
0.000 X.Temperature.UpperLimit = Value[°C]
0.000 X.Temperature.LowerLimit = Value[°C]
; These commands define the upper and lower limit.
; The limits are monitored by Chromeleon.
0.000 Wait SampleTempOK (or similar)
; The Wait command delays all further operations on
; the instrument until the system receives the feedback
; that the nominal temperature has been reached.
```
Controlling the Column Temperature

The following Dionex instruments provide temperature control of the column:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Temperature Control Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCC-100 Thermostatted Column Compartment (see the Administrator Help section for details)</td>
<td>5°C to 80°C</td>
</tr>
<tr>
<td>STH585 Column Oven (see the Administrator Help section for details)</td>
<td>5°C to 85°C</td>
</tr>
<tr>
<td>ICS-1000/1500/2000 Ion Chromatography Systems</td>
<td>30°C to 60°C. (The column heater is an option for the ICS-1000.)</td>
</tr>
<tr>
<td>AS50 Thermal Compartment</td>
<td>10°C to 40°C for PEEK systems 10°C to 80°C for stainless steel systems</td>
</tr>
<tr>
<td>ICS-3000 Detector/Chromatography</td>
<td>Units without separate column temperature control: 10°C to 40°C Units with separate column temperature control: 10°C to 40°C (upper compartment) 10°C to 70°C (column compartment)</td>
</tr>
<tr>
<td>FLM-3100 Flow Manager and Thermostatted Column Compartment (see the Administrator Help section for details)</td>
<td>5°C to 70°C</td>
</tr>
</tbody>
</table>

Depending on the type of Control (see Layout Toolbar), you can have the current temperature displayed (alphanumeric display), set a new temperature value (edit field), or determine the upper and/or lower temperature limit (gauge slider). For more information about changing controls, refer to How to: Controlling Devices from the Control Panel.
It is also possible to integrate column temperature control into a Program. See the following descriptions.

TCC-100 and FLM-3100 program commands:

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>ColumnOven.Temperature = Value[°C]</td>
</tr>
<tr>
<td>;</td>
<td>This command determines the nominal temperature.</td>
</tr>
<tr>
<td>0.000</td>
<td>ColumnOven.Temperature.UpperLimit = Value[°C]</td>
</tr>
<tr>
<td>0.000</td>
<td>ColumnOven.Temperature.LowerLimit = Value[°C]</td>
</tr>
<tr>
<td>;</td>
<td>These commands determine the upper and lower limits.</td>
</tr>
<tr>
<td>;</td>
<td>The limits are monitored by Chromeleon.</td>
</tr>
</tbody>
</table>

ICS-1000/1500/2000 and AS50 thermal compartment program commands:

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>Column.Temperature = Value[°C]</td>
</tr>
<tr>
<td>;</td>
<td>This command determines the nominal temperature.</td>
</tr>
<tr>
<td>0.000</td>
<td>Column.Temperature.UpperLimit = Value[°C]</td>
</tr>
<tr>
<td>0.000</td>
<td>Column.Temperature.LowerLimit = Value[°C]</td>
</tr>
<tr>
<td>;</td>
<td>These commands are available for the ICS-1000/1500/2000 only and determine the upper and lower limits.</td>
</tr>
<tr>
<td>;</td>
<td>The limits are monitored by Chromeleon.</td>
</tr>
</tbody>
</table>

DC program commands:

Include the following commands before data acquisition begins:

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column_TC.AcquireExclusiveAccess</td>
<td>This command gives exclusive control of column temperature to the current timebase.</td>
</tr>
<tr>
<td>Column_TC.Mode = On/Off</td>
<td>These commands turn on or off column temperature control and determine the temperature setpoint. Column temperature control is an option in the DC.</td>
</tr>
<tr>
<td>Column_TC.TemperatureSet = Value[°C]</td>
<td></td>
</tr>
<tr>
<td>Compartment_TC.AcquireExclusiveAccess</td>
<td>This command gives exclusive control of compartment temperature to the current timebase.</td>
</tr>
<tr>
<td>Compartment_TC.Mode = On/Off</td>
<td>These commands turn on or off compartment temperature control and determine the temperature setpoint.</td>
</tr>
<tr>
<td>Compartment_TC.TemperatureSet = Value[°C]</td>
<td></td>
</tr>
</tbody>
</table>
Include the following commands after data acquisition ends:

```plaintext
Column_TC.ReleaseExclusiveAccess
Compartment_TC.ReleaseExclusiveAccess
```

These commands release control of the column and compartment temperatures to allow another timebase to acquire exclusive access.

For the commands that Chromleon supports for the column compartments and for the FLM-3100 Flow Manager and Thermostatted Column Compartment, refer to *Device Control: Commands for Controlling Dionex Devices* and *Dionex Flow Manager and Thermostatted Column Compartments*.
Component Controller Control

As with other Chromeleon controlled devices, to control a CC80 Component Controller using programmed control, commands are included in a PGM File. However, the CC80 differs from other controlled devices in that Sequences are not created in Chromeleon. Instead, sequences are created in the Analyzer program, which then oversees control of the CC80 and the other analyzer devices. Refer to the Analyzer program Help for how to create and run analyzer sequences.

The simplest way to create a program for the CC80 is to use the Program Wizard (see Control The Program Wizard). Using the wizard ensures that commands and parameters are entered with the correct syntax and in the correct order. This is especially helpful for entering the SP80 valve commands for sample preparation.

Note:

Direct control of a CC80 using a Control Panel is used only when the CC80 is offline (not controlled via the Analyzer program). When the CC80 is online, the control panel is set to Monitor Only.

Sample Preparation

CC80 sample preparation commands that will be used to prepare the sample or standard for analysis are grouped together in the program and executed before the timed commands. The beginning of the group is defined with the BeginSamplePrep command, and the end of the group is defined with the EndSamplePrep command. Because these grouped commands are not assigned retention times, the Delay SP command is used to specify a time to wait before continuing to the next command.

Sample Preparation Overlap

To reduce the time between injections, the CC80 can perform the sample preparation functions for the next sample while the current sample is still running. The overlapped functions are run while data acquisition or other program commands that do not require the CC80 are being executed. When the CC80 finishes the overlapped functions, the program pauses, if necessary, to allow the currently running sample to finish. Then, the remaining commands in the overlapped sample’s program are executed.
To ensure sample overlap works correctly, if you are editing a PGM manually, be sure that the following three commands are present in the given order:

```
BeginSamplePrep
[list of CC80 sample prep commands]
EndSamplePrep
Wait SamplePrepComplete
```

The **BeginSamplePrep** and the **EndSamplePrep** commands enclose the commands that are to be overlapped. The **Wait SamplePrepComplete** command determines whether the CC80 can begin running the overlapped commands for the next sample. Chromeleon automatically sets the **SamplePrepComplete** status to true or false at the appropriate times when running the program.

CC80 sample prep commands can also be assigned retention times. When a sample prep command is assigned a time, it is not included in the overlapped commands. To ensure that timed CC80 commands do not interfere with overlapped sample preparation, commands that require a length of time to complete cannot be assigned retention times. These commands are: **DelaySP**, **Dilution Pump**, and **Loading Pump**.

Note:

The Sample Preparation Overlap option can be disabled in the CC80 server configuration properties on the Options tab page.

Also, refer to **Overlapping Samples**.

Program Examples

Chromeleon-PA provides example program files, which you can use as starting points for your programs. Because every program is created for a specific system and application, the examples will not work "as is" with your analyzer, but the principles behind the types of commands included and the order in which they are listed can be applied to many systems. Refer to *Setting Up Chromeleon-PA* (Document No. 031970) for detailed descriptions of the example programs.
The example programs are included in the CM-PA Example datasource on the Chromeleon-PA installation CD. To connect to the datasource and view the examples, insert the CD in the drive, go to the Chromeleon Browser, and select File>Mount Datasource>Browse.

Also, refer to How to:

- Valve Control for CC81: Concentration
- Valve Control for CC82: Dilution
- Valve Control for CC83: Dilution with Reagent
- Valve Control for CC84: Concentration with Reagent
Valve Control for CC81: Concentration

- **Sample (SM)**: waste (0)—directs output from the Chk Std (CS) valve to waste
 SS valve (1)—directs output from the CS valve to the SS valve
- **Diluent (DI)**: closed (0)—stops flow of diluent (typically DI water) to the dilution pump
 open (1)—allows flow of diluent to the dilution pump
- **Dil Vessel (DV)**: purge (0)—directs output from the dilution vessel to waste
 SS valve (1)—directs output from the dilution vessel to the SS valve
- **Samp/Std (SS)**: sample (0)—directs output from the CS valve (sample or check standard) to the Load/Inject valve
 standard (1)—directs output from the DV valve (the diluted standard) to the Load/Inject valve
- **Gas (GAS)**: vent (0)—no gas pressure on the dilution vessel
 pressurize (1)—pressurizes the dilution vessel
- **Metering (ME)**: standard (0)—allows the stock standard to flush and fill the loop
 diluent (1)—directs the diluent through the loop for delivery to the dilution vessel
- **Chk Std (CS)**: sample (0)—directs the sample to the SM valve
 ChkStd (1)—directs the check standard to the SM valve
![Valve Control for CC82: Dilution](image)

Sample (SM)
- **SS valve (0)**—directs output from the SM valve (sample or check standard) to the SS valve
- **ST valve (1)**—directs output from the SM valve to the ST valve

Diluent (DI)
- **closed (0)**—stops flow of diluent (typically DI water) to the dilution pump
- **open (1)**—allows flow of diluent to the dilution pump

Dil Vessel (DV)
- **purge (0)**—directs output from the dilution vessel to waste
- **SS valve (1)**—directs output from the dilution vessel to the SS valve

Samp/Std (SS)
- **sample (0)**—directs the (undiluted) sample or check standard to the Load/Inject valve
- **standard (1)**—directs output from the dilution vessel to the Load/Inject valve

Gas (GAS)
- **vent (0)**—no gas pressure on the dilution vessel
- **pressurize (1)**—pressurizes the dilution vessel

Metering (ME)
- **ST valve (0)**—allows the output from the ST valve (stock standard, sample, or check standard) to flush and fill the loop
- **diluent (1)**—directs the diluent through the loop for delivery to the dilution vessel
Valve Control for CC83: Dilution with Reagent

Practical Tips for Device Control

- **Chk Std (CS)**
 - Sample (0)—directs the sample to the SM valve
 - ChkStd (1)—directs the check standard to the SM valve

- **Standard (ST)**
 - Standard (0)—directs stock standard to the ME valve
 - Sample (1)—directs output from the SM valve (sample or check standard) to the ME valve

Sample (SM)
- ST valve (0)—directs sample to the ST valve
- SS valve (1)—directs sample to the SS valve

Diluent (DI)
- Closed (0)—stops flow from the DS valve to the dilution pump
- Open (1)—allows flow from the DS valve to the dilution pump

Dil Vessel (DV)
- Purge (0)—directs output from the dilution vessel to waste
- SS valve (1)—directs output from the dilution vessel to the SS valve

Samp/Std (SS)
- Sample (0)—directs the (undiluted) sample to the Load/Inject valve
- Diluent (1)—directs output from the dilution vessel to the Load/Inject valve
Gas (GAS)

- vent (0)—no gas pressure on the dilution vessel
- pressurize (1)—pressurizes the dilution vessel

Metering (ME)

- ST valve (0)—allows the output from the ST valve (sample or standard) to flush and fill the loop
- diluent (1)—allows output from the DS valve (diluent or reagent) to flow through the loop and into the dilution vessel

Dil Select (DS)

- diluent (0)—directs diluent to the ME valve (through the dilution pump)
- reagent (1)—directs reagent to the ME valve (through the dilution pump)

Standard (ST)

- sample (0)—directs sample to the ME valve
- standard (1)—directs stock standard to the ME valve

Valve Control for CC84: Concentration with Reagent

Sample (SM)

- sample (0)—directs sample to the DS valve
- ChkStd (1)—directs check standard to the DS valve

Diluent (DI)

- closed (0)—stops flow of diluent (typically DI water) to the dilution pump
- open (1)—allows flow of diluent to the dilution pump
Practical Tips for Device Control

<table>
<thead>
<tr>
<th>Dil Vessel (DV)</th>
<th>purge (0)—directs output from the dilution vessel to waste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS valve (1)—directs output from the dilution vessel to the SS valve</td>
</tr>
<tr>
<td>Samp/Std (SS)</td>
<td>closed (0)—does not allow flow through the valve</td>
</tr>
<tr>
<td></td>
<td>DV valve (1)—directs output from the DV valve to the loading pump</td>
</tr>
<tr>
<td>Gas (GAS)</td>
<td>vent (0)—no gas pressure on the dilution vessel</td>
</tr>
<tr>
<td></td>
<td>pressurize (1)—pressurizes the dilution vessel</td>
</tr>
<tr>
<td>Metering (ME)</td>
<td>ST valve (0)—allows output from the ST valve (stock standard or reagent) to flush and fill the loop</td>
</tr>
<tr>
<td></td>
<td>DS valve (1)—allows output from the DS valve to flow through the loop and into the dilution vessel</td>
</tr>
<tr>
<td>Dil Select (DS)</td>
<td>diluent (0)—directs diluent to the ME valve</td>
</tr>
<tr>
<td>Standard (ST)</td>
<td>standard (0)—directs standard to the ME valve</td>
</tr>
<tr>
<td></td>
<td>reagent (1)—directs reagent to the ME valve</td>
</tr>
</tbody>
</table>
Special Commands, Relay Control, and Miscellaneous

Chromeleon also supports various special commands:

- Virtual Channel Commands
- Program Examples for Virtual Channels
- Trigger Commands
- Mixed Commands

For information about relays, refer to:

- Relay, TTL, and Remote Input Commands
- Switching a Relay

For general information about instrument control, refer to:

- Device Successfully Connected
- The Ready Signal

Virtual Channel Commands

Changing the Channel Type

To optimize signal recording, assign each virtual channel a type. Three types are currently defined (see Hardware Installation \ Channel Types of the Virtual Channel Driver in the Administrator Help section):

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>Suitable for expressions that</td>
<td>formula =</td>
</tr>
<tr>
<td></td>
<td>a) change quickly and/or</td>
<td>a) pressure.value</td>
</tr>
<tr>
<td></td>
<td>b) are composed of other analog signals.</td>
<td></td>
</tr>
<tr>
<td>Digital</td>
<td>Suitable for digital expressions.</td>
<td></td>
</tr>
<tr>
<td>Fixed</td>
<td>Suitable for expressions that change slowly.</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- `pressure.value`
- `UV_VIS_1/UV_VIS_2`
- `P580Relay_1.State AND P580Relay_2.State`
- `Pump.%A`
Tip:

If step gradients occur for virtual signals consisting of other signals even if the channel type is set to Analog, the resolution in y direction is insufficient. In this case, set FormulaMin/FormulaMax accordingly.

The selected type affects the Step, MaxAutoStep, and Average settings of the corresponding signal and the selection of appropriate raw data compression. For the standard compressor, these three parameters have the same significance as with normal signal channels. For the step compressor, the values have no significance because this compressor always uses a fixed step of 0.01s. The default values are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Step</th>
<th>MaxAutoStep</th>
<th>Average</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>Auto</td>
<td>5.1s</td>
<td>On</td>
<td>Standard compressor</td>
</tr>
<tr>
<td>Digital</td>
<td>Fixed, 0.01s</td>
<td></td>
<td></td>
<td>Special compressor for step signals</td>
</tr>
<tr>
<td>Fixed</td>
<td>Fixed, 0.01s</td>
<td>5.1s</td>
<td>Off</td>
<td>Standard compressor</td>
</tr>
</tbody>
</table>

For analog or fixed channels, you can change Step, MaxAutoStep, and Average values after you have selected the type. If these properties are set for digital channels, a warning appears.

Tip:

Step = Auto and Average = On is not considered for fixed channels.

Defining the signal to record

Select Formula to specify the expression to be recorded. You can use the same expressions as for Trigger conditions, i.e., arithmetic and logical links. The expression must be numeric. During program execution, the FormulaCur property indicates the value calculated. FormulaMin and FormulaMax define the minimum and maximum signal values. If the measured signal exceeds the FormulaMax value, only the FormulaMax value is used for the data point. (This also applies to FormulaMin.)

Note:

The more the measuring range is limited by FormulaMin and FormulaMax, the better is the signal resolution.
As for other signal channels, you can use the **Value** property to display the current (or interpolated) signal value (changes every 0.01s).

The **Equate** property allows you to enter a user-defined name for the virtual channel during the analysis. Use the **Log** command to include the name in the Audit Trail.

It is not possible to change the **Step**, **MaxAutoStep**, **Average**, **Formula**, and **Type** properties during data acquisition. The **FormulaCur** property indicates the status.

For program examples for virtual channels, refer to [Program Examples for Virtual Channels](#).

Program Examples for Virtual Channels

Recording the Pump Pressure

You can use the [Virtual Channel Driver](#) to record the pump pressure. This steady signal is likely to change frequently. That is why Dionex recommends setting the type of the virtual channel to **Analog**. You can use the default settings for recording this channel:

```plaintext
0.000 Pressure.LowerLimit = 0
Pressure.UpperLimit = 400
Inject
VirtualChannel_01.Formula pump.pressure
VirtualChannel_01.Type = Analog
VirtualChannel_01.AcqOn
2.000 VirtualChannel_01.AcqOff
```

The signals are recorded with the ⇒Step determined by the corresponding pump. This step might be too large to return the pump pressure precisely. In this case, use the [Integrator Driver](#) to receive the precise pump pressure signal. In this case, you will need an A/D converter such as the [UCI-100 Universal Chromatography Interface](#) (also, refer to [Recording the Pump Pressure](#)).

Sum of two channels

Much as the pump pressure, you can record the sum of two UV channels as a virtual channel. This steady signal is also likely to change frequently. That is why Dionex recommends setting the type of the virtual channel to
Analog. Using the default settings, this channel is recorded as precisely as the two UV channels:

0.000 Pressure.LowerLimit = 0
 Pressure.UpperLimit = 400
Inject
VirtualChannel_01.Formula = UV_VIS_1+UV_VIS_2
VirtualChannel_01.Type = Analog
UV_VIS_1.AcqOn
UV_VIS_2.AcqOn
VirtualChannel_01.AcqOn

2.000 UV_VIS_1.AcqOff
 UV_VIS_2.AcqOff
 VirtualChannel_01.AcqOff

Tip:

If step gradients occur for virtual signals consisting of other signals even if the channel type is set to Analog, the resolution in y direction is insufficient. In this case, set FormulaMin/FormulaMax accordingly.

Relay Status

The status of a relay should be recorded as a virtual channel. For this rectangle signal, Dionex recommends setting the type of virtual channel to Digital:

0.000 Pressure.LowerLimit = 0
 Pressure.UpperLimit = 400
Inject
VirtualChannel_01.Formula = P580_Relay1_State
VirtualChannel_01.Type = Digital
VirtualChannel_01.AcqOn

0.000 P580_Relay1.On
0.100 P580_Relay1.Off
0.200 P580_Relay1.On
0.300 P580_Relay1.Off
0.400 P580_Relay1.On
0.500 P580_Relay1.Off
0.600 P580_Relay1.On
0.700 P580_Relay1.Off
0.800 P580_Relay1.On
0.900 P580_Relay1.Off
1.000 P580_Relay1.Off
1.000 VirtualChannel_01.AcqOff
Recording a Gradient

The currently set gradient should be recorded as a virtual channel. This steady signal is unlikely to change frequently. That is why Dionex recommends setting the type of the virtual channel to **Fixed**. It is sufficient to record the current value once per second:

<table>
<thead>
<tr>
<th>Time</th>
<th>Pressure.LowerLimit</th>
<th>Pressure.UpperLimit</th>
<th>Inject</th>
<th>Flow</th>
<th>%B</th>
<th>VirtualChannel_01.Formula</th>
<th>VirtualChannel_01.Type</th>
<th>VirtualChannel_01.Step</th>
<th>VirtualChannel_01.AcqOn</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0</td>
<td>400</td>
<td></td>
<td>10</td>
<td>100</td>
<td>Pump.%B</td>
<td>Fixed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>%B = 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VirtualChannel_01.AcqOn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>%B = 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.500</td>
<td>%B = 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.000</td>
<td>%B = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VirtualChannel_01.AcqOff</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correcting a signal from a radioactive substance:

To determine the concentration of a radioactive substance, you must take the decay of the substance into account and correct the signal accordingly. Use the virtual channel driver to accomplish this task.

In the example below:

- The half-life is t½ min
- The run time of the chromatogram is t₁ min
- The uncorrected signal (UV_VIS_1) is between - 10,000 and 10,000 mAU,

<table>
<thead>
<tr>
<th>Time</th>
<th>Pressure.LowerLimit</th>
<th>Pressure.UpperLimit</th>
<th>Inject</th>
<th>VirtualChannel_01.Formula</th>
<th>VirtualChannel_01.FormulaMin</th>
<th>VirtualChannel_01.FormulaMax</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0</td>
<td>400</td>
<td></td>
<td>UV_VIS_1 / 2.718**</td>
<td>-10000 / 2.718**</td>
<td>10000 / 2.718**</td>
</tr>
</tbody>
</table>

\[(\text{System.Retention} / \text{t½}) \times 0.69314718 \times \text{t₁} / \text{t½}\]
In the program, replace the $t_{1/2}$ entry with the actual half-life. In addition, enter the actual run time of your program with three decimal places for t_l.

When the program is modified accordingly, the virtual channel records the signal that would be measured by the detector if the radioactive decay were stopped with the injection into the chromatography system. The decay that occurred before the injection will not be corrected.

Note:

If you know the signal range to be expected for your chromatogram (in the example for the channel UV_VIS_1) you may enter this value instead of -10,000 and 10,000 for calculating FormulaMin/Max to map your chromatogram more precisely.

Trigger Commands

Note:

The trigger name must be unique; that is, no triggers by the same name can be used, nor device, relay, or signal names that were already assigned. The same trigger can initiate any number of reactions. The reactions of the trigger list are not supplied with time information. The trigger must always be completed by an EndTrigger command; for example:

```
0.000  Trigger <NAME>  Condition= [Value] (Operator) [Value] , OperatorValue, True=Value[s] , Delay=Value[s] , Limit=Number
  Reaction 1 = Value/Status
  ...  ...
  Reaction n = Value/Status
EndTrigger
```
If a trigger condition consists of several values, operators can combine them. Available operators are +, -, *, /, AND, OR, NOT. The Trigger condition is fulfilled if the corresponding value is reached, not reached, or exceeded. This is indicated by the operators <, >, <=, >=, = and <=. Any dependence on various values can be realized via parentheses.

If the value is preceded by the name \(\Rightarrow \text{Delta} \), the slope (i.e., the first derivation) is processed as the trigger condition. Remote input signals or relay states can also be processed.

Note:
Due to lack of space, line breaks are inserted here. Normally, one command must be entered in one line. For a detailed description of the Trigger command, refer to \(\Rightarrow \text{Trigger} \) in the Reference Information section.

Example 1: Peak Recognition via Absolute Value

```
0.000 Trigger EXAMPLE1 UV_VIS_1>100,True=1,Delay=5,Limit=4
Sound File="TEST.WAV"
... ...
RELAYNAME =On
EndTrigger
```

Description: The trigger with the Trigger Name EXAMPLE1 monitors the channel UV_VIS_1. If the signal exceeds the value 100 for more than 1 second ((Trigger-) True), the Audio file TEST.WAV is played after a (Trigger-) Delay of 5 seconds. (If no sound card is installed in the PC, there is a short Beep instead.) At the same time, the RELAYNAME relay is enabled.

The entire process, i.e., exceeding the signal value 100 of channel UV_VIS_1 with a subsequent reaction, is limited to 4 times (Limit=4). If the condition (Trigger-) Limit is not entered, the process is always repeated if....

Example 2: Peak Recognition via Signal Slope

```
0.000 Trigger EXAMPLE2 UV_VIS_1.DELTA>1
Sound File="TEST.WAV"
EndTrigger
```

Description: The trigger **EXAMPLE2** monitors the channel UV_VIS_1. At a slope value (DELTA) above 1, the Audio file TEST.WAV is played. If no sound card is installed in the PC, there is a short beep instead.

Example 3: AND, OR, NOT

```plaintext
0.000 Trigger EXAMPLE3 ((UV_VIS_1>100) AND (UV_VIS_2>100) OR (UV_VIS_3>200)) AND NOT REMOTE1
  Sound File="TEST.WAV"
EndTrigger
```

Description: The **EXAMPLE3** trigger monitors the UV_VIS_1, UV_VIS_2, and UV_VIS_3 channels as well as the REMOTE1 remote input. If the channels 1 and 2 simultaneously (AND) exceed the value 100, or (OR) if the channel UV_VIS_3 exceeds the value 200 and if the remote input REMOTE1 delivers no signal (AND NOT) at the same time, the TEST.WAV Audio file is played (without a sound card, there is a short beep instead).

Example 4: Further parameters that can be triggered

```plaintext
0.000 Trigger EXAMPLE4 Pressure.LowerLimit<20 OR Pressure.UpperLimit>300 OR Temperature>60
  AbortBatch
EndTrigger
```

Description: The trigger **EXAMPLE4** monitors the pump pressure and the temperature of the column oven. If the pressure falls below 20 bar (= 2 MPa = 290 psi) or exceeds 300 bar (= 30 MPa = 4350 psi), or if temperature exceeds 60°C, the running sample batch is aborted (Abort Batch).

Example 5: Fraction Collector Foxy Jr.

```plaintext
  FoxiJr.Valve = Off
; switches the Fraction Collector valve to the "Waste" position
0.000 Trigger STARTofPEAK FoxiJr.Valve = 0 AND UV_VIS_1.Delta >1, True = 2
  FoxiJr.Valve = On
; switches the valve to the "Collect" position
EndTrigger
```

Description: The Fraction Collector Foxy Jr. valve can be switched between the "Waste" and "Collect" positions using the trigger **STARTofPEAK**. The valve is turned off when no conditions are met, and turned on when the specific conditions are fulfilled.
Trigger **TUBEFULL**

Protocol "Tube full"

FoxiJr.Valve = 1

True = 60

EndTrigger

Trigger **ENDofPEAK**

FoxiJr.Valve = 1 AND

UV_VIS_1.Delta > -1,

True = 2, Delay = 5

EndTrigger

Description: The **PEAKSTART** trigger causes the valve to switch to the **Collect** position if the valve is previously in the **Waste** position and if the slope of the **UV_VIS_1** channel exceeds the value 1 for more than 2 seconds (True). After 60 seconds, the TUBEFULL trigger ensures that the collection container does not overflow. The valve is switched again (back to the **Waste** position). For larger collection containers, the time can be adjusted as needed. If the signal is below the slope value -1 for more than 2 seconds, and if the valve is still in the **Collect** position, this is interpreted as the end of the peak. After a delay of 5 seconds, the valve is switched to the **Waste** position. Simultaneously, the x/y-arm of the fraction collector is moved by one position (FoxiJr.Tube = FoxiJr.Tube +1).

Also, refer to **How to: Collecting Fractions**:

- Setting Up Fraction Collection
- Program Example (One Detection Channel)
- Program Example (Two Detection Channels)
- Fraction Collection Control via an MS
Mixed Commands

Produce Sound

0.000 Sound File="TEST.WAV"

For more information, refer to ⇒Sound command.

Temperature Regulation for Column Oven

0.000 Temperature.Nominal =Value [°C] (nominal value)

In combination with a ⇒Trigger condition, the actual value can also be inquired:

0.000 Trigger OVENTEST Condition=Temperature>50[°C]
Sound File="TEST.WAV"
EndTrigger

Description: The OVENTEST trigger monitors the current oven temperature. Each time the temperature exceeds 50°C, the TEST.WAV Audio file is played. If the PC has no sound card, there is a short beep.

Comments, Protocol and Message Texts

; Comment Text...
0.000 Protocol "Text ...
0.000 Message "Text ...

Note:

Comments can be added to any program instruction via ” ; “. They can easily be recognized by their green color. Protocol and message texts must be indicated by quotation marks ("Text...")! Both are included in the Audit Trail. While the ⇒Protocol command is for documentation purposes only, the ⇒Message text appears on the screen. Continuation of the program is only possible after confirming with the Enter key.
Example 6: Delayed Execution of the Inject Command ("Wait")

0.000 Acquisition =On
0.000 Wait UV_VIS_1 < 10
0.000 Inject

Description: Program execution is delayed until the absorption on channel UV_VIS_1 is below 10 mAU. As soon as this is the case, injection is started.

The _Wait_ command is also required for Suck and Dispense operations of the Dionex GINA 50 and GINA 160 autosamplers (see _AutoSampler Control_).

 Relay, TTL, and Remote Input Commands

Enable/Disable Relays

0.000 RELAYNAME.State =On / Off

Alternatively, the following short command is valid:

0.000 RELAYNAME.On
0.000 RELAYNAME.Off

Enable/Disable Relay for a specific duration

0.000 RELAYNAME.On =Value[s]
0.000 RELAYNAME.Duration =Value[s]

Alternatively, use the following short command:

0.000 RELAYNAME.On Duration= Value[s] or
0.000 RELAYNAME.Off Duration= Value[s]

Enable/Disable TTLs

0.000 TTL_NAME.State =0v / 5v
Alternatively, use the following short command:

0.000 TTL_NAME.0v
0.000 TTL_NAME.5v

Enable/Disable TTLs for a specific duration

0.000 TTL_NAME.0v Duration=Value[s]
0.000 TTL_NAME.5v Duration=Value[s]

Switching a Relay

Every Relay can be integrated as a simple switch on the control panel interface. The two switch settings correspond to the relay states On and Off. In addition, Controls on the Control Panel are linked to State. Each relay can be executed with a time relay, using the Duration parameter.

If a 3-way valve is integrated in the fluidics on the detector output, two switch states can be controlled via an internal device relay; for example, the Dionex M480 pump.

- In the Server Configuration, double-click the instrument to open its Property dialog box, and select Relays.
- Enable a currently free device relay and click OK.
- Save the new Server Configuration.

Note:

All settings you select on the Relays tab page will be automatically copied to the State Devices page of the Program Wizard (see Control The Program Wizard).

- On the control panel, any switch can be linked to the new relay function (Object=Relayname, Object Property=State). See How to: Controlling Devices from the Control Panel Linking a Control to a Device.
- If necessary, create an additional control, for example, an edit field (see Layout Toolbar), to set the on/off duration of the valve.
In the Program, the switch procedure of a relay can be realized via the following commands:

```
0.000 RELAYNAME.State = On/Off
0.000 RELAYNAME.Duration = Value[s]
```

Device Successfully Connected

Many devices automatically communicate their status to Chromeleon; that is, they communicate whether they were successfully integrated into a system or not.

This signal can be displayed on the Control Panel, for example, via an LED or color area integrated into the control panel (see Layout Toolbar).

- Link the corresponding Control on the Link tab page to the Connected object property. (For more information, refer to How to: Controlling Devices from the Control Panel Linking a Control to a Device.)

If the LED or the color area is active, the device was successfully integrated into the system. In this state, Chromeleon can control the device.

The Ready Signal

If an instrument supplies a feedback (Ready signal) when reaching a nominal (set) value, this can be indicated via the corresponding Control on the control panel (LED or color box).

Column ovens, autosamplers with temperature control, electrochemical detectors (Antec Decade), or gas chromatographs (HP 5890; Fisons 8000) are sending Ready signals.

The Dionex GINA 50T autosampler with temperature control sends the SampleTempOK signal instead of the Ready signal.
Determining the CRP Value

With the UltiMate capillary/nano HPLC system, the pump flow is split before the column. Enter the system flow, that is, the flow through the column, in Chromeleon. Chromeleon uses the following formula to determine the flow to be delivered by the pump (= master flow):

\[
\text{Master Flow [ml/min]} = \text{CRP} \times \text{System Flow [µl/min]}.
\]

The CRP value is a conversion factor that depends on the properties of the installed column and the used calibrator. Chromeleon determines the appropriate CRP value based on the following lookup table that indicates the column length, internal diameter of the column, and the stationary phase:

<table>
<thead>
<tr>
<th>Internal Diameter of the Column [µm]</th>
<th>Column Length [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B: 1000</td>
</tr>
<tr>
<td></td>
<td>C: 1100</td>
</tr>
<tr>
<td></td>
<td>D: 800</td>
</tr>
<tr>
<td></td>
<td>B: 1000</td>
</tr>
<tr>
<td></td>
<td>C: 1100</td>
</tr>
<tr>
<td></td>
<td>D: 800</td>
</tr>
<tr>
<td></td>
<td>B: 440</td>
</tr>
<tr>
<td></td>
<td>C: 440</td>
</tr>
<tr>
<td></td>
<td>D: 440</td>
</tr>
<tr>
<td>180</td>
<td>A: 90.5</td>
</tr>
<tr>
<td></td>
<td>B: 69.2</td>
</tr>
<tr>
<td></td>
<td>C: 90.5</td>
</tr>
<tr>
<td></td>
<td>D: 68.5</td>
</tr>
<tr>
<td></td>
<td>B: 28</td>
</tr>
<tr>
<td></td>
<td>C: 36</td>
</tr>
<tr>
<td></td>
<td>D: 33</td>
</tr>
<tr>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>Internal Diameter of the Column [µm]</td>
<td>Column Length [cm]</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>800</td>
<td></td>
</tr>
<tr>
<td>B: 6.67</td>
<td>C: 8.07</td>
</tr>
<tr>
<td>C: 6.67</td>
<td>D: 4.93</td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>B: 5</td>
<td>C: 4</td>
</tr>
<tr>
<td>C: 4</td>
<td>D: 3</td>
</tr>
<tr>
<td>D: 3</td>
<td></td>
</tr>
</tbody>
</table>

The capital letters A-D in the table describe the column material. The meaning is as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Chemical Structure</th>
<th>Particle Size [µm]</th>
<th>Pore Width [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C18</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>C18</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>C18</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>D</td>
<td>C18</td>
<td>5</td>
<td>300</td>
</tr>
</tbody>
</table>

This table is part of the UltiMate.lup text file in the ../Chromel/bin directory. You can extend the file, i.e., the comments in the file, according to your requirements.

⚠️ Caution:

If the appropriate CRP value is missing, Chromeleon cannot determine the pump’s flow rate. Thus, the pump cannot deliver the correct flow. Therefore, make sure to enter the length, internal diameter, and stationary phase of the installed column!

If your column does not correspond to an entry in the table, Chromeleon cannot determine the CRP value. In this case, enter the appropriate CRP value manually.
Determine the CRP value as follows:

- Enter a CRP value that is close to your column (according to the table above).
- Enter a high nominal flow rate. Based on the entered CRP value, Chromeleon calculates the master flow. Usually, the actual system flow deviates from the nominal flow rate as it may happen that the entered CRP value is correct only by chance.
- Determine the current system flow by measuring the volume transported through the column within a specified time.
- Enter the measured system flow as **MeasuredFlowRate**. The CRP value will then be determined automatically according to the formula.

\[
CRP = \frac{CRP_{entered} \times Nom.\,Flow_{entered}}{System\,Flow_{measured}}
\]

CRP and MasterFlow will then be corrected appropriately so that the resulting system flow will match the specified system flow.
Reference Information
Sample Variables (Overview)

The variables in the sample list (see Samples and Sequences The Sample List (Sequence)) default columns are referred to as sample variables. They characterize a sample and are stored in a database as part of the Sample Data. For an explanation of the columns, refer to:

⇒ Auto Purif. Frac. (Autopurification Fraction)
⇒ Auto Purif. Ref. (Autopurification Sample Reference)
⇒ Auto Purif. Type (Autopurification Sample Type)
⇒ Comment (Sample Comment)
⇒ Dil. Factor (Dilution Factor)
⇒ GUID (Globally Unique Identifier)
⇒ Inj. Date/Time
⇒ Inj. Vol. (Injection Volume)
⇒ ISTD Amount (Amount of the Internal Standard)
⇒ Method (QNT Method)
⇒ Name (Sample Name)
⇒ No. (Sample Number)
⇒ Pos. (Sample Position)
⇒ Program (also, refer to PGM File)
⇒ Ref. Amount Set (Reference Amount ID)
⇒ Replicate ID
⇒ Sample ID
⇒ Std. Add. Group (Standard Addition Group)
⇒ Status (Sample Status)
⇒ Type (Sample Type)
⇒ Weight (Sample Weight Factor)

In addition to these default columns, Chromeleon supports User-defined Columns and Sequence Report Columns.
Auto Purif. Frac. (Autopurification Fraction)

Type: Text

Dimension: ---

Value Range: Digits

Default: ---

Related Parameters:
⇒ Auto Purif. Ref
⇒ Auto Purif. Type
⇒ Replicate ID
⇒ Sample ID
⇒ Name
⇒ No.

Description: The Auto Purif. Frac. column indicates the ID for the associated fraction. Chromeleon determines the ID; it is read-only.

Function: Chromeleon uses this column to number the fractionated samples. This allows Chromeleon to keep the order of the samples if they are moved to a different sequence or to a different folder.
Auto Purif. Ref.
(*Autopurification Sample Reference*)

Type: Text
Dimension: ---
Value Range: All printable characters
Default: ---
Related Parameters:
⇒ Auto Purif. Frac
⇒ Auto Purif. Type
⇒ Replicate ID
⇒ Sample ID
⇒ Sample ID
⇒ Name
⇒ No.

Description: The *Auto Purif. Ref.* column indicates the autopurification ID. Chromeleon determines the ID; it is read-only.

Function: Chromeleon uses this column to associate samples of the different autopurification sample types to each other. Preparative samples (sample type: Preparation) and fractionated samples (sample type: Fraction) have the same autopurification reference ID as the analytical sample from which they originate.
Auto Purif. Type (Autopurification Sample Type)

Type: Text
Dimension: ---
Value Range: Analytic, Preparation, Fraction
Related Parameters: ⇒Type
⇒Auto Purif. Frac.
⇒Auto Purif. Ref
Default: ---
Description: The Auto Purif. Type column and/or ⇒Sample Variable reports the type of the autopurification sample:
- Analytic for the original analytical sample.
- Preparation for a preparative sample.
- Fraction for injections from fraction or tubes generated from a preparative sample.

Note:
These values are automatically set during sample creation in the related post-acquisition step. They are read-only and cannot be changed.

Function:
Analytic
Analytic indicates an analytical sample. The sample is to be analyzed and its content of one or several substances is to be determined. Based on the analysis and on ⇒Post-Acquisition Steps, Chromeleon automatically determines whether the sample shall be processed further.
Preparation

Preparative samples are used for fraction collection.

Fraction

Fractionated samples are used to check the pureness of the fractions.

Tip:

To analyze the fractioned samples, Dionex recommends using chromatographic conditions other than those used for fraction collection.
Comment *(Sample Comment)*

Type: Text
Dimension: ---
Value Range: All printable characters
Default: ---
Related Parameter: ⇒ *Name* (sample name)
Description: In addition to the sample name, further comments can be entered. Press the F8 key to open an enlarged edit field.
Dil. Factor (*Dilution Factor*)

Type: Floating point value

Dimension: ---

Value Range: 0.0001 ... 999999.9999

Default: 1.0000

Related Parameters: ⇒ *Inj. Vol.* (injection volume)

⇒ *Weight* (Sample Weight Factor)

Description: The *Sample Variable Dilution Factor* is a correction factor for amount calculation formulas. As is the injection volume, it can also be used for multi-point calibrations to define the dilution of subsequent calibration samples. For integration samples, it serves to account for any dilution that was made before the injection.

Function: The calculated values for all peaks of a sample are corrected by the appropriate dilution factor.

Note: The effect is reciprocal to the injection volume; that is, a larger dilution factor indicates that less of the component is present.
GUID (Globally Unique Identifier)

Type: 128-bit character string

Value Range: (Consists of hexadecimal characters.)

Default: ---

Related Parameters: ⇒ Name
⇒ No.
⇒ Replicate ID
⇒ Sample ID

Description: Chromeleon creates a globally unique 128-bit GUID in the GUID column when the analysis is started.

Function: The GUID allows unique identification of each sample.

Also, refer to Creating and Managing Files/Creating a Sample List (Sequence) Using Globally Unique Sample Identifiers.
Inj. Date/Time (Time of Injection)

Type: Character String
Dimension: Month/Day/Year Hours:Minutes:Seconds
Value Range: ---
Default: ---
Related Parameter: Time

Description: This column is read-only. Chromeleon enters the injection time and date of the sample in the corresponding column of the sample list. For samples with the ⇒ Status (Sample Status) M (multiple), the time of the last injection is entered.

Chromeleon stores the time stamps as universal time (Greenwich time). However, the date notation is displayed according to regional settings made in the operating system.

Function: The kind of entry (empty or time value) indicates if the sample was processed and when the sample was processed.

Note: The time difference between successive samples is generally the analysis time plus the time required for injecting the following sample because the report is generated in parallel to the online batch. As the injection time is generally minimal, the time value provides a reliable indication as to whether the sample batch was processed smoothly, i.e., without an incident, such as power failure or third-party interference.
Inj. Vol. (Injection Volume)

Type: Floating point value

Dimension: µl

Value Range: system-dependent

Default: 20.0

Related Parameters:
- ⇒ Dil. Factor (dilution factor)
- ⇒ Weight (Sample Weight Factor)

Description: The ⇒ Sample Variable Injection Volume defines the injection volume in micro liters (µl). In automatic operation, the installed ➢ Driver converts this value into a volume readable by the autosampler, then the value is sent to the ➢ Autosampler. You can enter different injection volumes to create a ➢ Dilution Series for multiple-point calibration (➢ Single-Point and Multiple-Point Calibration).

Function: In multiple-point calibration with differing injection volumes, the concentration of the second calibration sample is calculated from the injection volumes of the first and the second sample. The same principle (doubling injection volume equals doubling the amounts of each component) is applied to all subsequent calibration samples.

In a multi-point calibration with a "concentration series" (varying injection volume) which was created with an automatic autosampler it is therefore only necessary to enter the component amounts for the first standard sample into the peak table. Chromeleon calculates all additional calibration values, that is, the corresponding amounts of the subsequent standard samples (Type: Standard).

Note: In order to minimize carry-over effects in such a multiple-point calibration, standard order should always be from lowest to highest concentration.
ISTD Amount (**Amount of the internal standard**)

Type: Floating point value

Dimension: ---

Value Range: 0.0001 ... 999999.9999

Default: 1.0000

Related Parameters:
- ⇒ *Dil. Factor* (dilution factor)
- ⇒ *Weight* (*Sample Weight Factor*)
- ⇒ *Inj. Vol.* (injection volume)

Description:
The *⇒Sample Variable ISTD Amount* is only required for a calibration based on a variable *⇒Internal Standard* (internal or internal/external).

In this case, the column serves in the sample list for entering the amount values of the internal standards used for the different samples. Input is directly in the sample list (via the keyboard or the F8 edit dialog box). Editing the column in the QNT Editor is not possible. Entering the amount values in the peak table is omitted.

Function:
The *ISTD Amount* parameter is implemented as a multiplication factor in the *⇒Amount Calculation Formula* and is dimensionless.
Method (QNT Method)

Type:
File name

Dimension:

Value Range:

Default:
Name of QNT File

Related Parameters:
⇒ Program (PGM File)

Description:
The Method column (in the Browser) contains the name of the quantification method (see The QNT Editor The Quantification Method (QNT Editor)).

The quantification method includes all parameters that are used for evaluating a peak or the entire chromatogram.

Function:
The QNT Method serves as the basis for calculation for sample evaluation. It includes:
⇒ QNT Parameters
All parameters required for (qualitative) peak identification and for converting the determined peak areas into amount or concentration values (quantitatively)

⇒ Detection Parameters
All parameters regarding, for example, peak recognition and peak area evaluation

⇒ Calibration Variables
All parameters regarding the type and performance of a calibration

⇒ Blank Run Subtraction
Information about baseline subtraction

Peak Tracking
Parameters for comparing spectra to library or sequence spectra
Function: Spectra Library Screening
(Cont'd)
Parameters for spectra library screening

➢ System Suitability Test (SST)
Parameters for performing the System Suitability Test

MS
Parameters for ➢ Mass Spectra evaluation

Tip: Normally it is not necessary to include the QNT Method in the sample list before the analysis starts. However, if you want to perform a System Suitability Test, make sure to enter the QNT File into the sample list before starting the analysis. Otherwise, the batch cannot be aborted in case of Fail Action - Abort Batch because the SST will not yet be performed during the batch run!
Name (Sample Name)

Type: Character String
Dimension: ---
Value Range: All printable characters
Default: [Sample] [No.]
Related Parameters:
⇒ No. (sample number)
⇒ GUID
⇒ Sample ID
⇒ Replicate ID

Description: The Sample Variable Name serves to identify a sample and to label graphics and reports.

Note:
If the sequence contains Sequence Report Columns, statistical values can be displayed in the last three lines of the sample list. In this case, the names of the statistical values appear in the Name column: Sum, Average Value, and/or Rel. Std. Dev. (relative standard deviation).

Function: The Fill Column function (F9) allows automatic sample name generation. For this purpose, the currently selected name can be copied or a character string with wild cards as template can be entered. These are names that might include, for example, the sample number (#n, refer to ⇒ No.), the position (#p, refer to ⇒ Pos.), the replicate number (#r), and the injection volume (#i, s. ⇒ Inj. Vol.). Thus, telling names can be easily generated using these wild cards! The replicate number is calculated from the repetition of a sample number. Example: If two injections are made from the first two vials the template „Analysis-#p_Repl.#r” yields the following names:
<table>
<thead>
<tr>
<th>Function: (Cont'd)</th>
<th>Analysis-1_Repl.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analysis-1_Repl.2</td>
</tr>
<tr>
<td></td>
<td>Analysis-2_Repl.1</td>
</tr>
<tr>
<td></td>
<td>Analysis-2_Repl.2</td>
</tr>
</tbody>
</table>

When creating a sample list using the Sequence Wizard (see [Samples and Sequences](#) [The Sequence Wizard]), automatic sample name generation is possible as well.

Note: Each line represents an individual analysis. As multiple injections of the same sample also represent multiple analyses, a sample line must be reserved for each injection.
No. (Sample Number)

<table>
<thead>
<tr>
<th>Type:</th>
<th>Nonnegative integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension:</td>
<td>---</td>
</tr>
<tr>
<td>Value Range:</td>
<td>1 ... infinite</td>
</tr>
<tr>
<td>Default:</td>
<td>Ascending number</td>
</tr>
<tr>
<td>Related Parameters:</td>
<td>⇒ Pos. (sample position)</td>
</tr>
<tr>
<td></td>
<td>⇒ Name (sample name)</td>
</tr>
<tr>
<td></td>
<td>⇒ GUID</td>
</tr>
<tr>
<td></td>
<td>⇒ Sample ID</td>
</tr>
<tr>
<td></td>
<td>⇒ Replicate ID</td>
</tr>
</tbody>
</table>

Description:
You cannot edit the sample number. Each new line in the sample list, that is, each analysis, is assigned its own number.

For a sample that is currently being processed (⇒ **Status** = Running), the sample number is replaced with a green arrow:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Note:

If the sequence contains⇒ Sequence Report Columns, statistical values can be displayed in the last three lines of the sample list. In this case, the symbols for the statistical values appear in the No. column.

Tip:

Each injection (or replicate) occupies its own line in the sample list and is, therefore, an individual analysis for which an individual raw data file is created.
Pos. (Sample Position - Sample List)

Type: Nonnegative integer and/or letters

Dimension: ---

Value Range: Depending on the autosampler

Default: ⇒ No.

Related Parameter:

Description:
The ⇒Sample Variable Pos. determines the position of the sample in the ➤Autosampler.

For externally controlled autosamplers, this value is automatically transmitted to the autosampler for sample processing. The autosampler approaches the corresponding sample for injection. For non-controllable autosamplers, this value is for documentation purposes only. If the sample position parameter is not entered, the previous (current) value is used.

Function:

Depending on the installed segment type, the ASI-100 Autosampler supports 63 position for semiprep vials, 66 positions for Eppendorf vials, 117 positions for analytical vials, or 192 positions for mini vials.

Letters according to their color describe the individual segments: R, G, or B (indicating the red, green, and blue segment, respectively). The different rows are described from the outer to the inner row: A, B, C, or D. The individual positions within the respective rows are number counterclockwise. The position RA1, for example, is in the outer row of the red segment (also, refer to the Operating Instructions for the ASI-100 Series).

Some autosamplers and fraction collectors, e.g., the Dionex SFM (Sample and Fraction Manager) have several trays installed. In this case, you have to enter the Sample tray and Vial to make sure that the position is defined unambiguously.
Program (PGM File)

<table>
<thead>
<tr>
<th>Type:</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension:</td>
<td>---</td>
</tr>
<tr>
<td>Value Range:</td>
<td>---</td>
</tr>
<tr>
<td>Default:</td>
<td>Name of PGM File</td>
</tr>
<tr>
<td>Related Parameter:</td>
<td>Method (QNT Method)</td>
</tr>
</tbody>
</table>

Description:
The column serves to name the control program. (For information about control program, see Control The Control Program.)

The file contains all information for chromatographic sample processing. These are commands for chromatography devices (flow, %B, etc.), analysis time, acquisition time, etc.

For more information, refer to PGM File.

Input for a sequence is by directly editing the column in the Browser. All program files that are part of the sequence are listed.

Function:
The sample is processed according to the conditions contained in the PGM File.
Ref. Amount Set (Reference Amount ID)

Type: Text
Dimension: ---
Value Range: All printable characters
Default: ---
Related Parameter: ⇒Std. Add. Group

Description: The Ref. Amount Set ⇒Sample Variable allows you to assign standards, ⇒Validation Samples, and/or ⇒Spiked Samples to the ⇒Amount columns of the QNT Editor. Enter the same name for standard and validation samples for which the concentration (amount) is identical. Proceed in the same way for spiked samples.

Tip:
If you analyze several samples using the ⇒Standard Addition method, Dionex recommends adding identical amounts of the same substances to the same sample volume.

Function: To assign the samples to the desired Amount columns, select Columns > Edit Amount Columns on the context or Edit menu in the QNT Editor.

In the Edit Amount Columns dialog box, select Ref. Amount Set from the Assign Standards on the basis of: drop-down list. The entries of the Ref. Amount Set sample column are then used to assign amount columns.

To assign one Amount column to each level of standard, validation, and/or spiked samples, click Auto-Generate, and then select Generate a separate amount column for EACH standard from the list.

For an application example, refer to How to …: Calibrating ⇒Standard Addition.
Replicate ID

Type: Text

Dimension: ---

Value Range: All printable characters

Default: ---

Related Parameters:
- Name (sample name)
- No.
- GUID
- Sample ID

Description:
The Replicate ID column serves to mark samples as Replicates.

Function:
This column is a mere text column and not used for evaluation purposes. If a sequence is generated using the Sequence Wizard (see Samples and Sequences The Sequence Wizard), the sample position is entered automatically as replicate ID.

To group samples with identical replicate IDs in the Summary report, select the Table Properties command on the context menu to open the Peak Summary Property dialog box. Select Sort the report table according to the evaluation of this formula 'smp.replicate'. It is also possible to access the replicate ID for a query (see How to ...: Creating and Managing Files and Data Performing a Query).
Sample ID

Type: Text
Dimension: ---
Value Range: All printable characters
Default: ---
Related Parameters:
- Name (sample name)
- No.
- GUID
- Replicate ID

Description: The user or a help program enters a sample ID in the Sample ID column.

Function: This column is a mere text column and not used for evaluation purposes. The sample ID is intended for LIMS connections that usually know sample IDs.

To group samples with identical sample IDs in the Summary report, select the Table Properties command on the context menu to open the Peak Summary Property dialog box. Select Sort the report table according to the evaluation of this formula 'smp.ident'. It is also possible to access the replicate ID for a query (see How to ...: Creating and Managing Files and Data Performing a Query).
Std. Add. Group (Standard Addition Group)

Type: Text

Dimension: ---

Value Range: All printable characters

Default: ---

Related Parameter: ⇒ Ref. Amount Set

Description: The **Std. Add. Group ⇒ Sample Variable** allows you to assign ⇒ Spiked Samples to unspiked unknown samples. Enter the desired group name into this column. Make sure that the group name is identical for the unspiked unknown samples and the associated spiked samples.

Function: The **Std. Amount Group** variable is required to analyze several unspiked samples using the ⇒ Standard Addition method. For more information, refer to How to ...: Calibrating ⇒ Standard Addition.
Status (Sample Status)

Type: Text

Dimension: ---

Value Range: Single/Multiple/Finished/Interrupted/Running/Preparing

Default: Single

Related Parameter: ⇒ Inj. Date/Time (Time of Injection)

Description: The ⇒Sample Variable Status determines the current sample processing status. A sample is unprocessed (Single), due for multiple processing (Multiple), processed (Finished), or currently being processed (Running).

Chromeleon also maintains a log of the sample status, that is, a Single sample is automatically assigned the status Finished as soon as processing is complete. A sample may also be excluded from processing by assigning the status Finished manually.

The sample status has a special significance for the built-in ➤Power Failure Protection. Upon recovery from a power failure or starting the sample batch after a manual interruption, Chromeleon continues processing the sample batch according to the selected power failure handling option.

Functions:

Single

The sample is processed only once, after which it receives the status Finished. When loading a sample list for processing (online), only samples with the status Single and Multiple are processed.

If a Single sample contains an entry in the time column, this indicates that the sample was injected but was interrupted before completion.
Multiple (Not available for XPress)
The sample can be repeatedly acquired. The system just enters the ⇒Inj. Date/Time (Time of Injection) in the **Time** column. Existing ⇒Raw Data are overwritten with each new data acquisition. New samples can have the status Multiple assigned only if the **Enable Sample Status Multiple** option of the corresponding datasource is enabled. The option is available in the (datasource) **Properties** (via the Properties command on the context menu) on the **General** tab page. Samples that have the status Multiple already assigned keep their status even with disabled **Enable Sample Status Multiple** option.

Finished
All original Single samples are automatically assigned the status Finished after successful processing. A sample with the status Finished will be omitted in the renewed processing (also following a ⇒Power Failure). In ⇒GLP ⇒Datasources, it is not possible to reset the sample type Finished to Single.

Interrupted
If the user stops a running batch via **Immediate** while a sample is being processed of if an error occurs during the sample run resulting in an abort, the corresponding sample is labeled **Interrupted**.

After a power failure or a server breakdown the sample is started again if you selected the **Continue with interrupted sample option** on the **Error Handling** tab page. (Access the **Error Handling** tab page by selecting the **Error Handling** command on the **Batch** menu.)

Running
A running sample is marked green. When the sample has been processed, it gets the status **Finished** or **Multiple** assigned (without background color).

Tip:
You can also open samples during the analysis, while their status is **Running** (see Integration ⇒Opening a Sample).
Preparing

The autosampler prepares the next sample while the current sample is Running. The sample being prepared is marked yellow.

Note:

This status occurs, for example, when an AS50 autosampler that has the Sample Overlap option enabled is preparing a sample. The Sample Overlap option is enabled in the AS50 Server Configuration Properties on the Options tab page.

Also, refer to Practical Tips for Device Control Overlapping Samples

Tip:

Multiple status samples will be acquired each time. The raw data, therefore, are not protected from accidental overwriting. The Time column indicates, however, whether and when the sample was last injected. If this column is empty, the sample has not yet been acquired at all.
Type (Sample Type)

Type: Text
Dimension: ---
Value Range: Blank, Unknown, Standard, Validate, Matrix, Spiked, Unspiked
Related Parameters: Amount, Baseline Subtraction
Default: Unknown
Description: The Type ⇒ Sample Variable indicates the sample type:

- Select Unknown for an unknown analysis sample.
- Select Standard for a standard sample with known concentration.
- Select Validate for a Validation Sample.
- Select Blank for a Blank Run Sample. If a sample is corrected by Raw Data of a blank run sample, this is referred to as Blank Run Subtraction.
- Select Matrix for a Matrix Blank Sample.
- Select Spiked for a Spiked Sample.
- Select Unspiked for an unspiked unknown sample to be analyzed with Standard Addition method.

Functions:

Blank

The sample injected with the ⇒Inject command is no "real" sample; it is a Blank Run. In this case, the baseline is stored for subsequent subtraction from a later sample. Thus, if baseline subtraction is enabled for a following sample, the baseline chromatogram may be subtracted before integration.
Blank (Cont'd)

Tip:

For the ICS ion chromatography system, injection is performed with the `Pump.InjectValve.InjectPosition` command (if no AS50 is installed). With the `Pump.InjectValve.InjectPosition` command, an injection is always performed, also for a Blank Run Sample. This is contrary to the autosampler `⇒Inject` command.

Unknown

The (unknown) sample shall be analyzed. It shall be determined whether the sample contains one or more substances.

Standard

The sample is a calibration standard. The corresponding `⇒Amount` values of the single peaks are listed in the corresponding Amount Table column.

Validate

Validation samples are treated as ordinary analyses. However, the type is written to the result file. The validation sample references to the Amount column in the subordinated peak table. The Amount column referenced by such a validation sample contains the required amount or concentration for each peak of the sample. In the report, this amount or concentration can be compared with the calculated actual amount or concentration. The Amnt. Diff. (amount difference) and Rel. Amnt. Diff. (relative amount difference) peak variables are available for this.

Matrix

Contrary to Blank Run samples, Matrix Blank Samples are "real" samples that are injected indeed. Chromeleon automatically subtracts the peak areas or peak heights of the matrix blank sample from the corresponding peak areas or peak heights of all samples in the sequence. The resulting areas (heights) are then used for all other calculations, such as calibration. However, the respective peaks must have been identified for both the unknown sample (or standard sample) and the Matrix Blank Sample.
Matrix
(Cont'd)

Note:
Thus, matrix blank samples are treated differently from "normal" Blank Run Samples. For normal blank run samples, the chromatogram is subtracted point by point from the chromatogram of the current sample.

Tip:
Matrix blank samples are subtracted only if they are evaluated in the same QNT Method. Otherwise, they will not be considered.

Spiked
A known amount is added to an unspiked sample (see Unspiked). The spiked sample is used to analyze the original unspiked sample, using the Standard Addition method.

Unspiked
Known amounts of the analytes to be determined are added to unspiked unknown samples. Afterward, the original (Unspiked) and the Spiked samples are analyzed. The quantitative analysis of the results is performed, using the Standard Addition ⇒ Calibration Mode, i.e., the Standard Addition method.

Tip:
If you use the sample ⇒ Types Spiked and/or Unspiked, please keep in mind that:

- An Electronic Signature created with Chromeleon 6.50 or earlier is invalid in Chromeleon 6.60 or higher.
- An electronic signature created with Chromeleon 6.60 or later is invalid in Chromeleon 6.50 or earlier.
Weight (Sample Weight Factor)

Type: Floating point value
Dimension: None
Value Range: 0.0001 ... 999999.9999
Default: 1.0000
Related Parameters: ⇒Dil. Factor (dilution factor)
⇒Inj. Vol. (injection volume)

Description: The ⇒Sample Variable Weight has two functions. It serves to enter the sample weight but it can also be used as a weight correction factor.

1. **Sample Weight:** Enter the sample weight to calculate the content - normalized to the basic unit - of a substance in a sample.
For example, if the calculated concentrations should always be valid for 1 mg of a sample, enter the actual weight; for example, 124.08. Chromeleon then divides all calculated concentrations by 124.08.

2. **Weight Correction Factor** (for Standard and Validation samples): If you wish to relate the concentrations to be calculated to a specific concentration, enter the corresponding correction factor as **Weight**.
If, for example, 4.16 mg were weighed instead of 4.0 mg, you must enter 1.04 (not 4.16!) here. This procedure is called approximate exact weighting.

Function: The Weight parameter is implemented as a dimensionless multiplication factor or divisor:

1. It is used as factor for calculating the calibration curve (for the formulas, see Theory of Calibration Evaluation with Various Standard Methods).

2. It is used as divisor for amount calculation (see Formula for Amount Calculation).
Control Commands (Overview)

On the following pages, the most important control commands are described, together with their corresponding parameters. The commands and parameters that are actually available depend on the individual installation. For example, if a simple UV detector is installed, it is not possible to record a 3D field.

Tip:

An extensive explanation of all existing commands for all devices that can be controlled is far beyond the scope of this reference manual. About 100 commands are available only for the 6890 GC!

For examples on the commands for various devices, refer to:

⇒ General Commands
⇒ System Commands
⇒ Pump Commands
⇒ Autosampler Commands
⇒ Detector Commands

General Commands

The following general commands are available regardless of the installed devices:

⇒ Branch
⇒ Delay
⇒ End
⇒ EndTrigger
⇒ Log
⇒ Message
⇒ Protocol
⇒ Trigger
⇒ Wait
System Commands

System control comprises all commands that concern the entire chromatographic process or the entire system. Some system commands are available on the Online toolbar and on the context menu. The most important system commands are:

⇒ Abort Batch
⇒ AbortSample
⇒ Acquisition On/Off
⇒ Continue
⇒ Hold
⇒ Sound
⇒ StopFlow

Also, refer to Control System Commands.

Pump Commands

For more information about the most important pump commands, refer to:

⇒ %B, %C, %D
⇒ %A, %B, %C, %D_Level
⇒ %A-, %B-, %C-, %D_RemainTime
⇒ %A, %B, %C, %D_WarningLimit
⇒ Connect/Disconnect
⇒ Delta
⇒ Flow
⇒ Freeze
⇒ Learn
⇒ ParkPercentage
⇒ Pressure.Lower/UpperLimit
⇒ Purge
⇒ WasteLevel
⇒ WasteRemainTime
⇒ WasteWarningLimit
Autosampler Commands

For more information about the most important autosampler commands, refer to:

⇒ Connect/Disconnect
⇒ Dispense
⇒ Draw
⇒ Inject
⇒ Mix
⇒ NeedleUp
⇒ Position
⇒ Ready
⇒ Reset
⇒ Relay On/Off
⇒ Temperature
⇒ Volume
⇒ Wash

Detector Commands

For more information about the most important detector commands, refer to:

⇒ AcqOn/Off
⇒ Autozero
⇒ Average
⇒ Bandwidth
⇒ Bunch Width
⇒ Connect/Disconnect
⇒ Delta
⇒ Lamp
⇒ LampAge
⇒ LampIgnitions
⇒ LampIntensity
⇒ MaxAutoStep
⇒ MinLampIntensity
⇒ RefBandwidth
⇒ RefWavelength
⇒ Step
⇒ Wavelength
%B, %C, %D (Solvent Components)

Instrument Type: Pump(s)

Related Commands: ⇒Flow
⇒%A, %B, %C, %D_Level

Description: The solvent and thus the flow usually consist of different individual components. The respective amounts of the partial flow are indicated in percent of the flow. The total sum of all partial flows (solvent components) is 100% (%A+%B+%C+%D=100%), where %A is calculated from the remaining partial flows (%A=100-%(B+C+D)). It is therefore sufficient to determine the values for %B, %C, and %D. Changing the solvent composition during the analysis is referred to as gradient (or more exactly as %-Gradient).

%A, %B, %C, and %D define the partial flow rates of the individual pumps in a high pressure mixing system (as %-values of flow), or the partial flow rates on the suction side of a low pressure mixing system. The latter generally refers to a single pump or a separate mixing vessel with controlled proportioning valves. The formation of %-gradients is by the same principle as for Flow.

For each Timebase, one or more fluidic systems can be installed. They can be controlled independently, either manually or via a Program.

In case a second fluidic system is installed, the corresponding device name has to be specified in the program. Use the F8 key or the Program Wizard to insert the device name automatically.

Tip: The ⇒Hold, ⇒Continue, and ⇒StopFlow commands are always effective for all fluidic systems.
Function:

With Ramps, the partial flow rates of A, B, C, and D change linearly with time between two %A, %B, %C, or %D commands. By entering two percent commands at the same time, you can program Step Gradients. When sorting, the editor does not change the order of commands having the same program time! If the partial flow rates are to remain constant during analysis, that is, isocratic, the appropriate %A, %B, %C, and/or %D commands need only be entered at the beginning of the file.

\[
\begin{align*}
-2.000 & \text{ Flow } = 1.000 \\
\quad & \text{ }%B = 20.0 \\
\cdots \cdots \\
0.000 & \text{ Inject} \\
0.500 & \text{ }%B = 20.0 \\
\quad & \text{ }%B = 40.0 \\
\cdots \cdots \\
8.500 & \text{ }%B.\text{Value} = 80.0 \\
8.500 & \text{ End}
\end{align*}
\]

In this example, the total flow rate remains constant at 1.0 ml/min. %B also remains constant, at 20% from -2.0 to 0.5 min, then increasing abruptly to 40%, then linearly to 80% with a gradient of 5%/min.

Parameters:

- **Value**: Partial flow of the solvent component [%]
- **Equate**: Name of the solvent component
- **Type**: Solvent type of the respective component

Tip:

Dionex recommends the following setting:
Isocratic and LPG pumps: Automatic
HPG pumps: Custom

With HPG pumps, set the pre-compression control via the \text{ ⇒Learn and }\text{ ⇒Freeze commands.}
Tips:

Chromeleon is able to run flow and %-gradients simultaneously. However, in high pressure mixing systems, this results in non-linear partial flow rate changes for each individual pump.

Note that due to compressibility and dead volume considerations, high pressure and low-pressure applications are not always interchangeable!

The %-values remain constant from the last %-command to the end of the program. Thus, for isocratic operation, a single %-entry at the beginning of the file is sufficient.
%A, %B, %C, %D_Level (Solvent Volume)

Instrument Type: Pump(s)
Related Commands: ⇒%A, %B, %C, %D_WarningLimit
⇒%B, %C, %D
⇒Flow
⇒WasteLevel

Description: This command monitors solvent consumption.
Function: Before starting a sequence, enter the existing volume for each solvent component. Based on the flow rate and the solvent composition, Chromeleon checks whether the available amount of solvent is sufficient for the sequence.

Parameters:

<table>
<thead>
<tr>
<th>Value</th>
<th>Actually available volume for the corresponding component in [l].</th>
</tr>
</thead>
<tbody>
<tr>
<td>LowerLimit</td>
<td>Lower limit for the corresponding component in [l]. If this value is reached, the batch is aborted and the following message appears:</td>
</tr>
<tr>
<td></td>
<td>[Abort] xx:xx:xx {Pump} The %A level is below the limit (x l)! Please refill %A.</td>
</tr>
</tbody>
</table>

Tip: In the emergency program, reduce the flow rate to 0 ml/min. This ensures that neither the pump nor the detector cell runs dry.

Tip: Chromeleon checks the calculated demand for solvent during the Ready Check. The corresponding warning appears if necessary.

Note: This command is not available for all ion chromatography pumps.
%A, %B, %C, %D_RemainTime

Instrument Type: Pump(s)

Related Commands:
- ⇒ WasteRemainTime
- ⇒ %A, %B, %C, %D_Level
- ⇒ %A, %B, %C, %D_WarningLimit

Description: Reports the approximate time until the associated solvent reservoir will be empty to the lower limit (%X_Level.LowerLimit).

Function: Chromeleon calculates the remain time based on the current flow and the specified filling height of the solvent reservoir.

Tip:
When you change the flow rate later, Chromeleon recalculates the remain time. Therefore, check this value whenever you have changed the flow rate.

Note:
This command is available for all pumps except for ion chromatography pumps.
%A, %B, %C, %DWarningLimit

Instrument Type: Pump(s)

Related Commands:

⇒ %A, %B, %C, %DLevel

⇒ WasteWarningLimit

Description:
This command allows you to enter a warning limit for monitoring the filling height in the associated solvent reservoir. Input is in percent and refers to the lower filling limit (%XLevel.LowerLimit).

Function:
If the filling height in the solvent reservoir is below the lower limit plus the warning limit (%XLevel.LowerLimit + %XWarningLimit), the following warning appears:

[Warning] xx:xx:xx {Pump} The %A level (x l) will reach the lower limit in about x.x hours! Please refill %A.

Tip:
If the filling level reaches the %XLevel.LowerLimit, the batch is aborted. In the emergency program, reduce the flow to 0 ml/min. This ensures that neither the pump nor the flow cell runs dry.

Note:
This command is not available for all ion chromatography pumps.
AbortBatch

Instrument Type: System Command
Related Commands: ⇒AbortSample
Description: The Abort Batch command aborts a running sample batch. In combination with the ⇒Trigger command, this command allows you to react, for instance, to external errors. Example:

0.000 Trigger Cond=RemErr
 Abort Batch
 EndTrigger

Function: Abort batch terminates data acquisition, deletes all triggers, and aborts the current sample batch.

AbortSample

Instrument Type: System Command
Related Commands: ⇒AbortBatch
Description: The Abort Sample command interrupts data acquisition and aborts a running sample.

Function: The batch continues with the next sample.
Use this command, for example, if, by mistake, no injection was made for a sample.
AcqOn/Off (Data Acquisition On/Off)

Instrument Type: System Command, all detectors
Related Commands: ⇒Inject
Description: The AcqOn/Off command enables or disables data recording (≫Raw Data) for the selected Signal (= channel) of a timebase. Each signal (or channel) is stored in a separate file. Signal parameters define the type of data from each signal.
Function: To reduce raw data storage requirements, issue the AcqOn command some time after the Inject command. However, be sure to issue the command at least 30 seconds before the elution of the first peak. The reason is that Chromeleon requires a baseline segment of several seconds in order to perform a noise analysis for the auto-optimized step control functions (≫Step, Sampling Rate, or Data Collection Rate).
You can issue the command either manually using the AcqOn/Off command or automatically via the Program.
⇒Trigger commands whose conditions depend on signal values or their slope are effective during data acquisition only.

Tip: You can change the parameters that are defined in the program, such as Step and Average at any time. For clarity, however, Dionex recommends observing the following command sequence:

\[-2.000 \text{ Flow} = 1.000 \]
\[\vdots \vdots \]
\[0.000 \text{ Inject} \]
\[0.500 \text{ UV_VIS_1.AcqOn} \]
\[\vdots \vdots \]
3.270 UV_VIS_1.Wavelength = 275
... ...
12.000 UV_VIS_1.AcqOff
13.500 End

Do not change the 3DFIELD signal parameters between AcqOn and AcqOff. Use the →Hold and →StopFlow commands to interrupt data acquisition. Use the →Continue command to resume acquisition. To complete raw data acquisition, select the AcqOff command.
Autozero

Instrument Type: All detectors
Related Commands: ---
Description: The **Autozero** command resets physical or Virtual Signals to zero.

Function: All data recorded after an autozero is interpreted and displayed in relation to the new zero point. A sharp increase of the absorption value indicates this in the chromatogram.

The Autozero command applies to all signals delivered by a single detector. Thus, autozeroing a diode array detector, such as the Dionex UVD 340 detector, causes the entire 3DFIELD to be zeroed. Autozero applies to one detector only! If several detectors are present in one system, for example, connected in series, they must be autozeroed individually.

Tip: Usually, a jump is observed in the baseline after an autozero. That is why Dionex recommends performing autozero before data acquisition, unless this is specifically required during the analysis, for example, after wavelength switching.

If a wavelength switch is triggered, a →triggered autozero command should follow! Example:

```plaintext
0.000 Inject  
0.100 Trigger SwitchWave UV_VIS_1 > 20  
   UV_VIS_1.Wavelength = 280  
   Autozero  
   EndTrigger  
0.500 UV_VIS_1.AcqOn```

Average

Instrument Type: Detector
Default: ON
Related Commands: Step

Description:
The **Average** parameter allows averaging signals. Signal averaging is possible for both, digital signals sent to the server PC from the detector, such as the Dionex UVD 170U and UVD 340U detectors, and analog signals recorded via the A/D converter.

The Dionex A/D converter records each analog signal with a frequency of 100 Hz. This corresponds to a Step of 0.01 seconds or a Sampling Rate of 100 data points per second. When increasing the step or decreasing the sampling rate, less data points are stored than theoretically possible.

Function:
When activating the Average signal parameter, the data points between the stored values are considered as well. Chromeleon averages all measured values that are within a step interval. The calculated average is stored in the Raw Data file. This generally improves the Signal-to-Noise Ratio. (Select the Average parameter to smooth chromatograms with an increased noise level.) This parameter does not influence the precision of integration.

Tip:
Averaging is always performed in a 3D field. For almost all detectors, concentration is proportional to peak-area; that is, it is integral of the signal over time. That is why local (time) signal averaging does not influence quantitative determination.
**Bandwidth**

*Instrument Type:* Detector  
*Type:* Integer  
*Value Range:* Detector-dependent  
*Default:* 0 [nm]  
*Related Commands:*  
⇒ Wavelength  
⇒ RefBandwidth (Reference Bandwidth)  
⇒ BunchWidth

**Description:** The Bandwidth command specifies the optical bandwidth [in nm] with which a chromatogram (UV VIS channel) is recorded. In general, this corresponds to the Optical Resolution of a detector.

**Function:** You can increase the bandwidth by averaging several single photodiode signals. This process is known as Photodiode Bunching. Averaging is performed symmetrically to the selected wavelength. Thus, at a bandwidth of 30 nm and a wavelength of 255 nm, the signals of all photodiodes between 240 and 270 nm are averaged.

**Tip:** Changing the bandwidth can often increase the sensitivity. Quadrupling the bandwidth almost halves the noise. However, in this case, linearity usually decreases.
Branch

Instrument Type: Processed in PC

Related Commands: ---

Description: The Branch command allows you to start a different program either from the active Program or on a Control Panel. In order to start the program on a control panel, the Branch command needs to be assigned to a Script Button. For example, you can combine the Branch command with the Trigger Commands to define dynamic program runs.

Function: If a Branch command is issued while a program is running, the execution of the active control file is stopped. The newly selected control file is used instead. The times in the new control file are automatically corrected by the program time that already passed.

Example 1 (within a program):

0.000 Trigger Pressure > 300
    Branch "Overpressure"

EndTrigger

If the pressure exceeds 300 bar (30 MPa = 4350 psi), the Overpressure program is started. You can use the Overpressure program, for example, to slow down the flow, turn off the lamp, and deliver the Message that the pressure within the system was too high and thus, the flow has been slowed down.

Tip: In example 1, make sure that the program to be started via the Branch command is stored in the sequence to be processed. If the program is not stored in the sequence, specify the location in the program. As with the Script Button, use slashes to separate the different levels.
Example 2 (as script button on a control panel):

Add a Script Button to the Control Panel (see How to …: Controlling Devices from the Control Panel Creating a Script Button). Branch to the desired program by assigning the Branch command to the button.

Branch
"CM_Seminar/Programs/Equilibration"

Click the button to start the column equilibration program that is stored in the CM_Seminar ➤Datasource in the Programs directory.

Parameter:

Program

Name of the program file used for further processing

Tip:

When making a backup of a sequence, all PGM Files that are included in the sequence are also saved automatically. Therefore, to ensure that PGM Files branched to via a Branch command are automatically added to your sequence backups, verify that they are saved in the corresponding sequence.
### BunchWidth *(Distance between Wavelengths)*

**Instrument Type:** Detector  
**Type:** Fixed point value  
**Value Range:** 1.9 ... 197.6 [nm]  
**Default:** 1.9 [nm]  
**Related Commands:** ⇒Bandwidth  

**Description:** The distance between the wavelengths of a 3D field is referred to as BunchWidth. To enhance the Signal-to-Noise Ratio of a Photodiode Array Detector, the signals of several photodiodes can be averaged (or bunched).

**Function:** The BunchWidth is closely linked to the Bandwidth. For Dionex detectors, the Bandwidth is calculated automatically from the BunchWidth. Thus, you do not need to determine the Bandwidth for the 3D field of Dionex detectors.

If a detector, for example, has 80 photodiodes distributed on a wavelength range of 160nm, the (theoretical) optical resolution (= Bandwidth) is 2 nm. If the BunchWidth is set to 8 nm, 8 : 2 = 4 photodiodes are averaged to one signal.

**Tips:** Averaging the signals improves the signal-to-noise ratio. However, at the same time, Optical Resolution decreases.

For certain instrument, the settings cannot be changed during the sample run. Thus, it may happen that commands included in the branched program are not performed.
Connect/Disconnect

Instrument Type: All
Related Commands: ---

Description:
Perform the Connect Device command to connect a device with the server to enable remote control.

Execute the Disconnect command to separate a user PC (client) from a timebase or to operate an instrument locally.

Functions:

Connect
The command checks whether the specified device is actually connected, and then turns the instrument on. For all installed instruments, the Connect command is executed automatically when the Chromeleon server is started. Thus, if working in remote operating mode only, you do not need to explicitly issue this command.

When the Connect command is enabled, the corresponding instrument may now be remotely operated from the PC. On most instruments, including all Dionex devices, the instrument keyboard is now locked for safety (and GLP) reasons. The instrument can be operated remotely, only. This is to ensure that the selected settings are retained. Input on the instrument itself is possible again after the Disconnect command.

Disconnect
The corresponding instrument reverts to local operating mode and the keyboard is unlocked again. The instrument is no longer monitored by Chromeleon, nor can it be operated via the data system.

Tip:
Connect and Disconnect should only be used in interactive (online) mode and not within a Program. Otherwise, the Ready Check may not be valid.
Continue

Instrument Type: System Command
Related Commands: ⇒StopFlow
                ⇒Hold
Description: The Continue command cancels the Hold and StopFlow commands.
Function: An interrupted sample Batch is continued in the same way as is an interrupted pump flow.

Delay

Instrument Type: System Command
Related Commands: ⇒Trigger
Description: Delays the execution of the following commands for the given time.

Tip: Delay is usually used for Trigger commands, only. Example:

Trigger PEAK UV_VIS_1 > 20
Delay 5.0
Sound Frequency = 440, Duration = 1
EndTrigger

With this program, an acoustic beep sounds 5 seconds after the signal has exceeded 20 mAU.
Delta

**Instrument Type:** All

**Related Command:** ⇒ Trigger

**Description:** Chromeleon is capable of recording and evaluating signals or output variables supplied by a detector, for example, UV/VIS channel, Temperature, Pressure, %A, Flow rate, etc.

Instead of the actual value (in mAU, Volt, °C, ml, etc.), the changes of a variable in a specific period can be calculated, that is, the first derivative of a signal. To do so, use the Delta signal property to calculate the difference between the current value and the value one second ago.

The Delta option is especially useful when creating complex trigger conditions. A peak cannot only be recognized by the height of its absorption signal within a chromatogram, but also, for example, by a sharp increase of the signal.

**Note:**

The first derivative is calculated once per second independent of the ⇒ Sampling Rate or the ⇒ Step used for data acquisition.

**Function:** Delta is used especially for trigger conditions. The syntax is as follows:

```plaintext
<Signal.Delta><comparison operator><value>
```

**Example:**

```plaintext
Trigger PEAK UV_VIS_1.Delta > 0.1
Sound Frequency=440, Duration=1
EndTrigger
```

With this program, an acoustic beep is given after a peak has been detected (exactly: if the UV_VIS_1 signal ascends by more than 0.1 mAU in one second).
Function: (Cont'd)  

**Note:**
Select the reference value individually depending on the peak height and the baseline noise.

**Tip:**
For another example of a trigger condition, refer to *How to ...: Practical Tips for Device Control* Trigger Commands.
Dispense

**Instrument Type:** Autosampler

**Related Commands:** ➞Inject
                    ➞Draw

**Description:** The Dispense command causes the autosampler to dispense a specific quantity (volume) from the sample loop into a certain sample vial (⇒Position). The amount of time the autosampler may take for this operation is determined via the ➪Duration parameter. When the operation is completed, the autosampler communicates the Sampler.Ready signal (for the ASI-100 Autosampler; ➪Sucked for the GINA 50/GINA 160 Autosamplers) to Chromeleon. The time interval between the Dispense command and the Sampler.Ready response signal can vary, depending on the instrument (ASI-100/GINA 50).

**Parameters (GINA50 only):**

- **Position**
  - Sample position

- **Volume**
  - Sample volume

- **Duration**
  - This parameter indicates the minimum time required by the autosampler for the respective operation.

**Tips:**

For highly viscous liquids, more time must be allowed for the autosampler to dispense the exact volume.

In manual operation, the commands are selected via the control pull-down of the unit window. When entering the commands to a ➪Program, the three parameters need not be specified. During execution of a PGM File, the missing parameters are replaced by the current sample position, the current inject volume, and by the value 0 (if there is no duration), respectively.
Control Commands

Draw

Instrument Type: ➢ Autosampler

Related Commands:
⇒ Inject
g⇒ Dispense

Description:
The Draw command (Draw for the ASI-100, Suck for the GINA 50/GINA 160) induces the autosampler to draw a specific ⇒ Inj. Vol. (injection volume) from a certain sample vial (⇒ Pos. (Sample position)). The amount of time this operation is allowed to take is determined for the GINA50 autosampler via the ➢ Duration parameter.

Function:
When the operation is completed, the autosampler communicates the Sampler.Ready signal (for the ASI-100; ➢ Sucked for the GINA 50/GINA 160) back to Chromeleon. The time interval between the Draw (or Suck) command and the Sampler.Ready (or Sucked) response signal can vary, depending on the instrument type.

Examples:
ASI-100 Autosamplers: The following command sequence delivers 10 µl of the current sample to the RA1 vial. The Dispense command is not executed until the Draw process has been completed.

-1.000 PrepSubject Sample_Vial
  PrepVolume 10
  Draw
  Wait Sampler.Ready

-1.000 PrepVial1 RA1
  PrepSubject PrepVial1
  PrepVolume 10
  Dispense
Function: GINA 50 autosampler: The following command sequence is required to deliver 10 µl of the current sample to the vial 1. Again, the Dispense command will not be executed until the Draw process is completed.

-1.000 Draw Volume=10
    Wait Sampler.Ready
    Dispense Pos=1, Volume=10

Parameters (GINA 50 only):

<table>
<thead>
<tr>
<th>Position</th>
<th>Sample position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Sample volume</td>
</tr>
<tr>
<td>Duration</td>
<td>This parameter indicates the minimum time required by the autosampler for the respective operation.</td>
</tr>
</tbody>
</table>

Tips: For highly viscous or low-boiling liquids, more time must be allowed for the autosampler to draw the exact volume without bubbles.

In manual operation, the commands are selected via the control pull-down of the unit window. When entering the commands to a Program, the three parameters need not to be specified. During execution of a program, the missing parameters are replaced by the current sample position, the current inject volume, and by the value 0 (if there is no Duration), respectively.

For more information, refer to Practical Tips for Device Control:

- Autosampler Commands (GINA 50)
- Autosampler Commands (ASI-100 Series)
End

Instrument Type: System Command
Related Command: ⇒ EndTrigger
Description: Marks the end of a program.

EndTrigger

Instrument Type: System Command
Related Command: ⇒ Trigger
Description: The EndTrigger command marks the end of a block of triggered commands.
Function: All commands between Trigger and EndTrigger are executed when the trigger condition becomes true.

Tip: Define the Trigger identified by its name with the new condition "0" and mark the end of this trigger block with the EndTrigger command to finish an active Trigger.

```
Time Trigger Name 0
 EndTrigger
```

This is necessary for each trigger separately. It is not possible to finish all triggers together.
Equate

**Instrument Type:** Processed in PC

**Related Command:** \( \Rightarrow \%B, \%C, \%D \)

**Description:** The **Equate** command is used to assign different designations to the three partial flows of the fluidics, \( \%A, \%B, \%C, \) and \( \%D \). Example:

- 0.000 \( \%A.\text{Equate} = \) "Water"
- 0.000 \( \%B.\text{Equate} = \) "MeOH"
- 0.000 \( \%C.\text{Equate} = \) "ACN"

**Function:** In the unit windows, you can assign the partial flows the actual eluent names. The equate commands are logged in the audit trail. This to keep track of the chromatographic conditions at any time. Consider that a PGM File which contains equate commands may itself serve as a protocol!

**Tip:** It is up to the user to check the consistency of \( \%A, \%B, \%C, \) and \( \%D \) with the eluents actually used!
Flow (Flow Rate)

Instrument Type: Pump

Related Commands:
⇒ %B, %C, %D
⇒ %A, %B, %C, %D_Level
⇒ Purge
⇒ WasteLevel

Description:
The Flow command defines the total flow rate (in [ml/min]) through the column, i.e., the sum of all Partial Flows (%A+%B+%C+%D=100%). The value entered represents the current value. For isocratic systems, this value remains constant during the program. In flow-gradient systems, this value represents an interpolation point of a polygonal line to which the previous and following flow values are adjoined by straight lines.

Function:
With flow ramps, the total flow rate alters linearly with time, between two flow commands. By entering two flow commands at the same time, you can program Step Gradients. When sorting, the editor does not change the order of commands having the same program time! If the flow is to remain constant for the entire analysis, a single entry at the beginning of the Program is sufficient.

-2.000 Flow= 0.500
... ...
0.000 Inject
0.500 Flow= 0.500
0.500 Flow= 1.000
... ...
8.500 Flow= 5.000
8.500 End

In this example, the flow rate remains constant at 0.5 ml/min between -2.0 and 0.5 min. Then it increases abruptly to 1.0 ml/min and then linearly to 5 ml/min with a gradient of 0.5 ml/min.
Function:
(Cont'd)

If a second fluidic system is installed in the same
➢ Timebase, the corresponding device name has
to be specified in the program. By using the F8
key for generating command lines, the device
name is inserted automatically.

Tip:

The ➢Hold, ➢Continue, and ➢StopFlow
commands are always effective for both fluidic
systems!

Tips:

Chromeleon is able to run flow and %-gradients
simultaneously. However, in high pressure mixing
systems this results in non-linear partial flow rate
changes for each individual pump.

As there are pressures up to 400 bars in the
chromatography column and as solvent mixtures
such as methanol/water are subject to volume
compression, the volume delivered in ➢High-
Pressure Gradient Systems does not correspond
to the volume transported via the column.
However, the number of delivered and
transported solvent particles is not changed by
this fact.

The flow rate remains constant from the last flow
command to the end of the program. Thus, for
isocratic operation, a single flow entry at the
beginning of the file is sufficient.

The first flow command must be at the beginning
of the PGM File!

Normal flow rates are in the range 0.5 to
10 ml/min. Flow rates deviating from this range
are achieved by using special micro pumps (0.1 -
0.5 ml/min) or preparative pumps (as from
10 ml/min).
Tips: (Cont'd)

Stopping the flow or decreasing the flow to 0.00 ml may result in deposits in the detector flow cell. To avoid this, turn off the lamp in UV and fluorescence detectors when the flow is stopped (⇒ Lamp = Off).

For Dionex detectors, a warning appears if the lamp is not turned off. However, make sure that you have selected the installed pump from Link to Pump list on the General tab page for the detector in the Server Configuration program.
Freeze

Instrument Type: Pump (P580 only)
Related Commands: ⇒Learn

Description: Compressibility always varies with different solvents. The better the pump is set to the compressibility of the respective solvent the lower is the pump's pulsation. Chromeleon allows you to determine optimum pre-compression control for the Dionex P580 pumps, using the Learn and Freeze commands.

The Freeze command completes the learn mode for determining the compressibility of the respective solvent component. (For more information, refer to Practical Tips for Device Control Setting Automatic Pre-Compression Control.)

Function: If the Freeze command is issued, the measured compressibility is saved and used for pre-compression, according to the portion of the respective component in the total flow.
Hold

**Instrument Type:** System

**Related Command:** ⇒StopFlow
⇒Continue

**Description:** The Hold command
- Stops ⇒Data Acquisition
- Interrupts a running ⇒Gradient program
- Stops automatic processing of the ⇒Batch

**Function:** In Hold mode, no data is acquired, the pump continues delivery with the current solvent composition, and evaluation of the batch samples is stopped.

**Tip:** To abort all processes, select the StopFlow command. To continue the processes, select Continue.
Inject

*Instrument Type:* Autosampler

*Related Commands:* ⇒ AcqOn
⇒ Draw
⇒ Dispense

*Description:* The `Inject` command defines the beginning of a chromatogram, that is, it determines the time at which the sample enters the high-pressure system. Thus, the time of the first inject command is 0 by definition. The advantage is that the ⇒ *Retention Time*, as appearing in chromatograms and reports, coincides with program execution times. All commands before inject, are assigned negative execution times.

Between the Inject command and the actual injection process (Inject response by the autosampler or the hand-operated valve), a system-dependent interval is required for reaching the rack and to draw the sample. During this time, the pump remains in ⇒ *Hold* state; that is, a gradient that might be running is stopped. The Inject Wait state is canceled only by an Inject Response signal. The response signal is delivered either automatically (via an interface) or via a remote input signal. Only from this point, time keeping is started.

*Function:* The function depends on the individual installation. For manual injection, Chromeleon simply holds the analysis time and waits for inject response. For a controlled autosampler, the inject command (at least) is relayed to this. For autosamplers with variable injection volumes and random sample access, such as the ASI-100 autosampler, the inject volume and vial position are relayed as well. Such autosamplers are ideal for automated multipoint calibration.
**Function:** (Cont'd) For **interactive operation** (online) of the inject command, the **Sample Position** and **Inject Volume** parameters must be entered as well. During **automated batch operation**, these values are read from the sequence. Thus, parameters do not have to be set individually in the **Program**.

**Parameters:** (When a hand-operated valve is used for injection, this information can be used for documentation purposes.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Position</strong></td>
<td>Vial ⇒ <em>Position</em> in the autosampler</td>
</tr>
<tr>
<td><strong>Inject Volume</strong></td>
<td>Injection ⇒ <em>Volume</em> in µl</td>
</tr>
</tbody>
</table>
| **Blank**   | Specifies whether **Blank Run Samples** are actually injected:  
|             | **Skip**: no injection                            |
|             | **Inject**: Injection is performed.               |

When you use the Famos autosampler, make sure to allow a short time before blank run samples are injected. (For more information on the autosampler, refer to **Hardware Installation** in the Administrator Help section.)

-0.100 ; 6 seconds to process program  
0.000 Inject

**Tips:**  
**Data acquisition** (⇒AcqOn/Off) should be started after the Inject signal, at least 30 seconds before the first peak. Also, there should be **Isocratic conditions** during the injection process.  
A program should only contain one inject command.  
For the ICS ion chromatography system, injection is performed with the **Pump_InjectValve. InjectPosition** command (if no AS50 is installed). With this command, an injection is always performed, also for a **Blank Run Sample**. This is contrary to the autosampler ⇒Inject command.
Lamp

Instrument Type: All optical detectors

Related Commands: ---

Description: The Lamp On/Off command turns the lamp of an optical detector on and off. UV/VIS detectors often have a separate lamp (deuterium/tungsten) for each wavelength range. In this case, the commands are as follows:
UV_Lamp = On/off
Visible_Lamp = On/Off.

Function: The lamp is turned on or off.

Tips: Almost all optical detectors require a considerable warm-up period for high sensitivity, drift-free operation. The inject command should, therefore, be placed several minutes (minimum) after this command. Note also that lamp(s) should never be turned off during a sample batch. Many laboratories operate detectors 24 hours a day with the lamp turned on.

Detector lamps are subject to aging. Check the $\Rightarrow$LampIntensity property, using the $\Rightarrow$Log command; for example, to receive the value of the current lamp intensity at 254 nm.

Stopping the flow or decreasing the flow to 0.00 ml may result in deposits in the detector flow cell. To avoid this, turn off the lamp in UV and fluorescence detectors when the flow is stopped ($\Rightarrow$Lamp = Off).

For Dionex detectors, a warning appears if the lamp is not turned off. However, make sure that you have selected the installed pump from Link to Pump list on the General tab page for the detector in the Server Configuration program.
LampAge

Instrument Type: All optical detectors

Related Commands:
⇒LampIgnitions
⇒LampIntensity

Description:
Detector lamps are subject to aging. After installing a new lamp, select the LampAge command to reset the lamp age to 0.

The LampAge command allows you to check the lamp age via the ⇒Log command. The value indicates the quality of the lamp.

Tip:
The maximum number of operating hours for a UV lamp is usually approximately 2000 hours.

Function:
The Log LampAge command logs the age of the optical detector lamp in the ➢Audit Trail, indicating the values in operating hours. The lamp age is checked at the retention time at which the command was performed.
LamIgnitions

Instrument Type: All optical detectors

Related Commands:
- ⇒LampAge
- ⇒LampIntensity

Description:
Detector lamps are subject to aging. After installing a new lamp, select the LamIgnitions command to reset the number of ignitions to 0.

The LamIgnitions command allows you to check the number of ignitions via the ⇒Log command. The value indicates the quality of the lamp.

Function:
The Log LamIgnitions command logs the number of ignitions performed by the optical detector lamp. The number of lamp ignitions is checked at the retention time at which the command was performed.
LampIntensity

**Instrument Type:** All optical detectors

**Related Commands:** ⇒LampAge
⇒LampIgnitions
⇒MinLampIntensity

**Description:** Detector lamps are subject to aging. The **LampIntensity** command allows you to check the intensity of the lamp via the ⇒Log command. The value indicates the quality of the lamp. After you have installed a new lamp, periodically check the lamp intensity via the Log command, and then compare the two values.

**Function:** The Log LampIntensity command logs the lamp intensity for an optical detector in the Audit Trail, indicating the value in counts/second. The intensity of the lamp is checked at 254 nm at the retention time when the command is performed.

**Tip:**

Determine the lamp intensity at a time when it is not affected by substances in the flow cell. Therefore, it makes sense to check the value at the beginning of data acquisition.

**Tips:**

The lamp intensity can be included in the report. Select the LampIntensity variable from the Audit Trail category.

If you check the lamp intensity while recording the chromatogram, you have to a) search for the retention time at which the intensity was read (done automatically) or b) indicate it manually.

a) Type the end retention time of the chromatogram in the Formula field. For example, for an overall run time of 15 minutes, type

```
AUDIT.LampIntensity(15.0)
```
Chromeleon will automatically search for the retention time (backwards from the end retention time on) at which the lamp intensity was checked, and then indicate the lamp intensity that was measured at that time.

Or, you may search for the retention time at which the lamp intensity was checked from the data acquisition start:

AUDIT.LampIntensity(0.0, "forward").

b) If you know the retention time at which the intensity was checked, enter the exact time. For example, if the lamp intensity was read at 0.5 min, type

AUDIT.LampIntensity(0.5)
Learn

Instrument Type: Pump (P580 only)
Related Command: \texttt{Freeze}

Description: Compressibility always varies with different solvents. The better the pump is set to the compressibility of the respective solvent the lower is the pump’s pulsation. Chromeleon allows you to determine the optimum pre-compression control for the Dionex P580 pumps, using the Learn and Freeze commands.

The Learn command starts the learn mode for determining the compressibility of the respective solvent component. However, verify that the solvent type has been set to Custom. (For more information, refer to Practical Tips for Device Control Setting Automatic Pre-Compression Control.)

Function: After you have issued the Learn command, the pump automatically adapts to the compressibility of the respective solvent.
Log

Instrument Type: Processed in PC
Related Commands: Message
                Protocol

description: The Log command allows you to document the values of variables in the Audit Trail at any time.

Function: All device settings are listed as Preconditions in the Audit Trails. (For more information about the Audit Trails, refer to Data Management Audit Trail.) In addition, you can log them at a specified time, using the Log command.

If, for example, the pressure at the time t = 5.000 min during sample processing should be logged, include the following line in the control program (see Control The Control Program):

5.000 Log Pressure.Value

In the example mentioned above, the current pressure will be logged. In exceptions, the Log command is sent directly by the device driver; for example, for Fraction Collectors. For another example, refer to LampIntensity.

Using the Log command, the different values from the sample table of the Browser may be written to the audit trail. This is possible for:

- PrevStandard: the most recent standard sample
- PrevSample: the most recent sample
- Sample: the currently running sample
- NextSample: the next sample of the current sequence

Note: This standard may not be required for the current sample.
Function:
(Cont’d)

It is possible for various standard columns and for ➢ User-defined Columns to output the corresponding values.

MaxAutoStep

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Fixed point value</td>
</tr>
<tr>
<td>Value Range:</td>
<td>0.1 ... 5.1 [s] (not with 3D fields)</td>
</tr>
<tr>
<td>Default:</td>
<td>5.1 s</td>
</tr>
</tbody>
</table>

Related Parameters: ➞ Step
➢ Sampling Rate
➢ Data Collection Rate

Description: The MaxAutoStep variable determines the maximum step if Step = Auto.
Message

Instrument Type: Processed in PC

Related Commands:

⇒ Wait
⇒ Protocol
⇒ Log

Description:
When a program is executed, an on-screen message pops up. Click OK to confirm the message. Only then, the program will be continued.

The Message command allows the user to enter reminders for things to do or to consider while executing a Program.

Function:
When executing the program, a window containing the respective message text is displayed. The program is interrupted until the user confirms the message. Besides, the command and the message are written to the Audit Trail.

For example, it a user should be reminded to check and, if necessary, refill eluents prior to the analysis, add the following command to the program:

1.000 Message "Check eluent containers!"

When executing the program, the text in quotation marks is displayed on screen at the specified time (in the above example one minute prior to injection). Simultaneously, the command and the message are logged in the Audit Trail. The server is then in Hold mode. During this time, the monitor icon indicates this status by its yellow/red coloring.

If Chromeleon is operated on a network, the message appears on the client having control privileges.

The program continues operating as soon as the message has been confirmed.
Parameter:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Text</th>
<th>The message to be displayed.</th>
</tr>
</thead>
</table>

**Tip:**

As long as the message dialog box is displayed on the screen, the time is interrupted and the flow conditions are in Hold mode.

### MinLampIntensity

**Instrument Type:** All optical detectors

**Related Commands:** ⇒LampIntensity

**Description:** Select the MinLampIntensity command to set the lower limit for the lamp intensity.

**Function:** When the measured lamp intensity is below the MinLampIntensity, a warning appears when data acquisition is started.
Mix

Instrument Type: ➤Autosampler

Related Commands:
⇒Inject
⇒Dispense

Description:

The Mix command causes the autosampler to mix defined injection volumes (see ⇒Volume) from several sample vials (see ⇒Position) in a different sample vial.

