ProSightPC®

User Guide

XCALI-97172

July 2006

© 2006 Thermo Electron Corporation. All rights reserved.

ProSightPC, Sequence Gazer, and PTM Warehouse are registered trademarks of The Board of Trustees of the University of Illinois.

Celeron and Pentium are registered trademarks of Intel Corporation in the United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.

RESID is a registered trademark of John Garavelli.

The procedure THRASH is based on routines in *Numerical Recipes: The Art of Scientific Computing*, Published by Cambridge University Press, and are used by permission.

All other trademarks are the property of Thermo Electron Corporation and its subsidiaries.

This document is provided to customers who have purchased Thermo Electron Corporation equipment to use in the operation of such Thermo Electron Corporation equipment. This document is copyright protected and any reproduction of this document or any part of this document is strictly prohibited, except as Thermo Electron Corporation may authorize in writing.

Technical information contained in this publication is for reference purposes only and is subject to change without notice. Every effort has been made to supply complete and accurate information; however, Thermo Electron Corporation assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use of this manual or the information contained therein (even if this information is properly followed and problems still arise).

This publication is not part of the Agreement of Sale between Thermo Electron Corporation and the purchaser of an LC/MS system. In the event of any conflict between the provisions of this document and those contained in Thermo Electron Corporation's Terms and Conditions, the provisions of the Terms and Conditions shall govern.

System Configurations and Specifications supersede all previous information and are subject to change without notice.

Printing History: Revision A released in July 2006

Software Version: 1.0

Contents

Preface	vii
About This Guide	vii
0	
Changes to the Manual	
Top-Down Proteomics	
Introduction to Proteomics	2
Shotgun Annotation	
Search Modes and the Top-Down Funnel	4
Installing the Software	7
Hardware Requirements	
Software Requirements	8
Installing ProSightPC	9
Understanding ProSightPC	23
ProSightPC Overview	
The PTM Warehouse	
Secondary Applications	25
File Types	25
Fixed Modifications	25
Navigating the Program	27
The Organization of the Interface	
Data Grid	
Tab Controller	29
Job Queue	29
The Menu Bar	
	About This Guide Safety and Special Notices

The Grid Preferences Tab	
Show Columns	
Row Filters	
The Options dialog box	35
General Preferences	
Grid Columns	
THRASH Preferences	
Search Parameters	

Chapter 5	Importing MS/MS Data	
	Analysis to Infer Mass	46
	Selecting an AIM	
	Entering Mass Values	
	THRASH Method	
	XTRACT Method	
	Manual Entry Method	50

Chapter 6	Search Modes	53
	About Search Modes	54
	Adding A Search	55
	Absolute Mass Search	
	Parameters	57
	Advice on Use	58
	Sequence Tag Search	59
	Compilation	59
	Search	59
	Parameters	59
	Advice on Use	60
	Biomarker Search	61
	Parameters	61
	Advice on Use	62
	Predefined Searches	63
	Predefined Search Manager	
	Remove Predefined Search	66
	Add A Predefined Search	
	Advanced Searches	
	Gene-Restricted Absolute Mass Search	
	Parameters	
	Gene-Restricted Biomarker Mass Search	69
	Parameters	69
	MS/MS Experiments	
	Δm Mode Demystified	70
	Interpreting the Output	71

Chapter 7	Sequence Gazer and Single Protein Searches	73
-	About Sequence Gazer	74
	Accessing Sequence Gazer	
	Navigating Sequence Gazer	
	Search Parameter Display	
	Scores Box	
	Fragments Explained Box	
	Mass Diagram	
	Interactive Fragment Map	
	Amino Acid Information Box	
	Fixed Modifications Box	
	Matching Fragment Table	
	Nonmatching Fragments Table	
	Using Sequence Gazer	

Chapter 8	Understanding the Data Manager	85
	About Data Manager	86
	Display Controls	
	Data Manager Organization	87
	Instrument Data	87
	Search Data	89
	Building Gene-Restricted Searches from a Results List	92
	Building a New Gene Restricted Search	93
	Data Manager Organization Instrument Data Search Data Building Gene-Restricted Searches from a Results List	

Chapter 9	Proteome Databases	95
	The PTM Warehouse	96
	About Proteome Databases	97
	Internal Database Names	97
	Importing Data into the PTM Warehouse	97
	The Database Manager	98
	Database Manager Organization	
	Import a Proteome Database	100
	Export a Proteome Database	102
	Create a Proteome Database	103
	Accessing Create Proteome Database	103
	Organization of Create Proteome Database	103
	Creating a Proteome Database	105
	Remove a Proteome Database	106
	Change View	107
	ProSightPC Proteome Database Tools	108
	Individual Sequence Adder	108
	View Database Information	110

Chapter 10	Noise Reducer	111
	About Noise Reducer	112
	Accessing Noise Reducer	113
	Using Noise Reducer	
	Interpreting the Result	
	Deleting Spurious Fragments	
Chapter 11	PTM Tier Editor	117
•	About PTM Tier Editor	
	Accessing PTM Tier Editor	
	Including and Excluding PTMs	
	Included PTMs	
	Excluded PTMs	
	Moving PTMs Between Tiers	121
	Excluding Included PTMs	
Chapter 12	Manage Data	123
•	Complex Data Analysis Tasks	
	Batch Processing	
	Reports	
	Experiment Manager	
Chapter 13	Fragment Predictor	129
enapter re	Accessing Fragment Predictor	
	Entering A Sequence	
	Interpreting the Output	
Chapter 14	Font Converter	135
•	About Font Converter	
	Accessing Font Converter	
	Using Font Converter to Convert Fonts	
	Index	141

Preface

About This Guide

Welcome to ProSightPC[®] 1.0. The ProSightPC suite provides you with an extensive array of tools for the identification and characterization of proteins. Additional tools enable you to create, edit, and save the results of your analyses.

This guide describes the ProSightPC suite, additional ProSightPC applications, as well as the methods for identifying and characterizing proteins. Along with a thorough review of all functions and options, this guide provides helpful advice and tips on how to use ProSightPC to optimize day-to-day use of the software suite.

Safety and Special Notices

Follow the precautionary statements presented in this guide. The safety and other special notices appear in boxes.

Safety and special notices include the following:

CAUTION Highlights hazards to humans, property, or the environment. Each CAUTION notice is accompanied by an appropriate CAUTION symbol.

IMPORTANT Highlights information necessary to avoid damage to software, loss of data, invalid test results, or information critical for optimal performance of the system.

Note Highlights information of general interest.

Tip Helpful information that can make a task easier.

Contacting Us	There are several ways to contact Thermo Electron.		
Assistance	For new product updates, technical support, and ordering information, contact us in one of the following ways:		
	Visit Us on the Web		
	www.thermo.com/finnigan		
	Contact Technical Support		
	Phone: 1-800-685-9535 Fax: 1-561-688-8736 techsupport.finnigan@thermo.com		
	Contact Customer Service		
	In the US and Canada for ordering information:Phone:1-800-532-4752Fax:1-561-688-8731		
	International contacts for ordering information: Visit www.thermo.com/finnigan for the current listing,		
Changes to the Manual	To suggest changes to this guide, use either of the following methods:		
	• Fill out a reader survey online at www.thermo.com/lcms-techpubs		
	 Send an e-mail message to the Technical Publications Editor at techpubs.finnigan-lcms@thermo.com 		

Chapter 1 Top-Down Proteomics

Top-down proteomics is a powerful technique for protein identification and characterization.