Function:

When the action is completed, the autosampler returns the Sampler.Ready signal.

Example (ASI-100 Series):

0.000 PrepVial BA1
0.000 PrepVolume 10
0.000 Sampler.PrepVial Position + GA1 - RA1
0.000 PrepSubject PrepVial
0.000 Mix

The above command sequence mixes 10 µl from a vial in the green segment with 10 µl of a vial in the red segment in the corresponding vial of the blue segment.

Example (AS/AS50):

Sampler.Pipet Volume = 20.0, SourceVial = 1, DestinationVial = 10
Sampler.Mix SourceVial = 10, NumberOfTimes = 5, Volume = 30.0

In the above command sequence, 20 µl is pipetted from vial 1 and delivered to vial 10. The contents of vial 10 is mixed by drawing in and expelling 30 µl of the vial contents. The mixing cycle is repeated 5 times.

You can also use the PrepSpeed (ASI-100) or SyringeSpeed (AS/AS50) command to determine the draw speed of the syringe.
Tip: When using highly viscous liquids or liquids with a low boiling temperature, allow the autosampler more time to draw the volume exactly and free of bubbles.

For more information, refer to Practical Tips for Device Control:
- Autosampler Commands (ASI-100 Series)
- Autosampler Commands (AS/AS50)
NeedleUp

Instrument Type: Autosampler

Related Commands: Wash

Value Range: Depends on device and installed syringe

Description: The NeedleUp command enables lifting the sample needle.

Function:

Then the internal sample valve is switched (see the example for a load/inject process in the Autosampler).

When lifting the needle, a running Wash process is automatically interrupted, i.e., the solvent flow is not through the sample loop but directly from the pump onto the column. Use the Load command to perform the same operation without moving the needle up.

Tip: Use the Wash and NeedleUp commands to prevent crystallization of substances, such as buffers, by washing the sample loop.
ParkPercentage

**Instrument Type:** UltiMate and LPG-3x00 pumps only

**Related Commands:** ⇒ Hold
⇒ Continue
⇒ StopFlow

**Description:** The ParkPercentage command enables the peak parking functionality. A peak can be parked only from the system if the ParkPercentage is > 0.00. For the UltiMate pump, an external signal must be sent to the pump’s START IN input.

For the LPG-3x00, the ParkPercentage can be controlled via the corresponding commands, e.g., via script buttons on a panel. For example, one button sets ParkPercentage = 5 and the other ParkPercentage = 100.

If peak parking is signaled, e.g., via a digital impuls from a Mass Spectrometer, you can use triggers for one of the pump’s inputs:

```
Trigger ParkPeakStart LPG3x00_Input1.State = 1
 MicroPump.ParkPercentage = 5
EndTrigger

Trigger ParkPeakEnd LPG3x00_Input1.State = 0
 MicroPump.ParkPercentage = 100
EndTrigger
```

**Function:** Peak parking is similar to the behavior of the ⇒ StopFlow command:
- The Gradient program is interrupted.
- Usually, the flow is reduced (but not turned off).

However, unlike the behavior of the StopFlow command:
- Data Acquisition (see Acquisition On/Off) is not interrupted.
- A running Batch is not stopped.
Function: (Cont'd)

The **PeakParked** variable displays the peak parking state. Chromeleon cannot control the state.

By parking a peak, the peak is slowly pumped through the detector. Thus, you can operate, for example, a **Mass Spectrometer** in a more sensitive range.

**Tips:**

Peak parking freezes the gradient with its current composition and reduced flow while data acquisition continues. Please keep the following in mind:

- The retention times do not correspond to the expected times.
- Audit Trail entries and gradient plots are no longer synchronized.
- Triggers may no longer work as programmed.
- Detection parameters need to be corrected.
- The ⇒Delay Time between two detectors is incorrect.

The changed flow is not displayed on the pump display or in Chromeleon.
**Position**

*Instrument Type:* ➢ **Autosampler**

*Related Commands:* ➢ *Inject*  
➢ *Volume*

*Value Range:* **Depends on device and installed carrier segment**

*Description:* Specifies the position of the vial from which a sample shall be injected.

*Function:* If you use a controllable autosampler, the entered position is transmitted automatically to the autosampler. The autosampler approaches the corresponding sample for injection.

If you use either a non-controlled autosampler or a hand-operated valve, this column is for documentation purposes only. If the sample position parameter is not entered, the previous (current) value is used.
Pressure.Lower/UpperLimit

*Instrument Type:* Pump

*Related Commands:* ⇒Flow

*Description:* Define the pressure limits within which the pump(s) is permitted to operate.

*Function:* If one of the limits is exceeded, Chromeleon turns off the flow, displays an error message, and terminates the current sample batch.

If the upper pressure limit is exceeded, the flow is immediately set to 0 ml/min. The pressure reading must remain below the lower pressure limit for some time (typically approximately 60 s - the time depends on the pump type), before Chromeleon turns off the flow.

*Parameters:* (The values that can be entered and the pressure unit depend on the pump type.)

- **Pressure.LowerLimit** Lower pressure limit in Bar, MPa, or psi.
- **Pressure.UpperLimit** Upper pressure limit in Bar, MPa, or psi.

*Tip:* Pressure limits apply to all pumps that are connected on the high-pressure side. Exceeding the upper pressure limit can be due to a blocked column or capillary or to a defective injection valve.

If the pressure is below the lower limit, this is usually due to a leak in the fluidic system.
Protocol

Instrument Type: Processed in PC

Related Commands: ⇒Message
⇒Log

Description: Writes a comment to the audit trail (without screen message). Thus, program steps can be additionally commented or chromatographic conditions can be written to the audit trail. (PGM comments are not written to the audit trail.)

-2.000 Protocol "Separation according to DFG-method, residue analysis"

-2.000 Protocol "0.05 M Natriumdihydrogenephosphate buffer"

-2.000 Protocol "Column: LiChrospher RP-18"

Function: Unlike simple green comments starting with a semicolon, which are only part of the program, the Protocol text is included in the Audit Trail and thus, it is directly linked with the corresponding sample. Therefore, the Protocol text can be used for commenting individual samples. The Protocol command does not affect the program run.

Parameter:

Text The text that is logged in the Audit Trail.

Tip: Event-controlled execution of the command is also possible. Example:

0.000 Trigger Protocol UV_VIS_1 > 1000

Protocol "Valid absorption range exceeded"

EndTrigger
Purge

Type: Pump

Related Commands: ⇒ Flow

Description: Usually, the Purge command is used to rinse the system for a short time at a considerably higher flow rate.

Function: The command sets the flow rate to the rate specified by PurgeFlow. The PurgeFlow is valid for the time specified by PurgeTime. Afterward, the flow rate is reset to the value specified by Flow.

Ready

Type: ⇒ Autosampler

Related Commands: ⇒ Inject

Value Range: NotReady ... Ready

Description: The Ready property indicates the state of the autosampler.

Function: The autosampler can only execute a command, for instance, the Inject command, when it is in Ready state.
RefBandwidth (Reference Bandwidth)

**Type:** Integer  
**Value Range:** Detector-dependent  
**Default:** 0 [nm]  
**Related Commands:**  
⇒RefWavelength (Reference Wavelength)  
⇒Bandwidth  

**Description:** The reference bandwidth can be selected separately for each channel. The 3D field of a Photodiode Array Detector also has its own reference bandwidth.  
Analogous to the conventional bandwidth of a channel, the reference bandwidth serves to average several photodiode signals of the Reference Wavelength.  

**Function:** For example, if the reference wavelength is 350 nm and the reference bandwidth is 5 nm, wavelengths in the range of 348 - 352 nm are averaged and used as the reference.  

**Tips:** For the UVD 170/340 detectors, change the reference bandwidth only if the reference wavelength cannot be set to 600 nm; that is, for substances clearly absorbing at 600 nm, especially blue substances. This is the only case where using a higher bandwidth can improve the signal to noise ratio.  
For PDA-100 detectors and other two-lamp PDA detectors, select a reference bandwidth that includes a majority of light from the same lamp as the sample wavelength. For the PDA-100, the deuterium lamp provides wavelengths of 190 nm to 380 nm and the tungsten lamp provides wavelengths of 380 nm to 800 nm. Select a reference bandwidth that is narrow enough not to interfere with nearby compounds and select an area of the spectrum where the sample does not absorb.
### RefWavelength (Reference Wavelength)

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Integer</td>
</tr>
<tr>
<td>Value Range:</td>
<td>Detector-dependent</td>
</tr>
<tr>
<td>Default:</td>
<td>Off</td>
</tr>
</tbody>
</table>

**Related Commands:**
- ⇒RefBandwidth (Reference Bandwidth)
- ⇒Wavelength

**Description:**
With Dionex Photodiode Array Detectors, the reference wavelength is used to correct the absorption values of the wavelength that has been selected for the analysis.

**Function:**
If the absorption of the reference wavelength changes during the analysis, absorption values of the analysis wavelengths are adjusted up or down accordingly. The selected reference wavelength should be in a quiet area of the spectrum where little absorption occurs. Each change in the absorption then indicates substantially changed conditions; for example, a reduction of the lamp energy (lamp drift). Each change can be used to correct the absorption in the remaining wavelength range even during the analysis (the recorded signal is reduced or amplified accordingly, as necessary).

Reference wavelengths are especially useful for gradient analyses because, as the light intensity changes over time (due to the gradient), absorption values are adjusted. This minimizes baseline drift.

Peaks are not detected in the reference wavelength range where the system is "blind" per definition. Should peaks be detected, nevertheless, select a different reference wavelength. You can deliberately use this as well to inhibit peaks.
Function: (Cont’d) If the reference wavelength is chosen in a light-deficient range, it is recommended to average the signals of several photodiodes by increasing the Reference Bandwidth and thus improve the signal to noise ratio.

For the Dionex Photodiode Array, you may change the reference wavelength after data acquisition. To do so, the PPA window has two options:

1. Extracting a channel at a wavelength other than used for data acquisition: On the context menu, select Extract and then Chromatogram to file. Then, select a reference condition for the new channel.

2. Displaying the 3D field at a different reference wavelength: Select the Decoration option on the context menu to open the Peak Purity Decoration. Then, select the reference conditions on the General tab page.

Tip: Do not confuse the reference wavelength with the Reference Channel used for Baseline Correction of Spectra.

Settings: Details about reference wavelengths vary, depending on the type of detector:

Dionex UVD 170/340 Detectors

For the Dionex UVD 170/340 UV/PDA detectors, select a reference wavelength of 600 nm because relatively small absorption values are observed at this wavelength. In addition, the Dionex detectors have a special noise optimum at this value. However, when the reference wavelength is changed, the special noise optimum no longer applies.
**Tip:**

Use a Holmium Oxide Filter (spectra calibration) to reference the measured wavelength range, that is, to verify whether the actual nanometer value corresponds to the nominal value.

**Dionex PDA-100 Detector**

By default, the reference wavelength is disabled for the PDA-100. With UV channels (≠ 3D Field), the absorption at the first scan after the autozero is used as a reference. This results in lower noise but less drift compensation. The `Reference_Wavelength=Off` command in a program or on the control panel turns off the reference wavelength.

During collection of 3D Field data, the absorption after autozero is always used as a reference (as described above). After data collection, a reference wavelength can be applied to the data. The reference wavelength in this case defaults to the highest wavelength in the analysis range. For example, if the analysis wavelength range is 190 - 350 nm, the default reference wavelength is 350 nm. If you select a different reference wavelength, the selected reference must be within in the stored wavelength range.
Relay On/Off

Instrument Type: All relays

Related Commands: ---

Description: Relay-Name.On (Off) closes (opens) a relay output (closure contact) for a specific instructed time. Switching valves are treated as relays also.

Function: The specified relay is opened or closed for a specified time in seconds. Relay-Name.On opens the relay upon completing a certain period (Duration), Relay-Name.Off closes the relay after completing the duration. If no duration is specified for Relay-Name.On (Off), the relay remains closed (open) until the next relay command is given.

Parameter:

Duration Closure or opening time in seconds [s] (optional).

Tip: Relay On/Off duration for the same relay may not overlap.
Reset

Instrument Type: All
Related Commands: \(\Rightarrow\) Autozero

Description: Resets an instrument to its initial conditions, as attained after power-up; i.e., to standby mode.

Function: Enables (in general) a warm start, that is, the instrument regains its initial state as immediately after power-up. The reset command is particularly useful when an instrument has been operated locally, or if it has an undefined status (to Chromeleon); for example, after an instrument fault.

Tip: Activating the reset of an autosampler may require a considerable time to completion, as generally this involves a mechanical recalibration and a complete wash cycle.
Sound

Instrument Type: Processed in PC

Related Commands: ---

Description: The Sound command generates an acoustic beep of selectable frequency and duration that is heard on the internal loudspeaker of the PC. You can use a beep to acoustically monitor the progress of a program, by setting Sound commands at key positions in the file. Combining the Sound command with a => Trigger command allows you, e.g., to "hear" a peak elute. Select different frequencies for leading and trailing peak edges to distinguish them acoustically.

Example:

-2.000 Flow = 1.000
-2.000 %B = 50
0.000 Inject

0.000 Trigger Up    UV-VIS-1 > 20
   Sound Frequency=440, Duration=1
   EndTrigger
   Trigger Down    UV-VIS-1 < 40
   Sound Frequency=880, Duration=1
   EndTrigger

0.500 Acquisition On
...
...

8.000 Acquisition Off

9.000 Program End
Function: If the PC is not equipped with a sound card, the loudspeaker may not be able to process the beep generated by the Sound command. In this case, a default beep is generated, instead.

Also, refer to Practical Tips for Device Control Trigger Commands.

Parameters:

- **File**: Sound File (normally WAV file)
- **Frequency**: In Hertz [Hz] (concert pitch a = 440 Hz)
- **Duration**: In seconds [s].
Step

**Instrument Type:** Detector

**Type:** Fixed point value

**Value Range:** Depends on the channel; for example, for a UV channel: 0.01 ... 4.8 [s] or Auto

**Default:**

- Depends on the detector and the channel; for example:
  - 0.5 s (3D field of the 340U PDA)
  - Auto (UV-VIS channel of the 340U PDA)
  - 0.05 s (GC)

**Note:**

For non-controlled GCs: 0.25 s.

**Related Commands:**

- MaxAutoStep
- Sampling Rate
- Data Collection Rate

**Description:**

The Step determines the time interval between two consecutive data points within the signal's raw data file (see Data Management Raw Data). The step is variable; you can specify a fixed step or have it selected automatically. A fixed sampling rate is especially useful if you want to export the recorded raw data to external software applications and if the destination program can only process equidistant data points.

**Function:** Fixed Step [0.01 .... 4.8 s]

Every step seconds, a data point is stored in the Raw Data file. For example, selecting step = 0.5 means acquiring and storing 2 data points per second. The smaller the step, the more data points will be recorded per time unit (regardless of whether there is a baseline segment or a peak).
Function: (Cont'd)

For the 3D field, step (here, 0.1 - 4.0 s) defines the data rate at which the connected Photodiode Array Detector collects spectra.

The distance between individual data is as follows:
- for the Dionex UV Detector = 0.01 s
- for the UCI Universal Chromatography Interface = 0.01 s
- for the 3D Field = 0.1 s

Automatic Step [auto]

At a variable sampling rate, the last 10 seconds of a chromatogram are temporarily stored in the system memory with the highest sampling rate. For each new data point (every 0.01 s), the oldest data point can be removed.

A complex algorithm allows determining and storing only those data points in the raw data file that are actually required. All "unnecessary" data points are filtered out and the chromatogram is stored almost without a loss in representation.

Depending on whether the peaks are narrow or wide or a baseline segment, 0.2 to 100 data points are stored per second as the result. Thus, the step automatically varies between 0.01 and 5 seconds.

Saving raw data with automatic step reduces the storage requirement up to 75% and thus increases data processing.

Select the Decoration command on the context menu and then the Raw Data Point option on the Peak Decoration tab page to display the chosen raw data points in the Report.

Select the MaxAutoStep command to determine the maximum step for Step = Auto.
Select the step in such a way that 20 data points are placed on the narrowest relevant peak of your chromatogram. If you acquire more data points, this will use unnecessary disk capacity and the integration might become incorrect, especially with increased baseline noise.

Use the Auto step for fast peak chromatograms for which you do not know the width of the expected peak. For a precise and reproducible analysis, always use a fixed step (see above). Especially with increased baseline noise, using Auto may result in incorrect integration.

If you issue the Data Collection Rate command, the default Step value is set to the reciprocal value. That is why you have to issue the Step command after the Data Collection Rate command if you need a different step.

For an overview of data acquisition, refer to Data Management Data Acquisition.
StopFlow

Instrument Type: System Command

Related Commands:
⇒ Hold
⇒ Flow
⇒ Continue

Function: The Stop Flow command turns off the pump flow; data acquisition is interrupted. A running Batch is stopped, as in the hold mode.

Select the Continue command to undo this command.
Temperature

*Instrument Type:* Column Oven/Autosampler/GC

*Related Commands:* ---

*Description:* The Temperature command adjusts the required temperature for a column thermostat, autosampler, or GC.

*Function:* If the program file contains more than one Temperature command, you will get a step profile instead of linear interpolation between two commands, which is happening with all temperature commands. In other words: Every new temperature command drives the thermostat to the new temperature as fast as possible (device-dependent). With GCs, the temperature is changed according to the desired temperature program.

*Parameters:*

<table>
<thead>
<tr>
<th>Value</th>
<th>Actual column oven temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>Required temperature for the column oven.</td>
</tr>
<tr>
<td>Upper/LowerLimit</td>
<td>Upper/lower limit for the temperature of the column oven.</td>
</tr>
</tbody>
</table>

*Note:* As with all device parameters, Chromeleon tries to display the status on the screen! Whether this is possible depends on the column oven connected.
Trigger

**Instrument Type:** System Command

**Related Commands:** ⇒EndTrigger

**Description:** Executes any commands that are immediately following if previously defined conditions are met; for example, if a defined signal voltage threshold and/or your time gradients exceeds a specified threshold. Define the condition, using the **Condition** parameter.

In the program, the entire Trigger block is indicated in blue color.

**Examples**

- A typical use for this function is the control of a ➔Fraction Collector. If the absorption signal of a given channel exceeds a threshold value, a relay is enabled, switching to the next collection vial. Further important applications are:
  - Signal-dependent ➔Wavelength Switchings; for example, immediately after completion of a peak. Thus, retention time variations can be neglected.
  - Programs can be ➔Branched off according to external conditions, such as a remote input or the value of an analog signal. Thus, you are flexible in determining the chromatographic reaction to external conditions (pressure, conductivity, etc.).
  - Acoustic signals can be generated when certain conditions become true (⇒Sound). Thus, your peaks can be made audible.

**Function:** The trigger condition is active from the time of the trigger command and has to be specifically disabled. However, signal values are received only after the ⇒AcqOn command of the program. The following command is executed every time the specified conditions are met (edge triggering), i.e., from each transition from false to true.
Thus, in the previous example, the trigger condition must be entered only once in the program; the fraction collector will then be switched for each new peak.

Trigger commands can only be activated from programs or programmable buttons but not in the online control. The following syntax is valid:

```plaintext
Time Trigger NAME Condition, True,
 Delay, Limit, Hysteresis
 Triggered command 1
 Triggered command 2
 Triggered command 3
 ...
 EndTrigger
```

As a response to a \textit{Trigger} condition becoming true, virtually any instruction can be performed. Examples:

- AbortBatch
- Acquisition.on/off
- BranchTo
- \textit{Message}
- \textit{Protocol}
- Relayname.on/off
- Signalname.Parameter
- Sound

Triggering the flow rate and the solvent composition is also possible. However, a gradient will be interrupted, and the analysis will be continued under isocratic conditions. Yet, you can use the \textbf{Branch} command to start a new gradient program.

The inject command cannot be triggered, as it is linked to $t = 0.000$ and can be given dependently from the time.

Note that trigger commands can be triggered, also.
Parameters:

Name

The name of the trigger command is obligatory. It serves for its identification. That is why the name must be unique, that is, the trigger cannot have the same name as a device or another command. Then, several triggers with different names can be activated simultaneously.

Note:

To be able to find the trigger in an Audit Trail or a Report, it is recommended to include the trigger name in capital letters in the program.

Condition

Defines the trigger condition and can have two forms:

<Parameter><Comparison Operator><Value> or
<Signal.Delta><Comparison Operator><Value>

or

<Remote-Input-Name>

<Parameter>

All installed channels, but also parameters such as Temperature (column temperature), Pressure (system pressure), Flow (flow rate), and %A, %B, %C, and %D can be used.

<Signal.Delta>

For signals, the first derivative of the parameter can be evaluated. This is achieved by adding the signal property \(\Delta\).

<Comparison Operator>

<Parameter>

\(\leq, \geq, \leq, \geq\) and \(<\)

<Value>

Fixed-point number. The dimension of the <Value> corresponds to the signal dimension. Parameters that are combined with DELTA have the dimension [signal dimension / s].

<Remote-Input-Name>

is reported from the instrument to Chromeleon, for example, Sample.Ready or Leak.
If several parameters are to be linked, this can be realized via mathematical (+, -, *, / , **) or logical (AND, OR, NOT, XOR) operators. Parentheses show combinations and hierarchy, as for instance:

- (UV_VIS_1>100) AND (UV_VIS_2>100)
- (UV_VIS_1+UV_VIS_2)>200

Logical links of entire conditions are also possible.
- (UV_VIS_1>100) AND NOT (UV_VIS_2>200)

**True Validity** in seconds. The trigger condition must be true for this time, to activate the trigger. Example:

```
Trigger DIGIN1 Remote1, True=2.0
```

The input signal must be active for at least 2 seconds to trigger DIGIN1.

The **True** parameter is also used as a criterion for the truth of signals; for example, to differentiate between true signals and spikes.

**Delay** Indicates the delay time (in seconds) between fulfillment of the condition and execution of the command; for example:

```
1.220 Trigger SIGNAL UV_VIS_1>20, Delay=5.0
```

The FraCol relay is switched 5 seconds after trigger activation only.

The **Delay** parameter is usually used for switching a fraction collector with a time delay. Thus, the dead volume between the detector and the fraction collector is taken into account.

If the **Delay** parameter is used in combination with the **True** parameter, the command is executed only <TRUE> + <DELAY> seconds after the condition is true.
Limit

The upper limit for executing the trigger command. Without the limit parameter, a trigger command is carried out any number of times until the trigger off command is executed. The limit parameter automatically deletes the trigger after a corresponding number of activations. Example:

1.220 Trigger BRANCH RemoteIn, Limit=1

Branch NEWPGM

The trigger command is only carried out once, and then the trigger is deleted.

Hysteresis

To prevent multiple trigger execution with very noisy signals, each trigger receives the Hysteresis parameter in addition to the True parameter.

In contrast to the True parameter, Hysteresis is not time but signal-dependent. The parameter can vary between 0 and 100%. The default value is 5%.

A 5% hysteresis causes, for example, the condition

```
Cond = UV_VIS_1 > 20,0
```

To change from FALSE to TRUE when reaching the value 20.0, but only changing from TRUE to FALSE at 19.0. Thus, a difference is made between signal increases and decreases. This corresponds to the different paths of a hysteresis loop.

If the operator < is used instead of >, the calculation is reversed! For the above example this means that the condition

```
Cond = UV_VIS_1 < 20,0
```

Becomes TRUE immediately when the value falls below 20, but is reset from TRUE to FALSE only at 20 + 5% = 21.
**Tips:**

While acquisition is disabled or interrupted, signal values cannot be evaluated.

If the **True** and **Delay** parameters are used, the command is switched only \(<\text{TRUE}> + \text{<DELAY}>\) seconds after the condition becomes true.

End program automatically disables all trigger conditions.

Triggering the **Flow**, %B, %C, and %D commands is restricted to isocratic separations.

For certain instrument, the settings cannot be changed during the sample run. Thus, it may happen that trigger commands are not performed.

**Example:**

When the trigger condition becomes true, the following program switches the flow to 0.1 ml/min and sets %B to 0.

```
-1.000 Trigger ELUENT UV_VIS_1 > 20
 Flow = 0.100
 %B.Value = 0.0
EndTrigger
0.000 Inject
0.000 UV_VIS_1.AcqOn
....
15.000 UV_VIS_1.AcqOff
15.000 End
```
Volume

Instrument Type: ➔Autosampler

Related Commands:
⇒Inject
⇒Position

Value Range: Depends on device and installed syringe

Description: Specifies the injection volume in micro liters (µl).

Function:
In automatic operation, the installed ➔Driver converts this value into a volume readable by the autosampler, then the value is sent to the autosampler.

You can enter different injection volumes to create a ➔Dilution Series for multiple-point calibration (➔Single-Point and Multiple-Point Calibration).

Tip: In order to minimize carry-over effects in multiple-point calibrations, you should always start with the sample with the highest dilution or the smallest injection volume.
Wait

Instrument Type: ➢Remote Input

Related Commands:
⇒Message
⇒Inject
⇒AcqOn/Off

Description: The Wait command interrupts program execution until the specified remote input signal arrives.

Function: Wait stops the program time and the acquisition; the pump(s) are in Hold mode. For examples for how to use the Wait command, refer to Practical Tips for Device Control:

► Autosampler Control

Special Commands, Relay Control, and Miscellaneous ► Mixed Commands

Parameter:

Condition Condition for the realization of which the system waits (see ⇒Trigger)
Wash

Instrument Type: ➤Autosampler
Related Commands: ⇒Inject
⇒NeedleUp

Value Range: Depends on device and installed syringe

Description: The Wash command serves for rinsing the autosampler.

Function: It causes the autosampler to lower the needle into the needle seat and to rinse the sample loop and needle with solvent in Inject state. This corresponds to the normal solvent flow following an Inject command.

Tip: Select the Wash and NeedleUp commands to wash the sample loop and thus prevent crystallization of substances in the sample loop.
WasteLevel

Instrument Type: Pump(s)

Related Commands:
⇒ WasteWarningLimit
⇒ %A, %B, %C, %D_Level
⇒ %B, %C, %D
⇒ Flow

Description: This command indicates the level for the solvent waste.

Function: Before starting a sequence, enter the actual filling height in the waste container. Chromeleon checks whether the waste container has sufficient capacity.

Parameters:

Value
Actual waste level in [l].

UpperLimit
Upper limit for the waste level in [l]. If the level in the waste container reaches this value, the batch is aborted and following message appears:

[Abort] xx:xx:xx {Pump} The waste level is above the limit (x.xxx l)! Please empty the waste container.

Tip:
In the emergency program, reduce the flow rate to 0 ml/min. This avoids that the waste container runs over.

Tip:
Chromeleon checks the calculated level of solvent waste during the Ready Check. The corresponding warning appears if necessary.

Note:
This command is available for all pumps except for ion chromatography pumps.
WasteRemainTime

**Instrument Type:** Pump(s)

**Related Commands:** ⇒%A-, %B-, %C-, %D_RemainTime
⇒WasteLevel
⇒WasteWarningLimit

**Description:** Reports the approximate time until the associated waste container will be full to the upper limit (WasteLevel.UpperLimit).

**Function:** Chromeleon calculates the waste remain time based on the current flow and the current filling height of the waste container.

**Tip:**
When you change the flow rate later, Chromeleon recalculates the remain time. Therefore, check this value whenever you have changed the flow rate.

**Note:**
This command is available for all pumps except for ion chromatography pumps.
WasteWarningLimit

Instrument Type: Pump(s)
Related Commands: ⇒WasteLevel
⇒%A-, %B-, %C-, %D_WarningLimit

Description: This command allows you to enter a warning limit for monitoring the filling height in the waste container. Input is in percent and refers to the upper limit (WasteLevel.UpperLimit).

Function: If the filling height in the waste container exceeds the upper limit x the warning limit/100 (WasteLevel.UpperLimit x WasteWarningLimit/100), the following warning appears:

[Warning] xx:xx:xx {Pump} The waste level (actual level in [l]) will reach the upper limit (upper limit in [l]) in about 0.1 hours! Please empty the waste container.

Tip:
When the filling height reaches the upper limit, the batch is aborted. In the emergency program, reduce the flow rate to 0 ml/min. This avoids that the waste container runs over.

Note:
This command is available for all pumps except for ion chromatography pumps.
Wavelength

Instrument Type: Detector
Type: Integer
Value Range: Detector-dependent
Default: 0 [nm]
Related Commands: ⇒ Bandwidth
⇒ RefWavelength (Reference Wavelength)

Description: The Wavelength command specifies the wavelength at which the chromatogram is recorded.

Function: For controlled detectors, such as the Dionex detectors, this value is automatically transferred to the detector (requires control option). The wavelength can also be entered manually during the analysis or in the program.

In Chromeleon configurations without control option, the selected wavelength remains fixed during the analysis. In controlled versions, the wavelength can be altered during analysis.
QNT Parameters (Overview)

The QNT Editor allows you to define general, peak table, and detection parameters. For information about the general parameters and peak table parameters, refer to:

⇒ Amount
⇒ Calibration Mode
⇒ Calibration Type
⇒ Check Derivative
⇒ Check Extrema
⇒ Comment (Peak)
⇒ Dead Time
⇒ Delay Time
⇒ Dimension of Amounts
⇒ Group (Peak Group)
⇒ Integration Type
⇒ Kovats Index
⇒ Left/Right Limit
⇒ Match Criterion
⇒ Maximum/Minimum Wavelength
⇒ Name (Peak Name)
⇒ Reference Spectrum
⇒ Relative Maximum Deviation
⇒ Response Factor
⇒ Retention Index
⇒ Retention Time
⇒ Standard
⇒ Threshold
⇒ Type (Peak Type)
⇒ Use Recently Detected Retention Time
⇒ Window
Amount

Location: Peak Table tab page
        Report Variable (Peak Table/Peak Results)

Type: Floating point number

Dimension: Determined by the Dimension of Amounts parameter on the General tab page

Value Range: 0.000001 ... 9999999.999999

Default: 1.000000

Related Parameter: ⇒ Dimension of Amounts

Description: The Amount parameter determines the content (amount, concentration) of a standard sample or a Validation Sample of a particular mixture component. For multi-point calibration with various standards (i.e., the injection volume does not vary), several values must be entered for each peak. Thus, a matrix of standard contents is created, whose lines correlate to the peaks and the columns to the various standards.

Function: Enter the amount as concentration value (e.g., µg/µl) or as absolute amount (e.g., µg). In the report, the result is displayed accordingly, either as concentration value or as an absolute amount. The respective inverse function is used for calculation (see How to ...: Creating and Using Report Tables ⇒ Calculating the Peak Variable "Amount"). The Formula for Calculating the Amount allows you to consider the response factor, dilution factor, weight, and a factor for the Internal Standard.

In absolute amounts, the result always relates to the injected volume; for example, 17.6 µg per 20 µl injection volume. Select the Concentration peak result variable to normalize the value to 1 µl by dividing the absolute value by the injection volume; for example, 17.6 / 20 = 0.88 µg/µl.
Tip:

If a concentration unit has been chosen as **Dimension of Amount**, the **Concentration** peak variable has lost its sense.

In a single-point calibration, only one standard is used. This means that there is only one value per component (peak).

In a "real" multiple-point calibration (Single-Point and Multiple-Point Calibration - no variation of the injection volume), the number of amount values for each component must correspond exactly to the number of standards.

Tips:

In a multiple-point calibration, the values of the **Amount** columns are corrected by the ratio of the injection volumes (for which the reference volume defined on the **General** tab page of the QNT Editor is used) and the dilution factors in comparison to the first standard. You can thus combine the amount values with the **Dilution Series**!

Even for multi-point calibration, normally only **one** peak table is required!
Calibration Mode

Location: General tab page
Report Variable (Peak Calibration)

Type: Character

Dimension: No dimension

Value Range: Fixed/Total/Group/Additional/Bracketed/Standard Addition

Default: Total

Related Parameter: ⇒ Calibration Type

Description: The Calibration Mode parameter determines the standards that are used for calibrating a specific sample of a sequence. Chromeleon provides six different calibration modes.

Select the mode on the General tab page in the QNT Editor (see The QNT Editor The General Tab Page).

Function:

Fixed 

This setting enables the calibration using various standards (also from other sequences).

The desired standards are entered via the Insert Standard or Append Standard commands on the Calibration tab page of the QNT Editor. The sequence the standards are taken from is included in the Sequence column.

If desired, you can enter individual calibration coefficients via the c0, c1, c2, and c3 columns in the amount table.

Tip: Always perform the calibration manually (Calibrate). The Auto-Recalibrate option is not available.
<table>
<thead>
<tr>
<th>Total</th>
<th>Calibration is performed using all valid standard samples of a sequence. The standard samples disabled in the <code>Enabled</code> column of the <code>Calibration</code> tab page (QNT Editor) are not included.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>The calibration of a sample series from the sample list (for example, samples 3 to 50) is performed based on the standard samples listed directly before this series; for example, no. 1 and 2. If this sample list includes additional standards (for instance, no. 51 and 52), the samples that follow (for instance, 53 to 100), will be evaluated based on these. The standard samples in lines 1 and 2 will no longer be considered. (For an example, see the picture below.)</td>
</tr>
<tr>
<td>Additional</td>
<td>For calibrating a sample, all standard samples that are listed <em>before</em> this sample in the sample list are used. The further down the sample is listed in the table, the more standard samples will be considered. For an example, see the picture below.</td>
</tr>
<tr>
<td>Bracketed</td>
<td>Samples are evaluated based on all standard samples immediately surrounding. In case of a list containing two samples, two standards, two samples, two standards, and so on, samples 1 and 2, located at positions 3 and 4, are evaluated with standards 1, 2, 3, and 4, located at positions 1, 2, 5, and 6. Samples 3 and 4 are evaluated using standards 3, 4, 5, and 6, located at positions 5, 6, 9, and 10. For an example, see the picture below.</td>
</tr>
</tbody>
</table>
Standard Addition

Use this mode to analyze unspiked samples using the Standard Addition method. In this case, only the sample types Unspiked and Spiked are considered for the analysis. (For more information about these sample types, refer to Spiked Sample).

If several unspiked samples (sample type: Unspiked) are available, only the associated spiked samples are analyzed. Make sure that they are assigned to the same Std. Add Group (Standard Addition Group), i.e., verify that the names indicated in the Standard Addition Group column in the sample list are identical.
Calibration Type

Location: Peak Table tab page
Report Variable (Peak Calibration)

Type: Code
Dimension: ---

Value Range: Linear (Lin and/or LOff)
Quadratic (Quad and/or QOff)
Cubic (Cubic and/or COff)
Exponential (Exp)
Point-to-Point (P-P)

Combine with: No Weights, 1/Amount (X), 1/Amount² (XX),
1/Response (Y), 1/Response² (YY) (with
Average all response values... additionally
1/Rel.Std.Dev., 1/Rel.Std.Dev.²)

Default: Linear

Related Parameters: ⇒Standard
⇒Calibration Mode

Description: The Calibration Type parameter determines the
⇒Calibration Function and the ⇒Weights. In
 calibration, up to three calibration constants per
peak are entered into the calibration file, defining
the peak area/amount ratio. The minimum
number of required samples depends on the type
of calibration curve chosen. A maximum of 20
samples from different sample files may be
marked and used as calibration samples. The
 calibration points can also be weighted with
1/Amount, 1/Amount², 1/Response, and
1/Response². The type of the weight function is
entered together with the curve type. Dionex
recommends using the F8 box for selecting the
desired specifications; for example, the field value
XXQOff stands for quadratic with offset and
weight function 1/Amount².
Function:
A series of methods, differing with respect to their model function and the number of coefficients, is available. The number of calibration samples needs to be at least equal to the number of coefficients to be determined.

Calibration functions:

Linear (Lin)
Minimum number of standards or Spiked Samples: 1
The model function is a straight line leading through the origin. (In Standard Addition calibration mode, the line leads through the average of all unspiked samples.) For more than one standard, the regression line is calculated. The calibration curve is based on the following equation:

Model function: \( f(A) = c_1 x A \)

Where \( A \) is the peak area and \( f(A) \) the calculated amount.
\( c_1 \) (linear coefficient, slope) is calculated and stored.

Linear with offset (LOff)
Minimum number of standards or spiked samples: 2
The calibration curve is a straight line, crossing the ordinate at a finite value.
Model function: \( f(A) = c_0 + c_1 x A \)

\( c_0 \) and \( c_1 \) are calculated and stored.

Quadratic (Quad)
Minimum number of standards or spiked samples: 2
The calibration curve is a parabola leading through the origin. (In Standard Addition calibration mode, the curve leads through the average of all unspiked samples.) For more than two calibration samples, the regression parabola is calculated.

Model function: \( f(A) = c_1 x A + c_2 x A^2 \)

\( c_1 \) and \( c_2 \) are calculated and stored.
<table>
<thead>
<tr>
<th>Model Type</th>
<th>Minimum number of standards or spiked samples:</th>
<th>Calibration Curve Description</th>
<th>Model Function</th>
<th>Coefficients Calculated and Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadratic with offset (QOff)</td>
<td>3</td>
<td>The calibration curve is a parabola crossing the ordinate at a finite value. For more than three calibration samples, the regression parabola is calculated.</td>
<td>( f(A) = c_0 + c_1 x A + c_2 x A^2 )</td>
<td>( c_0, c_1, \text{ and } c_2 )</td>
</tr>
<tr>
<td>Cubic</td>
<td>3</td>
<td>The calibration curve leads through the origin. (In Standard Addition calibration mode, the curve leads through the average of all unspiked samples.) For more than three calibration samples, the regression curve is calculated.</td>
<td>( f(A) = c_1 x A + c_2 x A^2 + c_3 x A^3 )</td>
<td>( c_1, c_2, \text{ and } c_3 )</td>
</tr>
<tr>
<td>Cubic with offset (COff)</td>
<td>4</td>
<td>The calibration curve is a curve crossing the ordinate at a finite value. For more than four calibration samples, the regression curve is calculated.</td>
<td>( f(A) = c_0 + c_1 x A + c_2 x A^2 + c_3 x A^3 )</td>
<td>( c_0, c_1, c_2, \text{ and } c_3 )</td>
</tr>
<tr>
<td>Exponential (Exp)</td>
<td>2</td>
<td>The calibration curve presents an exponential function.</td>
<td>( f(A) = c_0 x A^{c_1} )</td>
<td>( c_0 \text{ and } c_1 )</td>
</tr>
</tbody>
</table>
Exponential (Exp) (Cont'd)

The following applies to the Standard Addition calibration mode:

Model function: \[ f(A) = \bar{c} + c_0 \cdot A^{c_1} \]

With:
\[ \bar{c} = \text{Expected offset value of all calibration points with positive amount values.} \]

Point-to-Point

Minimum number of standards or spiked samples: 1

The calibration curve is polygon, that is, a linear interpolation between two calibration points. If there are several replicates of a calibration level, they are averaged before interpolation.

Weighting:

No Weights

Default: higher weighting of higher amounts or signal values.

1/Amount (X)

Nearly cancels out the weighting of higher amounts.

1/Amount^2 (XX)

Causes over-proportional weighting of smaller amounts.

1/Response (Y)

Nearly cancels out the weighting of higher signal values. In this case, the Y-values (dependent signal values) of the calibration points are used as weight factors instead of the X-values (nominal amounts).

1/Response^2 (YY)

Causes over-proportional weighting of smaller signal values. In this case, the Y-values (dependent signal values) of the calibration points are used as weight factors instead of the X-values (nominal amounts).

1/Rel.Std.Dev. (S)

Weights signal values with small relative standard deviations more than those with large relative standard deviations.

1/Rel.Std.Dev. ^2 (SS)

Weights signal values with small relative standard deviations clearly more than those with large relative standard deviation.
**Options:**

Average all response values of each calibration level before curve fitting averages the calibration level points before calculating the calibration curve from the average values.

Include point (0,0) for curve fitting includes the origin into the calibration curve calculation for calibration functions with offset without forcing the calibration curve through the origin.

**Tip:**

All procedures are possible both, with the area method and the height method. Note that integration and calibration should fit together, that is, either area method in both cases, or height method. Only the area method can be substantiated by physics.

For more information about the available calibration types, refer to **Theory of Calibration**:

- [Calibration Types (Linear)]
- [Calibration Types (Non-Linear)]
Check Derivative

Location: Peak Tracking and Spectra Library Screening tab pages/Report Variable (Peak Table)

Type: Selection

Dimension: -

Value Range: Off; 1st derivative; 2nd derivative

Default: Off

Related Parameters: Additional parameters for comparing spectra:
⇒ Check Extrema
⇒ Match Criterion
⇒ Maximum/Minimum Wavelength
⇒ Relative Maximum Deviation
⇒ Threshold

Description: Comparison of two or more spectra with each other can be performed in three different ways (comparison functions):

- Based on the curve shape of the spectrum itself
- Based on the curve shape of the first derivative of the spectrum
- Based on the curve shape of the second derivative of the spectrum

Function: Comparing the curve shape of the first or second derivative of the spectrum is more characteristic (shoulders become extremes). However, the Signal-to-Noise Ratio decreases considerably. Depending on the comparison function different Threshold values are useful.

Note: Differentiating once or twice can lead to well matching hits, although the absorption heights of the original spectra differ significantly.
Check Extrema

Location: Peak Tracking and Spectra Library Screening tab pages/Report Variable (Peak Table)

Type: Selection

Dimension: -

Value Range: Off; On

Default: Off

Related Parameters: Additional parameters for comparing spectra:
⇒ Check Derivative
⇒ Match Criterion
⇒ Maximum/Minimum Wavelength
⇒ Relative Maximum Deviation
⇒ Threshold

Description: The parameter indicates whether the spectra search compares the number of extrema in the reference spectra with the ones in the peak spectrum.

Note: If there is a high noise level (see Signal-to-Noise Ratio), it is possible that noise peaks are considered extrema. In this case, Dionex recommends disabling the Check Extrema option.
Comment (Peak)

Location: Peak Table tab page Report Variable (Peak Table)
Type: Text
Dimension: ---
Value Range: All printable characters
Default: ---
Related Parameters: ⇒Name (Peak Name)
Description: In addition to the peak name, further comments can be entered. Double-click or press the F8 key to open an enlarged entry field.

Note: If you have generated the peak table in the QNT Editor via Autogenerate Peak Table, this will be automatically indicated in the peak table’s Comment column:

- If Enumerate peaks of current chromatogram is enabled, the comment is Autogenerated.
- If Use spectra library screening results is enabled, the comment is Autogenerated, Spectrum: Name of Reference Spectrum, Match: Match Factor number.
Dead Time

Location: General tab page
Report Variable (Quantification Method)

Type: Floating point value

Dimension: Minutes

Value Range: 0.000 ... 9999.999

Default: Not chosen

Related Parameters:
⇒ Retention Time
⇒ Delay Time
⇒ Window

Description: The dead time is defined as the time required for the peak maximum of an unretained substance to reach the detector from the point of injection. Thus, the dead time corresponds to the residual time (of all substances) in the mobile phase.

Enter the dead time on the General tab page in the QNT Editor.

Function: The adjusted retention time of a substance is defined as the time this substance remains in the stationary phase. The sum of the residual times in the mobile and stationary phases is the Retention Time:

\[ t_s = t'_s + t_0 \]

Where:
- \( t_s \) = Retention time of a substance
- \( t'_s \) = Adjusted retention time of a substance
- \( t_0 \) = Dead time

The dead time is required to calculate the Capacity Factors and the Kovats Indexes.
Delay Time

**Location:** General tab page

Report Variable *(Quantification Method)*

**Type:** Floating point value

**Dimension:** Minutes

**Value Range:** -9999.999 ... 9999.999

**Default:** Not selected

**Related Parameters:** ⇒ Dead Time

⇒ Retention Time

**Description:** The time required for a substance to travel from the detector cell of one detector to the detector cell of a second detector is referred to as Delay Time.

**Function:** Usually, a constant ⇒ Flow is used. With constant flow, the delay time between two detectors is constant as well. In this case, it can be measured and entered on the General tab page in the QNT Editor (see The QNT Editor → The General Tab Page). Verify that a second detector (or channel) is specified in the Detector name field. Otherwise, you cannot enter a delay time.

The entered delay times can be positive or negative, depending on whether the detector directly following the column or any other detector is defined as 2nd detector.

**Note:** Entering a delay time for ⇒ Flow Gradients does not make sense because the delay is not constant in this case. Follow the description in How to ...: Integrating Chromatograms and Identifying Peaks ⇒ Defining the QNT Method for Several Detectors.
Dimension of Amounts

Location: General tab page
Report Variable (Peak Table)

Type: String

Dimension: ---

Value Range: All printable characters

Default: ---

Related Parameters: ⇒Amount

Description: The Dimension of Amounts parameter defines the physical dimension of the amount values. This is usually an amount dimension, but you may select a concentration dimension, instead.

Function: The chosen dimension is entered in the column header of the amount column of the report table. It is only relevant to the documentation of results and has no influence on the calculation algorithms.

Tips: Consistency of dimensions is entirely up to the user. If weight was read as g, do not enter mg here. There will be no automatic conversion!

For the calculation of the concentration in the report or the printer layout, Chromeleon presumes that a dimension of amount was chosen. If a dimension of concentration was entered as Dimension of Amounts, this calculation does not make sense.
Group (Peak Group)

Location: Peak Table tab page
Report Variable (Peak Table)

Type: String

Dimension: ---

Value Range: All printable characters

Default: ---

Related Parameters: ⇒ Peak Group Start/End
⇒ Integration Type
⇒ Calibration Type

Description: Peaks may be grouped and then be calibrated and integrated together. You may assign the group any name, whilst it is recommended to use the name of the group's most "important" member. The members must not necessarily succeed one another.

(If you wish to group peaks that lie close together, use the Peak Group Start and Peak Group End detection parameters (on the Detection tab page of the QNT Editor).

Function: During calibration (not during peak detection), the peak group is treated as one non-resolved peak: The calibration constants of the amount value and the area sum of all peaks being part of the group are calculated. The calibration curve, therefore, is identical for all peaks. During integration, the amount/concentration values for each peak are calculated individually for each peak from its area and calibration constants.

Tip: The Integration and Calibration types must be identical for all peaks within a peak group.

Also, refer to How to …: Integrating Chromatograms and Identifying Peaks Grouping Peaks.
**Integration Type**

*Location:* Peak Table tab page
Report Variable *(Peak Table)*

*Type:* Selection

*Dimension:* No dimension

*Value Range:* Area/Height/Relative Area/Relative Height/CE Area

*Can be combined with:* All peaks, identified Peaks only/Exclude ISTD peaks (only with Relative Area/Relative Height)

*Default:* Area

*Related Parameters:* ⇒Calibration Type
⇒Group

*Description:* Indicates the peak property to be used for the calculation of quantitative results. Different Area and height methods are the alternatives.

*Functions:*

**Area**

Peak area integration.

All amount calculations refer to the peak area which itself is calculated numerically according to the trapezoidal method. Area delimiters in this case, consist of chromatogram, baseline and, if necessary, perpendiculairs in order to exclude adjacent non-resolved peaks. In case of Riders, an appropriate skimming tangent substitutes the baseline.

**Height**

Peak height integration.

All amounts refer to the peak height; that is, to the height of the peak maximum as related to the baseline.
<table>
<thead>
<tr>
<th><strong>Relative Area</strong></th>
<th>Relative peak area integration. The area can be chosen relative to the area of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• <strong>All peaks</strong> or <strong>Identified peaks only</strong></td>
</tr>
<tr>
<td></td>
<td>In both cases, the internal standard(s) may be excluded (<strong>Exclude ISTD peaks</strong>).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Relative Height</strong></th>
<th>Relative peak height integration. Reference corresponding to the relative peak area integration is possible.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>CE Area</strong></th>
<th>Integration type for capillary electrophoresis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CE-Area = Area / Ret. Time in [mAU])</td>
</tr>
</tbody>
</table>

**Tips:**

Integration and calibration always require the same method!

All peaks of a **Group** require the same method.

Only the area methods can be substantiated by physics.
Kovats Index

Location: Peak Table tab page
Report Variable (Peak Table)

Type: Integer

Dimension: No dimension

Value Range: 0 ... 999.999

Default: -

Related Parameters:
⇒ Retention Time
⇒ Dead Time

Description: Data exchange between laboratories for substance identification based on relative retention times is not exact. Therefore, especially in gas chromatography, retention indexes are used. They use a series of chemically similar standard substances to achieve uniform scaling of the Retention Time.

Advantage is taken of the fact that within a homologous series of compounds the logarithms of the adjusted retention times are proportional to the number of carbon atoms (adiabatic and isothermal conditions presumed). The most frequently used Kovats Index is defined as follows:

\[ KI = 100 \times n + 100 \times \frac{\log t_s' - \log t_n'}{\log t_{n+1}' - \log t_n'} \]

Where:

KI = Kovats index

\( t_s' \) = Adjusted retention time with \( t_s = t_s' + t_0 \)

\( t_s \) = Retention time

\( t_0 \) = Dead time

n = Number of carbon atoms (normally of n-alcane)

S = Substance of interest
The following must be true:

\[ t_n < t_S < t_{n+1} \]

Function: As the Kovats indexes for the markers are freely selectable the following formula is used for the calculation:

\[
KI = KI(z) + (KI(z+1) - KI(z)) \frac{\log r'_{z} - \log r'_{z+1}}{\log r'_{z+1} - \log r'_{z}}
\]

With \( KI = \) Kovats index (usually \( KI = 100 \times n \) is entered) and

\( z = \) number of the marker peak.

If no marker peaks or no dead time is determined, the Kovats index is not defined (n.a.). In addition, the Kovats index is not defined for any peaks that occur before the first and behind the last marker peaks. For more information about how to enter marker peaks and dead time, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining the Retention Index and the Kovats Index.

Note: In Chromeleon, the substances of interest must be between two marker peaks.
Left/Right Limit

**Location:**  
Peak Table tab page  
Report Variable (Peak Table)

**Type:**  
Fixed point number

**Dimension:**  
Minutes

**Value Range:**  
0 ... 999.999 [min]

**Default:**  
0 (no function)

**Related Parameters:**  
⇒ Retention Time

**Description:**  
Normally, peak integration is performed automatically. It is possible to limit or extend integration on the left, right, or on both sides with the appropriate peak table parameters. This may be done in the peak table via a left and/or a right limit.

**Function:**  
The peak is integrated between left and right limit, that is, between:

\[ t - LL \ldots t + RL \]

Where:

\[ t = \text{Retention Time} \]
\[ LL = \text{Left Limit} \]
\[ RL = \text{Right Limit}. \]

The value 0 disables the limitation.

**Example 1:**

For the right and left integration limits, the value 0.5 min is entered. The peak maximum is at the retention time of 8 min. The peak is integrated from 7 min 30 s to 8 min 30 s.
**Note:**

The LL and RL limits can also be enabled/disabled independently.

**Example 2:**

For the left integration limit, the value 0.5 min is entered. For the right integration limit, the value 0 is entered. As before, the peak maximum is at the retention time of 8 min. The peak is integrated from 7 min 30 s. The end of integration is automatically determined then.
Match Criterion

Location: Peak Table and Spectra Library Screening tab pages/ Report Variable (Peak Table)

Type: Selection

Dimension: No dimension

Value Range: Least Square, Weighted Least Square, or Correlation

Default: Least Square

Related Parameters: Additional parameters for comparing spectra:
⇒ Check Derivative
⇒ Check Extrema
⇒ Maximum/Minimum Wavelength
⇒ Relative Maximum Deviation
⇒ Threshold

Description: The match criterion defines the mathematical method with which two standardized spectra are compared with each other.

Function: The signal deviation, that is, the difference between the UV spectrum and a reference spectrum at defined wavelength, is checked (\(\lambda_1, \lambda_2, \ldots\)). Since the square of the deviations is calculated as well, the direction of the subtraction does not matter.

![UV spectrum and comparison spectrum graph]
Function: (Cont'd) The method provides a value of similarity (match) between completely different (= 0) and identical (= 1000).

The following mathematical methods are available in Chromeleon:

Least Square: Forms the sum of the squared signal deviations at each wavelength and determines the average square deviation between two spectra (standard method).

Weighted Least Square: Analogue to Least Square; the squared deviations are weighted by the signal height (for spectra extracted close to the detection limit).

Correlation: Usual match criterion in statistics if a linear correlation between two curves is presumed (similar to Least Square; usually provides the same result).
Maximum/Minimum Wavelength

Location: Peak Tracking and Spectra Library Screening tab pages/Report Variable (Peak Table)

Type: Floating point number

Dimension: nm

Value Range: Auto; 190.0 - 900.0 nm

Default: Auto

Related Parameters: Additional parameters for comparing spectra:
  ⇒ Check Derivative
  ⇒ Check Extrema
  ⇒ Match Criterion
  ⇒ Relative Maximum Deviation
  ⇒ Threshold

Description: The Maximum Wavelength (Max. WL) and Minimum Wavelength (Min. WL) columns allow you to enter the upper and lower wavelength limits for spectra screening. In case of Auto, the respective limits will not be considered.

Note: The value entered here has no significance for any currently displayed peak spectrum.
Name (Peak Name)

**Location:** Peak Table tab page
Report Variable (Peak Table)

**Type:** String

**Dimension:** no dimension

**Value Range:** All printable characters

**Default:** With automatic table generation: `<Name of the QNT Method>x`, where x is the current peak number.
When appending a new cell: Peak-x

**Description:** In this column, you may enter the chemical name of the substance that created the peak at the time t. (The default is used with auto-generated peaks, only.)

**Function:** The substance name is taken for the report and the ➤ Printer Layout.

**Note:** Only use letters, numbers, and punctuation marks, since the complete MS-DOS character set is not available on all printers.
Reference Spectrum

Location: Peak Tracking tab page
Report Variable (Peak Table)

Type: Selection

Dimension: No dimension

Value Range: ---

Default: Empty

Related Parameters: ⇒ Window

Description: Reference spectra are used for substance identification. A reference spectrum can be chosen for each peak. Such spectra are acquired with the Chromelon DAD license.

Identifying peaks by means of peak tracking can be enabled via input in the Window column. In the corresponding F8 dialog box (press the F8 key or double-click the Window column), select the Spectrum or Spectrum and time option of the Peak Match group.

Function: Peak tracking is performed (limited to the specified time window in the case of Spectrum and time) using the reference spectra in the corresponding column. (For more information, refer to How to ...: Integrating Chromatograms and Identifying Peaks Peak Tracking.)

Tip: Spectra acquisition is possible with the DAD license only.
Relative Maximum Deviation

Location: Peak Tracking and Spectra Library Screening tab pages/Report Variable (Peak Table)

Type: Floating point number

Dimension: nm

Value Range: Off; 0.0-100.0 nm

Default: Off

Related Parameters: Additional parameters for comparing spectra:
  ⇒ Check Derivative
  ⇒ Check Extrema
  ⇒ Match Criterion
  ⇒ Maximum/Minimum Wavelength
  ⇒ Threshold

Description: The Relative Maximum Deviation column allows you to enter the maximum permissible deviation of the wavelength maxima of the reference spectra from the maximum of the current peak spectrum.

Function: If the setting is Off, deviation is not checked.
Response Factor

Location: Peak Table tag page
Report Variable (Peak Table)

Type: Floating point number

Dimension: ---

Value Range: 0.000000 ... 999999.999999

Default: 1.000000

Related Parameters:
⇒ Weight (Sample Weight Factor)
⇒ Dil. Factor (dilution factor)

Description: The response factor is a peak-specific dimensionless, multiplicative factor, used to compensate for absorption differences in the case of differing wavelengths.

Function:

Absolute
Select Absolute to correct the amount value received from the peak area via the \textit{Formula for Amount Calculation} by the entered factor. In this way, for example, absorption differences at different wavelengths can be compensated. Besides, losses of readily volatile samples can thus be considered in the calculation (especially common in gas chromatography).

Relative To Peak
Select Relative To Peak for calculating the peak in relation to a reference peak. As reference peak, all identified peaks with absolute response factor can be used. The basis of the evaluation is the calibration curve of the selected reference peak. The amount value calculated in this way is multiplied by the reciprocal value of the relative response factor and thus corrected.
Example: Relative to Peak

Under certain conditions, an active agent in a tablet decomposes into various products. As standards for these products are difficult to produce or very expensive, the active agent and the decomposition products are calibrated; for example, once a year.

If the active agent and the decomposition products are calibrated via the linear without offset function, there is a direct correlation between the slope of the active agent calibration curve and the calibration curves of the individual decomposition products. This proportionality between the calibration coefficient c1 of the active agent and that of the decomposition product is expressed as the Response Factor and must be determined by the user.

Should the active agent and/or the decomposition product be determined in an analysis, the existing calibration and the Response Factor determined for each decomposition product is used. The factors are entered as relative values (Response Factor column) in the peak table; that is, the active agent in the tablet is used as the reference peak.

Calculating the amount values of all decomposition products is according to the calibration coefficients of the active agent, corrected by the Response Factor.

Note:

The response factor is peak-specific.

In contrast to this, the Sample Weight and the Dilution Factor of the sequence are sample specific; that is, they apply to all peaks.
Retrieval Index

**Location:** Peak Table tab page

Report Variable (Peak Table)

**Type:** Integer

**Dimension:** No dimension

**Value Range:** 0 - 999.999

**Default:** -

**Related Parameters:** ⇒ Retention Time
⇒ Dead Time
⇒ Kovats Index

**Description:** Retention indexes are used to facilitate positive assignment of substances in inter-laboratory data exchange. For programmed GC as well as for HPLC linear retention indexes are defined.

**Function:** Chromeleon calculates the following linear retention index:

\[
RI_s = RI_Z + \frac{[RI_{Z+1} - RI_Z] \times [t_s - t_Z]}{t_{Z+1} - t_Z}
\]

Wherein:

RI: Retention index
(usually RI = 100, 200, 300 is entered)

S: Substance

Z: number of the marker

The following is true:

\[ t_Z < t_S < t_{Z+1} \]

If the peak occurs before the first marker peak, the following formula is used:

\[ RI(x) = RI(1) \times \frac{[t(x) / t(1)]}{t_{Z+1} - t_Z} \]
If the peak occurs behind the last marker peak, the following formula is used:

\[ RI(x) = RI(last) \times \frac{t(x)}{t(last)} \]

For information how to determine marker peaks, refer to How to …. Integrating Chromatograms and Identifying Peaks. Defining the Retention Index and the Kovats Index.
Retention Time

Location: Peak Table tab page
Report Variable (Peak Table)

Type: Floating point value

Dimension: Minutes

Value Range: 0.000 ... 9999.999

Default: 0.000

With Autogenerate Peak Table, the retention time of the active chromatogram is used.

Can be combined with: Absolute time; Time distance/ratio to reference peak; Reference peak

Related Parameters: ⇒Window
⇒Use Recently Detected Retention Times
⇒Dead Time

Description:
The retention time is used for peak identification. The Retention Time variable refers to the time (in minutes) that passed since the injection (also, refer to ⇒Dead Time).

By definition, the injection time always equals zero. Therefore, control commands issued before this time will have negative times. The advantage is that the times stated in the ⇒PGM File (file type .PGM) are compatible with the retention times, rather than being delayed by the injection time.

Peak retention times are generally interpreted as time between injection and peak maximum. However, indication of the distance to a reference peak is possible as well. As the reference peak does not need to be at the beginning of the chromatogram, such difference retention times can also have negative values. Relative retention times are time quotients in percent as to a reference peak.
Function: On the page Peak Table in the QNT Editor, the retention time can be entered either manually by the user or automatically by the system. The latter is possible via the Autogenerate Peak Table command on the Edit or context menus.

The user enters the expected retention time, while the system enters the actually detected retention time of the actually analyzed sample.

Interpretation: Input in the Retention Time for Peak X dialog box (to be opened via F8 or by double-clicking in the Ret. Time column)

Absolute time: Select Absolute time [min] to display the retention times as usual (time period between injection and peak maximum).

Time distance to reference peak [min]: Select Time distance to reference peak [min] to express the time difference to the reference peak in minutes. All peak lines apart from the reference peak line display time differences in the time column.

Time ratio to reference peak [%]: Select Time ratio to reference peak [%] to express the retention time relatively to the reference peak in % values. The retention times are indicated as time ratio (percent) to the reference peak. All peak lines apart from the reference peak line display the time ratios to the reference peak in percent.

Reference peak: Select a peak from the peaks listed in the selection box. The reference peak line in the peak table is highlighted in light blue. It always displays the absolute retention time!

Note: If the Use Recently Detected Retention Time option (retention time correction) is enabled in the peak table, the retention times entered manually on the page Peak Table are no longer used as nominal retention times for all identified peaks. Instead, the values detected for the previously analyzed sample (its nominal times) are used. Distinguish between:
Note:
(Cont’d)

• The originally expected retention time that was entered on the Peak Table tab page.

• The nominal retention time which, in this case, corresponds to the actual retention time of the previously analyzed sample.

• The actual retention time of the actually analyzed sample.

⇒Retention Windows are also interpreted as percentage value of the absolute retention time for both, difference, and relative retention times! Only the retention times of identified peaks are corrected!

In the Peak Table, you can toggle the three options. The retention time column is automatically re-calculated.
Standard

Location: Peak Table tab page
Report Variable (Peak Table)

Type: String

Dimension: --

Value Range: External; Internal; Internal/External; Use this peak as internal Standard

Default: External

Can be combined with: Use sample amount as reference (only with Use this peak as internal Standard)

Related Parameter: ⇒ Amount

Description: The Standard parameter indicates the standard method to be used for calibration. For a detailed description including numerical examples, refer to How to … Calibrating.

Function:

External
The calibration curve determines the area/amount ratio. During calibration, the calibration coefficients are calculated from mixtures of known components (see Calibration Function and Theory of Calibration Standard Methods).

Internal
Calibration corresponds to the External Standard method. In addition, an Internal Standard is added. The internal standard itself is calibrated as all other peaks. When performing the integration, the calculated amounts of the remaining peaks are corrected by the nominal/actual ratio of the internal standard.

Chromeleon recognizes any number of internal standards. Theoretically, each peak may have its own internal standard! Furthermore, the standard method may be selected for each peak individually.
During calibration, the amount ratio (instead of amount against area) is given in the diagram with regard to the respective peak. From these data points, the calibration function is calculated.

During integration also, the area ratio is inserted into the stored calibration function and the amount ratio is calculated.

**Tip:**

Before you can use this option, at least one internal standard must be defined (see Use this peak as internal Standard). Select an ISTD peak in the Associated ISTD Peak check box.

**Entering Several Internal Standards**

It is also possible to define several internal standards. Via the F8 box, define the respective peaks of the peak table in the Standard column of the peak table as ISTD peaks. A yellow background will highlight the corresponding line of the peak table. For the remaining peaks, enter the standard method to be used (external, internal/external, internal). If this should be performed in relation to an ISTD peak, it is possible to choose between the previously defined ISTD peaks.

**Internal/External**

When calibrating with an internal standard, calculation is with area and amount ratios instead of absolute areas and amounts. During integration, the area ratio is inserted into the saved calibration function to calculate the amount ratio. The result is the amount in relation to its reference peak. Each peak can have its own internal standard.

Calibration does not vary from the external standard method, except for a defined peak (that is, internal standard) being added to the analyses. The internal standard is calibrated as all other peaks. During integration, the calculated amounts of the other peaks are corrected according to the relation of the internal standard to the actual peak.
Internal/External (Cont’d)

Tip:
Before you can use this option, at least one internal standard must be defined as well (see Use this peak as internal Standard). Select an ISTD peak in the Associated ISTD Peak check box.

Use this peak as Internal Standard
Select this option to define the current peak as ISTD peak. Select the Use sample amount as reference check box to use the amount of the internal standard from the ISTD amount column of the sample list instead of the Amount columns of the QNT peak table. In this way, you can enter a different amount of internal standard for each sample.

Tips:
For internal standard as well as internal/external standard methods, a substance whose concentration is known, must be added to the standards and to the analyses. This can be conveniently carried out by means of an appropriate Autosampler. Quantitative accuracy reached with this method, exceeds that of the external standard method by one dimension.
For these two options, the name of the internal standard must be indicated.
Internal standard methods compensate even small injections deviations, since possible loss or excess apply to the internal standard as well.
Threshold

Location: Peak Tracking and Spectra Library Screening tab pages/Report Variable (Peak Table)

Type: Integer

Dimension: No dimension

Value Range: 0 - 1000

Default: 950

Related Parameters: Additional parameters for comparing spectra:
⇒ Check Derivative
⇒ Check Extrema
⇒ Match Criterion
⇒ Maximum/Minimum Wavelength
⇒ Relative Maximum Deviation
⇒ Threshold

Description: This parameter defines the threshold of the Match Factor above which two spectra may be accepted as matching.

Function: Depending on the comparison function the following settings can usually be recommended:
Spectrum (Off): 950
1st derivative: 900
2nd derivative: 800
Type (Peak Type)

Location: Peak Table tab page (Peak Table) Report Variable

Type: Alternatives

Dimension: No dimension

Value Range: Autodetect (Auto)/Rider (R)/Main (M)/Baseline-
Main (B-M)/Main-Baseline (M-B)/Baseline-
Main-Baseline (B-M-B)

Default: Autodetect

Related Parameters: ⇒ Rider Threshold
⇒ Maximum Rider Ratio
⇒ Valley to Valley
⇒ Lock Baseline

Description: The Type parameter determines the type of baseline contact and the separation of other, non-resolved peaks. An integration program algorithm usually defines the peak type. You can also change the peak type as desired, using the detection parameters (see How to …: Integrating Chromatograms and Identifying Peaks | Modifying Detection Parameters). To determine the peak type regardless of other factors, this should be done in the peak table. Type specifications of the peak table have priority.

Functions:

Autodetect (Auto) The peak type is determined via an algorithm, or via detection parameters.

Determine at Calibration Not yet implemented
**Rider (R)/Main (M)**

The peak is integrated as rider or main peak without baseline contact. This, of course, applies to non-resolved peaks, only.

In the case of rider peaks, an additional distinction is made between peaks on the leading edge \(u = \text{up}\) and peaks on the trailing edge \(d = \text{down}\). Of course, this does not affect the type of baseline contact of the reference peak.

**Note:**

*Chromeleon does not consider rider peaks when calculating the *Optimum Integration Path.*

**Baseline-Main(B-M)/Main-Baseline(M-B)/Baseline-Main-Baseline (M-B-M)**

The peak is integrated as main peak with left, right, or bilateral baseline contact. A further distinction between \(b\) and \(B\) is made in the report:

- If a main peak has direct baseline contact on the left and/or right side, this is indicated by a capital \(B\).
- If the baseline below non-resolved peaks is drawn from minimum to minimum (⇒ *Valley to Valley*), that is, from peak end to peak end, this type of baseline contact is characterized by a small \(b\).

**Note:**

The peak type determined here can only be realized with non-resolved peaks. For resolved peaks, peak type is always *Baseline-Main-Baseline.*

The distinction between \(b\) and \(B\) is made only in the report output. The baseline is checked automatically. Then, the baseline contact is determined. In the peak table, the classification is always \(B\).

The peak type that is defined in the peak table has priority over the type assignments of the *Rider Threshold* and *Maximum Rider Ratio* detection parameters.
Use Recently Detected Retention Time

Location: General tab page
Use Prev. Retention Time (Peak Table) Report Variable

Type: Check-box
Dimension: ---
Value Ranges: Marked/not marked
Use recently detected ret. times of last sample/standard
Set reference time to Last value/Average of last n values/Global average

Defaults: Not marked
Last sample
Last value

Related Parameters: ⇒Retention Time
⇒Window

Description: This QNT File parameter (General tab page) defines whether the retention time stored in the peak table (nominal time) is used by default to identify a peak or whether the actual retention time of a peak in the last sample is used. Thus, many types of drift phenomena can be compensated; for example, evaporation of volatile components in pre-mixed solvents or column age.

If the peak is not found in this sample, the chronologically previous sample in the sequence is searched, etc. (The chronological order is important and not the order in the sample list.)

If you have chosen this option, you may select whether you want to use the retention times of the last unknown sample (Sample) or of the last Standard.
**Description:** (Cont'd) Click **Options** to define whether you want to use the last retention time (**Last value**), the average of the last x retention times (**Average of last x values**), or the average of all retention times (**Global average**).

**Function:** If the **Use Recently Detected Ret.Time** check box is selected, Chromeleon always stores the last actual retention time of the peak and positions the **Window** specified in the peak table around this actual value, not around the nominal value stated in the peak table.

This allows positive identification of peaks even if the retention time changes due to column trends, and thus, if the peak leaves the defined retention time window.

**Example:** The first sample of a sequence containing 10 samples is processed in an automatic batch. Based on the retention times stated in the peak table and the selected window values; for example, 0.2G, four peaks are identified in the first sample (A, B, C, and D). Each one of these peaks may have an actual retention time that deviates from the nominal retention time. Chromeleon stores these actual values and uses them as the basis for positioning the time window in the second sample. If single peaks are then identified in the second sample, the "stored" actual values are replaced by the current actual values. The time window is repositioned accordingly. If, for example, the retention time of peak A from the first sample (1 min) is delayed by 10 s in each sample, the peak will appear at 1 min + 9 x 10 s = 150 s or 2.5 min in the tenth sample. As the time window is also moved by 10 s with each sample, peak A can be clearly identified in the tenth sample, although the peak is no longer within the originally specified time window (48 s to 1 min 12 s).

**Note:** Only retention times of identified peaks are corrected!
Window (Retention Window)

Location: Peak Table tab page  
Report Variable (Peak Table)

Type: Positive floating point number or string

Dimension: Minutes or %

Value Range: 0.000 ... 999.999 or 0 - 100%

Absolute/Relative and First/Greatest/Nearest/Spectrum/Spectrum and time

Default: Autogenerate Peak Table: A third of the distance to the preceding or the succeeding peak depending on which distance is smaller

Else: 0.100 min or %

Absolute Greatest

Can be combined with: Check the best hits only (with the peak match options Spectrum and Spectrum and Time only)

Related Parameters: ⇒Retention Time

Description: The Window parameter defines a tolerance interval within which the peak is expected. The start and end times of the retention window result from adding the window value to and subtracting it from the retention time (retention time +/- window value); that is, the window width is always twice as wide as your input. A peak outside this window is not identified. The window value defined here is either interpreted as absolute (minutes) or relative (percentage) value by the integration programs. For each peak, the interpretation can be individually specified, by adding a suffix to the window time.
Function: The dimension $W$ of the time windows is calculated according to the following formula:

Absolute time window: $W = TW$

Relative time window: $W = T \times TW / 100$

Where $T$ is the retention time of the table and $TW$ the entered window value. All peaks whose maximum falls into the time interval $T+W$ belong to the time window.

**Function of the suffixes:**

- Select **Absolute** or add a capital **A** to the window value to indicate the window width in minutes.
- Select **Relative** or add a capital **R** to the window value to indicate the window width relative to the retention time.

If a peak is registered within this window, it is assigned the peak name entered in the peak table. If several peaks are located in the same window, the window parameter can be extended to determine which peak is identified:

- Select **First** to identify the first peak within the window (F).
- Select **Greatest** to identify the largest peak within the window (G).
- Select **Nearest** to identify the peak nearest to the specified retention time (N).
- Select **Spectrum** to identify a peak by a spectrum. The reference spectrum is specified in the **Spectrum** column of the peak table (S).
- Select **Spectrum and time** to identify a peak within a specific window width by a spectrum. The reference spectrum is specified in the **Reference Spectrum** column of the peak table (ST).

Via the **Check the best hits only** option, **Spectrum** and **Spectrum and time** allow you to check the hits with the largest ➥ **Match Factors** for the respective peaks only (= check box selected, default). The abbreviation for this is **B (SB or STB)**.

If you have MS options installed, you can also enable the **Check mass ratios** option to check whether the masses indicated on the Mass Tracking tab page are found in the defined ratio range.
Examples:

**Window Values: 0.2 AF / 0.2 AG / = 0.2 AN**

If the expected retention time of the peak is Ret.Time = 5.0min and the window value is 0.2 A, the time window is 5.0min +/- 0.2min = 4min 48sec to 5min 12sec. By adding the suffix F, the first peak in the time window, by adding the suffix G, the greatest peak in the window, and by adding the suffix N, the peak nearest to the expected retention time is assigned.

**Window Values: 10 RF / 10 RG**

If the expected retention time of the peak is Ret.Time = 5.0min and the window value is 10 R, the time window has the range 5.0 min ± 10% = 5 min ± 0.5 min = 4 min 30 s to 5min 30 s. By adding the suffix F, the first peak in the time window, by adding the suffix G, the largest peak in the window is assigned.

**Note:**

The absolute time interval of the window is twice as wide as the window value entered, since the interval reaches from T-W to T+W!
Detection Parameters (Overview)

Chromeleon supports the following detection parameters:

⇒ Baseline Point
⇒ Detect Negative Peaks
⇒ Front Riders to Main Peaks
⇒ Inhibit Integration
⇒ Lock Baseline
⇒ Maximum Area Reject
⇒ Maximum Height Reject
⇒ Maximum Peak Height
⇒ Maximum Rider Ratio
⇒ Maximum Width
⇒ Minimum Area
⇒ Minimum Height
⇒ Minimum Width
⇒ Peak Group Start/End
⇒ Peak Purity Start/End Wavelength (PWlStart/PPWIEnd)
⇒ Peak Purity Threshold (PPTrshold)
⇒ Peak Shoulder Threshold
⇒ Peak Slice
⇒ Rider Skimming
⇒ Rider Threshold
⇒ Sensitivity
⇒ Tailing/Fronting Sensitivity Factor
⇒ Valley to Valley
⇒ Void Volume Treatment

For more information about how to define detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Baseline Point

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Command

Dimension: ---

Value Range: ---

Default: ---

Related Parameters: ⇒ Lock Baseline
⇒ Valley to Valley
⇒ Inhibit Integration
⇒ Type (Peak Type)

Description: The Baseline Point detection parameter defines a baseline point at the indicated time.

Tips: When setting a baseline point, keep in mind that this point will be valid for all chromatograms that are evaluated with the respective QNT Method. If in one of these chromatograms a peak maximum occurs by coincidence at the time of your hard entered baseline point, the peak maximum will be defined as base point and the peak will not be detected.

This command has priority over ⇒ Lock Baseline and ⇒ Valley to Valley, but not over ⇒ Type (Peak Type) from the peak table.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Detect Negative Peaks

**Location:** Detection tab page

Report Variable (Detection Parameters)

**Type:** Switch

**Dimension:** ---

**Value Range:** On; Off

**Default:** Off; that is, negative peaks are not detected.

**Description:**
The Detect Negative Peaks parameter enables and disables detection of negative peaks. When the parameter is enabled, negative as well as positive peaks are detected.

**Function:**
Enabling detection of negative peaks automatically enables the Lock Baseline parameter. Disabling negative peak detection locks the baseline to the default again. In the result report, the area of negative peaks is indicated as a positive value.

To correct the baseline without labeling the peaks or including peaks in the peak list, select the Don't label option.

**Tip:**
In order to be effective, this switch must be activated before the peak start.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Front Riders to Main Peaks

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Selection

Dimension: -

Value Range: Off, On

Default: Off

Related Parameters:
⇒ Rider Threshold
⇒ Maximum Rider Ratio
⇒ Type (Peak Type)

Description:
Select the Front Riders to Main Peaks detection parameter to change rider peaks on the leading edge of a peak into main peaks.

Function:
Set the parameter value to On to change upward riders to main peaks even if riders are enforced; for example, ⇒ Rider Threshold = 0.00%, ⇒ Maximum Rider Ratio = 100.0%).

Tip:
This parameter has priority over the Rider peak type in the peak table (see ⇒ Rider).

For information about how to use individual detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks. Defining Detection Parameters.
Inhibit Integration

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Switch
Dimension: ---
Value Range: On; Off
Default: Off

Description: The Inhibit Integration detection parameter serves to fade out certain chromatogram areas. When set, peak detection is disabled.

Function: If the value is set to On before the first peak to inhibit, peak detection will not take place until the parameter is disabled (Off); that is, no peaks are recognized in this area. The chromatogram is displayed on screen, but it is not integrated.

Inhibit Integration can be used to inhibit the injection peak by activating the criterion at the start time of the chromatogram and by deactivating it after the dead time.

Tip: To have any effect, set this parameter before the first peak to be inhibited starts.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Lock Baseline

*Location:* Detection tab page
Report Variable (Detection Parameters)

*Type:* Alternatives

*Dimension:* ---

*Value Range:* Off; On; At current level / At global minimum

*Default:* No

*Related Parameters:* ⇒ Valley to Valley
⇒ Inhibit Integration
⇒ Baseline Point
⇒ Type (Peak Type)

*Description:* If the Lock Baseline parameter is set to Off, the detection program calculates the baseline below non-resolved peaks according to a complex pattern recognition process. The other values are used to lock the baseline on different levels.

*Function:*

**Off**
Under non-resolved peaks, the baseline is determined automatically. The Valley-to-Valley parameter is effective in this mode, only. With all other lock-values, lock baseline has priority, while valley-to-valley is ignored.

**On**
In case of non-resolved peaks, the baseline is not pulled up to the relative minima (valleys). The baseline connects the start of the first with the end of the last non-resolved peak.

If one of the valleys in between is located below the baseline, the baseline is connected with this minimum to avoid cutting off a peak foot. The Valley-to-Valley parameter is not effective.

**At current level**
The baseline is fixed at the current signal level and is extrapolated horizontally to the right. The Valley-to-Valley parameter will not take effect.
**At global minimum**  
Chromeleon searches to the right for the next absolute minimum. The search is performed either to the end of the chromatogram or to the next Lock Baseline. Within this interval, the baseline is locked on the found minimum and is horizontal. The Valley-to-Valley parameter is not effective.

**Tips:**

The end of the last non-resolved peak in a series of peaks is always a baseline point, since the chromatogram itself forms the baseline outside the peak!

Lock baseline needs to be disabled, before switching from At global minimum to another lock baseline value.

The classification criterion ⇒Type (Peak Type) in the peak table has priority. The criterion specified here is effective only for Peak Type = AUTO!

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks — Defining Detection Parameters.
**Maximum Area Reject**

**Location:** Detection tab page  
Report Variable (Detection Parameters)

**Type:** Fixed point number

**Dimension:** Signal dimension • Minute

**Value Range:** 0.000 ... 1,000,000.000

**Default:** The default setting is Off; i.e., all peaks are integrated.

**Related Parameters:** ⇒Minimum Area  
⇒Maximum Height Reject

**Description:** Select the Maximum Area Reject parameter to limit the number of integrated peaks. This parameter is very similar to ⇒Minimum Area.

**Function:** The parameter defines the maximum peak area up to which a peak is rejected. No peaks with a peak area below the defined value are integrated.

**Tip:** Contrary to the Minimum Area the Maximum Area Reject parameter does not affect the baseline course.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks  
Defining Detection Parameters.
Maximum Height Reject

**Location:** Detection tab page
Report Variable *(Detection Parameters)*

**Type:** Fixed point number

**Dimension:** Signal dimension, such as mAU

**Value Range:** 0.000 ... 1,000,000.000

**Default:** The default setting is Off; i.e., all peaks are integrated.

**Related Parameters:**
- ⇒ Minimum Height
- ⇒ Maximum Peak Height
- ⇒ Maximum Area Reject

**Description:** Select the Maximum Height Reject parameter to limit the number of integrated peaks. This parameter is very similar to ⇒ Minimum Height.

**Function:** The parameter defines the maximum peak height up to which a peak is rejected. Not all peaks with a peak height below the defined value are integrated. (Determination of the height is always relatively to the baseline.)

**Tip:** Contrary to Minimum Height, the Maximum Height Reject parameter does not affect the baseline course.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Maximum Peak Height (MaxHght)

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Fixed point number

Dimension: Signal dimension, such as mAU

Value Range: Off; 0.000 ... 1,000,000.000

Default: The default setting is Off; that is, all peaks are integrated.

Related Parameters: ⇒Minimum Height
⇒Maximum Area Reject

Description: Positive peak identification is performed using the ⇒Minimum Height parameter. All peaks above this height value are identified. The Max. Peak Height detection parameter is used as a maximum criterion determining the height threshold above which peaks are not identified.

Function: All peaks above the specified peak height are classified as Unknown; that is, despite positive identification, they are not assigned a name from the peak table. (The height is always determined relative to the baseline.) This option is very useful when working with two detectors switched in series. Peaks that are clearly identified in the channel of the first detector, such as a UV detector, can cause problems in the second detector, for example, a fluorescence detector, due to an excessive concentration. These peaks are outside the linear range. Due to the positive identification, they would be considered in the calibration and they would falsify the result. If they are classified as Unknown, they are not considered.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
**Maximum Rider Ratio**

*Location:* Detection tab page  
Report Variable (Detection Parameters)

*Type:* Fixed point number

*Dimension:* Percent [%]

*Value Range:* 0 ... 99.99

*Default:* 20

*Related Parameters:* ⇒ Rider Threshold  
⇒ Type

*Description:* If one or several peaks (h1 to h4) are above the Rider Threshold in a series of non-resolved peaks, Chromeleon determines via the Maximum Rider Ratio detection parameter, whether a peak is classified as main peak or Rider.

*Function:* For this, the height of the peak to classify is put in relation to the height of the greatest peak in the series (reference peak).

As can be seen in the figure, not the "real" peak height of the peak to be classified is evaluated but the distance between the peak maximum and the skimming tangent.

If the ratio h/b multiplied by 100 percent produces a value larger than the one defined as maximum rider ratio, the peak is a main peak.

If the ratio h/b multiplied by 100 percent produces a value smaller than the one defined as maximum rider ratio, the peak is a rider peak.
Function: (Cont'd)

Starting with the largest peak in the series (reference peak), all adjacent peaks are then classified. As soon as another main peak is recognized, this peak automatically becomes the new reference peak (b'). The maximum rider ratio is recalculated considering b'. The remaining peaks are classified again. The process is continued until all peaks of the series are classified.

Riders can be recognized as such by the skimming tangent drawn on the chromatogram plot and by a Ru (Rider up) or Rd (Rider down) entry in the Type column of the report (Integration tab page).

Tips:

In order to be effective, the criterion must be enabled before the peak start!

The → Type (Peak Type) criterion in the peak table has priority! The criterion specified here, is effective only in combination with PEAK TYPE = AUTO!

For information about how to use individual detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Maximum Width

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Fixed point number

Dimension: min

Value Range: 0.01 ... 999.99

Default: The presetting is 999.99 min so that all peaks are considered.

Related Parameters: ⇒ Minimum Width
⇒ Maximum Peak Height

Description: The Maximum Width detection parameter defines the maximum width above which peaks are ignored during peak detection. The peak width is measured on the baseline. For peaks that do not reach the baseline, the width is extrapolated.

Tip: The criterion must be enabled before the peak end. The maximum width influences peak recognition and thus the baseline! In order to avoid this and to inhibit small peaks in the report only, select Properties on the Table menu, and then select Reject peaks with smaller relative area than ...% check box.

For information about how to use individual detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
**Minimum Area**

**Location:** Detection tab page  
Report Variable (Detection Parameters)

**Type:** Fixed point number

**Dimension:** Signal dimension • Minute

**Value Range:** 0.000 ... 1,000,000.000

**Default:** The default setting is 0.001; that is, all peaks with an area > 0.001 [Sig.dimension x minutes] are integrated.

**Related Parameters:**  
⇒ Maximum Area Reject  
⇒ Minimum Width  
⇒ Minimum Height

**Description:** The Minimum Area detection parameter is used as a minimum criterion determining the area threshold below which peaks are ignored during peak detection or integration.

**Function:** Should only this inhibition criterion be applied, peak numbers in the integration report table may not be consecutive, because two detection phases are carried out for a chromatogram; that is, for peak detection and area calculation. The minimum area parameter might be effective in the second run only; that is, a peak may be sorted out only then, the result being a gap. The No. column of the result file thus indicates which criterion was responsible for inhibiting a peak.

**Tip:** This parameter must be enabled at a retention time before the start of a peak. It influences peak recognition and, therefore, also the baseline! In order to avoid this and to inhibit small peaks in the report only, select Properties on the Table menu, and then select the Reject peaks with smaller relative area than ...% check box.

For information about how to use individual detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Minimum Height

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Fixed point number
Dimension: Signal dimension
Value Range: 0.000 ... 1,000,000.000

Default: The default setting is zero; that is, all peaks with the height > 0 [Sig.dimension] are integrated.

Related Parameters: ⇒ Maximum Height Reject
⇒ Minimum Area
⇒ Minimum Width
⇒ Maximum Peak Height

Description: The Minimum Height detection parameter is used as a minimum criterion determining the height threshold below which peaks are ignored.

Function: The peak height is measured relative to the baseline (a). For Rider Peaks, the height measurement is relative to the profile of the carrier peak (b). The baseline can strongly influence these criteria (c,d).

Tip: Enable this parameter if the retention time is before the start of the peak. The parameter influences peak recognition and, therefore, also the baseline! In order to avoid this and to inhibit small peaks in the report only, select Properties on the Table menu, and then select the Reject peaks with smaller relative area than ...% check box.
Minimum Width

**Location:** Detection tab page  
Report Variable (Detection Parameters)

**Type:** Fixed point number

**Dimension:** Minute

**Value Range:** 0.000 ... 1,000,000.000

**Default:** The default setting is zero; that is, all peaks with the width > 0 [minutes] are integrated.

**Related Parameters:**  
⇒ Minimum Area  
⇒ Minimum Height

**Description:** The Minimum Width detection parameter is used as a minimum criterion defining the minimum width below which peaks are ignored during peak detection.

**Function:** The peak width is measured on the baseline. In the case of peaks not reaching the baseline, the width is extrapolated.

**Tip:** Enable this parameter if the retention time is before the start of the peak. The parameter influences peak recognition and, therefore, also the baseline! In order to avoid this and to inhibit small peaks in the report only, select Properties on the Table menu, and then select the Reject peaks with smaller relative area than ...% check box.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Peak Group Start/Peak Group End

**Location:** Detection tab page
Report Variable (Detection Parameters)

**Type:** Selection

**Dimension:** ---

**Value range:** Auto, Fixed

**Default:** Auto

**Related Parameters:** ⇒Baseline Point
⇒Lock Baseline
⇒Inhibit Integration

**Description:** Select the Peak Group Start and Peak Group End detection parameters to identify several successive peaks as one peak group. A peak group that has been defined in such a way is treated as one single peak.

The peak maximum of the largest peak becomes the peak maximum of the entire group.

For the group, only one name and number is entered in the chromatogram. Parameters such as area value, peak height, etc. are determined and displayed only once.

**Function:** The Peak Group Start parameter (Peak Group End parameter, respectively) defines the start (end) of such a group. On the Detection tab page of the QNT Editor, set the start of the peak group automatically (Auto). If you select the Fixed mode, the baseline will start and end exactly at the mentioned retention times. The setting made for the Peak Group Start parameter is also adopted for Peak Group End. The system toggles between Peak Group Start and Peak Group End when appending a line.
Function:
(Cont’d)

Within one group, the entire peak detection algorithm is disabled; i.e., the Rider Threshold and Maximum Rider Ratio detection parameters are not considered. The area defined by Peak Group Start and Peak Group End only indicates the limits in which the algorithm is not active. Peak start and end as well as the baseline are determined as usual.

Note:

The time interval defined by peak group start and peak group end defines only the limits within which the algorithm is disabled. Peak start, peak end, and baseline course are determined as usual!

Instead of setting the peak group start and peak group end, you can group individual peaks that are not necessarily consecutive. To do so, use the ⇒ Group column of the peak table in the QNT Editor. Contrary to a peak group that has been defined via peak group start and peak group end the individual peaks of this group are still indicated.

Also, refer to How to ...: Integrating Chromatograms and Identifying Peaks ⇒ Grouping Peaks.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks ⇒ Defining Detection Parameters.
Peak Purity Start/End Wavelength  
(PPWISstart/PPWIEnd)

**Location:** Detection tab page  
Report Variable (Detection Parameters)

**Type:** Floating point number

**Dimension:** nm

**Value range:** 190.0 - 900.0

**Default:** Start: 190.0 nm; End: 900.0 nm

**Related Parameters:** ⇒ Peak Purity Threshold

**Description:** The Peak Purity Start Wavelength and Peak Purity End Wavelength detection parameters limit the wavelength range for peak purity calculations.

**Function:** For calculating the Peak Purity Index (PPI) and the Peak Purity Match Factor, only the wavelength range within the values limited by start and end is used.

**Note:** The values 190 nm (Start) and 900 nm (End) are used as defaults. The actually recorded wavelength range is used for the calculation if the recorded range of the 3D field is smaller.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Peak Purity Threshold (PPT\textsubscript{r}thresh)

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Command

Dimension: ---

Value range: 0.00 ... 100.00

Default: 10.00

Related Parameters: ⇒ Peak Purity Start/End Wavelength

Description: The Peak Purity Threshold detection parameter determines the threshold for the signal height above which spectra comparison is performed for the UV and Mass Spectra. The parameter is important for the Peak Purity Analysis (PPA) and the Peak Ratio.

Peak Purity Analysis (PPA)
When determining the ⇒ Peak Purity Index (PPI) or the ⇒ Peak Purity Match Factor, the parameter defines the signal height above the baseline, from which the spectra are extracted for calculation.

Peak Ratio
For the Peak Ratio, the PPT\textsubscript{r}thresh parameter defines the signal height above which the ratio is formed.

Function: Peak Purity Analysis (PPA)
The value is stated in percent of the peak height, that is at the value 20\%, only the spectra are used to determine the match factor for which the signal height of the peak is at least 20\%. The smaller the selected value, the wider the match factor curves. The calculation may include spectra that no longer have an optimum ⇒ Signal-to-Noise Ratio. The match factor curve then has "fringes" at the margins (peak start and peak end). This can be avoided by a smaller threshold value.
Function: (Cont'd)

Limiting the wavelength range that is used for calculating the center wavelength of the PPI is possible via the Peak Purity Start/End Wavelength detection parameters. A corresponding limitation to a specified mass range is not possible for the MS Peak Purity Match.

Peak Ratio

A value of 10% means that the signal ratio between two channels is only formed where the signal intensity exceeds 10% in two channels.

For information about how to use individual detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Peak Shoulder Threshold

**Location:** Detection tab page
Report Variable (Detection Parameters)

**Type:** Fixed point number

**Dimension:** -

**Value Range:** Off; 0.01 ... 1000.00

**Default:** Off; that is, shoulders without relative maximum are not recognized as peaks. Only if value ≠ Off, shoulders are detected.

**Related Parameters:** ⇒ Rider Threshold
⇒ Type (Peak Type)

**Description:** The Peak Shoulder Threshold parameter defines a threshold value for peak shoulder recognition.

**Function:** First, the average baseline curvature is determined for the entire chromatogram. The curvature threshold value is the product of the average baseline curvature and the threshold value.

Detected peak shoulders with a maximum curvature above this threshold value are not considered. Select the ⇒ Sensitivity detection parameter to influence the determination of the average baseline curvature. Higher sensitivity results in a smaller average baseline curvature and thus effects peak shoulder recognition.

**Note:** Peak shoulders are treated like "normal" peaks. All other detection parameters (such as rider criteria, minimum criteria as well as peak recognition via peak table) except the peak group parameters (⇒ Peak Group Start/Peak Group End) and the ⇒ Valley to Valley parameter are used for peak shoulders as well.
Peak Slice

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Floating point number

Dimension: Seconds [s]

Value Range: 0.01 ... 100,000.00

Default: 0.05

Related Parameters: This parameter should always be considered in combination with the ⇒Sensitivity!

Description: The Peak Slice detection parameter determines the width (= time span) from which several successive data points are interpreted as peak or as noise. The presetting is 5/100 seconds.

Function: General Rule

If a specific peak should "just" be interpreted as a peak and if this was not reached via the Auto setting, a manual peak slice value can be specified by selecting the peak width.

Note: This parameter only refers directly to peak detection and indirectly to integration. For area calculation, the original signal is used. (The parameter influences peak start and peak end. In this way, the peak area is influenced, also.)

To change the variables, Sensitivity and Peak Slice, is only necessary in case of chromatograms comprising very wide (many minutes) or very narrow (< 0.1 s) peaks. Under normal conditions, the default values should not be changed.

Graphical definition is recommended above all for Sensitivity and Peak Slice. For more information see. How to ...: Integrating Chromatograms and Identifying Peaks Modifying the Peak Recognition Algorithm.
Rider Skimming

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Selection

Dimension: -

Value Range: Tangential at lower peak end, Tangential at both peak ends or Exponential

Default: Tangential at lower peak end

Related Parameters: ⇒ Rider Threshold
⇒ Maximum Rider Ratio
⇒ Type (Peak Type)

Description: This parameter indicates how Rider Peaks are skimmed.

Function: There are three options:

- **Tangential at lower peak end** (default and the common skimming method): For ascending rider peaks, the peak start, and for descending rider peaks, the peak end is defined in such a way that rider skimming is tangential to the chromatogram.

- **Tangential at both peak ends**: Peak start and peak end are determined so that rider skimming is tangential at both chromatogram ends.

- **Exponential**: The chromatogram is approximated by an exponential function, so that the slope of the chromatogram and the exponential function correspond at the peak start and the peak end of the rider peak. This option clearly distinguishes from the two others. In most cases, Exponential maps the actual course of the curve very accurate. With this option, the rider peak will usually receive a more realistic larger area. You can use this option only if a sufficient number of data points is available.
Tip: You can move the baseline in the chromatogram with the mouse for tangentially skimmed riders, but you cannot for exponentially skimmed riders.

Note: When reprocessing a chromatogram, the skimming function can be set manually for each rider peak. The required commands are available on the context menu of the selected peak.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Rider Threshold

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Fixed point number

Dimension: Percent [%]

Value Range: 0.00 ... 100.00

Default: 10.00

Related Parameters:
⇒ Maximum Rider Ratio
⇒ Type (Peak Type)
⇒ Peak Shoulder Threshold

Description: The Rider Threshold and Maximum Rider Ratio variables determine whether a single peak in a series of non-resolved peaks is classified as a Rider Peak (skimming peak) or as main peak.

Function: The ratio between the Peak Height of the single peaks (here: h1 to h5) and the height of the largest peak (here: b) determines whether a peak is classified as rider peak or main peak.

\[
\frac{h_n}{b} \cdot 100\% = \text{Rider Threshold}
\]

If the height ratio h/b multiplied by 100 percent produces a value below the defined rider threshold, the corresponding peak is a main peak by definition. In this example, this is only the case for the h5 peak.

If the height ratio h/b multiplied by 100 percent produces a value above the defined rider threshold, the Rider Threshold criterion is not sufficient for a clear classification.
Detection Parameters

**Function:**

(Cont'd)

In this case, the ⇒Maximum Rider Ratio is established. The resulting value allows you to classify the remaining peaks as rider peaks or main peaks.

Riders can be recognized as such by the skimming tangent drawn on the chromatogram plot and by a Ru (Rider up) or Rd (Rider down) entry in the Type column of the report (Integration tab page).

**Notes:**

In order to be effective, the criterion must be enabled before the peak start!

The ⇒Type (Peak Type) classification criterion in the peak table has priority! The criterion specified here, is effective only together with PEAK TYPE = AUTO!

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks

Defining Detection Parameters.
### Sensitivity

**Location:** Detection tab page

Report Variable (Detection Parameters)

**Type:** Floating point number

**Dimension:** Signal dimension

**Value Range:** 0.0001 ... 10,000,000.0

**Default:** Dynamical (= Noise value of the related chromatogram)

**Related Parameters:** Always consider this parameter in combination with the ⇒ Peak Slice

**Description:** Together with the Peak Slice parameter, the Sensitivity parameter determines the granularity of the peak detection algorithm; i.e., when using small values, even the smallest signals are interpreted as peaks; for example, pump pulsation, whereas such signals are ignored when using higher values.

**Function:** Peak recognition is performed using a rectangle formed by the granularity of the y-axis (Sensitivity) and the granularity of the x-axis (Peak Slice) (see figure a):

![Diagram](image)

As shown in the picture, this rectangle is placed with its lower left corner on the first data point, and is duplicated by mirroring in the direction of negative y-values. As long as none of the subsequent data points is above or below the mirrored rectangle, the last data point will be used for positioning further rectangles (b). The measured signal is interpreted as noise.
Function: (Cont'd)

b) If three successive data points are located above or below the rectangle (simplified!), the peak recognition algorithm will recognize a peak. When the signal difference of one data point to the next one becomes so small that they are within the bandwidth again, the peak end is indicated (c).

Manually Setting the Parameters Sensitivity and Peak Slice

You can manually modify the granularity of the peak recognition; that is, you can determine the size of the rectangle or the bandwidth. The larger the area, the lower the sensitivity of the system. Smaller peaks are likely to be interpreted as noise.

General Rule

If a specific peak shall "just" be interpreted as a peak and if this was not achieved via the Auto setting, specify a manual Sensitivity value of a third of the signal height of the peak.

This parameter refers directly to peak detection only and indirectly to integration. For area calculation, the original signal is used. (The parameter influences peak start and peak end. In this way, the peak area is influenced, also.)

Notes:

Using the Sensitivity and Peak Slice variables is only necessary in case of chromatograms comprising very wide (many minutes) or very narrow (< 0.1 s) peaks. Under normal conditions, the default values should not be changed.
Notes: (Cont’d)

Sensitivity is always interpreted in the dimension installed; for example, mAU.

Graphical definition is recommended above all for Sensitivity and Peak Slice. For more information, refer to How to ...: Integrating Chromatograms and Identifying Peaks Modifying the Peak Recognition Algorithm.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Tailing/Fronting Sensitivity Factor

Location: Detection tab page  
Report Variable (Detection Parameters)

Type: Floating point number

Dimension: ---

Value range: Off; 1.0 ... 100.0

Default: Off

Related Parameters: Baseline Point, Lock baseline, Inhibit Integration

Description: This detection parameter is an implicit threshold for setting the peak end. In the case of the Fronting sensitivity factor, the options refer to the peak start.

Function: The following paragraphs describe the Tailing sensitivity factor options. The Fronting sensitivity factor behaves in the same way.

Off (=0): The peak end is moved on the time axis until the slopes of the chromatogram and of the baseline correspond in the peak end.

Factor 1 - 100: First, determine the time for the peak end as described above for Off (=0) and then determine the right baseline width, using the Baseline Level parameter of the Right Width peak variable or peak.right_width(0)). Multiply the value, which is the upper limit for the distance between the peak retention time and the peak end, by the Tailing sensitivity factor. If this limit is exceeded, the peak end is corrected and reset accordingly.

For information about how to use individual detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Valley to Valley

Location: Detection tab page
Report Variable (Detection Parameters)

Type: Switch

Dimension: ---

Value Range: On; Off

Default: Off

Description: Usually, an algorithm determines the baseline automatically. The Valley to Valley parameter enables baseline treatment from valley-to-valley, that is, from peak minimum to peak minimum, in a series of non-resolved peaks.

Function: When the parameter is enabled, the baseline below non-resolved peaks leads from peak end to peak end.

Notes: The end of the last non-resolved peak in a series of peaks is always a baseline point since the chromatogram itself forms the baseline outside the peak.

The Valley to Valley parameter is invalidated by ⇒ Lock Baseline.

The ⇒ Type (Peak Type) criterion of the peak table has absolute priority.

For information about how to use individual detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.
Void Volume Treatment

**Location:** Detection tab page
Report Variable (Detection Parameters)

**Type:** Switch

**Dimension:** ---

**Value Range** On; Off

**Default:** Off

**Related Parameters:** ⇒ Inhibit Integration

**Description:**
Use this parameter to hide a negative peak at the chromatogram start. This is especially useful for the negative water peak in ion chromatography. If Void Volume Treatment is set to On, peak detection is disabled for the range of the negative water peak.

**Function:**
The system searches for the negative water peak in the retention time range between Void Volume Treatment = On and Void Volume Treatment = Off. The negative water peak is the peak with the lowest signal at the retention time. Peak suppression is enabled for the time between Void Volume Treatment = On and the end of the negative water peak. The chromatogram is recorded, but it is not integrated. (This corresponds to Inhibit Integration = On.) Peak detection is enabled again only after the peak end of the negative water peak has been detected. (This corresponds to Inhibit Integration = Off.)

**Tip:**
The Void Volume Treatment parameter becomes active only when its time is set before the start of the negative water peak.

**Note:**
For each chromatogram, there can only be one range in which the negative water peak is detected. If you have defined several Void Volume Treatment = On and Void Volume Treatment = Off commands, the negative water peak is searched in the first defined range.
Note: (Cont’d)

If you have selected a range in the chromatogram using the right mouse button and if you have set Void Volume Treatment to On via the Set Void Volume Treatment command on the context menu, this overwrites all previously defined ranges.

If Void Volume Treatment is not set to Off, Chromeleon uses the end of the chromatogram as the end of the range.

For information about how to use individual detection parameters, refer to How to: Working with Chromatograms Defining Detection Parameters Graphically.
# Report Categories

The report variables are grouped in the following categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Formula</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>gen.*</td>
<td>General variables (in the Printer Layout only)</td>
</tr>
<tr>
<td>Sequence</td>
<td>seq.*</td>
<td>Sequence variables</td>
</tr>
<tr>
<td>Sample</td>
<td>smp.*</td>
<td>Sample variables</td>
</tr>
<tr>
<td>Audit Trail</td>
<td>AUDIT.*</td>
<td>Audit trail variables (protocol variables) (see Data Management Audit Trails)</td>
</tr>
<tr>
<td>Preconditions</td>
<td>precond.*</td>
<td>Variables at the conditions before a sample run.</td>
</tr>
<tr>
<td>Chromatogram</td>
<td>chm.*</td>
<td>Chromatogram variables</td>
</tr>
<tr>
<td>Detection Parameters</td>
<td>det.*</td>
<td>Detection Parameters variables</td>
</tr>
<tr>
<td>Peak Results</td>
<td>peak.*</td>
<td>Peak result variables</td>
</tr>
<tr>
<td>Peak Calibration</td>
<td>peak.*</td>
<td>Calibration variables</td>
</tr>
<tr>
<td>Peak Table</td>
<td>peakTab.*</td>
<td>Peak table variables</td>
</tr>
<tr>
<td>Mass Spectrometry</td>
<td>ms.*</td>
<td>Mass spectrometry variables</td>
</tr>
<tr>
<td>Peak Purity and Identification</td>
<td>peak.*</td>
<td>Peak purity and identification variables</td>
</tr>
<tr>
<td>Quantification Method</td>
<td>qnt.*</td>
<td>Quantification method variables (in the Printer Layout only)</td>
</tr>
<tr>
<td>System Suitability Test</td>
<td>sst.</td>
<td>System Suitability Test (SST) variables (in the Printer Layout only)</td>
</tr>
<tr>
<td>History</td>
<td>history.*</td>
<td>History variables (in the history report only)</td>
</tr>
<tr>
<td>Integration/Summary Table</td>
<td>table.group*</td>
<td>Variables for statistics concerning sample groups and/or replicates (named Summary Table from the Summary tab page - or else: Integration Table)</td>
</tr>
<tr>
<td>Program</td>
<td>pgm.*</td>
<td>Program variables</td>
</tr>
<tr>
<td>Report Definition File (RDF)</td>
<td>pgm.*</td>
<td>Report Definition File (RDF) variables</td>
</tr>
<tr>
<td>Device Wellness</td>
<td>wns.*</td>
<td>Device Wellness variables</td>
</tr>
<tr>
<td>Fraction</td>
<td>frac.*</td>
<td>Fraction collection variables</td>
</tr>
<tr>
<td>Fraction Tube</td>
<td>tube.*</td>
<td>Tube variable for fraction collection</td>
</tr>
<tr>
<td>Fraction Detection Parameter</td>
<td>frac.channel.*</td>
<td>Peak detection variables for fraction collection</td>
</tr>
<tr>
<td>Category</td>
<td>Formula</td>
<td>Variables</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>➞ Spectra Library Screening</td>
<td>sls.*</td>
<td>Variables for the settings in the QNT File regarding spectra library screening</td>
</tr>
<tr>
<td>➞ Mass Spectrum</td>
<td>msspec.*</td>
<td>Mass Spectra variables (accessible via the Select Spectrum variable of the Mass Spectrometry category)</td>
</tr>
<tr>
<td>➞ Spectrum Data</td>
<td>peak.spectrum.*</td>
<td>Peak spectra variables (accessible via the Reference Spectrum variable of the Peak Table category)</td>
</tr>
<tr>
<td>➞ Hit Spectrum</td>
<td>hitSpec.*</td>
<td>Variables concerning spectra of spectra libraries (accessible via the SLS Hit variable of the Peak Purity category)</td>
</tr>
<tr>
<td>➞ Spectra Library</td>
<td>specLib.*</td>
<td>Spectra library variables (accessible via the Library Record variable of the Hit Spectrum category)</td>
</tr>
<tr>
<td>➞ User Information</td>
<td>~.*</td>
<td>Variables concerning the corresponding user (accessible via all Operator variables of the different categories. ~: Formula depends on the way you opened the category.)</td>
</tr>
</tbody>
</table>

The following pages provide a brief description of the respective variables of the corresponding categories.

Tip:

Follow the description in How to …: Creating and Using Report Tables Linking Report Variables to link report variables listed on the following pages via the four basic arithmetic operations, and thus create user-defined report variables.
"General" Category

The **General** category is only available in the *Printer Layout*. It includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version Number</td>
<td>gen/version</td>
<td></td>
</tr>
<tr>
<td>Serial Number</td>
<td>gen.serialNo</td>
<td></td>
</tr>
<tr>
<td>Key Code</td>
<td>gen.keyCode</td>
<td>➤Key Code</td>
</tr>
<tr>
<td>Computer Name</td>
<td>gen.computerName</td>
<td></td>
</tr>
<tr>
<td>Operator Name</td>
<td>gen.operator</td>
<td>User name - opens the ➤User Information category</td>
</tr>
<tr>
<td>Report Batch ID</td>
<td>gen.batchID</td>
<td>Number of the Report Definition File (RDF)</td>
</tr>
<tr>
<td>Report Batch Status</td>
<td>gen.batchStatus</td>
<td>Status of the batch printout at the end of the batch</td>
</tr>
<tr>
<td>Total Number of Sheets</td>
<td>gen.nSheets</td>
<td>Total number of worksheets to be printed</td>
</tr>
<tr>
<td>Current Sheet Number</td>
<td>gen.SheetNr</td>
<td>Number of the current worksheet</td>
</tr>
<tr>
<td>Current Time</td>
<td>gen.Time</td>
<td>Current date and time</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ➤*Report Categories*. 
"Sequence" Category

The Sequence category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>seq.name</td>
<td>Sequence name</td>
</tr>
<tr>
<td>Directory</td>
<td>seq.path</td>
<td>Directory in which the sequence is stored</td>
</tr>
<tr>
<td>Datasource</td>
<td>seq.dsn</td>
<td>Name of the corresponding Datasource</td>
</tr>
<tr>
<td>Timebase</td>
<td>seq.timebase</td>
<td>Timebase of last run</td>
</tr>
<tr>
<td>Title</td>
<td>seq.title</td>
<td>Sequence header</td>
</tr>
<tr>
<td>Number of Samples</td>
<td>seq.nSamples</td>
<td>(See Time)</td>
</tr>
<tr>
<td>Creation Date &amp; Time</td>
<td>seq.creation_time</td>
<td></td>
</tr>
<tr>
<td>Creation Operator</td>
<td>seq.creation_operator</td>
<td>Opens the User Information category</td>
</tr>
<tr>
<td>Last Update Date &amp; Time</td>
<td>seq.update_time</td>
<td></td>
</tr>
<tr>
<td>Last Update Operator</td>
<td>seq.update_operator</td>
<td></td>
</tr>
<tr>
<td>Preferred RDF File</td>
<td>seq.prefRdf</td>
<td>Preferred Report Definition File (RDF)</td>
</tr>
<tr>
<td>Preferred Channel</td>
<td>seq.prefChl</td>
<td>Preferred Channel</td>
</tr>
<tr>
<td>Sign Status</td>
<td>seq.signStatus</td>
<td>Status of the Electronic Signature</td>
</tr>
<tr>
<td>Submit Date &amp; Time</td>
<td>seq.submitTime</td>
<td>Date and time when submitting the electronic signature</td>
</tr>
<tr>
<td>Submit Operator</td>
<td>seq.submitOperator...</td>
<td>User who submitted the electronic signature - opens the User Information category</td>
</tr>
<tr>
<td>Submit Comment</td>
<td>seq.submitComment</td>
<td>Comment when submitting the electronic signature</td>
</tr>
<tr>
<td>Review Date &amp; Time</td>
<td>seq.reviewTime</td>
<td>Date and time when checking the electronic signature</td>
</tr>
<tr>
<td>Review Operator</td>
<td>seq.reviewOperator...</td>
<td>User who checked the electronic signature - opens the User Information category</td>
</tr>
<tr>
<td>Review Comment</td>
<td>seq.reviewComment</td>
<td>Comment when checking the electronic signature</td>
</tr>
<tr>
<td>Approve Date &amp; Time</td>
<td>seq.approveTime</td>
<td>Date and time when the approving the electronic signature</td>
</tr>
<tr>
<td>Variable</td>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Approve Operator</td>
<td>seq.approveOperator</td>
<td>User who approved the electronic signature - opens the User Information category</td>
</tr>
<tr>
<td>Approve Comment</td>
<td>seq.approveTime</td>
<td>Comment when approving the electronic signature</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
"Sample" Category

The **Sample** category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Number</td>
<td>smp.number</td>
<td>⇒No.</td>
</tr>
<tr>
<td>Sample Name</td>
<td>smp.name</td>
<td>⇒Name</td>
</tr>
<tr>
<td>Raw Data ID</td>
<td>smp.id</td>
<td></td>
</tr>
<tr>
<td>Sample ID</td>
<td>smp.ident</td>
<td>⇒Sample ID</td>
</tr>
<tr>
<td>Comment</td>
<td>smp.comment</td>
<td>⇒Comment</td>
</tr>
<tr>
<td>Sample Type</td>
<td>smp.type</td>
<td>⇒Type (sample type)</td>
</tr>
<tr>
<td>Vial Number</td>
<td>smp.position</td>
<td>See ⇒Pos. (Sample position)</td>
</tr>
<tr>
<td>Replicate ID</td>
<td>smp.replicate</td>
<td>⇒Replicate ID</td>
</tr>
<tr>
<td>Status</td>
<td>smp.status</td>
<td>⇒Status (sample status): Single/Multiple/Finished/Interrupted/Running</td>
</tr>
<tr>
<td>Date &amp; Time Sample Run</td>
<td>smp.time</td>
<td>See ⇒Inj. Date/Time</td>
</tr>
<tr>
<td>Inject Volume</td>
<td>smp.inject_volume</td>
<td>⇒Inj. Vol. (injection volume)</td>
</tr>
<tr>
<td>Dilution Factor</td>
<td>smp.dilution_factor</td>
<td>See ⇒Dil. Factor</td>
</tr>
<tr>
<td>Sample Weight</td>
<td>smp.weight</td>
<td>⇒Weight (Sample Weight Factor)</td>
</tr>
<tr>
<td>ISTD Amount</td>
<td>smp.amount</td>
<td>See ⇒ISTD Amount (amount of the ⇒Internal Standard (ISTD))</td>
</tr>
<tr>
<td>Program</td>
<td>smp.program</td>
<td>⇒PGM File</td>
</tr>
<tr>
<td>Quantification Method</td>
<td>smp.method</td>
<td>⇒Quantification Method (QNT Method)</td>
</tr>
<tr>
<td>Standard Addition Group</td>
<td>smp.spike_group</td>
<td>⇒Standard Addition group</td>
</tr>
<tr>
<td>Reference Amount Set</td>
<td>smp.refamount_set</td>
<td>ID for ⇒Amount column in the QNT Editor</td>
</tr>
<tr>
<td>Auto Purification Type</td>
<td>smp.autopurification_sample_type</td>
<td>Type of the associated autopurification sample</td>
</tr>
<tr>
<td>Auto Purification Reference</td>
<td>smp.autopurification_reference</td>
<td>ID for the associated autopurification sample</td>
</tr>
<tr>
<td>Auto Purification Fraction</td>
<td>smp.autopurification_fraction</td>
<td>Fraction of the associated autopurification sample</td>
</tr>
<tr>
<td>Variable</td>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Select Chromatogram</td>
<td>smp.chm.x</td>
<td>Selects the chromatogram for the associated sample - opens the Chromatogram category.</td>
</tr>
<tr>
<td>*x</td>
<td>smp.x</td>
<td>➢ User-defined Column (x = column name)</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
"Audit Trail" Category

Depending on the connected instrumentation, hundreds of variables are available in the Audit Trail. (For more information about the Audit Trails, refer to Data Management Audit Trails.)

The list below contains some of the variables that are typically available during data acquisition with a P680 pump or a UVD 340 detector.

### P680

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%B, %C, %D</td>
<td>AUDIT.%B (C or D)</td>
<td>Percentage of the respective component in the eluent (partial flow) (see ⇒%B, %C, %D)</td>
</tr>
<tr>
<td>Average (Pump_Pressure)</td>
<td>AUDIT.Pump_Pressure.</td>
<td>Status of averaging (also, see ⇒Average)</td>
</tr>
<tr>
<td>Equate (%A)</td>
<td>AUDIT.%A.Equate</td>
<td>Name of eluent component A (components B, C and D accordingly)</td>
</tr>
<tr>
<td>Flow</td>
<td>AUDIT.Flow</td>
<td>⇒Flow rate</td>
</tr>
<tr>
<td>Lower Limit (Pressure)</td>
<td>AUDIT.Pressure.Lower</td>
<td>Lower pressure limit (see ⇒Pressure.Lower/UpperLimit)</td>
</tr>
<tr>
<td>Step (Pump_Pressure)</td>
<td>AUDIT.Pump_Pressure.</td>
<td>Step for each channel (also, see ⇒Step)</td>
</tr>
<tr>
<td>Upper Limit (Pressure)</td>
<td>AUDIT.Pressure.Upper</td>
<td>Upper pressure limit (see ⇒Pressure.Lower/UpperLimit)</td>
</tr>
</tbody>
</table>

### UVD340

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>AUDIT.Average</td>
<td>Status of averaging: enabled or disabled (see⇒Average)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>AUDIT.BandWidth</td>
<td>⇒Bandwidth (for each UV channel)</td>
</tr>
<tr>
<td>Bunch Width</td>
<td>AUDIT.3DFIELD.Bunch</td>
<td>⇒Bunch Width of the diode bundle (3D-field only)</td>
</tr>
<tr>
<td>LampIntensity</td>
<td>AUDIT.LampIntensity</td>
<td>⇒LampIntensity [counts/s]</td>
</tr>
<tr>
<td>MaxAutoStep</td>
<td>AUDIT.MaxAutoStep</td>
<td>Maximum value for Step = Auto (see ⇒MaxAutoStep)</td>
</tr>
<tr>
<td>Max. Wavelength (3DFIELD)</td>
<td>AUDIT.3DFIELD.Max</td>
<td>Maximum wavelength of the 3D Field</td>
</tr>
<tr>
<td>Min. Wavelength (3DFIELD)</td>
<td>AUDIT.3DFIELD.Min</td>
<td>Min. wavelength of the 3D Field</td>
</tr>
<tr>
<td>Variable</td>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------------------------------------------------------------</td>
</tr>
<tr>
<td>Ref Wavelength</td>
<td>AUDIT.RefWavelength</td>
<td>⇒RefWavelength (Reference Wavelength) (for each UV channel)</td>
</tr>
<tr>
<td>Ref Bandwidth</td>
<td>AUDIT.RefBandwidth</td>
<td>⇒RefBandwidth (Reference Bandwidth) (for each UV channel)</td>
</tr>
<tr>
<td>Step</td>
<td>AUDIT.Step</td>
<td>⇒Step</td>
</tr>
<tr>
<td>Wavelength</td>
<td>AUDIT.Wavelength</td>
<td>⇒Wavelength (for each UV channel)</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
"Preconditions" Category

Depending on the connected instrumentation, thousands of Preconditions variables exist. They allow you to display the device settings before a sample run in the Audit Trails. (For more information about the Audit Trails, refer to Data Management Audit Trails.) The Preconditions are displayed if you have selected Preconditions only or Preconditions and Run on the View or context menu.

The list below contains some of the variables that are typically available during data acquisition with a P680 pump or a UVD 340 detector.

### P680

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (Pump_Pressure)</td>
<td>precond.Pump_Pressure.Average</td>
<td>Status of averaging (also, see ⇒ Average)</td>
</tr>
<tr>
<td>Equate (%A)</td>
<td>precond.Pump.%A.Equate</td>
<td>Name of eluent component A (components B, C and D accordingly)</td>
</tr>
<tr>
<td>Flow</td>
<td>precond.Pump.Flow</td>
<td>⇒ Flow rate</td>
</tr>
<tr>
<td>Lower Limit (Pressure)</td>
<td>precond.Pump.Pressure.LowerLimit</td>
<td>Lower pressure limit (see ⇒ Pressure.Lower/UpperLimit)</td>
</tr>
<tr>
<td>Step (Pump_Pressure)</td>
<td>precond.Pump_Pressure.Step</td>
<td>Step for each channel (also, see ⇒ Step)</td>
</tr>
<tr>
<td>Upper Limit (Pressure)</td>
<td>precond.Pump.Pressure.UpperLimit</td>
<td>Upper pressure limit (see ⇒ Pressure.Lower/UpperLimit)</td>
</tr>
<tr>
<td>Value (Pump.%A)</td>
<td>precond.Pump.%A.Value</td>
<td>Percentage of the component in the solvent (partial flow): ⇒ %B, %C, %D (in the same way for components B, C, and D)</td>
</tr>
<tr>
<td>Value (Pump.%A_Level)</td>
<td>precond.Pump.%A_Level</td>
<td>Value for the ⇒ %A, %B, %C, %D_Levels (in the same way for the components B, C, and D)</td>
</tr>
<tr>
<td>Value (PumpWasteLevel)</td>
<td>precond.Pump.WasteLevel</td>
<td>Value for the ⇒ WasteLevel (in the same way for the components B, C, and D)</td>
</tr>
</tbody>
</table>
### UVD340

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>precond.Average</td>
<td>Status of averaging: enabled or disabled (see ⇒ Average)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>precond.BandWidth</td>
<td>⇒Bandwidth (for each UV channel)</td>
</tr>
<tr>
<td>Bunch Width</td>
<td>precond.3DFIELD.BunchWidth</td>
<td>⇒Bunch Width of the diode bundle (3D-field only)</td>
</tr>
<tr>
<td>LampIntensity</td>
<td>precond.LampIntensity</td>
<td>⇒LampIntensity [counts/s]</td>
</tr>
<tr>
<td>MaxAutoStep</td>
<td>AUDIT.MaxAutoStep</td>
<td>Maximum value for Step = Auto (see ⇒ MaxAutoStep)</td>
</tr>
<tr>
<td>Max. Wavelength</td>
<td>precond.3DFIELD.MaxWavelength</td>
<td>Maximum wavelength of the ⇒ 3D Field</td>
</tr>
<tr>
<td>(3DFIELD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Wavelength</td>
<td>precond.3DFIELD.MinWavelength</td>
<td>Min. wavelength of the 3D field</td>
</tr>
<tr>
<td>(3DFIELD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref Wavelength</td>
<td>precond.RefWavelength</td>
<td>⇒RefWavelength (Reference Wavelength) (for each UV channel)</td>
</tr>
<tr>
<td>Ref Bandwidth</td>
<td>precond.RefBandwidth</td>
<td>⇒RefBandwidth (Reference Bandwidth) (for each UV channel)</td>
</tr>
<tr>
<td>Step</td>
<td>precond.Step</td>
<td>⇒Step</td>
</tr>
<tr>
<td>Wavelength</td>
<td>precond.Wavelength</td>
<td>⇒Wavelength (for each UV channel)</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
"Chromatogram" Category

It depends on the detector(s) that is(are) connected which chromatogram variables are available during data acquisition. The table below lists the variables that are available when either a UVD 340 detector or an aQa Mass Spectrometer is connected.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Name</td>
<td>chm.channel</td>
<td></td>
</tr>
<tr>
<td>Raw Data File Path Name</td>
<td>chm.rawpath</td>
<td></td>
</tr>
<tr>
<td>Number of Peaks</td>
<td>chm.nPeak</td>
<td></td>
</tr>
<tr>
<td>Select Peak</td>
<td>chm.peak((OPT))</td>
<td>⇒Select Peak selects a peak in the chromatogram according to input; opens the ⇒Peak Results category</td>
</tr>
<tr>
<td>Count Peaks if ...</td>
<td>chm.countIF</td>
<td>Counts the peaks which ...</td>
</tr>
<tr>
<td>Sum Peak Results if ...</td>
<td>chm.sumIF</td>
<td>Adds up the characteristics of peaks that ....</td>
</tr>
<tr>
<td>Start Time (relative to Inject Time)</td>
<td>chm.start_time</td>
<td>Chromatogram start time [min]</td>
</tr>
<tr>
<td>End Time (relative to Inject Time)</td>
<td>chm.end_time</td>
<td>Chromatogram end time [min]</td>
</tr>
<tr>
<td>Signal Value</td>
<td>chm.sig_value</td>
<td>Signal value [for example, in mAU]</td>
</tr>
<tr>
<td>Signal Dimension</td>
<td>chm.sig_dim</td>
<td></td>
</tr>
<tr>
<td>Signal Noise</td>
<td>chm.noise</td>
<td>Signal noise [for example, in mAU]</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>chm.sig_step</td>
<td></td>
</tr>
<tr>
<td>Modified?</td>
<td>chm.manipulated</td>
<td>(Yes/no)</td>
</tr>
<tr>
<td>Modification Time</td>
<td>chm.manip_time</td>
<td>Corresponding date/time</td>
</tr>
<tr>
<td>Modification Operator</td>
<td>chm.manip_operator</td>
<td>Corresponding operator - opens the ⇒User Information category</td>
</tr>
<tr>
<td>XXXXX Start Value</td>
<td>chm.XXXXX</td>
<td>Start value of the signal parameter XXXXX when acquiring data.</td>
</tr>
<tr>
<td>Delay Time Value</td>
<td>chm.delayTimeValue</td>
<td>⇒Delay Time between two detectors</td>
</tr>
<tr>
<td>Delay Time Detector</td>
<td>chm.delayTimeDetector</td>
<td>Name of the second detector</td>
</tr>
<tr>
<td>Average</td>
<td>chm.Average</td>
<td>⇒Average (for UV channels only)</td>
</tr>
<tr>
<td>Step</td>
<td>chm.Step</td>
<td>⇒Step (for UV channels only)</td>
</tr>
<tr>
<td>Variable</td>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-----------------------------------------------------------------</td>
</tr>
<tr>
<td>Wavelength</td>
<td>chm.Wavelength</td>
<td>⇒Wavelength (for UV channels only)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>chm.Bandwidth</td>
<td>⇒Bandwidth (for UV channels only)</td>
</tr>
<tr>
<td>RefWavelength</td>
<td>chm.RefWavelength</td>
<td>See ⇒RefWavelength (Reference Wavelength) (for UV channels only)</td>
</tr>
<tr>
<td>RefBandwidth</td>
<td>chm.RefBandwidth</td>
<td>See ⇒RefBandwidth (Reference Bandwidth) (for UV channels only)</td>
</tr>
<tr>
<td>MassRange</td>
<td>chm.MassRange</td>
<td>Mass range of the Mass Spectrometer channel (for MS channels only)</td>
</tr>
<tr>
<td>Polarity</td>
<td>chm.Polarity</td>
<td>Polarity (for MS channels only)</td>
</tr>
<tr>
<td>Source Voltage</td>
<td>chm.Voltage</td>
<td>Voltage (for MS channels only)</td>
</tr>
<tr>
<td>FilterIndex</td>
<td>chm.FilterIndex</td>
<td>Number of the Filter (MS channels only).</td>
</tr>
<tr>
<td>Smoothing</td>
<td>chm.Smoothing</td>
<td>Smoothing algorithm (in parenthesis: number of smoothing points) (for MS channels only or if explicitly performed)</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for these categories, refer to ⇒Report Categories.
"Detection Parameters" Category

The Detection Parameters category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Area</td>
<td>det.minArea</td>
<td>⇒Minimum Peak Area</td>
</tr>
<tr>
<td>Maximum Area Reject</td>
<td>det.maxAreaRj</td>
<td>⇒Maximum Area Reject</td>
</tr>
<tr>
<td>Minimum Height</td>
<td>det.minHeight</td>
<td>⇒Minimum Height</td>
</tr>
<tr>
<td>Maximum Height Reject</td>
<td>det.maxHeightRj</td>
<td>⇒Maximum Height Reject</td>
</tr>
<tr>
<td>Maximum Peak Height</td>
<td>det.maxHeight</td>
<td>⇒Maximum Peak Height</td>
</tr>
<tr>
<td>Minimum Width</td>
<td>det.minWidth</td>
<td>⇒Minimum Width</td>
</tr>
<tr>
<td>Maximum Width</td>
<td>det.maxWidth</td>
<td>⇒Maximum Width</td>
</tr>
<tr>
<td>Rider Threshold</td>
<td>det.riderMin</td>
<td>⇒Rider Threshold</td>
</tr>
<tr>
<td>Maximum Rider Ratio</td>
<td>det.riderRatio</td>
<td>⇒Maximum Rider Ratio</td>
</tr>
<tr>
<td>Rider Skimming</td>
<td>det.riderSkim</td>
<td></td>
</tr>
<tr>
<td>Peak Shoulder Threshold</td>
<td>det.shoulderThrshld</td>
<td>⇒Peak Shoulder Threshold</td>
</tr>
<tr>
<td>Front Riders to Main Peaks</td>
<td>det.frontRiderToMain</td>
<td>⇒Front Riders to Main Peaks</td>
</tr>
<tr>
<td>Detect Negative Peaks</td>
<td>det.negDetect</td>
<td>⇒Detect Negative Peaks</td>
</tr>
<tr>
<td>Lock Baseline</td>
<td>det.lockBl</td>
<td>⇒Lock Baseline</td>
</tr>
<tr>
<td>Valley to Valley</td>
<td>det.valval</td>
<td>Baseline from ⇒Valley to Valley</td>
</tr>
<tr>
<td>Inhibit Integration</td>
<td>det.noInteg</td>
<td>⇒Inhibit Integration</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>det.noise</td>
<td>⇒Sensitivity</td>
</tr>
<tr>
<td>Peak Slice</td>
<td>det.filter</td>
<td>⇒Peak Slice</td>
</tr>
<tr>
<td>Fronting Sensitivity Factor</td>
<td>det.frontFac</td>
<td>⇒Fronting Sensitivity Factor</td>
</tr>
<tr>
<td>Tailing Sensitivity Factor</td>
<td>det.tailFac</td>
<td>⇒Tailing Sensitivity Factor</td>
</tr>
<tr>
<td>Part of a Peak Group?</td>
<td>det.isInGroup</td>
<td>See ⇒Group</td>
</tr>
<tr>
<td>Peak Purity Threshold</td>
<td>det.ppThrshld</td>
<td>⇒Peak Purity Threshold</td>
</tr>
<tr>
<td>Peak Purity Start Wavelength</td>
<td>det.ppStartWl</td>
<td>⇒Peak Purity Start Wavelength</td>
</tr>
<tr>
<td>Peak Purity End Wavelength</td>
<td>det.ppEndWl</td>
<td>⇒Peak Purity End Wavelength</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
"Peak Results" Category

The **Peak Results** category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>peak.number</td>
<td>⇒Name (Peak Name)</td>
</tr>
<tr>
<td>Name</td>
<td>peak.name</td>
<td>⇒Group (Peak Group)</td>
</tr>
<tr>
<td>Group</td>
<td>peak.group</td>
<td>Number of substances assigned in one peak</td>
</tr>
<tr>
<td>Link Count</td>
<td>peak.linkCount</td>
<td>⇒Retention Time in [min]</td>
</tr>
<tr>
<td>Retention Time</td>
<td>peak.retention_time</td>
<td>Deviation in [min] or [%], depending on parameter (abs or rel)</td>
</tr>
<tr>
<td>Retention Deviation</td>
<td>peak.retention_deviation</td>
<td></td>
</tr>
<tr>
<td>Relative Retention Time</td>
<td>peak.rel_retention_time</td>
<td></td>
</tr>
<tr>
<td>Retention Window Width</td>
<td>peak retention windows</td>
<td>Width of the Retention Window</td>
</tr>
<tr>
<td>Area</td>
<td>peak.area</td>
<td>Peak area for UV detectors in [min * mAU]</td>
</tr>
<tr>
<td>Relative Area</td>
<td>peak.rel_area</td>
<td>Parameters: total, identified, group, istd, rel</td>
</tr>
<tr>
<td>Group Area</td>
<td>peak.groupArea</td>
<td>Total of the peak ⇒Group areas</td>
</tr>
<tr>
<td>Height</td>
<td>peak.height</td>
<td>Peak height, for UV detectors in [mAU]</td>
</tr>
<tr>
<td>Relative Height</td>
<td>peak.rel_height</td>
<td>Parameters total, identified, group, istd, rel</td>
</tr>
<tr>
<td>Group Height</td>
<td>peak.groupHeight</td>
<td>Total of the heights of the peak group</td>
</tr>
<tr>
<td>Amount</td>
<td>peak.amount</td>
<td>⇒Amount or concentration</td>
</tr>
<tr>
<td>Amount Deviation</td>
<td>peak.amount_deviation</td>
<td>Deviation analogous to retention_deviation</td>
</tr>
<tr>
<td>Concentration</td>
<td>peak.concentration</td>
<td>Concentration (if Amount is really an amount): amount/injection volume</td>
</tr>
<tr>
<td>Relative Amount</td>
<td>peak.rel_amount</td>
<td>Parameters total, group, istd, rel</td>
</tr>
<tr>
<td>Group Amount</td>
<td>peak.groupAmount</td>
<td>Peak ⇒Group amount</td>
</tr>
<tr>
<td>Width</td>
<td>peak.width</td>
<td>Peak width (Parameters 0, 5, 10, 50 in % of signal height above baseline - 0 base width with tangent method)</td>
</tr>
<tr>
<td>Variable</td>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Left Width</td>
<td>peak.left_width</td>
<td>For the parameters, refer to Width</td>
</tr>
<tr>
<td>Right Width</td>
<td>peak.right_width</td>
<td>For the parameters, refer to Width</td>
</tr>
<tr>
<td>Peak Start Time</td>
<td>peak.start_time</td>
<td>In [min]</td>
</tr>
<tr>
<td>Peak Stop Time</td>
<td>peak.stop_time</td>
<td>In [min]</td>
</tr>
<tr>
<td>Signal Value at Peak Start</td>
<td>peak.start_value</td>
<td>➢ Signal Value at Peak Start, for UV detectors in [mAU]</td>
</tr>
<tr>
<td>Signal Value at Peak End</td>
<td>peak.stop_value</td>
<td>➢ Signal Value at Peak End</td>
</tr>
<tr>
<td>Baseline Value at Peak Start</td>
<td>peak.start_value_baseline</td>
<td>➢ Baseline Value at Peak Start, for UV detectors in [mAU]</td>
</tr>
<tr>
<td>Baseline Value at Peak End</td>
<td>peak.stop_value_baseline</td>
<td>➢ Baseline Value at Peak End</td>
</tr>
<tr>
<td>Detection Code at Peak Start</td>
<td>peak.start_detection_code</td>
<td>➢ Detection Code at Peak Start/End</td>
</tr>
<tr>
<td>Detection Code at Peak End</td>
<td>peak.stop_detection_code</td>
<td>➢ Detection Code at Peak Start/End</td>
</tr>
<tr>
<td>Type</td>
<td>peak.type</td>
<td>Peak⇒ Type</td>
</tr>
<tr>
<td>Modified</td>
<td>peak.modified</td>
<td>Modified peak?</td>
</tr>
<tr>
<td>Manually Assigned</td>
<td>peak.assigned</td>
<td>Manually assigned peak?</td>
</tr>
<tr>
<td>Resolution</td>
<td>peak.resolution</td>
<td>➢ Resolution (parameters EP and USP)</td>
</tr>
<tr>
<td>Asymmetry</td>
<td>peak.asymmetry</td>
<td>Peak⇒ Asymmetry, parameters EP and AIA</td>
</tr>
<tr>
<td>Theoretical Plates</td>
<td>peak.theoretical_plates</td>
<td>➢ Theoretical Plates (parameters EP and USP)</td>
</tr>
<tr>
<td>Skewness</td>
<td>peak.skewness</td>
<td>➢ Skewness</td>
</tr>
<tr>
<td>K'</td>
<td>peak.kValue</td>
<td>➢ Capacity Factor</td>
</tr>
<tr>
<td>Retention Index</td>
<td>peak.ri</td>
<td>Linear⇒Retention Index</td>
</tr>
<tr>
<td>Kovats Index</td>
<td>peak.ki</td>
<td>➢ Kovats Index</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ➢Report Categories.
"Peak Calibration" Category

The **Peak Calibration** category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration Mode</td>
<td>peak.callMode</td>
<td>⇒Calibration Mode</td>
</tr>
<tr>
<td>Auto Recalibrate</td>
<td>peak.autoRelCal</td>
<td>Auto calibration On/Off</td>
</tr>
<tr>
<td>Reference Inject Volume</td>
<td>peak.reference_inject_volume</td>
<td>Reference Injection Volume</td>
</tr>
<tr>
<td>Calibration Type</td>
<td>peak.calibration_type</td>
<td>⇒Calibration Type</td>
</tr>
<tr>
<td>Weights</td>
<td>peak.calibration_weight</td>
<td>⇒Weights</td>
</tr>
<tr>
<td>Offset (c0)</td>
<td>peak.offset</td>
<td>⇒Offset c0</td>
</tr>
<tr>
<td>Slope (c1)</td>
<td>peak.slope</td>
<td>⇒Slope c1</td>
</tr>
<tr>
<td>Curve (c2)</td>
<td>peak.curve</td>
<td>⇒Curve c2</td>
</tr>
<tr>
<td>RF-Value (Amount/Area)</td>
<td>peak.rf_value</td>
<td>(1/c1) (see ⇒RF-Value (Amount/Area))</td>
</tr>
<tr>
<td>Number of Calibration Points</td>
<td>peak.nCalpoints</td>
<td>⇒Number of Calibration Points</td>
</tr>
<tr>
<td>Number of Disabled Calibr. Points</td>
<td>peak.nCalDisabled</td>
<td>⇒Number of Disabled Calibration Points</td>
</tr>
<tr>
<td>Variance</td>
<td>peak.variance</td>
<td>⇒Variance</td>
</tr>
<tr>
<td>Variance Coefficient</td>
<td>peak.variance_coefficient</td>
<td>⇒Variance Coefficient</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>peak.standard_deviation</td>
<td>⇒Standard Deviation</td>
</tr>
<tr>
<td>Relative Standard Deviation</td>
<td>peak.rel_standard_deviation</td>
<td>⇒Relative Standard Deviation</td>
</tr>
<tr>
<td>Correlation Coefficient</td>
<td>peak.correlation_coefficient</td>
<td>⇒Correlation Coefficient</td>
</tr>
<tr>
<td>Coefficient of Determination</td>
<td>peak.rQuadrat</td>
<td>⇒Coefficient of Determination</td>
</tr>
<tr>
<td>DOF-Adj. Coefficient of Determination</td>
<td>peak.rQuadratAdj</td>
<td>⇒DOF-Adjusted Coefficient of Determination</td>
</tr>
<tr>
<td>Calibration Point x</td>
<td>peak.callPointX</td>
<td>⇒Calibration Point weighting</td>
</tr>
<tr>
<td>Calibration Point y</td>
<td>peak.callPointY</td>
<td></td>
</tr>
<tr>
<td>Calibration Point Weight</td>
<td>peak.callPointWeight</td>
<td></td>
</tr>
<tr>
<td>Evaluation of Calibration Function</td>
<td>peak.callPointFX</td>
<td></td>
</tr>
<tr>
<td>Residual for Cal. Point x</td>
<td>peak.callPointDist</td>
<td></td>
</tr>
<tr>
<td>Calibration Point Status</td>
<td>peak.callPointStatus</td>
<td></td>
</tr>
<tr>
<td>Upper Confidence Limit</td>
<td>peak.confUpperLimit</td>
<td>Upper limit of the</td>
</tr>
<tr>
<td>Lower Confidence Limit</td>
<td>peak.confLowerLimit</td>
<td>Lower limit of the confidence limit</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
"Peak Table" Category

The **Peak Table** category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>peakTab.number</td>
<td>Peak number</td>
</tr>
<tr>
<td>Peak Name</td>
<td>peakTab.name</td>
<td>Peak Name</td>
</tr>
<tr>
<td>Retention Time</td>
<td>peakTab.retention_time</td>
<td>Retention Time in [min]</td>
</tr>
<tr>
<td>Retention Time Interpretation</td>
<td>peakTab.retention_type</td>
<td>Specification of retention times</td>
</tr>
<tr>
<td>Use Prev. Retention Time</td>
<td>peakTab.use_previous_rettime</td>
<td>Status of corresponding variable in QNT File (see ⇒ Use Recent Retention Time)</td>
</tr>
<tr>
<td>Window</td>
<td>peakTab.window</td>
<td>Time ⇒ Window width</td>
</tr>
<tr>
<td>Standard Method</td>
<td>peakTab.standard_method</td>
<td>See ⇒ Standard</td>
</tr>
<tr>
<td>Integration Type</td>
<td>peakTab.integration_type</td>
<td>⇒ Integration Type</td>
</tr>
<tr>
<td>Calibration Type</td>
<td>peakTab.calibration_type</td>
<td>⇒ Calibration Type</td>
</tr>
<tr>
<td>Peak Type</td>
<td>peakTab.type</td>
<td>See ⇒ Type</td>
</tr>
<tr>
<td>Left Limit</td>
<td>peakTab.left_limit</td>
<td>⇒ Left Limit</td>
</tr>
<tr>
<td>Right Limit</td>
<td>peakTab.right_limit</td>
<td>See ⇒ Right Limit</td>
</tr>
<tr>
<td>Peak Group</td>
<td>peakTab.group</td>
<td>See ⇒ Group</td>
</tr>
<tr>
<td>Response Factor</td>
<td>peakTab.response_factor</td>
<td>⇒ Response Factor</td>
</tr>
<tr>
<td>Amount</td>
<td>peakTab.amount</td>
<td>⇒ Amount</td>
</tr>
<tr>
<td>Amount Dimension</td>
<td>peakTab.amount_dimension</td>
<td></td>
</tr>
<tr>
<td>C0 Value</td>
<td>peakTab.C0</td>
<td>Y ⇒ Offset of the calibration curve</td>
</tr>
<tr>
<td>C1 Value</td>
<td>peakTab.C1</td>
<td>⇒ Slope of the calibration curve</td>
</tr>
<tr>
<td>C2 Value</td>
<td>peakTab.C2</td>
<td>Curvature of the calibration ⇒ Curve</td>
</tr>
<tr>
<td>Reference Spectrum</td>
<td>peakTab.reference_spectrum.x</td>
<td>⇒ Reference Spectrum, opens the category ⇒ Spectrum Data</td>
</tr>
<tr>
<td>Match Criterion</td>
<td>peakTab.spec_compare_method</td>
<td>⇒ Match Criterion</td>
</tr>
<tr>
<td>Check Derivative</td>
<td>peakTab.spec_derivative</td>
<td>⇒ Check Derivative</td>
</tr>
<tr>
<td>Minimum Wavelength</td>
<td>peakTab.spec_min_wavelength</td>
<td>Lower limit of the compared wavelength range (see ⇒ Minimum Wavelength)</td>
</tr>
<tr>
<td>Variable</td>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Maximum Wavelength</td>
<td>peakTab.spec_max_wavelength</td>
<td>Upper limit of the compared wavelength range (see ⇒Maximum Wavelength)</td>
</tr>
<tr>
<td>Threshold</td>
<td>peakTab.spec_threshold</td>
<td>⇒Threshold value for spectra search</td>
</tr>
<tr>
<td>Relative Maximum Deviation</td>
<td>peakTab.spec_remaxdev</td>
<td>⇒Relative Maximum Deviation during spectra search</td>
</tr>
<tr>
<td>Check Number of rel. Extrema</td>
<td>peakTab.spec_check_extrema</td>
<td>Checking the number of extrema during spectra search (see ⇒Check Extrema)</td>
</tr>
<tr>
<td>Comment</td>
<td>peakTab.comment</td>
<td>⇒Comment</td>
</tr>
<tr>
<td>Retention Index</td>
<td>peakTab.ri</td>
<td>⇒Retention Index</td>
</tr>
<tr>
<td>Kovats Index</td>
<td>peakTab.ki</td>
<td>⇒Kovats Index</td>
</tr>
<tr>
<td>Mass Peak x</td>
<td>peakTab.ms_peakx</td>
<td>Mass of Peak x</td>
</tr>
<tr>
<td>MS Threshold</td>
<td>peakTab.ms_threshold</td>
<td>Threshold for Mass</td>
</tr>
<tr>
<td>MS Filter</td>
<td>peakTab.ms_filter</td>
<td>Mass Filter</td>
</tr>
<tr>
<td>Check of mass ratios</td>
<td>peakTab.ms_enable_rejection</td>
<td></td>
</tr>
<tr>
<td>Check of MS retention times</td>
<td>peakTab.ms_check_traces</td>
<td></td>
</tr>
<tr>
<td>*x</td>
<td>peakTab.user_x</td>
<td>⇒User-defined Column (x = column name)</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
### Mass Spectrometry Category

The Mass Spectrometry category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Subtraction Type</td>
<td>ms.spec_enhanced</td>
<td>Indicates the type of Mass Spectra background subtraction</td>
</tr>
<tr>
<td>Peak Spectrum Bunch</td>
<td>ms.nSpec_peak_top</td>
<td>Number of averaged single spectra at peak maximum</td>
</tr>
<tr>
<td>Left Background Subtraction Bunch</td>
<td>ms.nSpec_left_BG</td>
<td>Number of single spectra that are averaged for the left background spectrum</td>
</tr>
<tr>
<td>Right Background Subtraction Bunch</td>
<td>ms.nSpec_right_BG</td>
<td>Number of single spectra that are averaged for the right background spectrum</td>
</tr>
<tr>
<td>Left Background Subtraction Range</td>
<td>ms.fix_left_BG</td>
<td>Number of single spectra averaged for the left background spectrum at the peak maximum</td>
</tr>
<tr>
<td>Right Background Subtraction Range</td>
<td>ms.fix_right_BG</td>
<td>Number of single spectra averaged for the right background spectrum at the peak maximum</td>
</tr>
<tr>
<td>Select Spectrum</td>
<td>ms.spectrum.x</td>
<td>Opens the Mass Spectrum category</td>
</tr>
<tr>
<td>Instrument Information</td>
<td>ms.instrument</td>
<td>Information about the mass spectrometer</td>
</tr>
<tr>
<td>Instrument Method</td>
<td>ms.method</td>
<td>Tune data of the Xcalibur raw data file</td>
</tr>
<tr>
<td>Status Log</td>
<td>ms.statusLog</td>
<td>Information about the status of the MS system at a specified time</td>
</tr>
<tr>
<td>Spectra Count</td>
<td>ms.spec_count</td>
<td>Number of mass spectra</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to Report Categories.
"Peak Purity and Identification" Category

The **Peak Purity and Identification** category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Purity Index</td>
<td>peak.ppi</td>
<td>Average PPI (Peak Purity Index) in nm over the entire peak (from a specific height)</td>
</tr>
<tr>
<td>RSD Peak Purity Index</td>
<td>peak.rsd_ppi</td>
<td>Correspond. Rel.Std.Dev.</td>
</tr>
<tr>
<td>Peak Purity Match</td>
<td>peak.match</td>
<td>Average Peak Purity Match Factor (0..1000) over the entire peak (from a specific height detection parameter)</td>
</tr>
<tr>
<td>RSD Peak Purity Match</td>
<td>peak.rsd_match</td>
<td>Corresponding Relative Standard Deviation</td>
</tr>
<tr>
<td>Peak Ratio Mean Value</td>
<td>peak.ratio</td>
<td>Average ratio value (BL-corrected) with the &quot;next&quot; channel.</td>
</tr>
<tr>
<td>RSD Peak Ratio</td>
<td>peak.rsd_ratio</td>
<td>Corresponding Rel.Std.Dev. value</td>
</tr>
<tr>
<td>Peak Spectrum</td>
<td>peak.spectrum.x</td>
<td>Opens the Spectrum Data category</td>
</tr>
<tr>
<td>Reference Spectrum Match</td>
<td>peak.refMatch</td>
<td>(See Match Factor)</td>
</tr>
<tr>
<td>Number of SLS Hits</td>
<td>peak.nSlsHits</td>
<td>No. of reference spectra</td>
</tr>
<tr>
<td>SLS Hit</td>
<td>hitSpec.x</td>
<td>Opens the Hit Spectrum category</td>
</tr>
<tr>
<td>Mass of n-th MS peak</td>
<td>peak.ms_peak_mass(n)</td>
<td></td>
</tr>
<tr>
<td>Intensity of n-th MS peak</td>
<td>peak.ms_peak_intens(n,&quot;peak1&quot;)</td>
<td></td>
</tr>
<tr>
<td>Position of mass peak maximum</td>
<td>peak.ms_peak_maximum(n,&quot;relTime&quot;)</td>
<td></td>
</tr>
<tr>
<td>MS Peak Purity Match</td>
<td>peak.ms_match(x)</td>
<td>Averaged MS Peak Purity Match Factor (0..1000) over the entire peak (from peak height x%)</td>
</tr>
<tr>
<td>RSD MS Peak Purity Match</td>
<td>peak.ms_rsd_match(x)</td>
<td>Corresponding relative standard deviation (Rel.Std.Dev.)</td>
</tr>
<tr>
<td>Peak Mass Spectrum</td>
<td>peak.msspectrum</td>
<td>Opens the Mass Spectrum category</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to \(?Report Categories\).
"Quantification Method" Category

The **Quantification Method** category is only available in Summary tables and in individual >Printer Layout cells. It includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>qnt.name</td>
<td>QNT File name</td>
</tr>
<tr>
<td>Directory</td>
<td>qnt.path</td>
<td>Directory where the QNT File is saved</td>
</tr>
<tr>
<td>Datasource</td>
<td>qnt.dsn</td>
<td>Name of corresponding datasource</td>
</tr>
<tr>
<td>Title</td>
<td>qnt.title</td>
<td>QNT File description</td>
</tr>
<tr>
<td>Creation Date &amp; Time</td>
<td>qnt.creation_time</td>
<td>Date and &gt;Time when the QNT File was created.</td>
</tr>
<tr>
<td>Creation Operator</td>
<td>qnt.creation_operator.x</td>
<td>User who created the QNT File; opens the ⇒User Information category</td>
</tr>
<tr>
<td>Last Update Date &amp; Time</td>
<td>qnt.update_time</td>
<td>Date and time when the last update was performed.</td>
</tr>
<tr>
<td>Last Update Operator</td>
<td>qnt.update_operator</td>
<td>User who performed the last update; opens the User Information category.</td>
</tr>
<tr>
<td>Last Calibration Date &amp; Time</td>
<td>qnt.lastCal_time</td>
<td>Date and time when calibration was performed last.</td>
</tr>
<tr>
<td>Last Calibration Operator</td>
<td>qnt.lastCal_operator.x</td>
<td>User who performed the last calibration; opens the User Information category.</td>
</tr>
<tr>
<td>Curve Fitting Model</td>
<td>qnt.calFuncType</td>
<td>Model used for curve fitting.</td>
</tr>
<tr>
<td>Dual-Column Separate Calibration</td>
<td>qnt.separateCal</td>
<td>Separate calibration for each column</td>
</tr>
<tr>
<td>Retention Time Determination</td>
<td>qnt.retTimeMode</td>
<td>Interpretation of the retention time.</td>
</tr>
<tr>
<td>Parent Sequence Name</td>
<td>qnt.seq_name</td>
<td>Directory in which QNT File is saved.</td>
</tr>
<tr>
<td>Sequence Header Record</td>
<td>qnt.sequence.x</td>
<td>Opens the ⇒Sequence category</td>
</tr>
<tr>
<td>Dead Time</td>
<td>qnt.deadTime</td>
<td>⇒Dead Time</td>
</tr>
<tr>
<td>Delay Time Value</td>
<td>qnt.delayTimeValue</td>
<td>Also, refer to ⇒Delay Time</td>
</tr>
<tr>
<td>Delay Time Detector</td>
<td>qnt.delayTimeDetector</td>
<td>Corresponding detector</td>
</tr>
<tr>
<td>Blank Run Subtraction</td>
<td>qnt.blankRun Mode</td>
<td>Status of ⇒Blank Run Subtraction</td>
</tr>
<tr>
<td>Blank Run Sample Record</td>
<td>qnt.blankRunSample.x</td>
<td>Opens the ⇒Sample category</td>
</tr>
<tr>
<td>Variable</td>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Matrix Blank Subtraction</td>
<td>qnt.matrixBlank</td>
<td>Subtraction status of a</td>
</tr>
<tr>
<td>Number of Detection Parameters</td>
<td>qnt.nDet</td>
<td></td>
</tr>
<tr>
<td>Number of Peaks in the Peak Table</td>
<td>qnt.nPeaks</td>
<td></td>
</tr>
<tr>
<td>Select Peak in the Peak Table</td>
<td>qnt.peakTabLine(&quot;OPT&quot;)</td>
<td>Select Peak in the Peak Table selects peak in chromatogram according to the included option - opens the Peak Table category</td>
</tr>
<tr>
<td>SST Result</td>
<td>qnt.sst-result</td>
<td>Total result of all single System Suitability Tests (SST)</td>
</tr>
<tr>
<td>SST Rows</td>
<td>qnt.sst_rows</td>
<td>Number of lines (= number of single System Suitability Tests) on the SST page in the QNT Editor</td>
</tr>
<tr>
<td>Select SST</td>
<td>qnt.sst(n).x</td>
<td>Opens the category: SST. You can then select a variable for the chosen single System Suitability Test with the number n.</td>
</tr>
<tr>
<td>Spectra Library Scr. Param.</td>
<td>qnt.sls.x</td>
<td>Parameter for Spectra Library Screening - opens the Spectra Library Screening category</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to Report Categories.
"System Suitability Test" Category

Usually, the System Suitability Test category is only available in the Printer Layout or in the SST Report. In addition, you can also open a system suitability test by selecting the Select SST variable of the ⇒Quantification Method. In this case, the formulas start with qnt.sst(n.) instead of sst.x and the variables refer to the SST referenced by the number n in brackets. In all other cases, the variables refer to the current SST.

The System Suitability Test category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>sst.number</td>
<td>Number of the SST</td>
</tr>
<tr>
<td>Name</td>
<td>sst.name</td>
<td>Name of the SST</td>
</tr>
<tr>
<td>Sample Condition</td>
<td>sst.sample_condition</td>
<td>Sample condition for the SST</td>
</tr>
<tr>
<td>Test Condition</td>
<td>qnt.test_condition</td>
<td>Aggregate function</td>
</tr>
<tr>
<td>Aggregate Condition</td>
<td>qnt.aggregate</td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>qnt.operator</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>qnt.value</td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td>qnt.channel</td>
<td></td>
</tr>
<tr>
<td>Peak Condition</td>
<td>qnt.peak</td>
<td>User defined test result if the condition cannot be evaluated.</td>
</tr>
<tr>
<td>N.A.</td>
<td>qnt.n_a</td>
<td></td>
</tr>
<tr>
<td>Fail Action</td>
<td>sst.fail_action</td>
<td></td>
</tr>
<tr>
<td>Aggregated Samples</td>
<td>sst.agg_number_real</td>
<td></td>
</tr>
<tr>
<td>Sample Condition Result</td>
<td>sst.sample_cond_result</td>
<td></td>
</tr>
<tr>
<td>Test Results</td>
<td>sst.results</td>
<td></td>
</tr>
<tr>
<td>List of Aggregated Samples</td>
<td>sst.agg_list</td>
<td></td>
</tr>
<tr>
<td>Result List for Aggr. Samples</td>
<td>sst.agg_list_results</td>
<td></td>
</tr>
<tr>
<td>Results of Test Condition or Aggregate</td>
<td>sst.test_cond_result</td>
<td></td>
</tr>
<tr>
<td>Result of Compare Value</td>
<td>sst.value_result</td>
<td></td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
"History" Category

The ⇒History category is only available in the History Report. It includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Name</td>
<td>history.name</td>
<td>Data path, object path and name.</td>
</tr>
<tr>
<td>Object Path</td>
<td>history.path</td>
<td></td>
</tr>
<tr>
<td>Object Version</td>
<td>history.version</td>
<td>Version of the modified object.</td>
</tr>
<tr>
<td>Date/Time</td>
<td>history.time</td>
<td>Date and Time (see ⇒Time) of the modification.</td>
</tr>
<tr>
<td>Operator</td>
<td>history.operator</td>
<td>User - opens the ⇒User Information category.</td>
</tr>
<tr>
<td>Operation</td>
<td>history.operation</td>
<td>Short description of the modification.</td>
</tr>
<tr>
<td>Comment</td>
<td>history.comment</td>
<td></td>
</tr>
<tr>
<td>Detail Number</td>
<td>history.detail_number</td>
<td></td>
</tr>
<tr>
<td>Detail Object</td>
<td>history.detail_object</td>
<td></td>
</tr>
<tr>
<td>Detail Column</td>
<td>history.detail_column</td>
<td></td>
</tr>
<tr>
<td>Detail Old Value</td>
<td>history.detail_old_value</td>
<td>Old value of the modified field.</td>
</tr>
<tr>
<td>Detail New Value</td>
<td>history.detail_new_value</td>
<td>New value of the modified field.</td>
</tr>
<tr>
<td>Detail Comment</td>
<td>history.detail_comment</td>
<td></td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
"Integration Table" and "Summary Table" Categories

Use the variables of the Integration/Summary Table category to calculate various statistical values of samples and replicates. It only makes sense to apply these variables if the table has been sorted before.

The category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Sum</td>
<td>table.groupSum</td>
<td>Total number of report lines with identical group criterion</td>
</tr>
<tr>
<td>Group Count</td>
<td>table.groupCount</td>
<td>Number of report lines with identical group criterion</td>
</tr>
<tr>
<td>Group Average</td>
<td>table.groupAverage</td>
<td>Average of report lines with identical group criterion</td>
</tr>
<tr>
<td>Group Standard Deviation</td>
<td>table.groupStdev</td>
<td>Standard deviation of report lines with identical group criterion</td>
</tr>
<tr>
<td>Group Relative Standard Deviation</td>
<td>table.groupRelStdev</td>
<td>Relative standard deviation of report lines with identical group criterion</td>
</tr>
</tbody>
</table>

**Note:**

On the Summary tab page, the category is named Summary Table. Elsewhere, it is called Integration Table.

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to Report Categories.
"Program" Category

The Program category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>pgm.name</td>
<td>Program name</td>
</tr>
<tr>
<td>Path</td>
<td>pgm.path</td>
<td>Directory where the Program is saved.</td>
</tr>
<tr>
<td>Title</td>
<td>pgm.title</td>
<td>Program title</td>
</tr>
<tr>
<td>Timebase</td>
<td>pgm.timebase</td>
<td>Name of the Timebase to which the program belongs.</td>
</tr>
<tr>
<td>Creation Time</td>
<td>pgm.creation_time</td>
<td>Creation date/time (see Time)</td>
</tr>
<tr>
<td>Creation Operator</td>
<td>pgm.creation_operator</td>
<td>Opens the User Information category</td>
</tr>
<tr>
<td>Last Update Time</td>
<td>pgm.update_time</td>
<td>Date and time of the last update</td>
</tr>
<tr>
<td>Last Update Operator</td>
<td>pgm.update_operator</td>
<td>Opens the User Information category</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to Report Categories.

"Report Definition" Category

The Report Definition category (see Report Definition File (RDF)) is available for some variables only in the Printer Layout; it is not available in tables. It includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>rdf.name</td>
<td>Name of the report definition file</td>
</tr>
<tr>
<td>Path</td>
<td>rdf.path</td>
<td>Path where the report definition file (RDF) is saved.</td>
</tr>
<tr>
<td>Datasource</td>
<td>pgm.dsn</td>
<td>Datasource where the report definition file (RDF) is saved.</td>
</tr>
<tr>
<td>Sheets</td>
<td>pgm.Sheets</td>
<td>Number of the sheets of the report definition file (RDF)</td>
</tr>
<tr>
<td>Current Sheet Number</td>
<td>pgm.CurSheetNo</td>
<td>The current sheet number.</td>
</tr>
<tr>
<td>Current Sheet Name</td>
<td>pgm.CurSheetName</td>
<td>The current sheet name.</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to Report Categories.
"Device Wellness" Category

The Device Wellness category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>wns.Background</td>
<td>The background signal at the time specified in the device configuration properties.</td>
</tr>
<tr>
<td>Pressure</td>
<td>wns.Pump.Pressure</td>
<td>The pressure at the time specified in the device configuration properties.</td>
</tr>
</tbody>
</table>

"Fraction" Category

Note:

In the Printer Layout, the Fraction category is available only for report tables.

The Fraction category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction Number</td>
<td>frac.number</td>
<td>Retention time at fraction start.</td>
</tr>
<tr>
<td>Retention Time Start</td>
<td>frac.start_time</td>
<td>Retention time at fraction start.</td>
</tr>
<tr>
<td>Retention Time End</td>
<td>frac.end_time</td>
<td>Retention time at fraction end.</td>
</tr>
<tr>
<td>Number of Tubes</td>
<td>frac.nTubes</td>
<td>Displays the selected fraction tube - opens the (\Rightarrow) Fraction Tube category</td>
</tr>
<tr>
<td>Select Tube</td>
<td>frac.tube(&quot;OPT&quot;).x</td>
<td>Lists the tubes in the fraction (OPT = option and &lt;Sep.&gt; = used separator).</td>
</tr>
<tr>
<td>Tube List</td>
<td>frac.tubeList(&quot;OPT&quot;, &quot;&lt;Sep.&gt;&quot;)</td>
<td>Volume collected in the fraction</td>
</tr>
<tr>
<td>Collected Volume</td>
<td>frac.volume</td>
<td>Displays the channel parameter selected for the fraction - opens the (\Rightarrow) Fraction Detection Parameter category.</td>
</tr>
<tr>
<td>Channel Parameter</td>
<td>frac.channel.x</td>
<td></td>
</tr>
<tr>
<td>Number of Peaks</td>
<td>frac.nPeaks(&quot;OPT&quot;)</td>
<td>Number of all peaks within the fraction</td>
</tr>
<tr>
<td>(\Rightarrow) Select Peak</td>
<td>frac.peak(&quot;OPT&quot;).x</td>
<td>Selects the peak from the fraction based on the selected parameter - opens the (\Rightarrow) Peak Results category</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to \(\Rightarrow\) Report Categories.
"Fraction Tube" Category

The Fraction Tube category provides different variables indicating how the single tubes have been filled during fraction collection. You can also open the Fraction Tube category via the Select Tube variable of the \( \Rightarrow \) Fraction category. In this case, the formulas start with \texttt{frac.tube.x} instead of \texttt{tube.x}. The variables always refer to the tube indicated in parenthesis. This can be either First, Last, or the actual number of the tube. In all other cases, the variables return the value of the present tube.

\[\text{Note:}\]

\textit{In the Printer Layout, the Fraction Tube category is available only for report tables.}

The Fraction Tube category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube Position</td>
<td>\texttt{tube.position}</td>
<td>Tube position (number)</td>
</tr>
<tr>
<td>Retention Time Start</td>
<td>\texttt{tube.start_time}</td>
<td>Retention time when the system starts to fill the tube.</td>
</tr>
<tr>
<td>Retention Time End</td>
<td>\texttt{tube.end_time}</td>
<td>Retention time when the system stops to fill the tube.</td>
</tr>
<tr>
<td>Collected Volume</td>
<td>\texttt{tube.volume}</td>
<td>Volume collected in the tube.</td>
</tr>
<tr>
<td>Maximum Collectable Volume</td>
<td>\texttt{tube.maxVolume}</td>
<td>Maximum tube capacity</td>
</tr>
<tr>
<td>Number of Peaks</td>
<td>\texttt{tube.nPeaks(&quot;x&quot;)}</td>
<td>Number of 'peaks' collected in the tube</td>
</tr>
<tr>
<td>( \Rightarrow ) Select Peak</td>
<td>\texttt{tube.peak(&quot;OPT&quot;).x}</td>
<td>Selects the peak from the tube based on the selected parameter - opens the ( \Rightarrow ) Peak Results category</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to \( \Rightarrow \) Report Categories.
"Fraction Detection Parameters" Category

The Fraction Detection Parameter category includes different variables that indicate the peak detection setting for the present fraction. This category can be opened only via the $\Rightarrow$Fraction category.

Note:

In the Printer Layout, the Fraction Detection Parameter category is available only for report tables.

The Fraction Detection Parameter category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection Channel</td>
<td>frac.channel.channel</td>
<td>Channel for peak detection</td>
</tr>
<tr>
<td>Channel Name</td>
<td>frac.channel.name</td>
<td>Name of the channel used for peak detection.</td>
</tr>
<tr>
<td>Peak Start Slope</td>
<td>frac.channel.start_slope</td>
<td>The slope must exceed the Peak Start Slope value for the peak start to be recognized.</td>
</tr>
<tr>
<td>Peak Start Curve</td>
<td>frac.channel.start_curve</td>
<td>Curve in [Signal]/s^2 that must be exceeded for a shoulder to be recognized after the peak start.</td>
</tr>
<tr>
<td>Peak Start True Time</td>
<td>frac.channel.start_truetime</td>
<td>The time must be fulfilled for the different conditions for a peak start to be recognized.</td>
</tr>
<tr>
<td>Peak Start Threshold</td>
<td>frac.channel.start_threshold</td>
<td>The signal threshold value must exceed the Peak Start Threshold value for the peak start to be recognized.</td>
</tr>
<tr>
<td>Peak Max Slope</td>
<td>frac.channel.max_slope</td>
<td>The slope value must be below the Peak Max Slope value for the peak maximum to be recognized.</td>
</tr>
<tr>
<td>Peak Max True Time</td>
<td>frac.channel.max_truetime</td>
<td>The time must be fulfilled for the different conditions for a peak maximum to be recognized.</td>
</tr>
<tr>
<td>Peak End Slope</td>
<td>frac.channel.end_slope</td>
<td>The slope value must be below the Peak End Slope value for the peak end to be recognized.</td>
</tr>
<tr>
<td>Variable</td>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Peak End Threshold</td>
<td>frac.channel.end_threshold</td>
<td>The signal threshold value must be below the Peak End Threshold value for the peak end to be recognized.</td>
</tr>
<tr>
<td>Peak End Curve</td>
<td>frac.channel.end_curve</td>
<td>Curve in [Signal]/s^2 that must be exceeded for a shoulder to be recognized after the peak maximum.</td>
</tr>
<tr>
<td>Peak End True Time</td>
<td>frac.channel.end_truetime</td>
<td>The time must be fulfilled for the different conditions for a peak end to be recognized.</td>
</tr>
<tr>
<td>Threshold No Peak End</td>
<td>frac.channel.threshold_no_peak_end</td>
<td>The signal threshold value must be below the Threshold No Peak End value for the peak end to be recognized.</td>
</tr>
<tr>
<td>Baseline Drift</td>
<td>frac.channel.baseline_drift</td>
<td>Start value for the baseline drift. This value is used to correct the signal value.</td>
</tr>
<tr>
<td>Baseline Offset</td>
<td>frac.channel.baseline_offset</td>
<td>Start value for the baseline offset. This value is used to correct the signal value.</td>
</tr>
<tr>
<td>Threshold Do Not Resolve</td>
<td>frac.channel.thrs_no_resolve</td>
<td>Threshold value for the slope in [Signal]/s above which peak detection via the PeakEndSlope parameter was disabled.</td>
</tr>
<tr>
<td>Deriv. Step</td>
<td>frac.channel.deriv_step</td>
<td>Time for which the signal values were evaluated to determine the signal slope and the curve.</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to a list of variables in each category, refer to ⇒Report Categories.
"Spectra Library Screening" Category

The Spectra Library Screening category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectra Library</td>
<td>sls.library</td>
<td>Spectra Library</td>
</tr>
<tr>
<td>Spectra Library</td>
<td>sls.library</td>
<td>Match Criterion</td>
</tr>
<tr>
<td>Match Criterion</td>
<td>sls.match</td>
<td>See Threshold</td>
</tr>
<tr>
<td>Hit Threshold</td>
<td>sls.threshold</td>
<td>See Check Derivative</td>
</tr>
<tr>
<td>Spectrum Derivative</td>
<td>sls.derivative</td>
<td>Wavelength Minimum</td>
</tr>
<tr>
<td>Wavelength Range Minimum</td>
<td>sls.wavelength_min</td>
<td>Maximum/Minimum Wavelength</td>
</tr>
<tr>
<td>Wavelength Range Maximum</td>
<td>sls.wavelength_max</td>
<td></td>
</tr>
<tr>
<td>Max. Allowed Deviation</td>
<td>sls.max_deviation</td>
<td>Relative Maximum Deviation</td>
</tr>
<tr>
<td>Max. Retention Time Deviation</td>
<td>sls.max_ret_deviation</td>
<td>Retention Time</td>
</tr>
<tr>
<td>Check Relative Extrema</td>
<td>sls.rel_extrema</td>
<td>See Check Extrema</td>
</tr>
<tr>
<td>Max. Retention Index Deviation</td>
<td>sls.max_ret_idx_dev</td>
<td>Retention Index</td>
</tr>
<tr>
<td>Max. Kovats Index Deviation</td>
<td>sls.max_kov_idx_dev</td>
<td>See Kovats Index</td>
</tr>
<tr>
<td>Spectra Library Restriction</td>
<td>sls.restriction</td>
<td></td>
</tr>
<tr>
<td>Spectra Library Restriction</td>
<td>sls.restriction_count</td>
<td></td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to Report Categories.
"Spectrum Data" Category

Open the Spectrum Data category by selecting the Reference Spectrum variable of the ⇒Peak Table category. The Spectrum Data category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda Min</td>
<td>peak.spectrum.wlmin</td>
<td>Lower limit of wavelength range</td>
</tr>
<tr>
<td>Lambda Max</td>
<td>peak.spectrum.wlmax</td>
<td>Upper limit of wavelength range</td>
</tr>
<tr>
<td>Lambda Resolution</td>
<td>peak.spectrum.wlResolution</td>
<td>Wavelength resolution</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>peak.spectrum.acqStep</td>
<td></td>
</tr>
<tr>
<td>Absorbance Value</td>
<td>peak.spectrum.sig_value(&quot;max&quot;)</td>
<td></td>
</tr>
<tr>
<td>Absorbance Extremum at [nm]</td>
<td>peak.spectrum.extremum(&quot;relMax&quot;)</td>
<td></td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.

"Mass Spectrum" Category

Open the Mass Spectrum category by selecting the Select Spectrum variable of the ⇒Mass Spectrometry category. The Mass Spectrum category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Data Points</td>
<td>mspec.mass_count</td>
<td>Mass [m/z]</td>
</tr>
<tr>
<td>Mass</td>
<td>mspec.mass</td>
<td>Mass [m/z]</td>
</tr>
<tr>
<td>Intensity</td>
<td>mspec.intensity</td>
<td>Intensity [counts]</td>
</tr>
<tr>
<td>Relative Intensity</td>
<td>mspec.rel_intensity</td>
<td>Relative Intensity (%)</td>
</tr>
<tr>
<td>Minimal Mass</td>
<td>mspec.mass_min</td>
<td>Minimal mass [m/z]</td>
</tr>
<tr>
<td>Maximal Mass</td>
<td>mspec.mass_max</td>
<td>Maximal mass [m/z]</td>
</tr>
<tr>
<td>Mass Range</td>
<td>mspec.mass_range</td>
<td>Mass range [m/z]</td>
</tr>
<tr>
<td>Spectrum Type</td>
<td>mspec.type</td>
<td>Spectra type (centroid/profile)</td>
</tr>
<tr>
<td>Resolution</td>
<td>mspec.resolution</td>
<td>Resolution of the Mass Spectrum</td>
</tr>
<tr>
<td>Total Ion Current</td>
<td>mspec.TIC</td>
<td>Number of TIC channels</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
### "Hit Spectrum" Category

Open the Hit Spectrum category by selecting the SLS Hit variable of the ⇒Peak Purity and Identification category. The Hit Spectrum category includes the following variables for the matching reference spectrum:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance Name</td>
<td>hitSpec.name</td>
<td></td>
</tr>
<tr>
<td>Match Factor</td>
<td>hitSpec.match</td>
<td>Match Factor</td>
</tr>
<tr>
<td>Library Name</td>
<td>hitSpec.lib_name</td>
<td>Name of the Spectra Library</td>
</tr>
<tr>
<td>Library Record</td>
<td>hitSpec.specLib.x</td>
<td>Opens the Spectra Library category</td>
</tr>
<tr>
<td>Number of rel Extrema</td>
<td>hitSpec.nExtrema</td>
<td></td>
</tr>
<tr>
<td>Solvents</td>
<td>hitSpec.solvent</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>hitSpec.comment</td>
<td>Comment</td>
</tr>
<tr>
<td>Sequence Name</td>
<td>hitSpec.seq_name</td>
<td></td>
</tr>
<tr>
<td>Sequence Header Record</td>
<td>hitSpec.sequence.x</td>
<td>Opens the Sample category</td>
</tr>
<tr>
<td>Sample Name</td>
<td>hitSpec.smp_name</td>
<td></td>
</tr>
<tr>
<td>Sample Record</td>
<td>hitSpec.sample.x</td>
<td>Opens the Sample category</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>hitSpec.acqTime</td>
<td></td>
</tr>
<tr>
<td>Timebase</td>
<td>hitSpec.timebase</td>
<td>Timebase</td>
</tr>
<tr>
<td>Program</td>
<td>hitSpec.program</td>
<td>PGM File used for recording the library spectrum.</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>hitSpec.acqStep</td>
<td></td>
</tr>
<tr>
<td>Retention Time</td>
<td>hitSpec.retention_time</td>
<td>Retention Time</td>
</tr>
<tr>
<td>Lambda Min</td>
<td>hitSpec.wlMin</td>
<td>Lower limit of wavelength range</td>
</tr>
<tr>
<td>Lambda Max</td>
<td>hitSpec.wlMax</td>
<td>Upper limit of wavelength range</td>
</tr>
<tr>
<td>Lambda Range</td>
<td>hitSpec.wlRange</td>
<td>Wavelength range</td>
</tr>
<tr>
<td>Lambda Resolution</td>
<td>hitSpec.wlResolution</td>
<td>Wavelength resolution</td>
</tr>
<tr>
<td>Detector Name</td>
<td>hitSpec.detectorName</td>
<td></td>
</tr>
<tr>
<td>Detector Serial No.</td>
<td>hitSpec.detectorSerNo</td>
<td></td>
</tr>
<tr>
<td>Extract Time</td>
<td>hitSpec.extrTime</td>
<td></td>
</tr>
<tr>
<td>Extract Operator</td>
<td>hitSpec.operator</td>
<td></td>
</tr>
<tr>
<td>Retention Index (lin)</td>
<td>hitSpec.ri</td>
<td>Linear Retention Index</td>
</tr>
<tr>
<td>Kovats Index</td>
<td>hitSpec.ri</td>
<td>Kovats Index</td>
</tr>
</tbody>
</table>
"Spectra Library" Category

Open the Spectra Library category by selecting the Library Record variable of the ⇒Hit Spectrum category. The Spectra Library category includes the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>specLib.name</td>
<td>Spectra library name</td>
</tr>
<tr>
<td>Directory</td>
<td>specLib.path</td>
<td>Directory in which the spectra library is saved</td>
</tr>
<tr>
<td>Datasource</td>
<td>specLib.dsn</td>
<td>Name of corresponding datasource</td>
</tr>
<tr>
<td>Timebase</td>
<td>specLib.timebase</td>
<td>Timebase where the reference spectrum was recorded</td>
</tr>
<tr>
<td>Title</td>
<td>specLib.title</td>
<td>Spectra library description</td>
</tr>
<tr>
<td>Number of Spectra</td>
<td>specLib.nSpectra</td>
<td>(See ⇒Time)</td>
</tr>
<tr>
<td>Creation Date &amp; Time</td>
<td>specLib.creation_time</td>
<td>Opens the ⇒User Information category</td>
</tr>
<tr>
<td>Creation Operator</td>
<td>specLib.creation_operator</td>
<td></td>
</tr>
<tr>
<td>Creation Software Version</td>
<td>specLib.creation_version</td>
<td></td>
</tr>
<tr>
<td>Last Update Date &amp; Time</td>
<td>specLib.update_time</td>
<td></td>
</tr>
<tr>
<td>Last Update Operator</td>
<td>specLib.update_operator</td>
<td></td>
</tr>
<tr>
<td>Last Update Software Version</td>
<td>specLib.update_version</td>
<td></td>
</tr>
<tr>
<td>Retention Index (lin)</td>
<td>specLib.ri</td>
<td>Linear ⇒Retention Index</td>
</tr>
<tr>
<td>Kovats Index (log)</td>
<td>specLib.ki</td>
<td>⇒Kovats Index</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
"User Information" Category

You can open the User Information category via all Operator variables of the different categories except the Operator variable of the System Suitability Test category. For example, select the Creation Operator variable of the ⇒Sequence category. The User Information category includes the following variables (formulas according to the above mentioned example):

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User ID</td>
<td>seq.creation_operator.userID</td>
<td>ID of the user</td>
</tr>
<tr>
<td>User Name</td>
<td>seq.creation_operator.userName</td>
<td>Name of the user</td>
</tr>
<tr>
<td>Job Title</td>
<td>seq.creation_operator.jobTitle</td>
<td>Job title of the user</td>
</tr>
</tbody>
</table>

For an overview of the different report variable categories, including links to the lists for the respective categories, refer to ⇒Report Categories.
"Select Peak" Options

Use the Select Peak variable of the ⇒Chromatogram category to select a peak in the chromatogram. The Select Peak variable opens the ⇒Peak Results category. Enter an option in the Formula field.

Note:

Instead of using the Formula field, you may as well click Parameter and select an option from the Select Peak drop-down list.

The meaning of the options is as follows:

"Formula": chm.peak(OPT, [Name, Number])

OPT = "By Number" (default):

Searches the chromatogram for the peak with the indicated number. Example: chm.peak("By Number," 1).area determines the area of the first peak in the chromatogram.

OPT = "By Name":

Searches the chromatogram for the peak with the indicated name. Example: chm.peak("By Name," "Benzene").amount determines the amount of benzene in the sample.

OPT = "By Tab.Number":

Searches the chromatogram for the peak that was identified by the corresponding line in the peak table. Example: chm.peak("By Tab.Number," 2).height searches the chromatogram for the peak that was identified by the second line in the peak table, and then it determines its height.

OPT = "By Group":

Searches the chromatogram for the first peak in a specific peak group. Example: chm.peak("By Group," "CKW").amount searches the chromatogram for the first peak in the ⇒Group (Peak Group) called CKW and then determines its ⇒Amount.

OPT = "By SLS-Hit":

Searches the chromatogram for a peak for which at least one SLS hit is available. Example: chm.peak("By SLS-Hit," 2).hitSpec(1).name selects the second peak in the chromatogram for which at least one SLS hit is available. In addition, the name of the respective library spectrum with the best match is indicated.

OPT = "ISTD":

Searches the chromatogram for the ⇒Internal Standard peak. If there are several ISTD peaks, the number of the ISTD peak can be indicated by a second parameter. Example: chm.peak("ISTD").area searches the chromatogram for the first ISTD peak and calculates its area. chm.peak("ISTD," 2).area calculates the area of the second ISTD peak.
OPT = "Ref": Searches the chromatogram for the reference peak (Retention Time Interpretation as Time Distance to ... or Time Ratio to...) For example: `chm.peak("Ref").retention_time` searches for the reference peak and then calculates the corresponding retention time.

OPT = "Condition": Searches the chromatogram for the first peak for which the conditions becomes true. For example: `chm.peak("By Condition","peak.area>10.000").retention_time` searches for the first peak with an area larger than 10.000 and returns its retention time.

"Select Peak in the Peak Table" Options

Use the Select Peak in the Peak Table variable of the \(\Rightarrow\) Quantification Method category to select a peak in the peak table of the QNT Editor. This variable opens the \(\Rightarrow\) Peak Table category. Enter an option in the Formula field.

**Note:**

Instead of using the Formula field, you may as well click Parameter and select an option from the Select Peak drop-down list.

The meaning of the options is as follows:

"Formula": `qnt.peakTabLine(OPT, [name, number])`

- **OPT = "By Name":** Searches the peak table for the first line with the corresponding name. Example: `qnt.peakTabLine("By Name," "Benzene").amount(1)` returns the value in the first amount column for the peak 'Benzene'.

- **OPT = "By Number" (default):** Searches the peak table for the line with the corresponding number. Example: `qnt.peakTabLine("By Number," 1).name` returns the name of the first peak in the peak table.

- **OPT = "By Group":** Searches the peak table for the first line with the specified group entry. Example: `qnt.peakTabLine("By Group," "CKW").amount(1)` returns the value in the first amount column for the first peak in the group called CKW.

- **OPT = "ISTD":** Searches the peak table for the line with the ISTD peak. If there are several ISTD peaks, the corresponding number can be specified via the second parameter. If no number is specified, the first ISTD peak will be used. Example: `qnt.peakTabLine("ISTD," 2).name` returns the name of the second ISTD peak.

- **OPT = "Ref":** Searches the peak table for the line with the Reference Peak (Retention Time Interpretation as Time Distance to ... or Time Ratio to...) Example: `qnt.peakTabLine("Ref").name` returns the name of the reference peak.
Glossary
%B, %C, %D (Solvent Components)

The solvent and thus, the \( \Rightarrow \) Flow usually consist of different components. The amounts of the single partial flows (solvent components) are indicated in percent of the flow. The total of all partial flows is 100\% (%A + %B + %C + %D = 100\%), where %A is calculated from the remaining partial flows (%A = 100\% - (%B + %C + %D)). Therefore, it is sufficient to determine the values for %B, %C, and %D. Changing the solvent composition during the analysis is referred to as \( \Rightarrow \) %-Gradient.

Also, refer to \( \Rightarrow \) %B, %C, %D (Solvent Components).

%-Gradient

See \( \Rightarrow \) (%-) Gradient.

3D_Amp

The 3D_Amp signal is available for an ICS-3000 ED electrochemical detector in integrated amperometry mode. The signal records the detector response (current), at time \( t \) (in milliseconds) in the \( \Rightarrow \) Waveform period and time \( T \) (in minutes) of the run (retention time). As a result, the two-dimensional view of an integrated amperometry chromatogram (retention time and integrated current) is extended by a third dimension (waveform time).

You can display and evaluate this three-dimensional data set in the 3D Amperometry window. Each detector current value is entered as a data point in a waveform time by retention time grid, producing 3D data that stretches in the x, y, and z directions.

Also, refer to \( \Rightarrow \) The 3D Amperometry Window.

3D Field

A \( \Rightarrow \) Photodiode Array Detector (PDA) simultaneously measures the different absorptions in a wavelength range at the time \( t \). The two-dimensional view of a chromatogram (retention time and absorption height) is extended by another dimension (wavelength). Each recorded data point contains information about the detected wavelength, in addition to the retention time and the absorption value.
The resulting 3D field stretches in x, y, and z-direction.

Dionex Photodiode Array Detectors record data points via the 3DFIELD signal. You may use Signal Parameters to influence signal recording in the same way as for any other signal.

Recording a 3D field can produce an enormous amount of data that depends on the selected Sampling Rate, the detector's Optical Resolution, and the selected wavelength range. This not only requires special data compression procedures (see Data Management Raw Data Compression), but also makes it impossible to control photodiode array detectors via conventional serial interfaces. That is why powerful special connectors and separate interface cards are used for the PC connection of the Dionex PDAs, such as the UVD 340U detector. This connection even allows online representation of the 3D field on a Control Panel. You can display and evaluate existing 3D fields in different modes (see: 3D Field: Presentation Modes). The PPA (Peak Purity Analysis) pane is available for this.

### 3D Field: Presentation Modes

The 3D Field is the relation between the retention time, wavelength, and absorption. Chromeleon supports two modes for presenting three-dimensional figures: ISO plot and 3D plot presentation. Use the Decoration dialog box of the PPA (Peak-Purity Analysis) pane to toggle between the two modes.

<table>
<thead>
<tr>
<th>Presentation Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO Plot</td>
<td>In the area formed by the retention time and the wavelength, lines with equivalent absorption are displayed in the same color. The resolution increases with the number of drawn lines (levels). Online representation of the ISO plot, i.e., its real-time representation, is possible as well.</td>
</tr>
<tr>
<td>3D Plot</td>
<td>The 3D plot is a combination of perspective projection and iso-line plot. The iso-lines are moved to the third dimension, depending on the absorption degree. A grid containing all retention time and wavelength values is placed over the created profile.</td>
</tr>
</tbody>
</table>

>Note:

The 3D plot presentation mode requires more computing resources than the ISO plot presentation. Therefore, on-screen representation requires more time. Copying a 3D plot to the clipboard or printing is more time-consuming, as well.
3D Plot
See ➤ 3D Field: Presentation Modes

A Groups
See ➤ Access Groups

Access Groups (A Groups)
An Access Group includes various Chromeleon users. Membership in a specific Access Group determines which objects (server, ➤ Timebases, ➤ Datasources, and directories) the user can access. Each user can belong to several Access Groups.

For example, the All Access Group can include users A, B, C, X, Y, and Z, while the Specials group can include only users A, B, and C.

The more different Access Groups that you create, the more precisely you can define access rights in Chromeleon. (For more information, refer to Software Installation and Communication ➤ Access Control in the Administrator Help section.)

After creating an Access Group in the ➤ User Manager (CmUser program), the system administrator determines the objects the user can access:

a) In the Chromeleon ➤ Client, the system administrator specifies the access rights to datasources, directories, and sequences.

b) In the ➤ Server Configuration program, the system administrator specifies the rights to servers and timebases.

To assign access rights, select the object, and then select Properties on the context or Edit menu. In the Properties dialog box, specify which user groups are granted access to the selected object.

If a user belongs to an Access Group, certain privileges are automatically assigned to the user. These ➤ Privileges are defined in Privilege Groups.

Note:
If the ➤ User Mode is disabled, the user has all rights but (s)he cannot access any section that is protected by an Access Group.
Account

Each user has a separate account. When the User Mode is enabled, the account is checked each time the user logs on. To prevent penetration from the outside, the system administrator can determine in the User Manager (CmUser program) whether a user account shall be locked after a specified number of failed Logons. In addition, a user account can be locked completely (Account locked). In both cases, the user can restart the Chromeleon client only when the system administrator grants access to the account again.

Acquisition On/Off

The Acquisition on command enables data recording (Raw Data) from all selected Signals or channels of a Timebase. The signal parameters determine the type of data for signal recording.

Also, refer to AcqOn/Off.

Additional Functions

The Report Publisher is an add-on module to the Chromeleon software and provides 124 additional functions for creating user-defined formulas in the Printer Layout. For more information about the formulas, select Additional Functions in the index of the Chromeleon online Help.

For an application example, refer to How to ...: Creating and Using Report Tables Entering User-defined Formulas.

For an overview of the available functions, refer to the following lists:

Date and Time

<table>
<thead>
<tr>
<th>DATE</th>
<th>HOUR</th>
<th>SECOND</th>
<th>WEEKDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATEVALUE</td>
<td>MINUTE</td>
<td>TIME</td>
<td>YEAR</td>
</tr>
<tr>
<td>DAY</td>
<td>MONTH</td>
<td>TIMEVALUE</td>
<td></td>
</tr>
<tr>
<td>DAYS360</td>
<td>NOW</td>
<td>TODAY</td>
<td></td>
</tr>
</tbody>
</table>
### Mathematics and Trigonometry

<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
<th>Function</th>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>COS</td>
<td>LOG10</td>
<td>SIN</td>
<td></td>
</tr>
<tr>
<td>ACOS</td>
<td>COSH</td>
<td>MOD</td>
<td>SINH</td>
<td></td>
</tr>
<tr>
<td>ACOSH</td>
<td>EVEN</td>
<td>ODD</td>
<td>SQRT</td>
<td></td>
</tr>
<tr>
<td>ASIN</td>
<td>EXP</td>
<td>PI</td>
<td>SIGN</td>
<td></td>
</tr>
<tr>
<td>ASINH</td>
<td>FACT</td>
<td>PRODUCT</td>
<td>SUM</td>
<td></td>
</tr>
<tr>
<td>ATAN</td>
<td>FLOOR</td>
<td>RAND</td>
<td>SUMIF</td>
<td></td>
</tr>
<tr>
<td>ATAN2</td>
<td>INT</td>
<td>ROUND</td>
<td>SUMSQ</td>
<td></td>
</tr>
<tr>
<td>ATANH</td>
<td>LN</td>
<td>ROUNDDOWN</td>
<td>TAN</td>
<td></td>
</tr>
<tr>
<td>CEILING</td>
<td>LOG</td>
<td>ROUNDUP</td>
<td>TANH</td>
<td></td>
</tr>
</tbody>
</table>

### Statistics

<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
<td>COUNTIF</td>
<td>STDEV</td>
<td>VARP</td>
</tr>
<tr>
<td>COUNT</td>
<td>MAX</td>
<td>STDEVP</td>
<td>VAR</td>
</tr>
<tr>
<td>COUNTA</td>
<td>MIN</td>
<td>VAR</td>
<td></td>
</tr>
</tbody>
</table>

### Addressing

<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td>HLOOKUP</td>
<td>LOOKUP</td>
</tr>
<tr>
<td>COLUMN</td>
<td>INDEX</td>
<td>MATCH</td>
</tr>
<tr>
<td>COLUMNS</td>
<td>INDIRECT</td>
<td>OFFSET</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VLOOKUP</td>
</tr>
</tbody>
</table>

### Text

<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
<th>Function</th>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC</td>
<td>FINDB</td>
<td>MIDD</td>
<td>SEARCHB</td>
<td></td>
</tr>
<tr>
<td>CHAR</td>
<td>FIXED</td>
<td>PROPER</td>
<td>SUBSTITUTE</td>
<td></td>
</tr>
<tr>
<td>CLEAN</td>
<td>LEFT</td>
<td>REPLACE</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>CODE</td>
<td>LEFTB</td>
<td>REPLACEB</td>
<td>TEXT</td>
<td></td>
</tr>
<tr>
<td>CONCATENATE</td>
<td>LEN</td>
<td>REPT</td>
<td>TRIM</td>
<td></td>
</tr>
<tr>
<td>DBCS</td>
<td>LENB</td>
<td>RIGHT</td>
<td>TRUNC</td>
<td></td>
</tr>
<tr>
<td>EXACT</td>
<td>LOWER</td>
<td>RIGHTB</td>
<td>UPPER</td>
<td></td>
</tr>
<tr>
<td>FIND</td>
<td>MID</td>
<td>SEARCH</td>
<td>VALUE</td>
<td></td>
</tr>
</tbody>
</table>

### Logic

<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>IF</td>
<td>OR</td>
<td>TRUE</td>
</tr>
<tr>
<td>FALSE</td>
<td>NOT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AIA (ALSSA)

AIA (today called ALSSA) is the abbreviation for Analytical Instrument Association (ALSSA = Analytical and Life Science Systems Association). The AIA is an association of manufacturing and sales companies for chemical analysis instruments and software. Their aim is to develop guidelines for a standardized chromatography file format and thus, facilitate exchanging data between laboratory systems produced by different manufacturers.

This especially refers to the independence from operating systems and the selected transfer type, but standardization efforts also involve operation, documentation, maintenance, and GLP requirements.

The generally valid AIA (ALSSA) export format for chromatography data is known as ANDI (ANalytical Data Interchange/Chromatography).

Since 1992, there are five data format categories (Category 1 through 5). However, only the categories 1 and 2 are widely accepted so far.

Data formats of category 1 comply with standard raw data, unit, and scaling guidelines, and include information about where original data and corresponding methods are stored. This allows you to exactly restore a chromatogram from its raw data.

In addition to amount values and names for substance identification, data formats of category 2 also transmit all calculated results; for example, based on a chromatogram. Thus, the data can be managed in a database or LIMS.

Using the AIA format (ANDI) in Chromeleon

To export data from Chromeleon, you can use the ANDI format. Select Export/Backup on the File menu of the Browser. Select ANDI/Chromatography (AIA) to open the Export ANDI/Chromatography (AIA) dialog box.
It is also possible to export and print data simultaneously. On the File menu in the Browser, select Batch Report. Under Export Options, select the Export check box. The Export Wizard: Common Options dialog box appears. Select the ANDI/Chromatography - AIA (*.cdf) check box, and then click Next. In the Export Wizard: Options AIA Format (*.cdf) dialog box, define the AIA format. The Export Wizard corresponds to the Batch Setup command in the Printer Layout. Enable Layout Mode on the Edit menu, and then select Batch Report Setup on the File menu. On the AIA format (*.cdf) tab page, define the AIA format.

You can also import AIA files into Chromeleon. On the File menu of the Browser, select Import/Restore, and then select the ANDI/Chromatography (AIA). In the dialog box, select the file to be imported.

**AIA Peak Type**

*See ➤Detection Code at Peak Start or Peak End*

**Align**

Select the Align function to align two or more selected ➤Controls in the ➤Layout Mode (left, right, top, bottom) or to assign them identical dimensions (width, height, size).

The ➤Control Frame of the control that is selected first is the reference for the control(s) to be aligned.

**Amount**

The Amount peak table parameter defines the content of a component in a standard sample. For each component used for calibration, exactly one amount value is entered in the Amount column of the peak table in the QNT Editor. (For information about the editor, see Data Representation and Reprocessing ➤The QNT Editor.)

Also, refer to ➤Amount
Amount Deviation

The Amount Deviation peak table variable specifies the difference between the nominal Amount included in the Amount column of the peak table and the value actually determined by area calculation (actual amount):

\[
\text{Amount Deviation} = \text{Actual Amount} - \text{Nominal Amount}
\]

By default, the difference is expressed in absolute amount units (= Absolute parameter). Alternatively, input is possible in percent of the expected amount value (= Relative parameter).

Use this variable to check the quality of a calibration. The smaller the determined deviation, the closer is the corresponding calibration point to the calibration curve.

APS

The Dionex Autopurification system series is called APS. The series includes the APS-2000 (semipreparative) and APS-3000 (preparative) systems and comprises the following devices:

<table>
<thead>
<tr>
<th>Device/Accessory</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumps</td>
<td>P680</td>
<td>HPLC pump</td>
</tr>
<tr>
<td></td>
<td>PP-150</td>
<td>preparative HPLC pump (APS-3000 only)</td>
</tr>
<tr>
<td>Sample and Fraction</td>
<td>SFM</td>
<td>Autosampler and fraction collector</td>
</tr>
<tr>
<td>Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV detectors</td>
<td>UVD 170 UV-VIS</td>
<td>UV Detector</td>
</tr>
<tr>
<td></td>
<td>UVD 340 PDA</td>
<td>Photodiode Array Detector</td>
</tr>
<tr>
<td>Mass Spectrometer</td>
<td>MSQ</td>
<td>Thermo Finnigan Mass Spectrometer</td>
</tr>
</tbody>
</table>

In addition, the APS comprises the following devices:

- SSM - Safety and Solvent Monitoring System,
- System Safety Platform
- Accurate Flow Splitter or Active Splitter
- The Chromeleon software is another main part of the APS.

Also, refer to Chromatography Components: Hardware and Software Chromatography Instruments.
ARC

ARC, which is the abbreviation for Automated Run Completion, is an Autopurification feature in Chromeleon. After the target compound has been found, Chromeleon automatically terminates the run. This saves time and increases the efficiency of sample processing and fraction collection.

Area

The Area peak result variable specifies the area between the signal curve, the baseline, and the perpendicular delimiters, if required. The (resolved or non-resolved) baseline considerably influences the size of the peak area.

Rider peaks have a separate area that is limited by a skimming tangent and the signal curve.

The peak area is computed from the summation of trapezoids. The trapezoidal area between the two data points \((T1,A1)\) and \((T2,A2)\) is

\[
\text{Area} = (T2-T1)\times\frac{(A1+A2)}{2}.
\]

After the corresponding trapezoids of all data points have been summed up, the baseline is subtracted. For the \((B\_T1,B\_A1)\) and \((B\_T2,B\_A2)\) baseline points at peak start and at peak end, the baseline area is computed as

\[
\text{Area} = (B\_T2-B\_T1)\times\frac{(B\_A1+B\_A2)}{2}.
\]

The areas of the rider peaks are computed accordingly and subtracted from the corresponding main peaks.

The dimension of the area depends on the used detector type. For UV detectors, the dimension is usually specified in mAU * min (milliabsorbance minutes).
## Asymmetry

The **Asymmetry** peak result variable is a measure for peak fronting or tailing. The peak asymmetry helps evaluating the column quality as long as the analysis conditions (solvent, column type, etc.) are identical.

Theoretically, peaks correspond to a symmetrical Gauss distribution. Any insufficient separation deviates from this ideal. That is why you should analyze and eliminate any distinct asymmetry.

The parameter has no dimension and is defined differently, depending on whether using the USP, EP, or AIA standard:

<table>
<thead>
<tr>
<th>Asymmetry</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>USP/EP standard</strong></td>
<td>( A = \frac{RW_{5%} + LW_{5%}}{2 \cdot LW_{5%}} )</td>
</tr>
<tr>
<td><strong>AIA standard</strong></td>
<td>( A = \frac{RW_{10%}}{LW_{10%}} )</td>
</tr>
</tbody>
</table>

With:
- Right and Left peak width in 5% and 10% of the peak height.

For ideal peaks, asymmetry is \( A = 1 \). However, for real tailing peaks \( A \) is between 1.2 and 5 (USP/EP standard). Values higher than 5 usually produce imprecise quantitative results.

If the asymmetry is calculated in 10% of the peak height, this value is referred to as **Skewness**.

Select the column in the report, select **Column Properties** on the context menu, and then select the **Asymmetry** variable from the **Variables** list. Click **Parameter**. In the **Parameter Input for 'Peak Asymmetry'** dialog box, specify whether the calculation is based on the USP/EP or AIA standard.

**Note:**

*EP = European Pharmacopeia, USP = United States Pharmacopeia*
Atlas Electrolytic Suppressor (AES)
See Suppressors

Audit Trail
The Audit Trail is a daily event log that is maintained independently for each system. It facilitates compliance with Good Laboratory Practice (GLP) by recording all events related to instrument operation, such as system events, pre-run device settings, executed command, and error messages. In addition, you can include the current audit trail on the Control Panel.

For more information, refer to Data Management Audit Trails.