This chapter provides an overview of top-down proteomics. It contains the following sections:

- Introduction to Proteomics
- Search Modes and the Top-Down Funnel

Introduction to Proteomics

Top-down proteomics is a rapidly emerging solution to the problems of protein identification and characterization. Unlike other proteomic techniques, in top-down proteomics the unknown proteins are not digested into peptides prior to tandem mass spectrometry. The primary advantage of this technique is that full sequence coverage on every protein is guaranteed. This enables complex combinations of post-translational modifications (PTMs) to be easily characterized.

Separation and ionization of intact proteins present many challenges beyond the scope of this manual. The bioinformatics of top-down proteomics, though, does have some challenges that ProSightPC addresses. First, because the precursor ions are large, they are almost always multiply charged. This complicates spectral comparison techniques used in certain other proteomic strategies. Fortunately, this issue can be avoided by doing all comparisons with neutral masses. Once MS and MS/MS spectra are collected, sum the relevant scans, then run an automated analysis to infer mass using the resulting mass values for protein identification and characterization. Second, because the precursor mass can represent either a highly modified protein or an internal fragment of the intact protein, no single strategy of comparing the observed mass values to a proteome database is guaranteed to identify the protein. For this reason, ProSightPC provides the following search modes:

- Absolute mass
- Biomarker
- Sequence tag
- Gene restricted

Each search mode overcomes the different issues of protein identification and characterization.

The fundamental unit of analysis in top-down proteomics is the MS/MS experiment. In this experiment, intact precursor protein molecules are ionized and subjected to mass spectrometry. A single peak (usually representing one charge state of the unknown protein, but sometimes representing a small number of isobaric proteins) is isolated and subjected to fragmentation. The accurate mass measurement of the resulting MS/MS fragment ions provides the second vital piece of information. This MS and MS/MS mass data is then compared to prior information about protein sequences and known or predicted PTMs in order to identify and characterize the unknown protein **Note** ProSightPC includes the RESID[®] database. All post-translational modifications are identified to the system by a truncated form of their RESID identification number. ProSightPC removes leading zeros and the letters AA from the start of a RESID identifier. This identifier is placed in parenthesis before the amino acid containing the modification. Thus, AA0049 N-acetyl-L-methionine becomes 49, and an acetylation of a methionine residue in a protein sequence is expressed as (49)M.

Shotgun Annotation ProSightPC relies on shotgun annotation of PTM information.

This process takes PTM events on a single protein and precalculates all possible combinations, regardless of whether the particular combination has ever been observed.

If, for example, a given protein is known to have only four phosphorylation sites and no other modifications, during shotgun annotation a record is entered into the proteome database for the base sequence with no PTMs. ProSightPC also enters

- Four records for the four protein forms, each containing one modification
- Six records for the possible combination of two phosphorylations
- Four records for the three triphosphorylated forms
- One record for the form with all four possible phosphorylations

All of these combinations are processed, even if the phosphorylation events have only been observed separately.

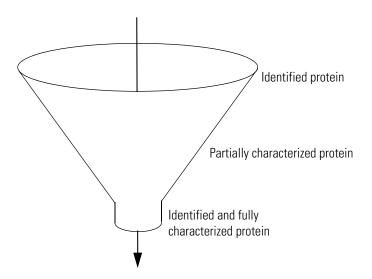
The advantage of this technique is if one of the multiphosphorylated forms occurs in nature and is observed in an MS/MS experiment, it will be readily identified.

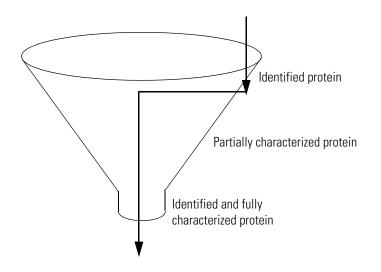
Unfortunately, this also means the number of records needed to describe a protein in a shotgun annotated database grows as 2 to the power of n, where n is the number of modifications on the protein. This growth rate means it is impractical to store all possible forms for highly modified proteins. ProSightPC overcomes this limitation by first determining if the protein is going to need more than 1,000 records to fully describe it. If it does, then ProSightPC prioritizes the protein forms, storing only those forms most likely to lead to protein identification.

Search Modes and the Top-Down Funnel

In all but the most exceptional cases, top-down proteomics only receives partial fragment information in the MS/MS phase, meaning there is no guarantee that all the information necessary to fully characterize an unknown protein will be observed. This limitation leads to what is known as the top-down funnel.

Figure 1 shows a schematic representation of the top-down proteomics funnel. The top of the funnel represents the space of all possible observed combinations of MS and MS/MS data. A certain area at the top contains those combinations allowing the identification of the unknown protein and full characterization of any PTM present. Additional combinations allow for the identification and a partial characterization of the protein. In some cases, it is possible to only identify the protein.




Figure 1. Results of full characterization from initial data

Note Partial characterization occurs in cases where it is possible to determine which PTM must be present on the protein, but the fragmentation data is not sufficient to make the determination of exactly which amino acid one or more of the PTMs must be on. It is frequently possible to narrow the list of possibly modified amino acids down to one or two residues within a short subsequence of the protein.

In some MS/MS experiments you have sufficient fragmentation data to fully characterize the proteins with the first search. If the exact protein form observed was shotgun annotated into the proteome database and sufficient fragmentation information was present in the MS spectra to uniquely identify this form, then the correct answer is discovered by conducting an

absolute mass search. This situation occurs frequently. In some well-annotated proteomes, unknown protein are completely characterized on the first search. Figure 1 illustrates this situation.

Figure 2 illustrates another common situation when the initial search only identifies, and perhaps partially characterizes, the unknown protein. In this case, conducting a second search fully characterizes the protein. Often the second search will be either a biomarker or single protein mode search, though in some search strategies a gene-restricted search will be conducted. These search modes are described in Chapters 6 and 7.

Figure 2. Multiple searches can be used for the identification and characterization of the unknown protein

Figure 3 illustrates when fragmentation data is insufficient to distinguish between two or more possible protein forms. In this case, full identification or partial characterization is the best possible result. When this occurs, re-running the MS/MS experiment can yield greater fragmentation data.

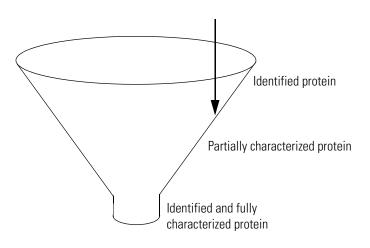


Figure 3. Results of identification and/or partial characterization

Chapter 2 Installing the Software

This chapter describes how to install ProSightPC. It contains the following sections:

- System Requirements
- Installing ProSightPC

System Requirements

Hardware Requirements

Table 1 describes the minimum and recommended hardware requirements.

Thermo Electron, Inc. recommends the following hardware and software

Table 1. Minimum and recommended hardware requirements

Minimum Requirements	Recommended Requirements
Intel Pentium [®] III or Celeron [®] 500 mHz processor	Pentium IV or Celeron 1 GHz processor
500 MB RAM 333 mHz	1 GB 666 MHz RAM
32 MB graphics card	64 MB or greater
24x CD-ROM	
Color monitor	
Keyboard	
Mouse	

Software Requirements

The following software is required:

requirements.

- Minimum: Microsoft[®] Windows[®] 2000 (Recommended: Windows[®] XP)
- MYSQL (must be installed prior to ProSightPC installation)
- Additional proteome databases (for installation into the PTM Warehouse[®])

Note ProSightPC operates on the Windows XP environment and is not guaranteed to function on any other platform.