Auto Autoscale
Select the Auto Autoscale option to automate the performance of the Autoscale function. During data acquisition, the Auto Autoscale option adjusts the scaling of the signal axis exactly to the size of the open chromatogram whenever the signal leaves the signal plot in y direction.

Auto Plot Speed
Select the Auto Plot Speed option to automatically increase the time axis on a signal plot when the end of the signal plot is reached. The time is increased by the period defined on the Axis/Decoration tab page.

Autopurification
Chromeleon supports automatic fraction collection, also referred to as autopurification. In the first step, individual samples are analyzed to determine whether fractionation is appropriate. This can depend on the following criteria:
- Existence of a target compound
- Purity of the target compound
- Amount of the target compound
- Additional user-defined conditions
It is possible to define a maximum of ten target compounds. If all conditions are fulfilled, the sample is fractionated. This step, too, is chromatographically monitored. Finally, additional chromatographic analyses can be performed for the individual fractions.

This process can be automated via Post-Aquisition Steps:

Select **Create Purification Samples** to create the samples for purification.

Select **Create Fraction Analysis Samples** to create fractionated samples.

The ⇒Auto Purif. Type sample variable identifies the autopurification step.

1. **Analytic** = original, analytical sample
2. **Preparation** = preparative sample
3. **Fraction** = fraction or tubes generated from the preparative sample

If samples of these three sample types belong together, their ⇒Auto Purif. Ref entries in the sample list are identical.

Tip:

In order to perform autopurification, a Purification license must be installed on your PC.

For information about how to perform autopurification, refer to How to …: Collecting Fractions Automatically (Autopurification) and to the operating instructions for the Autopurification Systems series.

### AutoQ Equipment Qualification

Dionex AutoQ combines different tools for the automatic qualification of both Chromeleon software and a wide range of chromatography instruments. Thus, AutoQ provides comprehensive functions for quick and easy compliance with the required qualification regulations. A key feature of Dionex AutoQ is that the tests are available not only for Dionex instruments, but for instruments from other manufacturers, also.

Dionex AutoQ is available for the following systems:

- **Chromeleon** software
- **Dionex IC modules** and **Summit HPLC modules**
- **Agilent 1100 HPLC System** modules
- **Shimadzu LC10** and **LC2010** HPLC instruments
- **Shodex RI-101** HPLC Refractive Index Detector
- **TSP** HPLC modules
- **Waters** HPLC devices (including the **Alliance 2690/2695** Systems and the 996/2996 PDA's)

For more information, refer to Validation, AutoQ, and System Wellness [AutoQ Equipment Qualification](#).

### Autosampler

Autosamplers allow routine analyses to be automated. Depending on the autosampler type and model, a number of samples can be prepared and then processed (injected) in a **Batch** (automatic batch processing).

When operating an autosampler, it is important to understand the difference between sample loading and sample injection.

#### Loading the Sample

The fluid input and output are directly connected. The sample is transported from the pump, through the autosampler, and on to the column. In a second cycle, the volume to be injected is drawn from a sample vial into the sample loop, using a syringe.

#### Injecting the Sample

To inject the sample, the needle descends into the needle port (GINA 50 and ASI-100) or the inject port (AS and AS50). The injection valve is switched, directing the solvent flow through the sample loop and the needle port or inject port to the column. Any sample remaining in the syringe is directed to waste.
Example for a load/inject process (here: the Dionex ASI-100 autosampler):

![Diagram of load/inject process]

The Dionex Gina 50, ASI-100, AS, and AS50 autosamplers function on this basis. Apart from the standard models, versions providing temperature control (Gina 50T and ASI-100T) and preparative versions (ASI-100P, ASI-100PT with temperature control) are available. In addition, the standard version of ASI-100 autosamplers supports derivatization and method programming.

For more information, refer to **Control Dionex Autosamplers**.

**Autoscale**

Each time the **Autoscale** command is selected, the scaling of the signal plot is adjusted exactly to the displayed window section; for example, the height of a peak. The adjustment depends on the method.

For instance, the difference between the maximum and minimum value of the largest peak fills 80% of the signal axis in online mode and 100% in the PPA representation.

Select **Auto Autoscale** to perform autoscaling automatically.
Autozero

The Autozero command resets physical or Virtual Signals to zero. All values that are subsequently measured are interpreted and displayed in relation to the new zero point. This is usually indicated in the chromatogram by a sharp increase in the absorption value.

Tip:

Enter the command separately for each detector if several detectors are switched in series.

Also, refer to ⇒Autozero

Average

The Average parameter allows you to average signals. Signal averaging is possible for digital signals that are sent to the server PC by the detector, such as the Dionex UVD 170U and UVD 340U detectors, and for analog signals recorded via the UCI Universal Chromatography Interface.

The Dionex UCI records each analog signal with a frequency of 100Hz. This corresponds to a Step of 0.01 second or a Sampling Rate of 100 data points per second. When you increase the step or decrease the sampling rate, fewer data points are stored than theoretically possible.

Also, refer to ⇒Average

Averaged Baseline

The Averaged Baseline is a baseline that is valid throughout the entire chromatogram. The baseline can be defined for single chromatograms.

For more information, refer to How to …. Working with Chromatograms ⇒Defining an Averaged Baseline.
Backup

Select Backup to store data for data security. For information about how to back up data, refer to How to …: Creating and Managing Files and Data Creating Backup Files.

Chromeleon stores data in databases or other files organized in a hierarchical directory structure. There are many cross-links among the included objects. For problem-oriented data archiving, it is necessary to know how the individual objects are linked with each other. As conventional backup and archiving programs do not support this, Chromeleon has its own backup program. The Chromeleon backup program supports the following functions:

- Archiving of all objects displayed in the Browser (samples, sequences, files, entire directory trees, etc.), together with all linked files (Raw Data, audit trails (see Data Management Audit Trails), history, preferred Report Definition File (RDF), etc.).
- Selective restoration of objects stored using the Backup command
- Compressing the stored data
- Dividing the backup files on several media; for example, disks or ZIP media
- Optionally deleting original files after the backup has been performed successfully
- Generating the corresponding entries in the History

Backup files are located outside the Datasource. That is why they are not stored within the directory structure of the datasources. They have no file history and the user management does not protect them. Select Restore to restore backup files that were created using the Backup command. (For more information, refer to How to …. Creating and Managing Files and Data Restoring Backup Files.)

Tip

If you have created a backup file that contains a new feature, please keep in mind that you cannot read this file with a Chromeleon version that does not support this feature. For example, this refers to:

- Sequence Report Columns (available since Chromeleon 6.50)
- Std. Add. Group and Ref. Amount Set sample columns (available since Chromeleon 6.60)
- The Trend Plot (available since Chromeleon 6.50)
Bandwidth

The bandwidth is the nm range at which the chromatogram is recorded. The bandwidth usually corresponds to the \textit{Optical Resolution}.

The bandwidth can be selected by averaging several single photodiode signals. This process is known as \textit{Diode or Wavelength Bunching}. Averaging is performed symmetrically to the selected wavelength. Thus, at a bandwidth of 31 nm and a wavelength of 255 nm, for example, the signals of all photodiodes in the range of 240 to 270 nm are averaged.

Also, refer to \textit{Bandwidth}

Baseline

The line drawn from peak start to peak end for calculating the peak area is called baseline.

\textbf{Note:}

\textit{In colloquial language, the chromatogram section between two peaks is also referred to as baseline.}

Baseline Correction of Spectra

Automatic correction of a spectrum by a calculated baseline spectrum allows you to compare single spectra, even under varied conditions. Especially peak spectra on a gradient or of \textit{Rider Peaks} can be compared more precisely after a large "underground portion" (due to the gradient portion or the larger main peak) is now removed.

When the spectra plot (\textit{Show Spectra}) is displayed, it is always corrected by the baseline spectrum. If you enable \textbf{Baseline correction} in the \textbf{PPA (Peak Purity Analysis)} view, the baseline spectrum is also subtracted for this view.

Establishing a Baseline Spectrum

Based on the peak recognition algorithm, Chromeleon establishes the start and end of all peaks for the \textit{Reference Channel} and marks these points by positioning peak delimiters (\textit{ta} and \textit{te}). The \textit{Baseline (I)} is drawn between the two delimiters.
This is performed for all detected wavelengths. The absorbance values at all wavelengths measured at the time $t_a$ and $t_e$ result in the baseline spectrum of the peak start and peak end (II, a and b). Chromeleon interpolates the two spectra and calculates a separate baseline spectrum for each data point of a peak. By definition, the 3D field is zero outside the peak delimiters if baseline correction is enabled.

Each spectrum measured at a given time $t$ can now be corrected by a calculated baseline spectrum (III).

**Baseline Correction with Manual Re-Integration**

Manually shifting the peak delimiters necessarily influences the baseline spectrum. After each manipulation, the new baseline spectra are automatically re-interpolated and re-calculated.

Depending on the changes to the peak delimiters, this will also change the spectrum, for example, the spectra plot.

**Tips:**

*Baseline correction can only be performed for the spectra of those peaks that are part of the integrated reference channel.*

*Baseline correction near the detection limits often considerably smooths the PPI and Match Curve because it eliminates the spectral baseline portion.*
The PPA report is always baseline corrected.

If you add a spectrum from the spectra plot to the spectra library using the Windows clipboard, the spectrum will always be baseline-corrected.

If you add a spectrum from the PPA method to the spectra library using the Windows clipboard, the spectrum will always be baseline-corrected, independent of the settings on the General tab. (To access the General tab, open the PPA view and select Decoration on the View menu.)

Baseline Correction influences only the representation of the PPA view.

Baseline Correction of I-t Plots

I-t plots can be corrected by subtracting a calculated baseline I-t plot from the 3D_Amp data. This lets you compare single I-t plots, even under varied conditions. For example, I-t plots of peaks on a gradient or of Rider Peaks can be represented more precisely because a large "background portion" (due to the gradient portion or the larger main peak) is now removed.

Tip:

To apply baseline correction to 3D amperometry data, select Decoration on the context menu and select Baseline correction on the General tab page.

Establishing a Baseline I-t Plot

Based on the peak recognition algorithm, Chromeleon establishes the start and end of all peaks for the channel and marks these points by positioning peak delimiters (Ta and Te). The Baseline (I) is drawn between the two delimiters.
This is performed for all waveform times \((t)\). The response \((nA)\) at all waveform times measured at the time \(T_s\) and \(T_e\) result in the baseline \(I-t\) plot of the peak start and peak end (\(\text{II, a and b}\)). Chromeleon interpolates the two \(I-t\) plots and calculates a separate baseline \(I-t\) plot for each data point of a peak. Each \(I-t\) plot measured at a given retention time \((T)\) can now be corrected by a calculated baseline \(I-t\) plot (\(\text{III}\)). By definition, if baseline correction is enabled, 3D amp data is zero outside the peak delimiters.

The plot below is an example of 3D amperometry data before baseline correction is enabled.

The plot below shows the same data after enabling baseline correction.
Baseline Correction with Manual Re-Integration
Manually shifting the peak delimiters necessarily influences the baseline I-t plot. After each manipulation, the new baseline I-t plots are automatically re-interpolated and re-calculated.

Also, refer to The 3D Amperometry Window.

Baseline Point
The Baseline Point detection parameter defines a baseline point at the indicated time.

Also, refer to Baseline Point

For information about how to apply detection parameters refer to How to …: Integrating Chromatograms and Identifying Peaks Modifying Detection Parameters.

Baseline Value at Peak Start/End
In contrast to the Signal Value at Peak Start/End variable, which indicates the actual signal value of the signal curve, the Baseline Value at Peak Start/End peak variable indicates the baseline signal value at the peak start or the peak end.

Base Peak
The mass peak with the highest intensity in a Mass Spectrum is called the base peak. It serves as a reference point for representing relative intensities (base peak = 100%).
Batch
Repeating a processing step several times is referred to as batch processing (also called batch or online batch). Processing a batch in chromatographic applications means that several samples are automatically processed or analyzed in a defined order. Distinguish between:
- Online batch = batch during the chromatographic analysis
- Offline batch = batch after the analysis

After the chromatographic analysis of a batch, you may print or export the results or process them using an external program. To perform these actions, select Batch Report on the File menu in the Browser. The Batch Report uses the settings selected for the Batch Report Setup of the Printer Layout. A sample batch is also processed during the batch report. In this case, the batch is referred to as offline batch.

For more information, refer to Samples and Sequences Automatic Batch Processing.

Note:
Each modification of a quantification method results in an immediate recalculation of all involved variables. It is not necessary to recalculate data, as the displayed data is always up-to-date. This is to avoid inconsistencies between the QNT Method and the results.

Binary-Coded Decimal Code ("BCD")
Autosamplers that can be controlled via binary code (BCD-enabled autosamplers) can communicate the autosampler position from which the injection was performed to Chromleon. This requires that the autosampler outputs be connected to the BCD inputs on, for example, the UCI Universal Chromatography Interface.

For more information about how to proceed, refer to the configuration of the Remote Inject Device Driver in the Server Configuration program (F1 key).
Blank Run Sample

A chromatogram for which the solvent absorption (= baseline) is recorded but no sample is injected is referred to as a **blank run**. In the sample list, blank samples are labeled **Blank** and marked by the following symbol: ✉. The optional **Blank** parameter of the ⇒**Inject** command forces an injection for blank run samples if the **Inject** option is selected. However, an injection is not usually performed for these samples (default: **Skip**). Apart from this, blank samples are treated like normal integration samples in the ⇒**Program**.

**Tip:**

For ICS ion chromatography systems, injection is performed with the **Pump.InjectValve.InjectPosition** command (if no AS or AS50 is installed). With the **Pump.InjectValve.InjectPosition** command, an injection is always performed, also for a blank run sample. This is contrary to the autosampler ⇒**Inject** command.

Blank samples are stored with the sequence. After a baseline or ⇒**Blank Run Subtraction** has been performed, it can be undone at any time.

Also, refer to ⇒**Matrix Blank Sample**

Blank Run Subtraction

If the ⇒**Raw Data** of a signal (channel) is corrected by the raw data of a comparable ⇒**Blank Run** sample, this is referred to as blank run subtraction. The chromatogram of the blank sample is subtracted point by point from the open chromatogram. However, with a ⇒**Matrix Blank Sample**, the peak areas are determined before they are subtracted from the corresponding peak areas of all samples in the sequence.

**Tips:**

Perform blank run subtraction if a reproducible shift in baseline is interfering with peak detection; for example, with gradient elution.

Because both the normal and the blank run sample are saved, you can undo or restore the subtraction at any time.

A special interpolation procedure is used to subtract two 3D fields even if the recording conditions are not identical; for example, different wavelength range or optical resolution. However, this procedure should not be used except in special situations.
Branch

Select Branch to branch to a different Program from the active program or to start a program from the Control Panel by clicking a script button on the panel. Also, refer to Branch.

Browser

In the Chromeleon Browser, set up, delete, and move Datasources, subordinate directories, and files. The Browser displays samples, methods, and programs as well as further details of a Sequence. Double-click to open the desired file. For more information, refer to Data Management The Browser.

Caution:

Browser functions and structure are similar to the Windows Explorer. However, do not confuse the Browser with the Windows Explorer. Do not use the Windows Explorer for operations within Chromeleon datasources. Administrators can prevent these operations by selecting the Protect Datasource Directory option on the General tab page (via Properties on the datasource context menu).

Bunch Width

The signals of several photodiodes can be averaged or bunched to enhance the Signal-to-Noise Ratio of a Photodiode Array Detector. The bunch width describes the sample bandwidth of a bunch of photodiodes. Also, refer to Bunch Width.

Bypass Mode (ASI-100)

To reduce the cycle time for short chromatograms, the Dionex ASI-100 autosampler features the bypass mode. The MsvToLoad command allows bypassing the sample loop in the chromatographic flow. In this way, you can start the next sample even before the analysis of the current sample is finished by conditioning the solvent line(s) between the injection needle and the motorized switching valve (MSV), as well as the sample loop before loading the next sample.

For more information, refer to How to: Creating and Modifying Programs Setting the Bypass Mode Options (ASI-100).
c0
See ➔ Offset (c0)

c1
See ➔ Slope (c1)

c2
See ➔ Curve (c2)

c3
See ➔ Cubic Coefficient (c3)

Calibration Functions, Calibration Coefficients

In each calibration, a mathematical ratio is established between the ➔ Amount of a standard sample f(A) and the corresponding area value (A). Depending on the location of the ➔ Calibration Points, the ratio can be linear, a parabola, or exponential. Select the ➔ Calibration Type and by that determine the shape of the calibration points. The corresponding mathematical functions are called calibration functions.

Linear (Lin)

\[ f(A) = c_1 x A \]

min. 1 calib. point

Linear with offset (LOff)

\[ f(A) = c_0 + c_1 x A \]

min. 2 calib. points

Quadratic (Quad)

\[ f(A) = c_1 x A + c_2 x A^2 \]

min. 2 calib. points

Quadratic with offset (QOff)

\[ f(A) = c_0 + c_1 x A + c_2 x A^2 \]

min. 3 calib. points

Cubic:

\[ f(A) = c_1 A + c_2 A^2 + c_3 A^3 \]

min. 3 calib. points

Cubic with offset (COff):

\[ f(A) = c_0 + c_1 A + c_2 A^2 + c_3 A^3 \]

min. 4 calib. points

Exponential (Exp)

\[ f(A) = c_0 x A^{c_1} \]

min. 2 calib. points
The value of the corresponding calibration coefficient (c0, c1, c2, or c3) describes the slope of the straight line (linear course) or the shape of the curve (non-linear course). The coefficients are calculated by simply replacing known amount and area values in the corresponding calibration function (standard sample). If c0, c1, c2, and c3 are known, it is also possible to calculate the amounts for an unknown sample. For more information, refer to Theory of Calibration and Evaluation with Various Standard Methods.

Calibration Mode

The calibration mode determines how a specific sample of a sequence is calibrated and which standards are used. Chromeleon provides six calibration modes. Select the calibration mode on the General tab page of the QNT Editor (see The QNT Editor The General Tab Page). (For information about the editor, see Data Representation and Reprocessing The QNT Editor.) Also, refer to ⇒ Calibration Mode

Calibration Point, Calibration Level, Replicates

If the peak area is determined for the known amount of a standard sample, the point resulting from both values in an x, y-diagram is referred to as calibration point.

If the corresponding peak area is determined several times for the same Amount, different area values are received, depending on the precision. Thus, a larger number of calibration points is obtained. Calibration points based on the same concentration are referred to as replicates of the same concentration level.

Calibration points of different levels are obtained when area values are determined for various amounts of a standard. This can be achieved by a Dilution Series or by varying the injection volume. Based on the calibration points, data system calculates the calibration coefficients of the Calibration Function selected by the user.

For more information, refer to:

Theory of Calibration Calibration (Overview) and Calibration Principle

How to ….: Calibrating Weighting and Averaging Calibration Points
Calibration Type

The Calibration Type peak table parameter describes the mathematical model function (Calibration Function) based on which Chromeleon calculates the calibration curve by inserting the c0, c1, c2, and c3 calibration coefficients.

Also, refer to Calibration Type

For more information about the calibration types, refer to Theory of Calibration Types (Linear) and Calibration Types (Non-linear). Also, refer to How to …: Calibrating Weighting and Averaging of Calibration Points.

Calibration Variables

Numerical calibration values are referred to as calibration variables. They can be included as a separate column in any table created by Chromeleon. The following variables are calculated:

⇒Calibration Type
⇒Coefficient of Determination
⇒Correlation Coefficient
⇒DOF-Adjusted Coefficient of Determination
⇒Curve c2
⇒Number of Calibration Points
⇒Number of Disabled Calibration Points
⇒Offset c0
⇒Relative Standard Deviation
⇒RF Value
⇒Slope c1
⇒Standard Deviation
⇒Variance Coefficient
⇒Variance
⇒Weights
**Capacity Factor (k')**

The k' peak result variable refers to the capacity factor, that is, to the ratio of the net retention time to the Dead Time:

\[ k' = \frac{t_k - t_0}{t_0} \]

Where

- \( k' \) = Capacity factor
- \( t_k \) = Retention time
- \( t_0 \) = Dead time

To achieve a reasonable compromise between the retention time and the required analysis time, k' should be a value between 1 and 5.

The calculation can be performed only if you have entered the dead time of the system on the General tab page in the QNT Editor (see The QNT Editor § The General Tab Page. For information about the editor, see Data Representation and Reprocessing § The QNT Editor.)

\( t_0 \) May either be measured at the inert peak or calculated as the quotient of the dead volume and the flow.

If \( t_0 = 0 \) is not calculated.

Select the column in the report. Select Column Properties on the context menu, and then select the variable from the Variables list box. Click Parameter to define the dead time required for the calculation.

**Cascade**

Select Cascade on the Window menu to arrange the open windows one behind the other. This arrangement provides an overview of the currently open windows and allows you to quickly change to the desired window.
Channel
If a detector delivers more than one Signal, for example, a multi-channel UV detector, the single signals are referred to as channels.

Check Commands
Chromeleon allows you to perform various checks:

Syntax Check
A syntax check is automatically performed for each Program. The syntax check verifies that a program complies with the program syntax. For example, the syntax check may detect the following:
• Exceeded value ranges
• Incorrect punctuation
• Misspellings
Errors that are detected by the syntax check are written in red letters.

Semantics Check
The semantics check verifies the (chromatographic) meaning of a program. This includes, for example, the following checks:
• Do all partial flows sum up to 100 %?
• Does the program contain an Inject command at the time t = 0.000?
• Are the Inject/AcqOn/Off commands listed in the correct order?
• Is the minimum difference between the emission and the excitation value observed?
• Is the last command an End command? (Absolutely necessary)

To check the semantics of a PGM File, select Check on the context menu in the PGM Editor. To check the semantics of a script button, right-click on the button, select Properties on its context menu, and then click Check on the Command tab page. Detected errors are indicated in a dialog box.
Ready Check

The Ready Check checks whether the connected instruments are ready to operate; for example, to process a sample batch. The check includes:

- Is the instrument turned on?
- Are all instruments connected correctly?
- Is the lamp turned on?
- Are all required files available?
- Is there sufficient storage capacity?

In the Batch dialog box, click Ready Check to perform the ready check. In addition, a ready check is automatically performed for each online command. If a problem is detected, an error message or warning is displayed.

The semantics check usually includes the syntax check. The ready check usually includes the semantics check.

Check Derivative

See Check Derivative

Chemiluminescence

Emission of light caused by chemical reaction is referred to as chemiluminescence. Compared to Fluorescence and Phosphoresence, excitation by a light source is not required.

Some reactions that cause increased chemiluminescence occur in solutions; they are used for chemical analysis. To generate chemiluminescence, commercialized GC detectors use, for example, ozone, molecular fluorine, and sodium vapor. In HPLC applications, the reactions of luminol, lucigenin, and oxalate esters are often used.

Chemiluminescence detection is more sensitive than fluorescence detection as there is no disturbance by the diffused light of an excitation light source. It is often possible to use a fluorescence detector for chemiluminescence detection, too, by turning off the lamp.
Chromatogram Overlay
See ➤ Overlay

Chromatographic Methods
All instructions and parameters regarding the chromatographic treatment, that is, the analysis and processing of a sample, are referred to as chromatographic methods. Depending on the included information, the following distinction is made:

<table>
<thead>
<tr>
<th>Chromatographic Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Program (part of the PGM File)</td>
<td>Commands and instructions enabling automation of the analysis.</td>
</tr>
<tr>
<td>Quantification methods (QNT)</td>
<td>All parameters required for qualitative peak identification and for quantitative area determination.</td>
</tr>
</tbody>
</table>

The data is either stored in the ➤ Sequence Directory or copied to this directory by Chromeleon.

Chromatography Server
See ➤ Server

Chromeleon Xpress
The Chromeleon Xpress program provides real-time control and monitoring of Dionex chromatography instruments. It is installed on a Tablet PC and functions as the front panel user interface for the instruments connected to one local Chromatography ➤ Server.

Refer to ➤ Welcome to Chromeleon Xpress in the Chromeleon Xpress User Help section for details.
Client

Workstations that can start Chromleon are called clients. The client provides a user interface for accessing chromatography data and ➔ Datasources as well as appropriately representing their contents.

To control or monitor a chromatography system from a client PC, the client must be connected to the Chromatography ➔ Server. This connection is usually established when you open a ➔ Control Panel and connect to the desired ➔ Timebase. Once the connection is established, you can access the devices installed on the server.

To manage database access, Chromleon uses the capability of modern operating system to share resources (see Chromatography Systems: Hardware and Software ➔ Operating Systems). A client can access all files or datasources for which sharing was issued on a different workstation.

In addition, monitoring and controlling a system is only possible via the client. To do this, the client must connect to a (chromatography) ➔ Server.

In combination with a network (see Chromatography Systems: Hardware and Software ➔ Network), this allows you both to operate a system and to represent the system status and the course of the open chromatogram from any client! Due to access conflicts, it is not possible to synchronize system control over several clients.

CmUser and CmSecure Programs

See ➔ User Manager and Security Activation Tool

Coefficient of Determination

Use this variable to display the Coefficient of Determination, which reflects the deviation of the measured data points from the calibration curve. The coefficient of determination can have any value between 0 and 1 (0 to 100%). A coefficient of 1 indicates that all calibration points are exactly on the calibration curve. Use the following formula to calculate the coefficient of determination:

\[
R^2 = 1 - \frac{\sum_{i=1}^{n} w_i (Y_i - F(X_i))^2}{\sum_{j=1}^{m} w_j (Y_j - \bar{Y})^2}
\]
With: 
\[
\text{\textbf{N}} \quad \text{Number of standard samples participating in the calibration} \\
\text{i} \quad \text{Index for standard samples} \\
\text{W}_i \quad \text{Weight factor of the standard sample no. i} \\
\text{F}(x) \quad \text{Model function of the calibration} \\
\text{X}_i \quad \text{X-value of the standard sample no. i} \\
\text{Y}_i \quad \text{Y-value of the standard sample no. i} \\
\bar{Y} \quad \text{Average of all Y-values.}
\]

**Tip:**
For a linear calibration plot that is not forced through the origin, the coefficient of determination is identical to the squared $R^2$ Correlation Coefficient. In all other cases, this does not apply.

Also, refer to $DOF$-Adjusted Coefficient of Determination

**Column Mode (DX-120)**

**Column** mode enables switching of flow from one column set to another in a DX-120 Ion Chromatograph equipped with the dual-column option. When the column is switched, the eluent flow is also switched. For example, when column A is selected, flow is from eluent reservoir A through column A. If a command switches the flow to column B, flow is then from eluent reservoir B through column B. Also, refer to $Eluent$ Mode

The ColumnAB command is used to switch the flow from one column set to the other. The command can be included in a $Program$, executed directly from the Commands dialog box (select Command... on the Control menu), or linked to a $Control$ on the control panel. To link the command to a control, place an edit box or switch control on the control panel (see $Layout$ Toolbar). Then, link the control to the ColumnAB object property. For more information, refer to How to ...: Controlling Devices from the Control Panel $\Rightarrow$ Linking a Control to a Device.

To enable Column Mode:
1. Open the Server Configuration.
2. Select the DX-120 in the timebase.
3. Double-click to open the Properties dialog box (or right-click and select Properties).
4. Select the Mode tab page, and then select the Column option.
Column Temperature

The Column Temperature command determines the nominal temperature of the column thermostat (column oven).

After defining the nominal temperature, the thermostat is set as quickly as possible to the new temperature (device-dependent). A linear interpolation between the actual value and the nominal value is performed.

It is also possible to enter several temperature commands (PGM File). In this case, the result is a Step Profile instead of a linear interpolation between two values!

Tip:
As with all instrument parameters, Chromeleon attempts to represent the actual temperature on the screen. It depends on the connected column thermostat whether this is possible.

Comment

Chromeleon allows you to enter a comment at different places.

- In the Comment column of the sample list, enter any sample description in addition to the sample name.
- In the Comment column of the peak table of the QNT Editor (see Data Representation and Reprocessing The QNT Editor), enter any comments regarding the sample.
- Comments are often needed in a Program. To enter a comment in the PGM File, enter a semicolon (;) in front of the comment text. The text is then written in green letters.
- In the Comment column of a spectra library, enter any comment on the individual spectra.
- On the General tab page of the Datasource Properties (select Properties on the context menu), specify that all modifications be logged in the History. If the Comment required option is enabled, a dialog box opens whenever you save a modification and prompts you to comment the respective change.
If required, Chromeleon automatically enters a comment at two places in the QNT Editor:

- If you have the system create the peak table automatically (select Autogenerate Peaktable on the Edit menu), the Comment column of the peak table shows the following entry:
  - Autogenerated (if Enumerate peaks of current chromatogram is selected) or
  - Autogenerated. Spectrum: Reference spectrum name, Match: Match Factor (if Use spectra library screening results has been selected).

- In the Calibration Comment column on the Calibration tab page, Chromeleon comments the calibration. Usually, this comment will read OK. However, it may also indicate a calibration error or inconsistencies in calibration.

You may output the respective comments using the corresponding variables of the single Report Categories in the Report and in the Printer Layout.

**Concentration**

The Concentration peak result variable describes the quotient of the calculated Amount and the injection Volume. The value thus specifies the amount of a substance contained in a micro liter (µl) of the injected volume.

**Tips:**

*This variable is especially meaningful if you enter an absolute amount value, such as 15.00 µg, in the amount column of the peak table instead of a concentration value; for example, 1.0 µg/µl.*

*In this case, the value is divided by the injected volume, for example, 20 µl, which results in comparable absolute amount values that are always normalized to 1 µl; for instance, 15 µg/20 µl = 0.75 µg per µl.*
Confidence Interval/Confidence Range

General Definition

The confidence interval describes the range in which the true value is found, with a given probability. According to the respective probability, you can define the corresponding confidence interval of the concentration or amount value for each measured value.

Calibration Curve

If the single points of the confidence intervals are connected in a calibration curve, they indicate the confidence range of the curve:

In the above example, the confidence interval is given at a probability of 99%. In addition, a measured value of 25 mAU*min is indicated. The concentration determined by the measured value and the calibration curve is 6.3 µg/ml (black, uninterrupted line). Besides, the two intersections with the limiting curves of the confidence interval indicate that the true concentration value will be between 6.0 and 6.6 µg/ml (probability = 99%). In addition, if the measuring uncertainty of the measured value is ±1 mAU*min, that is, between 24 and 26 mAU*min, the concentration will be between 5.7 and 6.9 µg/ml (probability = 99%; see the blue auxiliary lines).

Moreover, you can derive the Limit of Detection (= LOD) from the diagram. The LOD is the concentration of the lower limiting curve of the confidence interval, which corresponds to the intercept of the y-axis of the upper limiting curve. In the above example, the LOD would be at 0.75 µg/ml at a probability of 99%.
Confidence Interval in the Calibration Curve

It is also possible to indicate the confidence interval graphically in the calibration curve. For more information, refer to How to ...: Displaying Calibration Curves Indicating the Confidence Interval.

Confidence Interval in the Report

In addition, you can indicate the limits of single confidence intervals in the Report using the Upper and/or Lower Confidence Limit variables of the Peak Calibration report category. You can choose between different parameters, which allow you defining the values for which to indicate the confidence intervals.

For more information, refer to How to ...: Creating and Using Report Tables Setting Parameters for Variables (e.g., for the confidence interval).

Connect

Select Connect to Timebase on the Control menu of a control panel to connect a user PC (Client) to a Timebase (Chromatography Server). In a Network Installation, you use this command to connect the current client to any server on the network.

Select Connect Device to connect a device to the server and thus, to control the device by Chromeleon (remote control). The command first checks whether the specified device is actually connected, and then it activates the instrument. The Connect command is automatically executed for all installed instruments whenever the program is started.

Note:

For safety and GLP reasons, the instrument keyboard is locked on most instruments that have been connected using the Connect command. In Connect status, the instrument is exclusively under remote control. Input on the instrument is possible again only after you have executed the Disconnect command.

Also, refer to Connect/Disconnect
**Contents (Button)**

The Contents tab page in the online Help displays the table of contents. Click a book icon to display the topics in a chapter. Click a document icon to open a specific Help topic.

**Continue**

The Continue command cancels the $\Rightarrow$Hold and $\Rightarrow$StopFlow commands and continues an interrupted sample batch or an interrupted pump flow.

Also, refer to $\Rightarrow$Continue

**Control**

Elements that can be surrounded by a $\Rightarrow$Control Frame by left-clicking in $\Rightarrow$Layout Mode are referred to as Controls.

On the $\Rightarrow$Layout Toolbar, Chromeleon provides various standard controls. Authorized persons can use the controls in Layout Mode to create a new $\Rightarrow$Control Panel.

If a control is later placed on another control, it is subordinate to the first one. That is why certain modifications to the reference control, such as the font or the Autosize command, will also affect the new control.

Press the <Shift> key to select several controls.

**Control Frame**

The control frame marks the outline of a $\Rightarrow$Control. Draw the control frame to move, enlarge, or reduce the control in size.

**Control Panel**

In online control, the window in which control and display elements are combined is called the Control Panel. The control and display elements allow you to control and/or monitor a $\Rightarrow$Timebase. The timebase to be controlled is typically assigned when the control panel is created. Select Connect to Timebase on the Control menu to change the assignment. To save the new assignment, select Save As from the File menu.
Use the design tools provided on the ➤Layout Toolbar to adapt the control panel to your requirements. If you have the corresponding rights, you can also create a completely new control panel. To create or modify a control panel, enable the ➤Layout Mode.

Chromeleon also provides easy-to-use default panels for new users. All control panels are saved as PAN files (*.pan).

Control panels are also included in ➤Panel Tabsets.

Also, refer to:

How to …: Controlling Devices from the Control Panel
How to …: Controlling Devices from the Panel Tabset

Correlation Coefficient (Linear)

The linear Correlation Coefficient indicates the "linear dependence" between two variables (for example, the peak area and the amount (concentration) of an analyte). It can range from –1 to +1 (-100% to +100%).

If all data points are located on a straight line, the correlation coefficient is exactly +1 or -1 (or ±100%). If the data points are scattered very much, the coefficient approximates 0.

Contrary to the ➤Coefficient of Determination, the correlation coefficient only indicates the linear dependence between two variables. This means that, for example, with a quadratic calibration function, the correlation coefficient may be very low due to the curve shape, although all data points are located on or close to the calculated curve. In this case, the coefficient of determination will be near 1 or 100%, whereas the correlation coefficient will be near zero.

The mathematical description of the correlation coefficient is as follows:

\[
CorrCoeff = \frac{\sum_{i=1}^{N} W_i (X_i - \bar{X}) (Y_i - \bar{Y})}{\sqrt{\left(\sum_{i=1}^{N} W_i (X_i - \bar{X})^2\right) \left(\sum_{i=1}^{N} W_i (Y_i - \bar{Y})^2\right)}}
\]
With:  
\( N \)  Number of standard samples involved in the calibration,  
\( i \)  Index for standard samples,  
\( W_i \)  Weight factor of the standard sample no. \( i \)  
\( X_i \)  \( X \)-value of the standard sample no. \( i \)  
\( \bar{X} \)  Average value of all \( x \)-values  
\( Y_i \)  \( Y \)-value of the standard sample no. \( i \)  
\( \bar{Y} \)  Average value of all \( y \)-values

**Tip:**

For a linear calibration plot that is not forced through the origin, the correlation coefficient corresponds to the square root of the coefficient of determination. In all other cases, this does not apply.

*Use the coefficient of determination if you are using either non-linear calibration curves or a linear calibration curve forced through the origin.*

**CR-TC**

The CR-TC (Continuously Regenerated Trap Column) removes anionic or cationic contaminants in the eluent or deionized water. The CR-TC is used with an  Eluent Generator.

**Cubic Coefficient (c3)**

The **Cubic Coefficient (c3)** calibration variable indicates the cubic coefficient of the  Calibration Function that has been used. The cubic coefficient is not equal to 0 only for the following calibration functions:  Cubic and COff.

**Cumulated Workload**

The **Cumulated Workload** variable indicates the wear and tear of a pump. For the Dionex P 580 pump, you can display the cumulated workload in megajoule (MJ). For more information, refer to  Practical Tips for Device Control  Viewing Leak Sensor and Workload Status.
Curve (c2)

The Curve (c2) calibration variable indicates the curve value of the Calibration Function that has been used.

The curve value is not equal to 0 only for the following calibration functions: Quadratic (i.e., Quad and QOff), Cubic, and COff.

Cyclic Voltammetry

Waveforms for integrated amperometry are usually developed using information gathered with an electrochemical technique called cyclic voltammetry, in which the current that results from oxidation or reduction reactions is measured against the voltage applied to the system. The applied voltage is changed (scanned) within preset limits.

In cyclic voltammetry, the voltage is first scanned in one direction and then the scan direction is reversed so that the voltage at the end of the scan is the same as at the beginning. This results in a triangular Waveform as shown in the example below.

DAC Pump(s)

The DAC Pump(s) driver allows you to control voltage-controlled low-pressure pumps for which a separate device driver is not available. A Dionex 12-Bit DAC card is required for this. (For installation instructions, refer to Hardware Installation Installing the 12-Bit DAC Card ("Pump DA Converter") in the Administrator Help section.)
The solvent composition is defined in the \textit{PGM File}, as a percentage at the respective retention time. On the DAC FlowA tab page in the Server Configuration program, define the voltages that correspond to the minimum and maximum flow of the corresponding component.

**Data Collection Rate**

The rate at which Chromeleon collects digital data points from the detector, expressed as points per second or Hertz (Hz), is referred to as data collection rate. (Refer to Data Management \textbf{Data Acquisition} for more information). The data collection rate of detectors corresponds to the \textit{Sampling Rate} of A/D converters.

- In general, each peak should be defined by at least 20 data points. For chromatograms with co-eluting peaks or low peak-to-noise ratios, 40 points per peak are better.
- If you expect all of the peaks to be relatively wide, use a slow data collection rate.
- If any peaks of interest are less than a few seconds wide, set a fast data collection rate.
- If the data collection rate is too slow, the peak start and end will not be precisely determined. If the data collection rate is too fast, data files will occupy more disk space and take longer to process than necessary.

**Step vs. Data Collection Rate**

In addition to the data collection rate, a step value is set. The step value is the reciprocal value of the selected data collection rate. For example, if you select a data collection rate of 5 Hz, the step value is automatically set to 0.2 s. In general, Dionex recommends using the automatically selected step value (see \textit{Step} for exceptions). It is possible to specify a step value that is independent of the data collection rate. However, only advanced users should do this. Refer to the detector operator's manual for guidelines.

\textit{Tip:}

\textit{When you issue the Data Collection Rate command, the Step value is automatically set to the reciprocal value. Therefore, if you want to use a different step value, issue the Step command after the Data Collection Rate command.}
Setting the Data Collection Rate for Integrated Amperometry Data

For 2D integrated amperometry data, the data collection rate is governed by the Waveform period. Chromeleon generates one integrated data point per waveform period. The data collection rate determines the rate at which this data is stored. Typically, you set the data collection rate equal to the reciprocal of the waveform period. Thus, every integrated data point is stored. It is also possible to set the data collection rate to less than the reciprocal of the waveform:

\[ \text{data collection rate} \leq \frac{1}{\text{waveform period}} \]

**Note:**

The data collection rate does not apply to 3D amperometry data. 3D data is collected at a fixed rate of 1Khz.

Datasource

A database that is mounted to the Chromeleon Client is referred to as a datasource. To mount a datasource, select Mount Datasource on the File menu in the Browser and then specify the format and the location of the database. For more information, refer to How to …: Working with Files, Databases, and Networks Setting up a Datasource in the Administrator Help section.

During the initial installation of Chromeleon, a local Standard Datasource is created on each client PC. Chromeleon data is usually stored in an Access database, that is, in an mdb (Microsoft Data Base) container. The default datasource is based on an Access database, too. The ODBC Capability of Chromeleon allows you to use various other formats (dBASE, SQL, Oracle, etc.), as well. Both Sample Data and Sequence Data are saved in a datasource, independently of the chosen format.

You can save a datasource on a local hard disk or any other mass storage device.

Select New Directory on the File menu in the Browser to create individual subdirectories under a datasource. You can then use these directories to save Sequences and the corresponding data and programs.
Network Datasource

If the datasource is located on a centralized network PC, all clients with the appropriate access rights, which have been assigned by the system administrator, can access the database. If the datasource is stored on a local hard disk, the corresponding client grants database access via the Windows File Sharing option.

The Administrator Help section provides more information; refer to How to ...: Working with Files, Databases, and Networks:

- Setting up a Network Datasource
- Saving Chromatography Data on the Network

Chromeleon also allows you to lock datasources, directories, or sequences. For more information, refer to Data Management The Datasource.

Non-Availability of the Network Datasource

In many companies and organizations, the database server shuts down during the daily backup. Similar to a network breakdown (see Network Failure Protection), the network datasource will not be available then. However, in case of the daily backup the time is known during which the datasource will not be available. To ensure data integrity, disconnect Chromeleon before the shutdown. When the database is available again, Chromeleon automatically connects to the database and writes back any data that were acquired during the breakdown.

Also, refer to How to ...: Working with Files, Databases, and Networks Network Failure/Non-Availability in the Administrator Help section.

Note:

"Old" GynkoSoft data has the required database structure. That is why Chromeleon is capable of handling this data as if they were "real" Chromeleon data. Simply connect to the data stored under Drive....

Data Smoothing

See Smoothing
**DC Amperometry Mode**

DC (direct current) amperometry mode is a basic operating mode of an electrochemical detector. In DC mode a constant potential is applied between the reference and the working electrode.

Electrochemical detection measures current resulting from the application of potential (voltage) across electrodes in flow-through cells. The applied voltage causes oxidation or reduction of analyte molecules in the sample. The current produced is dependent on many factors; the most important of these is the analyte concentration. When you apply a constant potential between reference and working electrode, you can observe a proportional current, depending on the concentration of an oxidable or reducible substance.

Also, refer to ➔ *Integrated Amperometry Mode*

**DC Voltage**

The **DC Voltage** command for the ED, ED40, ED50, and ED50A electrochemical detectors sets the fixed potential applied to the working electrode, in the range of -2.04V to +2.04V.

**Dead Time**

The dead time is defined as the time required by the peak maximum of an unretained substance to reach the detector from the point of injection. The relation between the **Dead Volume** and the **Flow Rate** is as follows:

\[ t_0 = \frac{V_m}{f_v} \]

Where:

- \( t_0 \) = Dead time
- \( V_m \) = Dead volume
- \( f_v \) = Flow rate

Also, refer to ➔ *Dead Time*
Dead Volume

The volume of the mobile phase between the injector and the detection cell is referred to as dead volume. The dead volume is calculated from the Dead Time and the Flow Rate based on the following formula:

\[ V_m = t_d \times \frac{1}{f_v} \]

Where:

- \( V_m \) = Dead volume
- \( t_d \) = Dead time
- \( f_v \) = Flow rate

Decimal Minute

A decimal minute (also referred to as industry minute) has 100 units instead of 60 seconds.

The value "2.500" (industry minutes) means "2 minutes, 30 seconds," "2.100" means "2 minutes, 6 seconds," etc.

Delay

The general Delay command specifies the time to pause before executing the next command(s). The Delay command is often used for Trigger commands.

The AS or AS50 Delay sample prep command specifies a number of minutes to pause before proceeding to the next step in a sample preparation sequence.

Delay Time

The time required for a substance to travel from one location in the chromatography system to another is referred to as the delay time.

In a gradient system, the delay time is the time required for a change in the gradient composition to migrate from where the gradient is formed to the head of the column. The gradient delay time is proportional to the volume between the point at which the gradient is formed and the head of the
column, and is inversely proportional to the flow rate. As an example, the delay time in a Dionex RFIC (Reagent-Free Ion Chromatography) system using a gradient pump is typically about 0.8 minute.

Delay time is sometimes used to refer to the time related to the delay volume between the following system components:

- The separator column and the detector cell
- The first detector cell and a second detector cell
- The detector cell and the switching valve (or the tube, depending on the device type)

On the General tab page of the QNT Editor (see The QNT Editor The General Tab Page), enter the \textit{Delay Time} needed by a substance to travel from the detector cell of the first detector to the detector cell of a second detector. (For information about the editor, see Data Representation and Reprocessing The QNT Editor.)

On the Fraction Collection Options page of the Program Wizard (see Control The Program Wizard), enter the delay time between the detector and the \textit{Fraction Collector}. The wizard displays this page only if you installed the Fraction Collection driver in the \textit{Server Configuration} program. If you use several additional detectors, enter the delay time(s) between the detectors on the Fraction Collection - Channel Selection Options page.

\textit{Tip:}

\textit{Enter a fixed delay time only if the flow is constant. Changing the flow rate also changes the actual delay time between two detectors or between the detector and the fraction collector.}

\section*{Delta (Signal Property)}

The \textit{Delta} signal property indicates the signal slope in a second.

This property is especially useful when creating \textit{Trigger} conditions. A peak cannot only be recognized by the height of its absorption signal within a chromatogram, but also, for example, by a sharp increase of the signal.

For information about how to express this type of trigger condition, refer to Practical Tips for Device Control Trigger Commands.
Demo (or Virtual) Mode

Use the Demo (or Virtual) Mode to simulate device control and data acquisition without the instrument being installed. To operate an instrument in this mode, enable demo or virtual mode in the Server Configuration program. With most Device Drivers you can enable demo or virtual mode by selecting the corresponding option on the General tab page. For some detectors, for example the UVD340U PDA, select the Read option to enable demo mode.

Simulate data acquisition by loading a pre-recorded demo file and then displaying the data on the signal plot of the Control Panel. The demo file is “read back” as though the data were being acquired in real time. Some detectors also allow recording your own demo data.

For more information about how to enable demo or virtual mode, simulate data acquisition, and record demo data, refer to How to …: Controlling Devices from the Control Panel Using/Recording Demo Data.

Contrary to the usual procedure, the demo mode of the UCI Universal Chromatography Interface does not use previously recorded signal courses. The UCI drivers include a Software Peak Generator, instead. Specify the signal properties of the chromatograms to be generated on the Demo tab page.

Tip:

It is not possible to output MS MCA data in demo mode!

Note:

Do not confuse Demo or Virtual Mode with the Chromeleon Evaluation Mode.

Detect Negative Peaks

The Detect Negative Peaks detection parameter determines whether negative peaks are recognized apart from positive peaks.

Also, refer to Detect Negative Peaks

For information about how to apply detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Modifying Detection Parameters.
Detection Code at Peak Start or Peak End (AIA Peak Type)

These peak result variables indicate how the peak start and the peak end is classified. In principle, this corresponds to the Peak Type classification of Chromeleon. The classification described below complies with the AIA convention.

The following AIA peak types are evaluated:

<table>
<thead>
<tr>
<th>AIA Peak Type</th>
<th>Description</th>
<th>Chromeleon Peak Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (baseline peak)</td>
<td>The peak starts on the baseline.</td>
<td>BM, bM</td>
</tr>
<tr>
<td>VD (vertical drop)</td>
<td>The peak starts with a perpendicular line dropped to the baseline.</td>
<td>MB, M</td>
</tr>
<tr>
<td>PT (pretangent skim)</td>
<td>The peak is interpreted as a rider.</td>
<td>Ru or Rd</td>
</tr>
</tbody>
</table>

Device Driver

A device driver is required to control a device by Chromeleon. Each controllable instrument or integrated system has its own device driver that is activated when Chromeleon is started. The device driver translates the instructions (commands) into device-specific digital commands that are then converted into "real control commands" after the data has been transferred to the instrument. In the opposite direction, the signals of all instruments (readings, status information, etc.) are converted so that Chromeleon can read them and display them on the screen.

Device drivers are also capable of monitoring regularly requested or automatically given device parameters in a target/actual value comparison. Unexpected events can be corrected or displayed in an error message. We can only guarantee for Dionex devices that the device driver fully supports all instrument functions. Support of third-party devices may be limited. If you can change the settings to modify the functionality of the driver (for example, if you can specify the shared A/D channels, relays, or remote inputs), this action is performed in the Server Configuration Program.

The names of the device drivers are derived from the corresponding instruments.
If a separate device driver is not available for your instrument, special drivers often allow at least partial control of a device. (For more information, refer to *How to ...: Configuring the Chromeleon Server* Controlling Devices without a Separate Device Driver in the Administrator Help section.) In special cases, you can use the generic device driver to create a user-defined device driver. (For more information, refer to *Hardware Installation* The Generic Device Driver in the Administrator Help section.)

**Digital Input**

See ➤Remote Input

**Dilution Factor**

The Dilution Factor ⇒Sample Variable is a correction factor for diluting consecutive calibration samples.

Also, refer to ⇒Dil. Factor (dilution factor)

**Dilution Series**

A dilution series consists of several samples with different concentrations ("concentration series"). The samples were generated from a common original sample. You may as well generate a dilution series by varying the injection volume.

A dilution series is especially useful for multiple-point calibration. Instead of injecting standard samples of different concentrations, different volumes are injected from a standard sample. (The principle is: Twice the injection volume contains exactly twice the amount of each component).

The corresponding amount is calculated as follows:

\[
Amount = Am \cdot \frac{Inj.Vol_{\text{unknown Amount}}}{Inj.Vol_{\text{known Amount}}} \cdot \frac{Smp.Wght}{Dil.Factor}
\]

**Tip:**

Note that the calculated amount values refer to the same standard sample. That is why, in the peak table, you only have to enter one ⇒Amount value (column 1) for each substance contained in the standard.
Dimension of Amounts

This peak table parameter defines the physical dimension of the \( \Rightarrow \text{Amount} \) values, i.e., either amount or concentration.

Also, refer to \( \Rightarrow \text{Dimension of Amounts} \)

Diode Array Detector

See \( \Rightarrow \text{Photodiode Array Detector} \)

Disconnect

Execute the Disconnect command to separate a user PC (client) from a \( \Rightarrow \text{Timebase} \) or to operate an instrument locally. Chromeleon no longer controls or operates the specified instrument. The instrument keyboard lock of the Connect command is no longer valid.

\[ \text{Note:} \]

Select Connect to undo the operation.

Also, refer to \( \Rightarrow \text{Connect/Disconnect} \)

Dispense

The Dispense command causes the ASI-100 \( \Rightarrow \text{Autosampler} \) to dispense a specific quantity (volume) from the sample loop into a certain sample vial \( \Rightarrow \text{Position} \). The \( \Rightarrow \text{Duration} \) parameter determines how long the autosampler takes to perform this operation. After the operation has been completed, the ASI-100 returns the Sampler.Ready signal to Chromeleon.

The Dispense command causes the AS and AS50 autosamplers to dispense reagent from a reservoir into a specified vial. The Dispense command is available only if the autosampler is equipped with the sample preparation option. See Practical Tips for Device Control: Autosampler Control \( \Rightarrow \text{Defining Sample Preparation Steps} \) for details.

Also, refer to \( \Rightarrow \text{Dispense} \)
DOF-Adjusted Coefficient of Determination

The DOF-Adjusted Coefficient of Determination calibration variable returns the coefficient of determination corrected by the degree of freedom. The calculation is as follows:

\[
 r_{DOF-adj}^2 = 1 - \frac{(N - 1) \sum_{i=1}^{N} W_i (Y_i - F(X_i))^2}{(N - m - 1) \sum_{i=1}^{N} W_i (Y_i - \bar{Y})^2}
\]

With:
- \( N \): Number of standard samples involved in the calibration
- \( m \): Number of degrees of freedom (\( = \) coefficients to be determined according to the \( \Rightarrow \) Calibration Type: LIN: \( m = 1 \); LOFF: \( m = 2 \); QUAD: \( m = 2 \); QUOFF: \( m = 3 \) and EXP: \( m = 2 \)),
- \( i \): Index for standard samples
- \( W_i \): Weight factor of the standard sample no. \( i \)
- \( F(x) \): Model function of the calibration
- \( X_i \): \( X \)-value of the standard sample no. \( i \)
- \( Y_i \): \( Y \)-value of the standard sample no. \( i \) and \( \bar{Y} \): Average of all \( Y \)-values.

Also, refer to \( \Rightarrow \) Coefficient of Determination

Dongle

A dongle is a software license device that is placed on the USB or parallel port (= LPT) of the PC. The free end of the dongle that can be placed on the LPT port is designed as a parallel interface connector, too.

The dongle stores the serial number of the Chromeleon workstation, much as the \( \Rightarrow \) PAL Plug-In Board does. Each workstation has a unique serial number.

The serial number of the dongle and the \( \Rightarrow \) Key Code stored in Chromeleon must match. If they do not match, Chromeleon cannot operate correctly.

Unless there is a PAL, a dongle, or a \( \Rightarrow \) License Server, and unless the key code is correct, Chromeleon can run in \( \Rightarrow \) Evaluation Mode only.
Notes:
If a WIBU-KEY dongle is installed, WIBU-KEY software is automatically installed when the Chromeleon is installed. Use the WIBU-KEY software to correct individual settings; for example, printing errors when your printer is connected to the dongle. For more information, refer to the WIBU-KEY Help system. To run WIBU-KEY software, click Start > Settings > Control Panel:

The Alladin Hardlock software does not provide a user interface. As it is not possible for you to make any settings, information about this software is not provided.

The Administrator Help section provides more information; refer to:

Software Installation and Communication 🌐 The Software License
Hardware Installation 🎉 Entering the Software License and 🎉 Useful Tips for Installing Dongles.

Draw
The Draw command (for the ASI-100) or Suck command (for the GINA 50/GINA 160) induces the ➤Autosampler to draw a specific injection ➤Volume from a certain sample vial (➔Sample Position). The amount of time this operation is allowed to take is determined by the ➤Duration parameter.
After the operation has been completed, the autosampler returns the Sampler. Ready signal (for an ASI-100) or Sucked (for a GINA 50/GINA 160) to Chromeleon. The time between the Draw (or Suck) command and the Sampler.Ready (or Sucked) response signal can vary, depending on the instrument type.

Also, refer to ⇒ Draw.

**Drift**

A signal change over time, e.g., caused by a temperature change in the laboratory, gradient elution, or detector drift, is referred to as drift.

To show the drift in Chromeleon: Add a new report variable in the report or in the ⇒ Printer Layout. Select Insert Chromeleon Report Variable or Insert Column on the context menu to open the appropriate dialog box. In the dialog box, select ⇒ Chromatogram from the Categories list and Signal Value from the Variables list.

Click Parameter to open the Parameter Input for 'Signal Value' dialog box and select Drift. Select the Restrict Range from check box and determine the range for which the drift is calculated.

To compute the drift, a regression line is drawn through all data points. The slope of the regression line is the calculated drift. Therefore, to compute the drift, always select a baseline range in which no peaks occur.

**Note:**

Unless the step is equidistant, all data points are weighted with their corresponding steps to determine the regression line.

The drift is always indicated in [Signal]/min.

**DS3 Detection Stabilizer**

The DS3 Detection Stabilizer is a temperature-controlled chamber that houses a conductivity cell and an eluent heat exchanger.

The DS3 Temperature command can be used to set the temperature of the DS3. The command can be executed directly from the ⇒ Control Panel or linked to a ⇒ Control.
To link the command to a control, place a string display, gauge slider, or edit box control on the control panel (see ➤Layout Toolbar). Then, link the control to the object property, DS3_Temperature. For more information, refer to How to …: Controlling Devices from the Control Panel ➤ Linking a Control to a Device.

Tip:

The DS4, which is installed in the DX-120 Ion Chromatograph, is identical in function to the DS3. The only difference is the connections required for installation in the DX-120.

Duration

Relay On/Off

Relay On/off indicates the closing or opening duration in seconds [s]. Specifying the duration is optional. The relay on and relay off times must not overlap for the same relay! Some ➤Device Drivers support trigger contacts that are treated as two (dependent) relays, R1 and R2: Activating R1 deactivates R2 and vice versa. Thus, you can control a trigger contact using only one Relay On command. However, you can also ignore the second relay, R2, and control the trigger contact via the ➤Relay On/Off commands of the R1 relay.

Autosampler

The Duration parameter indicates the minimum time that the ➤Autosampler may take to perform ➤Draw or ➤Dispense operations. To prevent evaporation of the sample load, do not draw or dispense more than 10 µl per second. Otherwise, if the Draw time is too short, gas bubbles may result and considerably impair measuring precision.

Sound

The Duration parameter defines for how long (in seconds) the tone is produced for the ➤Sound command.
**DX-LAN**

The DX-LAN is the local-area network (LAN) that connects Dionex modules to the PC on which Chromeleon is installed. (The Administrator Help section provides more information; refer to Software Installation and Communication [The DX-LAN].)

**Electronic Signature**

According to the "21 CFR Part 11" rules and regulations published by the FDA in 1997 electronic signature means the "a computer data compilation of any symbol or series of symbols executed, adopted, or authorized by an individual to be the legally binding equivalent of the individual's handwritten signature".

Use the Electronic Signature feature in Chromeleon to sign and thus, to protect the results generated from your ➤Raw Data. This is an important aspect for quality assurance and ➤GLP. When ➤User Mode is enabled, you can sign and protect ➤Sequence reports that have been accepted as correct. In this way, it is possible to review and reproduce the results at any time later.

Electronic signature includes three steps:
- Submit
- Review
- Approve

Typically, the user who created the report signs and submits it. Afterward, for example, the laboratory manager reviews the report and signs it as well. Finally, the quality assurance manager approves the results.

Tips:

Enable User Mode. If User Mode is disabled, electronic signature will not be possible. Besides, electronic signature is available only for user databases that have been created with a ➤User Manager (CmUser program) version 6.10 or higher. Update your database if an error message notifies you that electronic signature will not be possible.
If you use the sample ⇒Types **Spiked** and/or **Unspiked**, please keep in mind that:

- An ➪**Electronic Signature** created with Chromeleon 6.50 or earlier is invalid in Chromeleon 6.60 or higher.
- An electronic signature created with Chromeleon 6.60 or later is invalid in Chromeleon 6.50 or earlier.

For information about how to sign reports electronically, refer to How to …: Creating and Managing Files and Data ▶ Signing Sequences Electronically. Also, refer to Chromeleon User Management in the Administrator Help section.

**Eluent Generator**

Eluent generators can generate high-purity acid or base eluents online at the point of use, using only deionized water as the carrier. An eluent generator consists of a high-precision programmable current source (power supply), a ➪**DX-LAN** or USB automation interface, a high-pressure gas removal device, and a disposable eluent generator cartridge (EluGen).

Dionex offers the following eluent generators:

- The EG40 and EG50 eluent generators are configured as separate devices in a ➪**Timebase**.
- The eluent generator installed in the ICS-2000 Ion Chromatography System is configured in a timebase as part of the ICS-2000.
- Each eluent generator cartridge installed in the ICS-3000 EG is configured as a separate device in the timebase(s).

Chromeleon provides the following eluent generator control functions:

- Control of the generated eluent concentration
- Monitoring of the ions remaining in the EluGen cartridge
- Monitoring of the EluGen cartridge expiration date

Also, refer to **Practical Tips for Device Control**:

- ➪**Controlling the Eluent Generator Concentration**
- ➪**Monitoring the Eluent Generator Cartridge Lifetime**
Eluent Mode (DX-120)

Eluent mode enables switching the flow from one eluent to another in a DX-120 Ion Chromatograph equipped with the dual-column option. In this mode, the column-switching valve is disabled. The selected eluent always flows to the column that was selected when Eluent mode was enabled. Also, refer to Column Mode.

The EluentAB command is used to switch the flow from one eluent reservoir to the other. The command can be included in a Program, executed directly from the Commands dialog box (select Command… on the Control menu), or linked to a Control on the control panel. To link the command to a control, place an edit box or switch control on the Control Panel (see Layout Toolbar). Then, link the control to the EluentAB object property. For more information, refer to How to …: Controlling Devices from the Control Panel and Linking a Control to a Device.

To enable Eluent Mode:
1. Open the Server Configuration program.
2. Select the DX-120 in the Timebase.
3. Double-click to open the Properties dialog box (or right-click and select Properties).
4. Select the Mode tab page and select the Eluent option.

Emergency Program

Chromeleon differentiates between three types of errors:

- **Fatal Error (Abort)** - The batch aborts.
- **Serious Error (Error)** - The batch continues and the error is corrected as far as possible.
- **Error (Warning)** - The batch continues and a warning appears.
- **Minor Error (Ignore)** - The batch continues. The error is only logged in the audit trail.

An emergency program can be defined for the first type of error. In this case, the batch does not abort but the emergency program starts automatically instead.
The retention time continues while the emergency program is active; the times are interpreted as offset. Data acquisition and audit trail will continue as well. After the emergency program has run, an **End of Sample** entry is made in the audit trail.

For emergency program examples, refer to *How to ...: Creating and Modifying Programs* Creating an Emergency Program.

### Emission

If a substance is fluorescent, it emits light at a specific wavelength range. You can measure the \( \text{Fluorescence} \) with a fluorescence detector that is set to the respective emission wavelength maximum. Select the **EmWavelength** parameter to enter the emission wavelength.

**Note:**

Select the **ExWavelength** parameter to enter the excitation wavelength of the fluorescence detector (also, see \( \text{Excitation} \)).

### Evaluation Mode

Select the Evaluation Mode to test Chromeleon in the actual working environment. You may temporarily operate Chromeleon in evaluation mode if a software license is not available. Evaluation Mode supports the following licenses:

- Two class 3 **Timebases**
- Server Control
- Two Concurrent Clients
- GLP Features License
- PDA License
- MS Control

For more information, refer to *Chromatography Components: Hardware and Software* Chromeleon Licenses.
The Chromeleon server remains in evaluation mode for one hour and will shut down automatically after that period.

**Tip:**

*Data acquisition is not supported in Evaluation Mode.*

The *Administrator Help* section provides more information; refer to:

**Software Installation and Communication**

*The Software License*

**Hardware Installation**

*Entering the Software License.*

**Note:**

*Do not confuse the Evaluation Mode with the Demo Mode of the respective instruments!*

---

**Equilibration**

*Also, refer to ➤SmartStart.*

---

**Excitation**

➤*Fluorescence* can be generated only with light that is of higher energy than the emitted light. That is why the selected excitation wavelength must be lower than the emission wavelength. As the excitation wavelength, select the highest absorption maximum for which the wavelength is below the emission wavelength. This allows the substance that will be analyzed to absorb as much irradiated energy as possible. Select the *ExWavelength* parameter to enter this wavelength.

**Note:**

*Select the *EmWavelength* parameter to enter the emission wavelength of the fluorescence detector (also, see ➤Emission).*
F1 Key
Press the F1 key to open context-sensitive online Help. The help text refers to the current cursor position.

Filter
Chromeleon distinguishes three types of filters:

Data Acquisition Filters
You can set these filters on the Control Panel if the Device Driver of the detector supports this option.

Data Reprocessing Filters
Smoothing filters are often used to improve the Signal-to-Noise Ratio. They allow smoothing chromatograms that have already been recorded. The following smoothing filters are available:

- Moving Average (Boxcar)
- Olympic
- Savitzky-Golay
- Gaussian

Data Display Filters
1. Audit Trail Filters: You may specify the filter level for displaying messages on the control panel, in the Report, and in the Printer Layout. This is to avoid that the Audit Trail includes messages that are not relevant to you and thus becomes unnecessarily long. (Refer to Basic Operation Audit Trails for more information) Errors, warnings, and system messages are always indicated. However, commands and properties are only displayed from the specified level on.
The color codes are as follows:

Errors and Warnings: Only error messages and warnings but no commands are displayed.

Normal: green (only the most important commands are displayed)

Advanced: yellow (Normal and Advanced level commands and properties are displayed.)

Expert: red (Normal, Advanced, and Expert level commands and properties are displayed.)

2. **Commands Filters**: Similar to the Audit Trail filters, you may specify the filter level for displaying commands in the Commands dialog box. Select Normal, Advanced, or Expert on the Context menu.

3. **MS Filter**: In case of Mass Spectra, you can define the ionization polarity and the ionization voltage for the mass spectrum plot.

If several ionization settings are used in Full-Scan mode, you may enter an MS filter index on the mass spectra plot of the control panel. This is to display those mass spectra of the TIC signal that correspond to a specified group of settings. For example, index 1 refers to the first line in the Simultaneous acquisitions table (= TICF_1 - in the following example: polarity "+ve", maximum voltage 100 V):
Find (Button)
The Find tab page in the online Help topics window allows you to find specific words, terms, or text included in the online Help. All Chromeleon help texts are scanned.

Flow Gradient
Changes to the ⇒Flow rate in a chromatogram are referred to as a flow gradient. This type of ⇒Gradient is quite unusual in liquid chromatography. However, compared to the ordinary ⇒%-Gradient, the flow gradient has the advantage that the solvent composition does not change in the column. Thus, you do not need to condition the column before starting the next analysis.

The gradient can be generated manually or program-controlled. You can change the flow either continually (⇒Ramps) or immediately (⇒Step Gradient).

Note:
Pumps that are serially controlled deliver a specific flow rate by commands. It is not possible to enter an unlimited number of these commands in very short intervals. Therefore, a flow gradient generated in this way has very small steps, which, however, are almost immeasurable. Pumps with voltage, frequency, or pulse width control can continually change the delivery rate so that there are virtually no steps.

Flow Rate
The Flow Rate usually indicates the total volume (in [ml/min]) delivered by the chromatography pump. It is the sum of all partial flows (%A+%B+%C+%D=100%). (For more information, refer to ⇒%B, %C, %D (Solvent Components).)

Flow rates are usually in the range 0.5 to 10 ml/min. Use micro pumps (0.1 - 0.5 ml/min) or especially equipped pumps (as from 10 ml/min) for flow rates below or above these values.

For gas chromatographs, the amount of mobile gas phase is also called flow rate.
Tip:
The pressure in the chromatography column is up to 400 bar (40 MPa, 5800 psi). Solvent mixtures, for example, of methanol and water, are subject to volume compression. That is why the volume delivered by High-Pressure Gradient Systems does not correspond to the volume transported over the column. Of course, this does not change the number of the delivered and transported solvent particles.

Also, refer to ⇒ Flow

Fluorescence

The immediate emission of light after excitation with light energy is referred to as fluorescence. Fluorescence is often used as the detection principle in HPLC applications. The wavelength of the emitted light is longer than the excitation wavelength. In solutions, the fluorescence spectrum is independent of the excitation wavelength.

Note:
You can also use a fluorescence detector to measure the Phosphorescence and Chemiluminescence.

The Molecular Orbital (MO) theory provides a more exact explanation: Molecules are excited by the absorption of light. Absorption arises from the ground state, the lowest vibrational level of the lowest singlet state (S0) and terminates in different excited vibrational levels of the next higher singlet state (S1).

\[ S_0 + h \nu_\lambda \rightarrow S_1 \]

where:

- \( h \) = Plank's constant
- \( \nu_\lambda \) = light frequency at absorption = \( \frac{c}{\lambda_\lambda} \)

where:

- \( c \) = speed of light
- \( \lambda \) = wavelength
Higher vibrational levels of S1 undergo radiationless transitions to the lowest vibrational level of S1. Finally, fluorescence originates in the lowest vibrational level of S1 and terminates in different excited vibrational levels of S0:

\[ S_1 \rightarrow S_0 + h\nu_f \]

Also, refer to the image below for clarification:

*Note:*

Due to the fast relaxation in solution, the emission spectra of electronically excited molecules in solution is independent of the excitation wavelength (also for excitation of, e.g., S0→S2), according to the Kasha rule.
Formula for Amount Calculation

This formula calculates the amount in an unknown sample. The prerequisite is that all necessary Calibration Coefficients and all peak areas of the sample to be analyzed have been determined.

\[ Amount_p = f_p(y_p) \times \text{Resp.Fact}_p \times \text{ISTD Fact} \times \frac{\text{Dil.Fact}_n}{\text{Weight}_n} \]

The ISTD factor is the ratio of the added amount of Internal Standard to the determined amount of internal standard:

\[ \text{ISTD Factor} = \frac{\frac{\text{Amount}_{\text{ISTD(Peak Table)}}}{\text{Amount}_{\text{ISTD(Sample)}}}} \]

- \( p \) indicates the peak number
- \( f_p \) indicates the calibration function for peak \( p \) calculated during the calibration. For more information, refer to How to ...: Creating and Using Report Tables Calculating the Peak Variable “Amount.”
- \( y_p \) indicates the determined area of peak \( p \) (for integration type = Area)
- \( \text{Resp.Fact}_p \) indicates the scaling factor. The scaling factor can be specific for each peak; for example, to compensate the differing absorption behavior.
- \( \text{ISTD Fact.} \) indicates the correction factor for the internal/external standard method. For the external standard, this factor equals 1.
- \( \text{Dil.Fact.} \) corresponds to the Dil.Fact. parameter from the sample list.
- \( n \) indicates the sample number

The calculation of the calibration curve is the precondition for amount calculation. For information about how the calibration curve is calculated, refer to Theory of Calibration Evaluation with Various Standard Methods.
Formula for Amount Calculation (Rel. to ISTD)

This function calculates the amount in an unknown sample by means of the ratio of the area to the Internal Standard. The prerequisite is that all peak areas of the sample have been determined including the area of the internal standard.

\[
Amount_p = f_p \left( \frac{100 \times \frac{y_{\text{Peak}}}{y_{\text{ISTD}}}}{\text{Resp.Fact}_p \times \frac{\text{Dil.Fact}_p}{\text{Weight}_n}} \right)
\]

- \( p \) Indicates the peak number.
- \( f_p \) Indicates the calibration function for the peak \( p \) that is calculated during the calibration. For more information, refer to How to ...: Creating and Using Report Tables Calculating the Peak Variable “Amount”.
- \( y_p \) Indicates the determined area of peak \( p \) (for integration type = Area).
- \( \text{Resp.Fact}_p \) Indicates the scaling factor: The scaling factor can be specific for each peak; for example, to compensate the differing absorption behavior.
- \( \text{ISTD} \) Indicates the internal standard.
- \( \text{Dil.Fact.} \) Corresponds to the Dil.Fact. parameter from the sample list.
- \( \Rightarrow \text{Weight} \) (Sample Weight Factor) Is a sample-specific factor that always refers to all peaks.
- \( n \) Indicates the sample number

The calculation of the calibration curve is the precondition for amount calculation. For information about how the calibration curve is calculated, refer to Theory of Calibration Evaluation with Various Standard Methods.

Fraction Collector

At the detector output, fractions can be collected for preparative chromatography as well as for the exact determination of the separated substances in subsequent analytical procedures. A fraction collector is imperative if this is routine operation.

The fraction collector must collect the fractions depending on the incoming signal; that is, fraction collector control is performed using extensive Programs. If the absorption signal exceeds a specified threshold value, \( \Rightarrow \text{Trigger} \) commands are used to close a relay and move to the next collecting tube.
Install the **Fraction Collection** driver in the **Server Configuration** program. Using this driver considerably shortens the respective program and thus facilitates fraction collector control.

In addition, install the **Device Driver** for the respective fraction collector in the server configuration program. The Fraction Collection driver is comparable to the **Integrator Driver** that is required, in addition to the respective pump driver, for recording the pump pressure.

For information about how to control fraction collectors, refer to How to …: **Collecting Fractions**.

**Front Riders to Main Peaks**

The **Front Riders to Main Peaks** detection parameter changes rider peaks on the leading edge of a peak into main peaks.

*Tip:*

*This parameter has priority over the **Rider peak type indicated in the peak table.***

Also, refer to ⇒**Front Riders to Main Peaks**

For more information about how to use detection parameters, refer to How to …: **Integrating Chromatograms and Identifying Peaks** ⇒**Defining Detection Parameters**.

**Fronting Sensitivity Factor**

See **Tailing Sensitivity Factor**.
Full-Loop Injections (AS/AS50 Sample Prep Command)

When performing a full-loop injection, the AS or AS50 \textit{Autosampler} draws four times the loop volume from the sample vial and delivers it to the injection valve. The middle portion of the sample is positioned in the loop and injected.

\textit{Tips:}

For very small loop sizes (less than 17 $\mu l$), 2.5 times the loop volume plus 25 $\mu l$ is delivered to the valve.

The maximum loop size for full-loop injections is 300 $\mu l$. If a larger loop size is used, sample can contaminate the flush bottle because the sample volume drawn is greater than the sample transfer line volume of 1200 $\mu l$.

Full-Loop Injection Sequence
**Full-Scale**

The **Full-Scale** command sets the voltage for a full-scale analog output. For example, if 0.1V is selected and a recorder is connected to the detector's analog output, the recorder's full-scale response will be at 0.1V. For the AD20 detector, the full-scale voltage is fixed at 1V.

The voltage output of a full-scale detector response to use depends on the recording device to which the analog output is connected. For example, if the analog output is connected to a device that accepts input voltages up to 1 V, select a voltage output of 1000 mV.

**Full-Scan**

Full-Scan is the ➤Mass Spectrometer method for recording ➤TIC chromatograms. Contrary to ➤SIM (Selected Ion Monitoring), this method records the entire ➤Mass Spectrum of each single analyte.

In full-scan mode, you can already extract ➤Mass Traces during data acquisition. (For more information, refer to How to …: Using Mass Spectrometers ➤Extracting Mass Traces Afterward.)

Also, refer to How to …: Installing and Configuring Mass Spectrometers ➤Defining the Number of MS Channels in the Administrator Help section.

**Full Size**

The **Full Size** command undoes all previous Zoom operations. To undo only the last operation, select Unzoom on the context menu.

On the signal plot, double-click the ➤Overview Window to perform full sizing.
Gain

The Gain signal parameter determines the factor by which the analog output signal of the RF2000 fluorescence spectrometer is increased or reduced. Thus, the Gain parameter corresponds to the Range parameter that is supported for other detectors.

Note:

The UCI Universal Chromatography Interface ranges from -10V to +10V and thus covers virtually all detector output signals. It is possible to record signals directly, without considering the Gain parameter. If size adjustment is necessary anyway, adjust the size, using the Factor parameter of the signal configuration. (In the Server Configuration, right-click the fluorescence detector, and then go to the Signals tab page.)

Gain Region

The Gain Region in an integrated amperometry waveform is a period in which the detector electronics adjust the gain (the ratio of the signal output from the cell to the input of the analog-to-digital converter). If the signal from the cell falls outside the calculated upper or lower limit of the analog-to-digital conversion value, the gain is adjusted to bring the signal back into range.

Keep the following points in mind when selecting a gain region:

- If you will be acquiring 2D data only, select a gain region that matches the Integration Interval.

- Because 3D data can be reintegrated after acquisition, the actual integration interval is not known before the run and the gain region cannot be set to the integration interval. Instead, select a longer gain region (or more than one), making sure the region encompasses any period that will be used for integration.

- Do not include the cleaning portion of a waveform in the gain region. The signal input in this region is very high and the analog-to-digital converter may become saturated, causing noisy data.

Globally Unique Identifier

See GUID
GLP ("Good Laboratory Practice")
Good Laboratory Practice is the adherence to regulations on the organization and conditions of planning, performing, and monitoring laboratory work.

A special focus is the complete and clear listing of the complete data in an analysis process. In addition, regular checks of the instruments and the software are required.

GLP contributes to enhancing the quality of test data. In Germany, the GLP principles were introduced in 1983. In 1990, they became part of the chemical law (ChemG).

Gradient
Usually, gradients are used in HPLC/IC and GC to accelerate the separation of substance mixtures. Due to the different separation mechanisms in HPLC/IC on the one hand and GC on the other, different gradient types can be used.

HPLC/IC: Two different gradient types
A change in the composition of the mobile phase during the analysis is referred to as a gradient (more exactly as %-Gradient). A change in the flow rate is referred to as a Flow Gradient. However, this gradient type is quite unusual. Chromeleon lets you generate flow and %-gradients. Both gradient types can be performed at the same time (!).

Tips:
Performing both gradients at the same time results in non-linear partial flow alterations in the total flow. For High-Pressure Gradient Systems with more than one pump, it will result in non-linear partial flow alterations for each pump. Some chromatography pumps do not support this option.

The chromatographic conditions for high-pressure and low-pressure gradients are not transferable due to the different properties in solvent compressibility and dead volume!
GC: Three different gradient types

Usually, temperature gradients are used in GC. In addition, some GCs can run flow or pressure gradients. With GC gradients, the flow (or the temperature, or the pressure) usually increases during the chromatogram. Changing one of the three variables automatically changes the remaining two according to the equitation of state for ideal gases and the Hagen-Poiseuille law. Nevertheless, it is also possible in GC to run a temperature and a flow or pressure gradient simultaneously. In this case, the flow or pressure change that results from the temperature increase is considered for the flow or pressure settings.

Independently of the gradient types described above, the gradient forms can be different. Distinguish Ramps and Step Gradients. For example, if you run a %-gradient as a ramp, the solvent composition continually changes until the desired composition is finally reached at the desired end. The composition for a step gradient is set immediately. (Nevertheless, it may take some time until the desired composition reaches the column, depending on the column, the solvent change, and the flow)

%-Gradient

A change in the composition of the delivered solvent mixture during the analysis in liquid chromatography is referred to as a gradient. Usually, the eluting power of the solvent is increased to accelerate the elution of the later eluting substances.

To distinguish this gradient type from the Flow Gradient, which is quite unusual in liquid chromatography, it is also referred to as a %-gradient. The composition can be modified immediately (Step Gradient) or over a certain period (Ramp).

Tips:

Depending on the dead volume of the pump, the time required for changing the mixing ratio varies. The greater the dead volume is, the later the new mixing ratio will be realized on the pump output and the later the solvent mixture will reach the column. Therefore, make sure to perform gradient courses in sensible intervals.

Usually, the solvent composition at the beginning of the analysis widely differs from the composition at the end. Therefore, before you start the next analysis, make sure that the column has been sufficiently conditioned, that is, that the solvent composition in the column corresponds again to the original composition at the beginning of the analysis.
Gradient Curves

The Dionex P680, GP40, GP50, and GS50 pumps let you specify linear or non-linear \(\%\)-Gradient profiles (gradient curves). \textit{Eluent Generators} can also deliver non-linear \(\%\)-gradient profiles. For the mathematical description of the curve types, refer to \textit{Gradient Curves Equations}.

Curve 5 (the default) is linear. Changes in composition of the delivered solvent over time are constant.

Curves 1 - 4 are convex upward. Convex curves cause rapid changes in solvent composition at the beginning of the gradient and slower changes at the end. Slope changes over time become extreme as curves go from 4 (least convex) to 1 (most convex).

Curves 6 - 9 are concave upward. Concave curves cause slower changes in solvent composition at the beginning of the gradient and rapid changes at the end. Slope changes over time become extreme as curves go from 6 (least concave) to 9 (most concave).

The figure below shows the solvent composition profiles of curves 1 through 9, for a change from 0 - 100\% B over 10 minutes.

\[\text{Note:}\]

The statements regarding curves 1 to 9 also apply to some third-party devices. However, the curvature may deviate.
Gradient Curves Equations

The following equations describe the Gradient Curve profiles generated by the Dionex GP40, GP50, and GS50 gradient pumps, and by the Eluent Generator.

For convex gradients:

\[ Ve = Vf' + (1 - k)(Vt - Vf') \left( 1 - 2 \left( \frac{Tf - Te}{Tf - Tt} \right) \right) + k \frac{(Vt - Vf')(Te - Tf)}{(Tt - Tf)} \]

where: \( k = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1 \) for curve numbers 1, 2, 3, 4, 5 respectively

For concave gradients:

\[ Ve = Vf' + (1 - k)(Vt - Vf') \left( 2 \left( \frac{-10(Te - Te)}{7(Tf - Tt)} \right) \right) + k \frac{(Vt - Vf')(Te - Tf)}{(Tt - Tf)} \]

Where: \( k = \frac{3}{4}, \frac{1}{2}, \frac{1}{4}, 0 \) for curve numbers 6, 7, 8, 9 respectively

- \( Ve \): Current eluent value
- \( Vf' \): Eluent value at the previous step time
- \( Vt \): Eluent value at the next step time
- \( Te \): Current elapsed time
- \( Tf \): Time at the beginning of the gradient step
- \( Tt \): Time at the ending of the gradient step
- \( k \): Parameter that is changed to produce different curve number results

Group (Peak Group)

Chromeleon lets you to group single peaks in a chromatogram and then calibrate and integrate them as a group. Assign these peaks a common name in the Group peak table column in the QNT Editor (see Data Representation and Reprocessing The QNT Editor). The peaks do not have to succeed each other directly but can be scattered at will.

If a peak belongs to a user-defined group, the Group report peak variable indicates the group’s name. In addition to the user-defined peak groups, two pre-defined groups are available:
1. The group of all unidentified peaks without explicit group entry (empty group)

2. The group of all identified peaks without explicit group entry (empty group)

Define all other groups of identified peaks on the Peak Table tab page in the QNT Editor. For unidentified peaks, the group defined in the Unidentified Peaks dialog box on the General tab page in the QNT Editor is indicated if the peak appears in the corresponding time interval.

Also, refer to ⇒ Group

GUID

Chromeleon supports sample identification by means of a unique character string referred to as GUID (Globally Unique IDentifier). Each character string is globally unique; that means that it is not used a second time, neither on the same datasource or Chromeleon server nor on any other datasource or server.

Chromeleon uses the common 128-bit-GUID, e.g.:

{c7b2aa95-66a3-48a5-b77d-aee437656b2a}.

The GUID is consists of hexadecimal digits (0, 1, 2, ... d, e, f). Hyphens are used to enhance readability. The first four blocks have a timestamp. The last block is the network address of the server PC.

Also, refer to Creating and Managing Files/Creating a Sample List (Sequence) ⇒ Using Globally Unique Sample Identifiers.

Height (Peak Height)

This peak result variable refers to the peak height in the peak maximum, that is, at the retention time, relative to the baseline. The height dimension depends on the detector type. For UV detectors, the area is usually specified in mAU (milliabsorbance units).

Also, refer to ⇒ Relative Height

Help

See ⇒ Online Help
High-Pressure Gradient System

In a high-pressure gradient system, each partial flow is delivered via a separate pump into the mixing chamber against the pressure of the column. Differences in volume contraction and compressibility, as observed in most solvent mixtures, are not important during delivery but when mixing the solvents on the high-pressure side of the pump.

Unlike Low-Pressure Gradient Systems, the delivered volume of each partial flow can be determined precisely in high-pressure gradient systems. The gradient profile is more precise and can be achieved with relatively simple pumps. However, the costs for the additional pump are disadvantageous.

Tip:
Due to solvent compressibility and differing dead volumes, the chromatographic conditions of high-pressure and low-pressure gradient systems are not interchangeable.

History

The History mode (or more exactly the File History Mode or Modification History Mode) completely documents important changes and operations performed in specific objects and files. Objects include samples, Sequences or Datasources, Control Panels, Report Definition Files (RDFs), PGM Files, and/or QNT Files, and of course modified chromatograms.

Note:
Changes in report definition files (RDFs) that are not important for GLP are not logged in the history; such as:

- Changes of the view (Integration View)
- Changes of embedded graphic objects that are not part of Chromeleon, e.g., charts or bitmaps
- Enabling and/or disabling Layout Mode
- Format changes, e.g., changes of the cell frame, cell background, or alignment.
The History mode can be enabled (or disabled) individually for each datasource. Enable Modification history in the Properties of a datasource. If the Comment required option is enabled, each user is prompted to enter a comment before (s)he can save the changed object.

Select a datasource, a directory, or a single object, and then select Show History on the context menu to display the changes that are already documented.

Tip:

It can take some minutes to create and display the history.

To be able to enter and edit comments or to enable and disable the History Mode, the user must have the corresponding Privileges.

For more information, refer to How to …: Working with Files, Databases, and Networks Tracking File Modifications (History) in the Administrator Help section.

Hit Criteria

If there are too many hits in a spectra comparison (see How to …: Displaying and Using UV Spectra Searching Single Reference Spectra) due to the selected comparison function (see Check Derivative) or Match Criterion, this list can be limited by adding the following selection criteria:

<table>
<thead>
<tr>
<th>Comparison Conditions</th>
<th>Additional Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard of comparison</td>
<td>Number of extrema</td>
</tr>
<tr>
<td>Minimum match degree</td>
<td>Retention time deviation</td>
</tr>
<tr>
<td>Comparison function</td>
<td>Solvent composition (*)</td>
</tr>
<tr>
<td>Wavelength range</td>
<td>PGM File name (*)</td>
</tr>
<tr>
<td>Comparison of the largest relative maximum</td>
<td></td>
</tr>
</tbody>
</table>

Only spectra fulfilling the corresponding criterion will be admitted into the selection.

All fields accepting alphanumeric input (*), can be searched with a so-called regular expression, which may contain the common wildcards '?' and '"'.

Example: If *y?ene is entered as the name filter, the hydrocarbons pyrene, chrysene and perylene would be hits, but not anthracene. The hit criteria can be used to comfortably generate sub-libraries. If using these filters, without comparing spectra, the hit list contains the spectra fulfilling the hit criteria. The partial quantity can be stored as a separate library.

Tip:
Please note that a distinction is made between upper and lower case letters in the case of alphanumeric input. When using a capital letter in the filter expression, hits must also contain a capital letter at exactly the same position. When using lower case letters, the corresponding hit may contain lowercase and uppercase letters.

Hold
In the Hold mode, no more data is acquired, the pump continues delivery with the current solvent composition, and processing of the batch samples is stopped before the next sample.

Also, refer to ⇒Hold

Holmium Oxide Filter
Recent Dionex UV/photodiode array detectors (the UVD 170U four-channel detector and the UVD 340U and PDA-100 ⇒Photodiode Array Detectors) feature holmium oxide filters.

For the UVD 170U and UVD 340U detectors, the holmium oxide filter is used to calibrate UV/VIS spectra recorded with the detector due to the typical absorption spectrum of holmium oxide.

For the PDA-100 detector, the holmium oxide filter is used to verify wavelength accuracy.

Note:
It is also possible to fit older UVD170S/340S instruments with holmium oxide filters. Please contact Dionex Service.
Index (Button)

The Index tab page provides an alphabetical index list of terms that are explained in the Chromeleon online Help. Enter the initial letter of the term of interest and click Display to display help information about this topic.

Inhibit Integration

The Inhibit Integration detection parameter serves to shut off certain chromatogram areas.

Also, refer to ⇒Inhibit Integration.

For information about how to apply detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks ⇒ Defining Detection Parameters.

Inject Command

The Inject command defines the start of a chromatogram and thus the time when the sample is brought into the high-pressure cycle of the system. By definition, the time of the first Inject command is set to zero.

In a dialog box, you define the sample vial position in the ➔Autosampler (⇒Position) and the quantity of the substance (⇒Volume) to be injected. When a hand-operated valve is used for injection, this information is used for documentation purposes.

Also, refer to ⇒Inject Command

Injection Time

The Inj. Time column in the sample list shows the day, month, year, hour, minute, and second when the sample was injected (Also, refer to ⇒Time.) This column cannot be edited. Chromeleon enters the injection time of the sample in the corresponding column of the sample list. For samples with the ⇒Status (sample status) "M" the time of the last injection is entered.

The kind of entry (empty or time value) indicates whether and when the sample was processed.

Also, refer to ⇒Inj. Date/Time (Time of Injection)
Injection Types (AS/AS50 Autosampler)

Three types of sample injections are possible with an AS or AS50 Autosampler:

- **Full-Loop**—the full loop volume is injected
- **Partial-Loop**—a part of the loop volume is injected
- **Partial-Loop, Limited-Sample**—a partial volume of the loop is injected, and no extra sample is aspirated from the vial.

The injection type is selected automatically, depending on the settings of other variables:

- A full-loop injection is performed when the \( \Rightarrow \text{Inj. Vol.} \) (injection volume) is greater than the \( \Rightarrow \text{Loop Volume} \).
- A partial-loop injection is performed when the injection volume is less than the loop volume and the cut volume (a volume of sample discarded from each end of the aspirated sample) is greater than 0.
- A partial-loop, limited-sample injection is performed when the injection volume is less than the loop volume and the cut volume is 0.

<table>
<thead>
<tr>
<th>Injection Type</th>
<th>Injection Volume*</th>
<th>Cut Volume**</th>
<th>Sample Volume Used</th>
<th>Volume Injected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-loop</td>
<td>( \geq ) Loop volume</td>
<td>Ignored</td>
<td>4 X Loop volume or 2.5 X Loop volume + 25 ( \mu l ) (whichever is greater)</td>
<td>Loop volume</td>
</tr>
<tr>
<td>Partial-loop</td>
<td>&lt; Loop volume</td>
<td>1-30 ( \mu l )</td>
<td>Injection volume + 2 X cut volume</td>
<td>Injection volume</td>
</tr>
<tr>
<td>Partial-loop, limited sample</td>
<td>&lt; Loop volume</td>
<td>0</td>
<td>Injection volume</td>
<td>Injection volume</td>
</tr>
</tbody>
</table>

* Injection volume is entered in the \( \Rightarrow \text{Sequence} \).
** Cut volume is entered in the \( \Rightarrow \text{Program} \).
**Tips:**

If the injection valve is installed externally or if an AS or an AS50 (USB) is in Simultaneous mode, the autosampler can perform full-loop injections only.

For the best accuracy when performing partial-loop injections, specify an injection volume equal to half the loop volume or less. For example, if the loop is 100 µl, use an injection volume of 50 µl or less.

For the best accuracy when performing partial-loop, limited sample injections, specify an injection volume no greater than the loop volume minus the air bubble volume (8 µl). For example, if the loop is 25 µl, use an injection volume of 17 µl or less. Note: An air bubble is drawn before and after the sample when it is loaded into the loop.

**Injection Volume (Volume)**

The Sample Variable Inj. Vol. is in micro liters (µl). In automatic operation, the installed Device Driver converts this value into a volume readable by the Autosampler, and then the value is sent to the autosampler.

By entering different injection volumes, a Dilution Series can be created in case of a multiple-point calibration (see Single-Point and Multiple-Point Calibration).

Also, refer to Inj. Vol. (injection volume) and Volume (command).

**Installation Qualification (IQ)**

As defined in cooperation with EURACHEM, Installation Qualification (IQ) is "the process of installing an instrument up to and including its response to the initial start of operation" [P. Bedson and M. Sargent, Accred. Qual. Assur. (1996) 1, 265-274].

An important task of Installation Qualification is to perform all formal checks necessary to ensure that the instrument and its individual components are supplied as ordered; i.e., according to the specification agreed on by the customer and the manufacturer. In addition, IQ checks that the instrument is correctly installed in the selected environment. Finally, IQ must be formally documented.
Installation Qualification is performed in accordance with this definition and the Dionex IQ manual.

To start Installation Qualification for your chromatography system, select **Instruments IQ** on the Qualification menu.

To start Installation Qualification for Chromeleon, select **Chromeleon IQ** on the Qualification menu, and then click **Check Installation**. Chromeleon IQ checks the system information and Chromeleon status, as well as all installed files. Examine the report for possible installation errors.

**Note:**

Warnings may appear stating that higher versions of the system files and the ODBC files already existed before Chromeleon was installed.

Select **Save**, **Save as**, or **Print** on the **File** menu to formally document Chromeleon IQ from the indicated report (**IQReport.log - Editor** dialog box).

For more information about Installation Qualification, refer to **Validation and Qualification** and **Chromeleon Installation Qualification** in the Administrator Help section.

**Tip:**

Dionex AutoQ includes three qualification procedures: **Operational Qualification**, **Performance Qualification**, and **Installation Qualification**.

**Institutes and Institutions for Industry Standards**

Among others, the following institutes and institutions set and control industry standards:

**AOAC INTERNATIONAL.** The Association of Official Agricultural Chemists is committed to be a proactive, worldwide provider and facilitator in the development, use, and harmonization of validated methods and laboratory quality assurance programs and services.

**ASTM.** The American Society for Testing and Materials sets technical standards and rules for the industry worldwide.

**CEN.** The Comité Européen de Normalisation improves the technical harmonization in Europe by setting standards and technical specifications.
**DIN.** The Deutsche Institut für Normierung e.V. is internationally recognized as normative body.

**EMEA.** The European Agency for the Evaluation of Medicinal Products is the European counterpart of the American FDA. Especially in Europe, the EMEA enforces standards for the pharmaceutical industry.

**EURACHEM.** Eurachem has been founded as a network of European organizations. Their aim is to create a system for the international examination of chemical measurements and to promote GLP.

**FDA.** The Food and Drug Administration is an agency within the U.S. Department of Health and Human Services. The FDA enforces regulations and product standards in the US and worldwide to ensure higher safety of the products.

**ISO.** The International Organization for Standardization contains 130 national standardization institutes. Their task is to develop standards for the safer and more efficient development, manufacturing, and sales of products and services.

**NIST.** The National Institute of Standards and Technology is an administrative body of the U.S. Department of Commerce. Together with the industry, the NIST develops new technologies and sets technological standards in the U.S.

---

### Integrated Amperometry Mode

In addition to the *DC Amperometry Mode*, Dionex electrochemical detectors can be operated in integrated amperometry mode. Integrated amperometry is similar to DC amperometry in that electroactive analytes are oxidized or reduced at the surface of an electrode. However, instead of a constant potential being applied, a series of potential changes is repeated over time. By repeatedly pulsing between high positive and negative potentials, the electrode surface is continually cleaned and regenerated. Current is measured by integration during a portion of the repeating potential vs. time *Waveform*.

In integrated amperometric detection (also known as IA or IPAD), current is integrated at two or more potentials. Pulsed amperometric detection (also known as PAD) is similar to integrated amperometry. However, in PAD, current is integrated at a single potential.

When the Dionex ED and ED40/50/50A electrochemical detectors are operated in integrated amperometry mode, they can perform either IPAD or PAD. The applied waveform determines which technique is used.
Example IPAD Waveform

In the example integrated amperometry waveform shown below, the current is integrated at two potentials: first, while the potential is swept across the metal oxide formation wave, and then again during the reverse sweep across the oxide reduction wave. Without the presence of analyte molecules, the net charge is around zero. Positive and negative cleaning pulses are added to the waveform following the Integration Interval.

![Example IPAD Waveform Diagram]

Example PAD Waveform

During a PAD waveform, the current is integrated at only one potential as shown in the example waveform below. The potentials, labeled E1, E2, and E3, are applied for durations t1, t2, and t3, respectively. At t1, the E1 potential is applied. After a delay, the signal is measured by integrating the current for a fixed time. At t2 and t3, positive and negative cleaning pulses are added to the waveform.

![Example PAD Waveform Diagram]
Integration Parameters
In Chromeleon, integration parameters are referred to as Detection Parameters. For an overview, refer to ⇒Detection Parameters.

Integration Interval
In Integrated Amperometry detection, the integration interval is the time during the ➔Waveform in which an integrated data point is recorded. The integration interval is also referred to as sampling time.

Integration Type
The Integration Type peak table parameter indicates which peak property is to be used for the calculation of quantitative results. Also, refer to ⇒Integration Type.

Integrator Driver
Chromeleon does not directly process analog signals that are received via a Sharable Device, such as the ➔UCI Universal Chromatography Interface. The Integrator Driver must be installed to allow recording these analog signals, for example, from gas chromatographs or pumps, via the channels of, for example, the UCI that assigns the individual channels of the sharable device. (Also, refer to ➔Device Driver.)

The advantage is that you do not have to rewrite all ➔PGM Files concerned if you plan to connect a device to a different channel. Instead, only change the A/D port assignment in the integrator driver. This also allows you to distribute the channels of a ➔Sharable Device to several ➔Timebases, thus, eliminating the need to have, for example, one individual UCI for each timebase.

The integrator driver allows you, for example, to record the pump pressure in order to check whether signal variations in the chromatogram are caused by pump pressure variations. Also, refer to Practical Tips for Device Control ➔Recording the Pump Pressure.
**Intercept**

See ➔ *Offset (c0)*

### Internal Standard ("ISTD")

An internal standard is a substance of which a known amount is added both to standard and unknown samples. The internal standard should have a similar retention time behavior as the analyzed substances, but it should be easily separable from them. Internal standards are used especially in gas chromatography but also in HPLC and IC to eliminate possible sample preparation errors.

As a rule, the amount of injected internal standard is constant; that is, all samples receive precisely the required amount of internal standard so that identical amounts reach the column when injecting the same volumes. In the case of a ➔ *Dilution Series*, the internal standard must be pipetted after the dilution! The dilution can therefore not be simulated by variation of the injection volume but must be actually performed.

**Note:**

*With an appropriate ➔ Autosampler, such as the Dionex ASI-100, pipetting can be performed automatically. The quantitative accuracy thus reached is one level above the *External* standard method. The methods with internal standard also compensate minor injection inaccuracies, as the internal standard is equally affected by a possible loss or excess.*

Substances serving as an internal standard are labeled as such in the **Standard** column of the peak table. Depending on the type of internal calibration, they are labeled *ISTD Int/Ext* or *ISTD Internal*.

### Internal/External Principle

All substances contained in a sample are calibrated as usual with known standard substances (including the internal standard). As the same amount of ISTD is contained in all samples of a sequence, a uniform value for the ISTD should result. If this is not the case, this is an indication for an error during sample processing (provided that the same amount of the internal standard is actually contained in all samples). The results of the remaining substances of this sample can then be relativized.
**Internal Principle**

Instead of absolute areas and amounts, calculation is based on area and amount ratios. Calculation of all substance amounts is relative to the internal standard. By forming the ratio, inaccuracies in sample processing (from adding the ISTD) can be eliminated (constant Internal standard).

Due to the high experimental expenses, this type of calibration is rarely used (the internal standard must be added with a pipette to each sample, in the case of a dilution series this must be after the dilution).

**Exceptions (= Variable Internal Standard)**

The method itself or the properties of the internal standard make it impossible to add the same amount of ISTD to all samples. To solve this problem, Chromeleon supports the **Use sample amount as reference (Variable)** option (see F8 box of the **Standard** column in the peak table).