Installing ProSightPC

To install ProSightPC

1. Insert the ProSightPC CD-ROM into your CD drive. The installation wizard automatically starts, as Figure 4 shows.

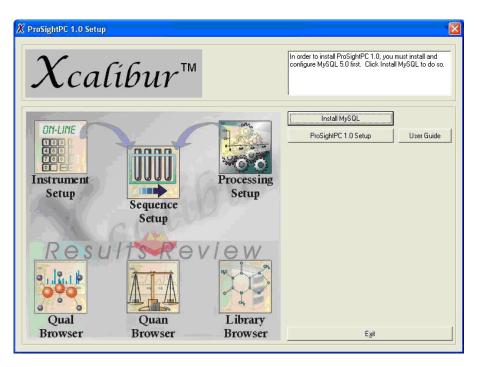
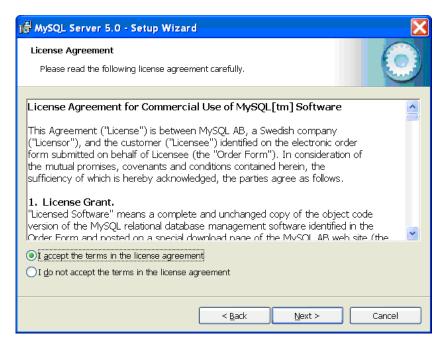


Figure 4. ProSightPC Setup Wizard

If the installation wizard does not start automatically, select **Start > Run.** Browse to the CD-ROM and select **Xinstall**.


2. Click **Install MySQL** to launch the MySQL installer. The installation wizard automatically starts, as Figure 5 shows.

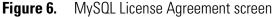
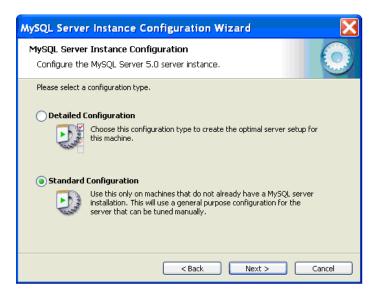

Note ProSightPC requires that you install MySQL before installing ProSight PC.

Figure 5. MySQL Setup Wizard screen

3. Click **Next**. The MySQL License Agreement dialog box appears, as Figure 6 shows.

- 4. Click I accept and click Next after you read the agreement.
- 5. Follow the installation instructions.
- 6. Choose any one of the options shown in Figure 7 and click **Next**. It is not necessary to sign up for an account to continue the installation process.

MySQL.com Sign Up - Setup Wizard	\mathbf{X}
MySQL.com Sign-Up Login or create a new MySQL.com account.	
Please log in or select the option to creat	e a new account.
Create a new free MySQL.com a	ccount
If you do not yet have a option and complete the	MySQL.com account, select this following three steps.
🔵 Login to MySQL.com	
Select this option if you a Please specify your login	iready have a MySQL.com account. information below.
Email address:	
Password:	
(●) Skip Sign-Up	
	Next > Cancel


Figure 7. MySQL Account Sign Up screen

7. Select **Configure the MySQL Server now** and click **Finish**, as Figure 8 shows.

Figure 8. MySQL Server Configuration screen

8. Select Standard Configuration and click Next, as Figure 9 shows.

Figure 9. MySQL Server Instance Configuration Type dialog box

9. Select Install as Windows Service and click Next, as Figure 10 shows.

MySQL Server Instance Configuration Wizard		
MySQL Server Instance Configuration Configure the MySQL Server 5.0 server instance.		
Please set the Windows options. Install As Windows Service		
This is the recommended way to run the MySQL server on Windows.		
Service Name: MySQL		
Include Bin Directory in Windows PATH		
Check this option to include the directory containing the server / client executables in the Windows PATH variable so they can be called from the command line.		
< Back Next > C	ancel	

Figure 10. MySQL Server Instance Windows options dialog box

10. Deselect Modify Security Settings and click Next, as Figure 11 shows.

MySQL Serve	r Instance Confi	guration Wiz	ard 🔀
	r Instance Configur e MySQL Server 5.0 se		\bigcirc
Please set the	security options.		
Modify Se	curity Settings		
	New root password:		Enter the root password,
root	Confirm:		Retype the password.
		Enable root a	access from remote machines
Create An	Anonymous Account		
?	This option will create a note that this can lead I		
	(< Back	Next > Cancel

Figure 11. MySQL Server Instance Security options dialog box

Note If you deselect **Modify Security Settings**, no password is created for the root account. If you create a password, you must remember this password in order to complete the ProSightPC installation, as Figure 17 shows.

11. Click **Execute** to begin the MySQL Server configuration, as Figure 12 shows.

MySQL Server Instance Configuration Wizard	
MySQL Server Instance Configuration Configure the MySQL Server 5.0 server instance.	\bigcirc
Ready to execute	
O Prepare configuration	
 Write configuration file 	
 Start service 	
 Apply security settings 	
Please press [Execute] to start the configuration.	
< Back Execute	Cancel

Figure 12. MySQL Server Instance Execute options dialog box

12. Click **ProSightPC 1.0 Setup** and follow the instructions to install ProSightPC, as Figure 13 shows.

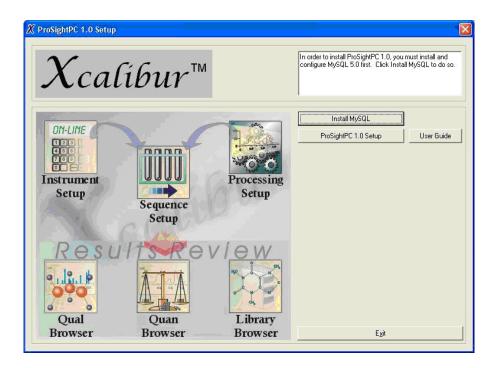


Figure 13. ProSightPC Setup window

The License Agreement dialog box appears, as Figure 14 shows.

ProSightPC		
License Agreemen	t	
Please take a moment to read th Agree", then "Next". Otherwise	he license agreement now. If you click "Cancel".	accept the terms below, click "I
THERMO ELECTRON	SOFTWARE LICENSE AG	REEMENT
YOU ARE CONSENTIN PARTY TO THIS AGRE TERMS OF THIS AGRE IN THE EVENT YOU D	CEPT" BUTTON OR OPEI IG TO BE BOUND BY AND EMENT. IF YOU DO NOT EEMENT, CLICK THE "DO O NOT ACCEPT ALL THE AY RETURN THE SOFTWA	O ARE BECOMING A AGREE TO ALL OF THE NOT ACCEPT" BUTTON. TERMS OF THIS
◯ I <u>D</u> o Not Agree		
	Cancel	< <u>B</u> ack <u>N</u> ext>

Figure 14. ProSightPC License Agreement screen

13. Click **I agree** and click **Next** after you read the agreement.

The Select Installation Folder dialog box appears, as Figure 15 shows. The default installation folder is C:\Program Files\ProSightPC\.

🛃 ProSightPC		
Select Installation Folde	r	
The installer will install ProSightPC to the I	following folder.	
To install in this folder, click "Next". To in	stall to a different folder, ente	r it below or click "Browse".
<u>F</u> older:		
C:\Program Files\ProSightPC\		Browse
		Disk Cost
Install ProSightPC for yourself, or for any Everyone Just <u>m</u> e	yone who uses this computer	:
	Cancel	<u>}ack</u> <u>N</u> ext >

Figure 15. Select Installation Folder screen

- 14. Click **Browse** to change the default installation folder. Choose a location from the list that appears.
- 15. Select **Everyone** or **Just me** and click **Next** to define access to ProSightPC.

The Add Shortcuts dialog box appears, as Figure 16 shows. Thermo recommends that, at a minimum, you select the Start Menu shortcut.

Figure 16. Add Shortcuts screen

16. Click Next to begin the installation. The installation wizard prompts you for your MySQL administrator user name and password, as Figure 17 shows. Use the password you created in step 10. If you did not create a password, leave the box empty. Click OK to continue the installation.

🐠 MySql Root	t Access 🛛 🔀
	uires MySql Root Access int. Please enter your user word below.
User Name:	root
Password:	
Ok	Cancel

Figure 17. MySQL Root Access dialog box

The wizard begins to install the software, as Figure 18 shows.

邊 ProSightPC			
Installing ProSightPC			
ProSightPC is being installed.			
Please wait		_	
3			
	Cancel	< <u>B</u> ack	<u>N</u> ext >

Figure 18. Installing ProSightPC status screen

17. Click **Close** to end the installation process, as Figure 19 shows.

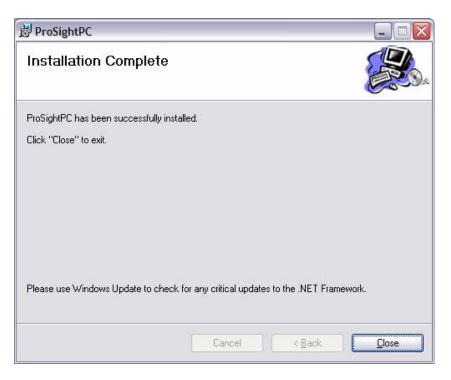


Figure 19. Installation Complete screen

To install additional proteome databases

1. Select **Start > All Programs > ProSightPC > Database Manager** to open the Database Manager.

The Database Manager window appears, as Figure 20 shows.

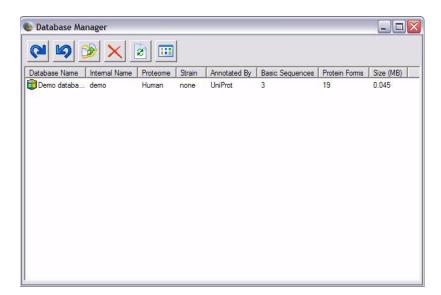


Figure 20. Database Manager window

2. Click Import Database. Select the proteome database to install.

Additional proteome databases are saved as ProSightPC Warehouse Files or PWF files. These files are provided in the ProSightPC Warehouse Files folder on the ProSightPC CD-ROM. For more information, see Chapter 9, "Proteome Databases."

3. Click **Import** to install the additional database.

If a database already exists with the same internal name as the database you are importing, you can choose to skip the conflicting database, rename the database you want to import, or overwrite the existing database.

4. Confirm that the database information is correct in the Database Manager.

2 Installing the Software Installing ProSightPC

Chapter 3 Understanding ProSightPC

ProSightPC is composed of several components. Understanding the organization of these components makes the application easier to use.

This chapter provides an overview of the organization of ProSightPC. It contains the following sections:

- ProSightPC Overview
- The ProSightPC Suite

ProSightPC Overview

ProSightPC is designed to solve the problem of identification and characterization of proteins from mass spectrometry data. ProSightPC functions in the following manner. Prior protein sequences along with PTM information are gathered and loaded into a proteome database. During loading, the PTM information is shotgun annotated into the protein sequence information. The shotgun-annotation process calculates all possible combinations or known PTMs onto each protein sequence. After the annotation process, a new proteome database is created. Next, the mass values inferred from mass spectral data from top-down proteomics MS experiments are imported into a ProSightPC Upload File (PUF). These mass values are compared to the appropriate proteome databases.

Figure 21 illustrates an overview of the flow of information within ProSightPC. In step 1, sequence and PTM information are shotgun annotated into a proteome database within the PTM Warehouse. This is only done once per proteome. Step 2 involves an analysis to infer mass to acquire the observed neutral mass values from the RAW data file into a PUF file. Step 3 depicts how ProSightPC identifies and characterizes the observed proteins.

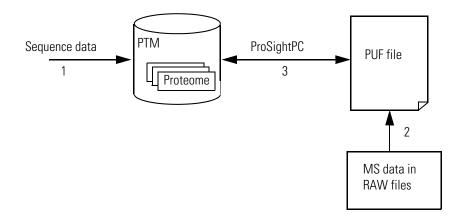


Figure 21. ProSightPC information flow

The ProSightPC Suite	ProSightPC is a suite of tools designed to help identify and characterize proteins. It consists of the ProSightPC application, one instance of the PTM Warehouse, and a small number of secondary applications to aid in proteome database and experimental results management.
The ProSightPC Application	ProSightPC operates on a single PUF file which, when opened, is uploaded into memory and made available to a variety of search and data visualization tools. Additionally, ProSightPC has several tools for importing tandem MS data from Thermo Electron RAW files, identifying and removing chemical noise peaks, and other utility functions.
The PTM Warehouse	The PTM Warehouse is a relational database containing the information ProSightPC needs to function. The primary component of the PTM Warehouse is a series of schemas, one for each proteome database containing PTM and protein sequence information.
Secondary Applications	ProSightPC comes with two secondary applications: the Database Manager and the Experiment Manager. The Database Manager provides a point-and-click environment for managing the PTM Warehouse. The Database Manager imports and exports PWF files as well enabling you to create your own proteome databases. The Experiment Manager provides a simple interface for moving MS/MS experiments between different PUF files.
File Types	ProSightPC has two unique file types. The first file type is the ProSightPC Warehouse File, identified by the .pwf file extension. These files are a transport format for moving proteome databases between PTM Warehouses. Thermo Electron supplies the standard ProSightPC proteome databases in this file format. You can also create your own PWF files for exchanging proteome information. The second file type is the ProSightPC upload format, identified by the .puf file extension. The PUF file is a unique XML file format used to store and transport ProSightPC results. Each PUF file can consist of one or more MS experiments. A single MS experiment can contain mass lists for both precursor and fragment ions extracted from the MS and MS/MS spectra. Each PUF file includes this information, related search parameters, and any search results associated with this data.
Fixed Modifications	A fixed modification is a chemical alteration of an amino acid residue that is present on all amino acids of a given type (for example, alkylation of cysteine residues).

Chapter 4 Navigating the Program

ProSightPC has a unique approach to the organization of elements within the graphical user interface.

This chapter describes how to navigate the ProSightPC program. It contains the following sections:

- The Organization of the Interface
- The Menu Bar
- The Toolbar
- The Grid Preferences Tab
- The Options dialog box

The Organization of the Interface

Figure 22 shows the three window segments of ProSightPC:

- Data Grid
- Tab Controller
- Job Queue

ProSightPC - C:\Document				f					_ 0 >
Edit View Tools Experime		chard/besktop/call	nodutintcatino	a.pui					
) 🚄 🔲 🗶 🗓		🕺 🐔 🕸		×.					
periment ID Search ID	Search Type	First Precursor M	Matching Forms	Highest Total lons	b/c ions	y/zdot ions	Pending Search	Name Status	Notes
1 2 3	Absolute Mass Absolute Mass Single Protein		0 4 1	0 12 20	0 C-ions = 11 C-ions = 9	0 Zdot-ions = 1 Zdot-ions = 11	yes no no	Retriever(1.2) Comple	Finished
	Da	ta Gri	d					Que	
id Display Preferences Experime	nt 1								
calmodulin ECD									1
h =									
Precursor Mass List Fragment Mass List Search 1: Absolute M Edit Comment	lass Search			Ta	b Cor	ntrol)		ſ
 Fragment Mass List Search 1: Absolute M] /indow: 500Da	Precursor Type: 1 ∆ m Mode: Off	Monoisotopic	Fragment	b Cor) gment Type: M	onoisotopic	
Fragment Mass List Search 1: Absolute M Edit Comment Search Parameters Precursor Search W] /indow: 500Da	Precursor Type: 1 Δ <i>m</i> Mode: Off	Monoisotopic	Fragment	Tolerance: 10pp) gment Type: M	onoisotopic	
Fragment Mass List Search 1: Absolute N Edit Comment Search Parameters Precursor Search W Database: Human (indow: 500Da UniProt) Seleno cysteir	∆ <i>m</i> Mode: Off		Fragment	Tolerance: 10pp	om Fra) gment Type: M mylation	onoisotopic Phosphorylation	

Figure 22. ProSightPC window

Data Grid The Data Grid displays summary information about each search contained within the open PUF file. It is organized into various columns, which you can change by using the Grid Display Preferences Tab Controller, discussed in detail in the following sections.