In this case (irrelevant whether Internal/External or Internal), the amount of the internal standard is entered in the **⇒ ISTD Amount** column of the sample list, not in the **⇒ Amount** column of the peak table. In this way, the amount of internal standard can be entered separately for each sample.

Also, refer to **⇒ Standard**

**IQ**

See **⇒ Installation Qualification (IQ)**

**ISTD**

See **⇒ Internal Standard ("ISTD")**

**Isocratic**

A solvent flow of constant composition is called isocratic. It is irrelevant whether it is a pure solvent or a solvent mixture of constant composition.

**ISO Plot**

See **⇒ 3D Field: Presentation Modes**
I-t Plot

A plot of current (I) vs. waveform time (t) for 3D_Amp data. To visualize this plot, imagine that a vertical slice of the 3D data is taken at retention time (T) and the slice is then laid flat. The left axis is the waveform period (ms) and the bottom axis is the current (nA). When the Waveform is displayed, the top axis on the plot indicates the applied voltage (mV).

Also, refer to How to ...: Analyzing 3D Amperometry Data: Viewing I-t Plots in the 3D Amperometry Window.

Jump to Another Help Topic

As soon as the mouse pointer is pointing to a link term, it becomes a pointing hand. All link terms are displayed in green.

Terms underlined by a dotted line, for example, F1 Key, are links to additional information in a pop-up; terms underlined by a single line are links to a new help topic.

Key Code

The range of functions available for the Chromeleon stations is determined during installation by a key code.

The key code is a 12-digit or 24-digit number that makes specific functions and options available. Each Chromeleon station has a Dongle or a PAL Plug-In Board or receives its license from a License Server. A Chromeleon station can only be operated when the serial number coded there matches the key code.

If a user expands the scope of Chromeleon functions by acquiring the corresponding licenses, a new key code is assigned to the user. The extended scope of functions is made available as soon as the new code is entered.

Enter the key code as entered in the About box on the Help menu or in the Server Configuration program. Valid characters are numbers, letters, spaces, and hyphens. Input is not case-sensitive.

The Administrator Help section provides more information; refer to:

Software Installation and Communication The Software License

Hardware Installation Entering the Software License
Kovats Index

The Kovats Index serves for achieving a uniform scaling of the ⇒Retention Time. Define the Kovats Index on the Peak Table tab page of the QNT Editor (see Data Representation and Reprocessing ⇒The QNT Editor).

Also, refer to ⇒Kovats Index

Lamp

This command turns the lamp of an optical detector on and off. UV/VIS detectors often have a separate lamp for each wavelength range (deuterium/tungsten). To activate both lamps, the command usually has to be entered and performed separately for each lamp.

However, it is also possible to turn on both lamps simultaneously or to turn on the second lamp automatically when the first lamp reaches a certain value.

Also, refer to ⇒Lamp

LampAge

After you have installed a new lamp, select the LampAge command to reset the lamp age to 0.

Periodically checking the lamp age allows you to determine the quality of the lamp and decide whether to install a new lamp.

Also, refer to ⇒LampAge

LampIgnitions

After you have installed a new lamp, select the LampIgnitions command to reset the number of ignitions to 0.

Periodically checking the number of lamp ignitions allows you to determine the quality of the lamp and decide whether to install a new lamp.

Also, refer to ⇒LampIgnitions
**LampIntensity**

Select the *LampIntensity* property to check the lamp intensity via the →*Log* command. Periodically checking the value allows you to check the quality of the lamp and decide whether to install a lamp.

Also, refer to →*LampIntensity*.

**Layout Mode**

For some Chromeleon elements, a special Layout Mode is available. Use the Layout Mode to design these elements according to your requirements. The Layout Mode is available for:

- [ ] Control Panels
- [ ] Printer Layouts (printouts)
- Reports (screen tables)
- [ ] History reports

**Control Panel**

Select *Layout Mode* on the *Edit* context menu to change from the online mode to the layout mode.

The Layout Mode lets you create new control panels, and modify the appearance and functionality of existing control panels. While the Layout Mode is enabled, active online processes are continued but it is not possible to control the system.

To add a new control to the control panel, click an icon on the →*Layout Toolbar*. The layout toolbar allows you to select →*Control* (display and control elements). A →*Control Frame* surrounds selected controls; they can be modified in size, shape, and function.

For more information about how to modify a control panel, refer to How to …: Controlling Devices from the Control Panel →Modifying a Control Panel.

**Note:**

You can only create a new control panel or modify an existing one if you have the corresponding access rights.
Printer Layout

To enable or disable Layout Mode in the Printer Layout, select or clear **Layout Mode** on the **Edit** menu. You can only insert, modify, and/or copy the different Printer Layout elements if the Layout Mode is enabled. If the Layout Mode is enabled, an additional text input field appears in the upper report section. Input is similar to MS Excel.

Report

To enable or disable Layout Mode in the Report, select or clear **Layout Mode** on the **Table** menu. If Layout Mode is enabled, an additional text input appears in the upper report section. Use this field to enter the desired values.

History Report

A special Layout Mode is available in the **History** report. If **Detail** columns are available, you can enable the Layout Mode on the **Layout** tab page of the **History Report Properties** dialog box. A concise report is displayed in which you can easily define the layout.

Layout Toolbar

The layout toolbar contains icons for all default **Controls** and display elements of the **Control Panel** that are available in the **Layout Mode**. The layout toolbar is only accessible in the Layout Mode.

Click an icon and then left-click on the control panel to place the selected default control on the active control panel. Enable and disable the display of the layout toolbar by the **Toolbars > Layout** on the **View** menu.
The following default controls are available:

- Pointer (selecting, moving, etc.)
- Check Box
- Color Box
- String Display
- Gauge Indicator
- Script Button
- Online Signal Plot
- Group Box
- Slider
- Lamp
- Switch
- Entry Field (Edit Field)
- Audit Trail
- Gradient Control
- 3D Field Plot
- 3D Amp Plot
- Rack Control (see Rack)
- Mass Spectrum
- Device Command Button
- Trend Plot
- Timebase Command Button
- Sample List

**Left Limit**

Peak integration is usually performed automatically. However, it is possible to limit or extend integration on the left, on the right or on both sides. To do so, enter a left and/or a right integration limit in the peak table.

Also, refer to ⇒Left/Right Limit

**Left Width**

If a perpendicular line is dropped to the baseline from the peak maximum, the Width of the peak is divided in a left and a right section. The two sections are referred to as left width and right width and can be expressed as separate peak result variables.

Chromeleon also determines the left and right peak width at 5, 10, and 50% of the peak height. As described in the Width topic in the glossary section, the height is an important factor for calculating the peak width. This also applies to the calculation of the left and right peak widths.

The abbreviations for the left and right peak widths are LW and RW.
How to display the left peak width in the report

- Select the column in the report.
- Select **Column Properties** on the context menu
- Select the **Left Width** variable in the selection box.
- Click **Parameter** to determine the peak height at which to determine the peak width.

License Server

If installations include a large number of computers, a License Server is available to manage the Chromeleon licenses. With this type of installation, it would not make sense to equip all **Client PCs** with **Dongles** or **PAL Plug-In Boards** and to enter the corresponding **Key Codes**.

If no PAL, dongle, or License Server is specified, Chromeleon can be operated in **Evaluation Mode**, only.

For information about how to install the License Server, refer to **Hardware Installation** installing the License Server in the Administrator Help section.

The Administrator Help section provides more information; refer to:

- **Software Installation and Communication** The Software License
- **Hardware Installation** Entering the Software License

Limit of Detection

The limit of detection (LOD) is the lowest concentration that is just distinguishable from zero (**Blank Run Sample**). The LOD is reached when the signal-to-noise ratio is 3; that is, the signal height of a peak is 3 times the signal **Noise**. The lower the noise is during analysis, the lower are the detection limits. Unlike the sensitivity, the detection limit depends on the instruments used.

There are three different limits: Limit of Detection (LOD), Limit of Determination (LODn), and Limit of Quantification (LOQ). The LODn is reached when the signal height is 6 times the signal noise. The LOQ is reached when the signal height is 10 times the signal noise.
With a blank reading $b \neq 0$, the three limits are determined as follows considering the standard deviation of the blank value ($s$):

Limit of Detection (LOD) = $b + 3s$

Limit of Determination (LODn) = $b + 6s$

Limit of Quantification (LOQ) = $b + 10s$

It is also possible to determine the limit of detection by means of the confidence range of the calibration curve (also, refer to Confidence Interval/Confidence Range).

**LIMS**

A Laboratory Information Management System, in short LIMS, receives tasks in electronic from, makes sure that they are processed, and makes the results available in a defined format.

In the chromatography system, this can mean, for example, that the samples to be analyzed are read via bar code, grouped in a sequence, and then processed one after another. The results are saved in a default format, such as AiA. Chromeleon generates the sequence if the required information is supplied in a defined format.

Chromeleon reads this data via the defined format of a Worklist. However, you can also use the SDK (Software Development Kit) to connect Chromeleon with the LIMS.

**Linked Objects**

Instead of being saved with a file, objects are often linked to the file. In Chromeleon, linked objects appear:

**In Sequences**

You can link a sequence to a Report Definition File (RDF) by specifying a Preferred Report. Select Properties... on the context menu of the sequence. Determine the Preferred Report on the General tab page of the Properties of Sequence... dialog box. The preferred report to which the sequence is linked is used whenever the sequence is opened.
In QNT Files

QNT Files can be linked to

- **Spectra Libraries**: Use the Spectra Library Screening tab page in the QNT Editor to specify the spectra library to be used for peak identification.

- **Samples for Blank Run Subtraction**: Select a sample for blank run subtraction on the General tab page of the QNT Editor to determine which sample(s) shall be used for blank run subtraction.

- **Standard calibration samples from a different sequence**: On the General tab page of the QNT Editor, select Fixed as ⇒ Calibration Mode. To enter the desired standard (samples), change to the Calibration tab page and select Append Standard on the context menu.

Backup

When performing a  ➢ Backup, you can determine whether linked objects are saved as well. Select or deselect the Include linked objects check box as desired.

Dionex recommends saving the linked objects. This is to avoid that data are not be available in the target laboratory if data is exchanged between laboratories.

Restore

During a  ➢ Restore you can select the linked objects to be restored:
The **Restore** dialog box lists the linked objects under the file to which they are linked. Select the linked objects to be restored.

**Lock Baseline**

By activating this parameter, it is possible to keep the baseline on the prescribed level.

Also, refer to ⇒**Lock Baseline**

For information about how to apply detection parameters, refer to **How to …: Integrating Chromatograms and Identifying Peaks** ⇒**Modifying Detection Parameters**.
Log

Use the Log command to document the values of variables in the Audit Trail at any time. The command is also available directly in the Commands dialog box or can be included in the PGM File. To open this dialog box, select Command on the Control menu. Also, refer to ⇒Log

Logon

The Logon dialog ensures access to the respective program. Access is permitted for authorized users only who are identified via a Password in the logon dialog.

In Chromeleon, access to the User Manager (CmUser program) is always via the logon dialog. To open a Chromeleon client, you have to logon with a password only if the User Mode is enabled.

In the CmUser program, you can enable LDAP logon, also (LDAP = Lightweight Directory Access Protocol). In this case, password authentication is delegated to Windows.

Loop Volume

Loop Volume is the sample loop volume obtained from the value entered on the Plumbing Configuration screen on the AS or AS50 Autosampler front panel.

Low Dispersion Injection

Dispersion is one of the reasons for peak tailing. You can reduce dispersion considerably during the injection.

In the middle of the loop, the liquid flow is faster than close to the capillary walls. Thus, the following injection profile appears at the loop outlet:

(* Solvent in the example - can be transport liquid or any a similar liquid, instead.)
You can either cut off or inject the tailing part completely, depending on when the injection valve is switched back to the Load position.

For the Dionex FAMOS and WPS-3000 micro autosamplers, Chromeleon supports the **Low Dispersion Factor (LD Factor)**. This factor allows you to determine when the injection valve is switched back. Thus, the factor determines the amount of the original sample volume that is injected.

A value of 1.0 means that the switching valve is switched back when the entire original sample volume was injected. This means that, in the middle of the capillary, the entire sample liquid is injected and that, on the capillary walls, sample liquid is cut-off:

(* Solvent in the example - can be transport liquid or any a similar liquid, instead.)

If the value is greater than 1.0, the injection valve is switched back after the injected volume is greater than the original sample volume. Thus, in the middle of the capillary, not only sample is injected. Simultaneously, the amount of sample that is cut off on the capillary walls is minimized.

If the value is less than 1.0, sample liquid is cut off in the middle of the capillary, too. In this way, a vertical injection profile appears at the end of the sample plug, i.e., the tailing part is completely cut off during the injection. However, this process can avoid neither tailing caused by dead volumes or overloading of the separation column nor chemical tailing during the separation. Nevertheless, with the same conditions, peak tailing is reduced by a factor of 1.2 to 1.4, compared to common injections.

The formula for calculating the time after which the injection valve is switched back to the Inject position is as follows:

$$ t_f = 60 \cdot f \cdot V_p / F_y $$
Where:

\[ t_I = \text{time [s] that the valve is in Inject position} \]
\[ f = \text{low dispersion factor} \]
\[ V_P = \text{original sample volume in the loop [µl]} \]
\[ F_V = \text{flow rate [µl/min]} \]

The time that the valve is in Inject position must be at least 10 s. If the calculated switching time is less than this limit, it will be redefined to 10 s.

Low dispersion injections are possible for full-loop and partial-loop injections as well as in user-defined programs. In Chromelone, the low dispersion factor can be any value between 0.01 and 100. For example, if the value is 1.3, the valve is switched back when 130 % of the value of the original sample plug has been injected. Meaningful values are usually between 0.7 and 2.0, i.e., between 70 % and 200 % of the original sample volume.

**Low-Pressure Gradient System**

In low-pressure gradient systems, the same pump delivers all partial flows.

Simple systems generate the required solvent mixing ratio in the mixing chamber. Then, the mixture is sucked from the chamber and carried to the column. The solvent composition is controlled via different valve closing times in the feed lines of the individual components. As the mixing chamber volume represents a dead volume, producing the correct mixing ratio on the column is delayed.

Systems that are more complex mix the individual partial flow during the suction period in the piston. This requires the calculation of how much volume can be sucked. (The value is not constant as delivery is not always against the same external pressure; that is, small volumes are pumped if the external pressure is high, larger volumes are delivered if the external pressure is low. Also, it is necessary to calculate the time of how long each valve must be opened for the individual partial flows to reach the exact mixing ratio.
Despite these mechanical and electronic procedures, the gradient profile produced by low-pressure gradient systems is less precise than High-Pressure Gradient Systems, however, it is the less expensive alternative.

Tip:
Due to solvent compressibility and differing dead volumes, the chromatographic conditions of high-pressure and low-pressure gradient systems are not interchangeable.

Manipulations
Minor changes during the integration of single chromatograms are called Manipulations. For information about how to perform manipulations, refer to: How to … Working with Chromatograms Manual Re-Integration. Select Save Manipulations or Delete Manipulations on the Edit menu to accept or reject these manipulations.

Mark
The Mark command sends a positive pulse to the detector’s analog output as an event marker. The pulse is 10% of the full-scale analog output. A mark is typically used to indicate a sample injection.

Mass Defect
The mass defect is the difference between the calculated mass and the nominal mass (integer). Combining the masses of all the components of the compound uses calculated mass. The masses of the elements come from the periodic table, with the mass of \( ^{12}C \) being exactly 12.000000 amu. Most of the other elements have masses close to their nominal elemental mass:

\[
\begin{align*}
^{1}H & \quad 1.007825 \text{ amu} \\
^{12}C & \quad 12.00000 \text{ amu} \\
^{13}C & \quad 13.00335 \text{ amu} \\
^{14}N & \quad 14.00307 \text{ amu} \\
^{15}O & \quad 15.99940 \text{ amu} \\
^{19}F & \quad 18.99840 \text{ amu}
\end{align*}
\]
You can calculate the mass of a compound as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_5H_{10}O_3$</td>
<td>$5(12) + 10(1) + 5(16)$ = 150</td>
<td>$5(12.00) + 10 (1.008) + 5(15.999)$ = 150.075</td>
<td>0.075</td>
</tr>
<tr>
<td>$C_{50}H_{102}$</td>
<td>$50(12) + 102(1) = 702$</td>
<td>$50(12.00) + 102(1.008) = 702.8$</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Therefore, as you get to larger compounds containing more atoms, you will add all the "defects" of the individual atoms together and the difference may be substantial, especially if you display the mass as an integer. In the examples above, the first would be displayed as an integer (150 amu) either way. In the second example, the actual mass in integer format would be 703 amu; that is, a whole mass unit from the nominal mass of 702 amu.

If you have organic compounds containing nitrogens and hydrogens and the only other element is carbon, the result is a positive mass defect. Since many hydrocarbon compounds have a lot of hydrogen, the defect can be very large.

If there is also a substantial amount of oxygen, its negative mass defect can offset the nitrogen and hydrogen and reduce the mass defect. That is why the user sets the type and magnitude of the mass defect depending upon what kind or class of compounds he is working with. The correction for mass defect is generally set as x mmu per 100 amu where mmu is millimass unit or one thousandth of a mass unit.

If the correction is set to **100 mmu/100 amu** (it is usually set from 30 to 120 mmu/100 amu), the correction for the examples above would be:

<table>
<thead>
<tr>
<th>Correction Factor [amu]</th>
<th>Corrected Mass [amu]</th>
<th>In Integer Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 (0,100/100) = 0.15</td>
<td>150.075 - 0.15 = 149.925</td>
<td>150 amu</td>
</tr>
<tr>
<td>702 (0,100/100) = 0.7</td>
<td>702.8 - 0.7 = 702.1</td>
<td>702 amu</td>
</tr>
</tbody>
</table>
Thus, the correction factor "modifies" the data so that people used to working with integer masses for their elements in a compound obtain the expected results.

**Note:**

In Chromeleon, atomic masses are always indicated in \[m/z\] (= mass/charge number).

**Mass Spectrometer**

Mass spectrometers were originally developed as stand-alone instrumentation to analyze the structure of unknown, mostly organic compounds. When mass spectrometers are used together with chromatographic separation procedures, they allow the qualitative and quantitative analysis of complex mixtures of substances. The combination of GC and MS has long been part of the standard equipment in analytical laboratories.

However, the combination of HPLC and MS is not yet common because it is more difficult to realize. Nevertheless, acceptance is steadily growing because

- Decisive enhancements have been achieved during the past years.
- In addition to the Photodiode Array Detector, the MS detector, too, allows qualitative statements on individual substances of a chromatogram in HPLC.

Mass spectrometry includes four steps:

- Sample loading (neutral molecules)
- Ionization of individual molecules
- Ion separation according to their masses
- Ion registration in form of a Mass Spectrum

Different processes can be used for ionizing and separating ions with different masses. The following image illustrates ionization by means of an electron impact and the subsequent mass separation by means of a vertical magnetic field:
The ions that are created via the electron impact are first accelerated by means of the cones and then separated according to their mass in the magnetic field. Due to the varying intensity of the magnetic field (or the accelerating voltage), ions of different masses are directed through the exit slit into the collector and registered. In this way, mass spectrometers perform a mass scan similar to the wavelength scanning of many photodiode array detectors.

For information about how to record and process MS Data in Chromeleon, refer to How to …: Using Mass Spectrometers.

**Mass Spectrum**

Use an MS detector (Mass Spectrometer) to record a mass spectrum at any time \( t \) of a chromatogram. This extends the two-dimensional view of a chromatogram (retention time and intensity) by a third dimension (mass). In addition to the information about retention time and intensity, each of the recorded data points includes information about the masses detected in the mass spectrometer.

Mass spectra usually include a great number of narrow peaks or needles. To distinguish them from the comparatively wide chromatogram peaks, they are called mass peaks. A mass spectra representation with many needles is called Centroid. A mass spectra representation that combines the single needles into wide peaks is called a Profile.
In the report, you can display the mass spectrum of a peak or the mass spectrum at any time of the chromatogram. You can also display the current mass spectrum on the control panel during data acquisition.

In addition, you may aggregate single mass spectra to enhance their Signal-to-Noise Ratio (see How to ...: Using Mass Spectrometers Processing Mass Spectra).

To display recorded mass spectra on the mass spectra plot, click the following icon on the Method toolbar:

Mass spectra are generally represented via their relative intensities [%] against the mass. The unit of the mass is m/z (mass/charge number). The base peak, that is, the mass peak with the highest intensity, is the reference point for relative intensities. Thus, its relative intensity is always 100 %.

In the above example, the base peak is the mass peak at 733.6 m/z. The time when the mass spectrum was recorded is indicated, also. The mass spectra in the example were aggregated to the displayed total mass spectrum between 0.29 and 0.35 min.

For information about how to record and process MS data, refer to How to ...: Using Mass Spectrometers.
Mass Trace

Contrary to original TIC or SIM chromatograms that are recorded during data acquisition, a mass trace is an MS chromatogram for a specific mass area. Mass traces can be extracted from a Mass Spectrum and saved as a new channel. This is possible online during data acquisition but can be done later as well.

For more information, refer to How to …: Using Mass Spectrometers:
- Extracting Mass Traces Online
- Extracting Mass Traces Afterward

The Administrator Help section provides additional information; refer to How to …: Installing and Configuring Mass Spectrometers: Defining the Number of MS Channels.

Match Criterion

The match criterion defines the mathematical method of comparison for the curve shape (= standardized spectra). Also, refer to Match Criterion

Match Factor

The match factor is an indicator of the similarity between two curves. It varies from 0 (=no match) to 1000 (=perfect match).

The match factor is calculated as soon as two spectra are compared with each other in a spectra search (Library Search command or on the Spectra Library Screening tab page of the QNT Editor (see Data Representation and Reprocessing: The QNT Editor).)

This command is possible in windows or panes capable of displaying a spectrum. (For more information, refer to Data Representation and Reprocessing: Spectra Libraries and PPA: Peak Purity Analysis.)

The displayed spectrum is used as the basis. It is calculated by averaging all spectra recorded for one peak.
The result of the spectra search is the Hit List. It lists all spectra that have a certain similarity with the original spectrum. The match value in the Match column indicates how much they correspond.

**Note:**

*In the method PPA, the match can be indicated as a curve. Please note that instead of determining the similarity of two independent spectra, the spectra of the same peak (at different wavelengths) are compared with each other here (see Peak Purity Match Factor)!*

**Matrix Blank Sample**

The sample matrix can considerably influence sample analysis. To consider this, the standard samples should have the same matrix or at least a similar one. If this is not the case, you can use the Standard Addition calibration mode to analyze samples with an interfering matrix. In addition, you can use matrix blank samples to eliminate the influence of the sample matrix in the individual samples. Select Matrix as sample type for the respective blank sample. Matrix blank samples are marked as follows: ![Matrix Blank Sample Icon]. For this sample, too, the different peak areas (or peak heights, if these were used for quantification) are determined. Chromeleon automatically subtracts the peak areas (or peak heights) of the matrix blank sample from the corresponding peak areas (peak heights) of all sequence samples. The resulting areas (heights) are then used for all further calculations; for example, for calibration. However, the respective peaks must have been identified for both the unknown sample (or standard sample) and the matrix blank sample.

**Note:**

*Thus, matrix blank values are treated differently from "normal" Blank Run Samples. For normal blank run samples, the chromatogram is subtracted point by point from the chromatogram of the current sample.*

If more than one matrix blank sample was recorded in the sequence, the respective peak areas (peak heights) are averaged and the resulting value is subtracted from the corresponding peak areas (peak heights) of the other samples.

**Tip:**

*Matrix blank samples are subtracted only if they are evaluated in the same QNT Method. Otherwise, they will not be considered.*
Maximum Area Reject

The **Maximum Area Reject** parameter defines the maximum peak area up to which a peak is rejected. Peaks with a peak area below the defined value are not identified. Also, refer to ⇒ **Maximum Area Reject**

For more information about how to use the detection parameters, refer to **How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters**.

Maximum Height Reject

The **Maximum Height Reject** parameter defines the maximum peak height up to which a peak is rejected. Peaks with a peak height below the defined value are not identified. (Determination of the height is always relatively to the baseline.)

Also, refer to ⇒ **Maximum Height Reject**

For more information about how to use the detection parameters, refer to **How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters**.

Maximum Peak Height (**MaxHght**)  
Positive peak identification is via the ⇒ **Minimum Height** parameter. All peaks above this height value are identified.

Also, refer to ⇒ **Maximum Height Reject**

For more information about how to use the detection parameters, refer to **How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters**.
Maximum Rider Ratio

If one or several peaks (h1 to h4) is above the Rider Threshold in a series of non-resolved peaks, Chromeleon determines via the Maximum Rider Ratio detection parameter whether it is classified as a peak or a Rider.

Tip:

The Peak Type peak table classification criterion has priority! The criterion indicated here is valid for Peak Type = AUTO only!

Also, refer to Maximum Rider Ratio

For more information about how to use the detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.

Maximum Width

The Maximum Width detection parameter defines the maximum width above which peaks are ignored during peak detection.

Also, refer to Maximum Width

For more information about how to use the detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.

MCA

If you use an aQa Mass Spectrometer for data acquisition, you may acquire the data in MCA (Multi Channel Analysis) mode. This mode mainly serves for calibrating the mass spectrometer. It may also be used for analyzing pure solutions of substances. Usually the solution in question is made available to the mass spectrometer via infusion.

Tip:

The MCA mode is not available for the MSQ.
In MCA mode, all Mass Spectra of the single scans are added up. Only the resulting total mass spectra (up to four) are saved when the analysis is finished. The advantage is that the files require less storage capacity due to the reduced signal-to-noise ratio.

⚠️ **Caution:**

Signal dependence according to time is not recorded in MCA mode. Therefore, a "traditional" chromatogram is not available. Thus, the MCA mode is **not suitable for chromatographic analysis**.

In MCA mode, the "chromatogram window" looks as follows:

![Chromatogram Window](image)

The data acquisition time is represented by a line at the height of the sum of all counts of the single mass spectra that have been added up. If, in addition, the mass spectrum is displayed in the respective window, it can also be displayed as thumbnail in the chromatogram at the end retention time, depending on the respective setting.

💡 **Tip**

MCA data acquisition is not possible in Demo Mode!

For information about using the MCA mode, refer to **How to …: Using Mass Spectrometers** Acquiring MS Data in MCA Mode.
Message

Use the Message command to enter reminders for things to do or to consider when executing a Program. The message is then displayed on the screen. The user must confirm the message by clicking OK before the program is continued. Also, refer to Message

Minimum Area

The Minimum Area detection parameter is used as a minimum criterion determining the area threshold, below which peaks are ignored during peak detection or integration. Also, refer to Minimum Area

For more information about how to use the detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Modifying Detection Parameters.

Minimum Height

The Minimum Height detection parameter is used as a height threshold, below which peaks are ignored. The peak height is measured relative to the baseline (a). Also, refer to Minimum Height

For more information about how to use the detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Modifying Detection Parameters.

Minimum Width

The Minimum Width detection parameter is used as a minimum criterion, defining the minimum width, below which peaks are ignored during peak detection. Also, refer to Minimum Width

For more information about how to use the detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Modifying Detection Parameters.
**MinLampIntensity**

Select the `MinLampIntensity` command to set the lower limit for the lamp intensity. Also, refer to ⇒`MinLampIntensity`

**Modem Cable (1:1 Cable)**

Modem cables are frequently used standard cables for connecting instruments to a PC. The cable assignment is as follows (Also, refer to ➤ `Pin Assignment`):

<table>
<thead>
<tr>
<th>Instrument</th>
<th>9-pin male connector</th>
<th>25-pin male connector</th>
<th>25-pin female connector</th>
<th>9-pin female connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td></td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td></td>
<td>22</td>
<td>9</td>
</tr>
</tbody>
</table>

**Notes:**

The pin mapping for connectors with identical pin number is 1:1. That is why modem cables are also called 1:1 RS cables.

With the cable (3) with two 25-pin connectors, the remaining 16 pins are also mapped 1:1.

**Dionex part numbers**

- **160070:** Cable (1): 9-pin (male) - 9-pin (female) (previous LC Packings part no. ULT-S-COM and SW-S-COM)
- **8914.0144A:** Cable (2): 25-pin (male) - 9-pin (female), 5m
- **8914.0128:** Cable (3): 25-pin (male) - 25-pin (male), 5m
**Tip:**

Do not confuse non-crossover modem cables (= 1:1 RS cables) with crossover Null Modem Cables!

For information about additional or other connections, refer to the installation instructions for the device. (Also, refer to **Hardware Installation** in the **Installing and Controlling Third-Party Devices** section.)

**Moduleware**

Instrument control firmware installed on Dionex modules. Moduleware sends status information and data to Chromeleon and receives control parameters from Chromeleon.

**"Monitor Only" Mode**

Two users cannot control the same Timebase simultaneously. A user who connects to the local server from a control panel can control the instruments connected to a timebase (control mode). However, a second user who accesses the same timebase will automatically be assigned the monitor only status. This status means that the second user is allowed to view all current values and states on the control panel, but cannot make any changes (e.g., change the flow rate). A user who accesses a timebase from the Network is assigned the monitor only status, also.

**Changing from Monitor Mode to Control Mode**

To change between the two modes, select or clear Monitor Only on the Control menu. If user A takes over control of the timebase from user B, user B is automatically assigned the monitor only status.

**Organizing Access Options**

If User Mode is enabled, the assigned privileges determine whether a user can control a timebase or simply monitor the timebase, and whether the user is allowed to change between monitor mode and control mode.
If access control is disabled, each user has all privileges at all times. Objects that are members of an Access Group will not be visible.

Independently of this, access can usually be limited directly from the server or the timebase. Specified users can monitor and/or control the server or timebase from the network only if remote monitoring and/or control of a server or a timebase is explicitly allowed in the Server Configuration program (on the Access Control tab page of the Properties dialog box). This does not apply to users who access their local servers.

**Move to Background / Move to Front**

Use Move to Background to move a selected object to the background. Use Move to Front to move a selected object to the foreground.

**Multi-Tasking**

Multitasking refers to simultaneous operations of several programs on a PC. Unlike earlier Windows versions (3.1; 3.11), allocation of processing time under Windows 2000/XP is no longer between programs (cooperative), but is monitored and controlled externally (preemptive). This guarantees that each application (process) is automatically continued after a specific time. A single process cannot claim the entire processing time at the expense of other processes.

**Multi-Threading**

Multi-threading allows simultaneous execution of two or more application parts as separate processes. For example, if many control commands are communicated simultaneously to a chromatography system, communication requires a certain amount of time. In the past, it was not possible to continue working during this time, regardless of whether the operation took a split second or longer. Multi-threading allows simultaneous execution of this type of operation (Threads). This is possible because each operation is internally separated into many small steps that are executed with a time lag, without being noticed by the user.

Thus, the user can perform other tasks; for example, (s)he can manually re-integrate a chromatogram despite the comprehensive communication of control commands.
Name
The user enters the Name for the substance in the peak table. The name is available as peak result variable.

NeedleUp
Use the NeedleUp command to lift the sample needle. The internal sample valve is switched. (Also, refer to the example for a load/inject process in the Autosampler section.) Also, refer to NeedleUp

Negative Absorption
Negative absorbance can be the result of a decreasing absorption of the eluent after Autozero (which usually occurs at the beginning of a run). At the default setting, the detector will become saturated when the actual transmission is 20% above the autozero level. The extent of negative absorbance is wavelength-dependent. It depends on:
• the spectrum of the lamps (deuterium and tungsten),
• the spectrum and concentration of the different eluent components (present in the cell), and
• the spectrum and concentration of other substances (present in the cell).

Usually, the PDA-100 can detect signal values down to about -0.1 AU (default). Use the NegativeAbsorptionLevel command to change the default and to enter the level up to which negative values can be detected. If the baseline becomes flat and truncated and shows no noise, increase the NegativeAbsorptionLevel setting. (Note that baseline noise may increase as the negative absorbance level increases.)

This increases the available signal range to lower values. This is especially recommended when running a gradient application in which the absorbance of the eluent decreases by several hundred mAU.
Network Failure Protection (NFP)

Often it is useful to store important data on central data server PCs. In case the network connection is interrupted or the central data server PC crashes, data acquisition should continue, of course. For this purpose, all data that are relevant for the Chromeleon server are stored locally on the server's hard disk before the sequence is started. If the network connection is interrupted, the Server will nevertheless continue to process these sequences.

Interruption of the network connection is logged in the audit trail (see Data Management Audit Trails). The server continues to process the Batch using the last conditions. All data are first saved locally.

In some cases, network recovery might fail due to problems of the ODBC or network driver. Restart the Chromeleon server after batch processing is complete. In order to ensure that Windows and all other applications work properly again Dionex recommends rebooting your PC first.

In addition to the network-failure protection, Power Failure Protection is available.

Tip:

If the network fails while Chromeleon accesses an Access databases, it may happen that the Chromeleon datasource (mdb file) is damaged. Therefore, Dionex recommends using an MS SQL or Oracle server as central database to protect your data even if the network fails.

Also, refer to How to …: Working with Files, Databases, and Networks Network Failure/Non-Availability in the Administrator Help section.

Nice Size

Select Nice Size to optimize the size of one or more controls. The Control Frame is adjusted so that the Control including the caption is just visible.
(Signal) **Noise**

The **Signal Noise** parameter indicates the signal noise within a chromatogram calculated by Chromeleon. The value serves as the basis for the Signal-to-Noise Ratio determined from the raw data at the start of the data acquisition.

**Determining the Signal Noise (Default)**

All datapoints recorded during the first 10 seconds of a chromatogram form the basis for determining the noise value. Chromeleon calculates a regression line using the method of least squares, then determines the maximum distance of two datapoints above and below the line. (When calculating the regression line, all datapoints are weighted with their corresponding step unless the step is equidistant.) Adding both values supplies the first noise value.

The procedure is repeated for the last 10 seconds of a chromatogram. It returns a further noise value.

The lower value is indicated under **Noise** and used as Sensitivity for peak recognition.

**Signal Noise in User-defined Range (Parameter Input)**

You can also determine the signal noise for a specific range of the chromatogram. In the Integration view, for example, specify this range in the Report Column Properties dialog box (after double-clicking the column to edit) or in the Add Report Column dialog box by selecting Add Column on the Table menu. Mark Chromatogram in the Categories list, and then select Signal Noise in the Variables list. Click Parameter to open the Parameter Input for 'Signal Noise' dialog box. Select the Specific Range check box and enter the desired range.

**Tip:**

To define the determination, identification, and detection limit via the signal-to-noise ratio, always use the noise of the user-defined range! If you do not use the noise of the user-defined range, the determination, identification, and detection limits might be miscalculated.
Normalization (Overview)

In the linear range, the response (either absorbance or current) recorded at a particular retention time is always proportional to the concentration of the substance currently in the flow cell. An objective comparison of two responses is therefore only possible if the concentration is identical.

As this condition is rarely fulfilled, and as it is not possible to convert a response recorded at a specific concentration to another concentration, the height of one response must be scaled to the height of the other. This is called normalization. The following factors must be considered:

- The base area portion must be considered - especially in trace analysis (see Baseline Correction of Spectra).
- In UV detection, the noise portion depends on the wavelength and the solvent. Thus, at 200nm, not only is the lamp energy of a deuterium lamp considerably lower than at 250nm, but the absorption of common solvents is also especially high.
- In amperometric detection, the noise intensity depends on the value of the applied potential. The higher the applied potential the higher the noise tends to be.
- Normalization should be performed where little influence on the above factors is expected and where a relative response maximum of the substances to be compared is observed.

Therefore, normalization can be performed by the Absolute Maximum, by the Relative Maximum, by a fixed Wavelength (for UV spectra), or by a Fixed Time (for I-t plots).

Note:

Chromatograms and peaks can also be compared. They are referred to as normalized chromatograms, areas, or amounts.

Normalization (Absolute Maximum)

The absolute maximum of the response (for example, the maximum height of a spectrum in UV detection or the maximum current in an I-t curve) is determined. The response maximum is chosen as a reference point and it receives the absolute height 1 (100%).

Also, refer to Normalization (Overview)
Normalization (Relative Maximum)

The relative maximum of the response is determined. This will be the greatest $\lambda$-peak of the spectrum or the greatest current-peak of the I-t plot. After normalization, this peak has the height $0.5$ (50%). This prevents normalization with incomplete maxima on spectrum or I-t plot margins.

\[ \lambda \]

\[ \lambda_{\text{min}} \]

\[ \lambda_{\text{rel. max}} \]

\[ \lambda_{\text{max}} \]

Tip:

Note that response maxima can exceed the 100% line on the margin of the plot, due to the definition!

Also, refer to ➤Normalization (Overview)

Normalization (Fixed Wavelength)

Normalization with a fixed wavelength is analogous to normalization at a relative maximum. Instead of the relative maximum, the user can choose the wavelength of the absorption value, which seems suited best for normalization.

Tips:

Note that spectrum maxima on the margin of the spectrum can exceed 100%, due to the definition!

If you use the wavelength of the absolute maximum for normalization, it is possible that this wavelength is on the margin of the spectrum. Often, this will be on an edge. On edges, wavelength fluctuations will have stronger effects. Thus, the results may be less precise. This is especially true for detectors that have an optical bandwidth higher than 5nm.

Also, refer to ➤Normalization (Overview) and ➤Normalization (Relative Maximum).
Normalization (Fixed Time)
Normalization at a fixed time is analogous to normalization at a relative maximum.

Instead of the relative maximum, you can choose the time (in the Waveform period) of the response value that seems best suited for normalization.

Also, refer to Normalization (Overview) and Normalization (Relative Maximum).

Null Modem Cable
Null modem cables are frequently used (crossover) standard cables for connecting instruments to the PC. However, the term "null modem cable" is not defined clearly and precisely, and thus it is used for a number of different cables. The cable assignment of the Dionex null modem cables is as follows: (Also, refer to Pin Assignment):

<table>
<thead>
<tr>
<th>Instrument</th>
<th>9-pin female connector</th>
<th>25-pin female connector</th>
<th>PC</th>
<th>25-pin female connector</th>
<th>9-pin female connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>------------</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>------------</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>------------</td>
<td>7</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-5</td>
<td>7-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instead of the pseudo handshakes (7-8 and 4-5), the following assignments are realized for the completely connected null modem cable:

1	4
4	1
7	8
8	7
9	9
S	S

Tip:
Do not confuse crossover null modem cables with non-crossover Modem Cables (1:1 RS cables)!
To order null modem cables from Dionex, use the following part numbers:

The **completely connected** null modem cable is available as a 9-pin to 9-pin cable:

- **1310.2263** null modem cable

The following null modem cables with **pseudo handshakes** are available:

**9-pin to 9-pin:**
- **8914.0129** for RS cable RU, 2.5m
- **8914.0130** for RS cable RU, 5m
- **8914.0131** for RS cable RU, 10m

**25-pin - 9-pin:**
- **8914.0103A** for RS cable RU, 2.5m
- **8914.0120** for RS cable RU, 5m
- **8914.0121** for RS cable RU, 10m

If necessary, use an adapter to connect the cable to a 25-pin socket. These null modem cables have been slightly modified to ensure data transmission even with enabled hardware handshake. However, the above hardware handshake is not realized.

For information about additional or other connections, refer to the installation instructions for the device. (Also, refer to **Hardware Installation Installing and Controlling Third-Party Devices** in the Administrator Help section.)

### Number (No.)

The **Number** variable is the successive number assigned to a peak during peak detection. The peak number can be output as peak result variable.

If the values in this column are not successive but contain gaps, the missing peaks fell victim to one of the inhibition criteria; for example, **Relative Area Threshold** or **Report Unidentified Peaks = OFF**.
Number of Calibration Points

The **Number of Calibration Points** calibration variable gives the number of values that are used for the calibration.

The ➤ **Number of Disabled Calibration Points** can be displayed separately.

Number of Disabled Calibration Points

The **Number of disabled calibration points** calibration variable indicates the number of values that were not considered in the calibration.

The ➤ **Number of Calibration Points** can be displayed separately.

ODBC (Open DataBase Connectivity)

ODBC is the name of a standard database interface that allows access to various databases, such as SQL server, dBASE, or Oracle, using an ODBC driver.

Offset

Signals or chromatograms with an assigned offset value (in %) are offset vertically by this value in percent of the window size. Valid entries are from 0 to 50.

Offset (c0)

The **Offset (c0)** calibration variable returns the offset value of the used ➤ *Calibration Function*.

As a y intercept is only available for the **Linear with Offset** (= LOff), **Quadratic with Offset** (= QOff), and **Exponential** (= Exp) functions, no output is possible for the **Linear** (= Lin) and **Quadratic** (= Quad) functions.

Offset Level

The **Offset Level** command (also called zero position) offsets the detector’s analog output signal as a percentage of the full-scale voltage. Offsetting the output allows an attached recording device to plot the signal if it becomes negative.
Offset Volume

The Eluent Generator Offset Volume option specifies the delay volume between the pump outlet and the injection valve. Because the EG40/EG50 is located between the pump and the injection valve, the eluent concentration gradient produced by the EG40/EG50 may reach the column more quickly than the %-Gradient produced by the pump. Chromeleon uses the offset volume to calculate a time delay in starting the EG40/EG50. The delay synchronizes EG40/EG50 and gradient pump operation.

The default offset volume of 0 µL is used for most systems. The actual offset volume may be different, however, depending on the system configuration. To change the value, start the Server Configuration program and double-click the EG40/EG50 entry in the list of devices for the Timebase. Select the Pump Link & Cartridge tab page.

The offset volume has no effect during isocratic operation.

Note:
The Offset Volume option is not available for the ICS-2000 or ICS-3000 eluent generator.

Online Help

The Chromeleon Online Help provides on-screen help information in any situation.

- Click the Help cursor icon on the toolbar to display help information about a specific item on the screen.
- Press the F1 key to display context-sensitive help information about a specific situation. A description of the selected menu bar, (tab) dialog box, or the enabled control will appear.
- Select Index on the Help menu to open the Chromeleon online Help. The Chromeleon online Help provides three tabs: Contents, Index, and Find. The Contents tab page displays the table of contents, listing the different sections and topics. The Index tab allows you to search the alphabetical list of index entries for a specific term of interest. The Find tab allows you search the entire online Help text for specific words and/or phrases.
- Select Using Help to open the Windows online Help. The Windows Help provides information about how to use an online Help system.
Online Transfer Agent (OTA)

The Online Transfer Agent allows the server to transfer sequences after they have been processed. When the Online Transfer Agent is installed on your computer, you can transfer a Sequence or a Batch to the desired location directly after data acquisition. To do so, select Transfer on the Batch menu (either on a control panel or in the Browser). On the Transfer tab page, you can select the option to delete the sequence or batch at the original position after the transfer.

Tips:

During batch transfer, sequences in the destination directory may be overwritten if they have the same name as the sequences to be transferred. However, it is not possible to overwrite locked data, signed data, or sequences containing raw data. (Example: If you appended samples to a sequence that was already transferred, you have to delete the existing sequence in the destination directory manually before you can transfer the extended sequence.)

Sequences not containing raw data are overwritten; neither a warning appears before this operation nor are the Privileges (e.g., DeleteSEQ) checked.

For installation details, refer to How to …: Starting and Monitoring the Server, Setting Up the Server for Network Access Setting Up the Online Transfer Agent for Network Access in the Administrator Help section.

Tip:

In order to use the Online Transfer Agent, the Multiple Network Control license must be available on your PC (see Chromatography Components: Hardware and Software Chromeleon Licenses).

Note:

If a transfer operation fails, the system attempts the transfer nine times in the following intervals: 10 min, 30 min, 1:10 h, 2:30 h, 5:10 h, and then four times every 6:00 hours.
Operational Qualification (OQ)

According to the definition formulated together with EURACHEM, Operational Qualification is "the process of demonstrating that an instrument will function according to its operational specification in the selected environment." [P. Bedson and M. Sargent, Accred. Qual. Assur. (1996) 1, 265-274]

The purpose of OQ is to prove and document that an analytical system functions according to its operating specification while your specific environmental conditions are taken into account. Operational Qualification is usually performed directly after a new device was installed.

On the Qualification menu, Chromeleon provides the Instruments OQ and OQ Setup commands. Select Instruments OQ to perform operational qualification. Select OQ Setup to generate the templates required for performing operational qualification. Usually, this is only necessary after initial installation or when the configuration has been modified.

The individual report pages of the Instrument OQ correspond to the Performance Qualification pages for instruments. However, OQ limits are stricter than PQ limits.

It is also possible to perform Chromeleon Operational Qualification. To do so, select Chromeleon OQ on the Qualification menu. (For more information, refer to Validation and Qualification Chromeleon Operational Qualification (OQ) in the Administrator Help section.)

Tips:

For more information about Instrument Operational Qualification, refer to the Operational Qualification/Performance Qualification Operating Instructions that you can obtain from Dionex Service.

For more information about Chromeleon Operation Qualification, refer to the Chromeleon Operational Qualification Operating Instructions.

Dionex AutoQ includes the three qualification procedures: Installation Qualification, Performance Qualification, and Operational Qualification.
Optical Resolution (Spectral Resolution)

The difference between two detectable wavelengths [in nm] that can only just be separated is referred to as the optical resolution of a photodiode array detector. It is determined by two factors:

- Photodiode Resolution
- Quality of grating required for spectral dispersion (optical bandwidth)

The values for the optical resolution of conventional detectors are approximately 2 - 6 nm (Dionex UVD 340U Detector: 1.9 nm (UV range), Dionex PDA-100 Detector: 1.0 nm).

Tip:

The optical resolution is only one criterion for the quality of a detector. For a meaningful comparison of different detectors, combine the optical resolution and signal-to-noise ratio. In this connection, it is also important that the ratio between the individual factors is balanced. This correlation becomes clear when you look at benzene in the 230 - 265 nm range. A fine structure ("benzene finger") is only recognizable if the number of photodiodes, the imaging optics, and the Signal-to-Noise Ratio are in a sensible performance relation to each other.

Optimum Integration Path

A chromatogram that has been recorded at a fixed wavelength usually does not have an optimum Signal-to-Noise Ratio for all included peaks. The selected wavelength is often a compromise that allows you to "see" all substances.

It would be ideal to detect, e.g., peak 1 at 230 nm, peak 2 at 254 nm, peak 3 at 320 nm, etc.

This is possible when you perform Wavelength Switching (if the wavelength switch points are known) or when you record a 3D Field using the Photodiode Array Technology and subsequently determine the optimum integration path.
Definition

The optimum integration path is characterized by

- An optimized signal-to-noise ratio
- Minimum overlay of neighboring peaks and/or
- Optimum linearity

This means that the integration path must pass through the absorption maximum of a peak, without being influenced by another peak. The recording precision in relative maxima and minima is higher than it is in steep spectra edges (this is especially true for large optical bandwidths of a detector). Dionex recommends selecting the largest relative absorption maximum instead of the absolute maximum. In addition, the absolute maximum of UV spectra is frequently located in the low UV range, i.e., near 200 nm. In this range, the detector sensitivity usually decreases, while interferences, such as solvent absorption or humidity, increase.

When dealing with large substance quantities, as in preparative chemistry, total absorption should be below 2 AU. For optimum precision, select a relative spectra extremum for recording.

If the complete chromatographic separation of two peaks is not possible, it makes sense to record each channel at a point where the other peak has its absorption minimum, or ideally, is inhibited entirely.

Implementation

Chromeleon automatically calculates the course of the optimum integration path and displays the path in the 3D Field. The transition between two wavelengths is exactly between the peak end of one peak and the peak start of the other peak. That is why the peak end, peak start, and switch time coincide for neighboring peaks.

You can include the result, i.e. the switch times at which the Wavelength signal parameter changes, in a Program, using the Extract: Opt.Int.Path to clipboard command.

Tip:

Chromeleon ignores rider peaks (⇒Type (Peak Type): Rider) when calculating the optimum integration path.

For more information, refer to How to ...: Analyzing the Peak Purity Selecting the Optimum Integration Path.
OQ
See ➤Operational Qualification (OQ)

Origin
See How to …: Integrating Chromatograms and Identifying Peaks ➤Selecting the Calibration Function.

Original Size
See ➤Full Size

Overlay
An Overlay is a chromatogram that is displayed in addition to the open chromatogram, i.e., overlaying the open chromatogram. Overlays are often used to compare chromatograms. To do so, several chromatograms can be overlaid at several positions in Chromleon:

Control Panel
You can overlay chromatograms during data acquisition. Open a ➤Control Panel and select Chromatogram Overlay on the context menu of the online signal plot. In addition to the currently recorded channels, a previously recorded chromatogram is displayed.

QNT Editor and Report
Select Add Overlay on the File menu in either the Report or the QNT Editor (see Data Representation and Reprocessing ➤The QNT Editor) to overlay chromatograms after data acquisition.

Printer Layout
To plot overlaid chromatograms, select Chromatogram Properties on the context menu of a chromatogram (in the ➤Printer Layout) and make the corresponding settings on the Overlay tab page. In each plot, you can use a processed sample of the current sequence or of any other sequence as the reference chromatogram.

Also, refer to How to …: Working with Chromatograms ➤Comparing Chromatograms.
Overview Window

When zooming, an overview window is displayed in the upper right corner of the signal plot. The overview window displays the entire chromatogram and indicates the position of the enlarged section.

P Groups

See ➔ Privilege

PAL Plug-In Card

A PAL is a PC plug-in card that is either attached to another card, such as the A/D converter card, or inserted in the PC as a separate card.

The ➔ Dongle stores the serial number of the Chromeleon workstation, much as the PAL Plug-In card does. Each workstation has a unique serial number. The serial number of the PAL plug-in card (or dongle) and the ➔ Key Code stored in Chromeleon must match. If they do not match, Chromeleon cannot operate correctly. Unless there is a PAL, a dongle, or a ➔ License Server, and unless the key code is correct, Chromeleon can run in ➔ Evaluation Mode only.

The Administrator Help section provides more information; refer to:

Software Installation and Communication ➔ The Software License
Hardware Installation ➔ Entering the Software License

Panel

See ➔ Control Panel

Panel Tabset

A panel tabset provides (on one window) a set of Chromeleon ➔ Control Panels for controlling the individual instruments in a ➔ Timebase and for performing system-wide functions (for example, creating and running sequences). A panel tabset is designed to function as the main or only interface required for controlling and monitoring a timebase.

Also, refer to ➔ Control ➔ The Panel Tabset
Partial Flows

See %B, %C, %D

Partial-Loop Injections (AS/AS50 Autosampler)

When performing a partial-loop injection, the AS or AS50 autosampler draws the volume to be injected, plus two times the cut volume (a volume of sample discarded from each end of the aspirated sample), from the sample vial.

Partial-loop injections are possible under the following conditions:

- The valves are installed in the autosampler or, if external, are installed in one of the following modules: ICS-1000/1500/2000 or ICS-3000 DC.
- The AS or AS50 (USB) is not running in Simultaneous or Sequential mode.

If the above conditions are not met, the autosampler can perform Full-Loop Injections only.

Partial-Loop Injection Sequence

![Diagram of partial-loop injection sequence]
Partial-Loop, Limited-Sample Injections (AS/AS50 Autosampler)

When performing a partial-loop, limited-sample injection, the AS or AS50 autosampler draws only the volume to be injected from the sample vial. Partial-loop injections are possible under the following conditions:

- The valves are installed in the autosampler or, if external, are installed in one of the following modules: ICS-1000/1500/2000 or ICS-3000 DC.
- The AS or AS50 (USB) is not running in Simultaneous or Sequential mode.

If the above conditions are not met, the autosampler can perform Full-Loop Injections only.

Partial-Loop, Limited-Sample Injection Sequence

![Diagram of partial-loop injection sequence](image)
Password

Passwords protect access to specific software or areas thereof. Chromeleon requires passwords in different situations:

A password is required to open the User Manager (CmUser program). The administrator assigns the password when she creates the user database.

When the User Mode is enabled, the user can open the Chromeleon client only after entering the correct password. The administrator associates each user with an individual password in the User Manager. However, after the user correctly enters the assigned password, she can change the password at any time.

A password is also required to sign sequences electronically (see: Electronic Signature). Each user has a password that allows him/her to submit, review, and approve the signature according to his/her privileges. This signature password, too, is assigned by the administrator in the User Manager program and can later be changed by the user. Electronic signature is possible only when User Mode is enabled.

Peak Group Start/Peak Group End

Select Peak Group Start and Peak Group End detection parameters to identify several successive peaks as a peak group. A peak group that has been defined in such a way is treated as one single peak.

Also, refer to Peak Group Start/End

For more information about the detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.

Peak Name

Enter the name of the substance detected at the time t in the Peak Name column of the peak table in the QNT Editor (see Data Representation and Reprocessing The QNT Editor). The peak name can be indicated as a separate peak variable in the report.

Also, refer to Name (Peak Name)
Peak Number (No.)

See ➔ Number (No.)

Peak Purity

See the following topics:

➔ PPA (Peak Purity Analysis)
➔ PPI (Peak Purity Index)
➔ PPA Report

Peak Purity End Wavelength (PPWEnd)

In combination with the Peak Purity Start Wavelength detection parameter, Peak Purity End Wavelength limits the wavelength range for peak purity calculations.

Also, refer to ➔ Peak Purity Start/End Wavelength.

For information about how to apply detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks ➔ Defining Detection Parameters.

Peak Purity Match Factor

The Match Factor expresses the similarity of two curves. A peak purity match factor can be expressed for both UV spectra and mass spectra.

The match factor for UV spectra (= UV match factor) refers to the correlation between the spectrum in the peak maximum and the spectra on the leading and trailing edges. Ideally, none of the spectra between peak start and peak end deviates from the spectrum in the peak maximum. They correspond to 100%; that is, the match value is 1000. For ➔ Mass Spectra, the distance between the single masses and the relative height of the different mass peaks is taken into account. As with UV spectra, a match factor of 1000 indicates a perfect match. However, the MS match factor is far more selective than the UV match factor.
Tip:

The calculation of the match factor becomes more inaccurate on the peak margins. This is due to the poorer Signal-to-Noise Ratio. Select the Peak Purity Threshold detection parameter to limit the selection of the UV and mass spectra in the QNT Editor (see Data Representation and Reprocessing The QNT Editor) to a sensible peak height.

If the match factor of a peak is included in a report column, the value will be averaged from all match values of the peak that have been determined so far. The UV match factor is always baseline-corrected (see Baseline Correction of Spectra), as this portion usually cannot be neglected; it would falsify the result.

With mass spectra, define in the QNT Editor whether background mass spectra shall be subtracted. If you enable background subtraction, define which spectra shall be subtracted. This also defines whether the match factor shall be output baseline-corrected. For more information, refer to How to …: Working with Chromatograms Subtracting MS Background Spectra.

In addition, you can include the deviation of the averaged single match values in the PPA Report as the Peak Purity: Relative Standard Deviation of the Match Factor (RSD Match).

Peak Purity: Relative Standard Deviation of the Match Factor (RSD Match)

The relative standard deviation of the Peak Purity Match Factor indicates its homogeneity over the entire course of the peak.

Calculation is analogous to the Relative Standard Deviation of the PPI (RSD PPI). Instead of the PPI values, the corresponding match values are used. Divide the standard deviation by the average of all match values (Match Ø) and multiply the result by 100%. The result is the relative standard deviation of the match factor (RSD Match) in percent.

\[
RSD(\text{Match}) = \frac{SD}{\text{Match Ø}} \times 100\%
\]
Peak Purity Start Wavelength (PPWlStart)

In combination with Peak Purity End Wavelength detection parameter, Peak Purity Start Wavelength limits the wavelength range for peak purity calculations.

Also, refer to ⇒ Peak Purity Start/End Wavelength.

For information about how to apply detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.

Peak Purity Threshold (PPTrshold)

The Peak Purity Threshold detection parameter determines the threshold for the signal height above which spectra comparison is performed. The parameter is important for the Peak Purity Analysis (PPA) and the peak ratio.

Peak Purity Analysis (PPA)

For the peak purity analysis, the parameter defines the signal height above the baseline from which UV or Mass Spectra shall be extracted for calculating the PPI (Peak Purity Index) or the Peak Purity Match Factor.

Peak Ratio

For the peak ratio, the parameter defines the signal height above which the ratio of two UV or MS channels shall be calculated.

Also, refer to ⇒ Peak Purity Threshold.

For information about how to apply detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Defining Detection Parameters.

Peak Shoulder

A peak shoulder (often simply referred to as a shoulder) occurs if a second substance with a (usually) considerably lower concentration is found below a large main peak. Peak shoulders normally do not have a distinct separate relative signal maximum of their own. Unlike peak shoulders, Rider Peaks usually have a distinct relative maximum of their own.
Chromeleon distinguishes between peak shoulders and rider peaks when defining retention time. As with main peaks, the peak retention time for rider peaks is defined as the time of the signal maximum. In contrast to this, the peak retention time for peak shoulders is the time with the maximum signal height over the baseline. Below the shoulder, the baseline is often inclined. That is why this time does not necessarily correspond to the time of the signal maximum. Chromeleon usually skims peak shoulders in an exponential way:

![Peak Shoulder Threshold](image)

**Peak Shoulder Threshold**

The **Peak Shoulder Threshold** parameter defines a threshold value for peak shoulder recognition. Also, refer to ⇒Peak Shoulder Threshold. For more information about how to use the detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks ⇒Defining Detection Parameters.

**Peak Slice**

The **Peak Slice** detection parameter determines the width (= space of time) from which several successive data points are interpreted as peak or as noise. Also, refer to ⇒Peak Slice

**Note:**

*Always consider this parameter in combination with the ⇒Sensitivity.*
Peak Start Time

The Peak Start Time peak result variable refers to the peak start in minutes. The left peak delimiter determines the peak start.

Peak Stop Time

The Peak Stop Time peak result variable refers to the peak end in minutes. The right peak delimiter determines the peak end.

Peak Summary

A peak summary tabulates the peak and sample variables of any samples desired. The summary usually includes the samples of a sequence. However, you may also create a summary based on a Query.

For more information, see Report Tables The Peak Summary Report.

Peak Table

The peak table is part of the QNT Editor (see Data Representation and Reprocessing The QNT Editor). The QNT Editor allows you to determine the parameters for peak identification and peak calibration.

For more information, refer to The QNT Editor Peak Table, Amount Table, and Peak Tracking.

Peak Type

See Type

Peak Width

See Width
Performance Qualification (PQ)

Instrument and software validation is becoming increasingly important to analytical laboratories. Performance Qualification (PQ) is an important aspect of validation. PQ is defined as "the process of demonstrating that an instrument consistently performs according to a specification appropriate for its routine use" [P. Bedson and M. Sargent, Accred. Qual. Assur. (1996) 1, 265-274.]

The task of PQ is both to ensure and to document that your system functions as required by your particular (routine) operation. The frequency and scope of Performance Qualification are determined by the requirements in your laboratory. They can be specified in internal instructions or in an SOP. The parameters should be similar to those for routine operation. In addition to Performance Qualification, Operational Qualification and Installation Qualification are important factors for validating instruments and software. The term AutoQ includes the three qualification procedures.

To perform Performance Qualification for your instruments, select Instrument PQ on the Qualification menu in the Chromeleon Browser. For more information, refer to Validation, AutoQ, and System Wellness Instruments Operational and Performance Qualification.

PGM File

The PGM File (also called control file) can have several sections. That is why the PGM Editor (see Chromleon (Overview) The PGM Editor) provides different views:

- The Commands view, displaying the actual Program
- The Post-acquisition steps view, providing extraction and data smoothing steps that are performed after data acquisition

The PGM File and the program can be easily created, using the Program Wizard. (For information about the wizard, refer to Control The Program Wizard.) The user input is automatically converted into uniform command syntax readable by Chromeleon. In this way, even new users can quickly create operable programs. After creating the program, you may have to enter the Mass Spectrometer method and the Post acquisition steps on the corresponding pages of the PGM Editor. To edit the commands for device control, use the corresponding Device views.
Phosphorescence

The temporally delayed emission of light after excitation with light energy is referred to as phosphorescence. The time delay observed in solutions is between 0.001 and 10 seconds. It is often possible to use a fluorescence detector to measure the phosphorescence (as well as the Chemiluminescence). In this case, the emitting light is measured several milliseconds after the excitation flash.

**Note:**

The wavelength of the emitted light is always higher than the excitation wavelength. In HPLC applications, the phosphorescence spectrum is independent of the excitation wavelength.

The Molecular Orbital (MO) theory provides a more exact explanation:

Similar to Fluorescence, molecules are excited by the absorption of light. Absorption arises from the ground state, the lowest vibrational level of the lowest singlet state (S0) and terminates in different excited vibrational levels of the next higher singlet state (S1).

\[ S_0 + h\nu_{\lambda} \rightarrow S_1 \]

where:

- \( h \) = Plank's constant
- \( \nu_{\lambda} \) = light frequency at absorption = \( \frac{c}{\lambda} \)

where:

- \( c \) = speed of light
- \( \lambda \) = wavelength

The excited vibrational states of S1 transit via a radiationless intersystem crossing into the lowest triplet state (T1). The transition from the triplet state into the ground state is spin prohibited. Therefore, it is temporally delayed and phosphorescent light is emitted:

\[ T_1 \rightarrow S_0 + h\nu_p \]
**Notes:**

Compared to fluorescence spectra, phosphorescence spectra are shifted to the red because the electronic T1 states are energetically below the S1 states.

Due to the fast relaxation in solution the emission spectra of electronically excited molecules in solution is independent of the excitation wavelength (also for excitation of, e.g., S0→S2), according to the Kasha rule.

**Photodiode Array Detector**

A photodiode array detector is a special multi-channel [UV Detector](#). For more information, refer to

- [Photodiode Array Detectors (Main Features)](#)
- [Photodiode Array Detectors (Functionality)](#)

Highest optical resolution and at the same time high sensitivity are decisive factors for the quality of a photodiode array detector. For more information, please refer to [Optical Resolution (Spectral Resolution)](#).

**Main Features**

- [Photodiode Array Detectors](#) (PDAs) feature high sensitivity and a large linearity range, they are relatively independent from temperature fluctuations, and can be used for gradient elution (%-gradient). The simultaneous detection of all wavelengths at the time t is made possible by:
  - Peak Purity Analysis
  - Peak identification via the [Spectra Library](#)
  - Determination of optimum integration path for later wavelength alterations
  - Normalization of spectra
  - Quantification of non-resolved peaks
The measuring range of the PDA-100 detector is from 190 to 800 nm. The measuring range of the UVD 340S detector is from 200 to 355 nm in the UV range and from 357 to 600 nm in the visible range.

**Functionality**

Unlike conventional (1 or 2-channel) UV Detectors, multi-channel detectors (PDAs) send the entire spectrum of the light source (a), in focused form (b), through the flow cell (c). Thus, absorption not only causes the intensity of a single wavelength to change, but that of all wavelength portions of the entire spectrum. After that, the white light is dispersed spectrally using a grating (d). The resulting spectrum is measured by adjoining photodiodes (e) almost synchronously.

Dionex detectors store this information analog to a UV channel via the signal 3D Field. Apart from the quality of the optics and the grating, the number and size of the photodiodes determine the Optical Resolution of the detector.

**Tip:**

*The optical resolution cannot be considered by itself, but must be seen in connection with the achieved signal-to-noise ratio!*

**Photodiode (Pixel) Resolution**

The bandwidth of wavelengths on an individual photodiode is referred to as photodiode or pixel resolution. If 150 photodiodes are available in the UV range (200 - 350 nm), the photodiode resolution is 150 nm / 150 photodiodes = 1 nm per photodiode.

The Optical Resolution of the UV detector is determined by photodiode resolution and the optics (mirror, slit, grating, optical bandwidth).
Pin Assignment (RS-232)

Most instrument connections are made with 9-pin or 25-pin Modem Cables or Null Modem Cables. The pin assignments are as follows (only the most important pins are mentioned):

<table>
<thead>
<tr>
<th>25-pin</th>
<th>9-pin</th>
<th>Abbrev.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>TxD</td>
<td>Transmitted data</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>RxD</td>
<td>Received data</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>RTS</td>
<td>Request to send</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>CTS</td>
<td>Clear to send</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>DSR</td>
<td>Data set ready</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>GND</td>
<td>Signal ground/common return</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>DCD</td>
<td>Received line signal detector</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>DTR</td>
<td>Data terminal ready</td>
</tr>
</tbody>
</table>

The pin numbering (order for plug) is as follows:

![25-pin connector diagram]

![9-pin connector diagram]

If other connectors are required, refer to Hardware Installation Installing and Controlling Third-Party Devices in the Administrator Help section.
Polarity (Analog Output)

The Polarity command allows you to change the polarity (+/-) of the analog output signal on a Dionex detector. For example, if components are appearing as negative peaks instead of as positive peaks, use this command to change the analog output polarity from + to -.

Post-Acquisition Steps

Post-acquisition steps are data reprocessing steps for extracting and smoothing data. They can be defined in the PGM Editor. (For information about the PGM Editor, refer to Control The PGM Editor.) They can be performed online, after data acquisition, or offline of the chromatogram, UV spectrum, or Mass Spectrum. The following steps are available for data reprocessing:

- **Arithmetic combination of channels** (arithmetic combination of 2D channels - see Combining Channels via Arithmetic Operations)

- **Copy Channel** (see Copying a Channel)

- **Create Fraction Analysis Samples** (see How to …: Collecting Fractions Automatically (Autopurification) Creating Fraction-Type Samples)

- **Create Purification Samples** (see How to …: Collecting Fractions Automatically (Autopurification) Creating Preparation-Type Samples)

**Tip:**

The Create Fraction Analysis Samples and Create Purification Samples options are part of Autopurification. They are visible only if the Purification license is installed and if a connection to the server exists. A connection exists if a PGM File is associated with a timebase, the server on which this timebase resides is running, and the client is connected to this server.

- **Extract ED channel** (for extracting an ED channel – only possible if 3D_Amp data is available)

- **Extract MS channel** (for extracting a Mass Trace - only possible if MS data is available; see How to …: Using Mass Spectrometers Extracting Mass Traces Afterward)
- **Extract optimum integration path** (for extracting the *Optimum Integration Path* - only possible if a 3D field is available; see How to ...: Creating and Using Spectra Libraries ➤ Selecting the Optimum Integration Path)

- **Extract UV channel** (for extracting a UV channel - only possible if a 3D field is available; the procedure is similar to selecting the optimum integration path)

- **Smooth data** (for chromatogram *Smoothing* - see How to ...: Working with Chromatograms ➤ Performing Data Smoothing)

For more information, refer to How to ...: Creating and Modifying Programs ➤ Adding Post-Acquisition Steps.

**Power Failure Protection**

When Chromeleon is started, the system recognizes whether online *Batch* processing was interrupted by a power failure.

This is possible because the processing date and time of each sample is entered in the sequence editor. Chromeleon checks whether all "started" samples (labeled with the date and time) have been completely processed, i.e., whether they have reached the status F (finished). If the samples are not labeled Finished, the Power Failure Handling function allows you to define how to continue processing. Select Error Handling on the Batch menu and select an option:

- Continue with the interrupted sample
- Continue with the next sample
- Reprocess the entire online batch
- Abort the batch
- Prompt the user what to do

You can also select a *PGM File* that shall be started after booting the server (see How to ...: Creating and Modifying Programs ➤ Creating a Power Failure Program).

In addition to power failure protection, Chromeleon also provides *Network Failure Protection.*
PPA (Peak Purity Analysis)

Peak purity analysis (PPA) is a pane of the offline module. It consists of a graphical section and the PPA Report. For more information, see Data Representation and Reprocessing. PPA: Peak Purity Analysis.

PPA Report

The PPA (Peak Purity Analysis) report represents the numerical addition to the PPA pane. In a table, this report combines variables characteristic for the peak purity analysis and variables freely selectable by the user. Especially meaningful variables are:

- PPI (Peak Purity Index),
- Relative Standard Deviation (RSD PPI),
- Peak Purity Match Factor, and
- Relative Standard Deviation of the Match Factor (RSD Match).

PPI (Peak Purity Index)

The peak purity index (PPI) represents the central wavelength of a spectrum. In simplified terms, this is the wavelength where the areas of the spectrum to the left and right are identical. The PPI is thus independent of the concentration.
A pure single peak should supply the same PPI value from peak start to peak end for each spectrum recorded in this range. The following conditions must be fulfilled:

- The baseline portion must be insignificant. If this is not the case, a Blank Run Subtraction must be performed.
- During analysis, the solvent composition and thus the UV absorption of the solvent may not change significantly (special attention is required for gradient applications).
- Compared to the signal height, the drift must be very small.
- The Lambert-Beer Law must be valid for the entire range.

In the ideal case of a pure peak, entering individual PPI values results in a rectangle curve. The height of each single rectangle corresponds to the value of the central wavelength. The deviation from the rectangle shape can be expressed mathematically by the relative standard deviation of the PPI value.

Significant deviations from the rectangle shape indicate peak impurity. However, it is not necessarily correct to deduce from the rectangular shape that the peak is pure.

**Tip:**

The calculation of the PPI value becomes inaccurate near peak limits due to the poorer Signal-to-Noise Ratio. Using the Peak Purity Threshold detection parameter, the selection of spectra can be limited to a sensible peak height in the QNT Editor. (For information about the editor, see Data Representation and Reprocessing The QNT Editor).

If the Peak Purity Index (PPI) is entered in a report column, this value is averaged from all determined PPI values of a peak. The deviation of single PPI values from each other can be expressed as the Relative Standard Deviation (RSD PPI) in the PPA Report.
PPI: Relative Standard Deviation of the PPI (RSD PPI)

The relative standard deviation of the PPI expresses the degree of deviation of the computed individual PPI values from each other.

To determine this value, all PPI values of a peak are averaged (PPIØ) and are then squared (Q-Sum).

\[ Q - Sum = \sum_{i=1}^{n} (PPI - PPIØ)^2 \]

The standard deviation (SD) is defined as the root that is extracted from the Q-sum divided by (n-1), with n being the number of data points.

\[ SD = \sqrt{\frac{Q - Sum}{n - 1}} \]

The relative standard deviation of the PPI (RSD (PPI)) in percent is obtained by dividing the standard deviation by the average of all PPI values (PPIØ), and by multiplying the result by 100%.

\[ RSD(PPI) = \frac{SD}{PPIØ} \times 100\% \]

Preconditions

The device settings before a sample run are referred to as Preconditions. The Preconditions are saved in the audit trail files and displayed in the Daily Audit Trail and the Sample Audit Trail after the following icon: ☑️. (For more information about the Audit Trails, refer to Data Management Audit Trails.)
The device settings are listed in the Daily Audit Trail directly after the first message (Daily audit trail of timebase X).

PQ

See ➤ Performance Qualification (PQ)

Pressure Limits

Depending on solvent composition and the selected ⇒ Flow, pressures of up to 450 bar (= 45 MPa = 6525 psi) occur on the high-pressure side of a chromatography system. Chromeleon is capable of monitoring the pressure value provided by the pump. The user can define upper and lower pressure limits. If one of the limits is exceeded, Chromeleon stops the flow, displays an error message, and stops the sample batch, as necessary.

Also, refer to ⇒ Pressure.Lower/Upper.Limits
PrimeSyringe (ASI-100 Autosampler)

The PrimeSyringe command, which is supported for the ASI-100 Autosampler, allows removing gas bubbles from the syringe without dismantling the syringe from the instrument. First, the syringe is filled 5 times with washing liquid, usually isopropanol. Then, the procedure is repeated, using the solvent.

For more information, refer to Practical Tips for Device Control Priming the Syringe (ASI-100 Series).

Printer Layout

Use the Printer Layout to prepare your data for the printout. Enable Layout Mode on the Edit menu. When Layout Mode is enabled, you can add the following elements to the Printer Layout:

- Sheets (worksheets that can also include the following elements)
- Report Tables
- Rows
- Columns
- Variables (report variables of the different Report Categories)
- Chromatograms
- Calibration plots (calibration curves)
- Spectra plots (UV spectra)
- Mass spectra plots (Mass Spectra)
- 3DFIELD plots (3D Fields)
- 3D amperometry plots
- Cyclic voltammetry plots
- Trend Plots
- Charts (graphical display of the values of the individual cells/columns)
The Printer Layout is stored in the Report Definition File (RDF) together with the (on-screen) report. The Printer Layout section of the RDF is also referred to as print template. Click the Printer Layout icon on the Method toolbar to open the Printer Layout of the selected report definition file. The report definition file contains sample data.

For information about how to design a print template, refer to How to …: Preparing the Printout.

For information about how to print your results, refer to How to …: Preparing the Printout Specifying the Printout.

Privileges (User Rights)

When the User Mode is enabled, the system administrator can assign user rights and thus, determine which actions a certain user group (= Privilege Group) is allowed to perform. The system administrator assigns the access rights in the User Manager (CmUser program).

When the User Mode is enabled, the user can execute most actions in the Chromeleon only if (s)he has the corresponding rights (privileges). Chromeleon provides almost 100 different user privileges, such as ReadSequence, CopySample, DeleteSequence, etc. Instead of assigning each privilege separately to each user, privileges are combined in Privilege Groups (P Groups). Thus, the user's Privilege Group membership defines his(her) privileges.

Each Privilege Group defines a specific range of operations. These are divided in the specific areas: CM-Server Control, Datasource, Sequence, Data Reduction, Reporting, and Miscellaneous. The scope of functions available for one Privilege Group increases with the number of privileges enabled in the individual areas. (For more information about the user privileges, refer to Chromeleon User Management Privileges (Categories) in the Administrator Help section.

Members of a specific Privilege Group can use all privileges assigned to this group. Each user can be a member of one or several Privilege Group(s). The users belonging to a Privilege Group are listed by name.

The more different Privilege Groups you create, the more precisely you can define the assignment of privileges in Chromeleon. The privileges of all Privilege Groups to which the user belongs define the privileges of the individual user.
Privileges, such as DeleteSequence, are assigned globally; that is, a specific privilege is granted for all datasources the user can access. To restrict access, the system administrator can establish Access Groups in the User Manager in addition to the Privilege Groups.

**Program**

The control program (in short: program) is part of the PGM File and is displayed in the Commands view of the PGM Editor (see Control The PGM Editor). It can be considered a "schedule" for the execution of different Control Commands. In this file, the user writes all commands to be executed before, during, and after analyzing a sample plus the corresponding execution times. In this way, it is possible to completely automate the analysis including any routine procedures that are performed before and after the analysis, for instance, column conditioning by rinsing the column with various solvents.

It is also possible to use a program to monitor specific parameters or limits and to trigger specific reactions when these limits are not met.

Follow the instructions of the Wizard (also see Control The Program Wizard) to create the basic structure of the program. The user input is automatically converted into uniform command syntax readable by Chromeleon. In this way, even new users can quickly create operable programs.

For more information, see:

Control The Control Program

The Program Syntax.

**Protocol**

The Protocol command allows you to log specific events in the Audit Trail while a PGM File is executed.

Unlike simple comments that are only part of the Program, the Protocol text is included in the Audit Trail and thus, it is directly linked to the corresponding sample. Use Protocol text to comment individual samples.

It is also possible to execute the Protocol command event-controlled.

Also, refer to Protocol
Pulse Mode

In addition to the DC Mode, some electrochemical detectors can be operated in the Pulse Mode. This method is also called PAD (pulsed amperometric detection) and is characterized by a series of potential changes. This method allows a continuous regeneration of the electrode surface (platinum or gold electrode).

**Note:**

Instead of Pulse Mode, Dionex electrochemical detectors are operated in Integrated Amperometry Mode. In this mode, Dionex electrochemical detectors can perform PAD and IPAD (integrated amperometric detection). Refer to Integrated Amperometry Mode for details.

In PAD, a distinction is made between three different potentials (E1, E2, E3) and the period (T1, T2, T3) for which a potential is connected to the electrode. T1 + T2 + T3 form a cycle that is constantly repeated.

\[
\begin{align*}
T1 &= T1' + Ts \\
Ts &= \text{Measurement time} \\
T1' &= \text{Stabilisation (Delay) time} \\
T2 &= \text{Cleaning} \\
T3 &= \text{Conditioning}
\end{align*}
\]

Data is recorded only during the second half of T1 (= Ts). The duration of Ts is either set directly or is determined by defining a delay T1' (stabilizing phase). The material of the working electrode largely determines the period and the height of the various potentials.

PWA

PWA, which is the abbreviation for Purification Workflow Automation, is the key feature of Autopurification. The workflow is automatically adapted to your requirements; for example:

- Fractionation is performed only for those samples that contain a sufficient amount of the desired target compound(s).
- Purification is performed only for the compounds of interest.
- Only specified fractions are reanalyzed, using different chromatographic conditions.
Qualification

The purpose of instrument and data system qualification is to check the functionality of the instrument and Chromeleon. Before that, it is the task of the manufacturer to validate the instruments and Chromeleon (see Validation). There are several qualification steps:

- Installation Qualification (IQ)
- Operational Qualification (OQ; qualification in the operating environment)
- Performance Qualification (PQ; qualification in routine operation)

Chromeleon allows you to perform the single qualification steps automatically with the AutoQ qualification tools.

For more information, refer to Validation, AutoQ, and System Wellness:
- Validation and Qualification
- AutoQ Equipment Qualification

Quantification Method (QNT Method)

A quantification method includes all parameters that are used for the evaluation of a peak or the entire chromatogram. The QNT Method serves as the basis of calculation for evaluating a sample and contains:

- All data for the assignment according to the order of elution within defined limits (time windows) (identification) and
- The parameters (calibration constants) that are part of the area/concentration (amount) conversion formulas as well as the calibration points required for the calculation.

Also, refer to Data Representation and Reprocessing The QNT Editor.

The Method column of the sample list in the Browser contains the name of a quantification method (QNT Method). (For more information, refer to Data Management The Browser and The QNT Editor The Quantification Method.)
Query

Chromeleon allows you to efficiently search, e.g., directories, sequences, samples, or comment lines, for specific names or character strings:

- In the ❭Browser, select Query on the context menu or select New > Query (using Wizard) on the File menu. A wizard appears guiding you through entering the desired conditions.
- On the first page, define whether to perform the query in the currently open ❭Datasource or in a different one. In addition, define whether to find certain sequence properties and/or sample properties, and/or other result properties.
- After clicking Finish, you can enter additional conditions to limit the query.

From the entered information, Chromeleon generates an ❭SQL statement that can start a query within all ❭ODBC-capable databases.

For more information about performing a query, refer to How to …: Creating and Managing Files and Data ✽ Performing a Query.

You can save the result of a query as a new sequence, using the Save as command. QNT Files and ❭PGM Files are copied; raw data is copied optionally. File names occurring more than once receive a consecutive number. The following symbol indicates the query sequence: 🗑

QNT Editor

The QNT Editor allows you to create and modify methods for evaluating chromatographic results. The ❭Quantification Methods (QNT Methods) created in the QNT Editor are used for sample evaluation. The QNT Editor usually provides:

- The chromatogram of the current sample
- The calibration curve of the current peak
- Several tab pages for parameter input

For more information about the QNT Editor, refer to Data Representation and Reprocessing ✽ The QNT Editor. Also, refer to How to …. ✽ Integrating Chromatograms and Identifying Peaks.
QNT Method
See ➤ Quantification Method (QNT Method)

Rack
Many ➤ Autosamplers and ➤ Fraction Collectors provide a choice of racks to meet individual capacity and vial number requirements. For optimum operation, you have to specify the rack installed in the autosampler in the Server Configuration program. For the Dionex autosamplers, Chromeleon lets you display the rack for the desired sequence:

From an existing sequence
To display the rack indicating the ➤ Status of the single samples in the sequence:
• Connect the desired sequence to the corresponding timebase.
• Select Rack on the View menu.

When creating a sequence
When creating a new sequence, check your entries on the rack preview of the Sequence Wizard:
• Select New on the File menu, and then select Sequence (using Wizard) from the list.
• After you have entered the samples in the corresponding step of the wizard, click the Rack Preview tab page.

The rack of the Dionex ASI-100 Autosampler consists of three color-coded segments. The following segment types are available:

<table>
<thead>
<tr>
<th>Rack types</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical:</td>
<td>Select this option if you use the default segment. This segment can house up to 39 vials at 1.1 or 1.8 ml each + 1 vial at 4 ml.</td>
</tr>
<tr>
<td>Semiprep:</td>
<td>Select this option if you use the semipreparative segment. This segment can house up to 21 vials at 4 ml each.</td>
</tr>
<tr>
<td>Mini:</td>
<td>Select this option if you wish to analyze a large number of samples or if small sample volumes are available only. This segment can house up to 64 vials at 1.2 ml + 1 vial at 4 ml.</td>
</tr>
<tr>
<td>Eppendorf:</td>
<td>Select this option, if you are using the rack for Eppendorf vials. This segment can house up to 22 vials at 1.5 or 2 ml each + 1 vial at 4 ml.</td>
</tr>
</tbody>
</table>
If your system comprises an autosampler with rack cooling, such as the ASI-100T, you can determine the controllable temperature range. Exact temperature control is possible from +4°C to +45°C (39.2°F to 113°F). For example, the ASI-100T autosampler allows you
- to cool the rack by 18 K from ambient
- to heat the samples by up to 35 K from ambient.

**Fraction Collector**

For fraction collectors, > Trigger Commands are used during the analysis to define when to start collecting the next fraction. Fraction collection control depends on many factors and is very complex. For more information, refer to How to …: » Collecting Fractions.

**Ramp**

Continually changing the composition of the delivered solvent mixture over the desired time (for > %-Gradients) or the flow (for > Flow Gradients) is referred to as a ramp (or more precisely as a ramp gradient). Contrary to this, immediate changes of the solvent composition or flow are referred to as > Step Gradient.

To realize a ramp gradient, define one value for the beginning and another value for the end. Between these two values, Chromeleon automatically calculates the solvent composition (or flow) at the respective time (two ramps in the example below: 0 - 2 min and 3 - 5 min):

<table>
<thead>
<tr>
<th>Retention</th>
<th>Flow</th>
<th>%B</th>
<th>%C</th>
<th>%D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>1.000</td>
<td>20.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>2.000</td>
<td>1.000</td>
<td>40.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>3.000</td>
<td>1.000</td>
<td>40.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>5.000</td>
<td>1.000</td>
<td>80.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Range

The Range parameter determines the factor by which the analog output signal of controllable detectors is amplified or reduced.

*Notes:*

The Range parameter has a different meaning for the RF2000 fluorescence detector. The Gain parameter is used, instead.

For Mass Spectrometers, the range indicates the scaling for the online plot of mass traces. You can enter any value between 1 and 10. The value describes the tenth power of the maximum value that can be displayed. (For example, if Range = 6, the maximum value that can be displayed is 1.000.000 = (1 E+6).)

Raw Data

Data generated by the system are referred to as raw data, whereas data entered by the user are referred to as user data. Raw data, such as:

- Sample data acquired on different channels (see Signal)
- Audit Trails
- Injection time (see Inj. Date/Time)
- History

cannot be changed by the user.

In a narrower sense, all analog or digital values measured by a detector and stored digitally on the PC are referred to as raw data. Raw data only exists for those signals or channels that were selected by the user before data acquisition.

The scope and precision of the stored raw data depends on the selected Sampling Rate or Step.

For more information, refer to Data Raw Data Storage and Raw Data Compression.
Ready (Signal)

After each autosampler operation, for example, Draw for the ASI-100 autosamplers or Suck for the GINA 60/GINA 160 Autosamplers, a ready signal command (Sampler.Ready for the ASI-100 Autosamplers or Sucked for the GINA 50/GINA 160 Autosamplers) is sent to Chromeleon as confirmation. Other commands, such as Dispense, can only be executed after receipt of this signal.

The time interval between the autosampler operation and the response Sampler.Ready (or Sucked) is the minimum value for the Duration command.

To execute two commands successively, ⇒Wait is entered after the first command in the Program. The next command will then be executed immediately after the arrival of the Sampler.Ready (or Sucked) signals.

Ready Check

The Ready Check command verifies whether it is actually possible to perform automatic batch processing and/or to execute a PGM File. Before a batch is started, the Ready Check automatically checks whether:

- The instruments in the chromatography system are ready to operate, i.e., they are turned on and connected, the detector lamp is burning, etc.
- The amount of solvent is sufficient for the batch.
- All required files exist.
- The storage capacity is sufficient.

If you perform the Ready Check by clicking the Ready Check button, information is also provided about, e.g., how long the system can run with the remaining solvent supply at the specified flow rate after the end of the batch. (The Ready Check supports this information only for the Dionex P680 pumps.)

If the Ready Check detects an error (Error or Abort Error), it is not possible to start the batch. If the Ready Check reports a warning, the batch can be started nevertheless. However, Dionex recommends that you take appropriate action to remedy the situation.
As the batch list can be extended by further sequences during operation, the Ready Check command can also be performed during operation.

**Tips:**

*For program reasons, the system always prompts you before the Ready Check to confirm whether you want to accept previously made changes. You are even prompted for example, when these changes refer to a sequence that is not part of the batch to be started or checked. Decide whether to accept or reject the changes. Cancel the batch start or the Ready Check if you wish to check the changes first.*

**Reconnect**

Use the Reconnect command to check the connection between the user PC and the timebase or the instrument and Chromeleon. If there is no connection, the $\Rightarrow$ Connect command is performed automatically.

**Recorder Calibration**

The Recorder Calibration command allows calibration of the recorder’s response to three detector analog output settings:

- **AU** Sets the analog output to AU, scaled from 0 to 1 V, based on the AU full-scale response selected by the $\Rightarrow$ Recorder Range command.
- **Zero** Sets the analog output to 0 volts.
- **Full Scale** Sets the analog output to the full-scale setting (1V).

**Recorder Range**

The Recorder Range command sets the range of a full-scale recorder response in the signal units appropriate for the detector. For example, for conductivity detectors, the Recorder Range is given in microSiemens (µS). This command can be used to adjust the recorder output to accommodate larger or smaller peak heights.

The range to use depends on the detector readings expected for the application. For example, selecting a range of 20 microSiemens (µS) will allow you to view conductivity readings of 20 µS or less.
Reference Bandwidth

The reference bandwidth can be selected separately for each channel. The 3D field of a Photodiode Array Detector also has its own reference bandwidth.

Analogous to the conventional Bandwidth of a channel, the reference bandwidth serves to average several photodiode signals of the RefWavelength (Reference Wavelength).

Also, refer to RefBandwidth (Reference Bandwidth)

Reference Channel

= Reference Channel for Baseline Correction

To perform automatic Baseline Correction of Spectra a reference channel is required.

Any channel, either a physical channel or a channel that was extracted from the 3D field and stored afterward can be used. The wavelength of the channel is variable; i.e., a channel recorded using Wavelength Switching is also valid.

It depends on how the PPA window has been opened which channel is actually used as reference channel in the PPA method:

- If you open the PPA window from the Browser by selecting the Open ... 3DFIELD command, the channel specified in the File or context menu under Properties is used as reference channel.

- If you first open the desired sample, and then access the PPA window from a different method, the displayed channel is used as reference channel.

To include the current reference channel in the PPA chromatogram window, select the Draw Reference Channel check box, which is provided on the Chromatogram Plot tab page of the Decoration dialog box.

The reference channel serves as a basis for integration and peak detection.

Tip:

Do not confuse the reference channel with the RefWavelength (Reference Wavelength) of the signals from a photodiode array detector.
Reference Peak

Reference peaks are references for calculating relative retention times for different substance peaks. The relative retention time can be indicated as absolute time difference (in minutes) or as percent quotient (retention time substance peak/retention time reference peak). In addition, the reference peaks can be used for calculating the Relative Peak Area and the Relative Peak Height.

You can specify the reference peaks in the QNT File on the Peak Table tab page. Double-click the Ret. Time column to open the Retention Time for dialog box (see Retention Time Interpretation) or the corresponding peaks. Select either Time distance to reference peak or Time ratio to reference peak to select a reference peak for each substance peak via the selector arrow.

The retention time is re-calculated automatically when a different reference peak is selected. Only peaks with absolute retention times can be selected as reference peaks. It is not possible to delete reference peaks from the peak table.

Besides, the retention time can be entered directly in the entry field in the following format:

[<Reference Peak>] <Ret. Time> [<Unit>]

You are free to choose the order in which the fields are used. If no name is entered for the reference peak, the time is interpreted as absolute time, otherwise as relative time.

Either min or % can be selected as unit. If no entry is made, min is used.

The unit determines whether the time given is the difference (min) or the ratio (%) to the time of the reference peak. For absolute times only min is permitted.

Note:

Even if the retention time is then specified in Absolute times, Chromeleon saves the selected reference peaks.
Reference Wavelength

For Dionex photodiode array detectors, the reference wavelength is used to correct absorption values of the wavelength(s) selected for analysis. If the absorption of the reference wavelength changes during the analysis, absorption values of the analysis wavelengths are adjusted up or down accordingly. The selected reference wavelength should be in a quiet area of the spectrum where little absorption occurs. Each change in the absorption then indicates substantially changed conditions, for example, a reduction of the lamp energy (lamp drift). Each change can be used to correct the absorption in the remaining wavelength range even during the analysis (the recorded signal is reduced or amplified accordingly, as necessary).

Reference wavelengths are especially useful for gradient analyses, because as the light intensity changes over time (due to the gradient), absorption values are adjusted, thus minimizing baseline drift.

The reference wavelength is freely selectable, not only for each channel of the detector, but also for a 3D field. Because the absorption of the reference wavelength is stored, it is possible to undo a correction later. The reference wavelength can be changed later by extracting the absorption values of the "new" reference wavelength from the 3D field and using them for correction.

Also, refer to \textit{RefWavelength (Reference Wavelength)}

Relative Amount

This peak result variable refers to the amount portion of a peak relative to others. The peaks used as a reference are determined via the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Peaks:</td>
<td>Amount portion relative to the sum of all amount portions of all peaks (default setting).</td>
</tr>
<tr>
<td>All Peaks of the same Group</td>
<td>Amount portion relative to the sum of all amount portions in one group.</td>
</tr>
<tr>
<td>The corresponding ISTD Peak</td>
<td>Amount portion relative to the amount of the peak of the \textit{Internal Standard}.</td>
</tr>
<tr>
<td>The corresponding Reference Peak</td>
<td>Amount portion relative to the amount of a \textit{Reference Peak}.</td>
</tr>
</tbody>
</table>
Note:
The values of options 2 to 4 can considerably exceed 100%.

Select the respective column in the report, select Column Properties on the context menu, and select the variable in the selection box. Click Parameter to determine the peak to be used as reference.

Relative Area

The Relative Area peak variable is the portion of the peak area in the sum of all peak areas (total area).

Which peak areas form the total area, is determined by selecting one of the following options (The values of all relative peak areas always result in 100% for the options 1 to 3.)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All detected Peaks</td>
<td>The areas of all detected peaks are used for the calculation (default setting).</td>
</tr>
<tr>
<td>All identified Peaks</td>
<td>Only the areas of identified peaks are used for the calculation.</td>
</tr>
<tr>
<td>All Peaks of the same Group</td>
<td>Only the peaks of one group are used for the calculation.</td>
</tr>
<tr>
<td>The corresponding ISTD Peak</td>
<td>The area of a peak is put in relation to the area of the [Internal Standard] peak</td>
</tr>
<tr>
<td>The corresponding Reference Peak</td>
<td>The area of a peak is put in relation to a [Reference Peak].</td>
</tr>
</tbody>
</table>

Select a column in the report, select Column Properties on the context menu, and select the variable in the selection box. Click Parameter to select another option.

Relative Height

This peak variable refers to the peak height relative to the average height of a certain peak group or a specific peak. As with the Height variable, the maximum, that is, at the retention time, is measured, relative to the baseline. The dimension does not depend on the detector type.
The selection of the peak heights is possible via the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All detected peaks</td>
<td>The relative peak height is indicated in relation to the average height of all detected peaks (default setting).</td>
</tr>
<tr>
<td>All identified peaks</td>
<td>The relative peak height is indicated in relation to the average height of all identified peaks.</td>
</tr>
<tr>
<td>All Peaks of the same group</td>
<td>The relative peak height is indicated in relation to the average height of all peaks in one group.</td>
</tr>
<tr>
<td>The corresponding ISTD peak</td>
<td>The relative peak height is indicated in relation to the height of the ( \text{Internal Standard Peak} ).</td>
</tr>
<tr>
<td>The corresponding reference peak</td>
<td>The relative peak height is indicated in relation to the height of a selected ( \text{Reference Peak} ).</td>
</tr>
</tbody>
</table>

Select the column in the report, select **Column Properties** on the context menu, and then select the variable in the selection box. Click **Parameter** to select another option.

### Relative Retention Time (Rel. Ret. Time)

The **Relative Retention Time** peak variable of the **Peak Results** category is the quotient of the peak \( \text{Retention Time} \) and the retention time of the corresponding reference peak expressed as a percentage:

\[
\text{Relative retention time} = 100 \times \frac{t_{R}}{t_{R,\text{ref}}} 
\]

Where:

\( t_{R} \) = Retention time (of the current peak)

\( t_{R,\text{ref}} \) = Retention time of the corresponding reference peak

The \( \text{Reference Peak} \) is specified in the peak table of the QNT Editor (see **Data Representation and Reprocessing** \( \text{The QNT Editor} \)).
Clicking the **Parameter** button opens the **Parameter input for 'Relative Retention Time'** dialog box. Select an option:

- **Reference Peak:** The relative retention time refers to the reference peak (default)
- **Fixed Peak:** The relative retention time refers to a user-defined peak. In this case, enter the name of the reference peak in the input field. Click the arrow, and then select a peak from the list of identified peaks.

### Relative Standard Deviation

The **Relative Standard Deviation** is the standard deviation in relation to the size of the measured values (average); that is, the standard deviation is normalized. In contrast to absolute standard deviations, relative standard deviations can be compared (for values around 1000 a standard deviation of 1 is minor, for values around 10, this is a major deviation). Usually, the relative standard deviation is expressed in percent.

The relative standard deviation ($relStdDev$) is calculated as follows from the absolute standard deviation ($StdDev$):

$$relStdDev = \frac{StdDev}{Y}$$

With: $Y$: Average value of all Y-values.

### Relay

Relays are closing contacts that can be switched by Chromeleon. Apart from the physical ("real") relays on the rear panels of various Dionex instruments, there are also virtual relays that can only be used in Chromeleon. Virtual relays are primarily used for defined functions, such as moving a needle. Virtual relays are available if the corresponding instruments or functions are installed.

Before you can use a "real" instrument relay, you must install the relay in the **Server Configuration** program; that is, the relay must be identified. This ID consists of the relay name and the relay number.

**Note:**

Some device drivers support trigger contacts, which function as two dependent relays. When the first relay is switched on, the second is switched off and vice versa.
Relay-controlled Gradient

Use the Relay-controlled gradient to control relay-controlled low-pressure pumps for which a separate device is not available. This requires the relays of a relay card or a UCI Universal Chromatography Interface.

As usual, the solvent composition is defined as a percentage in the PGM File. Each solvent component is controlled by a separate relay. The length of time for which the corresponding relay is open determines how the solvent is mixed.

Use the Cycle time parameter on the Solvents tab page in the Server Configuration program to specify the cycle duration; that is, the time period from when delivery of the first solvent starts until the delivery of the last solvent is complete. The shorter the cycle is, the more homogeneous the solvent. The longer the cycle is, the more precise the solvent composition.

Relay On/Off

The Relay On (Off) command closes (opens) a relay output (contact closure relay) for a defined time. Switching valves are also treated as contact closure relays.

The specified relay is opened or closed for a specified time in seconds. Relay On opens the relay upon completing a certain period (Duration), Relay Off closes the relay after completing the duration. If no duration is specified for Relay On (Off), the relay remains closed (open) until the next relay command is given.

Also, refer to Relay On/Off

Remote Inject

The Remote Inject driver is required for non-controlled chromatography systems. Typically, non-controlled systems are GC systems or third-party HPLC systems for which a separate driver is not available.

For controlled chromatography systems, the Autosampler directly communicates the time of injection to Chromeleon via an RS-232 cable. Since direct communication is not possible for non-controlled systems, the Remote Inject driver is used to communicate the time of injection from the autosampler to Chromeleon. The autosampler communicates the inject signal to Chromeleon via a remote input, i.e., typically via the detector. When the signal has been received, for example, data acquisition can be
started (⇒ AcqOn/Off command). For GC systems, the time of injection is communicated in the same way.

For example, select the following setting if the inject output of the autosampler is connected to the input of the UVD:

![Remote Inject settings](image)

**Remote Input**

Several Dionex instruments and additional cards provide remote inputs that enable a reaction to external events, such as an injection. The remote inputs are suitable for input voltages between 0V and +5V (TTL level).

As the remote input level is kept at +5V by internal card resistors (pull-up resistance), a simple contact closure relay can be used as an external signal source. This contact must be switched between GND and the respective remote input. If the contact is closed, the digital voltage is grounded. The relay itself is under a low current of approximately 1mA. Opening the contact restores the initial state.

If the signal source itself is active (TTL), the polarization of the remote input must be correct. Ground must be connected to ground, and the digital output must be connected to the remote input.
Installation is for the instrument that supplies the remote inputs. Determine clear installation names and numbers for the required remote inputs.

⚠️ **Caution:**

_Do not supply higher voltages (>5V) to the remote inputs, as this may result in a malfunction of the microprocessor system on the A/D card, in the destruction of the input modules, or in further damage._

For an example, refer to ➔Remote Inject.

### Replicate

In the case of multiple injections from a standard or sample vial, all samples following the first injection are called replicates. The name **Replicate** is used independently of the injected volume (see ➔Inj. Vol. (injection volume).