Тір

- 1. Right-click on a search within the Data Grid to apply several actions.
- 2. Double-click on a search within the Data Grid to open the relevant Data Manager. For more information, see Chapter 8, "Understanding the Data Manager."

Tab ControllerMany of the more complex interface elements of ProSightPC appear in the
Tab Controller. Double-click an experiment in the Data Grid to display the
experiment in the Tab Controller. For more information, see Chapter 8,
"Understanding the Data Manager."

Tip Right-click on a tab to close or hide the tab.

Job Queue Use the job queue to display the status of any previously run or currently running searches in the ProSightPC session. While a search is running, a status bar displays the progress of that search.

Table 2 describes the organization of the job queue.

ltem	Description
Name	Lists the MS/MS search identifiers associated with the job.
Status	Displays the status of the current search:
	Pending indicates the search has yet to be run
	Running indicates the search is currently running
	Completed indicates the search has been successfully run
	Failed indicates the search ended abnormally
Notes	Displays additional information about searches. For example, if the search failed, this includes notes explaining why the search failed.

Table 2. Job Queue

Tip Right-click on a job within the job queue to display the following options:

- 1. If the job is not currently running, right-click and select run to queue the experiment to run next.
- 2. If the job is running, right-click the experiment and select **Abort**. The search ends and the status changes to Failed.

The Menu Bar

The various features within ProSightPC are contained in the menu bar. Table 3 describes how the menu bar is organized.

queue, and toolbar Tools Includes Experiment Adder, Manage Predefined Searches, PTM Ti Editor, View Database Information, Individual Sequence Adder, Fo Converter, Fragment Predictor, Batch Run, Reports, and Options. Experiment Tools Includes Add Search, Append Predefined Search, Edit Masses,	ianie J.	IVIEITU Dai	
importing data from the RAW files.EditIncludes Cut, Copy, and Paste.ViewIncludes user-selected displays: grid preferences, start screen, job queue, and toolbarToolsIncludes Experiment Adder, Manage Predefined Searches, PTM Ti Editor, View Database Information, Individual Sequence Adder, Fo Converter, Fragment Predictor, Batch Run, Reports, and Options.Experiment ToolsIncludes Add Search, Append Predefined Search, Edit Masses, Reduce Noise, and Edit Comment. This menu is only available whe an experiment is open in the Data Manager.	ltem		Description
View Includes user-selected displays: grid preferences, start screen, job queue, and toolbar Tools Includes Experiment Adder, Manage Predefined Searches, PTM Ti Editor, View Database Information, Individual Sequence Adder, Fo Converter, Fragment Predictor, Batch Run, Reports, and Options. Experiment Tools Includes Add Search, Append Predefined Search, Edit Masses, Reduce Noise, and Edit Comment. This menu is only available when an experiment is open in the Data Manager.	File		
queue, and toolbar Tools Includes Experiment Adder, Manage Predefined Searches, PTM Ti Editor, View Database Information, Individual Sequence Adder, Fo Converter, Fragment Predictor, Batch Run, Reports, and Options. Experiment Tools Includes Add Search, Append Predefined Search, Edit Masses, Reduce Noise, and Edit Comment. This menu is only available who an experiment is open in the Data Manager.	Edit		Includes Cut, Copy, and Paste.
Editor, View Database Information, Individual Sequence Adder, Fo Converter, Fragment Predictor, Batch Run, Reports, and Options.Experiment ToolsIncludes Add Search, Append Predefined Search, Edit Masses, Reduce Noise, and Edit Comment. This menu is only available whe an experiment is open in the Data Manager.	View		Includes user-selected displays: grid preferences, start screen, job queue, and toolbar
Reduce Noise, and Edit Comment. This menu is only available whe an experiment is open in the Data Manager.	Tools		Includes Experiment Adder, Manage Predefined Searches, PTM Tier Editor, View Database Information, Individual Sequence Adder, Font Converter, Fragment Predictor, Batch Run, Reports, and Options.
Help Includes About.	Experiment	Tools	Reduce Noise, and Edit Comment. This menu is only available when
	Help		Includes About.

Table 3.Menu Bar

The Toolbar

Table 4 describes how the toolbar is organized.

	Table 4.	The Toolbar
--	----------	-------------

ltem	Description
New, Open, Save	Use to create, load or save PUF files
Import XTRACT	Use for building a new experiment within the current PUF file using post-XTRACT RAW data.
Import Profile	Use for building a new experiment within the current PUF file using high-resolution RAW data obtained in profile mode.
Add Experiment	Use for building a new experiment within the current PUF file using manually input MS and MS/MS data.
Open Data Manager	Use to open the last experiment using the in the open PUF file if there are no Experiment tabs open in the Tab Controller.
Add Search	Use to append a new search to the selected experiment. Available only when an experiment is open and shown in the Tab Controller.
Append Predefined Search	Use to append a predefined search to the selected experiment. Available only when an experiment is open and shown in the Tab Controller.
Edit Masses	Use to change MS and MS/MS data within ProSightPC. Opens a new tab showing the precursor and fragment masses of the current experiment.
Reduce Noise	Use to display the noise reducer options.
Edit Comment	Use to edit the comment at the top of the current experiment.
View Database Information	Use to view information about the proteome databases in the PTM Warehouse.
Manage Predefined Searches	Use to modify the parameters of predefined searches.
Abort Running Job	Use to end the current search in the job queue.
Abort All Jobs	Use to end all current and pending searches in the job queue.

The Grid Preferences Tab

The Grid Display Preferences tab enables you to control what information is displayed within the Data Grid. The Grid Display Preferences tab automatically appears when a PUF file is opened.

Figure 23 shows the Grid Preferences tab.

Show Columns Use check boxes to display values in the data grid. Press Refresh when done selecting.	Row Filters Use check boxes to filter rows in the data grid. Input bounds in the text boxes. Press Refresh when done selecting
I Search Type	☐ Search Type Choose Search Type 💌
▼ First Precursor Mass	Pending Seaches C Yes No Fewest Total Fragments to Display
E Largest Precursor Mass G Monoisotopic C Average	Only display Expectations lower than Only display PDE higher than
Firs m/z Value O Monoisotopic Average	
Largest m/z Value Monoisotopic C Average	
Best Expectation Value (p x DB) Experiment Comment	
Esst PDE Score (Highest)	
✓ Number of Matching Protein Forms	
Vost Matching Ions	
I ✓ Pending Search	

Figure 23. Grid Preferences tab

Tip Clicking **View > Grid Preferences** also displays this tab.

The Grid Display Preferences tab consists of two controls:

- Show Columns
- Row Filters

Show Columns The Show Columns option defines which columns are visible in the Data Grid.

To add a column to the Data Grid

- 1. Place a check beside any columns you want to display within the Data Grid.
- 2. Click **Refresh** to implement your selections.

The columns you selected appear in the Data Grid.

To remove a column from the Data Grid

- 1. Click to remove a check from beside any columns you want removed from the Data Grid.
- 2. Click **Refresh** to implement your selections.

Note You can also access the Show Columns options available in the Data Grid by selecting **Tools > Options**.

Each option in Table 5 controls the appearance of a column in the Data Grid.

Table 5. Show Columns and Descri
--

Column	Description
Search Type	Displays a column showing the search type.
First Precursor Mass	Displays a column showing the first precursor mass in the mass list.
Largest Precursor Mass	Displays a column of the precursor mass with the highest intensity value.
First <i>m/z</i> Value	Displays a column with the m/z value of the first precursor entry.
Largest <i>m/z</i> Value	Displays a column with the largest <i>m/z</i> value of all precursor entries.
Best Expectation Value (p x DB)	Displays a column with the lowest expectation score of any hit in the search results.
Best PDE Score (Highest)	Displays a column with the highest PDE score of any hit in the search results.
Number of Matching Protein Forms	Displays a column with the total number of protein forms returned by the search.
Most Matching lons	Displays a column with the largest number of matching fragments of any hit.
Pending Search	Displays a column indicating whether a search has been run.

Row Filters The Row Filters option controls which searches are displayed within the Data Grid. By checking one or more of the criteria, you filter (or omit from view), certain Data Grid rows.

Table 6 describes row filters.

Table 6.Row Filters

Row Filter	Description
Search Type	Displays only those searches of the type selected.
Pending Searches	Displays pending or completed searches.
Fewest Total Fragments to Display	Displays those searches that have one or more hits with at least the indicated number of matching fragments.
Only Display Expectations Lower Than	Displays only those searches that have one or more hits with an expectation score lower than the indicated value.
Only Display PDE Higher Than	Displays only those searches that have one or more hits with a PDE score higher than the indicated value.

Note Click **Restore Defaults** to reinstate the default settings. The default settings can be changed with the Options dialog box.

The Options dialog box

Use the Options dialog box to set default values for most of the interface elements within ProSightPC.

To access the Options dialog box

• Choose Tools > Options. The dialog box shown in Figure 24 appears.

W Options			
General Grid Columns Constant Thrash ⊕ Search Parameters	General Preferences Changes here are reflected throughout ProsightPC		
	Decimal Precision to Display Maximum Hits to Display Maximum Hits to Calculate	6 [25 [200000	
		OK Cancel	

Figure 24. Options dialog box

Set the following preferences from the Options dialog box:

- General Preferences
- Grid Columns
- Thrash Preferences
- Search Parameters

General Preferences

The General Preferences window has three options that are available throughout much of the ProSightPC interface. These preferences are described in Table 7.

Preference	Description
Decimal Precision to Display	Defines the number of decimal places to which most numbers are displayed.
Maximum Hits to Display	Defines the number of matching fragment tables that will be displayed within the Data Manager. Only the best matches up to this number will be displayed.
Maximum Hits to Calculate	Defines the maximum number of protein forms that a given search will consider. When exceeded, the search aborts and a warning is issued.

Table 7. General Preferences	Table 7.	General Preferences
-------------------------------------	----------	---------------------

Grid Columns

The Grid Columns dialog box has the options shown in Figure 25. Use these options to set defaults in the Grid Preferences tab.

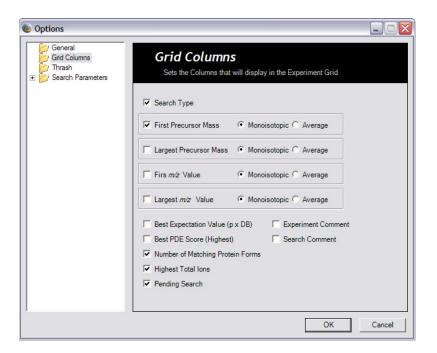


Figure 25. Grid Columns dialog box

THRASH Preferences

Use the THRASH Preferences dialog box shown in Figure 26 to set the following default values related to the THRASH algorithm:

- Minimum S/N Ratio
- Minimum RL Value

- Maximum Mass
- Maximum Charge

Options General Grid Columns	Thrash Preference	5	_ □ 🔀
 Prash Prash Thrash Search Parameters 	These parameters are used when i		
	Minimum S/N Ratio :	8	
	Minimum RL Value :	.8	
	Maximum Mass :	30000	
	Maximum Charge :	20	
		ОК	Cancel

Figure 26. Thrash Preferences dialog box

Search Parameters Click on Search Parameters to display the following search modes:

- Absolute Mass
- Biomarker
- Sequence Tag
- Single Protein

Absolute Mass Preferences Use the Absolute Mass Preferences tab to set the default value used when adding new absolute mass searches. Click on the Absolute Mass Preferences tab and the dialog box shown in Figure 27 appears.

b Options					
Ceneral Grid Columns Thrash Search Parameters Absolute Mass Biomarker Biomarker Sequence Tag Single Protein	Absolute Mass			in predefine	ed searches
	Default Absolute Mass Search Parameters Database Name Human (UniProt) Precursor Mass Type Monoisotopic Fragment Mass Type Monoisotopic Delta m Mode		ic 🔽	•]
	Precursor Search Window Fragment Tolerance Minimum Matches	Lower Bound 1 1 1	Default Value	Upper Bound 2500 1000	Da
				ок	Cancel

Figure 27. Absolute Mass Preferences dialog box

Set the following parameters from this interface:

- Database Name
- Precursor Mass Type
- Fragment Mass Type
- Δm Mode

Table 8 lists those elements that must be assigned a numerical value.

Table 8. Absolute Mass Parameters

Preferences	Description
Precursor Search Window	Lower bound sets the minimum value for an precursor search window that does not trigger an "out of range" warning.
	Default value sets the default value for an precursor search window.
	Upper bound sets the maximum value for an precursor search window that does not trigger an "out of range" warning.

	Preferences	Description		
	Fragment Tolerance	Lower bound sets the minimum value for an fragment tolerance that does not trigger an "out of range" warning.		
		Default value sets the default value for an fragment tolerance.		
		Upper bound sets the maximum value for an fragment tolerance that does not trigger an "out of range" warning.		
		You can set values as either Da or ppm.		
Biomarker Preferences	Minimum Matches	Lower bound sets the minimum value for minimum matches that does not trigger an "out of range" warning.		
		Default value sets the default value for an minimum matches. Upper bound sets the maximum value for an minimum matches that does not trigger an "out of range" warning.		
	absolute mass sea Use the Biomarker adding new biomat the dialog box show	cted absolute mass searches draw their parameters from rches. Preferences window to set the default values used when rker searches. Click the Biomarker Preferences tab and wn in Figure 28 appears. ptions from the Biomarker Preferences dialog box:		
	• Database Name			
	Precursor Mass Type			
	• Fragment Mass Type			
	• Δm Mode			

Table 8. Absolute Mass Parameters, continued

Absolute Mass	Default BioMarker Search Para	
🍎 Biomarker	Database Name Precursor Mass Type Fragment Mass Type Delta m Mode	Monoisotopic Monoisotopic
	Precursor Tolerance Fragment Tolerance Minimum Matches	Lower Bound Default Value Upper Bound 1 50 100 ppm 1 10 100 ppm 1 5 1000 ppm

Figure 28. Biomarker Preferences dialog box

Table 9 describes the preferences in the Biomarker tab that must have numerical input.