Each replicate must be added to the sample list of the sequence as an independent sample! Document the injection from a single vial (identical sample position) in the ➔Replicate ID column by entering the same number and/or the same text. When a new sequence is generated using the Sequence Wizard, the ➔Pos. (sample position) is automatically entered as replicate ID.

Replicates of a standard sample with the same injection volume will produce ➔Calibration Points on the same level. Each alteration of the injection volume will generate calibration points of a new level.

### Replot from Beginning

Enable **Replot from beginning** to automatically replot when the signal leaves the right-hand border of the signal plot. The active chromatogram is then replotted from the beginning. One unit scales the time axis to fit the chromatogram into the window.

For example, if the first time axis was 2min, after 2min the window is enlarged by 2min to show 4min, after 4min it is enlarged by another 2min to show 6min, etc.

### Report Column

See ➔Sequence Report Column
Report Definition File (RDF)

Report Definition Files (RDFs) have two functions: They display and reprocess your results on the screen (Report) and prepare the printout (see Printer Layout).

All settings regarding user-specific representation of chromatographic data in different windows are stored in the Report Definition File. Use the report template plus the Workspace to arrange the screen according to your requirements.

If no workspace is loaded, each new window is opened based on the most recently used report definition file. If you have not yet stored a report definition file, the default Chromeleon RDF is used. The default report definition file (default.rdf) is located in the Reports directory.

Each RDF contains specific information about the window sections and views, window representations and captions, color and size of individual elements, and the presentation of the sample results on-screen and in the printout. The information refers to the following questions:

- Is the window content, e.g., a chromatogram, displayed in zoomed view or in full-scale view?
- Which type of scaling is used for the axes?
- Which additional objects are displayed, e.g., grid, reference chromatogram, units, etc.?
- Which colors are used for the reference chromatograms, captions, etc.?
- Are other window sections displayed, e.g., a spectra plot, calibration curve, report table, etc.?
- Which worksheets are included in the report? How is the report formatted?
- Which columns does the worksheet include?

For more information, see Data Representation and Reprocessing Report Tables (Overview).

Report Publisher

The Report Publisher is an add-on product to Chromeleon. With its 141 Additional Functions, it provides considerable enhancements to the report templates in the Printer Layout.
Select **About Chromeleon** on the **Help** menu. The **About Chromeleon** dialog box allows you to check whether this add-on is available on your system.

**Report Publisher = On**

This setting indicates that the Report Publisher is available on your system. In the **Printer Layout**, select **Layout Mode** on the **Edit** menu to display the edit line. Click the desired cell and enter the ‘equals’ sign (‘=’) followed by the required formula. The **Insert/Chart** command is available on the context menu, also. Select this command to insert a graphical representation of specific cell values.

For more information about the available options, refer to **How to …:** Preparing the Printout.

**Report Publisher = Off**

This setting indicates that the Report Publisher is not installed on your system. Please contact Dionex Service if you are interested in purchasing the add-on product.

**Reserved Relay, Remote Input, and Signal Names**

The following names are reserved for special functions:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3DFIELD</strong></td>
<td>The 3DFIELD signal is composed of the absorbance values recorded at the time t at different wavelengths using a photodiode array detector. Each absorbance value is entered as a data point in a wavelength by time grid, producing a three-dimensional data field. The number of data points is determined by the optical resolution and the selected bandwidth (limits) of the 3D field.</td>
</tr>
<tr>
<td><strong>3D_Amp</strong></td>
<td>The 3D_Amp signal is reserved for an electrochemical detector in integrated amperometry mode. The signal is composed of the detector response value (current) recorded at time (t) in the Waveform period and at time (T) in the run (retention time). Each detector current value is entered as a data point in a waveform time by retention time grid, producing a three-dimensional data field.</td>
</tr>
<tr>
<td><strong>INJECT</strong></td>
<td>Refers to the signal that is recognized as the INJECT signal by the system and that defines the start of the chromatogram.</td>
</tr>
</tbody>
</table>
Resolution

The Resolution peak result variable is the degree of separation between two adjacent peaks. This resolution is a measure of the separating capability of the column. It is calculated based on the following formulas (EP and USP standards):

USP standard:
\[ R = 2 \times \frac{t_{\text{next}} - t_R}{BW_{\text{next}} + BW_R} \]

EP standard:
\[ R = 1.18 \times \frac{t_{\text{next}} - t_R}{W_{50\%_{\text{next}}} + W_{50\%_R}} \]

Where:
- \( t_R \) Retention time of the current peak
- \( t_{\text{next}} \) Retention time of the peak after the current peak
- \( BW_{\text{next}}, BW_R \) Peak Widths of the two adjacent peaks
- \( W_{50\%_{\text{next}}}, W_{50\%_R} \) Widths of the two adjacent peaks at 50% of the peak height

The distance between the peak maxima is divided by the arithmetic average of the peak widths.

Select the column in the report, select Column Properties on the context menu, and select the variable in the selection box. Click Parameter to define whether the calculation is based on the EU (EP formula) or the US (USP formula) standard.

**Note:**
- EP = European Pharmacopeia
- USP = United States Pharmacopeia

Response

Response is the time the detector requires for reaching 98% of the full deflection. With a longer time interval, the Signal-to-Noise Ratio improves, but the resolution is reduced.
Response Factor

The Response Factor peak table parameter is a peak-specific, multiplicative factor without dimension. Its default value is 1.000 and is changed for special applications. The response factor is entered in the corresponding column of the Amount Table in the QNT Editor (see Data Representation and Reprocessing of The QNT Editor).

Also, refer to Response Factor

Restore (File)

The Restore command allows you to restore files that have previously been stored using the Backup command. For more information, refer to How to ...: Creating and Managing Files and Data of Restoring Backup Files.

To restore data, select Import/Restore on the File menu in the Browser.

Tip:

Archive files have the extension *.cmb. To open, double-click the cmb file in the Windows Explorer.

If you have created a backup file for a sequence that contains one or several Sequence Report Columns, this file cannot be restored with Chromeleon 6.40 or earlier.

Retention Index

The retention index allows you to save uniform scaling of the Retention Time

Also, refer to Response Factor

For information about how to enter the retention index, refer to How to ...: Integrating Chromatograms and Identifying Peaks of Defining the Retention Index and the Kovats Index.
Retention Time

The retention time is used for peak identification. The **Retention Time** peak variable refers to the elapsed time (in minutes) since the injection (also, refer to ⇒ *Dead Time*). The retention time of a peak is defined by the time of the data point with the highest response value (the peak maximum). (This does not have to be the data point with the largest distance to the baseline.)

In Chromeleon, the retention time is especially important at two points:

- In the QNT Editor (see **Data Representation and Reprocessing The QNT Editor**) as part of the peak table.

- In the Report and in the ⇒ *Printer Layout* on the **Integration, Peak Analysis**, and **Summary** sheets.

QNT Editor

On the **Peak Table** page in the **QNT Editor**, the retention time can be entered either manually by the user or automatically by the system.

Also, refer to ⇒ *Response Factor*

Report

In contrast to the QNT Editor, the actually measured retention times of the corresponding samples are stated in the report. This is the default setting for the **Retention Time** variable of the **Peak Results** category. With this variable, it is also possible to indicate the actual nominal retention time. Then, the settings of ⇒ *Use Recently Detected Retention Times* are taken into account.

However, it is also possible to include the expected retention times (from the peak table of the QNT Editor) using the **Peak Table** category. Select the **Retention Time** variable from the **Peak Table** report category. It is not always the nominal retention time that is displayed.

Retention Time Correction

See ⇒ *Use Recently Detected Retention Time*
Retention Time Deviation (Ret. Deviation)

The **Retention Time Deviation** peak result variable indicates the deviation of the actual retention time from the nominal ⇒*Retention Time* according to the peak table (in [minutes]).

Retention time deviation = \( t_{R(Soll)} - t_{R(Ist)} \)

The retention time deviation can be set via two different methods. The setting can be either

- Absolute, i.e., in minutes, or
- Relative, i.e., relative to the retention time.

Select the column in the report, select Column Properties on the context menu, and then select the variable in the selection box. Click Parameter to determine whether the deviation is expressed as a relative or absolute value.

Retention Time Interpretation

To determine how the corresponding retention time is interpreted, double-click the ⇒*Retention Time* in the peak table of the QNT Editor. (For information about the editor, see Data Representation and Reprocessing ⇒The QNT Editor). The Retention Time for X dialog box is opened.

- Select Absolute Times [min] (default) to interpret the retention time as usual (time interval between injection and peak maximum).

Instead of this, relative time intervals to any peak in the peak table (reference peak) can be used:

- Select Time distance to Reference peak [min] to indicate the difference to the ⇒Reference Peak in minutes.
- Select Time ratio to Reference peak [%] to indicate the difference to the reference peak in % values.
- The corresponding reference peak is displayed in the Reference peak field. Use the arrow to select a different reference peak.
The reference peak is displayed in the peak table with a light blue background. When the reference peak is in the center of the chromatogram, the difference expressed in minutes or percent can assume negative or positive values, or values below or above 100%.

Tip:

For difference and relative retention times also, relative (time) ⇒ Windows are interpreted as percentage values of the absolute retention time! Only the retention times of identified peaks are corrected! In the peak table, you can choose between the three options, as required. The retention time column is re-calculated automatically.

Retention Time Spectrum

The retention time of a peak is determined at the peak maximum. The spectrum the photodiode array detector records at this time is referred to as the retention spectrum.

Retention Time Window

See ⇒ Window

Retention Window Width

The Retention Window Width peak variable provides the width of the ⇒ Retention Window (in minutes) that was used to detect the peak. This variable is also available for not identified peaks.

RF Value (Amount/Area)

The ascending slope of the calibration curve, specified as amount/area value, is referred to as RF Value. This is the reciprocal value of the ⇒ Slope c1.

Note:

The RF value is sometimes called the Response Factor. Do not confuse this term with the ⇒ Response Factor used in the peak table.
Rider Peak

In a series of non-resolved peaks, all peaks - with the exception of the largest peak (reference peak) - are referred to as rider peaks. Alternatively, they are called skimming peaks.

Depending on the position of the rider peak (on the leading or trailing edge of the reference peak), a distinction is made between rider up and rider down.

Use the ⇒Rider Threshold and ⇒Maximum Rider Ratio detection parameters to determine the peaks that are classified as rider peaks within a series of non-resolved peaks.

A skimming tangent on the chromatogram plot indicates the peaks that are classified as rider peaks. In the result report, they are labeled Ru (Rider up) or Rd (Rider down).

Rider peaks can be skimmed in different ways (see ⇒Rider Skimming).

Tips:

You can move the baseline in the chromatogram with the mouse for tangentially skimmed riders, but you cannot for exponentially skimmed riders.

Split Peak on the context menu allows splitting one rider peak into two peaks.

Rider peaks are different from ⇒Peak Shoulders but the transitions can be smooth. Peak shoulders normally do not have a distinct separate relative signal maximum of their own. Unlike peak shoulders, ⇒Rider Peaks usually do have a distinct relative maximum of their own.

For more information about rider peaks, refer to How to …: Integrating Chromatograms and Identifying Peaks/Defining Detection Parameters ⇒Defining Rider Peaks.
Rider Skimming

This parameter indicates how Rider Peaks are skimmed. Also, refer to Rider Skimming.

For information about how to apply the detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Modifying Detection Parameters.

Rider Threshold

The Rider Threshold detection parameter determines whether individual peaks in a series of non-resolved peaks are classified as Rider or as main peak. Also, refer to Rider Threshold.

For information about how to apply the detection parameters, refer to How to ...: Integrating Chromatograms and Identifying Peaks Modifying Detection Parameters.

Right Mouse Button

The most common commands and functions are available on the context menu. The choice is context-sensitive, i.e., the commands most likely to be used in the current situation are available on the menu. Right-click to open the context menu.

Right Limit

Normally, peak integration is performed automatically. It is possible to limit or extend integration on the left, right or on both sides with the appropriate peak table parameters.

Each (minute) limit is relative to the retention time, that is, the peak is integrated between the retention time - left integration limit and retention time + right integration limit. The value 0 deactivates the limit.

Example: For the right and left integration limits, the value 0.5min is entered. The peak maximum is at the retention time of 8 minutes. The peak is integrated from 7 minutes 30 seconds to 8 minutes 30 seconds.
Example: For the left integration limit, the value 0.5min is entered. For the right integration limit, the value 0 is entered. As before, the peak maximum is at the retention time of 8 minutes. The peak is integrated from 7 minutes 30 seconds. The end of the integration is then automatically determined.

Right Width

If a perpendicular line is dropped to the baseline from the peak maximum, the Peak Width is divided in a left and right section. The two sections are referred to as left width and right width and can be expressed as separate peak result variables.

Chromeleon also determines the left and right peak width at 5, 10, and 50% of the peak height. As described in Peak Width in the Glossary, the selected height is very important for the calculation of the peak width. This also applies to the calculation of the left and right peak widths.

The abbreviations for the left and right peak widths are LW and RW.

Select the column in the report, select Column Properties on the context menu, and then select the variable in the selection box. Click Parameter to determine at which peak height to determine the peak width.

Rise Time

The rise time is a measure of how quickly the detector responds to a change in signal. The rise time is defined as the time it takes the output signal to rise from 10% of its final value to 90% of its final value. Choosing an appropriate rise time value can optimize performance by keeping the Signal-to-Noise Ratio at a minimum level.

A longer rise time allows you to average the noise frequencies. Subsequently, the baseline will contain considerably less short-term noise. However, longer rise times may have the following effects on peaks:

- The peak shape will become asymmetric.
- The peak maximum will be shifted.
- The peak height will be reduced.
**Note:**

The rise time should be approximately 25% of the peak width at half height of the narrowest peak of interest.

For example, for a peak width of 5 seconds, calculate the rise time as: \(1/4 \times (5 \text{ s}) = 1.25 \text{ s}\). As it is not possible to set the rise time to 1.25 seconds, select the next fastest rise time. In this case, select 1 second.

**Tip:**

In the AD25 and PDA-100 detectors, the rise time applies to both digital and analog output.

**RPC (Remote Procedure Calls)**

RPC technology allows you to run separate processes of a program on different computers. Compared to true full-control programs, such as PC-DUO or PC-ANYWHERE, the amount of transferred data is considerably lower. Processes started from a remote computer run almost without any time delay. It is not possible for the user to determine whether the process is performed on the local PC or on a remote PC. RPC requires a network connection between the involved computers. It is not important whether the computers are part of the same network or whether they are linked via a modem connection. Communication also works between different networks (Novell, Windows) if the networks use a common protocol for communication. Chromeleon generally communicates via the IPX/SPX, TCP/IP, or NetBEUI network protocols. The Named Pipes protocol can be used as well.

**Sample**

In Chromeleon, a single injection, i.e., the volume that is injected, is referred to as sample. Thus, different samples can be injected from the same vial.

**Note:**

In laboratories, the content of a vial is usually referred to as sample.

The order in which the samples are processed is determined in the sample list. The order is also called Sequence.
Sample Data

Data that contributes to characterize a single Sample is stored in a database by Chromeleon. This includes not only the entered data (name, volume, etc.), but all results calculated from the Raw Data and the chromatographic conditions under which the sample was analyzed (column, temperature, solvent, instruments, etc.).

Sample Name

The Name Sample Variable serves to identify a Sample and also to label graphics and result reports. The user generally enters the sample name.

When you create a sample list using the Sequence Wizard, it is possible to generate the sample names automatically. (For more information about the wizard, refer to Samples and Sequences The Sequence Wizard.)

Also, refer to Name (sample name)

Sample-Oriented Operation

Due to the object-oriented concept, emphasis is on samples and Sequences, not on methods or activities.

The user selects the sample or sequence to process and automatically receives the corresponding view: that is, the calibration methods are displayed on the calibration plot, integration samples on the integration plot, and sequences in the sample editor, etc. For each sample or sequence, only the selectable or expected views, methods, or functions are available to the user. This saves time and reduces the number of simultaneously active windows.

This context-sensitive procedure is also valid for options selectable on the context menu. The selection depends on the position and the time of the mouse click.
Sample Position

The Pos. ⇒ Sample Variable determines the position of the ➔ Sample in the ➔ Autosampler.

If you use a controllable autosampler, the entered position is transmitted automatically to the autosampler. The autosampler approaches the corresponding sample for injection. If using a non-controlled autosampler or a hand-operated valve, this column only serves for documentation purposes. If the sample position parameter is not entered, the previous (current) value is used.

Also, refer to ⇒ Pos. (sample position) and ⇒ Position (autosampler command).

Sample Status

The Status ⇒ Sample Variable determines the current sample processing status. A ➔ Sample is either unprocessed (Single), due for multiple processing (Multiple), processed (Finished), Interrupted, currently being processed (Running), or being prepared (Preparing).

Chromeleon also maintains a log of the sample status, that is, a Single sample is automatically assigned the status Finished as soon as processing is complete. A sample may also be excluded from processing by assigning the status Finished.

The sample status has a special significance for the built-in ➔ Power Failure Protection. Upon recovery from a power failure or starting the sample batch after a manual interruption, Chromeleon begins processing the sample batch according to the selected power failure handling option.

Also, refer to ⇒ Status (sample status).

Sample Type

The ⇒ Sample Variable Type specifies which type of ➔ Sample is used.

Select Unknown if the sample is an unknown analysis sample. This sample type is indicated by the symbol: 🕯️.

Select Standard if the sample is a standard sample with known concentration. This sample type is indicated by the symbol: 🕯️.
Select **Validate** if the sample is a *Validation Sample*. This sample type is indicated by the symbol: 🗂.

Select **Blank** if the sample is a *Blank Run Sample*. This sample type is indicated by the symbol: 🏷️. If a sample is corrected by the *Raw Data*, for example, of a blank run sample, this is referred to as *Blank Run Subtraction*.

Select **Matrix** for a *Matrix Blank Sample*. This sample type is indicated by the symbol: 🗂️.

Select **Spiked** for a *Spiked Sample* that shall be used in *Standard Addition* calibration. This sample type is indicated by the symbol: 😍.

Select **Unspiked** for an unspiked unknown sample that shall be analyzed with the Standard Addition method. This sample type is indicated by the symbol: 😄.

Also, refer to ⇒*Type (Sample Type)*.

### Sample Weight Factor (Weight)

The ⇒*Sample Variable Weight* has two functions. It serves to enter the sample weight, but it can also be used as a weight correction factor.

Sample Weight is implemented as a multiplication factor in the ⇒*Formula for Amount Calculation* of not explicitly entered amount values (dilution series). It is without dimension.

Also, refer to ⇒*Weight (Sample Weight Factor)*

### Sampler.Ready

See ⇒*Ready*

### Sampling Rate

The number of stored signal values per second is referred to as sampling rate (or Data Collection Rate). The maximum of stored values corresponds to the number of values generated per second and depends upon the device, for example, Dionex UVD 170S/340S Detectors = 100, ⇒*UCI Universal Chromatography Interface* = 100, 3D field = 10, Dionex AD25 and PDA-100 Detectors = 10.
The reciprocal value, that is, the time interval between data points, is referred to as \(\Rightarrow \text{Step}\) (Dionex UV detectors = 0.01, UCI = 0.01, 3D field = 0.1, Dionex AD25 and PDA-100 detectors = 0.1).

Tip:
For Dionex detectors that are installed via the DX-LAN, a \(\Rightarrow \text{Data Collection Rate}\) command determines the data collection (sampling) rate and the step value is automatically set to the reciprocal value of the selected data collection rate. For other Dionex devices, only the step value is set and a separate Data Collection Rate command is not used. For more information, refer to *Practical Tips for Device Control* \(\Rightarrow \text{Defining Step and Average}\."

**SDK (Software Development Kit)**

A Software Development Kit (SDK) is provided for Chromeleon. The kit is a separate product and not included in the Chromeleon distribution. The SDK allows you to use Chromeleon for tasks beyond its standard functionality. In addition, it allows programmers to access Chromeleon from their own software. The SDK supports almost all Chromeleon functions and some of its masks in the individual programs.

For example, you can use the SDK for the following applications:

- Open Access solutions that allow even untrained users to create \(\Rightarrow \text{Sequences}\) and start \(\Rightarrow \text{Batches}\).
- Special applications for which the extensive functions of Chromeleon are not sufficient.
- Connecting Chromeleon to almost all \(\Rightarrow \text{LIMS}\) or Management Software solutions.

You can use the SDK together with all programming languages supporting the Microsoft Component Object Model, such as:

- Visual Basic
- MS Excel (with VBA Basic)
- MS Access (with VBA Basic)
- Visual C++
- Delphi
In order to successfully use the SDK, the programmer must be familiar with the corresponding programming language and functions and with the Chromeleon concept.

If the SDK is too extensive a tool and you do not need all its functions, the command line allows you to use simple Chromeleon applications in external programs. For more information, refer to How to …: Working with Files, Databases, and Networks Using Chromeleon Data in an External Program in the Administrator Help section.

Security Activation Tool
See ➢ User Manager and Security Activation Tool

Self-Regenerating Suppressor (SRS)
See ➢ Suppressor

Sensitivity
The sensitivity of a measuring method describes the concentration dependence of the quantity being measured that results from the method itself, that is, from the slope of the calibration line (or more generally: the calibration curve).

Unlike the ➢ Limit of Detection, the sensitivity does not depend on the instruments used. Distinguish between the sensitivity of the measuring method and the sensitivity of the peak recognition algorithm (also, refer to ➢ Sensitivity).
Sensitivity (Detection Parameter)

The **Sensitivity** detection parameter determines the signal height from which the detected data points are interpreted as peak or as noise. It is always interpreted in the installed dimension; for example, in mAU.

*Note:*

*Always consider this parameter in combination with the ⇒Peak Slice detection parameter!*

Also, refer to ⇒**Sensitivity**

For information about how to apply the detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks ⇒**Modifying Detection Parameters.**

Sensitivity (Signal Parameter)

The **Sensitivity** parameter adjusts Chromeleon to the ⇒**Signal-to-Noise Ratio** of the detector. The RF 2000 fluorescence detector supports the values LOW, MED (default), and HIGH.

Sequence

A sequence combines ⇒**Samples** that belong together due to their origin or processing. The names of all samples that belong to one sequence are entered in the sample list.

When the chromatography analysis has been started, the samples that shall be analyzed are processed from the top to the bottom of the sample list. Thus, the sample list also determines the order (= sequence) in which the analysis is performed.

The sample list can contain different columns:

- Standard columns with different ⇒**Sample Variables**, e.g. Name, Inj. Date/Time or Type, etc.)
- ⇒**Sequence Report Columns** to display sample results
- ⇒**User-defined Columns** that allow you to enter special values that are then available as additional variables in the report.
To create a sequence, use the Sequence Wizard (see Samples and Sequences The Sequence Wizard). For more information, refer to How to ...: Creating and Managing Files and Data Creating a Sample List (Sequence).

Also, refer to Samples and Sequences The Sample List (Sequence)

Sequence Data

Data that characterizes a Sequence instead of a single sample (see Sample Data) is referred to as sequence data.

This includes, for example, the date of the last change, the corresponding timebase or the name of the user who created the sequence. As the sample data, this information is stored in a database.

Sequence Report Column

Sequence report columns serve to display sample results in the sample list of a Sequence. In the Browser, these report columns already provide an overview of the most important sample results. For example, you can display the number of peaks detected for each sample and the amount and retention time of the main reaction product (Pyrene in the example below):

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Peaks</th>
<th>Ret. Time (det)</th>
<th>Area (Pyrene)</th>
<th>Amount of Pyrene</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sample 1</td>
<td>9</td>
<td>9.145</td>
<td>9.592</td>
<td>1.035</td>
</tr>
<tr>
<td>2</td>
<td>Sample 2</td>
<td>7</td>
<td>9.144</td>
<td>15.942</td>
<td>2.014</td>
</tr>
<tr>
<td>3</td>
<td>Sample 3</td>
<td>0</td>
<td>9.112</td>
<td>32.915</td>
<td>3.918</td>
</tr>
<tr>
<td>4</td>
<td>Sample 4</td>
<td>0</td>
<td>9.081</td>
<td>65.447</td>
<td>8.003</td>
</tr>
<tr>
<td>5</td>
<td>Sample 1 (Replicate)</td>
<td>7</td>
<td>9.121</td>
<td>9.126</td>
<td>0.975</td>
</tr>
<tr>
<td>6</td>
<td>Sample 2 (Replicate)</td>
<td>8</td>
<td>9.126</td>
<td>16.059</td>
<td>1.954</td>
</tr>
<tr>
<td>7</td>
<td>Sample 3 (Replicate)</td>
<td>8</td>
<td>9.114</td>
<td>31.928</td>
<td>3.907</td>
</tr>
<tr>
<td>8</td>
<td>Sample 4 (Replicate)</td>
<td>10</td>
<td>9.095</td>
<td>63.018</td>
<td>7.714</td>
</tr>
<tr>
<td>9</td>
<td>Sample 1 (Replicate 2)</td>
<td>7</td>
<td>9.007</td>
<td>9.622</td>
<td>1.045</td>
</tr>
<tr>
<td>10</td>
<td>Sample 2 (Replicate 2)</td>
<td>8</td>
<td>9.113</td>
<td>15.260</td>
<td>1.975</td>
</tr>
<tr>
<td>11</td>
<td>Sample 3 (Replicate 2)</td>
<td>8</td>
<td>9.005</td>
<td>31.411</td>
<td>3.841</td>
</tr>
<tr>
<td>12</td>
<td>Sample 4 (Replicate 2)</td>
<td>10</td>
<td>9.088</td>
<td>63.154</td>
<td>7.751</td>
</tr>
<tr>
<td>13</td>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td>44.492</td>
</tr>
<tr>
<td>14</td>
<td>Average Value</td>
<td></td>
<td></td>
<td></td>
<td>9.109</td>
</tr>
<tr>
<td>15</td>
<td>Rel. Std. Dev.</td>
<td></td>
<td></td>
<td></td>
<td>2.417 %</td>
</tr>
</tbody>
</table>
In addition, you can include different statistical values in the sample list and thus, display the sum, the average value, and the relative standard deviation of the corresponding results in the sequence report columns.

Tip:

Sequence report columns will be lost if you save (Save and Save As commands), copy, move, or Backup a sequence with Chromelon 6.40 or earlier.

For more information, refer to How to …: Creating and Managing Files and Data Creating a Sequence Report Column.

(Chromatography) Server

PCs connected to the components of a chromatography system can be used as chromatography servers.

A chromatography server is automatically installed on the PC during the Chromelon installation. The chromatography server controls the data exchange between the system and the PC. Upon starting, each server is capable of serving up to six controlled systems (Timebases), which together may control a maximum of two Photodiode Array Detectors.

The server receives the commands that have been entered on the Control Panel of a Client PC and executes them at the specified time; for example, by communicating them to the corresponding device driver of the chromatography system. The server also assumes this buffer function in the opposite direction. Thus, the raw data of each system is stored at the location specified by the client. In addition, the entire system-relevant data is forwarded to the client.

You can start (load) the server manually or automatically. Select the required options in the Server Monitor Program. However, to ensure optimum functionality, you must configure the server. You can do this in the Chromelon Server Configuration program on any client PC. (Also, refer to Software Installation and Communication Chromeleon and Windows Operating Systems in the Administrator Help section.)

If the Chromelon server software and the Chromelon client software are installed on the same PC, it is a local installation. If they are installed on different PC’s, it is a network installation (see Chromatography Components: Hardware and Software The Network).
Tips:

In case of manual data acquisition, the Raw Data is always stored in the PCNAME_LOCAL server directory (if not otherwise defined). In case of Batch processing, each user can decide where the data is stored.

To minimize the risk of losing data, always store raw data temporarily on the server. You may later transfer them to a different computer for archiving purposes.

Chromeleon Xpress does not include data storage. To store data, you must have Chromeleon Xpress/Server installed, or the analog output on the detector must be connected to a third-party chromatography data system.

For more information, refer to How to ...: Starting and Monitoring the Server, Setting up the Server for Network Access Setting up the Chromeleon Server for Network Access in the Administrator Help section.

Server Configuration

The server configuration provides information about the chromatography devices that are installed in the Timebases, about the server that is connected to the timebase, and about how the single devices are configured. The server configuration is defined in the Server Configuration program. (For more information, refer to Software Installation and Communication The Server Configuration Program in the Administrator Help section.)

The entire information is saved in an installation file (*.CFG file). The current configuration is always saved in the CMSERVER.CFG file on the chromatography server.

The user can create different installation files in the server configuration program, transfer them to any server via the Import function, and use them accordingly.

This configuration can then be saved as the new Cmserver.cfg on this server by selecting Save Installation.

For more information, refer to How to ...: Configuring the Chromeleon Server in the Administrator Help section.
Server Monitor Program

The program required for configuring, starting, and monitoring the Chromatography Server is called the Server Monitor program. When you install Chromeleon, you can include the Server Monitor program in the Autostart group of the operating system.

When the Server Monitor program is started, an additional icon appears on the Windows status bar, indicating the server status.

For more information, refer to Software Installation and Communication The Server Monitor Program in the Administrator Help section.

Sharable Devices

Chromeleon records signals from several devices and controls different instruments. The signals are sent to the Server PC via PC plug-in cards or the UCI Universal Chromatography Interface. To avoid requiring an individual card or interface be available for each device from which signals are recorded and to which signals are sent, the cards or the interface provide several channels.

The different devices need not be part of the same Timebase. For example, to enable signal recording by detectors from different timebases, the PC plug-in cards or the interface are not assigned to one specific timebase. Instead, the card or interface is shared between multiple timebases. Therefore, the PC plug-in cards and the interfaces are called Sharable Devices.

Each slot of a PC plug-in card or interface corresponds to a channel. In the Server Configuration program, assign a signal to each used channel: Install the corresponding device driver and assign the signals on the Signals page. The Remote Inject and the Integrator Driver are available for non-controlled systems (usually GC, but also non-controlled chromatography systems). The Integrator Driver can also be used to record the pump pressure.

The advantage of this conception is that you do not have to rewrite all Programs concerned if you plan to connect a device to a different channel. Instead, just change the A/D port assignment in the respective driver.
Tip:

Some chromatography instruments are also “sharable.” For example, the AS Autosampler can be shared between two timebases, as can the ICS-3000 Detector/Chromatography (DC). Sharing of these devices is enabled in the Server Configuration program.

Shared Relays and Inputs

Relays and remote inputs of the PC plug-in cards and the UCI Universal Chromatography Interface are installed in the Server Configuration program as Sharable Devices. They are independent from the timebase because one PC plug-in board or one UCI is possibly shared among several timebases. Thus, they can be used and addressed by different Timebases.

To make these relays and remote inputs visible as controls on a Control Panel and to allow you to activate a relay, the corresponding relay or the used remote input must be installed in the corresponding timebase.

You have to install a Device Driver as you would for any other device. Select Add Device on the Edit or context menu. For relays and remote inputs, select General from the Manufacturers list box, and then select Shared Relays and Inputs from the Devices list box and click OK.

After installing the device driver, double-click the driver name to enable configuration. Configure the relays and remote inputs on the tab pages that appear, i.e., the Relays tab page and the Inputs tab page.

Each of the two tab pages indicates the current assignment of the relays and/or remote inputs that are currently used. If there is no entry on the list, either no Sharable Device component has been installed or the relays and remote inputs have not been assigned. Click ADD to install a new relay or remote input.

Shoulder

See Peak Shoulder
Signal

The data transferred directly from an instrument (ideally a detector) to Chromeleon, either analog via UCI Universal Chromatography Interface or digitally via a USB or LAN connection or via the RS-232 or another interface, is referred to as physical signals. If an instrument delivers several signals, these are also called channels; for example, two different wavelengths of a UV detector.

Calculated data, such as the arithmetic average of several channels, can represent a signal. This type of signal is called Virtual Signal.

Each signal has its own signal name that is assigned during instrument installation. The symbolic name of each signal must be clear. Some special signals have pre-defined signal names assigned to them.

The properties of a signal are determined via separate Signal Parameters. They can be modified manually or program-controlled (PGM File) at any time.

The measuring data of the different physical and virtual signals is stored in uniform raw data files.

Signal Name

You are free to select any signal name. However, make sure that the name is unique. All signals used in a timebase must have different names. Virtual Signals also have a signal name. This name is defined by Chromeleon.

Tip:

The signal name is also stored within PGM Files, QNT Files, and sequences. Do not change the names. Otherwise, you cannot read and/or use older data later.

Signal Noise

See Noise
Signal Parameters

Each signal delivered by a detector has detector-specific parameters. You can modify these signal parameters either on the instrument or in Chromeleon, if the system is controlled by the data system. Thus, it is possible to change the signal parameters while the chromatogram is running, either manually or program-controlled by a PGM File.

Chromeleon usually supports the following parameters for Dionex instruments and third-party devices that are controlled by Chromeleon device drivers:

<table>
<thead>
<tr>
<th>Signal type</th>
<th>Parameter</th>
<th>Signal type</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV channel</td>
<td>➞Average</td>
<td>Fluorescence channel</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>➞Bandwidth</td>
<td></td>
<td>EmWavelength</td>
</tr>
<tr>
<td></td>
<td>➞RefBandwidth</td>
<td></td>
<td>(see Emission)</td>
</tr>
<tr>
<td></td>
<td>(Reference Bandwidth)</td>
<td></td>
<td>ExWavelength</td>
</tr>
<tr>
<td></td>
<td>➞RefWavelength</td>
<td></td>
<td>(see Excitation)</td>
</tr>
<tr>
<td></td>
<td>➞Step</td>
<td></td>
<td>➢Gain</td>
</tr>
<tr>
<td></td>
<td>➞Wavelength</td>
<td></td>
<td>➢Response</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>➢Sensitivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Step</td>
</tr>
<tr>
<td>3D field</td>
<td>➢BunchWidth</td>
<td>Electrochemical channel</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>➢Min/Max Wavelength</td>
<td></td>
<td>➢Data_Collection_Rate</td>
</tr>
<tr>
<td></td>
<td>RefBandwidth</td>
<td></td>
<td>Step</td>
</tr>
<tr>
<td></td>
<td>RefWavelength</td>
<td>Pressure channel</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>Step</td>
<td></td>
<td>Step</td>
</tr>
<tr>
<td>MS Channel</td>
<td>FilterIndex</td>
<td>3D_Amp</td>
<td>Step</td>
</tr>
<tr>
<td></td>
<td>(see Filter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min/Max Mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reset</td>
<td>Virtual channel</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>➢Smoothing</td>
<td></td>
<td>Formula</td>
</tr>
<tr>
<td></td>
<td>(see Virtual Signals)</td>
<td></td>
<td>Step</td>
</tr>
<tr>
<td></td>
<td>SmoothingPoints</td>
<td></td>
<td>Type</td>
</tr>
</tbody>
</table>

(Also refer to: How to …: Using Mass Spectrometers Creating an MS Program and Sequence)
Signal-to-Noise Ratio

The signal-to-noise ratio serves to characterize electronic components such as the UCI Universal Chromatography Interface or a UV or photodiode array detector. The lower the Noise is, the smaller the possible signal variations that can be recorded. As a general rule, the average of a signal should be at least twice (or, if possible, three times) the standard deviation of the signal value.

The signal-to-noise ratio of the Dionex UVD 340U Photodiode Array Detector is 1500 mAU / 0.005 mAU (254 nm, 8 nm, 1 s). Measurement of this technical specification is within a clearly defined scope. This includes the wavelength information (254 nm), the bandwidth, and the Step. The values can be realized only with an empty flow cell and a new lamp that has been adequately burned in (approximately 40 h). The maximum signal variation (in AU) is measured at maximum light radiation through the flow cell.

If establishing comparable specifications is not relevant, the signal-to-noise ratio can be improved by the following operations:

- Selecting a low Sampling Rate
- Using photodiode bunching (Bandwidth)
- Selecting the Optimum Integration Path

Signal Value at Peak Start/End

The Signal Value at Peak Start/End peak result variable indicates the signal value at the time of the peak start/end. The left peak delimiter defines the peak start. The right peak delimiter defines the peak end.

Also, refer to How to …: Working with Chromatograms Moving Peak Delimiters.

Signature

See Electronic Signature
SIM (Selected Ion Monitoring)

SIM is the Mass Spectrometer method used for recording an MS chromatogram at a specific mass. As only single ions are recorded with specific masses, the SIM mode is more sensitive than the Full-Scan mode. You can use up to 32 channels for data acquisition. These channels are called SIM_1 through SIM_32. In addition, one TIC channel is always recorded. The TIC channel summarizes the results of the single SIM channels.

With SIM chromatograms, the counts of specific masses (or more precisely, those with a particular mass-to-charge ratio) are added up. Thus, contrary to TIC chromatograms, SIM chromatograms contain data of a specific mass.

SIM chromatograms are always recorded during data acquisition. This is contrary to Mass Traces that are later extracted from Mass Spectra (see How to ...: Using Mass Spectrometers Extracting Mass Traces Afterward). If you record data in full-scan mode, you can later extract the desired SIM channel(s) as mass trace(s).

Tip:
The device methods of the aQa mass spectrometer (1.2) and the MSQ (1.3) are different. Therefore, please note the following difference: During data acquisition with the aQa mass spectrometer, data with the same mass range, polarity, and ionization voltage are always recorded in one channel. The Surveyor MSQ records them in different channels if the scan events are different for this data, i.e., if they are defined with different retention times. For example (same mass range, polarity, and ionization voltage):

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>aQa Channel</th>
<th>MSQ Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2 min</td>
<td>SIM_01</td>
<td>SIM_01</td>
</tr>
<tr>
<td>3-5 min</td>
<td>SIM_01</td>
<td>SIM_02</td>
</tr>
</tbody>
</table>

Also, refer to How to ...: Installing and Configuring Mass Spectrometers Defining the Number of MS Channels in the Administrator Help section.
Single-Point and Multiple-Point Calibration

If the position of the calibration curve is determined only by the Calibration Points of one Calibration Level, this is called single-point calibration. In this case, the Calibration Type linear must be chosen.

If calibration points on different levels determine the position of the calibration curve, this is referred to as multiple-point calibration; for example, two-point, three-point, etc. calibration. The number of calibration levels determines possible calibration types.

In both cases, the number of replicates is irrelevant for the number of calibration levels. Replicates only serve to statistically secure the measuring results.

Skewness

As is the Asymmetry peak result variable, the Skewness peak result variable, too, is a measure for the column quality.

The definition of the two variables is similar, too. The Skewness peak result variable is frequently mentioned in chromatography literature.

\[
S = \frac{RW_{10\%} + LW_{10\%}}{2 \times LW_{10\%}}
\]

Where:

\(LW_{10\%}\) Left peak width in 10% of the peak height.

\(RW_{10\%}\) Right peak width in 10% of the peak height.

Also, refer to Asymmetry.
Slope c1
The **Slope c1** calibration variable indicates the c1-value of the currently used ➤ *Calibration Function*.

SmartStart
Before you can start analyzing your samples, you have to equilibrate the chromatography system. The SmartStart Wizard supports the following features:

- The entire system, especially the column, is washed with the starting solvent until the system is free of any other liquid composition.
- The column thermostat and the thermostatted autosampler (if installed) are warmed or cooled to the starting temperature.
- In addition, Chromeleon checks the signal stability to avoid increased ➤ *Drift* or ➤ *Signal Noise*.

The SmartStart Wizard assists you in defining the equilibration conditions. (For more information about the wizard, refer to **Control ➤ The SmartStart Wizard**.) For an overview of how to equilibrate the HPLC system with Chromeleon, refer to **How to ...: ➤ Equilibrating the Chromatography System**.

Smoothing
Data smoothing serves to reduce signal noise and help improve chromatogram appearance and reproducibility of peak baselines applying different digital filters without altering the raw data. Chromeleon provides the following filter types on the context menu of the Chromatogram window:

**Moving Average (Boxcar)**

The **Moving Average** (or **Boxcar**) filter equally weights each point. Thus, its ability to discriminate between noise and signal is limited (also, refer to ➤ *Signal-to-Noise Ratio*).
Olympic

Compared to the Moving Average filter, the Olympic filter provides better rejection of impulse noise (spikes).

Savitzky-Golay

Savitzky-Golay smoothing is useful for reducing high-frequency noise of a data set that is continuous (such as a chromatogram) without significantly degrading the underlying signal.

For more information, refer to How to …: Working with Chromatograms Performing Data Smoothing

In addition, Chromeleon allows you to smooth MS chromatograms during acquisition or mass trace extraction by applying the Gaussian or Boxcar (= Moving Average, refer to above) filter. The Xcalibur software provides both filters.

Gaussian

The Gaussian filter applies the Gaussian distribution for chromatogram smoothing.

For more information, see How to …: Using Mass Spectrometers Extracting a Mass Trace.

For more information about the different filter types and their parameters, refer to Integration Data Smoothing.

Snap to Grid

Snap to Grid allows you to reduce, enlarge, or move the control frame.

- Select Preferences on the File menu.
- On the Grid tab page, to determine the mesh size of the grid.
SOR File (Signed Off Results)

SOR files (Signed Off Results) are electronically signed sequences (see: ➔ Electronic Signature). They are indicated as follows:

Signed Results.sor

SOR files merely contain the tabs with the corresponding data for the sequence that have been selected in the respective ➔ Report Definition File (RDF). The data cannot be changed unless the signature is undone. However, to do so, the user must have the corresponding ➔ Privilege: UndoSubmit/Review/ApproveResults. He(she) has to re-enter his(her) User ID and the respective signature ➔ Password if this has been defined accordingly in the ➔ User Manager (CmUser program) via the File menu ➔ Database Properties ➔ Electronic Signature tab page.

Sound

The Sound command allows you to play WAV files. The PC must be fitted with a sound card to support this command. WAV files are part of the Windows installation and contain various acoustic signals. Numerous example files are supplied, for example, in the WINNT/MEDIA directory (full Windows installation).

The Chromeleon command syntax for playing a WAV file is:

0.000 Sound  File= "Example.wav"

If the command cannot be performed due to a missing sound card, a default sound is generated at the PC speaker.

Also, refer to ➔ Sound

Spectra Library

UV spectra libraries serve for identifying unknown substances. UV spectra can be saved in spectra libraries and later compared to the spectrum of the unknown substance. Make sure that the different spectra are recorded using the same solvent.

Apart from absorption values, each spectrum in a library contains various ID data fields that are freely editable by the user and that facilitate spectra searches. The following fields are available:
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>This column shows the name under which the substance is included in the spectra library. Select a column entry to assign a new name to the corresponding substance.</td>
</tr>
<tr>
<td>ID</td>
<td>This column shows the short ID that is assigned to the spectrum. Use this column to save several spectra under the same substance name in a spectra library. The IDs, such as consecutive numbers, then distinguish the spectra ID.</td>
</tr>
<tr>
<td>#Extrema</td>
<td>This column shows the number of extreme values in the spectrum determined by the system. Select a column entry to change the number.</td>
</tr>
<tr>
<td>Solvents:</td>
<td>This column shows the solvent in which the spectrum was recorded. Select a column entry to edit.</td>
</tr>
<tr>
<td>Comment:</td>
<td>Use this column to document details on the saved spectrum.</td>
</tr>
<tr>
<td>WL-Range:</td>
<td>This column indicates the wavelength range of the recorded spectrum.</td>
</tr>
<tr>
<td>WL-Resolution:</td>
<td>This column shows the \textit{Bandwidth} with which the spectrum was recorded.</td>
</tr>
<tr>
<td>Ret.Time:</td>
<td>This column indicates the retention time at which the spectrum was extracted from a peak.</td>
</tr>
<tr>
<td>Ret. Index</td>
<td>If available, the column indicates the \textit{Retention Index} of the substance.</td>
</tr>
<tr>
<td>Kovats Index</td>
<td>If available, the column indicates the \textit{Kovats Index} of the substance.</td>
</tr>
<tr>
<td>Acq.Step:</td>
<td>This column indicates the Step with which the underlying \textit{3D Field} was recorded.</td>
</tr>
<tr>
<td>Detector:</td>
<td>This column indicates the detector with which the spectrum was recorded. The name is taken from the Server Configuration.</td>
</tr>
<tr>
<td>Detector Serial No.:</td>
<td>This column indicates the serial number of the detector from the Server Configuration.</td>
</tr>
<tr>
<td>Timebase:</td>
<td>This column indicates the name of the timebase with which the spectrum was recorded.</td>
</tr>
<tr>
<td>Sequence:</td>
<td>This column indicates the name and the patch of the sequence from which the extracted spectrum is taken.</td>
</tr>
<tr>
<td>Sample Name:</td>
<td>This column shows the name of the sample from which the extracted spectrum is taken.</td>
</tr>
</tbody>
</table>
A-202
Glossary

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acq. Date/Time:</td>
<td>This column shows the date and time at which the spectrum or the underlying 3D field was originally acquired.</td>
</tr>
<tr>
<td>Program:</td>
<td>This column shows the name of the PGM File that was used to generate the underlying chromatogram.</td>
</tr>
<tr>
<td>Extract Date/Time:</td>
<td>This column shows the date and time at which the spectrum was extracted and saved.</td>
</tr>
<tr>
<td>Extract Operator:</td>
<td>This column shows the name of the user who extracted the spectrum and saved it to the spectra library.</td>
</tr>
</tbody>
</table>

**Spiked Sample**

The sample matrix can considerably influence sample analysis, particularly in certain ion and gas chromatography applications. To account for this, a known amount of one or more substances is added to unknown samples. In this way, the concentration of these substances is increased by an exact known value. After spiking, the original (unknown) and the spiked sample are analyzed using the Standard Addition calibration mode. The unknown and the spiked samples must be separated and analyzed with the same chromatographic method.

Spiked samples in Chromeleon have the Type (Sample Type) Spiked, indicated by the symbol "

Unspiked samples have the type Unspiked, indicated by the symbol "

When analyzing several unknown samples, assign the unknown samples to the associated spiked samples in the Std. Add. Group column. In this column, the samples are assigned to a common standard addition group.

Dionex recommends always spiking unknown samples with the same amount of the same substances. In the Ref. Amount Set column, you can then assign the spiked samples to the same amount values in the Amount Table of the QNT Editor.

For more information, refer to How to …: Calibrating Standard Addition.
SQL (Structured Query Language)

SQL is a computer language developed especially for queries in databases. Chromeleon uses an adapted SQL for Queries in the Browser (queries for specific samples/sequences), as well as for "Database Queries" in the report and in the Printer Layout.

Standard

The Standard column input in the peak table defines the reference peak to be used for calibration. The term Standard can also be used for a calibration sample or a standard sample. Calibration can be performed using an external and/or internal standard. Also, refer to Standard.

Standard Addition

Standard Addition is used as a calibration method, mainly in ion and gas chromatography. Standard Addition considers matrix effects during the analysis. Before the analysis, a known amount of one or more substances is added to a known volume of an unknown sample. In this way, the concentrations of these substances are increased by values that are exactly known. Afterward, the original and the spiked sample are analyzed. For more reliable results, you can spike the unknown sample several times or with various known quantities. For analysis, the area is plotted against the concentration. (In gas chromatography, the area is plotted against the amount.)

![Graph showing concentration vs. area for Standard Addition]
The unknown concentration (amount) of the originally unspiked sample (sample type = **Unspiked**) is set to zero, i.e., the y-axis is exactly on the concentration of the unspiked sample. For evaluation purposes, the calibration line (calibration curve) is shifted parallel by setting the offset to zero. The concentration of the unspiked sample is determined as shown in the picture.

⚠️ **Caution:**

Only if the calibration curve is forced through the origin (i.e., in this case, through the calibration point of the original, unspiked sample), the amount of this sample corresponds to the negative intercept on the x-axis, i.e., to the average of all values based on this sample. For all other calibration types, the calculated amount of the original, unspiked sample may deviate from the negative intercept on the x-axis of the calibration curve.

The picture below illustrates this for the case in which the measured value of the original sample (evaluation: solid line) above the curve, i.e., the corresponding amount, is larger than the negative intercept on the x-axis (broken line):

For more information, refer to **How to …: Calibrating** **Standard Addition**.
Standard Datasource

The standard Datasource is activated when the chromatography Server is booted. The datasource is used for:

1. Saving the daily Audit Trail
2. Saving manual Sequences
3. Saving OQ and PQ templates (This is the default setting, but you may as well define a different datasource for saving the templates.)
4. Reading User-defined Columns during the program run.

During initial installation of Chromeleon, a local standard datasource is created on each client PC. In network operation, the datasource name is composed of the computer name and the suffix local (<PC Name_local>). For a local station, i.e., for a station that is not part of a Network, the computer name entered in the operating system under Start > Settings > Control Panel > System Network Identification is used. If no identification is entered, the datasource is named Default_local.

In the Server Configuration program, you may select a different datasource as standard datasource (see How to: Configuring the Chromeleon Server Adding, Configuring, or Deleting Components in the Administrator Help section).

To save chromatography data on the network, you can select a network datasource as standard datasource. The Administrator Help section provides more information; refer to How to: Working with Files, Databases, and Networks:

- Saving Chromatography Data on the Network
- Defining a Network Datasource as Standard Datasource

Tips:

To save the daily audit trails on a central PC, define different paths for different servers:

Network Datasource:Daily Protocol\Server1
Network Datasource:Daily Protocol\Server2
Standard Deviation

The standard deviation is a measure for the deviation of single values from a mean value. The standard deviation of a random sample is defined as:

\[
SD = \sqrt{\frac{n \times \sum_{i=1}^{n} x_i^2 - \left( \sum_{i=1}^{n} x_i \right)^2}{n \times (n - 1)}}
\]

Where:

- \(SD\) = Standard deviation
- \(n\) = Number of elements for which the standard deviation is calculated.
- \(x_i\) = Elements for which the standard deviation is calculated.

The square standard deviation is referred to as \(Variance\).

Status Bar

In the status bar on the lower window margin, messages regarding the current system status are shown on the left, while the current timebase and the currently executed command are shown on the right.

The display of the status bar can be enabled and disabled on the View menu.

Step

The time interval between two successively recorded data points is referred to as the step; the sum of all recorded data points is called raw data. The reciprocal value of the step value is the \(Sampling Rate\) (if the data is supplied by an A/D converter) or, by default, the \(Data Collection Rate\) (if the data is supplied by a detector).

Also, refer to \(\Rightarrow Step\) and \(\Rightarrow Data Collection Rate\).
Step Gradient

Immediate changes of the solvent composition (for %-Gradients) or the flow (for Flow Gradients) are referred to as step gradients. Contrary to this continual changes of the solvent composition or flow are referred to as Ramp (or more precisely as ramp gradient). In case of step gradients, the elution conditions change rapidly. The realization of the gradient on the column depends among others on the size of the dead volume between the pump and the column end.

To realize a step gradient, enter two percentage values (also, refer to ⇒%B, %C, %D) or two flow values for the same time:

- Enter the current value (to specify that the composition or the flow of the solvent mixture does not change until this time).
- Enter the new value to which to set the solvent (or the flow) immediately:

![Diagram showing step gradient](image)

<table>
<thead>
<tr>
<th>Retention</th>
<th>Flow</th>
<th>%B</th>
<th>%C</th>
<th>%D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.700</td>
<td>20.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>1.700</td>
<td>40.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>2.800</td>
<td>40.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>2.800</td>
<td>80.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>4.000</td>
<td>80.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Stop Flow

Use the Stop Flow command to turn off the pump flow and to interrupt data acquisition. A running batch is stopped, as in the hold mode.

Also, refer to ⇒StopFlow
Suck
See ➔ Draw

Sucked
See ➔ Ready

**Summit® HPLC System**

The Dionex HPLC product line is called Summit HPLC System. The system comprises the following devices:

<table>
<thead>
<tr>
<th>Device</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>P680</td>
<td>HPLC gradient pumps</td>
</tr>
<tr>
<td></td>
<td>P580</td>
<td></td>
</tr>
<tr>
<td>Autosampler</td>
<td>ASI-100</td>
<td>Temperature control option for sample thermostatting (ASI-100T)</td>
</tr>
<tr>
<td>Column</td>
<td>TCC-100</td>
<td>Temperature range: 5-85°C (41°-185°F)</td>
</tr>
<tr>
<td>Thermostats</td>
<td>STH-585</td>
<td></td>
</tr>
<tr>
<td>Detectors</td>
<td>UV-D 170 UV-VIS</td>
<td>UV Detector</td>
</tr>
<tr>
<td></td>
<td>UV-D 340 PDA</td>
<td>Photodiode array detector</td>
</tr>
<tr>
<td></td>
<td>PDA-100</td>
<td>Photodiode array detector</td>
</tr>
<tr>
<td></td>
<td>RF2000</td>
<td>Fluorescence detector</td>
</tr>
<tr>
<td></td>
<td>(Shodex RI-101)</td>
<td>(Refractive index detector)</td>
</tr>
<tr>
<td></td>
<td>(aQa MSQ)</td>
<td>(Mass Spectrometers)</td>
</tr>
</tbody>
</table>

**Tip:**

For automatic sample preparation, 2D chromatography, and/or optimization of the sample throughput, the ➔ Summit x2 Dual-Gradient HPLC System is available from Dionex.

Also, refer to **Chromatography Components: Hardware and Software** ➔ **Chromatography Instruments**.
Summit® x2 Dual-Gradient HPLC System

The Summit x2 Dual-Gradient HPLC System provides highest flexibility for standard HPLC and LC/MS methods and for advanced chromatographic techniques requiring two pumps. The system is suitable for both standard HPLC applications and advanced chromatographic techniques, such as Tandem Operation, online sample preparation, and 2D chromatography.

Running the Summit x2 Dual-Gradient HPLC System in tandem operation mode allows increasing the productivity, typically by 50-100%, without the need to modify existing chromatographic methods.

In addition, the Summit x2 system supports online sample preparation, e.g., for analyte enrichment or sample matrix elimination, and 2D chromatography for optimizing the chromatographic separation.

The Summit x2 Dual-Gradient HPLC System comprises the following modules:

- P680 DGP dual-gradient HPLC pump with two ternary gradient pumps in one enclosure
- SOR-100 solvent rack with integrated degasser for degassing all channels of the dual pump
- ASI-100 autosampler for overlapping injections
- TCC-100 thermostatted column compartment with column switching valve
- All detectors of the Summit HPLC System series, including the MSQ Mass Spectrometer

Also, refer to Chromatography Components: Hardware and Software Chromatography Instruments.

Suppressor

A suppressor is a device used in ion chromatography to reduce the background signal from the eluent while increasing the analyte response when using a conductivity detector. Ion chromatography requires eluents that contain electrolytes, which can interfere with the detection of the ionic analytes of interest. The suppressor uses a combination of ion exchange and chemical or electrolytic regeneration to neutralize or suppress the electrolytes in the eluent. The analyte, on the other hand, generally is converted to a more conductive acid or base form.
Dionex offers suppressor products based on several patented suppression technologies. These products include the Atlas Electrolytic Suppressor, the Self-Regenerating Suppressor, and the MicroMembrane Suppressor. For more information, refer to the appropriate product manual.

For more information, refer to *Practical Tips for Device Control*:

- Controlling a Suppressor
- Setting Atlas Suppressor Currents
- Setting SRS Suppressor Currents
- Setting SRS-MPIC Suppressor Currents
- Controlling an MMS Suppressor

### Syringe Type

The volume that can be injected with an autosampler depends on the installed syringe type. Many autosamplers support several syringe types and thus allow using a different type with a larger or smaller volume. In addition to the default types 25, 50, 100, 250, 500, 1000, and 4000 µl, using special syringes is possible. If the syringe type is changed, the new type must be specified in the Chromeleon Server Configuration program. In addition, when installing a new autosampler, the currently used syringe type must be defined by configuring the corresponding device driver.

**Tip:**

*For the autosampler Dionex GINA 50, syringe types with the volumes 250 µl and 1000 µl are supported. If using different syringe types, the reproducibility stated in the instrument’s specification cannot be guaranteed.*
System Suitability Test (SST)

As defined in cooperation with EURACHEM, System Suitability Checking (SSC) or System Suitability Test (SST) is "a series of tests to check the performance of a measuring process" [P. Bedson and M. Sargent, Accred. Qual. Assur. (1996) 1, 265-274]. Aim and objective of System Suitability Testing is to ensure the performance of the operating system and the system.

SST or SSC can be applied to single measuring processes and thus may be part of the validation process. The System Suitability Test establishes for example that the operational conditions required for a specific measurement process are being achieved.

**Tip:**

If you want to perform a System Suitability Test, make sure to enter the QNT File into the sample list before starting the analysis. Otherwise, the batch cannot be aborted in case of Fail Action - Abort Batch because the SST will not yet be performed during the batch run!

In addition to the System Suitability Test, ➤Operational Qualification, and ➤Performance Qualification are also important for validating instruments and software (see Validation, AutoQ, and System Wellness ➤Validation and Qualification).

For more information about how to perform a system suitability test in Chromeleon, refer to How to …: Performing Validation and Qualification ➤Defining System Suitability Tests.

System Wellness

System Wellness monitors the overall "health" of a chromatographic system. The different devices and Chromeleon provide several diagnostic and calibration features that help prevent unscheduled system shutdowns and assure reliable operation of system devices. System Wellness features are available for devices in the Summit HPLC product line and for several IC devices.

Calibration and diagnostic commands for IC devices are available from Chromeleon Wellness control panels and Help topics provide instructions for performing the various tasks.
The devices in the Summit HPLC product line have been calibrated at the factory, e.g., the pump flow or calibration is performed automatically, e.g., for the UV detector via a Holmium Oxide Filter. Thus, the user does not need to calibrate these devices.

For more information about System Wellness, refer to Validation, AutoQ, and System Wellness:

[System Wellness for IC Devices (Overview)]
[System Wellness for HPLC Devices (Overview)]

For more information about how to perform System Wellness procedures for IC devices, refer to How to …: Performing Validation and Qualification Ensuring System Wellness.

**Tailing/Fronting Sensitivity Factor**

This detection parameter is an implicit threshold for setting the peak end. The Fronting sensitivity factor refers to the peak start, respectively.

Also, refer to Tailing/Fronting Sensitivity Factor

For information about how to apply the detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks Modifying Detection Parameters.

**Tandem Operation**

Short analysis times in the laboratory save valuable time. Running the Dionex Summit x2 Dual-Gradient HPLC System, which comprises a dual-gradient pump, two columns, and a column-switching valve, in tandem operation mode allows increasing the sample throughput considerably, typically by 50 to 100 %.

When the different analytes of a sample have been separated, it is often necessary to wash and reequilibrate the column for the next run. During this time, the autosampler, detector, and fraction collector (if installed) are running idle. Analyzing the next sample during the wash and reequilibration steps can considerably enhance the productivity of these devices.
The example illustrates that phases 2 and 3 could be performed for one sample. In parallel, phase 1 could be performed for the next sample, on the second pump and second column. This requires the following system configuration:
In position A, the chromatographic separation is performed on column 1. During this time, the wash and reequilibration steps are performed for column 2. When the valve is in position B, the separation is performed on column 2 while the washing and reequilibration steps are performed for column 1.

Using this configuration, you can considerably shorten the analysis time for the above example when you

- Stop the active gradient after 25 minutes.
- Set the solvent back to the starting composition (%B = 11%).
- Wash the remaining eluent out of the capillaries between the pump and the column switching valve, using this composition for 1 minute.
- After this minute, switch the valve to direct the flow to the second column and inject the next sample.

This considerably reduces the run cycle time and increases the system throughput, typically by 50 to 100%.

For more information, refer to How to …: Creating and Modifying Programs Defining Tandem Gradients (Summit x2).
Temperature Compensation Factor

A temperature coefficient used in conductivity detection to stabilize conductivity readings. The temperature compensation factor corrects for changes in ambient temperatures that occur during a run and normalizes conductivity measurements to 25°C.

If the cell is installed in a DS3 Detection Stabilizer or a chromatography oven, the default factor of 1.7% is appropriate. When operating without a DS3 or oven, the compensation factor can be optimized to help minimize the baseline drift caused by fluctuations in ambient temperature. See the detector operator’s manual for more information.

Template

Templates facilitate data input. Therefore, Chromeleon provides various pre-defined templates, such as report templates (DEFAULT.RDF and DEFLTDAD.RDF).

Theoretical Plates

The Theoretical Plates peak result variable is a measure for the separating capability of the column. Theoretical plates are calculated from the peak width and the corresponding retention time.

As with asymmetry, there are different USP and EP standards:

<table>
<thead>
<tr>
<th>Name</th>
<th>Calculation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Plates</td>
<td>[ TP = 5.54 \left( \frac{t_R}{W_{50%}} \right)^2 ]</td>
<td>EP standard</td>
</tr>
<tr>
<td>Theoretical Plates</td>
<td>[ TP = 16 \left( \frac{t_R}{BW} \right)^2 ]</td>
<td>USP standard</td>
</tr>
<tr>
<td>Theoretical Plates</td>
<td>[ TP = 5.55 \left( \frac{t_R}{W_{50%}} \right)^2 ]</td>
<td>JP standard</td>
</tr>
</tbody>
</table>
**Where:**

TP = Number of theoretical plates

$R_t$ = Retention time

$W_{50\%} = \text{Peak width at 50\% height (half-width)}$

BW = Peak Width on the base line.

TP does not have a dimension. If they are placed in relation to the currently used column (L), the result is the theoretical plate height (H):

$$H = \frac{L}{TP}$$

However, the reciprocal value says more about the quality of the currently used column. It gives the number of theoretical plates per column meter.

$$\frac{1}{H} = \frac{TP}{L}$$

Select the report column, select **Column Properties** on the context menu, and then select the variable in the selection box. Click **Parameter** to determine whether the calculation is based on the EU, US, or JP standard.

---

**Note:**

EP = European Pharmacopeia; USP = United States Pharmacopeia

---

**TIC (Total Ion Current)**

TIC chromatograms summarize all counts at the corresponding retention time. Unlike **SIM** chromatograms, TIC chromatograms include the data of the entire mass range.

The **TIC** channel is always recorded; it is independent of the mode used in the MS method (Full-Scan or SIM). In **Full-Scan** mode, up to four additional **TICF_n** channels can be recorded for the aQa MS (nine **TICF_n** channels for the MSQ). The data acquisition conditions (for example, the acceleration voltage in the **Mass Spectrometer**) may vary. The channels are called **TICF_1** through **TICF_4** for the aQa mass spectrometer and **TICF_1** through **TICF_9** for the MSQ spectrometer. The **TIC** channel summarizes the results of these single channels. One TIC channel is also recorded in SIM mode. In this case, it corresponds to the sum of the results of the single SIM channels.
From the Mass Spectrum, you can extract separate Mass Traces (or mass ranges) and save them as new channels (see How to …: Using Mass Spectrometers Extracting a Mass Trace). In this way, you can limit the size of the mass range of TIC channels according to your requirements.

Also, refer to How to …: Installing and Configuring Mass Spectrometers Defining the Number of MS Channels in the Administrator Help section.

**Note:**

TIC chromatograms represent the totals of intensity from the spectra headers. These headers are created at run time during data acquisition. Thus, the chromatograms that are later extracted using the entire mass range show a slightly different intensity profile.

**Time**

Chromeleon stores the time stamps as universal time (Greenwich time). However, the date notation is displayed according to the local settings chosen in the operating system (also, refer to Inj. Date/Time (Time of Injection)).

**Timebase**

All components combined in a chromatography system to enable the chromatographic separation and related in a time context with each other are assigned to the same timebase.

A timebase can be a very complex system. It can consist, for example, of two pumps, one Autosampler, one column oven, two detectors that are switched in series, and one Fraction Collector. However, an isolated integrator or a gas chromatograph can also represent a timebase.

Any other system that is completely independent from the first one represents a new timebase. Administration of different timebases is on one or several (Chromatography) Servers. Each server can serve up to six timebases. A timebase can have only one Photodiode Array Detector installed. A maximum of two photodiode array detectors are permitted per server. Specify the name of a timebase and the assignment of the devices in the Server Configuration program.
Toolbars

Frequently used commands and features are available as icons; related functions are combined on toolbars directly below the menu bar. When starting Chromeleon, the standard toolbar is displayed. Select **Toolbars** on the **View** menu to enable or disable the display of individual toolbars. The following toolbars are available:

- **Standard** (standard functions)

- **Online** (commands for the ➪ Control Panels and ➪ PGM-Files)

- **Layout** (commands that can be used in ➪ Layout Mode are available on the ➪ Layout Toolbar)

- **Method** (for changing to other method sections, samples, or channels)

- **Integration** (commands for chromatogram processing)

- **Status Bar** (enables/disables the Status Bar)

Point to an icon to display its name in the **quick info** box.

Transaction Agent

The Transaction Agent serves to protect the Chromeleon datasource files against access from the outside. Under no circumstances should you edit, rename, or move Chromeleon data in the Windows Explorer! To avoid unintentional operations on these files, use the Transaction Agent to protect the Chromeleon datasource structure against these operations in the Windows Explorer. Please note that the Transaction Agent is only available on computers running under Windows 2000 or Windows XP.

A Chromeleon datasource consists of a database part and a file part. When the Transaction Agent is enabled, the standard user cannot access the file part. This is to avoid unauthorized access to the Chromeleon file part in the
Windows Explorer or via the command prompt of the operating system. The user of the Chromeleon client can nevertheless access this part via a virtual user (TargetUser).

First, set up the Transaction Agent in the User Manager, and then enable this function in the Security Activation Tool (CmSecure program). For more information, refer to Chromeleon User Management Setting up the Transaction Agent in the Administrator Help section.

Transmission
Transmission is 100%, when light passes through the UV detector flow cell without restraint. Transmission decreases with increasing absorption. For the UVD 340S detector, the maximum transmission value is determined via zero order at a reference wavelength of 630nm.

Tip: The substance mixture passing through the flow cell must not absorb in the reference wavelength range. If this is the case, either change the reference wavelength or select transmission without reference.

Trend Plot
Chromeleon's trending feature provides a way for specific data to be graphically displayed from sample to sample. In many cases, you can more quickly view progressive changes, compare runs, or identify items of interest by looking at a graphical representation of different samples, rather than by examining specific quantitative values of these samples in a report.

For example, if you view graphically the background signal in a conductivity detector for a series of runs and the trend shows a progressive increase over time, it might suggest a problem with an instrument. Or, if the same internal standard for the same column is used for a series of experiments, you can view a graphic trend of the theoretical plate calculations. A general decrease in the plate values might suggest column degradation.

In addition to depicting data graphically through a trend, Chromeleon can quickly calculate and display statistical parameters (mean, target, 1s standard deviation, 2s standard deviation, 3s standard deviation). When a trend is shown with the target and standard deviations, it enables you to view the data within a broader context.
Note that Chromeleon can depict the statistical parameters relative to ALL the samples selected, to only the samples in a particular view, or to user-entered target values. Moreover, the trend plot can be included in both Control Panels and reports.

On the screen report, select Show Trend from the View menu to display the trend plot. For information about how to add a trend plot to a control panel, refer to How to …: Modifying a Control Panel. For information about how to add a trend plot to a report template (printer layout), see How to …: Inserting a Trend or 3D Amperometry Plot.

There are two types of trend variables: module-specific variables, such as pump pressure and background signal, and result variables, including retention time, area, peak height, etc. Depending on the data selected for trending, you can elect to show trends in real time, as an injection occurs, or post-run, after the run has been collected and processed. Here is an example of a trend plot:

![Trend Plot Example](image)

**Trigger Commands**

A trigger refers to the automatic execution of a command as soon as a condition becomes true. The Trigger command can be included in a Program or a programmable button, but not in the online control. The following syntax is valid:

```
Time Trigger TRIGGERNAME Condition,True,Delay,Limit,Hysteresis
Reaction 1
Reaction 2
Reaction ...
Time EndTrigger
```

Also, refer to Trigger Commands
**TTL**

TTL (Transistor-Transistor Logic) inputs and outputs are electronic switching devices for controlling instruments.

**TTL Input Mode**

The TTL inputs respond to four types of device output signals. The default TTL signal mode, normal edge, is compatible with the output signals provided by Dionex modules. If the controlling device outputs a different signal type, select a different signal mode.

The four input signal modes are:

**Normal Edge**: In normal edge operation, the negative (trailing) edge of a signal turns on the function and the positive (leading) edge turns off the function.

**Inverted Edge**: The inverted edge mode works identically to the normal edge mode, except that the positive and negative edges are reversed in function.

**Normal Pulse**: In normal pulse operation, the negative (trailing) edge of the TTL signal is the active edge and the positive (leading) edge is ignored. The minimum pulse width guaranteed to be detected is 50 ms. The maximum pulse width guaranteed to be ignored as noise or invalid is 4 ms. The action is undefined for pulses less than 50 ms or greater than 4 ms.

**Inverted Pulse**: The inverted pulse mode operates identically to the normal pulse mode, except that the positive and negative edges are reversed in function.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Normal Polarity (negative)</th>
<th>Inverted Polarity (positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Edge</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Inverted Edge</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Normal Pulse</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Inverted Pulse</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

---

**Diagram**

- **EDGES**
  - Off (Normal Polarity, negative)
  - On (Inverted Polarity, positive)

- **PULSES**
  - Off (Normal, negative-going)
  - On (Inverted, positive-going)

---
Type (Peak Type)

The Type peak result variable classifies a peak as a main peak (M=Main) or a Rider (R=Rider). This variable also indicates the type of baseline contact (B=Baseline) and whether the peak data has been manually modified (*=modified).

Also, refer to ⇒Type (Peak Type)

UCI Universal Chromatography Interface

The UCI Universal Chromatography Interface serves as a data acquisition and device control module. It provides several different interfaces and makes them available to the chromatography server:

- Eight analog inputs (UCI-100) or two analog inputs (UCI-50)
- Four serial RS-232 ports
- Eight remote inputs
- Eight remote outputs
- One BCD input

For communication between the different devices and the server's chromatography data system, either a USB or an Ethernet connection can be used.

Tips:

Use the RS-232 interfaces (COM ports) via USB only (no TCP/IP)! If LAN connections are required, additional interface cards must be used for instrument control via RS-232. Dionex recommends using an instrument LAN for analog data acquisition (= installation of a second network interface card (= NIC; in the operating system, the card is often referred to as adapter) in the server PC). (Also, refer to Hardware Installation Connecting Dionex Devices via TCP/IP in the Administrator Help section.)
Always connect instruments requiring a GSIOC cable, such as GILSON devices and VARIAN pumps, to the multi-serial 8-fold PCI interface card (Equinox 8-RS-232 Multi-COM card, Dionex part no. 5906.2095). (For more information about these devices, refer to Hardware Installation GILSON and the VARIAN in the Administrator Help section.) Otherwise, communication problems might occur with other RS-232 ports; for example, with the COM ports of the PC or the Dionex Universal Chromatography Interface (UCI). The power supply of the GSIOC adapter (type 605) is directly via the RS-232 interface. The RS-232 ports of the UCI Universal Chromatography Interface, however, are not designed for this.

Also, refer to Software Installation and Communication The Dionex Universal Chromatography Interface (UCI) in the Administrator Help section.

### UI20 Universal Interface

The UI20 Universal Interface functions as a communications and control link between the PC and instruments that are not directly connected to the DX-LAN. This enables Chromeleon to collect data from any chromatographic detector with an analog output. The UI20 collects up to two analog detector voltage signals and converts them to digital data with 20-bit resolution.

### UltiMate 3000 Micro/Capillary/Nano HPLC System

The Dionex product line for micro, capillary, and nano HPLC applications is called UltiMate 3000 HPLC System. The system comprises the following devices:

<table>
<thead>
<tr>
<th>Device</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>LPG-3x00</td>
<td>Dual low-pressure gradient pump</td>
</tr>
<tr>
<td>Autosampler</td>
<td>WPS-3000</td>
<td>Well-plate micro autosampler, Temperature control option available (WPS-3000T)</td>
</tr>
<tr>
<td>Flow Manager and Thermostatted Column Compartment</td>
<td>FLM-3x00</td>
<td>Temperature range: 4-45°C</td>
</tr>
<tr>
<td>Detector</td>
<td>UVD-3000</td>
<td>UV Detector</td>
</tr>
</tbody>
</table>

Also, refer to Chromatography Components: Hardware and Software Chromatography Instruments.
Unspiked
Refer to \(\text{Spiked Sample}\)

Unzoom
The Unzoom command undoes the last zoom operation.
To unzoom on the signal plot, double-click inside the \(\text{Overview Window}\).

Use Recently Detected Retention Time
This QNT Editor parameter (General sheet) defines whether the retention time stored in the peak table (nominal time) is used by default to identify a peak or whether the actual retention time of a peak in the last sample is used. (For information about the editor, see Data Representation and Reprocessing \(\text{The QNT Editor}\).)

The parameter serves to compensate many types of drift appearances; for example, evaporation of volatile components in pre-mixed solvents or column aging.
Also, refer to \(\Rightarrow\text{Use Recently Detected Retention Time}\).

User Database
The user database defines the user rights (= \(\text{Privileges}\)) and the membership of the individual users in \(\text{Access Groups}\). The user database is created in the \(\text{User Manager}\) program and activated in the Security Activation Tool (CmSecure program). If the database is activated, \(\text{User Mode}\) is enabled.

\(\text{Tip:}\)

Although the two terms are similar, do not confuse a user database with a Chromleon \(\text{Datasource (database)}\). Although both may be, for example, Access databases (= \text{mdb container}), they are two completely different databases.
User-defined Columns (UDC)

Various tables with different meanings appear throughout Chromeleon. For example:

- The different tables in the Report and in the Printer Layout
- The sample list in the Browser (For more information, refer to Data Management The Browser.)
- The peak table in the QNT Editor (see Data Representation and Reprocessing The QNT Editor).

While the appearance of the sample list and the peak table is mainly default, you can define the Report and the Printer Layout according to your own requirements. You can also define your own columns in all tables mentioned above.

In the Report and the Printer Layout, use the Report Publisher to create new columns and thus, to display special aspects of your data. For more information, refer to How to ...: Creating and Using Report Tables Entering User-defined Formulas.

In the sample list and in the peak table, user-defined columns

- Allow input of user-specific data, which can then be used as additional variables for report generation. In addition, they allow data to be imported via SDK (Software Development Kit) or Worklist (WLE file).
- Provide additional key words for a Query.
- Allow you to define the fraction collection period in the PGM Wizard. (This is only possible if the Fraction Collection driver has been installed in the Server Configuration Program. This only refers to user-defined columns in the peak table.)

On the Samples page of the Query Wizard, select the user-defined columns for the Sample field type. Click the arrow next to the Data Field input box to display the selection list. An asterisk (**) in front of the column name marks the user-defined columns created in the sample list of the Browser.

For the Results field type, it is not possible to directly access the user-defined columns by clicking the '...' button. Thus, to use a user-defined column that has been created in the peak table of the QNT Editor, type the formula directly in the Formula field.
The syntax is as follows:

\texttt{peak\_tab.user\_x}

where x is the name of the user-defined column.

For more information, refer to \textbf{How to \ldots: Creating and Managing Files and Data} \textbf{Creating User-defined Columns}.

\textbf{Tips:}

Be careful when creating user-defined columns in the sample list of the Browser. For columns having identical names in different Datasources or on different computers that may communicate with each other, make sure that the column definition is identical, too. If the column definitions are different, problems may occur when you copy sequences or Restore backup files. To make sure that the columns are identical in both datasources, select \textit{Import Columns} (select the datasource, click \textit{Properties} on the context menu and then click the \textit{User-defined Columns} tab). This command imports all existing user-defined columns from another datasource to the current datasource.

To use the new and/or changed columns in the PGM File, shut down and restart the Server after you have entered or changed the columns in the sample list. Only then can the server access the user-defined columns.

However, access is restricted to the user-defined columns of the Standard Datasource. It is not possible to access user-defined columns for which the Value type is Time or Date and time.

For more information about user-defined columns, refer to \textbf{How to \ldots: Creating and Modifying Programs Using User-defined Columns in a Program}.

\textbf{User Management: User Manager and Security Activation Tool}

Chromeleon provides two different administrator programs for user management: Use the \textbf{User Manager} (CmUser program) to create the User Database and to manage the users. Use the \textbf{Security Activation Tool} (CmSecure program) to enable or disable User Mode. The setup for both programs is located in the CmUser directory on the Chromeleon software CD. Please note that the programs are not automatically copied to the Chromeleon program directory (e.g., c:\chromel\bin).
The User Manager is password-protected. Only the system administrator or somebody with similar authority can open the program.

**Tip:**

Dionex recommends installing the Chromeleon User Management applications (CmUser directory) to a suitable network location, CD-ROM, or USB stick to allow modifications via the network. Make sure that only Chromeleon administrators with administrator privileges for the CmUser database can access this network location. The Administrator Help section also contains a section describing all steps and options for user management (refer to [Chromeleon User Management](#)).

The User Manager, which is intended for User, Privilege, and Access Group management, allows you to perform the following actions:

- Create and edit **Access Groups**
- Create and edit **Privileges** (Privilege Groups or P Groups)
- Create and edit users in Chromeleon. The system administrator can define the user’s name and job title, the **Logon** and signature **Passwords**, and the behavior if the logon failed.

Use the **Security Activation Tool** (CmSecure program) to enable and disable User Mode on the Chromeleon client. Besides, you can use the CmSecure program to select the user database. The user database contains the status and the rights of each user. When **User Mode** is enabled, the user has to enter a password to start Chromeleon. It is only possible to sign sequences electronically when the User Mode is enabled (see **Electronic Signature**).

**Caution:**

*In the User Manager, select **User Database Properties** on the File menu to enable **Compatibility Mode**. This mode allows **Clients** of previous Chromeleon versions (Chromeleon 6.01 or earlier) to log on to the system.*

**User Mode**

The **Security Activation Tool** (CmSecure program) allows you to enable and disable User Mode (= Access Control). When the User Mode is enabled, Chromeleon provides numerous options to limit user access to **Servers**, **Timebases**, **Clients**, and **Datasources**.
System access is password-protected. Access is only granted to users who are identified by the system after password input.

Each user identified by the system is granted personal privileges. The system administrator assigns these privileges. Via the Access Group and Privilege group membership of a user, the administrator defines the operations the user can perform within the system.

If access control is disabled, each user receives all rights. Datasources or directories that have access groups assigned cannot be accessed when the User Mode is disabled. With enabled User Mode, the user can access an object if he/she is a member of a group granting access to the respective object. If no access group is assigned to an object, each user can access the object independently of his/her access group membership.

If the User Mode is enabled, the user can access any object that is part of the respective access group. The sum of all privileges granted to the user (depending on his Privilege Group membership) determines what the user is allowed to do with the object. Signing sequences electronically (see Electronic Signature) is possible with enabled User Mode only.

For more information, refer to Software Installation and Communication Access Control in the Administrator Help section.

**UV Cutover**

The UV Cutover command for the AD20 Absorbance Detector sets the wavelength above which the second order filter is inserted in the light path. Typically, the UV cutover wavelength is 380nm.

**UV Detector**

UV detectors (strictly speaking, UV/VIS detectors) quantify absorption of UV/VIS-active substances in the range from 190 to 380nm (UV range) and 380 to 900nm (VIS range). UV detectors provide high sensitivity and a large linearity range. UV detectors are relatively independent from temperature fluctuations; they can be used for gradient elution (%-gradient).
**Functionality**

A grating (b) disperses the light that is emitted from a light source (a) in a discontinued spectrum. Simultaneously, the grating serves as a filter and directs only the wavelengths required for detection to a beam splitter (s). A portion of the beam is directed through the flow cell (d) onto a photodiode (e), the other part is used as a reference (f).

![Diagram](image)

**Theory**

Depending on the absorptivity ($\varepsilon$) of the substance, the light beam is more or less attenuated when traversing the flow cell. For the absorption ($E$), the following is true:

$$E = \varepsilon c d$$

As the length of the cell ($d$) is constant and the absorptivity ($\varepsilon$) depends only on the substance itself or the absorbed wavelength, there is a direct connection between the substance concentration ($c$) and the absorption ($E$). The absorption measured in AU ("absorbance unit") is thus proportional to the number of particles in the beam path ("Lambert-Beer absorption law").

**Wavelength Calibration**

The wavelength is calibrated automatically after each $\Rightarrow$ Lamp = On or $\Rightarrow$ Connect command (**detector calibration**). The **CheckWavelength** command checks the currently valid wavelength calibration. The maximum deviation of this calibration compared to the instrument status is given in the Audit Trail.

Calibration is possible only when certain conditions are met:

1. During calibration, the baseline must be sufficiently stable. This may not be the case, for example, if the solvent composition has been modified or if there are gas bubbles in the solvent.
2. The solvent in the cell must not be fully absorbing in the wavelength range that will be calibrated. This will be the case, for example, if the cell is filled with 96% hexane / 4 % ethyl acetate.

3. Before calibration, make sure that the deuterium lamp is already warm because its spectrum changes a lot during the first minutes after turning on the lamp.

If these conditions are not met, the process will be interrupted with the corresponding error message. When the problem is solved, repeat the calibration by selecting Disconnect and Connect.

**Detector Calibration**

The detector is calibrated via a holmium oxide filter that is installed in the beam path of the deuterium lamp. The maxima are determined from the resulting transmission spectrum and compared to the holmium oxide values stated in the literature. If a difference is detected for this maximum between the measured and the known value, this maximum and the two adjacent maxima are interpolated to correct the wavelength allocation of the affected photodiodes. Wavelength calibration can take up to two minutes. During this time, data acquisition will not be possible.

Also, see ➪Photodiode Array Detector.

**UV Lamp**

This command turns the UV lamp on Dionex absorbance and PDA detectors on and off. For the AD20 Absorbance Detector (see ➪UV Detector), the command options are Low, High, and Off.

**Tips:**

If you switch the AD20 lamp from Off to Low or High, there is a 22-second pause while the UV lamp warms up. During this time, the status of the lamp on the ➪Control Panel remains at Off. Once the warm-up period is complete, the status changes to the selected setting (Low or High). The Audit Trail window logs the UV_Lamp command and the warm-up time.

Detector lamps require a considerable warm-up time for high-sensitivity and drift-free operation. Therefore, after turning on the lamp, wait at least 10 minutes before you perform the ⇒Inject command. Also, avoid turning off the lamp(s) during a sample batch.
Validation

The process of ensuring that a system or analysis procedure supplies reproducible and reliable results is referred to as validation. For the user, this includes above all procedures regarding the planning, implementation, and documentation of an analytical method. Thus, validation is an integral part of GLP ("Good Laboratory Practice").

The manufacturer of the instrument or data system performs validation. The user then performs several qualification steps (see Qualification) to check the functionality of the instruments and Chromeleon.

For more information, refer to Validation, AutoQ, and System, Wellness Validation and Qualification.

Validation Sample

Samples of known concentration that serve to verify a calibration are referred to as validation samples. In the sample list, they are labeled with the sample ⇒ Type Validate and have the following symbol: ☑.

Verification is by regular insertion of the validation samples in the normal analysis. The resulting (actual) area values are converted into amounts via the Calibration Function and parameters and are then compared with the expected (nominal) values in the ⇒ Amount table. The result of the nominal/actual comparison can be displayed as direct amount (Amount Deviation result variable) or as deviation in percent (Rel. Amount Deviation).

Checking can also be performed visually if you display the validation samples (marked by colors) in the calibration curve. They will not be considered for calibration, though.

Validation samples can also be injected from vials that are normally used for injection of standard (calibration) samples. Validation samples are not relevant for the calculation of the calibration function!

For more information about validation samples, refer to How to …: Integrating Chromatograms and Identifying Peaks:

☑ Entering the Concentration/Amount of the Validation Sample
☑ Validating the Calibration Curve
Valley to Valley

If the Valley to Valley detection parameter is enabled, the baseline is drawn from peak minimum to peak minimum (i.e., from peak end to peak end), below non-resolved peaks.

Also, refer to ⇒ Valley to Valley

For information about how to apply detection parameters, refer to How to …: Integrating Chromatograms and Identifying Peaks ⇒ Modifying Detection Parameters.

Variance

The Variance calibration variable is the average deviation of all area values $F$ from the corresponding ideal area value in a calibration. The ideal area value is the value at the point of intersection between the calculated calibration curve and the corresponding amount value.

Variance

Variance is therefore a criterion for the measuring accuracy in the calibration. With an increasing value, calibration points are increasingly scattered. The mathematical description of the variance is as follows:

$$Variance = \frac{1}{N - m} \sum_{i=1}^{N} W_i \times (Y_i - F(X_i))^2$$

- $N$: Number of standard samples involved in the calibration,
- $m$: Number of coefficients to determine (depending on the ⇒ Calibration Type: LIN: $m = 1$; LOFF: $m = 2$; QUAD: $m = 2$; QUOFF: $m = 3$ and EXP: $m = 2$),
- $i$: Index for standard samples,
- $F(x)$: Model function of the calibration,
- $X_i$: $X$-value of the standard sample no. $i$,
- $Y_i$: $Y$-value of the standard sample no. $i$,
- $W_i$: Weight factor of the standard sample no. $i$, and
- $\Delta_i$: $Y_i - F(X_i)$
Extracting the square root of the variance value results in the Standard Deviation calibration variable; that is, the square standard deviation is the variance.

Variance Coefficient

The Variance Coefficient calibration variable can be considered a type of normalized Variance value. It is more meaningful when comparing variances of different peaks with different concentrations. A variance coefficient near zero means that the calibration curve well approximates the calibration points.

Thus, the variance coefficient indicates how well the data points correspond to the theoretically assumed course of the curve. Similar to the Coefficient of Determination and in contrast to the Correlation Coefficient it depends on the calibration type. The mathematical description of the variance coefficient is as follows:

$$ \text{VarCoeff} = \sqrt{\frac{\sum_{i=1}^{N} W_i (Y_i - F(X_i))^2}{\sum_{i=1}^{N} W_i Y_i^2}} $$

- $N$: Number of standard samples involved in the calibration,
- $i$: Index for standard samples,
- $F(x)$: Model function of the calibration,
- $X_i$: X-value of the standard sample no. $i$,
- $Y_i$: Y-value of the standard sample no. $i$,
- $W_i$: Weight factor of the standard sample no. $i$.

Virtual Channel Driver (VCD)

The Virtual Channel Driver is used to record, display, save, and export the system status (for example, the relay status, gradients, or pump pressure) or Virtual Signals (for example, UV_VIS_1/UV_VIS_2) as signals. The virtual channel driver allows you to calculate any arithmetic expression during data acquisition, and then display the result as a signal channel and save it. (For more information about the virtual channel driver, refer to Chromatography Components: Hardware and Software Virtual Channel Driver.) Any combination of numeric expressions can be used as terms in the formula that is used for calculating the virtual signal.
For information about how to install the Virtual Channel Driver, refer to Hardware Installation Installing the Virtual Channel Driver (VCD) in the Administrator Help section.

A special program is required to record virtual channels. It is not possible to create these channels manually. For information about how to enter the corresponding commands into the program, refer to Practical Tips for Device Control Virtual Channel Commands and Program Examples for Virtual Channels.

**Virtual Column**

Virtual Column is a simulation tool that uses known ion chromatographic retention data to predict new retention data and chromatograms. The known retention data was acquired by Dionex using an appropriate experimental design and then embedded into Virtual Column.

**Note:**

*Results obtained with Virtual Column are intended to represent typical results for a particular column type. Because no two columns or systems are identical, the results you obtain in an actual analysis may differ somewhat from the Virtual Column predictions.*

To use Virtual Column, you first select the application parameters (analytes of interest, methodology, column, etc.) to be simulated. Virtual Column then uses the embedded data in retention models and resolution algorithms to determine the retention data, resolution response, and Virtual Chromatogram for the selected parameters.

Virtual Column helps you to answer the following questions:

- What is the best column to use for a particular analysis?
- What eluent should I use for optimum separation of analytes?
- What eluent should I use for the fastest separation of analytes?
- How will changing the temperature of an analysis affect the separation?

**Evaluation Mode**

Virtual Column is an optional Chromeleon component. There are two license options: Isocratic and Linear Gradient. The Isocratic license enables modeling of isocratic separations only; the Linear Gradient license enables
modeling of isocratic and linear gradient separations. (The Linear Gradient license is sold only in a Virtual Column Complete package that also includes the Isocratic license.)

If you have not purchased a Virtual Column license, you can use Virtual Column in Evaluation Mode. Most functions are available in Evaluation Mode, with the following exceptions:

- In Evaluation Mode, the selection options for analytes are limited to the following predefined lists of analytes:
  
  **Anions:**
  Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate, and Sulfate

  **Cations:**
  Ammonium, Calcium, Lithium, Magnesium, Potassium, Sodium

  **Carbohydrates:**
  Fucose, Galactosamine, Galactose, Glucosamine, Glucose, Mannose

- In Evaluation Mode, the Save, Open, and Reset All commands are not available.

For details about how to use Virtual Column, refer to How to ...: Simulating Chromatograms.

**Virtual Signals**

Signals that are composed of or calculated from several readings at the time t are referred to as virtual signals; for example, the arithmetic average of several channels. Virtual signals often include Reserved Signal Names, such as, 3DFIELD. Virtual signals can be generated with the Virtual Channel Driver. They cannot be acquired manually; data acquisition is possible only in the context of a sample program.

For information about how to enter commands, refer to Practical Tips for Device Control Virtual Channel Commands.
Visible Lamp

This command switches the visible lamp of Dionex absorbance (see: UV Detectors) and Photodiode Array Detectors on and off. For the AD20 Absorbance Detector, the command options are Low, High, and Off.

Tip:
Detector lamps require a considerable warm-up time for high-sensitivity and drift-free operation. Therefore, after turning on the lamp wait at least 10 minutes before performing the Inject command. Also, avoid turning off the lamp(s) during a sample batch.

Void Time
See Dead Time

Void Volume
See Dead Volume

Voltammogram
A plot of current measured vs. voltage applied during a voltammetric run. Also, refer to Cyclic Voltammetry

Volume
See Injection Volume

Wait
The Wait command interrupts program execution until the specified remote input signal arrives. During this time, program time and data acquisition are stopped. Controlled pumps are kept in the Hold mode. For examples for using the Wait command, refer to Practical Tips for Device Control: Autosampler Control and Special Commands, Relay Control, and Miscellaneous. Also, refer to Wait
**Wash**

The *Wash* command causes the autosampler to lower the needle into the needle seat and to rinse the sample loop and needle with solvent in the *Inject* state. This corresponds to the normal solvent flow following an ⇒*Inject* command.

**Tip:**

*Use the *Wash* and ⇒NeedleUp commands to wash the sample loop and thus prevent crystallization of substances in the sample loop.*

Also, refer to ⇒*Wash*

**Waveform**

A series of steps, defined as points on a plot of potential vs. time. The waveform is repeated continually throughout the run. A waveform must be defined when using the Dionex electrochemical detector in ⇒*Integrated Amperometry Mode*.

The waveform period is the elapsed time from the first step in the waveform to the last.

In the example waveform below, the potentials are labeled E1, E2, and E3 and are applied for durations t1, t2, and t3, respectively. The signal is measured at E1 by integrating the current for a fixed time (ts).
Wavelength

UV Detectors and Photodiode Array Detectors are the most commonly used detector types in HPLC. Simple UV detectors record chromatograms at a defined wavelength ($\lambda$) while PDA detectors record them in a defined wavelength range. The wavelength and the wavelength range, respectively, depend on the detector and can vary between 190 to 900 nm.

This value indicates the wavelength at which a chromatogram is measured.

On Dionex photodiode array detectors, the wavelength is not set directly on the instrument, but via the PC. You can enter the wavelength also manually during the analysis or in the PGM File.

For the UV-VIS, 3DFIELD, and SPECTRA signals, wavelength means the central wavelength, that is, the wavelength around which a field with a symmetrical Bandwidth forms.

Also, refer to Wavelength

Wavelength Calibration

Dionex UV detectors, which are fitted with a Holmium-Oxide Filter, perform a wavelength calibration after each Lamp = on command (see Lamp) or Connect command.

Dionex AD25 and PDA-100 detectors perform a wavelength calibration at power-up. New wavelengths are assigned to each pixel, based on the emission spectrum from the deuterium lamp.

With defined absorption maxima, wavelength calibration ensures that the data delivered by the detector corresponds to the expected wavelength values.

Wavelength Switching

Usually, samples contain different substances with different UV spectra and different absorption maxima. Wavelength switching allows the detection of the single peaks at their optimum wavelength. Wavelength switching changes the wavelength of the respective measurement when the solvent composition changes, resulting in a composite chromatogram of the largest absorbance for each substance. The switching should occur so long before the retention time of the respective peak that the entire peak is detected at one wavelength.
Wavelength switching also allows the simultaneous analysis of substances with strongly differing absorption maxima, and little or no absorption at the wavelength of the other maximum.

Wavelength switching is program-controlled; that is, the switch time at which the wavelength of a specific channel is changed is entered in a control Program. The switch time and wavelength can be generated automatically by extracting the Optimum Integration Path from an opened 3D Field (Extract: Opt.Int.Path to Clipboard).

**Tip:**

Wavelength switching is also possible with fluorescence detectors. Usually, the excitation wavelength should be changed at exactly the same time as the detection wavelength.

For information about how to perform wavelength switching, refer to Practical Tips for Device Control  Determining Wavelength Switching.

### Weight

Also, see Sample Weight Factor (Weight) and Weight (Sample Weight Factor).

### Weights

The Weights calibration variable indicates the weighting (see How to …: Calibrating Weighting and Averaging Calibration Points in the Creating a Peak Table section) assigned to the individual Calibration Points when creating the calibration curve.

Define the weighting in the Calibration Type column of the QNT Editor. (For information about the editor, see Data Representation and Reprocessing The QNT Editor.)
The following options are available:

**No weight**  Default: Higher weighting of higher amounts and/or signal values.

1/Amount (X)  Nearly cancels out the weighting of higher amounts/signal values.

1/Amount² (XX)  Causes over-proportional weighting of smaller amounts.

1/Response (Y)  Nearly cancels out the weighting of higher signal values. In this case, the Y-values (dependent signal values) of the Calibration Points are used as weight factors instead of the X-values (nominal amounts).

1/Response² (YY)  Causes over-proportional weighting of smaller signal values. In this case, the Y-values (dependent signal values) of the calibration points are used as weight factors instead of the X-values (nominal amounts).

If you select **Average all response values of each calibration level before Curve Fitting (A)** two more options are available:

1/Rel.Std.Dev (S)  Each average value is reciprocally weighted with the related relative (and squared) standard deviation. This means that calibration levels with increased scattering are weighted less than calibration levels with less scattering.

1/Rel.Std.Dev² (SS)  Causes over-proportional weighting of calibration levels with less scattering.

**Width**

This peak result variable refers to the peak width *extrapolated* on the baseline. Peak tangents are drawn from the turning points of the leading and trailing edges. Then the points of intersection with the baseline are calculated. The time distance between the two points of intersection is defined as the base width. If the base width is used for calculating other parameters, the abbreviation is BW.

![Diagram of Width](image_url)
Chromeleon also determines the peak width at 5, 10, and 50% of the peak height (abbreviations: W5%, W10% and W50%).

**Tip:**

*In contrast to the base width BW, the peak widths at 5, 10, and 50% of the peak height (W5%, W10%, and W50%) are not only measured up to the point of intersection with the two tangents, but up to the signal curve!*

Determining the peak width is only possible if the peak is resolved at least to half the height.

**How to display the peak width in the report**

- Select the column in the report
- Select **Column Properties** on the context menu.
- Select the **Width** variable in the selection box.
- Click **Parameter** to determine the peak height at which to determine the peak width.

**Window**

The **Window** peak table parameter defines the tolerance interval, within which the peak is expected. Adding and subtracting the window value to the retention time (retention time +/- window value), determines the window size; that is, the window always has twice the width of your input. In addition, the value can be interpreted as absolute or relative value.

Also, refer to ⇒ **Window**

**Wizard**

Various input procedures such as creating a ⇒ **Sequence**, or a ⇒ **Program** or defining ⇒ **Query** conditions are facilitated by using wizards. The system prompts the user to define conditions and to enter the required information. The wizard then adds default elements and thus completes a basic structure. If required, the user can extend or modify this structure according to individual requirements.

Use the wizards to avoid unnecessary typing, syntax errors in command entries and overlooking important information and parameters.
Worklist

The format for reading data (sequences) of a LIMS Chromeleon is referred to as Worklist (WLE file). The worklist describes the contents and the structure of a sequence (also, refer to Worklist Format).

Select New on the File menu, and then select the Sequence (From LIMS Worklist) command to import an existing worklist.

If importing is possible, the imported sequence is listed in the Browser. To prevent importing the existing worklist again, it can be deleted automatically by setting DeleteWorklist to Yes in the [options] section.

If an error occurs during the import, Chromeleon reports an error describing the error and the error location in the worklist. The error message is also saved in a log file. This log file carries the worklist name and the extension log. The incorrect worklist file can be automatically renamed to *.err by setting Rename On Error to Yes in the [options] section.

For more information, refer to Worklist Format.

Worklist Format

Worklists have the file extension .wle (Work List Export). The structure and the syntax of the Worklists are similar to the Windows INI files. There are various sections. Each section starts with a new line. The name of the section is written in brackets. There are one or several entries below the section name, with the syntax name = value. Comments start with a semicolon and finish at the end of the line.