Table 9.Biomarker Preferences

Preference	Description		
Precursor Tolerance	Lower bound sets the minimum value for an Precursor Tolerance that does not trigger an "out of range" warning.		
	Default value sets the default value for an Precursor Tolerance.		
	Upper bound sets the maximum value for an Precursor Tolerance that does not trigger an "out of range" warning.		
	Displayed in Da or ppm.		
Fragment Tolerance	Lower bound sets the minimum value for a Fragment Tolerance that does not trigger an "out of range" warning.		
	Default value sets the default value for an Fragment Tolerance.		
	Upper bound sets the maximum value for an Fragment Tolerance that does not trigger an "out of range" warning.		
	Displayed in Da or ppm.		
Minimum Matches	Lower bound sets the minimum value for Minimum Matches that does not trigger an "out of range" warning.		
	Default value sets the default value for Minimum Matches.		
	Upper bound sets the maximum value for Minimum Matches that does not trigger an "out of range" warning.		

Note Gene-Restricted Biomarker searches draw their default parameters from Biomarker searches.

Sequence Tag Preferences

Use the Sequence Tag Preferences window to set the default value used when adding new Sequence Tag searches. Click the Sequence Tag Preferences tab and the dialog box shown in Figure 29 appears.

You can set the following options from the Sequence Tag Preferences dialog box:

- Database Name
- Fragment Mass Type

Options General Grid Columns Thrash Search Parameters Absolute Mass Bomarker Sequence Tag Single Protein	Contract Contex Contract Contract Contract Contract Contract Contract Contract			
	Minimum Tag Score Compiler Tolerance (in ppr Minimum Tag Size	Lower Bound 0 1 2	Default Value	Upper Bound 5 1000
			ОК	Cancel

Figure 29. Sequence Tag Preferences dialog box

Table 10 describes the preferences in the Biomarker tab that must have numerical input.

Table 10.Sequence Tag Preferences

Preference	Description
Minimum Tag Score	Lower bound sets the minimum value for a Minimum Tag Score that does not trigger an "out of range" warning.
	Default value sets the default value for a Minimum Tag Score.
	Upper bound sets the maximum value for a Minimum Tag Score that does not trigger an "out of range" warning.
Compiler Tolerance	Lower bound sets the minimum value for a Compiler Tolerance that does not trigger an "out of range" warning.
	Default value sets the default value for a Compiler Tolerance.
	Upper bound sets the maximum value for a Compiler Tolerance that does not trigger an "out of range" warning.
Minimum Tag Size	Lower bound sets the minimum value for a Minimum Tag Size that does not trigger an "out of range" warning.
	Default value sets the default value for a Minimum Tag Size.
	Upper bound sets the maximum value for a Minimum Tag Size that does not trigger an "out of range" warning.

Single Protein Preferences

Use the Single Protein Preferences window to set the default value used when adding new Single Protein searches. Click the Single Protein tab and the dialog box shown in Figure 30 appears.

Set the following options from the Single Protein Preferences dialog box:

- Fragment Mass Type
- Δm Mode

Options General Grid Columns Trash Search Parameters Absolute Mass Biomarker Sequence Tag Single Protein	Single Protein These parameters are us Default Single Protein Mode Se Precursor Mass Type Fragment Mass Type Delta m Mode Fragment Tolerance	sed in the search adder and in predefined searches
1		OK Cancel

Figure 30. Single Protein Preferences dialog box

Table 11 describes the preferences in the Biomarker tab that must have numerical input.

Table 11.	Single Protein Preferences
-----------	----------------------------

Preference	Description
Fragment Tolerance	Lower bound sets the minimum value for fragment tolerance that does not trigger an "out of range" warning.
	Default value sets the default value for an fragment tolerance.
	Upper bound sets the maximum value for an fragment tolerance that does not trigger an "out of range" warning.
	Displayed in Da or ppm

Chapter 5 Importing MS/MS Data

In order for ProSightPC to identify and characterize proteins, mass spectral data must be converted to neutral mass values. ProSightPC supports different ways of entering MS and MS/MS data into the experiment.

This chapter describes how to import MS/MS data into ProSightPC. It contains the following sections:

- Analysis to Infer Mass
- Entering Mass Values

Analysis to Infer Mass

An analysis to infer mass (AIM) is an operation in which high resolution mass spectra data from proteins or large peptides is converted into neutral monoisotopic or average masses.

ProSightPC and XCalibur provide two methods for AIM.

- THRASH (in ProSightPC)
- XTRACT (part of the Qual Browser tools)

IMPORTANT ProSightPC works with neutral masses only.

Selecting an AIM The relative advantages of different AIMs are beyond the scope of this manual. For more information, see the XTRACT Manual or Horn et al. (2000).¹

¹David M. Horn, Roman A Zubarev, and Fred W. McLafferty, (2000) Automated Reduction and Interpretation of High Resolution Electrospray Mass Spectra of Large Molecules. Journal of the American Society of Mass Spectrometry 11, 320-332.

Entering Mass Values

There are three possible methods for importing MS/MS data into a ProSightPC MS/MS experiment:

- THRASH Method
- XTRACT Method
- Manual Entry Method

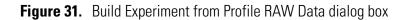
Table 12 contains a summary of the differences between the THRASH and XTRACT methods of importing mass values.

Table 12.	Comparison of XTRACT and THRASH methods
-----------	---

AIM Equivalency	Data Type	Speed	Peaks A	S/N (approximate)
XTRACT	Profile, centroid	Faster	Slightly more	3:1
THRASH	Profile	Slower	Slightly less	10:1

THRASH Method The THRASH method uses a modified version of the algorithm described by Horn et al (2000) to automatically infer the observed mass values from the spectra in a RAW file. For this analysis to work, the source RAW file must contain data gathered in profile mode and all summed scans must be in a numerically continuous block.

Note This analysis is sometimes referred to as THRASHing.


THRASHing a RAW File THRASHing a RAW file is accomplished from within the ProSightPC interface.

To THRASH a RAW file

- 1. Choose **File > Import RAW > Profile > Build Experiment** from the RAW Data dialog box shown in Figure 31.
- 2. Enter the RAW file to be THRASHed. Type the full path name or click **Browse** to select the file name from the list.
- 3. Type the desired parameters and select one or more predefined searches to append to the new experiment. Table 13 lists the THRASH parameters.
- 4. Click **OK**.

A progress bar indicates the progress of the THRASH process.

lead to the second term with the second term with the second term of ter	_ 🗆 🔀
Fragment Masses	
"RAW" file to be "thrashed":	
C:\Program Files\ProSightPC\data\Histone Raw Files	Histone_H4_actyl_25_ Browse
Thrash Options	
Minimum Signal-to-Noise Ratio 8 Mi	nimum RL value
Maximum Mass 30000 Ma	aximum Charge 20
First m/z 380 La	st m/z 2000
Summing Options	
Start Scan Number	d Scan Number 25
Precursor Mass Predefined	Search
	eck any predefined searches:
11299.409	e Search
Fragmentation Method: Check	All Uncheck All
CID	
ОК	Cancel

The THRASH options are described in Table 13.

Table 13. THRASH Options

Option	Description
Minimum	As per Hort et al (2000).
Signal-to-Noise Ratio	Values less than 5:1 significantly slow down the analysis, but can result in a greater number of identified isotopic envelopes.
Minimum RL Value	As per Hort et al (2000).
Maximum Mass	Cutoff point for THRASH when searching for masses.
Maximum Charge	Highest charge state THRASH will consider.
Start <i>m/z</i>	Lowest m/z value considered.
End <i>m/z</i>	Highest <i>m/z</i> value considered.
Start Scan Number	First scan number scanned.
End Scan Number	Last scan number scanned.
Precursor Type	Precursor mass type is either monoisotopic or average mass.