Tip:

If information, such as the injection volume, is missing in the worklist, you can enter it in Chromeleon as usual after the worklist has been imported. However, please note that the QNT and PGM Files must already be specified in the worklist.
Example of a valid worklist (+ comments - delete the comments to use the worklist in Chromeleon):

; Worklist generated by MegaLIMS 3.11.5622.00a
; Wed 05/27/98, 16:25:02

[options]
Application = Chromeleon
Delete Worklist = No
Rename On Error = No

[file names]
; datasource, path, and name for the generated sequence
Sequence = \labor2\local\sys58\sequences\lims4711
; default for the program column
pgm = pgmWash
pgm = Stop
; default for the QNT Method column.
qnt = qnt0815
qnt = noint
; copy ➔ PGM Files from here (datasource, and path)
pgm templates = \server1\templates\hplc

; copy ➔ Quantification Methods (QNT Methods) as stated here (datasource, path, and name)

[qnt files]
qnt0815 = \server1\templates\hplc\pah\qnt0815
noint = \server1\templates\common\noint

[defaults]
; default for injection volume
Injection Volume = 10.0

[1]
Name=Wash
Type=Blank Run
Pos=1
; use the "Wash" program instead of the default ("pgm0815")
PGM=Wash
QNT=qnt0815
; default for the user-defined column Water Contents - the marking asterisk * is omitted with

User-defined Columns
Water contents = 72.3

[2]
Name=Std
Type=Standard
Pos=99

[3]
Name=Sample1
Pos=2

[4]
Name=Sample2
Pos=3

[5]
Name=Sample3
Pos=4

[6]
Name=Sample4
Pos=5

[7]
Name=Stop
Type=Blank Run
Pos=1
PGM=Stop
QNT=Nnoint

With this worklist (without the comments), a sequence named lims4711 is
created in the datasource labor2_local in the sys58\sequences directory.
The sequence contains a rinse sample, a standard, four unknown samples,
and a stop program.

All control programs are copied from the subdirectory \templates\hplc of
the datasource Server1 (central file server). The source must contain the
pgm0815, wash, and stop programs.
The evaluation method for the rinse and stop samples is copied from \templates\common\oint.qnt, the method for the analysis samples is copied from \templates\hplc\pah\qnt0815.qnt (both in the datasource server1).

Path Information
The entire path information of the worklist is related to the Chromeleon data structure. Therefore, the path name starts with the ➔Datasource, not the hard disk name. Relative paths are not accepted. Path names can be expressed either in the internal Chromeleon syntax (Moniker), for example, SEQ:\labor2_local\sys58\sequences\lims4711, or in a simplified syntax (as above), which omits the type abbreviation and the double colon. In this case, a slash or a colon can be used instead of the backslash.

Sequence = SEQ:\labor2_local\sys58\sequences\lims4711
Sequence = \labor2_local\sys58\sequences\lims4711
Sequence = Labor2_local:sys58/sequences/lims4711

All of the above paths refer to the sequence lims4711 in the directory sys58/sequences of the datasource Labor2_local.

Do not include type extensions (.PGM, .QNT, .SEQ) in the path information.

Handling of PGM Files and QNT Files
The program and the method columns of the sequence only include the file name without the path information, as the files are always located in the sequence. The same applies to the corresponding options (PGM= and QNT=) in the WLE file (see below).

The LIMS import module creates these files by copying them to the sequence. There are two possibilities to specify where to find these templates to copy:

- If all used files of a type are located in the same directory (the template directory), its path can be determined in the section [file names] via

  PGM Templates = path to template directory or QNT Templates = for QNT Files

  Chromeleon searches the corresponding template directory for a file with the specified name and copies this file to the sequence.
If the copy templates are located in different directories, the path of each section has to be given in the section '[PGM File]' or '[QNT Files]'. On the left side of the equal sign, the file name is located, and on its right side, the complete path of the template is indicated.

Technically, it may be possible that the file name of the template differs from the name of the copied file. However, this will not be accepted.

Both methods can be mixed. In case of doubt, the second method has priority. If there is an entry in the section [PGM Files], the PGM template file is not searched.

If all samples use the same PGM and QNT Files, it makes no difference which method is used.

Section [OPTIONS]

The options listed in this section will influence the import function. Usually, no entries are required here. When testing a worklist, it may be useful to disable the Delete Worklist and Rename On Error commands. Thus, the worklist is retained instead of being deleted after importing.

Application = Chromeleon indicates that this worklist is intended for the Chromeleon. If there is a different entry here, the worklist will not be accepted by the Chromeleon. In this case, no log file is created, and the worklist is neither deleted nor renamed.

Computer Name = <Name of PC> indicates where to copy the worklist. If this entry does not correspond to the local computer, the worklist is not accepted. In this case, no log file is created, and the worklist is neither deleted nor renamed.

Log Error = Yes creates a log file containing the error message in the event of an error.

Log Success = Yes creates a log file documenting the successful import.

Delete Worklist = Yes deletes the worklist when importing was successful.

Rename On Error = Yes renames the worklist in *.err in the event of an error.

Character Set = Windows indicates the character set of the worklist. Any generated log file is also written with this character set. Change this option if some special characters, such as umlauts, are not transferred correctly. Valid values: Windows or ANSI (system character set, that is, no conversion) DOS or OEM (PC character set, conversion by Windows function OEMToAnsi).
Section [FILE NAMES]

This section determines various file names. **Sequence** = indicates the path and the name of the sequence to generate. This parameter must always be specified. **PGM** = or **QNT** = determines the default value for the PGM column or the QNT column. (The default value can be overwritten for each sample.)

**PGM Templates** = and **QNT Templates** = determine the corresponding template directory (see above).

Sections [PGM Files], [QNT Files]

The sections define from where to copy the PGM and the QNT Files. Entries in this section take priority over a template directory. Entries have the following syntax:

\[ name = path \]

On the left side of the equals sign, the file name is located, and on its right side the complete path of the template.

Section [DEFAULTS]

This section defines default values for various sample variables. **Name**=, **Comment**=, **Pos**=, **Type**=Unknown, **Status**=Single, **Sample Weight**=1.0, **Dilution Factor**=1.0, **ISTD Amount**=, **Std. Add. Group**=, **Ref. Amount Set**=, and **Injection Volume**=20.0 have the same meaning as in the Browser. The corresponding value range is also identical.

Note: The default values for the PGM and the QNT Files are defined in the section [FILE NAMES].

Section [SEQUENCE]

This section defines the properties of the sequence.

**Title** = Created from worklist <Name of Worklist> determines the name (description) of the sequence.

**Timebase** = determines the timebase on which the sequence is executed.

**Report** = determines the default value for the report template (appears in the print dialog)

**Channel** = determines the default value for the channel when printing (appears in the print dialog)
Section \([n]\) (Sample Data Records)

Each sample is described by one section. The section must have the name \([n]\), where \(n\) is the sample number (without leading zero). The samples must be numbered consecutively. With a new sequence, sample numbering must start with 1. Samples can be appended to existing sequences. In this case, sample numbering must start with the next free sample number in the sequence (as number of samples in the sequence plus one). A sample section can have the entries \(\text{PGM}=\), \(\text{QNT}=\), \(\text{Name}=\), \(\text{Comment}=\), \(\text{Sample ID}=\), \(\text{Replicate ID}=\), \(\text{Pos}=\), \(\text{Type}=\text{Unknown/Blank/Validation/Standard/Matrix/Spiked/Unspiked},\) \(\text{Status}=\text{Single/Multiple/Finished/Interrupted},\) \(\text{Sample Weight}=1.0,\) \(\text{Dilution Factor}=1.0\) and \(\text{Injection Volume}=20.0\). Missing entries are completed by the defaults in the sections [DEFAULTS] and [FILE NAMES].

**Tip:**

In the worklist, omit the asterisk (*) that marks User-defined Columns in the Browser.

**Workspace**

The area between the menu bar or Toolbar and the Status Bar is called the Workspace. The Workspace displays the open windows. The Workspace allows you to open a specific set of windows. Normally, this is the most recently used view.

Select Autosave Workspace on the Workspace menu to open the most recently used workspace whenever you start Chromeleon, for example, two Control Panels showing the status of two different chromatography systems.

Of course, it is also possible to save or open any workspace view with a separate name. Chromeleon stores this information in WSP files. Use this option to save a workspace view for system control, a view for data processing, a view for peak purity analysis, etc.

If you want to save the settings of an individual window (for example, the on-screen report and the Printer Layout) without changing the workspace, you can use a Report Definition File (RDF). The appearance of the control panel is saved in the corresponding PAN file.

Combine single files with a workspace to create a customized representation of the screen. For more information, refer to Basic Operation User Profiles (Workspaces).
Xcalibur

Xcalibur (= XC) is the software data system of the Thermo Finnigan Corporation. You must install Xcalibur software to control a Thermo Finnigan Mass Spectrometer with Chromeleon and to view mass spectra. Two XC setup programs are provided on the software installation CD. For installation details, refer to How to ...: Installing and Configuring Mass Spectrometers Installing MS Components in the Administrator Help section.

To install the aQa mass spectrometer and to read aQa method files, install Xcalibur Rev. 1.2 on your PC.

To install the MSQ spectrometer, install Xcalibur Rev. 1.3.

Because Xcalibur software cannot control several mass spectrometers from one PC, a separate server PC is required for each mass spectrometer.

Xcalibur software allows you to define mass spectrometer programs in a PGM File. You can create the control file in Chromeleon, using the Xcalibur Editor. (For more information, refer to How to ...: Using Mass Spectrometers Creating a PGM File for the aQa MS and Creating a PGM File for the MSQ.)

Year 2000 Conformity

According to the document PD2000-1:1998, which was published by the British Standards Institution (BSI), "year 2000 conformity shall mean that neither performance nor functionality is affected by dates prior to, during, and after the year 2000."

In particular, this means that the following rules are adhered to:

1. General Integrity: No value for current date will cause any interruption in operation.

2. Data Integrity: Date-based functionality must behave consistently for dates before, during, and after year 2000.

3. Explicit/Implicit Indication of the Century: In all interfaces and data storage, the century in any date must be specified either explicitly or by unambiguous algorithms or inferencing rules.

4. Leap Year: Contrary to the year 1900, the year 2000 must be recognized as a leap year. (According to the Gregorian Calendar, the year 1900 was not a leap year.)
Chromeleon 4.20 and higher fulfill the BSI rules mentioned above. The Dionex hardware fulfills the BSI rules in the same way. Two instruments of the previous generation that are no longer available (M480 pump and GINA 160 Autosampler) display the year 2000 as 1900. This, however, does not affect the functionality.

Please do not hesitate to contact Dionex Service for the corresponding Year 2000 Certificate.

### Zoom

Draw a frame around a section of a signal plot or a 3D field that you wish to zoom while holding down the left mouse button. To undo the last zoom operation, select Unzoom on the context menu. Select Full size to return to the original display (100% representation).

**Tips:**

On the online signal plot, an Overview Window is displayed in the upper right corner in addition to the enlarged section.

While you draw a zoom frame, you can cancel the operation by pressing <ESC> key or by right-clicking. Use this function to prevent a window, such as a 3D plot, from being redrawn if you have selected the wrong frame.
Index

% Amount ......................................... 560
% Concentration................................ 561
%A %B %C %D_Lever ............................ 1301
%A %B %C %D_RemainTime...................... 1302
%A %B %C %D_WarningLimit.................. 1303
%B %C %D ....................................... 1298, A-3
%-Gradient ...................................... 1322, A-74, A-75
(Scan)End Wavelength.......................... 822
(Scan)Start Wavelength........................ 822
μ-ECD (6890/6850) .............................. 924
1/Amount ......................................... 413, 1381, A-29
1/Amount² ......................................... 1381, A-29
1/Response......................................... 413

1100 HPLC System
  Autosampler ..................................... 849, 852
  Column Compartment ........................... 856
  Commands ....................................... 844 - 869
  Derivatization Program ...................... 875
  Diagnostic Functions .......................... 884 - 895
  Fluorescence Detector ........................ 863, 876 - 880
  General .......................................... 846
  GPIB Cards .................................... 1125
  Lamp Commands ................................ 880
  Liquid Level ................................... 882, 883
  Program Example ................................ 877
  Program Tips .................................... 872
  Properties ...................................... 844 - 870
  Pump ............................................. 846 - 849
  Scan Modes ..................................... 876
  Troubleshooting ................................ 896
  UV Detectors .................................... 857
  Wellplate Sampler .............................. 853, 854
1-Point Calibration .............................. 108
2487 UV Detector ................................ 1121
25-Pin Cable................................. A-114, A-122, A-144
2996 PDA .......................................... 1119
3D Amperometry ................................. 593
Analyzing Data .................................. 193
Chromatograms .................................. 599 - 605
Displaying Data ................................. 594
Integration Intervals ............................ 602, 603
I-t Plots ........................................... 601
Plot in Printer Layout ......................... 571
Plot Scale ....................................... 596
Raw Data View .................................... 594, 595
Window ............................................. 193, 194, 197
3D Data ............................................. 193, 194, 197, 532, 593 - 605
3D Field .......................................... A-3, A-4
  Bandwidth ...................................... 1309, A-19
  Peak Purity Analysis .......................... 525
  Photodiode Array Detector .................. A-142
  Signal ............................................. A-172
  Virtual Signal .................................. A-235
  Wavelength ..................................... 1373, A-238
3D Plot ......................................... 530, 571, 593 - 603, A-4
3D_Amp Channel .................................. A-3
6850 GC
  Application ...................................... 927
  Commands ....................................... 899 - 925
  Flow ............................................. 929, 930
  PGM File ....................................... 926
  Pressure ........................................ 929, 930
  Properties ...................................... 899 - 925
6890 GC
  Application ...................................... 926
  Commands ....................................... 899 - 925
  Flow ............................................. 929
  PGM File ....................................... 926
  Pressure ........................................ 929
  Properties ...................................... 899 - 925
717plus ........................................... 1118
996 PDA .......................................... 1119
9-Pin Cable ....................................... A-114, A-122, A-144

A
A Group ........................................... A-5
A/D Converter .................................. A-191
Abort Batch ..................................... 1304
Abort Sample ................................. 1304
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbance Detector</td>
<td>813</td>
</tr>
<tr>
<td>AD20</td>
<td>813</td>
</tr>
<tr>
<td>AD25</td>
<td>813, 814</td>
</tr>
<tr>
<td>Commands/Specifications</td>
<td>813, 1183</td>
</tr>
<tr>
<td>Absorption</td>
<td>A-66, A-141</td>
</tr>
<tr>
<td>Access</td>
<td>A-100</td>
</tr>
<tr>
<td>Access Control</td>
<td>A-226</td>
</tr>
<tr>
<td>Access Group</td>
<td>A-5</td>
</tr>
<tr>
<td>Account</td>
<td>A-6</td>
</tr>
<tr>
<td>CmUser/CmSecure</td>
<td>A-226</td>
</tr>
<tr>
<td>Privilege</td>
<td>A-152, A-153</td>
</tr>
<tr>
<td>User Mode</td>
<td>A-227, A-228</td>
</tr>
<tr>
<td>Account</td>
<td>A-6</td>
</tr>
<tr>
<td>ACI</td>
<td>908</td>
</tr>
<tr>
<td>AcqOn/Off</td>
<td>1305</td>
</tr>
<tr>
<td>Acquisition On/Off</td>
<td>1305, 1307, A-6, A-17</td>
</tr>
<tr>
<td>Active Flow Splitter (MRA)</td>
<td>839</td>
</tr>
<tr>
<td>Commands</td>
<td>1104, 1106, 1110, 1114</td>
</tr>
<tr>
<td>Program Example</td>
<td>1409, A-175</td>
</tr>
<tr>
<td>Actual Time</td>
<td>1376, A-9</td>
</tr>
<tr>
<td>Check</td>
<td>377, 379, 380</td>
</tr>
<tr>
<td>Concentration</td>
<td>467, 468</td>
</tr>
<tr>
<td>Entering Amount Values</td>
<td>A-414</td>
</tr>
<tr>
<td>ISTD Amount</td>
<td>1275</td>
</tr>
<tr>
<td>Percentage</td>
<td>560, 561</td>
</tr>
<tr>
<td>Relative Amount</td>
<td>A-164</td>
</tr>
<tr>
<td>Amount Calculation</td>
<td>A-68, A-69</td>
</tr>
<tr>
<td>Amount Peak Variable</td>
<td>540</td>
</tr>
<tr>
<td>Evaluation (Standard Addition)</td>
<td>118</td>
</tr>
<tr>
<td>Evaluation (Standard Methods)</td>
<td>A-114</td>
</tr>
<tr>
<td>Formula</td>
<td>A-68, A-69</td>
</tr>
<tr>
<td>Integration</td>
<td>153</td>
</tr>
<tr>
<td>Amount Deviation</td>
<td>A-10</td>
</tr>
<tr>
<td>Amount Dimension</td>
<td>1351, A-53</td>
</tr>
<tr>
<td>Amount Percentage</td>
<td>560</td>
</tr>
<tr>
<td>Amount Table</td>
<td>A-148</td>
</tr>
<tr>
<td>Amperometry</td>
<td>193 - 197, 366 - 371, 593, A-43</td>
</tr>
<tr>
<td>Amperometry Window</td>
<td>193, 194, 197</td>
</tr>
<tr>
<td>Analog Measuring Values</td>
<td>81</td>
</tr>
<tr>
<td>Analog Output</td>
<td>823, A-72, A-103, A-124</td>
</tr>
<tr>
<td>Full-Scale</td>
<td>A-72</td>
</tr>
<tr>
<td>Mark</td>
<td>A-103</td>
</tr>
<tr>
<td>Offset Level</td>
<td>A-124</td>
</tr>
<tr>
<td>Scan (RF2000)</td>
<td>823</td>
</tr>
<tr>
<td>Term</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Autom. Re-Integrate</td>
<td>146, 397</td>
</tr>
<tr>
<td>Automated Run Completion</td>
<td>A-11</td>
</tr>
<tr>
<td>Automatic Creation</td>
<td>383</td>
</tr>
<tr>
<td>Automatic Re-Integration</td>
<td>146, 397</td>
</tr>
<tr>
<td>Automatic Tool</td>
<td>157</td>
</tr>
<tr>
<td>Automation</td>
<td>A-153</td>
</tr>
<tr>
<td>Autopurification</td>
<td>687, A-13</td>
</tr>
<tr>
<td>Chromatogram</td>
<td>706</td>
</tr>
<tr>
<td>Correction Parameters</td>
<td>693</td>
</tr>
<tr>
<td>Fraction</td>
<td>1266</td>
</tr>
<tr>
<td>General Parameters</td>
<td>690</td>
</tr>
<tr>
<td>ID</td>
<td>1267</td>
</tr>
<tr>
<td>Optimized MS Peak Detection</td>
<td>701</td>
</tr>
<tr>
<td>Overview</td>
<td>687</td>
</tr>
<tr>
<td>Parameters</td>
<td>658, 659</td>
</tr>
<tr>
<td>Performing</td>
<td>698, 701, 704</td>
</tr>
<tr>
<td>Post-Acquisition Steps</td>
<td>699, 701, 703</td>
</tr>
<tr>
<td>Program</td>
<td>690</td>
</tr>
<tr>
<td>Safety Parameters</td>
<td>692</td>
</tr>
<tr>
<td>Setting up</td>
<td>705</td>
</tr>
<tr>
<td>System Series</td>
<td>A-10</td>
</tr>
<tr>
<td>Tray View</td>
<td>169, 708</td>
</tr>
<tr>
<td>Trigger</td>
<td>1268</td>
</tr>
<tr>
<td>AutoQ</td>
<td>125, A-14</td>
</tr>
<tr>
<td>Auto-Recalibrate</td>
<td>143</td>
</tr>
<tr>
<td>Autorepeat Print Area</td>
<td>581, 583</td>
</tr>
<tr>
<td>Autosampler</td>
<td>A-15</td>
</tr>
<tr>
<td>Autoscale</td>
<td>A-13, A-16</td>
</tr>
<tr>
<td>Autosampler Commands</td>
<td>A-15</td>
</tr>
<tr>
<td>AS</td>
<td>770</td>
</tr>
<tr>
<td>AS Commands</td>
<td>1151, A-83, A-100</td>
</tr>
<tr>
<td>AS Sample Preparation</td>
<td>A-48, A-71</td>
</tr>
<tr>
<td>AS5</td>
<td>770</td>
</tr>
<tr>
<td>AS50</td>
<td>1151</td>
</tr>
<tr>
<td>AS50 Commands</td>
<td>770 - 773, 1151 - 1156</td>
</tr>
<tr>
<td>AS50 Sample Preparation</td>
<td>A-48, A-71</td>
</tr>
<tr>
<td>ASI-100 Series</td>
<td>766</td>
</tr>
<tr>
<td>Commands</td>
<td>1144 - 1170</td>
</tr>
<tr>
<td>Control</td>
<td>1143</td>
</tr>
<tr>
<td>Dionex</td>
<td>765</td>
</tr>
<tr>
<td>Draw</td>
<td>1318, A-55</td>
</tr>
<tr>
<td>Duration</td>
<td>A-57</td>
</tr>
<tr>
<td>FAMOS</td>
<td>783, 787, 1161</td>
</tr>
<tr>
<td>Fisons</td>
<td>948, 949</td>
</tr>
<tr>
<td>GINA 50</td>
<td>789</td>
</tr>
<tr>
<td>Hitachi</td>
<td>962, 966</td>
</tr>
<tr>
<td>Initialize</td>
<td>1353</td>
</tr>
<tr>
<td>Inject</td>
<td>1327</td>
</tr>
<tr>
<td>Injecting a Sample</td>
<td>1165</td>
</tr>
<tr>
<td>Load/Inject Process</td>
<td>A-16</td>
</tr>
<tr>
<td>Merck Hitachi</td>
<td>962, 966</td>
</tr>
<tr>
<td>Mix</td>
<td>1339</td>
</tr>
<tr>
<td>Ready</td>
<td>1347, A-160</td>
</tr>
<tr>
<td>Suck</td>
<td>1318, A-55</td>
</tr>
<tr>
<td>Sucked</td>
<td>A-160</td>
</tr>
<tr>
<td>Thermo Finnigan</td>
<td>1045</td>
</tr>
<tr>
<td>TSP</td>
<td>1045, 1046, 1057</td>
</tr>
<tr>
<td>Waters</td>
<td>1118</td>
</tr>
<tr>
<td>WPS-3000</td>
<td>774, 781, 1157</td>
</tr>
<tr>
<td>Autosampler Control</td>
<td>765, 1143, 1182</td>
</tr>
<tr>
<td>AS</td>
<td>770 - 773, 1151 - 1156</td>
</tr>
<tr>
<td>AS5</td>
<td>770 - 773, 1151 - 1156</td>
</tr>
<tr>
<td>ASI-100 Series</td>
<td>766, 769, 1147, 1170</td>
</tr>
<tr>
<td>Commands</td>
<td>1144 - 1170</td>
</tr>
<tr>
<td>FAMOS</td>
<td>783 - 788, 1161 - 1164</td>
</tr>
<tr>
<td>GINA 50</td>
<td>789, 1144 - 1146</td>
</tr>
<tr>
<td>Remote Injection</td>
<td>1167</td>
</tr>
<tr>
<td>Sample Injection</td>
<td>1165</td>
</tr>
<tr>
<td>Simultaneous Injection</td>
<td>1177</td>
</tr>
<tr>
<td>WPS-3000</td>
<td>774 - 782, 1157 - 1161</td>
</tr>
<tr>
<td>Autosystem (XL) GC</td>
<td>A-13, A-16</td>
</tr>
<tr>
<td>Split Valve Control</td>
<td>981</td>
</tr>
<tr>
<td>Syringe Type</td>
<td>980</td>
</tr>
<tr>
<td>Autosystem GC</td>
<td>969</td>
</tr>
<tr>
<td>Column</td>
<td>975</td>
</tr>
<tr>
<td>Commands/Properties</td>
<td>970</td>
</tr>
<tr>
<td>Detectors</td>
<td>978</td>
</tr>
<tr>
<td>Inlet</td>
<td>973, 974</td>
</tr>
<tr>
<td>Pressure/Flow Ramps</td>
<td>982</td>
</tr>
<tr>
<td>Sampler</td>
<td>972</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>984</td>
</tr>
<tr>
<td>Autozero</td>
<td>1307, A-17</td>
</tr>
<tr>
<td>Auxiliaries (6890/6850 GCs)</td>
<td>925</td>
</tr>
<tr>
<td>Average</td>
<td>1204, 1308, A-17</td>
</tr>
<tr>
<td>Averaged Baseline</td>
<td>485, A-17</td>
</tr>
</tbody>
</table>
Averaging..............................1308, A-17
Bunch Width ..........................1312, A-26
Calibration Points .................413, 414
Mass Spectra .........................640
UV Spectra ......................509
Axis Decoration .................1185

A

Back .................................................... 37
Background ...........................499, A-116
Move to ....................................A-116
Subtract Background Spectra .....499
Background Subtraction ..........499, 509
MS......................... 499, 500, 509
UV Spectra ...........................499, 500, 509
Backup ......................................85, A-18
Create .......................................221
Data Export ................................84
Restore ......................................225, 226
Bandwidth .......1309, 1348, A-19, A-162
Base Peak .................A-23, A-106
Base Width .................. A-240
Baseline ..................................A-19
Autozero.................. 1307
Averaged .................485, 486, A-17
Blank Run Sample ..........A-25
Jump .................................1307
Lock ...............................1428, 1429, A-99
Modify .........................402, 403, 482
Baseline Contact .............1416, A-222
Baseline Correction ..........A-19, A-21
Baseline Curvature ......... 1444, A-138
Baseline Point .................405, 1424, A-23
Baseline Tool .................. 482
Baseline Value (Peak Start/End) ....A-23
Basic Points (Gradient) ....1133, 1226
Batch .................................A-24
AbortBatch.................. 1304
Automatic Processing .......... 100
Create ..............................293
Inject .................... 1327, 1328
Printing ......................... 47, 48, 576, 579
Reporting ......................... 579
Start ..................... 293
Batch Setup .....................574
BCD ............................................A-24

B

Binary Code .......................A-24
Bio-Tek ..................................... 958
Blank ..................................A-109
Blank Run Sample ..........A-25
Matrix Blank Sample ..........A-109
Sample Type ................ 1290, A-183
Subtract ....................... 408
Blank Run Subtraction ..........A-25
BM, BMB ...................1416, A-222
Boxcar .............................160
Bracketed ............... 461
Calculation ..................... 417
Calibration Mode ........ 461, 1378, A-28
External Calibration .......461, 462
Branch ..................... 1310, A-26
Browser ............................74, A-26
Actions ......................... 203
Compared to Windows Explorer .... 75
Frequently Asked Questions 253, 533
Function ........................ 77
BunchWidth ...................... 1312
Bunching ....................... 509, 640
Mass Spectra ................. 640
UV Spectra ...........................509, 510
BW .............................A-240
Bypass Mode .....................A-26
Options .......................... 321
Program Example ............. 340

C

c0 (Calibration Variable) ... A-27, A-124
c1 (Calibration Variable) ... A-27, A-198
c2 (Calibration Variable) ... A-27, A-43
c3 (Calibration Variable) ........ A-42
Cable
  Modem Cables ..........A-114, A-115
  Null Modem Cables .......... A-123
  Cal. Type ................. 411
  Calculation ................. 113, 328, 343, 344, 540
  Amount ...................... 540, 541
  Calibration Curve ........ 113
  Retention Time Difference ... 564
  Calibrating ............. 105, 409
  AS ....................... 367, 368
  AS50 .......................... 367, 368
  Conductivity Cell .......... 361 - 365
Degas Pump ........................................ 359
ICS-1000/1500/2000 .................. 357 - 365
ICS-3000 ........................................ 365
ICS-90 ........................................ 358, 362
Leak Detector .................................. 356
pH Electrode .................................. 366, 367
Pressure Transducer Offset ........... 358
Pump Flow Rate.......................... 356, 357
Restoring Data ................................. 353
System Wellness .......................... 131, 133, 352
Uploading Data ......................... 354
Viewing Data .................................. 353
Wavelength .................................. 360
Calibration ................................. 105, 409, 417
Amount Calculation ................. A-68, A-69
Calculation ................................. 113, 434 - 446
Curve ............................................ 112
Modes ........................................ 423 - 428, 451 - 465
Check ........................................ 472, 473
Device ....................................... 131, 132, 133, 352
Evaluation ................................. 114 - 119, 179
Examples .................................. 423, 425, 429
External ....................................... 113, 114
Extinction Coefficient ................. 429, 430
Implementation ............................ 120
Information .................................. 469
Internal ....................................... 113, 114, 431, 432
Internal/External .............................. 113, 439, 440, 441
Inverted ....................................... 474, 475
Inverting Variables ....................... 473
Multiple-Point Calibration ............. A-197
Old Standards .................................. 423
Principle ....................................... 106
Report ......................................... 174, 175
Report Variables .............................. 1473
Sample ........................................ 416
Single-Point Calibration ............... A-197
Spectra ........................................ A-238
Standard Addition ......................... 425
Standard Methods .......................... 114
System Wellness ............................. 131, 133
Unstable Substances ....................... 428
UV Detector ................................... A-228
Validating the Curve ..................... 472
Validation Sample ......................... 467, 468
Variable ISTD ................................. 447
Wavelength ................................ A-229, A-230, A-238
Weighting and Averaging .............. 413
Without Pure Substance ................ 429
Without Standard Sample .............. 448
Calibration Coefficients ............... A-27
Calibration Curve ......................... 179
Actions ........................................ 469
Calculation .................................. 113
Confidence Interval, A-38, A-39
Display ........................................ 469
Display Values ............................... 470
Inverted ....................................... 473
Inverting Variables ....................... 473
Use ............................................. 111
Validating the Curve ..................... 472
Calibration Data ......................... 353, 354
Calibration Details ....................... 353, 354
Calibration Examples .................... 417, 418
1 Standard and 1 Substance .......... 418
Multi-Point Calibration .................. 422
No Pure Substance Available ......... 429
Several Standards/Substances ....... 420
Standard Addition ......................... 426, 428
Standards of an Old Sequence ....... 423
Unstable Substances ....................... 428
Standards of an Old Sequence ....... 423
Calibration Function ..................... A-27
Calibration Information ................. 417
Amount Calculation ..................... A-68, A-69
Calibration Type ......................... 1381
Calibration Level ........................ A-28
Calibration Mode ......................... 1378, A-28
Additional .................................. 456
Bracketed ................................... 429, 461
External Calibration ..................... 451
Fixed ............................................. 465
General ......................................... 143
Group ........................................... 459
Total ............................................. 452
Calibration Overview ..................... 105, 417
Calibration Plot ............................ 469
Calibration Curve ......................... 180, 469
Display Values ............................... 470
Averaging .................................. 414
Coefficients ................................ A-28
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>A-124</td>
</tr>
<tr>
<td>Function</td>
<td>A-28</td>
</tr>
<tr>
<td>Multiple-Point Calibration</td>
<td>A-197</td>
</tr>
<tr>
<td>Number</td>
<td>A-124</td>
</tr>
<tr>
<td>Principle</td>
<td>106</td>
</tr>
<tr>
<td>Single Point Calibration</td>
<td>A-197</td>
</tr>
<tr>
<td>Weighting</td>
<td>413, 414</td>
</tr>
<tr>
<td>Calibration Report</td>
<td>174</td>
</tr>
<tr>
<td>Calibration Sample</td>
<td>416</td>
</tr>
<tr>
<td>Calibration Settings</td>
<td>151</td>
</tr>
<tr>
<td>Calibration Type</td>
<td>A-27</td>
</tr>
<tr>
<td>Linear</td>
<td>108, 109</td>
</tr>
<tr>
<td>Non-linear</td>
<td>109</td>
</tr>
<tr>
<td>Peak Table Parameters</td>
<td>1381, A-29</td>
</tr>
<tr>
<td>QNT Editor</td>
<td>411</td>
</tr>
<tr>
<td>Calibration Variable</td>
<td>A-29, A-34</td>
</tr>
<tr>
<td>Coefficient of Determination</td>
<td>A-34</td>
</tr>
<tr>
<td>Correlation Coefficient</td>
<td>A-41, A-42</td>
</tr>
<tr>
<td>Cubic Coefficient (c3)</td>
<td>A-42</td>
</tr>
<tr>
<td>Curve (c2)</td>
<td>A-43</td>
</tr>
<tr>
<td>Disabled Calibration Points</td>
<td>A-124</td>
</tr>
<tr>
<td>DOF-Adjusted Coefficient</td>
<td>A-54</td>
</tr>
<tr>
<td>Number of Calibration Points</td>
<td>A-124</td>
</tr>
<tr>
<td>Offset (c0)</td>
<td>A-124</td>
</tr>
<tr>
<td>Overview</td>
<td>A-29</td>
</tr>
<tr>
<td>Relative Standard Deviation</td>
<td>A-167</td>
</tr>
<tr>
<td>RF Value (Amount/Area)</td>
<td>A-177</td>
</tr>
<tr>
<td>Slope (c1)</td>
<td>A-198</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>A-206</td>
</tr>
<tr>
<td>Variance</td>
<td>A-232, A-233</td>
</tr>
<tr>
<td>Variance Coefficient</td>
<td>A-233</td>
</tr>
<tr>
<td>Weights</td>
<td>A-239</td>
</tr>
<tr>
<td>Caliper</td>
<td>501</td>
</tr>
<tr>
<td>Capacity Factor</td>
<td>A-30</td>
</tr>
<tr>
<td>Cartridge</td>
<td>1221</td>
</tr>
<tr>
<td>Cascade</td>
<td>A-30</td>
</tr>
<tr>
<td>Category (Report Variables)</td>
<td>1457</td>
</tr>
<tr>
<td>Cation</td>
<td>1205 - 1213</td>
</tr>
<tr>
<td>CC80</td>
<td>1238 - 1244</td>
</tr>
<tr>
<td>CC81</td>
<td>1241</td>
</tr>
<tr>
<td>CC82</td>
<td>1242</td>
</tr>
<tr>
<td>CC83</td>
<td>1243</td>
</tr>
<tr>
<td>CC84</td>
<td>1244</td>
</tr>
<tr>
<td>CD</td>
<td>827</td>
</tr>
<tr>
<td>CD20</td>
<td>361, 824, 1183, 1205 - 1213</td>
</tr>
<tr>
<td>CD25/25A</td>
<td>361, 824, 1205 - 1213</td>
</tr>
<tr>
<td>Cell Calibration</td>
<td>361 - 365</td>
</tr>
<tr>
<td>Cell Test</td>
<td>893</td>
</tr>
<tr>
<td>Centroid</td>
<td>A-106</td>
</tr>
<tr>
<td>Century Compliance</td>
<td>A-249</td>
</tr>
<tr>
<td>Changing</td>
<td>A-19</td>
</tr>
<tr>
<td>Manipulations</td>
<td>A-103</td>
</tr>
<tr>
<td>Peak Type</td>
<td>485</td>
</tr>
<tr>
<td>Channel</td>
<td>A-31, A-162, A-193</td>
</tr>
<tr>
<td>Arithmetic Operations</td>
<td>162, 497</td>
</tr>
<tr>
<td>Combine</td>
<td>162, 497, 498</td>
</tr>
<tr>
<td>Copy</td>
<td>496</td>
</tr>
<tr>
<td>Processing UV Channels</td>
<td>509</td>
</tr>
<tr>
<td>Repeat Output</td>
<td>581, 583</td>
</tr>
<tr>
<td>Channel Combination</td>
<td>162, 497</td>
</tr>
<tr>
<td>Channel Comparison</td>
<td>488</td>
</tr>
<tr>
<td>Channel Driver</td>
<td>A-233</td>
</tr>
<tr>
<td>Chart</td>
<td>587</td>
</tr>
<tr>
<td>Chart Creation (Printer Layout)</td>
<td>587</td>
</tr>
<tr>
<td>Check</td>
<td>A-161</td>
</tr>
<tr>
<td>Check Commands</td>
<td>A-31</td>
</tr>
<tr>
<td>Check Derivative</td>
<td>1386</td>
</tr>
<tr>
<td>Check Extrema</td>
<td>1387</td>
</tr>
<tr>
<td>Check Functions</td>
<td>A-31</td>
</tr>
<tr>
<td>CheckWavelength</td>
<td>808, 811</td>
</tr>
<tr>
<td>Chemiluminescence</td>
<td>A-32</td>
</tr>
<tr>
<td>ChemStation</td>
<td>273</td>
</tr>
<tr>
<td>Batch</td>
<td>276, 277</td>
</tr>
<tr>
<td>Method</td>
<td>279, 280</td>
</tr>
<tr>
<td>Sample</td>
<td>278</td>
</tr>
<tr>
<td>Sequence</td>
<td>276, 277</td>
</tr>
<tr>
<td>Spectra Library</td>
<td>280</td>
</tr>
<tr>
<td>Translation Tables</td>
<td>276</td>
</tr>
<tr>
<td>Child Windows</td>
<td>304</td>
</tr>
<tr>
<td>Chromatogram</td>
<td>477</td>
</tr>
<tr>
<td>3D Amperometry</td>
<td>599</td>
</tr>
<tr>
<td>Autopurification</td>
<td>707</td>
</tr>
<tr>
<td>Comparison</td>
<td>158, 159, 488</td>
</tr>
<tr>
<td>Defining Detection Parameters</td>
<td>504</td>
</tr>
<tr>
<td>Display Peak Information</td>
<td>501</td>
</tr>
<tr>
<td>Export</td>
<td>605</td>
</tr>
<tr>
<td>Command/Property</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Extract</td>
<td>532, 603, 604</td>
</tr>
<tr>
<td>Fractions</td>
<td>682, 683</td>
</tr>
<tr>
<td>Hot Keys</td>
<td>478</td>
</tr>
<tr>
<td>Insert</td>
<td>571</td>
</tr>
<tr>
<td>Manipulations</td>
<td>A-103</td>
</tr>
<tr>
<td>Manual Re-Integration</td>
<td>480</td>
</tr>
<tr>
<td>Overlay</td>
<td>A-130</td>
</tr>
<tr>
<td>Peak Calipers</td>
<td>501</td>
</tr>
<tr>
<td>Report Variables</td>
<td>1468</td>
</tr>
<tr>
<td>Retention Window</td>
<td>502, 503</td>
</tr>
<tr>
<td>Simulating</td>
<td>709</td>
</tr>
<tr>
<td>Smoothing</td>
<td>A-198</td>
</tr>
<tr>
<td>Subtract Background Spectra</td>
<td>499</td>
</tr>
<tr>
<td>Work with</td>
<td>477</td>
</tr>
<tr>
<td>Chromatogram Comparison</td>
<td>158, 488</td>
</tr>
<tr>
<td>Arrangement</td>
<td>490</td>
</tr>
<tr>
<td>Display Several Chromatograms</td>
<td>490</td>
</tr>
<tr>
<td>Mirror Chromatograms</td>
<td>491</td>
</tr>
<tr>
<td>Normalize Chromatograms</td>
<td>492</td>
</tr>
<tr>
<td>Overlay</td>
<td>A-130</td>
</tr>
<tr>
<td>Print Chromatograms</td>
<td>493</td>
</tr>
<tr>
<td>Select Channel</td>
<td>488</td>
</tr>
<tr>
<td>Select Samples</td>
<td>488</td>
</tr>
<tr>
<td>Chromatogram Decoration</td>
<td>571</td>
</tr>
<tr>
<td>Chromatogram Overlay</td>
<td>1185, A-130</td>
</tr>
<tr>
<td>Chromatogram Plot (PPI)</td>
<td>526</td>
</tr>
<tr>
<td>Chromatographic Methods</td>
<td>A-33</td>
</tr>
<tr>
<td>Chromatography Instruments</td>
<td>24</td>
</tr>
<tr>
<td>Chromatography Server</td>
<td>28, A-189</td>
</tr>
<tr>
<td>Chromatography System</td>
<td>23, 281, A-198</td>
</tr>
<tr>
<td>Chromeleon</td>
<td>10, 12, 21</td>
</tr>
<tr>
<td>APS Devices</td>
<td>A-10</td>
</tr>
<tr>
<td>AutoQ</td>
<td>125, 126, 127</td>
</tr>
<tr>
<td>Client User Interface</td>
<td>39</td>
</tr>
<tr>
<td>Features</td>
<td>12, 13</td>
</tr>
<tr>
<td>Installation</td>
<td>21</td>
</tr>
<tr>
<td>License Server</td>
<td>A-96</td>
</tr>
<tr>
<td>License Types</td>
<td>13</td>
</tr>
<tr>
<td>Operational Qualification</td>
<td>127, 128</td>
</tr>
<tr>
<td>Overview</td>
<td>9</td>
</tr>
<tr>
<td>Performance Qualification</td>
<td>127 - 130</td>
</tr>
<tr>
<td>Program Start</td>
<td>38</td>
</tr>
<tr>
<td>Server Monitor Program</td>
<td>A-191</td>
</tr>
<tr>
<td>Summit Devices</td>
<td>A-208</td>
</tr>
<tr>
<td>Summit x2 Devices</td>
<td>A-209</td>
</tr>
<tr>
<td>System Requirements</td>
<td>27</td>
</tr>
<tr>
<td>UltiMate 3000 Devices</td>
<td>A-223</td>
</tr>
<tr>
<td>Chromeleon Xpress</td>
<td>A-33</td>
</tr>
<tr>
<td>CIS3</td>
<td>909</td>
</tr>
<tr>
<td>CIS4</td>
<td>909</td>
</tr>
<tr>
<td>Clarus 500</td>
<td>969</td>
</tr>
<tr>
<td>Column</td>
<td>975, 976</td>
</tr>
<tr>
<td>Commands/Properties</td>
<td>970</td>
</tr>
<tr>
<td>Detectors</td>
<td>978</td>
</tr>
<tr>
<td>Inlet</td>
<td>973</td>
</tr>
<tr>
<td>Pressure/Flow Ramps</td>
<td>982</td>
</tr>
<tr>
<td>Sampler</td>
<td>972</td>
</tr>
<tr>
<td>Split Valve Control</td>
<td>981</td>
</tr>
<tr>
<td>Syringe Type</td>
<td>980</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>984</td>
</tr>
<tr>
<td>Class 1 License</td>
<td>17</td>
</tr>
<tr>
<td>Class 2 License</td>
<td>18</td>
</tr>
<tr>
<td>Class 3 License</td>
<td>20</td>
</tr>
<tr>
<td>Client (LDAP Logon)</td>
<td>A-100</td>
</tr>
<tr>
<td>Client User Interface</td>
<td>39</td>
</tr>
<tr>
<td>Client/Server</td>
<td>28, 30</td>
</tr>
<tr>
<td>CMB File</td>
<td>84</td>
</tr>
<tr>
<td>CmSecure</td>
<td>A-226</td>
</tr>
<tr>
<td>CMSERVER.CFG</td>
<td>A-190</td>
</tr>
<tr>
<td>CmUser Logon</td>
<td>A-100, A-134</td>
</tr>
<tr>
<td>CmUser Logon</td>
<td>A-226</td>
</tr>
<tr>
<td>Appearance (Sequence)</td>
<td>215</td>
</tr>
<tr>
<td>Column</td>
<td>207, 392, A-225</td>
</tr>
<tr>
<td>Coefficient of Determination</td>
<td>A-34</td>
</tr>
<tr>
<td>Column/Report (Sequence)</td>
<td>912</td>
</tr>
<tr>
<td>HP 6890/6850</td>
<td>912</td>
</tr>
<tr>
<td>User-defined</td>
<td>207 - 210, A-225</td>
</tr>
<tr>
<td>Column Compartment</td>
<td>790</td>
</tr>
<tr>
<td>FLM</td>
<td>797, 801, 803</td>
</tr>
<tr>
<td>TC</td>
<td>791, 794</td>
</tr>
<tr>
<td>Temperature</td>
<td>1235, 1236, 1360, A-36</td>
</tr>
<tr>
<td>Column ID</td>
<td>794, 801</td>
</tr>
<tr>
<td>Column Identification</td>
<td>794, 801</td>
</tr>
<tr>
<td>Column Mode (DX-120)</td>
<td>A-35</td>
</tr>
<tr>
<td>Column Oven</td>
<td>790, 837</td>
</tr>
<tr>
<td>Column Temperature</td>
<td>A-36</td>
</tr>
<tr>
<td>Temp. Control</td>
<td>1235, 1236, 1360</td>
</tr>
<tr>
<td>Column Quality</td>
<td>A-12, A-197, A-215</td>
</tr>
<tr>
<td>Column Quality Assurance</td>
<td>724</td>
</tr>
<tr>
<td>Column Temperature</td>
<td>1235, 1360, A-36</td>
</tr>
<tr>
<td>Column Temperature Control</td>
<td>1235</td>
</tr>
</tbody>
</table>

**I-8 Index**

**Extract**.......................... 532, 603, 604
**Fractions**............................... 682, 683
**Hot Keys** ...................................... 478
**Insert**............................................. 571
**Manipulations**........................... A-103
**Manual Re-Integration** ............... 480
**Overlay**.....................................A-130
**Peak Calipers**................................ 501
**Report Variables**...................... 1468
**Retention Window**.........502, 503
**Simulating**................................... 709
**Smoothing**.....................................A-198
**Subtract Background Spectra**....... 499
**Work with**..................................... 477
**Chromatogram Comparison** ....... 158, 488
**Arrangement**................................. 490
**Display Several Chromatograms**... 490
**Mirror Chromatograms**.............. 491
**Normalize Chromatograms**......... 492
**Overlay**.....................................A-130
**Print Chromatograms**................ 493
**Select Channel**......................... 488
**Select Samples**......................... 488
**Chromatogram Decoration**.......... 571
**Chromatogram Overlay** 1185, A-130
**Chromatogram Plot (PPI)**......... 526
**Chromatographic Methods**........... A-33
**Chromatography Instruments**....... 24
**Chromatography Server**.......28, A-189
**Chromatography System** 23, 281, A-198
**Chromeleon**.............................10, 12, 21
**APS Devices**.............................. A-10
**AutoQ**.......................... 125, 126, 127
**Client User Interface**.............. 39
**Features**................................. 12, 13
**Installation**.............................. 21
**License Server**......................... A-96
**License Types**............................. 13
**Operational Qualification**...... 127, 128
**Overview**................................. 9
**Performance Qualification**...... 127 - 130
**Program Start**........................... 38
**Server Monitor Program**........... A-191
**Summit Devices**....................... A-208
**Summit x2 Devices**............... A-209
**System Requirements**............. 27
**UltiMate 3000 Devices** .......... A-223
Index

Column Thermostat........................... 790
Column Temp. 1235, 1360, A-36
FLM 797, 801, 803
TCC 791, 794
Combine (Channels) 162, 497
Command 58, 62, 1295, 1296, 1297
Acquisition On/Off 1305, A-6
AutoSampler 765, 1144 - 1170, 1297
Component Controller 1238 - 1244
Control Commands 1295
Delay 1314
Detector 807, 1183, 1297
Dionex 737
Enter 325, 326, 327
Flow 1129
Flow Sensor 748
General 734, 1295
Hold 1326, A-81
Inject 1327
Injection A-82
Ion Chromatography Systems 830
Log 324
Message 1337, A-113
Mixed Commands 1255
PGM Editor 326, 327
Protocol 324
Protocol Command 1346, A-153
Pump 738 - 749, 1129, 1296
Relay Commands 1256
Sample and Fraction Mgr 752 - 760
Signal Slope 1315
System 733, 734, 1296
Trigger 1251, 1362, 1366, A-220
TTL 1256
Undo / Redo 37
Virtual Channel 1246
Command Button (Link a Control) 302
Commands and Tips 969
Commands View 58
Comment 1270, 1388, A-36
Compare 158
Chromatogram Overlay A-130
Chromatograms 158 - 160, 488 - 493
Spectra 514, 515
Comparison 158, 488
Display Several Chromatograms 490
Mirror Chromatograms 491
Normalize Chromatograms 492
Print Chromatograms 493
Select Channel 488
Component Controller 1238 - 1244
Components (Solvent) 1298 - 1302, A-3
Composition (Solvent) 1298 - 1302, A-3
Compressibility 1139, 1325, 1334
Compression 88
Computer 27
Concentration A-37
Eluent Generator 1219, 1221, A-59
Enter 467
Percentage 561, 563
Concentration Percentage 561
Concurrent Clients 13
Condition 1361, A-149, A-220
Conditional Instrument Control 371
Conductivity Detection 361 - 370, 1205 - 1213, A-215
Conductivity Detector 807, 827
Confidence Interval A-38
Calibration Curve Validation 472
Indicating 471
Setting Variables 550
Confidence Limit 472
Conformity (Y2K) A-249
Connect to Timebase 291
Connect 1313, A-39
Connected 1258
Connection 1258
Connectivity A-124
Consumable 315
Contents (Online Help) A-40
Context Menu A-179
Context-Sensitive Help A-63
Continue (Flow) 1314, A-40
Control A-40
Align A-9
Commands (Overview) 1295
Control Frame A-40
General Commands 1295
Linking to a Device 300
Modify 296, 297
Modify a Control Panel 296
Modifying Size and Position 296
Nice Size A-118
System Commands 1296
Crossover Cable ........................................ A-122
CRP Value ........................................ 1259
CR-TC .......................................................... A-42
CSRS-ULTRA ........................................ 1211
CTC Analytics ........................................ 933 - 945
Cubic Coefficient (c3) ....................... A-42
Curvature Threshold ......................... 1444, A-138
Curvature .................................................. A-27
Curve (c2) .................................................. A-43
Curve (Gradient) ................................ A-76
Curve Value ............................................... A-43
Cut & Paste ............................................... 218
Cut Segment Volume ......................... 770
CV Plot .......................................................... 571
Cycle Time ............................................... 770
Cyclic Voltammetry ......................... 607 - 610, 1202, A-43, A-236
Copying Plots ........................................ 610
Opening a CV Plot .............................. 607
Performing .................................................. 1202
Plot in Printer Layout ....................... 571
Viewing Data ........................................... 609
Working with CV Data ...................... 607

D

DAC Pump(s) ........................................ A-43
DAD .......................................................... A-142
Daily Audit Trail .......................................... 93
Daily Protocol ........................................ 93
Dark Current Test .................................. 892
Data .......................................................... 73, A-182, A-188
Sample Data ........................................... A-182
Sequence Data ........................................ A-188
Data Acquisition ......................... 81, 82, A-44
Demo Mode ........................................... A-50
Evaluation Mode ................................... A-61
Filter .......................................................... A-63
MCA Mode ................................................. A-112
On .............................................................. 1185
On/Off ................................................... 1305
Simulate ................................................. 306
Start ...................................................... 1185
Data Base ............................................... A-45
Data Storage ........................................ 83
Datasource ............................................. 77, 78, 79, 80, 81
User Database ......................................... A-224
Data Client .............................................. 13
Data Collection Rate ......................... A-44
Data Compression .............................. 88
Data Export ............................................. 84, 227, 229
Data Import .......................................... 257
Data Management ......................... 253, 533, 590
Data Representation ......................... 135
Data Reprocessing ......................... 135, 493, A-63, A-145
Data Security ....................................... 85, 221, A-18
Data Smoothing ................................... 160, 493, A-198
Data Storage ........................................ 83
Audit Trails ........................................ 93
Backup ..................................................... 85, A-18
Creating Backup Files .................. 221
Exporting Data .................................. 229
Exporting Sequence Data ................ 229
Power Failure ....................................... 91
Data Structure .................................. 77, A-26
Data System .............................................. 26
ChemStation ........................................... 273
Chromeleon ........................................... 12
General ................................................ 26
Installation ........................................... 21
Data Transfer ........................................ 227, A-126
Database ................................................ A-45
Data Storage ........................................ 83
Datasource ........................................... 77
User Database ......................................... A-224
Database Query Report .................... 548
Datasource ............................................. 77, A-45
Database .............................................. A-45, A-46
Handling ................................................. 217
Mount ..................................................... 220
Protect .................................................... A-218
Removable Media ................................ 220
Standard ........................................... A-205
Date .................................................. 1273, A-82, A-217
DC .......................................................... 837
Column Temperature Control ............ 1236
Commands ......................................... 837, 838, 839
DC Mode ................................................. A-47
DC Voltage .............................................. A-47
Dead Time ............................................. 1389, A-30, A-47
Dead Volume ........................................ A-48
DEC ......................................................... 30
Decimal Minute ................................... A-48
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decoration</td>
<td>571</td>
</tr>
<tr>
<td>Defines</td>
<td>397, 504</td>
</tr>
<tr>
<td>Detection Parameters</td>
<td>397, 504</td>
</tr>
<tr>
<td>Reactions to Events</td>
<td>668</td>
</tr>
<tr>
<td>Sample</td>
<td>96</td>
</tr>
<tr>
<td>System Suitability Test</td>
<td>371, 372</td>
</tr>
<tr>
<td>Degas Pump</td>
<td>359</td>
</tr>
<tr>
<td>Delay</td>
<td>770, 1314, 1561, A-48, A-220</td>
</tr>
<tr>
<td>Delay Time</td>
<td>1390, A-48</td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>661</td>
</tr>
<tr>
<td>QNT Method</td>
<td>392</td>
</tr>
<tr>
<td>Delimiter Tool</td>
<td>481</td>
</tr>
<tr>
<td>Delta</td>
<td>1315, A-49</td>
</tr>
<tr>
<td>Demo Data</td>
<td>306</td>
</tr>
<tr>
<td>Demo Mode</td>
<td>A-50</td>
</tr>
<tr>
<td>Derivative Check</td>
<td>1386</td>
</tr>
<tr>
<td>Derivatization Program</td>
<td>875</td>
</tr>
<tr>
<td>DerivStep</td>
<td>146, 1423</td>
</tr>
<tr>
<td>Definition</td>
<td>397, 504</td>
</tr>
<tr>
<td>Graphical Definition</td>
<td>504</td>
</tr>
<tr>
<td>Inhibit Integration</td>
<td>1427, A-82</td>
</tr>
<tr>
<td>Lock Baseline</td>
<td>1428, 1429, A-99</td>
</tr>
<tr>
<td>Max. Rider Ratio</td>
<td>1433, 1434, A-111</td>
</tr>
<tr>
<td>Maximum Width</td>
<td>1435, A-111</td>
</tr>
<tr>
<td>Minimum Area</td>
<td>1436, A-113</td>
</tr>
<tr>
<td>Minimum Height</td>
<td>1437, A-113</td>
</tr>
<tr>
<td>Minimum Width</td>
<td>1438, A-113</td>
</tr>
<tr>
<td>Negative Peaks</td>
<td>1425, 1426, A-50</td>
</tr>
<tr>
<td>Peak Group End</td>
<td>1440, A-134</td>
</tr>
<tr>
<td>Peak Group Start</td>
<td>1440, A-134</td>
</tr>
<tr>
<td>Peak Slice</td>
<td>1445, A-138</td>
</tr>
<tr>
<td>Report</td>
<td>548</td>
</tr>
<tr>
<td>Report Variables</td>
<td>1470</td>
</tr>
<tr>
<td>Rider Skimming</td>
<td>1446, A-179</td>
</tr>
<tr>
<td>Rider Threshold</td>
<td>1448, A-179</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>1451, 1452, A-187</td>
</tr>
<tr>
<td>Valley to Valley</td>
<td>1454, A-232</td>
</tr>
<tr>
<td>Void Volume Treatment</td>
<td>1455, 1456</td>
</tr>
<tr>
<td>Detector</td>
<td>807, 1208 - 1213</td>
</tr>
<tr>
<td>Shodex RI-Detectors</td>
<td>1032</td>
</tr>
<tr>
<td>Absorbance Detectors</td>
<td>813</td>
</tr>
<tr>
<td>Analog Output</td>
<td>A-72, A-103, A-124</td>
</tr>
<tr>
<td>Commands</td>
<td>807, 808, 1183, 1205 - 1213, 1297</td>
</tr>
<tr>
<td>Conductivity Detector</td>
<td>827</td>
</tr>
<tr>
<td>Control</td>
<td>1183</td>
</tr>
<tr>
<td>Dionex</td>
<td>807</td>
</tr>
<tr>
<td>Direct Control</td>
<td>807</td>
</tr>
<tr>
<td>Electrochemical Detectors</td>
<td>824, 828</td>
</tr>
<tr>
<td>FL2000</td>
<td>1065, 1067</td>
</tr>
<tr>
<td>Linear UV205</td>
<td>1055, 1057</td>
</tr>
<tr>
<td>Linear UV206</td>
<td>1056, 1057</td>
</tr>
<tr>
<td>PDA-100</td>
<td>811</td>
</tr>
<tr>
<td>Refractive Index Detector</td>
<td>1031</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>A-187</td>
</tr>
<tr>
<td>Serial</td>
<td>1390, A-48</td>
</tr>
<tr>
<td>Several Detectors</td>
<td>392</td>
</tr>
<tr>
<td>UltiMate</td>
<td>817</td>
</tr>
<tr>
<td>UV1000</td>
<td>1054, 1058</td>
</tr>
<tr>
<td>UV2000</td>
<td>1055, 1058</td>
</tr>
<tr>
<td>UV3000</td>
<td>1056, 1057</td>
</tr>
<tr>
<td>UV60000</td>
<td>1059, 1061</td>
</tr>
<tr>
<td>UVD 170S/340S</td>
<td>808</td>
</tr>
<tr>
<td>UVD 170U/340U</td>
<td>810</td>
</tr>
<tr>
<td>UVD-3000</td>
<td>815</td>
</tr>
<tr>
<td>without Separate Driver</td>
<td>822</td>
</tr>
<tr>
<td>Detector Commands</td>
<td>1183, 1297</td>
</tr>
<tr>
<td>Program</td>
<td>1183</td>
</tr>
<tr>
<td>UVD</td>
<td>1183</td>
</tr>
<tr>
<td>Detector Control</td>
<td>807 - 828, 1183 - 1213</td>
</tr>
<tr>
<td>AD20</td>
<td>813</td>
</tr>
<tr>
<td>AD20/AD25</td>
<td>813</td>
</tr>
<tr>
<td>AD25</td>
<td>813</td>
</tr>
<tr>
<td>CD</td>
<td>827</td>
</tr>
<tr>
<td>CD20</td>
<td>824, 1205 - 1211</td>
</tr>
<tr>
<td>CD25/CD25A</td>
<td>824, 1205 - 1211</td>
</tr>
<tr>
<td>PDA-100</td>
<td>811, 813</td>
</tr>
<tr>
<td>RF2000</td>
<td>818, 819</td>
</tr>
<tr>
<td>Shodex RI-Detectors</td>
<td>1032</td>
</tr>
<tr>
<td>UltiMate</td>
<td>817, 818</td>
</tr>
<tr>
<td>UVD 170</td>
<td>810</td>
</tr>
<tr>
<td>UVD-3000</td>
<td>815, 816</td>
</tr>
</tbody>
</table>
Index

Deviation.......................................A-206
Allowed........................................ 517
Amount....................................... A-10
PPI.......................... A-149
Relative Standard ......A-136, A-167
Retention Time.........................A-176
Standard ...................... A-206
Wavelength Maximum....... 1404
Device.......................................1313
AutoQ................................. 125
Connect/Disconnect .............1313
Control ....................................A-50, A-61
Timebase Class 1 License ...... 17
Timebase Class 2 License ...... 18
Timebase Class 3 License ...... 20
Device Command Button (Create)...302
Device Connection....................1258
Device Control ............. 731, 733, A-51
Commands.............................. 731
Demo Mode................................A-50
Device Driver.............. A-51, A-52
Dionex Commands ............. 737
Evaluation Mode .............. A-61, A-62
General Commands ................ 733, 734
Requirements.............................50
System Commands............... 733
Virtual Mode ................... A-50
Device Driver.................. A-51
Pumps w/o Separate Driver ....... 750
Detectors w/o Separate Driver .... 82
Device Successfully Connected....1258
Device View............. 56, 57, 58, 62, 323
Device Wellness......... 1484
Diagnostics...................... 368
1100 HPLC System ...... 884
IC Leak Sensor................... 368
ICS-1000/1500/2000 .......... 370
ICS-90.................................. 370
System Wellness ...... 131, 133, 352,
.................. A-211, A-212
Wavelength Verification ..........369
Diagram (Chart Creation) ..........587
Difference Spectra......... 511, 1190
Digital Input.............. A-169
Digital Measuring Values ......... 81
Dil. Factor ................. 1271
Dilute ......................... 770
Dilution Factor................. 1271, A-52
Sample List ..................... 203
Sample Variable.............. 1271, A-52
Dilution Series ............. A-52
Dimensions of Amounts .. 1391, A-53
DIN .................................. A-85
Diode Array Detector .......... A-142
Diode Signal Averaging ....... 1312
Diode Signals................. 1312
Dionex Devices.............. 50, 731, 733
Active Flow Splitter......... 839
AD20................................... 813
AD25................................... 813
AS...................................... 770
AS50................................... 770
ASI-100 Series............... 766
Autosampler..................... 765
CD.................................. 827
CD20/CD25/CD25A........... 824
Column Thermostat........... 790
Detectors.......................... 837, 838, 839
Detectors......................... 807
DP.................................. 738, 743
ED.................................. 828
ED40/ED50/ED50A............ 824
FAMOS ......................... 783, 787
Flow Manager.................... 790
Fluorescence Detector ....... 1190
GINA 50 ......................... 789
GP40/GP50/GS50............ 738
IC20/IC25/IC25A.......... 738, 739, 824
ICS-1000/1500/2000 ........ 832, 834
ICS-1000/1500/2000 ........ 832, 834
Ion Chromatograph ...... 830, 831, 832
Ion Chromatography Systems 830
IP20/IP25/IP25A.................. 738
LPG-3x00............................. 744
M480.................................. 738
M580.................................. 738
M680.................................. 738
P680.................................. 740
PP-150............................. 749
PDA-100............................. 811
Pumps................................. 738
RF2000.............................. 818
Sample + Fraction Manager 752 - 764
Shodex RI-101 .................. 1031
SmartStart Wizard............... 52
SP .................................. 738, 743
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therm. Column Comp.</td>
<td>791 - 803</td>
</tr>
<tr>
<td>UltiMate</td>
<td>746, 748, 817</td>
</tr>
<tr>
<td>UV Detector</td>
<td>815</td>
</tr>
<tr>
<td>UVD 170/340</td>
<td>808</td>
</tr>
<tr>
<td>WPS-3000</td>
<td>774, 781</td>
</tr>
<tr>
<td>Disable (Calibration Sample)</td>
<td>416</td>
</tr>
<tr>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>Disconnect Timebase</td>
<td>A-53</td>
</tr>
<tr>
<td>Disconnect</td>
<td>1313, A-53</td>
</tr>
<tr>
<td>Dispense</td>
<td>770, 1317, A-53</td>
</tr>
<tr>
<td>Dispersion</td>
<td>A-100</td>
</tr>
<tr>
<td>Display</td>
<td>39</td>
</tr>
<tr>
<td>Display Values</td>
<td>470</td>
</tr>
<tr>
<td>PC Requirements</td>
<td>27</td>
</tr>
<tr>
<td>Peak Spectrum</td>
<td>508</td>
</tr>
<tr>
<td>Printing</td>
<td>577</td>
</tr>
<tr>
<td>Sample Information</td>
<td>305</td>
</tr>
<tr>
<td>Sequence Column</td>
<td>215</td>
</tr>
<tr>
<td>Sequence Information</td>
<td>305</td>
</tr>
<tr>
<td>Signal Parameters (MS Channel)</td>
<td>1192</td>
</tr>
<tr>
<td>Single Spectra</td>
<td>509</td>
</tr>
<tr>
<td>DOF-Adjusted Coefficient of Determination</td>
<td>A-54</td>
</tr>
<tr>
<td>Dongle</td>
<td>A-54</td>
</tr>
<tr>
<td>Key Code</td>
<td>A-91</td>
</tr>
<tr>
<td>License</td>
<td>13</td>
</tr>
<tr>
<td>Door Safety Time</td>
<td>770</td>
</tr>
<tr>
<td>Door</td>
<td>1181</td>
</tr>
<tr>
<td>Download Calibration Data</td>
<td>353</td>
</tr>
<tr>
<td>DP</td>
<td>738, 743</td>
</tr>
<tr>
<td>Drag &amp; Drop</td>
<td>218</td>
</tr>
<tr>
<td>Draw Match (PPI)</td>
<td>526</td>
</tr>
<tr>
<td>Draw</td>
<td>1318, A-55, A-160</td>
</tr>
<tr>
<td>Drift</td>
<td>A-56</td>
</tr>
<tr>
<td>Driver</td>
<td></td>
</tr>
<tr>
<td>Device Driver</td>
<td>A-51</td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>A-70</td>
</tr>
<tr>
<td>Integrator Driver</td>
<td>A-88</td>
</tr>
<tr>
<td>Virtual Channel Driver</td>
<td>A-233</td>
</tr>
<tr>
<td>DS3 Detection Stabilizer</td>
<td>A-56</td>
</tr>
<tr>
<td>Dual Inject</td>
<td>1231</td>
</tr>
<tr>
<td>6890 GC</td>
<td>1227, 1228</td>
</tr>
<tr>
<td>7673 and 7683 Autosamplers</td>
<td>1231</td>
</tr>
<tr>
<td>AS/AS50</td>
<td>1177</td>
</tr>
<tr>
<td>Dual Operation (6890 GC)</td>
<td>1227, 1228</td>
</tr>
<tr>
<td>Dual-Column (DX-120)</td>
<td>A-35, A-60</td>
</tr>
<tr>
<td>Dual-Gradient HPLC System</td>
<td>A-209</td>
</tr>
<tr>
<td>Duplicate Column</td>
<td>392</td>
</tr>
<tr>
<td>Duration</td>
<td>A-57</td>
</tr>
<tr>
<td>Sound</td>
<td>1354, 1355</td>
</tr>
<tr>
<td>Switching a Relay</td>
<td>1257</td>
</tr>
<tr>
<td>DX-120</td>
<td>830, 1214, 1222, A-35, A-60</td>
</tr>
<tr>
<td>DX-LAN</td>
<td>A-58</td>
</tr>
<tr>
<td>Dynamic Column Length</td>
<td>565</td>
</tr>
<tr>
<td>Dynamic Link</td>
<td>567</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>A-47, A-154</td>
</tr>
<tr>
<td>ECD</td>
<td>917</td>
</tr>
<tr>
<td>μ-ECD</td>
<td>924</td>
</tr>
<tr>
<td>6890/6850</td>
<td>917</td>
</tr>
<tr>
<td>ED</td>
<td>367, 828, 1183 - 1201</td>
</tr>
<tr>
<td>ED40</td>
<td>361 - 371, 1183 - 1213, A-86</td>
</tr>
<tr>
<td>ED50/50A</td>
<td>361 - 371, 1183 - 1213, A-86</td>
</tr>
<tr>
<td>Edge Triggering</td>
<td>1361</td>
</tr>
<tr>
<td>EG</td>
<td>835, 1219, 1221, A-59, A-125</td>
</tr>
<tr>
<td>EG40/50</td>
<td>835, 1219, 1221, A-59, A-125</td>
</tr>
<tr>
<td>3D Amp Channel</td>
<td>A-3</td>
</tr>
<tr>
<td>CD</td>
<td>827</td>
</tr>
<tr>
<td>CD20/CD25/CD25A</td>
<td>824</td>
</tr>
<tr>
<td>Commands</td>
<td>824, 827, 828, 1183</td>
</tr>
<tr>
<td>Cyclic Voltammetry</td>
<td>A-43</td>
</tr>
<tr>
<td>ED</td>
<td>828, 1193 - 1203</td>
</tr>
<tr>
<td>ED40</td>
<td>366, 824, 1193-1201, A-86</td>
</tr>
<tr>
<td>ED50/ED50A</td>
<td>366, 824, 1193-1201, A-86</td>
</tr>
<tr>
<td>IC20/IC25/IC25A</td>
<td>824</td>
</tr>
<tr>
<td>ICS-3000</td>
<td>367, 1195</td>
</tr>
<tr>
<td>pH reference electrode</td>
<td>1193 - 1201</td>
</tr>
<tr>
<td>Specifications</td>
<td>824, 827, 828, 1183</td>
</tr>
<tr>
<td>Waveforms</td>
<td>1193 - 1201</td>
</tr>
<tr>
<td>Electrode</td>
<td>371</td>
</tr>
<tr>
<td>Electronic Signature</td>
<td>103, A-58</td>
</tr>
<tr>
<td>Checking the Status</td>
<td>237</td>
</tr>
<tr>
<td>Password</td>
<td>A-134</td>
</tr>
<tr>
<td>Repeat Output</td>
<td>581, 583</td>
</tr>
<tr>
<td>Signing Sequences</td>
<td>231</td>
</tr>
<tr>
<td>Steps</td>
<td>234</td>
</tr>
<tr>
<td>Undo</td>
<td>237</td>
</tr>
<tr>
<td>Eluent Change</td>
<td>237</td>
</tr>
<tr>
<td>Eluent Composition (Virt. Column)</td>
<td>315</td>
</tr>
<tr>
<td>Eluent Composition (Virt. Column)</td>
<td>727</td>
</tr>
</tbody>
</table>
Eluent Concentration .......... A-59
Eluent Generator .................. 1219
Suppressor Currents ........... 1207 - 1211
Suppressor .......................... 1205
Virtual Column Tool .......... 724
Eluent Generator .................. 1221, A-59
Cartridge Lifetime ............... 1222
Commands .......................... 835, 836
Concentration ................... 1219 - 1221
Offset Volume ................... A-125
Eluent Mode (DX-120) .......... A-60
EluGen Cartridge ................. 1221
Emergency Program ........... 91, 337, A-60
Emission Spectrum (RF2000) ... 1190
Emission Wavelength .......... 819, 1189
Enable .............................. 416, A-79
Calibration Sample ............... 416
Modification History .......... A-79
Enabled ................................ 416
End Wavelength (Scan) ....... 822
End/EndTrigger................... 1320
Equate .................................. 1321
Equilibration ..................... 281
Chromatography System .......... 281, A-198
Edit Conditions ................. 284
Program .............................. 332
Select Conditions ............... 283
SmartStart Wizard ............... 52, A-198
Start ............................... 285, 286
Timebase Selection ............. 282
Equilibration Program .......... 332
Equilibration Time .............. 926, 931, 1044
Equipment Qualification ......... 125, A-14
Error Message ................. 1337, A-13, A-113
Ethernet .................. A-30
EURACHEM .......................... A-85
EV Valves .................. A-1004
Evaluation Mode ............... A-61
Event Log .................. A-153
Examples .......................... 330
AS4000 Program ................. 966
Calibration .................. 418 - 423
Dynamic Column Length ...... 565
Dynamic Link .................. 567
FAMOS Autosampler ........... 1164
Fraction Collection .......... 669 - 678
Hitachi Pumps ................... 961
Program Creation ............... 330
Remote Injection ............... 1167
User-defined Formulas .......... 560
Virtual Channels Programs ... 1248
WPS-3000 Autosampler ........ 1161
Excel .............................. 84, 586
Excitation Wavelength ......... 819
Exclusive Access ............... 770, 837
Explorer .................. A-75, A-26, A-218
Export ............................. 84, 90
3D_Amp Data ................... 605
Chromatogram ................... 605
Data ........................ A-84, 85, 227, 228
I-t Plot .......................... 605
Raw Data ...................... A-90
Sequence Data ................. 229
Extend Tables ................. A-225
External Calibration ........... 417
Additional ...................... 457
Bracketed ..................... 428, 461, 462
Calibration Modes ............ 451
Examples ....................... 418, 420
Extinction Coefficient ....... 429
Fixed ......................... 423, 465
Group .................. A-459
Multiple-Point Calibration .... 422
Standard Addition ........... 425
Standard Method (QNT Editor) 410
Total .................. A-452
Unstable Substances .......... 428
Without Pure Substance ...... 429
External MSV .................. 837
External Program ............... 230
External Standard .......... A-203
Extinction Coefficient ...... 429, A-228
Extract .......................... 532
Chromatogram .......... 532, 533, 603, 604
Mass Trace Afterward ....... 634
Mass Trace Online ............. 632
Opt. Int. Path ................... 530
Spectra .......................... 532
Temporary Mass Trace ....... 636
Extract Opt.Int.Path ......... 530
Extrema .......................... 1387

<table>
<thead>
<tr>
<th>F</th>
<th>FL3000</th>
<th>A-62, 1066, 1067</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 Key</td>
<td>A-63</td>
<td></td>
</tr>
<tr>
<td>FAMOS</td>
<td>783</td>
<td></td>
</tr>
<tr>
<td>Commands</td>
<td>783, 785, 786</td>
<td></td>
</tr>
<tr>
<td>Program Examples</td>
<td>1164</td>
<td></td>
</tr>
<tr>
<td>Sample Preparation</td>
<td>787, 788</td>
<td></td>
</tr>
<tr>
<td>FAQ</td>
<td>253, 307</td>
<td></td>
</tr>
<tr>
<td>Browser</td>
<td>307, 308</td>
<td></td>
</tr>
<tr>
<td>Control Panel</td>
<td>533</td>
<td></td>
</tr>
<tr>
<td>General Questions</td>
<td>533</td>
<td></td>
</tr>
<tr>
<td>Printer Layout</td>
<td>590, 591, 592</td>
<td></td>
</tr>
<tr>
<td>FDA</td>
<td>A-85</td>
<td></td>
</tr>
<tr>
<td>FID (6890/6850)</td>
<td>919</td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>218, 219</td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>45, 203</td>
<td></td>
</tr>
<tr>
<td>Handling</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>83, A-79</td>
<td></td>
</tr>
<tr>
<td>Manage</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>Move</td>
<td>218, 219, 220</td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Report Definition</td>
<td>A-171</td>
<td></td>
</tr>
<tr>
<td>Restore</td>
<td>A-174</td>
<td></td>
</tr>
<tr>
<td>SOR</td>
<td>A-200</td>
<td></td>
</tr>
<tr>
<td>Filter</td>
<td>A-63</td>
<td></td>
</tr>
<tr>
<td>Boxcar</td>
<td>160, 493</td>
<td></td>
</tr>
<tr>
<td>Data Smoothing</td>
<td>160, 494, A-198</td>
<td></td>
</tr>
<tr>
<td>Gaussian</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Moving Average</td>
<td>160, 495</td>
<td></td>
</tr>
<tr>
<td>Olympic</td>
<td>160, 495</td>
<td></td>
</tr>
<tr>
<td>Savitzky-Golay</td>
<td>160, 493</td>
<td></td>
</tr>
<tr>
<td>Filter Index</td>
<td>A-63</td>
<td></td>
</tr>
<tr>
<td>Filter Test</td>
<td>894</td>
<td></td>
</tr>
<tr>
<td>Find</td>
<td>A-65</td>
<td></td>
</tr>
<tr>
<td>Finding Fastest Chromatogram</td>
<td>722</td>
<td></td>
</tr>
<tr>
<td>Finding Global Optimum</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td>Finished</td>
<td>1287, A-183</td>
<td></td>
</tr>
<tr>
<td>Finnigan</td>
<td>1033 - 1039</td>
<td></td>
</tr>
<tr>
<td>Firmware</td>
<td>A-115</td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>Fisons (AS800, Autosampler)</td>
<td>947 - 949</td>
<td></td>
</tr>
<tr>
<td>Fixed</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>Calibration Mode</td>
<td>466, 1378, A-28</td>
<td></td>
</tr>
<tr>
<td>External Calibration</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>FL2000</td>
<td>1062, 1066, 1067</td>
<td></td>
</tr>
<tr>
<td>FLM-3x00</td>
<td>797-800</td>
<td></td>
</tr>
<tr>
<td>Column ID Properties</td>
<td>801</td>
<td></td>
</tr>
<tr>
<td>Flow Splitter Commands</td>
<td>803</td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td>1322</td>
<td></td>
</tr>
<tr>
<td>Continue</td>
<td>1314, A-40</td>
<td></td>
</tr>
<tr>
<td>Current Value</td>
<td>1322</td>
<td></td>
</tr>
<tr>
<td>Gradient</td>
<td>1322, 1323</td>
<td></td>
</tr>
<tr>
<td>Hold</td>
<td>1326, A-81</td>
<td></td>
</tr>
<tr>
<td>Purge</td>
<td>1347</td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td>1142</td>
<td></td>
</tr>
<tr>
<td>Stop</td>
<td>A-207</td>
<td></td>
</tr>
<tr>
<td>UltiMate</td>
<td>1259</td>
<td></td>
</tr>
<tr>
<td>Flow Cell</td>
<td>A-219</td>
<td></td>
</tr>
<tr>
<td>Flow Commands</td>
<td>1129</td>
<td></td>
</tr>
<tr>
<td>Flow Control</td>
<td>1128 - 1140, 1225</td>
<td></td>
</tr>
<tr>
<td>Flow Gradient</td>
<td>392, 1322, A-65, A-74</td>
<td></td>
</tr>
<tr>
<td>Flow Manager</td>
<td>790</td>
<td></td>
</tr>
<tr>
<td>Flow Rate</td>
<td>356, 357, 1131, 1322, A-65</td>
<td></td>
</tr>
<tr>
<td>Flow Sensor</td>
<td>746</td>
<td></td>
</tr>
<tr>
<td>Flow Splitter</td>
<td>839</td>
<td></td>
</tr>
<tr>
<td>Program Example</td>
<td>1142</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>A-803</td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>803</td>
<td></td>
</tr>
<tr>
<td>Flow Splitting</td>
<td>1142</td>
<td></td>
</tr>
<tr>
<td>Fluorescence</td>
<td>A-66</td>
<td></td>
</tr>
<tr>
<td>Fluorescence Detector</td>
<td>1329, A-61, A-92</td>
<td></td>
</tr>
<tr>
<td>Agilent</td>
<td>871 - 882</td>
<td></td>
</tr>
<tr>
<td>Dionex</td>
<td>818, 819</td>
<td></td>
</tr>
<tr>
<td>RF2000</td>
<td>1189, 1190</td>
<td></td>
</tr>
<tr>
<td>TSP</td>
<td>1062, 1066, 1067</td>
<td></td>
</tr>
<tr>
<td>Flush</td>
<td>770</td>
<td></td>
</tr>
<tr>
<td>Flush Volume</td>
<td>770</td>
<td></td>
</tr>
<tr>
<td>Focus GC</td>
<td>1041</td>
<td></td>
</tr>
<tr>
<td>Footer</td>
<td>576</td>
<td></td>
</tr>
<tr>
<td>Format (Worklist)</td>
<td>A-242</td>
<td></td>
</tr>
<tr>
<td>Formula</td>
<td>556</td>
<td></td>
</tr>
<tr>
<td>Amount Calculation</td>
<td>A-68, A-69</td>
<td></td>
</tr>
<tr>
<td>Enter (Example)</td>
<td>560, 561</td>
<td></td>
</tr>
<tr>
<td>Enter (User-defined)</td>
<td>556</td>
<td></td>
</tr>
<tr>
<td>Flexible</td>
<td>565, 567</td>
<td></td>
</tr>
<tr>
<td>FPD (6890/6850)</td>
<td>919</td>
<td></td>
</tr>
<tr>
<td>Fraction</td>
<td>1268</td>
<td></td>
</tr>
<tr>
<td>Fraction (Autopurification)</td>
<td>703, 1266</td>
<td></td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>643</td>
<td></td>
</tr>
<tr>
<td>Autopurification</td>
<td>687, 1268, A-13</td>
<td></td>
</tr>
<tr>
<td>Chromatogram</td>
<td>682 - 684</td>
<td></td>
</tr>
</tbody>
</table>
GLP .................... 123, 1313, A-13, A-39,
GLP Features License ...................... 13
Good Laboratory Practice ..... 123, 1313,
GP40/GP50 .................... 738
GPIB-Connected Devices ......... 1125
Gradient .................................. A-74
% Gradient ................................ A-75
Determine .......................... 1133 - 1135, 1226
Flow Gradient .................. A-65
Flow Rate .................. 1322, 1323, A-65
High-Pressure System ........ A-79
Low Pressure System ........ A-102
Ramp .................................. A-158
Step Gradient .................. A-207
Gradient Curves ................. A-76, A-77
Gradient Profile ................ A-77
Graphic Card ....................... 27
Graphical Definition ............ 504
Greatest ............................ A-199
Gripper Verification ............ 891
Group .................................. A-459
Calibration .......................... 417
Calibration Mode .... 459, 1378, A-28
External Calibration ........... 461
Peak Group ...................... 407, 1392, A-77
Peak Result Variable ........ A-78
Grouping Peaks ................. 407
GS50 .................................. 738
GUID ............................. 206, 1272, A-78

H

Hard Disk .................. 27
Hardlock .......................... A-54
Header ................................ 576
Headspace ......................... 941
Heating (Autosampler) ...... 1233
Height ............................... A-78
Integration Type .............. 1393, A-88
Maximum ...................... 1432, A-110
Minimum ........ 1431, 1437, A-110, A-113
Peak Result Variable .... A-78
Relative ...................... A-165, A-166
Help ..................... 1 - 6, A-63, A-91, A-125
Hewlett Packard ............. 273, 276, 844
1100 HPLC System .......... 844 - 1125
ChemStation .................. 273 - 276
Commands and Tips .......... 844
HP 1050 ....................... 898, 1125
HP 5890 ......................... 931
HP 6850 ..................... 926, 929
HP 6890 ..................... 926, 929
Hidden Windows ............... 304
Clinical Pressure Gradient System
.................................. A-79, A-102
History .......................... A-79
Data Storage ................. 83
Report .......................... 176, 177, 547
Report Variables ........... 1481
History Report ............. 176, 547, A-93
Hit Criteria .................... A-80
Hit Spectrum ................. 1490
Hit Threshold ................. 516
Hitachi ...................... 960
6250 .................................. 960
AS2000 .......................... 962 - 966
AS4000 .......................... 962 - 968
Commands and Tips .......... 960
L6200/L6210 .................. 960
L7200/L7250 ................. 962 - 966
LaChrom ..................... 960
Hits .............................. A-80
Peak Label ...................... 522, 523
Report .......................... 522, 523
Spectra Search ............... A-80
Hold ...................... 1137, 1326, 1342, 1359, 1368,
........................ A-81, A-207, A-236
Hold Mode ..................... 1137, 1337
Holmium Oxide Filter ........ A-81
Home ............................. 770
Hot Keys ........................ 33, 34, 478
HP ................................. 844
1100 HPLC System .......... 872 - 1125
ChemStation .................. 273 - 280
Commands and Tips .......... 844
HP 1050 ....................... 898, 1125
HP 1100
Autosampler .................. 849
Column Compartment ........ 856
Commands ..................... 844 - 863
Derivatization Program .... 875
**Index**

<table>
<thead>
<tr>
<th>Diagnostic Functions</th>
<th>884 - 895</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence Detectors</td>
<td>863, 880</td>
</tr>
<tr>
<td>General</td>
<td>845</td>
</tr>
<tr>
<td>GPIB Cards</td>
<td>1125</td>
</tr>
<tr>
<td>Lamp Commands</td>
<td>880</td>
</tr>
<tr>
<td>Liquid Level</td>
<td>882</td>
</tr>
<tr>
<td>Program Example</td>
<td>877</td>
</tr>
<tr>
<td>Program Tips</td>
<td>872</td>
</tr>
<tr>
<td>Properties</td>
<td>845 - 863</td>
</tr>
<tr>
<td>Pump</td>
<td>846</td>
</tr>
<tr>
<td>Scan Modes</td>
<td>876</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>896</td>
</tr>
<tr>
<td>UV Detectors</td>
<td>857</td>
</tr>
<tr>
<td>Wellplate Sampler</td>
<td>853</td>
</tr>
<tr>
<td>HP 5890</td>
<td>931</td>
</tr>
<tr>
<td>HP 6850</td>
<td>899 - 925</td>
</tr>
<tr>
<td>HP 6890</td>
<td>899 - 925</td>
</tr>
<tr>
<td>HPLC Fluorescence Detector</td>
<td>1190</td>
</tr>
<tr>
<td>HPLC Module (Waters)</td>
<td>1098 - 1116</td>
</tr>
<tr>
<td>HPLC Product Line</td>
<td>A-208, A-209</td>
</tr>
<tr>
<td>HPLC Pump</td>
<td>740</td>
</tr>
<tr>
<td>1100</td>
<td>844 - 884</td>
</tr>
<tr>
<td>Hitachi</td>
<td>960</td>
</tr>
<tr>
<td>Merck Hitachi</td>
<td>960</td>
</tr>
<tr>
<td>Performance Qualification</td>
<td>128</td>
</tr>
<tr>
<td>Summit</td>
<td>A-208</td>
</tr>
<tr>
<td>Summit x2</td>
<td>A-209</td>
</tr>
<tr>
<td>System Wellness</td>
<td>133</td>
</tr>
<tr>
<td>UltiMate 3000</td>
<td>A-223</td>
</tr>
<tr>
<td>HPLC/MS</td>
<td>A-105</td>
</tr>
<tr>
<td>HTML Format</td>
<td>586</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>1361, A-220</td>
</tr>
</tbody>
</table>

**I**

<p>| IC Control | 1214 |
| IC Control SE | 13 |
| IC Systems | 130, 131 |
| Performance Qualification | 130 |
| System Wellness | 131, 132 |
| IC20 | 361, 738, 824, 1205 - 1213 |
| IC25/IC25 A361, 738, 824, 1205 - 1213 |
| ICS-1500/2000 | 354 |
| ICS-1000/1500/2000 | 832 |
| Column Temperature Control | 1235 |
| Conductivity Cell | 363, 364 |
| Control | 1215 |
| Degas Pump | 359 |
| Flow Rate | 357 |
| Operating Status | 1223 |
| ICS-3000 | 365, 366 |
| pH Reference Electrode | 367 |
| ICS-3000 ED | 1193, 1195, 1200, 1201 |
| ICS-3000 EG | 835, 1219 - 1221, A-59, A-125 |
| ICS-90 | 358, 362, 370, 831, 1217 |
| ID | 1284, 1285 |
| Autopurification | 1267 |
| Replicate | 1284 |
| Sample | 1285 |
| Identification | 794, 801, 803, 1477 |
| Column | 794 - 803 |
| Flow Splitter | 803 - 806 |
| Report Variables List | 1477 |
| Identified Peaks | 407 |
| Import | 90 |
| ChemStation Data Files | 273 - 280 |
| PeakNet Data Files | 257 |
| PeakNet Method Files | 255 |
| PeakNet Translation Table | 259 - 270 |
| Index (Online Help) | A-82 |
| Industry Minute | A-48 |
| Industry Standards | A-85 |
| Inhibit Integration | 402, 1427, A-82 |
| Initialize | 1353 |
| Inj. Date/Time | 1273 |
| Inj. Vol | 1274 |
| Inject | 1327, A-82 |
| 6850 GC | 903 |
| 6890 GC | 903, 1227, 1228 |
| 7673 and 7683 Autosamplers | 1231 |
| Autosampler | A-15 |
| Dual | 1177, 1227, 1228, 1231 |
| Full-Loop | A-71 |
| Inject Command | 1327, 1328, A-82 |
| Partial-Loop | A-132, A-133 |
| Remote Injection | 1167 |
| Response | 1327 |
| Sample | 1165 |
| Inject Command | 1167, 1327, A-82 |
| Inject Port | 1167 |</p>
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inject Port Volume</td>
<td>367</td>
</tr>
<tr>
<td>Inject Volume</td>
<td>1367</td>
</tr>
<tr>
<td>Inject Wait</td>
<td>1167, 1327, A-82</td>
</tr>
<tr>
<td>Injection</td>
<td>1165</td>
</tr>
<tr>
<td>6890 GC</td>
<td>1227, 1228</td>
</tr>
<tr>
<td>7673 and 7683 Autosamplers</td>
<td>1232</td>
</tr>
<tr>
<td>Dual</td>
<td>1177, 1227, 1228 - 1232</td>
</tr>
<tr>
<td>Manual</td>
<td>349, 350</td>
</tr>
<tr>
<td>Sample</td>
<td>1165, 1166</td>
</tr>
<tr>
<td>Injection Time</td>
<td>1273, 1409, A-82, A-175</td>
</tr>
<tr>
<td>Injection Type</td>
<td>A-71, A-83, A-132</td>
</tr>
<tr>
<td>Full-Loop</td>
<td>A-71</td>
</tr>
<tr>
<td>Partial Loop</td>
<td>A-132, A-133</td>
</tr>
<tr>
<td>Injection Volume</td>
<td>1274, A-84</td>
</tr>
<tr>
<td>Injector (6890/6850 GCs)</td>
<td>903</td>
</tr>
<tr>
<td>Injector Steps</td>
<td>889</td>
</tr>
<tr>
<td>Inlet (6890/6850 GCs)</td>
<td>906, 908, 909</td>
</tr>
<tr>
<td>Input</td>
<td>A-169, A-170</td>
</tr>
<tr>
<td>Insert Peak Tool</td>
<td>483</td>
</tr>
<tr>
<td>Installation</td>
<td>29, 30</td>
</tr>
<tr>
<td>Chromeleon</td>
<td>21</td>
</tr>
<tr>
<td>Client/Server Installation</td>
<td>29</td>
</tr>
<tr>
<td>Control Panel</td>
<td>289</td>
</tr>
<tr>
<td>Licenses</td>
<td>13, 14, 15</td>
</tr>
<tr>
<td>Local</td>
<td>30</td>
</tr>
<tr>
<td>Network Installation</td>
<td>30</td>
</tr>
<tr>
<td>Timebase</td>
<td>A-217</td>
</tr>
<tr>
<td>Installation Qualification</td>
<td>A-84</td>
</tr>
<tr>
<td>Institutes</td>
<td>A-85</td>
</tr>
<tr>
<td>Instrument Connect</td>
<td>1258</td>
</tr>
<tr>
<td>Instrument Connection</td>
<td>1258</td>
</tr>
<tr>
<td>Instrument Control</td>
<td>371</td>
</tr>
<tr>
<td>Instruments</td>
<td>127, 128, 130</td>
</tr>
<tr>
<td>OQ</td>
<td>127</td>
</tr>
<tr>
<td>PQ</td>
<td>127</td>
</tr>
<tr>
<td>Int. Type</td>
<td>411, 1393, A-88</td>
</tr>
<tr>
<td>Integrated Amperometry Mode</td>
<td>193, A-86</td>
</tr>
<tr>
<td>3D Amp. Chromatograms</td>
<td>599 - 605</td>
</tr>
<tr>
<td>3D Amp. Data</td>
<td>593, 594</td>
</tr>
<tr>
<td>3D Amp. Integration</td>
<td>602</td>
</tr>
<tr>
<td>3D Amp. I-t Plot</td>
<td>601</td>
</tr>
<tr>
<td>3D Amp. Window</td>
<td>193, 194, 197</td>
</tr>
<tr>
<td>3D Data Plot Scale</td>
<td>596</td>
</tr>
<tr>
<td>3D Raw Data</td>
<td>594</td>
</tr>
<tr>
<td>Reference Electrode Mode</td>
<td>1200, 1202</td>
</tr>
<tr>
<td>Sodium Correction</td>
<td>371</td>
</tr>
<tr>
<td>Waveform (ED40/50/50A)</td>
<td>1194</td>
</tr>
<tr>
<td>Waveform (ICS-3000 ED)</td>
<td>1195</td>
</tr>
<tr>
<td>Waveform (Overview)</td>
<td>1193</td>
</tr>
<tr>
<td>Integration</td>
<td>153</td>
</tr>
<tr>
<td>3D Amperometry</td>
<td>602, 603</td>
</tr>
<tr>
<td>Autopurification Tray View</td>
<td>169</td>
</tr>
<tr>
<td>Chromatogram Comp.</td>
<td>158, 488 - 493</td>
</tr>
<tr>
<td>Data Smoothing</td>
<td>160, 161</td>
</tr>
<tr>
<td>Detection Parameters</td>
<td>398, 504</td>
</tr>
<tr>
<td>Inhibit Integration</td>
<td>1427, A-82</td>
</tr>
<tr>
<td>Inhibiting Peak Integration</td>
<td>402</td>
</tr>
<tr>
<td>Integration Report</td>
<td>173, 174</td>
</tr>
<tr>
<td>Manual Re-Integration</td>
<td>157, 480, 481</td>
</tr>
<tr>
<td>Mass Spectra Plot</td>
<td>167, 168</td>
</tr>
<tr>
<td>Online</td>
<td>155</td>
</tr>
<tr>
<td>Opening a Sample</td>
<td>155</td>
</tr>
<tr>
<td>Operation</td>
<td>156</td>
</tr>
<tr>
<td>Overview</td>
<td>153</td>
</tr>
<tr>
<td>Peak Ratio</td>
<td>162, 163, 164</td>
</tr>
<tr>
<td>Peak Summary Report</td>
<td>175</td>
</tr>
<tr>
<td>Real-Time</td>
<td>155</td>
</tr>
<tr>
<td>Report Tables</td>
<td>535</td>
</tr>
<tr>
<td>Spectra Plot</td>
<td>164</td>
</tr>
<tr>
<td>Starting a UV Spectra Search</td>
<td>516</td>
</tr>
<tr>
<td>Subtract Background Spectra</td>
<td>499</td>
</tr>
<tr>
<td>Working with Chromatograms</td>
<td>477</td>
</tr>
<tr>
<td>Integration Interval</td>
<td>A-88</td>
</tr>
<tr>
<td>Integration Limit</td>
<td>A-95</td>
</tr>
<tr>
<td>Left</td>
<td>1397, 1398, A-95</td>
</tr>
<tr>
<td>Right</td>
<td>1397, 1398, A-179, A-180</td>
</tr>
<tr>
<td>Integration Parameters</td>
<td>1423</td>
</tr>
<tr>
<td>Integration Path</td>
<td>A-128</td>
</tr>
<tr>
<td>Optimum</td>
<td>A-128, A-129</td>
</tr>
<tr>
<td>Select</td>
<td>530, 531</td>
</tr>
<tr>
<td>Integration Report</td>
<td>173</td>
</tr>
<tr>
<td>Integration Table</td>
<td>1482</td>
</tr>
<tr>
<td>Integration Type</td>
<td>A-88</td>
</tr>
<tr>
<td>Integrator Driver</td>
<td>A-88</td>
</tr>
<tr>
<td>Integration Window</td>
<td>154</td>
</tr>
<tr>
<td>Calibration Functions</td>
<td>A-27</td>
</tr>
<tr>
<td>Calibration Function (Select)</td>
<td>411</td>
</tr>
<tr>
<td>Calibration Principle</td>
<td>106</td>
</tr>
<tr>
<td>Calibration Type</td>
<td>1381</td>
</tr>
<tr>
<td>Calibration Variable (c0)</td>
<td>A-124</td>
</tr>
<tr>
<td>Query</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>LD Factor</td>
<td>A-100</td>
</tr>
<tr>
<td>Leak Detector</td>
<td>356, 368, 811</td>
</tr>
<tr>
<td>Leak Sensor</td>
<td>1140</td>
</tr>
<tr>
<td>Leak Test</td>
<td>A-95</td>
</tr>
<tr>
<td>Least Squares</td>
<td>A-95</td>
</tr>
<tr>
<td>Least Width</td>
<td>A-28</td>
</tr>
<tr>
<td>Level</td>
<td>A-28</td>
</tr>
<tr>
<td>Audit Trail</td>
<td>A-28</td>
</tr>
<tr>
<td>Calibration</td>
<td>A-28</td>
</tr>
<tr>
<td>Library</td>
<td>191, 512, A-200</td>
</tr>
<tr>
<td>License</td>
<td>13, 14, 15, 16</td>
</tr>
<tr>
<td>Screening</td>
<td>512</td>
</tr>
<tr>
<td>Spectra</td>
<td>191, 192, 512</td>
</tr>
<tr>
<td>Using</td>
<td>514</td>
</tr>
<tr>
<td>UV Spectra Search</td>
<td>516</td>
</tr>
<tr>
<td>License</td>
<td>A-91</td>
</tr>
<tr>
<td>Dongle</td>
<td>A-54, A-55</td>
</tr>
<tr>
<td>Evaluation Mode</td>
<td>A-61</td>
</tr>
<tr>
<td>Key Code</td>
<td>A-91</td>
</tr>
<tr>
<td>Timebase Class 1</td>
<td>17</td>
</tr>
<tr>
<td>Timebase Class 2</td>
<td>18</td>
</tr>
<tr>
<td>Timebase Class 3</td>
<td>20</td>
</tr>
<tr>
<td>License Server</td>
<td>A-96</td>
</tr>
<tr>
<td>License Types</td>
<td>A-91</td>
</tr>
<tr>
<td>Light Pass</td>
<td>A-219</td>
</tr>
<tr>
<td>Limit</td>
<td>A-150</td>
</tr>
<tr>
<td>Determine Pressure</td>
<td>1136</td>
</tr>
<tr>
<td>Left</td>
<td>1397, A-95</td>
</tr>
<tr>
<td>Pressure</td>
<td>1345, A-150</td>
</tr>
<tr>
<td>Right</td>
<td>1397, A-179</td>
</tr>
<tr>
<td>Trigger Commands</td>
<td>1361, A-220</td>
</tr>
<tr>
<td>Limit of Detection</td>
<td>A-96</td>
</tr>
<tr>
<td>Limit of Determination</td>
<td>A-96</td>
</tr>
<tr>
<td>Limit of Quantification</td>
<td>A-96</td>
</tr>
<tr>
<td>LIMS</td>
<td>A-97</td>
</tr>
<tr>
<td>Connection</td>
<td>A-185</td>
</tr>
<tr>
<td>Worklist</td>
<td>A-242 - A-248</td>
</tr>
<tr>
<td>Lin</td>
<td>108</td>
</tr>
<tr>
<td>Line Height</td>
<td>538</td>
</tr>
<tr>
<td>Linear Calibration</td>
<td>108</td>
</tr>
<tr>
<td>Linear with Offset</td>
<td>108</td>
</tr>
<tr>
<td>Link</td>
<td>300, 302, 539</td>
</tr>
<tr>
<td>Linked Objects</td>
<td>A-97</td>
</tr>
</tbody>
</table>

**M**

- M ........................................ 1416, A-222
- M300 ..................................... 750
- M480 ..................................... 738
- Main Peak .................................. 1416, A-222
- Major Product......................... 401
- Make Current Peak to ISTD Peak.... 410
- Manipulation......................... A-103
- Manual Peak Assignment ............ 486
- Manual Re-Integration .............. 480
- Manual Sequence...................... A-205
- Mark...................................... A-103
- Mass Defect ......................... A-103
- Mass Peak ........................ A-106
- Mass Scan ............................. A-105
- Defining QNT Settings ............. 642
- MS Background Subtraction ....... 499
- Noise Reduction ..................... 639
- Peak Identification ............... 388, 389
- Processing .......................... 640
- QNT Editor .......................... 152
- Show ................................. 637
- Smoothing ........................... A-199
- Spectra Reprocessing ............ 639
Index

Mass Spectra Plot .................................. 167
Noise Reduction ................................... 639
Reprocessing Mass Spectra ........... 639
Show Mass Spectra ................................. 637
Mass Spectrometer .................................. A-105
Actions ............................................... 611
Create a Sequence ................. 613, 6250, A-960
Create aQa MS Method .............. 619, AS2000, A-962
Create aQa Channels ................. 621, AS4000, A-962, 966
Define QNT Settings ................. 642
Mass Trace Extraction ............... 632, 634, 636
MCA Mode ........................................... 629
MSQ Method ......................................... 614
Multi-Channel Analysis .............. 629
Noise Reduction ................................. 639
Reprocessing Mass Spectra ........... 639
Show Mass Spectra ................................. 637
Thermo Finnigan ................. 1034, 1036, 1039
Mass Spectrometry ......................... 1476
Mass Spectrum ...................................... 1489
Mass Trace ........................................... A-108
Extract Afterward .............................. 634
Extract Online ..................................... 632
Processing ........................................... 640
Temporary ............................................ 636
Mass Trace Extraction ....... 632, 634, 636
Mass Tracking ....................................... 148
Mass ................................................... A-103
Match ................................................... A-108
Match Criterion ................. 518, 1399, A-108
Match Factor ............................... 526, A-108, A-135
Matrix Blank Sample ................. A-109
Max. Peak Identification Height ... 1432
MaxAreaRj ........................................... 1430, A-110
MaxAutoStep ........................................ 1336
MaxHght ............................................. 1432, A-110
MaxHghtRj ........................................... 1431, A-110
Maximum Area Reject ............... 1430, A-110
Maximum Height ................................. 1432
Maximum Height Reject .............. 1431, A-110
Maximum Peak Height .................... A-110
Max. Peak Identification Height ... A-110
Maximum Rider Ratio ................. 406, 1433, A-111
Detection Parameter ................. 1433, A-111
Rider Peaks ......................................... 406
Maximum Wavelength ..................... 1401
Maximum Width ................................. 1435, A-111
MB ................................................... 1416, A-222
MCA Mode ........................................... 629, A-111
mdb Container .................................. A-45
Measuring Values ................. 81
Merck Hitachi ....................................... 960
Commands and Tips ..................... 960
L6200 ............................................. 960
L6210 ............................................. 960
L7200 ............................................. 962
L7250 ............................................. 962
LaChrom ........................................... 960
Message ........................................... 1337, A-113
METH ................................................... 611
Method ........................................... 105, 135, 255, 1276, A-155
Method Window ................................. 614
MicroMembrane Suppressor 1213, A-209
MicroPump ......................................... 744
Microsoft Network .................................. 291
Millennium Compliance ............... A-249
Minimum Area ................................. 1430, 1436,
.................................................. A-110, A-113
Minimum Height ......................... 1437, A-113
Minimum Peak Height ....... 1431, A-110
Minimum Resolution ..................... 718
Minimum Wavelength ..................... 1401
Minimum Width .......... 401, 1438, A-113
MinLampIntensity ....................... 1338, A-114
Mirror Chromatograms .................. 491
Mix ............................................... 770, 1339
MMS ............................................... 1213, A-209
Mode ................................................. 770
Bypass ............................................. A-26
Calibration ..................................... 1378, 1379, A-28
Column ............................................ A-35
Demo .............................................. A-50
DX-120 ........................................... A-35
Evaluation ................................ A-61, A-62
MCA ............................................... A-111, A-112
Monitor Only ................................. A-115
Virtual .......................................... A-50
Modem Cable ..................... A-79, A-114
Modification History .................... A-79
<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modify</td>
<td>402</td>
</tr>
<tr>
<td>Baseline</td>
<td>402, 403, 482, 483</td>
</tr>
<tr>
<td>Peak Recognition Algorithm</td>
<td>404</td>
</tr>
<tr>
<td>PGM File</td>
<td>317</td>
</tr>
<tr>
<td>Program</td>
<td>317</td>
</tr>
<tr>
<td>Signal Parameters</td>
<td>1186, 1187, 1188</td>
</tr>
<tr>
<td>Moduleware</td>
<td>A-115</td>
</tr>
<tr>
<td>Monitor Only</td>
<td>A-115</td>
</tr>
<tr>
<td>Monitor Program</td>
<td>A-191</td>
</tr>
<tr>
<td>Monitoring</td>
<td>27</td>
</tr>
<tr>
<td>Motorized Switching Valve</td>
<td>1221</td>
</tr>
<tr>
<td>Mount Datasource</td>
<td>220</td>
</tr>
<tr>
<td>Mouse</td>
<td>33</td>
</tr>
<tr>
<td>Operation</td>
<td>37</td>
</tr>
<tr>
<td>Right Button</td>
<td>A-179</td>
</tr>
<tr>
<td>Move</td>
<td>1142</td>
</tr>
<tr>
<td>Element</td>
<td>218, 219</td>
</tr>
<tr>
<td>Peak Delimiter</td>
<td>481</td>
</tr>
<tr>
<td>Move to Background</td>
<td>A-116</td>
</tr>
<tr>
<td>Move to Front</td>
<td>A-116</td>
</tr>
<tr>
<td>Moving Average</td>
<td>160</td>
</tr>
<tr>
<td>MPIC</td>
<td>A-1211</td>
</tr>
<tr>
<td>MRA</td>
<td>839</td>
</tr>
<tr>
<td>Program Example</td>
<td>1142</td>
</tr>
<tr>
<td>MS</td>
<td>A-152, 640</td>
</tr>
<tr>
<td>Actions</td>
<td>611</td>
</tr>
<tr>
<td>aQa MS Method</td>
<td>619</td>
</tr>
<tr>
<td>Background Subtract</td>
<td>499 - 501, 641</td>
</tr>
<tr>
<td>Create a Program</td>
<td>612</td>
</tr>
<tr>
<td>Create a Sequence</td>
<td>611</td>
</tr>
<tr>
<td>Define aQa Channels</td>
<td>621</td>
</tr>
<tr>
<td>Define MSQ Channels</td>
<td>616</td>
</tr>
<tr>
<td>Defining QNT Settings</td>
<td>642</td>
</tr>
<tr>
<td>Mass Trace Extraction</td>
<td>632 - 636</td>
</tr>
<tr>
<td>MCA Mode</td>
<td>629</td>
</tr>
<tr>
<td>MSQ Method</td>
<td>614</td>
</tr>
<tr>
<td>Multi-Channel Analysis</td>
<td>629</td>
</tr>
<tr>
<td>Noise Reduction</td>
<td>639</td>
</tr>
<tr>
<td>Peak Identification</td>
<td>388</td>
</tr>
<tr>
<td>Processing</td>
<td>640</td>
</tr>
<tr>
<td>QNT Editor</td>
<td>152</td>
</tr>
<tr>
<td>Report</td>
<td>547, 548</td>
</tr>
<tr>
<td>Show Mass Spectra</td>
<td>637</td>
</tr>
<tr>
<td>SIM Mass</td>
<td>625</td>
</tr>
<tr>
<td>Spectra Reprocessing</td>
<td>639</td>
</tr>
<tr>
<td>MS Background Subtraction</td>
<td>499, 640</td>
</tr>
<tr>
<td>MS Channels</td>
<td>616, 621, 625</td>
</tr>
<tr>
<td>MS Chromatogram</td>
<td>A-108</td>
</tr>
<tr>
<td>MS Control</td>
<td>13</td>
</tr>
<tr>
<td>MS Detector</td>
<td>A-105</td>
</tr>
<tr>
<td>MS Filter</td>
<td>A-63</td>
</tr>
<tr>
<td>MS Instrument Info Report</td>
<td>547</td>
</tr>
<tr>
<td>MS Instrument Method Report</td>
<td>547</td>
</tr>
<tr>
<td>MS Ion Source</td>
<td>701</td>
</tr>
<tr>
<td>MS Method</td>
<td>614, 619</td>
</tr>
<tr>
<td>aQa MS Method</td>
<td>619</td>
</tr>
<tr>
<td>Create MS Program/Sequence</td>
<td>611</td>
</tr>
<tr>
<td>Full-Scan</td>
<td>A-72</td>
</tr>
<tr>
<td>MCA Mode</td>
<td>629</td>
</tr>
<tr>
<td>MSQ Method</td>
<td>614</td>
</tr>
<tr>
<td>SIM</td>
<td>A-196</td>
</tr>
<tr>
<td>MS Raw Report</td>
<td>547</td>
</tr>
<tr>
<td>MS Report</td>
<td>547</td>
</tr>
<tr>
<td>MS Status Log Report</td>
<td>547</td>
</tr>
<tr>
<td>MS Tracking</td>
<td>388</td>
</tr>
<tr>
<td>MS Tune Data Report</td>
<td>547</td>
</tr>
<tr>
<td>MSV</td>
<td>837</td>
</tr>
<tr>
<td>MsvToLoad (Bypass Mode)</td>
<td>321, A-26</td>
</tr>
<tr>
<td>Multi-Channel Analysis</td>
<td>1287, A-183</td>
</tr>
<tr>
<td>Multiple</td>
<td>13</td>
</tr>
<tr>
<td>Multiple Network Control</td>
<td>529</td>
</tr>
<tr>
<td>Multiple Ratio</td>
<td>108, A-127</td>
</tr>
<tr>
<td>Multiple-Point Calibration</td>
<td>422, A-197</td>
</tr>
<tr>
<td>Multi-Position Valve (Valco)</td>
<td>1068</td>
</tr>
<tr>
<td>Multi-Tasking</td>
<td>28, A-116</td>
</tr>
<tr>
<td>Multi-Threading</td>
<td>A-116</td>
</tr>
<tr>
<td>My Computer</td>
<td>291</td>
</tr>
<tr>
<td>Na Correction</td>
<td>371</td>
</tr>
<tr>
<td>NaCl Electrode</td>
<td>371</td>
</tr>
<tr>
<td>Name</td>
<td>1278, 1402, A-117</td>
</tr>
<tr>
<td>Peak Result Variable</td>
<td>A-117</td>
</tr>
<tr>
<td>Peak Table Parameter</td>
<td>1402, A-134</td>
</tr>
<tr>
<td>Term</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sample Variable</td>
<td>1278, A-182</td>
</tr>
<tr>
<td>Signal</td>
<td>A-193</td>
</tr>
<tr>
<td>Named Pipes</td>
<td>291</td>
</tr>
<tr>
<td>Navigate (Chromatogram)</td>
<td>478</td>
</tr>
<tr>
<td>Nearest</td>
<td>384</td>
</tr>
<tr>
<td>Needle Height</td>
<td>770</td>
</tr>
<tr>
<td>Needle</td>
<td>1341, A-117</td>
</tr>
<tr>
<td>NeedleUp</td>
<td>1341</td>
</tr>
<tr>
<td>Negative Absorption</td>
<td>A-117</td>
</tr>
<tr>
<td>Negative Execution Times</td>
<td>1327</td>
</tr>
<tr>
<td>Negative Peak</td>
<td>1425, 1426, A-50</td>
</tr>
<tr>
<td>Negative Water Peak</td>
<td>A-1455</td>
</tr>
<tr>
<td>Negative</td>
<td>1425, 1426, A-50</td>
</tr>
<tr>
<td>NETBEUI</td>
<td>291</td>
</tr>
<tr>
<td>Netware</td>
<td>291</td>
</tr>
<tr>
<td>Network</td>
<td>28</td>
</tr>
<tr>
<td>Client</td>
<td>A-34</td>
</tr>
<tr>
<td>DX-LAN</td>
<td>A-58</td>
</tr>
<tr>
<td>Installation</td>
<td>30</td>
</tr>
<tr>
<td>Local Client/Server Installation</td>
<td>29</td>
</tr>
<tr>
<td>Overview</td>
<td>28</td>
</tr>
<tr>
<td>Server</td>
<td>A-189, A-190</td>
</tr>
<tr>
<td>Server Configuration</td>
<td>A-190</td>
</tr>
<tr>
<td>Network Datasource</td>
<td>A-45</td>
</tr>
<tr>
<td>Network Failure</td>
<td>A-118</td>
</tr>
<tr>
<td>Network Failure Protection</td>
<td>A-118</td>
</tr>
<tr>
<td>Network Neighborhood</td>
<td>291</td>
</tr>
<tr>
<td>NFP</td>
<td>A-118</td>
</tr>
<tr>
<td>Nice Size</td>
<td>A-118</td>
</tr>
<tr>
<td>NIST</td>
<td>A-85</td>
</tr>
<tr>
<td>No.</td>
<td>1280, A-123</td>
</tr>
<tr>
<td>Peak Result Variable</td>
<td>A-123</td>
</tr>
<tr>
<td>Sample Number</td>
<td>1280</td>
</tr>
<tr>
<td>Noise</td>
<td>A-119, A-195</td>
</tr>
<tr>
<td>Noise Reduction</td>
<td>499</td>
</tr>
<tr>
<td>Nominal Mass</td>
<td>A-103</td>
</tr>
<tr>
<td>Nominal Retention Time</td>
<td>1409, A-175</td>
</tr>
<tr>
<td>Non-Crossover Cable</td>
<td>A-114</td>
</tr>
<tr>
<td>Normalization</td>
<td>A-120</td>
</tr>
<tr>
<td>Absolute Maximum</td>
<td>A-120</td>
</tr>
<tr>
<td>Fixed Time</td>
<td>A-122</td>
</tr>
<tr>
<td>Fixed Wavelength</td>
<td>A-121</td>
</tr>
<tr>
<td>Overview</td>
<td>A-120</td>
</tr>
<tr>
<td>Relative Maximum</td>
<td>A-121</td>
</tr>
<tr>
<td>Normalize Chromatograms</td>
<td>492</td>
</tr>
<tr>
<td>Normalized Resolution Product</td>
<td>718</td>
</tr>
<tr>
<td>Normalized Spectra Overlay</td>
<td>527</td>
</tr>
<tr>
<td>Normal-Phase HPLC</td>
<td>1170</td>
</tr>
<tr>
<td>NotReady</td>
<td>1347</td>
</tr>
<tr>
<td>Novell</td>
<td>30, 291</td>
</tr>
<tr>
<td>NPD (6890/6850)</td>
<td>A-921</td>
</tr>
<tr>
<td>Null Modem Cable</td>
<td>A-122</td>
</tr>
<tr>
<td>Number of Relative Extrema</td>
<td>516</td>
</tr>
<tr>
<td>Number</td>
<td>A-123</td>
</tr>
</tbody>
</table>

**Index**

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline Batch</td>
<td>100</td>
</tr>
<tr>
<td>Offset</td>
<td>106, A-27</td>
</tr>
<tr>
<td>Calibration Functions</td>
<td>A-27</td>
</tr>
<tr>
<td>Calibration Variable (c0)</td>
<td>A-124</td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>662</td>
</tr>
<tr>
<td>Signal</td>
<td>A-124</td>
</tr>
<tr>
<td>Offset Level</td>
<td>A-124</td>
</tr>
<tr>
<td>Offset Volume</td>
<td>A-125</td>
</tr>
<tr>
<td>Old Standards</td>
<td>423</td>
</tr>
<tr>
<td>Olympic</td>
<td>160</td>
</tr>
<tr>
<td>Online Batch</td>
<td>47, 100</td>
</tr>
<tr>
<td>Automatic Operation</td>
<td>100</td>
</tr>
<tr>
<td>Create</td>
<td>293</td>
</tr>
<tr>
<td>Print</td>
<td>48</td>
</tr>
<tr>
<td>Start</td>
<td>293, 295</td>
</tr>
<tr>
<td>Online Mass Trace Extraction</td>
<td>632</td>
</tr>
<tr>
<td>Online Plot</td>
<td>66</td>
</tr>
<tr>
<td>Appearance</td>
<td>66</td>
</tr>
<tr>
<td>Function</td>
<td>67</td>
</tr>
<tr>
<td>Panel Tabset</td>
<td>70</td>
</tr>
<tr>
<td>Signal Plot</td>
<td>68</td>
</tr>
<tr>
<td>Trend Plot</td>
<td>69</td>
</tr>
<tr>
<td>Online Signal Plot</td>
<td>68</td>
</tr>
<tr>
<td>Online Transfer Agent</td>
<td>A-126</td>
</tr>
<tr>
<td>Online Window</td>
<td>66</td>
</tr>
<tr>
<td>Appearance</td>
<td>66</td>
</tr>
<tr>
<td>Function</td>
<td>67</td>
</tr>
<tr>
<td>Panel Tabset</td>
<td>70</td>
</tr>
<tr>
<td>Signal Plot</td>
<td>68</td>
</tr>
<tr>
<td>Trend Plot</td>
<td>69</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>On-The-Fly (Integration)</td>
<td>155</td>
</tr>
<tr>
<td>Open Access</td>
<td>13</td>
</tr>
<tr>
<td>Operation System</td>
<td>28</td>
</tr>
<tr>
<td>Operation</td>
<td>26</td>
</tr>
<tr>
<td>Data System</td>
<td>26</td>
</tr>
<tr>
<td>Hot Keys</td>
<td>33</td>
</tr>
<tr>
<td>Keyboard</td>
<td>33</td>
</tr>
<tr>
<td>Mouse</td>
<td>36, 37</td>
</tr>
<tr>
<td>Sample-Oriented</td>
<td>A-182</td>
</tr>
<tr>
<td>Shortcut Keys</td>
<td>33, 34</td>
</tr>
<tr>
<td>Operational Qualification</td>
<td>A-127</td>
</tr>
<tr>
<td>HPLC Systems</td>
<td>128</td>
</tr>
<tr>
<td>Instruments</td>
<td>127</td>
</tr>
<tr>
<td>Opt. Int. Path</td>
<td>530, A-128</td>
</tr>
<tr>
<td>Optical (Spectral) Resolution</td>
<td>A-128</td>
</tr>
<tr>
<td>Optimum Emission Wavelength</td>
<td>1189</td>
</tr>
<tr>
<td>Optimum Integration Path</td>
<td>A-128</td>
</tr>
<tr>
<td>Options</td>
<td>1493, 1494</td>
</tr>
<tr>
<td>Select Peak</td>
<td>1493</td>
</tr>
<tr>
<td>Select Peak in Peak Table</td>
<td>1494</td>
</tr>
<tr>
<td>OQ</td>
<td>A-127</td>
</tr>
<tr>
<td>HPLC Systems</td>
<td>128</td>
</tr>
<tr>
<td>Instruments</td>
<td>127</td>
</tr>
<tr>
<td>Origin</td>
<td>106, 108, 411, 1381</td>
</tr>
<tr>
<td>Calibration Principle</td>
<td>106</td>
</tr>
<tr>
<td>Calibration Type</td>
<td>1381</td>
</tr>
<tr>
<td>Select Calibration Function</td>
<td>411</td>
</tr>
<tr>
<td>Original Size</td>
<td>A-72</td>
</tr>
<tr>
<td>OTA</td>
<td>A-126</td>
</tr>
<tr>
<td>Output (Repeat)</td>
<td>581, 583</td>
</tr>
<tr>
<td>Oven</td>
<td>1235, A-36</td>
</tr>
<tr>
<td>Column Temperature</td>
<td>A-36</td>
</tr>
<tr>
<td>Column Temp. Control</td>
<td>1235</td>
</tr>
<tr>
<td>Overlap</td>
<td>1151, 1176</td>
</tr>
<tr>
<td>Overlapping Peaks</td>
<td>528</td>
</tr>
<tr>
<td>Overlay</td>
<td>A-130</td>
</tr>
<tr>
<td>Add</td>
<td>489</td>
</tr>
<tr>
<td>Channel Selection</td>
<td>488</td>
</tr>
<tr>
<td>Chrom. Overlay</td>
<td>1185</td>
</tr>
<tr>
<td>Chromatogram . . .</td>
<td>488, 490, 491, A-130</td>
</tr>
<tr>
<td>Chromatogram Normalization</td>
<td>492</td>
</tr>
<tr>
<td>Mirror Chromatograms</td>
<td>491</td>
</tr>
<tr>
<td>Print Chromatograms</td>
<td>493</td>
</tr>
<tr>
<td>Sample</td>
<td>488</td>
</tr>
<tr>
<td>Sample Selection</td>
<td>488</td>
</tr>
<tr>
<td>Overview Window</td>
<td>A-131, A-224</td>
</tr>
</tbody>
</table>

**P**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Group</td>
<td>A-152</td>
</tr>
<tr>
<td>P2000</td>
<td>1057</td>
</tr>
<tr>
<td>P4000</td>
<td>1057</td>
</tr>
<tr>
<td>P580</td>
<td>738</td>
</tr>
<tr>
<td>Commands</td>
<td>738, 739</td>
</tr>
<tr>
<td>Freeze</td>
<td>1325</td>
</tr>
<tr>
<td>Learn</td>
<td>1334</td>
</tr>
<tr>
<td>P680 (Commands)</td>
<td>740, 741, 742</td>
</tr>
<tr>
<td>Page Setup</td>
<td>588</td>
</tr>
<tr>
<td>Page Layout (Printer Layout)</td>
<td>588</td>
</tr>
<tr>
<td>Specify the Printout</td>
<td>576</td>
</tr>
<tr>
<td>PAL</td>
<td>A-131</td>
</tr>
<tr>
<td>CTC Analytics</td>
<td>933</td>
</tr>
<tr>
<td>Key Code</td>
<td>A-91</td>
</tr>
<tr>
<td>License</td>
<td>13</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>945</td>
</tr>
<tr>
<td>PAL Sampler</td>
<td>933 - 944</td>
</tr>
<tr>
<td>Commands</td>
<td>933 - 935</td>
</tr>
<tr>
<td>Injection</td>
<td>939, 940</td>
</tr>
<tr>
<td>PAN File</td>
<td>66</td>
</tr>
<tr>
<td>Panel</td>
<td>66, A-40</td>
</tr>
<tr>
<td>Actions</td>
<td>289</td>
</tr>
<tr>
<td>Appearance</td>
<td>66</td>
</tr>
<tr>
<td>Connect to Timebase</td>
<td>291</td>
</tr>
<tr>
<td>Control Panel</td>
<td>A-40, A-41</td>
</tr>
<tr>
<td>Function</td>
<td>67</td>
</tr>
<tr>
<td>General Questions</td>
<td>307</td>
</tr>
<tr>
<td>Layout Mode</td>
<td>A-93</td>
</tr>
<tr>
<td>Modify</td>
<td>296</td>
</tr>
<tr>
<td>Open</td>
<td>289, 290</td>
</tr>
<tr>
<td>Operation</td>
<td>289, 309 - 315</td>
</tr>
<tr>
<td>Panel Tabset</td>
<td>70</td>
</tr>
<tr>
<td>Signal Plot</td>
<td>68</td>
</tr>
<tr>
<td>Trend Plot</td>
<td>69, 70</td>
</tr>
<tr>
<td>Panel Tabset</td>
<td>70, 309, A-131</td>
</tr>
<tr>
<td>Creating</td>
<td>312</td>
</tr>
<tr>
<td>Description</td>
<td>310</td>
</tr>
<tr>
<td>Expanding</td>
<td>313</td>
</tr>
<tr>
<td>Modifying</td>
<td>310, 311</td>
</tr>
<tr>
<td>Opening</td>
<td>310</td>
</tr>
<tr>
<td>Resizing</td>
<td>313</td>
</tr>
<tr>
<td>Sequence Control Panel</td>
<td>315</td>
</tr>
<tr>
<td>Splitting</td>
<td>313</td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>ParkPercentage</td>
<td>1342</td>
</tr>
<tr>
<td>Partial Flows</td>
<td>1298, 1321, A-3</td>
</tr>
<tr>
<td>Partial Windows</td>
<td>10</td>
</tr>
<tr>
<td>Partial-Loop Injections</td>
<td>A-83, A-132</td>
</tr>
<tr>
<td>Password</td>
<td>A-100, A-134, A-227</td>
</tr>
<tr>
<td>Paste</td>
<td>218</td>
</tr>
<tr>
<td>Elements</td>
<td>218, 219</td>
</tr>
<tr>
<td>Spectra</td>
<td>532</td>
</tr>
<tr>
<td>PC</td>
<td>27</td>
</tr>
<tr>
<td>PC Plug-In Cards</td>
<td>A-191</td>
</tr>
<tr>
<td>PCM</td>
<td>908</td>
</tr>
<tr>
<td>PDA Detector</td>
<td>A-142</td>
</tr>
<tr>
<td>Dionex</td>
<td>807 - 811</td>
</tr>
<tr>
<td>Functionality</td>
<td>A-143</td>
</tr>
<tr>
<td>Main Features</td>
<td>A-142</td>
</tr>
<tr>
<td>TSP</td>
<td>1059, 1061</td>
</tr>
<tr>
<td>Waters</td>
<td>1119 - 1122</td>
</tr>
<tr>
<td>PDA License</td>
<td>13</td>
</tr>
<tr>
<td>PDA-100 Detector</td>
<td>811</td>
</tr>
<tr>
<td>Commands</td>
<td>811, 812</td>
</tr>
<tr>
<td>Detector Commands</td>
<td>1183</td>
</tr>
<tr>
<td>Lamp Age</td>
<td>1205</td>
</tr>
<tr>
<td>Negative Absorption</td>
<td>A-117</td>
</tr>
<tr>
<td>Reference Wavelength</td>
<td>1349, A-164</td>
</tr>
<tr>
<td>UV Lamp</td>
<td>A-230</td>
</tr>
<tr>
<td>Visible Lamp</td>
<td>A-236</td>
</tr>
<tr>
<td>Wavelength Calibration</td>
<td>360</td>
</tr>
<tr>
<td>Wavelength Verification</td>
<td>369</td>
</tr>
<tr>
<td>PDF</td>
<td>84</td>
</tr>
<tr>
<td>Peak</td>
<td>A-50, A-163</td>
</tr>
<tr>
<td>Delete</td>
<td>483</td>
</tr>
<tr>
<td>Group(ing)</td>
<td>407, 408</td>
</tr>
<tr>
<td>Identify</td>
<td>383</td>
</tr>
<tr>
<td>Inhibit Integration</td>
<td>402</td>
</tr>
<tr>
<td>Inhibition via Virtual Channels</td>
<td>528</td>
</tr>
<tr>
<td>Insert</td>
<td>483</td>
</tr>
<tr>
<td>Manual Assignment</td>
<td>486</td>
</tr>
<tr>
<td>Negative</td>
<td>1425, 1426, A-50</td>
</tr>
<tr>
<td>Overlapping</td>
<td>528</td>
</tr>
<tr>
<td>Park</td>
<td>1140</td>
</tr>
<tr>
<td>Recognition</td>
<td>1444, A-138</td>
</tr>
<tr>
<td>Reduce</td>
<td>399</td>
</tr>
<tr>
<td>Reference Peak</td>
<td>A-163</td>
</tr>
<tr>
<td>Rename</td>
<td>486, 487</td>
</tr>
<tr>
<td>Repeat Output</td>
<td>581, 583</td>
</tr>
<tr>
<td>Rider</td>
<td>A-178</td>
</tr>
<tr>
<td>Shoulder</td>
<td>A-137</td>
</tr>
<tr>
<td>Skimming</td>
<td>A-178</td>
</tr>
<tr>
<td>Small</td>
<td>401</td>
</tr>
<tr>
<td>Split</td>
<td>484</td>
</tr>
<tr>
<td>Peak Area</td>
<td>A-11</td>
</tr>
<tr>
<td>Minimum</td>
<td>1436, A-113</td>
</tr>
<tr>
<td>Relative</td>
<td>A-165</td>
</tr>
<tr>
<td>Peak Assignment</td>
<td>486</td>
</tr>
<tr>
<td>Peak Asymmetry</td>
<td>A-12, A-197</td>
</tr>
<tr>
<td>Peak Calibration</td>
<td>A-1473</td>
</tr>
<tr>
<td>Peak Caliper</td>
<td>501</td>
</tr>
<tr>
<td>Peak Delimiter</td>
<td>481</td>
</tr>
<tr>
<td>Peak Detection</td>
<td>655</td>
</tr>
<tr>
<td>Optimized (MS)</td>
<td>701</td>
</tr>
<tr>
<td>Parameters</td>
<td>662 - 667</td>
</tr>
<tr>
<td>Status</td>
<td>679, 680</td>
</tr>
<tr>
<td>Peak End</td>
<td>405, A-51, A-195</td>
</tr>
<tr>
<td>Peak Group End</td>
<td>A-134</td>
</tr>
<tr>
<td>Peak Group Start</td>
<td>A-134</td>
</tr>
<tr>
<td>Peak Group</td>
<td>A-77</td>
</tr>
<tr>
<td>Peak Height</td>
<td>A-165</td>
</tr>
<tr>
<td>Maximum</td>
<td>1432, A-110</td>
</tr>
<tr>
<td>Minimum</td>
<td>1431, 1437, A-110, A-113</td>
</tr>
<tr>
<td>Peak Result Variable</td>
<td>A-165</td>
</tr>
<tr>
<td>Peak Identification</td>
<td>142, 148, 384 - 388</td>
</tr>
<tr>
<td>Peak Information</td>
<td>501</td>
</tr>
<tr>
<td>Peak Inhibition</td>
<td>528</td>
</tr>
<tr>
<td>Peak Integration</td>
<td>402</td>
</tr>
<tr>
<td>Peak Label</td>
<td>522</td>
</tr>
<tr>
<td>Peak Name</td>
<td>1402, A-117, A-134</td>
</tr>
<tr>
<td>Peak Result Variable</td>
<td>A-117</td>
</tr>
<tr>
<td>Peak Table Parameter</td>
<td>A-134</td>
</tr>
<tr>
<td>Peak Number</td>
<td>A-123</td>
</tr>
<tr>
<td>Peak Parking</td>
<td>1140</td>
</tr>
<tr>
<td>Peak Properties</td>
<td>486</td>
</tr>
<tr>
<td>Peak Purity</td>
<td>A-1477</td>
</tr>
<tr>
<td>Peak Purity Analysis</td>
<td>187, 525, A-147</td>
</tr>
<tr>
<td>Peak Purity End Wavelength</td>
<td>407, A-135</td>
</tr>
<tr>
<td>Peak Purity Index</td>
<td>407, 526</td>
</tr>
<tr>
<td>Peak Purity Match Factor</td>
<td>A-136, A-147, A-149</td>
</tr>
<tr>
<td>Peak Purity Start Wavelength</td>
<td>A-135, A-136</td>
</tr>
<tr>
<td>Peak Purity Analysis</td>
<td>187, 525, A-147</td>
</tr>
<tr>
<td>Peak Purity End Wavelength</td>
<td>407, A-135</td>
</tr>
<tr>
<td>Peak Purity Threshold</td>
<td>407, 1442, A-137</td>
</tr>
<tr>
<td>Peak Ratio</td>
<td>162</td>
</tr>
<tr>
<td>Peak Ratio Integration</td>
<td>A-163</td>
</tr>
</tbody>
</table>
Peak Recognition Algorithm ............. 403
Peak Results ................................... 1471
Peak Shoulder ................................ 137
Peak Shoulder Threshold .... 1444, A-138
Peak Slice ................ 403, 1445, A-138
Peak Spectra............................... 164, 167
  Display ..................................... 508
  UV Spectra .................................. 507
Peak Start Time.................. 405, A-51, A-195
Peak Start Time............................. A-139
Peak Stop Time.............................. A-139
Peak Summary ................ 175, 544, A-139
Peak Summary Report...................... 175
Peak Table............................... 148, A-139
  Autogenerate ..................... 395, 397
  Create ....................................... 383
  MS Tracking............................... 388
  Peak Tracking .................. 386, 387, 388
  Reference Spectra.................... 394
  Window .................. 1420 - 1422, A-241
  Peak Table Parameters .............. 1375 - 1420,
  ............ A-95, A-134, A-174, A-175,
  Amount ......................... 1376, 1377, A-9
  Amount Deviation.................... A-10
  Calibration Type............... 1381, A-29
  Dimension of Amounts .... 1391, A-53
  Integration Type................. 1394, A-88
  Left Limit ................. 1397, A-95
  Peak Name ...................... 1402, A-134
  Response Factor .... 1405, 1406, A-174
  Retention Time .... 1409 - 1411, A-175
  Retention Time Interpretation A-176
  Right Limit ...................... 1397, A-179
  Standard (Method) ........... 1412, A-203
  Use Recently Detected Ret. Time ....
  .................................. 1418, A-224
Peak Tracking......................... 148, 386
Peak Type ......................... 1416, A-222
  Changing ......................... 485
  Peak Result Variable .... 1416, A-222
Peak Width .................. 1424, A-222
  Left ....................... A-95, A-96
  Minimum .................. 401, 1438, A-113
  Right ......................... A-180
Peak End Curve .................. 658
Peak End Slope .................. 655
Peak End Threshold ........ 655, 658
Peak End True Time .......... 655, 658
Peak Max Slope .................. 655
Peak Max True Time .......... 655, 658
PeakNet (Releases 4.3 Through 5.2) 255
  Import ................................ 256, 257, 258
  Translation Tables ........ 259 - 270
  PeakParked .................. 1342
  Peak Start Curve .............. 658
  Peak Start Slope ........ 655
  Peak Start Threshold ........ 655
  Peak Start True Time .......... 655, 658
  Performance Qualification A-140
  HPLC Systems .............. 128
  IC Systems .................. 130
  Instruments ................. 127
Perkin Elmer
  Autosystem (XL) GC ....... 969 - 985
  Clarus 500 ................. 969 - 985
  Commands and Tips .......... 969
  TurboMatrix Headspace Sampler
  .................................. 986 - 1000
PGM Editor .................. 55, 317
  Actions ......................... 317
  Calculation .................. 328, 343
  Commands .................. 325, 326, 327
  Create/Modify a Program .... 317
  Device View .................. 56 - 62
  Emergency Program ........ 337
  Equilibration Program .......... 332
  Operation .................. 317
  Power Failure Program .......... 338
  Program Creation ........ 318, 330
  Shutdown Program ........ 336
  User-defined Columns .... 344 - 346
PGM File .................. 53, 1282, A-140
  aQa MS Method ................. 619
  Autopurification .......... 690
  Bypass Mode .................. 340
  Control Program ........ 50
  Create/Modify a Program .... 317
  Emergency Program .......... 337
  Equilibration Program .......... 332
  MS (MCA) ................. 629
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Method</td>
<td>614</td>
</tr>
<tr>
<td>MS Program</td>
<td>611</td>
</tr>
<tr>
<td>PeakNet Translation Tables</td>
<td>259 - 270</td>
</tr>
<tr>
<td>Post-Acquisition Steps</td>
<td>347</td>
</tr>
<tr>
<td>Power Failure Program</td>
<td>338</td>
</tr>
<tr>
<td>Sample Variable</td>
<td>1282</td>
</tr>
<tr>
<td>Scan Procedure (RF2000)</td>
<td>1189</td>
</tr>
<tr>
<td>Shutdown Program</td>
<td>336</td>
</tr>
<tr>
<td>Tandem Operation</td>
<td>340</td>
</tr>
<tr>
<td>PGM Report</td>
<td>548</td>
</tr>
<tr>
<td>PGM Wizard</td>
<td>54</td>
</tr>
<tr>
<td>Automatic Program Creation</td>
<td>318, 321</td>
</tr>
<tr>
<td>Bypass Mode</td>
<td>321</td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>648 - 661</td>
</tr>
<tr>
<td>Tandem Operation</td>
<td>319</td>
</tr>
<tr>
<td>pH</td>
<td>1201</td>
</tr>
<tr>
<td>pH Reference Electrode</td>
<td>366, 367, 1201</td>
</tr>
<tr>
<td>Phosphorescence</td>
<td>A-141</td>
</tr>
<tr>
<td>Photodiode Array Detector</td>
<td>807, A-142</td>
</tr>
<tr>
<td>Photodiode Array Detector</td>
<td>808, 811</td>
</tr>
<tr>
<td>Photodiode Array Detector</td>
<td>A-143</td>
</tr>
<tr>
<td>Photodiode Bunching</td>
<td>1309, A-19</td>
</tr>
<tr>
<td>Photodiode Resolution</td>
<td>A-143</td>
</tr>
<tr>
<td>Pin Assignment</td>
<td>A-144</td>
</tr>
<tr>
<td>Modem Cables</td>
<td>A-114, A-144</td>
</tr>
<tr>
<td>Null Modem Cable</td>
<td>A-122, A-144</td>
</tr>
<tr>
<td>Pipet</td>
<td>770</td>
</tr>
<tr>
<td>Plot</td>
<td>68, 164, A-219</td>
</tr>
<tr>
<td>3D Field Presentation Mode</td>
<td>A-4</td>
</tr>
<tr>
<td>Commands</td>
<td>808, 811</td>
</tr>
<tr>
<td>Functionality</td>
<td>A-143</td>
</tr>
<tr>
<td>Main Features</td>
<td>A-142</td>
</tr>
<tr>
<td>Specifications</td>
<td>808, 811</td>
</tr>
<tr>
<td>Photodiode Array Detector</td>
<td>A-143</td>
</tr>
<tr>
<td>Photodiode Array Detector</td>
<td>A-144</td>
</tr>
<tr>
<td>Pressure Control (GC)</td>
<td>1225</td>
</tr>
<tr>
<td>Pressure Control</td>
<td>A-135</td>
</tr>
<tr>
<td>Pressure Limits</td>
<td>1136, 1345, A-150</td>
</tr>
<tr>
<td>Pressure Test</td>
<td>886</td>
</tr>
<tr>
<td>Pressure Transducer</td>
<td>358</td>
</tr>
<tr>
<td>Pressure Transducer Offset</td>
<td>358</td>
</tr>
<tr>
<td>Pressure.LowerLimit</td>
<td>1345</td>
</tr>
<tr>
<td>Pressure.UpperLimit</td>
<td>1345</td>
</tr>
<tr>
<td>Prevent Upward Rider</td>
<td>A-70</td>
</tr>
<tr>
<td>Prime</td>
<td>770</td>
</tr>
<tr>
<td>Prime Reservoir</td>
<td>770</td>
</tr>
<tr>
<td>Prime Syringe</td>
<td>770, 1170, A-151</td>
</tr>
<tr>
<td>Print (Repeat)</td>
<td>581, 583</td>
</tr>
<tr>
<td>Print Area</td>
<td>576, 581</td>
</tr>
<tr>
<td>Print Chromatograms</td>
<td>493</td>
</tr>
<tr>
<td>Print Setup</td>
<td>576</td>
</tr>
<tr>
<td>Print Template</td>
<td>181, 182, 569</td>
</tr>
<tr>
<td>Create</td>
<td>184, 185</td>
</tr>
<tr>
<td>Load</td>
<td>574</td>
</tr>
<tr>
<td>Print</td>
<td>186</td>
</tr>
<tr>
<td>Print Batch Results</td>
<td>Repeat</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Print Sample Results</td>
<td>Sample</td>
</tr>
<tr>
<td>Print Sequence</td>
<td>Sequence</td>
</tr>
<tr>
<td>Printer Layout</td>
<td>Privileges</td>
</tr>
<tr>
<td>Save</td>
<td>Privilege Group</td>
</tr>
<tr>
<td>Specify the Pages</td>
<td>Probability</td>
</tr>
<tr>
<td>Specify the Printout</td>
<td>Processed (Sample)</td>
</tr>
<tr>
<td>Print Title</td>
<td>Product Line</td>
</tr>
<tr>
<td>Printer Layout</td>
<td>APS</td>
</tr>
<tr>
<td>3D Amperometry Plot</td>
<td>Summit</td>
</tr>
<tr>
<td>Actions</td>
<td>Summit x2</td>
</tr>
<tr>
<td>Chromatogram</td>
<td>UltiMate3000</td>
</tr>
<tr>
<td>Create</td>
<td>Product Test Conditions</td>
</tr>
<tr>
<td>CV Plot</td>
<td>Profile</td>
</tr>
<tr>
<td>Deleting Variables</td>
<td>Program</td>
</tr>
<tr>
<td>Edit</td>
<td>Autopurification</td>
</tr>
<tr>
<td>Entering User-defined Formulas</td>
<td>Autosampler Commands</td>
</tr>
<tr>
<td>Frequently Asked Questions</td>
<td>Branch</td>
</tr>
<tr>
<td>Inserting a Column</td>
<td>Bypass Mode</td>
</tr>
<tr>
<td>Inserting a Table</td>
<td>Calculation</td>
</tr>
<tr>
<td>Inserting Text</td>
<td>Chromameleon Overview</td>
</tr>
<tr>
<td>Inserting Variables</td>
<td>Component Controller</td>
</tr>
<tr>
<td>Layout Mode</td>
<td>Create</td>
</tr>
<tr>
<td>Overview</td>
<td>Device View</td>
</tr>
<tr>
<td>Page Format</td>
<td>Detector Commands</td>
</tr>
<tr>
<td>Page Layout</td>
<td>Emergency Program</td>
</tr>
<tr>
<td>Print</td>
<td>End</td>
</tr>
<tr>
<td>Print Area</td>
<td>Equilibration Program</td>
</tr>
<tr>
<td>Print Title</td>
<td>External</td>
</tr>
<tr>
<td>Repeat Output</td>
<td>Flow Commands</td>
</tr>
<tr>
<td>Report Publisher</td>
<td>Fraction Collection</td>
</tr>
<tr>
<td>Trend Plot</td>
<td>Logon</td>
</tr>
<tr>
<td>Printing</td>
<td>Mixed Commands</td>
</tr>
<tr>
<td>Batch</td>
<td>Modify</td>
</tr>
<tr>
<td>Chromatogram</td>
<td>PGM File</td>
</tr>
<tr>
<td>Display</td>
<td>Power Failure Program</td>
</tr>
<tr>
<td>Query</td>
<td>Pump Commands</td>
</tr>
<tr>
<td>Repeat Output</td>
<td>Relay Commands</td>
</tr>
<tr>
<td>Sample</td>
<td>Report</td>
</tr>
<tr>
<td>Sequence</td>
<td>Shutdown Program</td>
</tr>
<tr>
<td>Printout</td>
<td>Syntax</td>
</tr>
<tr>
<td>Batch</td>
<td>Tandem Operation</td>
</tr>
<tr>
<td>Chromatogram</td>
<td>Trigger Commands</td>
</tr>
<tr>
<td>Display</td>
<td>TTL Commands</td>
</tr>
<tr>
<td>User-defined Columns</td>
<td>344</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Variable Run Time</td>
<td>339</td>
</tr>
<tr>
<td>Virtual Channels</td>
<td>1248</td>
</tr>
<tr>
<td>Wizard</td>
<td>54, 318, 321, 322</td>
</tr>
<tr>
<td>Program Example</td>
<td>330</td>
</tr>
<tr>
<td>1100 HPLC System</td>
<td>875, 877</td>
</tr>
<tr>
<td>Active Flow Splitter (MRA)</td>
<td>1142</td>
</tr>
<tr>
<td>AS4000 Program</td>
<td>966</td>
</tr>
<tr>
<td>Bypass Mode</td>
<td>340</td>
</tr>
<tr>
<td>Emergency Program</td>
<td>337, 338</td>
</tr>
<tr>
<td>Equilibration Program</td>
<td>332</td>
</tr>
<tr>
<td>FAMOS Autosampler</td>
<td>1161</td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>644 - 679</td>
</tr>
<tr>
<td>Hitachi Pumps</td>
<td>960</td>
</tr>
<tr>
<td>Program Creation</td>
<td>330</td>
</tr>
<tr>
<td>Remote Injection</td>
<td>1167</td>
</tr>
<tr>
<td>Shimadzu HPLC System</td>
<td>1021 - 1025</td>
</tr>
<tr>
<td>Shutdown Program</td>
<td>336</td>
</tr>
<tr>
<td>Tandem Operation</td>
<td>340</td>
</tr>
<tr>
<td>Virtual Channels</td>
<td>1248</td>
</tr>
<tr>
<td>WPS-3000 Autosampler</td>
<td>1157</td>
</tr>
<tr>
<td>Program Report</td>
<td>548</td>
</tr>
<tr>
<td>Program Start</td>
<td>38</td>
</tr>
<tr>
<td>Program Syntax</td>
<td>62</td>
</tr>
<tr>
<td>Program Wizard</td>
<td>54</td>
</tr>
<tr>
<td>Automatic Program Creation</td>
<td>318, 321</td>
</tr>
<tr>
<td>Bypass Mode</td>
<td>321</td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>648 - 661</td>
</tr>
<tr>
<td>Tandem Operation</td>
<td>319</td>
</tr>
<tr>
<td>Programmed Control</td>
<td>50, 53</td>
</tr>
<tr>
<td>Programming</td>
<td>50, A-140</td>
</tr>
<tr>
<td>Program Report</td>
<td>50</td>
</tr>
<tr>
<td>Program Start</td>
<td>38</td>
</tr>
<tr>
<td>Program Syntax</td>
<td>62</td>
</tr>
<tr>
<td>Program Wizard</td>
<td>54</td>
</tr>
<tr>
<td>Automatic Program Creation</td>
<td>318, 321</td>
</tr>
<tr>
<td>Bypass Mode</td>
<td>321</td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>648 - 661</td>
</tr>
<tr>
<td>Tandem Operation</td>
<td>319</td>
</tr>
<tr>
<td>Programmed Control</td>
<td>50, 53</td>
</tr>
<tr>
<td>Programming</td>
<td>50, A-140</td>
</tr>
<tr>
<td>Program Report</td>
<td>50</td>
</tr>
<tr>
<td>Program Start</td>
<td>38</td>
</tr>
<tr>
<td>Program Syntax</td>
<td>62</td>
</tr>
<tr>
<td>Program Wizard</td>
<td>54</td>
</tr>
<tr>
<td>Automatic Program Creation</td>
<td>318, 321</td>
</tr>
<tr>
<td>Bypass Mode</td>
<td>321</td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>648 - 661</td>
</tr>
<tr>
<td>Tandem Operation</td>
<td>319</td>
</tr>
<tr>
<td>Programmed Control</td>
<td>50, 53</td>
</tr>
<tr>
<td>Programming</td>
<td>50, A-140</td>
</tr>
<tr>
<td>Program Report</td>
<td>50</td>
</tr>
<tr>
<td>Program Start</td>
<td>38</td>
</tr>
<tr>
<td>Program Syntax</td>
<td>62</td>
</tr>
<tr>
<td>Program Wizard</td>
<td>54</td>
</tr>
<tr>
<td>QNT Method</td>
<td>139, 1276, 1478, A-155</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Calibration</td>
<td>151</td>
</tr>
<tr>
<td>Data Representation/Reprocessing</td>
<td>135</td>
</tr>
<tr>
<td>Detection Parameters</td>
<td>146</td>
</tr>
<tr>
<td>Editor</td>
<td>142, A-156</td>
</tr>
<tr>
<td>General Tab Page</td>
<td>143</td>
</tr>
<tr>
<td>Mass Spectra</td>
<td>152</td>
</tr>
<tr>
<td>Peak Table</td>
<td>148, 149</td>
</tr>
<tr>
<td>Several Detectors</td>
<td>392</td>
</tr>
<tr>
<td>Spectra Library Screening</td>
<td>151</td>
</tr>
<tr>
<td>System Suitability Test</td>
<td>151</td>
</tr>
<tr>
<td>UV Spectra</td>
<td>152</td>
</tr>
<tr>
<td>QNT Parameters</td>
<td>1375</td>
</tr>
<tr>
<td>QOff</td>
<td>109</td>
</tr>
<tr>
<td>Qualification</td>
<td>123, 351, A-155</td>
</tr>
<tr>
<td>Installation</td>
<td>A-84, A-85</td>
</tr>
<tr>
<td>Operational</td>
<td>A-127</td>
</tr>
<tr>
<td>Performance</td>
<td>A-140</td>
</tr>
<tr>
<td>Quantification Limit</td>
<td>A-96</td>
</tr>
<tr>
<td>Quantification Method</td>
<td>139, 1276, 1478, A-155</td>
</tr>
<tr>
<td>Calibration</td>
<td>151</td>
</tr>
<tr>
<td>Data Representation</td>
<td>135</td>
</tr>
<tr>
<td>Data Reprocessing</td>
<td>135</td>
</tr>
<tr>
<td>Detection Parameters</td>
<td>146</td>
</tr>
<tr>
<td>General Tab Page</td>
<td>143</td>
</tr>
<tr>
<td>Mass Spectra</td>
<td>152</td>
</tr>
<tr>
<td>Peak Table</td>
<td>148</td>
</tr>
<tr>
<td>QNT Editor</td>
<td>142, A-156</td>
</tr>
<tr>
<td>Spectra Library Screening</td>
<td>151</td>
</tr>
<tr>
<td>System Suitability Test</td>
<td>151</td>
</tr>
<tr>
<td>UV Spectra</td>
<td>152</td>
</tr>
<tr>
<td>Query</td>
<td>239, A-156</td>
</tr>
<tr>
<td>Criteria (Samples/Sequences)</td>
<td>242</td>
</tr>
<tr>
<td>Database Report</td>
<td>548</td>
</tr>
<tr>
<td>Editing SQL Statements</td>
<td>251</td>
</tr>
<tr>
<td>Enter</td>
<td>241, 247, 248</td>
</tr>
<tr>
<td>Examples</td>
<td>246, 251</td>
</tr>
<tr>
<td>Perform</td>
<td>239</td>
</tr>
<tr>
<td>Printing</td>
<td>580</td>
</tr>
<tr>
<td>Save</td>
<td>252</td>
</tr>
<tr>
<td>Search</td>
<td>241</td>
</tr>
<tr>
<td>Specify</td>
<td>247</td>
</tr>
<tr>
<td>SQL</td>
<td>A-203</td>
</tr>
<tr>
<td>Start</td>
<td>252</td>
</tr>
<tr>
<td>Structured Query Language</td>
<td>A-203</td>
</tr>
<tr>
<td>Wizard</td>
<td>240, 241</td>
</tr>
</tbody>
</table>
Index

Questions .................. 253, 307, 533, 590
Browser .......................... 253
Control Panel ........................ 307
General Questions .......................... 533
Printer Layout .......................... 590
Quick Access .......................... 34

R
Rack .......................... A-157
AS .......................... 770, 1176
AS50 .......................... 770, 1176
ASI-100 Series .......................... 766, A-157
Autosampler .......................... A-157, A-158
Fraction Collector .......................... A-158
GINA 50 .......................... 789
Radioactive Substances .......................... 1248
RAM .......................... 27
Ramp .......................... A-158
Range .......................... A-159
Confidence .......................... A-38, A-39
Parameter .......................... A-159
Ratio .......................... 529
Multiple .......................... 529
Peak .......................... 162, 163, 164
Raw Data .......................... 85, 193 - 197, 594, A-159
3D Amperometry 193 - 199, 594, 595
Acquisition .......................... 1306, A-6
Compression .......................... 88, 89
Export .......................... 90
Import .......................... 91
Restoring .......................... 89
Storage .......................... 86, 87, 91
Raw Data Compression .......................... 88
Raw Data Storage (Power Failure) .......................... 91
Rd .......................... 1416, 1448, A-178, A-222
RDF .......................... 44, A-171
Load .......................... 574
Save .......................... 574
Save Contents .......................... 586
Ready Check .......................... 1313, A-31, A-160
Ready Signal .......................... 1233, 1258, A-160
Ready .......................... 1347, A-160
Real-Time Integration .......................... 155
Recalibrate .......................... 143
Reconnect .......................... A-161
Recorder Calibration .......................... A-161
Recorder Range .......................... A-161
Redo .......................... 37
Redraw .......................... A-170
Reduce Peaks .......................... 399
Ref. Amount Set .......................... 1283
RefBandwidth .......................... 1348
Reference Amount ID .......................... 1283
Reference Bandwidth .......................... 1348, A-162
Reference Channel .......................... A-162
Reference Electrode .......................... 366, 367, 1198
Reference Peak .......................... 390, A-163
Reference Spectra .......................... 393, 516
Reference Spectrum .......................... 1403
Reference Wavelength .......................... 1349, A-164
RefIndex Detector .......................... 1031
RefWavelength .......................... 1349
Re-Integration .......................... 157, 480
Automatic .......................... 146, 397
Manual .......................... 157, 480, 481
Rel. Ret. Time .......................... A-166
Relative Amount .......................... A-164
Relative Area .......................... A-165
Relative Height .......................... A-165
Relative Intensity (MS) .......................... A-23, A-106
Relative Maximum Deviation .......................... 1404
Relative Retention Time .......................... A-166
Relative Standard Deviation .......................... A-167
Relay .......................... A-167
Commands (Program) .......................... 1256
Control .......................... 1246
Duration .......................... A-57
On/Off .......................... 1352, A-168
Reserved Name .......................... A-172
Switch .......................... 1257, 1258
Relay-controlled Gradient .......................... A-168
Remote Inject .......................... 1167, A-168
Remote Injection .......................... 1167
Remote Input .......................... A-169
Reserved Name .......................... A-172
Setting Up Remote Injection .......................... 1167
Wait .......................... 1368, A-236
Remote Operation .......................... 1167
Remote Procedure Call .......................... A-181
Remote Start .......................... 1167
Removable Media .......................... 220
Replicate ID .......................... 1284
Replicate .......................... A-28, A-170
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replot from Beginning</td>
<td>A-170</td>
</tr>
<tr>
<td>Report</td>
<td>171, 535</td>
</tr>
<tr>
<td>Adding a Worksheet</td>
<td>541</td>
</tr>
<tr>
<td>Appearance</td>
<td>537, 538</td>
</tr>
<tr>
<td>Audit Trail</td>
<td>545, 546</td>
</tr>
<tr>
<td>Calibration</td>
<td>174, 175</td>
</tr>
<tr>
<td>Contents</td>
<td>537</td>
</tr>
<tr>
<td>Database Query</td>
<td>549</td>
</tr>
<tr>
<td>Detection Parameters</td>
<td>548</td>
</tr>
<tr>
<td>Display</td>
<td>536</td>
</tr>
<tr>
<td>Formula</td>
<td>539, 541</td>
</tr>
<tr>
<td>Fractions</td>
<td>684</td>
</tr>
<tr>
<td>History</td>
<td>176, 177, 547</td>
</tr>
<tr>
<td>Integration</td>
<td>173, 174</td>
</tr>
<tr>
<td>Layout Mode</td>
<td>A-93, A-94</td>
</tr>
<tr>
<td>Line Height</td>
<td>538</td>
</tr>
<tr>
<td>MS</td>
<td>547, 548</td>
</tr>
<tr>
<td>Overview</td>
<td>171, 535</td>
</tr>
<tr>
<td>Parameter</td>
<td>550</td>
</tr>
<tr>
<td>Peak Summary</td>
<td>175, 544</td>
</tr>
<tr>
<td>PGM</td>
<td>549</td>
</tr>
<tr>
<td>PPA</td>
<td>A-147</td>
</tr>
<tr>
<td>Printer Layout</td>
<td>553</td>
</tr>
<tr>
<td>Printer Layout (Overview)</td>
<td>181</td>
</tr>
<tr>
<td>Program</td>
<td>548</td>
</tr>
<tr>
<td>Renaming a Worksheet</td>
<td>541</td>
</tr>
<tr>
<td>Screen Report</td>
<td>535</td>
</tr>
<tr>
<td>Screening Results</td>
<td>522, 523</td>
</tr>
<tr>
<td>Special Reports</td>
<td>177</td>
</tr>
<tr>
<td>System Suitability Test</td>
<td>549</td>
</tr>
<tr>
<td>Report Categories</td>
<td>1457</td>
</tr>
<tr>
<td>Report Column (Sequence)</td>
<td>210, A-188</td>
</tr>
<tr>
<td>Report Definition</td>
<td>44</td>
</tr>
<tr>
<td>Load</td>
<td>45</td>
</tr>
<tr>
<td>Save</td>
<td>45</td>
</tr>
<tr>
<td>Report Variables</td>
<td>1483</td>
</tr>
<tr>
<td>Report Definition File</td>
<td>A-171</td>
</tr>
<tr>
<td>Load</td>
<td>574</td>
</tr>
<tr>
<td>Save</td>
<td>539, 574</td>
</tr>
<tr>
<td>Save Contents</td>
<td>586</td>
</tr>
<tr>
<td>Report Publisher</td>
<td>13, 182, A-6, A-171</td>
</tr>
<tr>
<td>Report Table</td>
<td>171, 535, 555</td>
</tr>
<tr>
<td>Printer Layout</td>
<td>553</td>
</tr>
<tr>
<td>Screen Report</td>
<td>536 - 550</td>
</tr>
<tr>
<td>Report Template</td>
<td>181, 182, 569</td>
</tr>
<tr>
<td>Create</td>
<td>184</td>
</tr>
<tr>
<td>Load</td>
<td>574</td>
</tr>
<tr>
<td>Print</td>
<td>185</td>
</tr>
<tr>
<td>Print Batch Results</td>
<td>579</td>
</tr>
<tr>
<td>Print Sequence</td>
<td>579</td>
</tr>
<tr>
<td>Printer Layout</td>
<td>A-151</td>
</tr>
<tr>
<td>PrintSample Results</td>
<td>577</td>
</tr>
<tr>
<td>Save</td>
<td>574</td>
</tr>
<tr>
<td>Specify the Pages</td>
<td>574</td>
</tr>
<tr>
<td>Specify the Printout</td>
<td>576</td>
</tr>
<tr>
<td>Report Variables</td>
<td>1457</td>
</tr>
<tr>
<td>Categories</td>
<td>1458 - 1492</td>
</tr>
<tr>
<td>Link</td>
<td>539, 540</td>
</tr>
<tr>
<td>Options</td>
<td>1493, 1494</td>
</tr>
<tr>
<td>Parameter</td>
<td>551</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>95</td>
</tr>
<tr>
<td>Reserved Names</td>
<td>A-172</td>
</tr>
<tr>
<td>Reset</td>
<td>1353</td>
</tr>
<tr>
<td>Resolution Optimized for Analyte</td>
<td>718</td>
</tr>
<tr>
<td>Resolution Response Surface</td>
<td>715</td>
</tr>
<tr>
<td>Response Factor</td>
<td>1405, A-174</td>
</tr>
<tr>
<td>Response Time</td>
<td>A-173</td>
</tr>
<tr>
<td>Response</td>
<td>A-173</td>
</tr>
<tr>
<td>Restore</td>
<td>225, 353, A-174</td>
</tr>
<tr>
<td>Backup Files</td>
<td>225</td>
</tr>
<tr>
<td>Calibration Data</td>
<td>353, 354</td>
</tr>
<tr>
<td>File</td>
<td>A-174</td>
</tr>
<tr>
<td>Ret. Time</td>
<td>1409, A-175</td>
</tr>
<tr>
<td>Retention Index</td>
<td>1407, A-174</td>
</tr>
<tr>
<td>Retention Time</td>
<td>1409, A-175</td>
</tr>
<tr>
<td>Calculate Difference</td>
<td>563</td>
</tr>
<tr>
<td>Correction</td>
<td>145, 1418, A-224</td>
</tr>
<tr>
<td>Defining</td>
<td>390</td>
</tr>
<tr>
<td>Deviation</td>
<td>A-176</td>
</tr>
<tr>
<td>Inject</td>
<td>1327</td>
</tr>
<tr>
<td>Interpretation</td>
<td>144, A-176</td>
</tr>
<tr>
<td>Peak Identification</td>
<td>385, 386</td>
</tr>
<tr>
<td>Relative</td>
<td>A-166, A-167</td>
</tr>
<tr>
<td>Spectrum</td>
<td>578, A-177</td>
</tr>
<tr>
<td>Use Recently Detected Ret.Time</td>
<td>1418, A-224</td>
</tr>
<tr>
<td>Window</td>
<td>516, 518</td>
</tr>
<tr>
<td>Retention Time Difference</td>
<td>563</td>
</tr>
<tr>
<td>Retention Window Width</td>
<td>A-177</td>
</tr>
<tr>
<td>Retention Window</td>
<td>502</td>
</tr>
<tr>
<td>Reverse Functions</td>
<td>540</td>
</tr>
<tr>
<td>Reversed-Phase HPLC</td>
<td>1170</td>
</tr>
</tbody>
</table>
Index

Review (Signature) ........... 103, 231, 234
RF Value ...................... A-177
RF1002 ......................... 820
RF2000
  Commands ...................... 818
  Gain .......................... 820
  Scan End ...................... 822
  Scan Procedure ............. 1189
  Scan Speed ................... 823
  Scan Start ................... 822
  Scan With Analog Output .... 823
  Scanning ..................... 821
  Sensitivity ................... 820
  Spectra Recording .......... 1190
Rheodyne (Commands/Properties) 1004
  RI-101 ......................... 1031
  RI-102 ........................ 1031
  RI-104 ........................ 1031
  Rider ......................... A-178
    Defining Rider Peaks ....... 406
    Front Riders to Main Peaks ...
      .................................. 1426, A-70
    Peak .......................... A-178
    Threshold ..................... A-179
  Rider Peak ..................... A-178
    Define ......................... 406
    Peak Type ................... 1416, 1417, A-222
    Rider Ratio ................... 406, 1433, A-111
    Rider Skimming .......... 406, 1446, A-179
    Rider Threshold .......... 406, 1448, A-179
    Right Limit .................. 1397, A-179
    Right Mouse Button ....... A-179
    Right Width ................ A-180
    Rinsing ........................ 1347
    Rise Time .................... A-180
    RPC ................................ 29, 30, A-181
    RS Modem Cable .............. A-114
    RS Null Modem Cable ..... A-122
    RS-232 Cable ................ A-114, A-122
    Modem Cable ................ A-114
    Null Modem Cable .......... A-122
    Pin Assignment .............. A-144
    RSD Match Factor ........... A-136
    RSD PPI ........................ A-149
    Ru .......................... 1416, 1448, A-178, A-222
    Run Time ..................... 339
    Running ........................ 1287
  RV Valves ..................... 1004
RW ........................... A-180

S

Sample ..................................... A-181
  Abort .................................. 1304
  Autopurification .............. 705, 1266, 1267
  Batch .............................. 101
  Calibration ........................ 416
  Comment .......................... 1270, 1388
  Compare .......................... 488
  Cooling ........................... 1233, 1234
  Data ................................. A-182
  Definition ........................ 96
  Dilution Factor ................ 1271, A-52
  Disable ........................... 416
  Dispense .......................... 1317, A-53
  Display Information ........... 305
  Enable ............................. 416
  Evaluation ........................ 102
  ID ........................... 206, 1272, 1285, A-78
  Inject ............................. 1165, 1166, 1227 - 1232
  Injection Time ................ 1273, A-82
  Injection Volume .............. 1274, A-84
  Name ............................. 1278, A-182
  Position ......................... 1281, 1344, A-183
  Preparation ...................... 95
  Printing ........................... 577
  Processing ........................ 95, 100, 101
  Query ............................. 242
  Rack ............................. A-157
  Repeat Output .................. 581, 583
  Report Variables .............. 1462
  Search Criteria ................ 242
  Spiked ........................... 470, A-202
  Status ............................ 203, 1287, A-183
  Type ............................. 1290, A-109, A-183
  Unspiked ........................ A-202
  Weight ........................... 204, 1293, A-184

Sample and Fraction Manager
  Commands ........................ 752, 755
  Fraction Collection ........... 760
  Injection ........................ 757
  Overlapping Areas ............ 758
  Tips .............................. 752
  Troubleshooting ................ 764
<p>| Sample Audit Trail                        | 94  |
| Sample Batch                             | 293 |
| Sample Comparison                        | 488 |
| Sample Definition                        | 96  |
| Sample ID                                | 206, 1272, 1285, A-78 |
| Sample Identification                     | 206, 1272, A-87 |
| Sample List                              | 97, 203, A-187 |
| Autopurification                         | 705 |
| Report Column                            | A-188 |
| Sequence                                 | 97, 98, A-187, A-188 |
| Unique Sample ID                         | 206 |
| Sample Name                              | 1278 |
| Sample Number                            | 1280 |
| Sample Overlap                           | 1151, 1176 |
| Sample Position                          | 1281, 1344, A-183 |
| Sample Preparation                       | 1151, 1774, 1238 - 1244 |
| Alliance 2790/2795                       | 1116 |
| AS Sample Prep Commands                  | 1151 |
| AS50 Sample Prep Commands                | 1151 |
| Defining Steps                           | 1174 |
| Delay                                    | A-48 |
| LC10A HPLC System                        | 1021 - 1025 |
| Overlap                                  | 1151, 1176, 1238 |
| Overlapping                              | 1176, 1177 |
| TSP AS3000/AS3500                        | 1046 |
| Vial Positions                           | 1176 |
| Sample Protocol                          | 94  |
| Sample Rack                              | A-157 |
| Sample Type                              | 203, 1290, A-25, A-109, A-183 |
| Sample Variable                         | 1265 |
| Comment                                  | 1270, 1388 |
| Dilution Factor                          | 1271, A-52 |
| Injection Time                           | 1273, A-82 |
| Injection Volume                         | 1274, A-84 |
| Name                                     | 1278, 1279, A-182 |
| Overview                                 | 1265 |
| Position                                 | 1281, A-183 |
| Status                                   | 1287, 1288, 1289, A-183 |
| Type                                     | 1291, A-183, A-184 |
| Weight                                   | 1293, A-184 |
| Sample Weight                            | 1293, A-184 |
| Sample Weight Factor                     | 1293 |
| Sample-Oriented Operation                | A-182 |
| SampleTempOk                             | 1233 |
| Sampling Rate                            | 1204, 1308, 1356, A-17, A-44, A-184, A-206 |
| Save                                    | 539, 574, 586 |
| Background Spectrum                      | 821, 822 |
| Report Definition File                   | 539, 586 |
| Report Template                          | 574 |
| Savitzky-Golay                           | 160 |
| Scale/Scaling                            | A-13, A-16 |
| Auto Autoscale                           | A-13 |
| Autoscale                                | A-16 |
| Scan Procedure (RF2000)                  | 1189 |
| Scan With Analog Output                  | 823 |
| Scanning                                 | 821 |
| ScanSpeed                                | 823 |
| Scheduler                                | 230 |
| Screen                                   | 171, 577 |
| Screening Spectra Library                | 516 |
| Script Button                            | 301 |
| Create                                   | 304 |
| Create Hidden Windows                    | 304 |
| SDK                                      | A-185 |
| Search (Query)                           | 239 |
| Second Loop Size                         | 770 |
| Security (Emergency Program)             | A-60 |
| Security Activation Tool                 | A-226 |
| Security Mode                            | A-227 |
| Segments                                 | A-157 |
| Select Optimum Integration Path          | 530 |
| Selected Ion Monitoring                  | A-196 |
| Self-Regenerating Suppressor             | A-209 |
| Semantics Check                         | A-31 |
| Sensirion                                | 746 |
| Sensitivity                              | A-186 |
| Detection Parameter                      | 404, 1450, A-187 |
| Detector                                 | A-187 |
| Modifying Peak Recognition               | 403 |
| Algorithm                                | 820 |
| RF1002/RF2000                            | A-187 |
| Signal Parameter                         | A-187 |
| Sensitivity Factor                       | 1453, A-212 |
| Separating Capability                    | A-173, A-215 |
| Separation Procedures                    | 95  |
| Sequence                                 | A-187 |
| Data                                     | A-188 |
| Display Column                           | 215 |</p>
<table>
<thead>
<tr>
<th>Display Information</th>
<th>306</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printing</td>
<td>579</td>
</tr>
<tr>
<td>Query</td>
<td>242, 244, 245</td>
</tr>
<tr>
<td>Report Column</td>
<td>214, A-188</td>
</tr>
<tr>
<td>Report Variables</td>
<td>1460</td>
</tr>
<tr>
<td>Sample Data</td>
<td>A-182</td>
</tr>
<tr>
<td>Sample List</td>
<td>97, 98, A-187, A-188</td>
</tr>
<tr>
<td>Save Manual Sequence</td>
<td>A-205</td>
</tr>
<tr>
<td>Search Criteria</td>
<td>242</td>
</tr>
<tr>
<td>Signed</td>
<td>A-200</td>
</tr>
<tr>
<td>Table</td>
<td>204</td>
</tr>
<tr>
<td>Wizard</td>
<td>99, 203, 205</td>
</tr>
<tr>
<td>Sequence Control Panel</td>
<td>315</td>
</tr>
<tr>
<td>Serial Detector</td>
<td>1390, A-48</td>
</tr>
<tr>
<td>Serial Number</td>
<td>13, 811</td>
</tr>
<tr>
<td>Server</td>
<td>A-189</td>
</tr>
<tr>
<td>Client</td>
<td>A-34</td>
</tr>
<tr>
<td>Configuration</td>
<td>A-190</td>
</tr>
<tr>
<td>Monitor Program</td>
<td>A-191</td>
</tr>
<tr>
<td>Network</td>
<td>28, 29</td>
</tr>
<tr>
<td>Server Configuration</td>
<td>A-190</td>
</tr>
<tr>
<td>Server Control</td>
<td>13</td>
</tr>
<tr>
<td>Server License</td>
<td>13</td>
</tr>
<tr>
<td>Server Monitor Program</td>
<td>A-191</td>
</tr>
<tr>
<td>Set Needle Height</td>
<td>770</td>
</tr>
<tr>
<td>Set Print Area</td>
<td>581</td>
</tr>
<tr>
<td>Set Print Title</td>
<td>581</td>
</tr>
<tr>
<td>SFM</td>
<td>752, 753, 755</td>
</tr>
<tr>
<td>Command</td>
<td>760, 761</td>
</tr>
<tr>
<td>Fraction Collection</td>
<td>757, 758</td>
</tr>
<tr>
<td>Injection</td>
<td>758</td>
</tr>
<tr>
<td>Overlapping Areas</td>
<td>758</td>
</tr>
<tr>
<td>Tips</td>
<td>752</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>764</td>
</tr>
<tr>
<td>Shape Shoulder</td>
<td>484</td>
</tr>
<tr>
<td>Sharable Device</td>
<td>A-191</td>
</tr>
<tr>
<td>Shared Relays and Inputs</td>
<td>A-192</td>
</tr>
<tr>
<td>Sharing Devices</td>
<td>1179</td>
</tr>
<tr>
<td>Shimadzu</td>
<td>1005 - 1030</td>
</tr>
<tr>
<td>LC-10A HPLC System</td>
<td>1005 - 1029</td>
</tr>
<tr>
<td>Shodex RI-Detectors (Commands)</td>
<td>1031</td>
</tr>
<tr>
<td>Shortcut Keys</td>
<td>34, 478</td>
</tr>
<tr>
<td>Shoulder</td>
<td>A-137</td>
</tr>
<tr>
<td>Peak Shoulder</td>
<td>A-137</td>
</tr>
<tr>
<td>Peak Shoulder Threshold</td>
<td>A-138</td>
</tr>
<tr>
<td>Show History</td>
<td>A-79</td>
</tr>
<tr>
<td>Shutdown Program</td>
<td>336</td>
</tr>
<tr>
<td>Signal</td>
<td>A-193</td>
</tr>
<tr>
<td>Acquisition On/Off</td>
<td>1305, A-6</td>
</tr>
<tr>
<td>Channel</td>
<td>A-31</td>
</tr>
<tr>
<td>Determine</td>
<td>1185</td>
</tr>
<tr>
<td>Name</td>
<td>A-193</td>
</tr>
<tr>
<td>Noise</td>
<td>A-119</td>
</tr>
<tr>
<td>Offset</td>
<td>A-124</td>
</tr>
<tr>
<td>Physical</td>
<td>A-193</td>
</tr>
<tr>
<td>Reserved Name</td>
<td>A-172</td>
</tr>
<tr>
<td>Signal-to-Noise Ratio</td>
<td>A-195</td>
</tr>
<tr>
<td>Slope</td>
<td>1315</td>
</tr>
<tr>
<td>Sound</td>
<td>1354, A-200</td>
</tr>
<tr>
<td>Virtual</td>
<td>A-193, A-235</td>
</tr>
<tr>
<td>Signal Name</td>
<td>A-193</td>
</tr>
<tr>
<td>Signal Noise</td>
<td>A-119</td>
</tr>
<tr>
<td>Signal Parameters</td>
<td>A-194</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1309, A-19</td>
</tr>
<tr>
<td>Bunch Width</td>
<td>1312, A-26</td>
</tr>
<tr>
<td>Display (MS Channel)</td>
<td>1192</td>
</tr>
<tr>
<td>Emission</td>
<td>A-61</td>
</tr>
<tr>
<td>Excitation</td>
<td>A-62</td>
</tr>
<tr>
<td>Modify</td>
<td>1186, 1187, 1188</td>
</tr>
<tr>
<td>Range</td>
<td>A-159</td>
</tr>
<tr>
<td>Response</td>
<td>A-173</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>A-187</td>
</tr>
<tr>
<td>Signal</td>
<td>A-193</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1373, A-238</td>
</tr>
<tr>
<td>Signal Plot</td>
<td>68, 1137, A-13, A-16</td>
</tr>
<tr>
<td>Auto Autoscale</td>
<td>A-13</td>
</tr>
<tr>
<td>Autoscale</td>
<td>A-16</td>
</tr>
<tr>
<td>Pop-Up</td>
<td>304</td>
</tr>
<tr>
<td>Printing</td>
<td>1137</td>
</tr>
<tr>
<td>Signal Property</td>
<td>A-49</td>
</tr>
<tr>
<td>Signal Value at Peak End</td>
<td>A-195</td>
</tr>
<tr>
<td>Signal Value at Peak Start</td>
<td>A-195</td>
</tr>
<tr>
<td>Signal Window</td>
<td>A-13, A-16</td>
</tr>
<tr>
<td>Auto Autoscale</td>
<td>A-13</td>
</tr>
<tr>
<td>Auto Plot Speed</td>
<td>A-13</td>
</tr>
<tr>
<td>Autoscale</td>
<td>A-16</td>
</tr>
<tr>
<td>Signal-to-Noise Ratio</td>
<td>A-195</td>
</tr>
<tr>
<td>Signature</td>
<td>103, 231, A-58</td>
</tr>
<tr>
<td>Checking the Status</td>
<td>237</td>
</tr>
<tr>
<td>Electronic</td>
<td>103, 231 - 233, A-58, A-59</td>
</tr>
<tr>
<td>Repeat Output</td>
<td>581, 583</td>
</tr>
<tr>
<td>Steps</td>
<td>234</td>
</tr>
<tr>
<td>Undo</td>
<td>239</td>
</tr>
</tbody>
</table>
Signed Off Results .................................. A-200
Signed Sequence .................................. A-200
SIM ............................................... 625, A-196
SIM Mass .......................................... 616, 625, 634
Simulation ........................................ 306, A-50
Simultaneous Injection .......................... 1151, 1177
Single ............................................. 1287, A-183
Single-Point Calibration ........................ A-197
Single-User System ............................... 29
Skewness .......................................... A-12, A-197
Skimming .......................................... 1446, A-179
Skimming Peak .................................. 1448, A-178
Slope .............................................. A-27, A-177, A-198
Ascending Slope ................................... A-177
c1 (Calibration Variable) ....................... A-198
Calibration Coefficients ......................... A-27
Calibration Curve ................................ A-177
Calibration Functions ............................ A-27
Signal ............................................... 1315
SLS .................................................. 516 - 522, 1488
SmartStart Wizard ................................. 52, A-198
Chromatography System ........................... 281
Equilibration Conditions ......................... 283, 284
Equilibration Program ............................ 332
Start Equilibration ................................ 285
Timebase Selection ................................ 282
Smoothing ......................................... 160, 493, A-198
Snap to Grid ...................................... A-199
Sodium Correction ................................. 371
Software Development Kit ....................... A-185
Software License .................................. A-91
Dongle ............................................. A-54
Evaluation Mode .................................. A-61
Key Code .......................................... A-91
PAL .................................................. A-131
Solvent .............................................
Components ....................................... 1298, 1301, 1302, A-3
Composition ....................................... 1132, 1298, 1301, A-3
Mixture ............................................. A-90
Type ............................................... 1298, 1301, 1302, A-3
Warning Limit ..................................... 1303
SOR File ........................................... A-200
Sound ............................................... 1354, A-200
SP ..................................................... 738, 743
SP80 ................................................. 1238
SP81 ................................................. 1241
SP82 ................................................. 1242
SP83 ................................................. 1243
SP84 ................................................. 1244
Special Commands (Control) ................. 1246
Special Reports ................................. 177
Spectra ............................................. 507
Calibration ......................................... A-238
Comparing ......................................... 514
Derivatives ....................................... 511
Display ............................................. 507, 508
Display Single .................................... 508
Extract ............................................. 532
Match Factor ....................................... 511
Normalization ..................................... A-120
Overlay ............................................. 508
Peak Identification .............................. 387, 388
Reference ......................................... 1403
Remote Input ..................................... A-172
Signal Names ..................................... A-172
Wavelength ........................................ A-173, A-238
Spectra Comparison .............................. 514, 516, 1415
Reference Spectra ................................ 516
Threshold .......................................... 1415
Spectra Difference ............................... 821
Spectra Library .................................... 191, 512, A-200
Comparing Spectra ................................ 514
Create ............................................. 512
Report Category .................................. 1491
Screening ......................................... 151
Use ................................................... 513
UV Spectra Search ............................... 516, A-200
Spectra Library Screening .................... 151, 516
Enter Criteria ..................................... 518
Report Variables ................................. 1488
UV Spectra Search ............................... 516
View Results ...................................... 521
Spectra Library Search ........................... 1488
Spectra Overlay ................................... 527
Spectra Plot ....................................... 164, 507, 508, 511, 516
Spectra Recording (RF2000) ................. 1190
Spectra Search ..................................... 516
Hit Criteria ....................................... A-81
Start ............................................... 516, 521
Spectra Tool ...................................... 508
Spectrum at Peak Maximum ................. A-177
Spectrum Data ..................................... 1489
Spectrum Derivative .............................. 516
Spiked Sample.......................... 470, A-202
Spikes.......................................... 401
Split Flow...................................... 1142
Split Valve Control.................. 981
Splitter Identification............. 803
SQL............................................. 4-203
SQL Statements.......................... 251
SRC............................................ 210, A-188
SRS............................................... 1205, 1208, A-209
SRS-MPIC.......................... 1205, 1211, A-209
SSC........................................... 130, 151, 1480, A-211
  Define.................................. 371
  Example............................... 377, 379
  Modify................................... 377
Printer Layout......................... 381
Report...................................... 381, 548, 549
Test Results............................. 381
Validation.................................. 130
Wizard..................................... 372, 374, 376
SST........................................... 130, 151, 1480, A-211
  Define.................................. 371
  Example............................... 377, 379
  Modify................................... 377
Printer Layout......................... 381
Report...................................... 381, 548
Test Results............................. 381
Validation.................................. 130
Wizard..................................... 372, 374, 376
Stack........................................ 490
Standard..................................... 1412, A-203
  Calibration Curve.................... 470
  Disable.................................. 470
  External................................  A-203
  Institutes............................... A-85, A-86
  Internal................................ A-203
  Internal (ISTD)........................ A-89
Old Standard........................... 423
QNT Editor................................ 410
Sample Type............................ 1290, A-183
Standard Addition.................... 425
Variable ISTD........................... 447
Standard Addition................. 118, 425, A-203
Standard Addition Group............ 1286
Standard Datasource.................. A-205
Standard Deviation................... A-206
  Calibration Variable............... A-206
  Match Factor.......................... A-136
  Relative............................... A-167
  RSD PPI................................ A-149
  Standard Method..................... 113, 1412, A-203
  Standard of Comparison........... A-108
  Standardization..................... 164, 167
  Standby Mode......................... 1353
  Start................................... 38
  Start Program.......................... 39
  Start Signal........................... A-169
  Start Wavelength (Scan)............ 822
  Startup.......................... 52, 281 - 285, A-198
  State (Relay)......................... 1257
  Status.................................. 1182, 1287, A-183
  AS......................................... 1182
  AS50.................................... A-118
  Sample Variable.................... A-118
  Signature............................. 103, 237 - 239
  Status Bar............................. A-206
  Status Channel........................ 1248
  Status Check (Fraction Collection).... 679
  Std. Add. Group...................... 1286
  Step..................................... 405, 1356, A-206
  Average............................... 1308, A-17
  Define.................................. 1204
  Maximum (Auto)....................... 1336
  Sampling Rate......................... A-184
  Step Gradient......................... A-74, A-207
STH585
  Column Temperature Control .... 1235
  Commands................................ 790
  Stop Flow............................. 1342, 1359, A-207
  Storage Requirement................ 88
  Structured Query Language........ A-203
  Submit (Signature).................. 103, 231, 234
  Sub-Programs (Chromeleon)......... 9
  Sub-Window............................ 304
  Substance............................. 1376, A-9
  Amount.................................. 1376, A-9
  Concentration....................... A-37
  Relative Amount..................... A-164
  Subtraction.......................... A-25
  Blank Run............................. 408, 409, A-25
  MS Background Spectra............ 499, 640
  UV Background Spectra............. 499, 509
  Sub-Window............................ 304
I-40 Index

Suck ...................................... 1318, A-55
Sucked...........................................A-160
Sum of Two Channels..................... 1248
Summary Table............................... 1482
Summary............................ 175, 544
Summit HPLC System ..........A-208
  AutoQ...................................... 125
  SmartStart Wizard......................... 52
  Summit x2 HPLC System ..........A-209
  Bypass Mode 321 - 323, A-26
  Tandem Operation 319, 320, 321
  Suppressor 1205 - 1213, A-209
Surveyor MSQ
  Actions ................................. 611
  Commands ................................. 1034
  Create Channels ........................ 616
  Create Method .......................... 614
  Create MS Program 611
  Create Sequence .......................... 611
  Defining QNT Settings 642
  Mass Trace Extraction 632 - 636
  Noise Reduction .......................... 639
  Properties ............................... 1034
  Reprocessing Mass Spectra 639
  Show Mass Spectra .......................... 637
  Troubleshooting .................................. 1036
Syntax Check ............................. A-31
Syringe ........................................ A-210
Syringe (ASI-100 Series) .............. 1170
Syringe Speed ............................. 770
Syringe Type ............................. A-210
System Commands .......................... 733, 734
System Control .......52, 281 - 285, A-198
System Flow .................. 1259
System Requirements .................. 27
System Suitability Checking ..........151, 1480, A-211
  Define ....................................... 371
  Example ..................................... 377, 379
  Modify ......................................... 377
  Printer Layout 381
  Report ........................................ 381
  Test Results 381
  Wizard ....................................... 372, 373, 374, 376
System Suitability Test ............ 130, 151,
  ........................................... 1480, A-211
  Define ....................................... 371
  Example ..................................... 377, 379
  Modify ......................................... 377
  Printer Layout 381
  Report ........................................ 381
  Test Results 381
  Wizard ....................................... 372, 373, 374, 376
System Wellness ............ 352, A-211
  HPLC Devices .............................. 133
  IC Devices 131, 352 - 355, 370, 371

T

Table ........................... 553, 555, A-225
  Printer Layout ........................... 553, 555
  Repeat Output .......................... 581, 583
  User-defined Columns A-225, A-226
  Table Editor ............................... 42
  Tailing Sensitivity Factor 1453, A-212
  Tailing 405, 1453, A-100, A-212
  Tandem Operation ........................ A-212
  Defining Gradients ........................ 319
  Program Example ........................... 340
TCC-100
  Column ID Properties 794
  Column Temperature Control 1235
  Commands ................................... 790, 791
  TCD (6890/6850) ......................... 923
  TCP/IP ............................................. 291
  Temperature 1233, 1236
  Autosampler 1233
  Column 1235, 1236, 1237, A-36
  Control 1225, 1232, 1234
  Control On/Off 1232
  Column Temp. Control 1235
  Temperature Compensation Factor A-215
  Temperature Control 1225, 232 - 235
  Template ................................. A-215
  Create ................................. 45, 46
  Open ........................... 45, 46
  Printer Layout ........................... 181, 182
  Terminate .................................. 1304
  Batch ................................. 1304
  Sample ....................................... 1304
Index I-41

Test (System Performance) ............... 371
Testing ....... 151, 368 - 370, 1480, A-211
Text ................................................... 573
Text Format....................................... 586
Theoretical Plates .................... A-215
Thermo Finnigan ................. 1033
  AI3000 ....................................... 1045
  AS2000 ......................................... 947
  AS3000 ....................................... 1045
  Autosampler ................. 1045, 1046
  Commands and Tips............... 1033
  Focus GC................................. 1041
  Gas Chromatograph........... 1041 - 1044
  Trace GC .......................... 1041 - 1044
ThermoQuest .......................... 946, 1033
Thermostatted Column Compartment .........
  Column Temp........ 1235, 1360, A-36
  FLM ........................................... 797, 801, 803
  STH585 ........................................ 790
  TCC ........................................ 791, 794
  Third-Party Devices ............. 24, 843
  Third-Party Devices (License) 17, 18, 20
  Threshold .......................... 1415, 1448, A-179
  Rider .......................... 1448, 1449, A-179
  Spectra Comparison ................. 1415
  ThresholdDoNotResolve ............ 658
  ThresholdNoPeakEnd ............... 655
  TIC ................. A-108, A-216
  Time ................. 1273, A-82, A-217
  Timebase ................. 13, A-217
  Select (System Startup) ........ 282
  Class 1 License ............... 17
  Class 2 License ............... 18
  Class 3 License ............... 20
  Command Button ................. 303
  Toolbar ................. 39, A-218
  Total .......................... 452
  Calibration .................. 417, 452 - 456
  Calibration Mode ............. 452, 1378, A-28
  External Calibration .......... 452
  Total Flow ......................... 1322
  Total Ion Current .............. A-216
  TQ .......................... 1033
Trace
  MS ........................................... A-108
  GC .................... 1041, 1043, 1044
  Tracking .................. 148, 386, 388
  Fraction Collection........... 682, 684, 685
  MS .......................... 148 - 150, A-38
  Peak .................. 148 - 150, 386, 387
  Transaction Agent .............. A-218
  Transducer ............................... 358
  Transfer (OTA) ................. A-126
  Transfer (Sequence) ............ 227
  Transfer Agent ................. A-126
  Transistor-Transistor Logic .... A-221
  Transmission ........................ A-219
  Tray Type .............................. 770
  Tray View ............................ 169, 708
  Treatment (Void Volume) ........ 1455
  Trend Decoration ................. 571
  Trend Plot ......................... 69, A-219
  Trend Plot (Printer Layout) .... 571
  Trending ............................ A-219
  Trigger ......................... 1361
  Autopurification ................. 697
  Autozero ......................... 1307
  Branch ......................... 1310, 1311
  Delay ............................ 1314
  Finish ............................ 1320
  Trigger Commands ... 1251, 1361, A-220
Troubleshooting
  Agilent ......................... 896
  CTC PAL Sampler ................ 945
  Fisons ............................... 949
  Sample and Fraction Manager .... 764
  Thermon Finnigan ........... 1036, 1057, 1061
  ThermoQuest ................. 949
  TQ .......................... 1036, 1057, 1061
  TSP .......................... 1036, 1057, 1062, 1067
  Varian GCs ................. 1083, 1095
  Waters ................. 1122 - 1126
  True ......................... 1361, A-220
  TSP ................................. 1033
  AI3000 .......................... 1046
  AS3000 .......................... 1046, 1057
  AS3500 .......................... 1046, 1057, 1058
  Commands ......................... 1033
  FL2000 .......................... 1062, 1066, 1067
  FL3000 .......................... 1062, 1066, 1067
  P2000 .......................... 1058
  P4000 .......................... 1058
  Tips ................................. 1033
UV1000............................ 1054, 1057
UV2000............................ 1055, 1057
UV3000............................ 1056, 1057
UV6000 PDA ................... 1059, 1061
TTL .....................................1256, A-221
TTL Input Mode............................ A-221
TurboMatrix Headspace Sampler
 Commands.................................... 986
 Injection Modes............................ 995
 Operating Modes........ 997, 998
 Options..................................... 988
 Oven ......................................... 993
 Pressure .................................... 993, 994
 Program Example............................ 997
 State.............................................. 987
 Temperatures............................... 990
 Time Programs.............................. 992
 Tips ............................................ 986, 1000
 Two-Position Valve (Valco) ........... 1068
 Type ............................................ 1416, A-222
 Autopurification ......................... 1268
 Peak Result Variable ... 1416, A-222
 Peak Type .................................... 1416, A-222
 Sample Type .............................. 1290, A-183
 Sample Variable ............................ 1290, A-183
 Solvent Type .......... 1299 - 1302, A-3

U

UCI.................................... A-191, A-222
UDC .............................................. A-225
Create ........................................... 207
Example ....................................... 561
UI20 Universal Interface ........ A-223
UltiMate
 Columns .................................... 748
 CRP Value .... 1259, 1260, 1261
 Peak Parking .................. 1140, 1141
 Pump .......................... 746, 747, 748
 UltiMate 3000 ................ A-223
 Undo............................................ 37
 Unidentified Peaks ........ 407
 Unique Sample ID ...... 206, 1272, A-78
 Unit ............................................ A-217
 Unit Conversion ...................... 343

Unix ................................................... 30
Unknown.................................. 1290, A-183
Unspiked Sample ................. A-202
Unstable Substances .......... 428, 1248
Upload Calibration Data .............. 354
Upper Limit (Pressure) ....... 1345, A-150
Upward Rider......................... A-70
Use Recently Detected Retention Time
 ........................................... 143, 1418, A-224
Use Sample Amount as Reference.... 447
User Account.......................... A-6
User Database ......................... A-224
User Help.............................. 1, 2, 4, 6
User Information .................. 1492
User Interface ....................... 26, 39
User Management................. A-226
User Manager......................... A-226
User Manager Logon ...... A-100, A-134
User Manual......................... 1, 4
User Mode ......................... A-227
User Profile ......................... 43
User Rights ......................... A-152
User-defined Columns .......... A-225
Create ........................................... 207
Example ....................................... 561
Program ............................. 344, 345, 346
User-defined Formulas........ 556
Example ....................................... 560
Flexible ...................... 565, 567
Printer Layout ...................... 556
UV Background Spectra ......... 499, 509
UV Channels ....................... 509
UV Cutover ......................... A-228
UV Detector ............. 807, A-228
Agilent ........................................ 863
Dionex ......................... 807 - 818
Gilson ........................................... 956
Lamp ........................................... 1329
Lamp Age ......................... 1330, A-92
Lamp On/Off .......... 1329, 1331, A-92
LampIgnitions ......... 1331, A-92
LampIntensity .... 1332, 1338, A-93
MinLampIntensity .......... A-114
Reference Wavelength .... 1349, A-164
TSP .................................. 1054 - 1061
UV Lamp ..................... 811, A-230
UV Spectra................. 152, 508, A-200
Background Subtract........ 509 - 511
QNT Editor......................... 152
UV Spectra Plot............... 164
UV1000.................. 1054, 1057
UV2000.................. 1055, 1057
UV205.................... 1055
UV206.................... 1056
UV3000.................. 1056, 1057
UV6000.................. 1059, 1061
UVD.................. A-228
170U/340U / 170S/340S ........ 808
Commands.................. 1183, A-92
Dionex Detectors........ 807, 815, 817
Valco.......................... 1068
Valco Multi-Position Valve.. 1068
Valco Two-Position Valve.. 1068
Validate.................. 1290, A-183, A-231
Validation.................. 123, 351, A-231
Calibration.................. 472
Operational Qualification.. 127
Performance Qualification.. 127
System Suitability Test... 130
Validation Sample......... 467, A-231
Amount.................. 467, 468
Calibration Curve........ 470
Concentration................. 467
Valley to Valley........ 1454, A-232
Valves..................... 837, 1004
CC81.................. 1241
CC82.................. 1242
CC83.................. 1243
CC84.................. 1244
External MSV.............. 837
Rheodyne.................. 1004
Valco.................. 1068
Variable (Printer Layout) .. 572
Variable Run Time........... 339
Variables (Report Variables List) ....... 1457 - 1492
Varian.................. 1069
3400 GC................. 1084 - 1095
3600 GC................. 1084 - 1095
3800 GC................. 1070 - 1083
Variance................  A-232
Variance Coefficient......  A-233
VCD.................. A-233
Vials................... 766, 789, 1176
AS.................. 770, 1176
AS50.................. 770, 1176
ASI-100 Series.......... 766
GINA 50.................. 789
Virtual Channel Driver....  A-233
Virtual Channels........ 528, 1246, 1248
Peak Inhibition........... 528
Program Examples.......... 1248
Virtual Column...........349, 709, A-234
Chromatogram Description........ 717
Column Quality Assurance.... 724
Eluent Composition........ 727
Eluent Selection.......... 725
Fastest Chromatogram...... 722
Global Optimum............ 723
Modeling Gradient Separations..... 727
Overview................ 709
Parameter Selection........ 711
Product Test Conditions... 726
Reloading Settings........ 724
Resolution Criterion...... 724
Resolution Response Surface.... 715
Results Table........... 715
Saving Settings........... 726
Virtual Driver................ A-233
Virtual Mode................ A-50
Virtual Signals........... A-235
Visible Lamp............... 811, A-236
Void Volume............... A-48
Void Volume Treatment..... 1455
Volatile................. 908
Voltage.................. 723
Voltammetry................ A-43, A-236
Voltammogram............. A-236
Volume.................. 1367
Inject Command.......... 1327, A-82
Injection Volume.......... 1274, A-84
WasteLevel................. 1370
WasteLevelWarning........ 1372
WasteRemainTime.......... 1371
Wait........................... 1327, 1368, A-236
WAN....................................... 28, 29, 30
Wash ............. 1341, 1369, A-117, A-237
WasteLevel ....................... 1370, 1372
WasteLevelWarning............ 1372
WasteRemainTime................. 1371
Water Peak (Negative)........... 1455
Waters
2487 UV Detector ............ 1121, 1122
2996 PDA............................. 1120
717plus............................... 1118
996 PDA............................... 1119
Alliance 2690 ..................... 1103
Alliance 2695 ..................... 1098
Alliance 2790/2795 ...........1104 - 1116
AutoQ................................... 125
Commands.......................... 1097
Troubleshooting............... 1122, 1125
WAV File......................... 1354, A-200
Wavelength ..................... 1373, A-238
Autozero........................... 1307
Emission.......................... 819, A-61
Excitation.......................... 819
Maximum.................... 1401, 1404
Minimum.......................... 1401
Reference Wavelength ...1349, A-164
Switching ....................A-238, A-239
Verification..................... 369
Wavelength Calibration ........360,
......................................A-228, A-238
Wavelength Check ..........369, A-81
Wavelength Switching ........A-238
Determine.......................... 1188
Select Optimum Integration Path 530
Wavelength Verification ....... 369
Weight............................ 1293, A-184
Weighted Least Squares ......1399, A-108
Weighting...................... 413, 1381, A-239
Weights......................... A-239
Wellness......................... 352, A-211
HPLC Devices............... 133
IC Devices ... 131, 352 - 355, 370, 371
WIBU Key ......................... A-54
Width................................. A-240
Left.................................. A-95
Maximum............... 1435, A-111
Minimum ............ 401, 1438, A-113
Right.......................... A-180
Window ..................... 1420, A-241
Cascade..................... A-30
Create......................... 45
Hidden......................... 304
Open............................ 45
Pop-Up......................... 304
Working....................... 40, 42
Window Width............... A-177
Windows ....................... 10
Browser.......................... 74
Control Panel................. 66
Integration Window .......... 154
Method Window.................. 41
PGM Editor...................... 55
QNT Editor .................. 140, 141
Table Editor .................... 42
Time Window .................. 386
Windows 2000 ................. 28, A-116
Windows Network .............. 30
Windows XP..................... 28, A-116
Wizard ......................... 240, 246, A-241
Working Rules ................. A-33
Working with Windows ...... 40, 42
Worklist Format............... A-242
Worklist ..................... A-97, A-242
Workload ...................... A-42
Cumulated................ A-42
Pump............................ 1140
Worksheet ....................... 569
Add............................... 541
Create.......................... 570
Edit............................. 570
Rename......................... 541
Workspace ..................... 43, A-248
WPS-3000
Commands .................... 774 - 782
Program Examples ...... 1157
WSP File......................... 43, A-248
Window Width............... A-177
Windows ....................... 10
Browser.......................... 74
Control Panel................. 66
Integration Window .......... 154
Method Window.................. 41
PGM Editor...................... 55
QNT Editor .................. 140, 141
Table Editor .................... 42
Time Window .................. 386
Windows 2000 ................. 28, A-116
Windows Network .............. 30
Windows XP..................... 28, A-116
Wizard ......................... 240, 246, A-241
Working Rules ................. A-33
Working with Windows ...... 40, 42
Worklist Format............... A-242
Worklist ..................... A-97, A-242
Workload ...................... A-42
Cumulated .................. A-42
Pump............................ 1140
Worksheet ....................... 569
Add............................... 541
Create.......................... 570
Edit............................. 570
Rename......................... 541
Workspace ..................... 43, A-248
WPS-3000
Commands .................... 774 - 782
Program Examples ...... 1157
WSP File......................... 43, A-248
X

XC ......................................... 611, A-249
Xcalibur ................................611, A-249
Xpress .............................................A-33

Y

Year 2000......................................A-249

Z

ZIP Drive ........................................220
Zoom ........................................... A-250
  Chromatogram.................. 478, 479, 480
  Overview ......................... A-131