	Option	Description
	Precursor Mass	Type the precursor mass, or click <i>m/z</i> to use the Precursor Mass Calculator to calculate the neutral mass from an <i>m/z</i> value and charge state.
		If needed, several values can be entered, in Da.
	Fragmentation Method	Method used: either CID, ECD, or IRMPD.
	Predefined Search	(Optional) Predefined searches can be added to the new MS/MS experiment.
THRASH Defaults	The THRASH def Tools dialog box.	fault preferences can be changed by using the ProSightPC
	To change the TH	RASH default preferences
	 Choose Tools > Options > THRASH. A new window appears. 	
	For more informat page 37.	tion about changing THRASH defaults, see Figure 26 on
XTRACT Method	mass values. First,	method (one of the Qual Browser tools) to infer neutral use XTRACT to create a RAW file containing the neutral s values, then import MS/MS experiments from this
Importing an XTRACTed RAW file	To XTRACT a sing	le scan from a RAW file
	1. Open a RAW	file in the Qual Browser.
	2. Right-click on	the MS pane. A pop-up menu appears.
	3. Choose Expor Xtract.	t > XTRACT RAW file , choose the parameters, and click
	The resulting X	XTRACTed file appears in an additional window.
	To save a monoiso	otopic mass post-XTRACTed file
	• Select the appr Write to RAW	ropriate mass filter (in Ranges) and choose Export > 7 file .

This new RAW file can be imported into ProSightPC.

	To XTRACT a multiple scan from a RAW file
	1. Open a RAW file in the Qual Browser.
	2. Right-click on the MS pane. A pop-up menu appears.
	3. Right-click on the LC pane, choose Export > XTRACT RAW file , choose the parameters, and click Xtract .
	The XTRACTed scans appear in an additional window. The scans can be saved individually and imported into ProSightPC.
Manual Entry Method	A third option for importing MS/MS experiment data is to manually enter the data.
Manually Entering Data	Enter MS/MS experiment data from within ProSightPC through the Tools menu.
	To manually enter the data
	• Choose Tools > Experiment Adder.
	The Experiment Adder window appears, as Figure 32 shows.

• Select from the options and parameters listed in Table 14.

• Click Create.

Experiment Adder	
CID CID CIRMPD	Experiment Comments Create Cancel
Precursor Ion Data Type: Manual v <i>m/z</i>	Fragment Ion Data
Mass Type: C Monoisotopic C Average 16779.5	Text File: C:\Documents and Settings\Calmodulin\6-7-4ecdUpdated. Browse File Format (Is is any white space) m/z Monoisotopic \s m/z Average \s Monoisotopic Mass \s Average Mass \s Intensity
Please check any predefined analyses that you w Please check any predefined analyses that you w Check All Uncheck All Uncheck All	ould like included with your experiment:

Manual entry parameters or options are described in Table 14.

Table 14.	Manual Data Entry Parameters and Options
	inalidat Data Liftiy Farameters and Options

Option or Parameter	Description
Fragmentation Method	Select either CID, ECD, or IRMPD.
Precursor Ion Data	Select Manual or Upload. When Manual is selected, type one or more monoisotopic or average masses or use the Precursor Mass Calculator. When inputting fragment ion data using the Upload option, the ASCII text files must be properly formatted.
Fragment Ion Data	Select Manual or Upload. When Manual is selected, type one or more monoisotopic or average masses. When inputting fragment ion data using the Upload option, the ASCII text files must be properly formatted
Predefined Search	(Optional) Select any predefined searches.

Note

- 1. When inputting fragment ion density data manually, you can leave Intensity Values empty. In this case, the default intensity of 1 is assigned to each fragment ion.
- 2. ASCII text files must be formatted with five white-space-separated columns of numbers. Each row represents a separate ion mass. The columns must be arranged as:
 - Monoisotopic m/z
 - Average m/z
 - Monoisotopic Mass
 - Average Mass
 - Intensity

Chapter 6 Search Modes

ProSightPC has four search modes. Each search mode represents a specific mechanism used to query a proteome database within the PTM Warehouse.

This chapter describes how to use each search mode. It contains the following sections:

- About Search Modes
- Adding A Search
- Absolute Mass Search
- Sequence Tag Search
- Biomarker Search
- Predefined Searches
- Advanced Searches

For more information about single protein searches, see Chapter 7.

About Search Modes

Each search mode represents a specific method used to query a proteome database within the PTM Warehouse.

ProSightPC has four basic search modes:

- Absolute mass
- Biomarker
- Sequence tag
- Single protein search For more information, see Chapter 7, "Sequence Gazer and Single Protein Searches."

Use ProSightPC to perform the following types of advanced searches:

- Gene-restricted absolute mass
- Gene-restricted biomarker
- MSⁿ hybrid searches

To query MS/MS data against a a proteome database, add a search to the MS/MS experiment containing the MS/MS data.

Adding A Search

Add a single search to a specific MS/MS experiment when an experiment requires adjusting parameters to identify the protein.

Add a search to an experiment by using the Experiment tools.

To add a search to an experiment

- 1. Open the Data Manager of the experiment.
- 2. Choose **Experiment Tools > Add Search**. The New Search in Experiment "X" dialog box appears, as Figure 33 shows. The X of the dialog box reflects the proper experiment number.

Alternatively, right-click any search in the experiment listed on the Data Grid and select **Add Search**.

- 3. Select a search type, database name, and parameters.
- 4. Click Save.

You can also execute the search from the Data Manager by clicking **Run** Search.

🐌 New Search in Experiment 1 📃 🗖 🔀	
Search Type	Absolute Mass
Absolute Mass Search	
Database	Demo database for ProSi 💌
Precursor Mass Type	Monoisotopic 🗨
Precursor Search Window	w 500 Da
Fragment Mass Type	Monoisotopic 🗨
Fragment Tolerance	20 ppm 👻
Minimum Matches	10
Δm Mode	Г
Fixed Modifications	
. ■ Methionine	FI
PTMs	
. Tier 1	
Save	Cancel

Figure 33. Adding a New Search dialog box

Absolute Mass Search

The absolute mass search is the defining search mode for top-down proteomics. Absolute mass searches use the precursor mass to restrict the portion of the proteome database to query.

For each protein form with a theoretical precursor mass within a window of the observed precursor ions mass, the absolute mass search compares all theoretical fragments and masses to the observed fragment ion masses. The number of observed fragment ions matching to within the fragment tolerance is determined and used to score the identification.

Although each protein form with a theoretical precursor mass within the window is interrogated, only those protein forms meeting user-defined criteria for number of fragment ions are displayed (see Table 5 on page 33 and Table 6 on page 34).

Parameters Absolute mass searches include the parameters listed in Table 15.

Parameter	Description
Database	Proteome database against which the search is being run.
Precursor Type	Defines whether monoisotopic or average precursor ions mass is used.
Precursor Search Window	Defines a range around the observed precursor mass. All protein forms with a theoretical mass within this range will be interrogated.
Fragment Type	Defines whether the search uses monoisotopic or average mass of the fragment ions.
Fragment Tolerance	Defines whether fragment tolerance is expressed as absolute, measured in Da; or relative, measured in ppm.
	An observed fragment ion matches a theoretical fragment ion if the observed fragment ion mass is within plus or minus the fragment tolerance of the theoretical fragment ion mass.
Minimum Matches	Defines the minimum number of matching fragment ions that must be present before a protein form will be reported.
	This parameter acts as a filter of returned protein forms.
Δm Mode	Defines whether the search is conducted in Δm Mode.
Fixed Modifications	Enables the selection of no more than one fixed modification per amino acid type.
PTMs	Displays PTMs arranged in one or more tiers based upon the selected proteome database.
	Only theoretical protein forms containing exclusively selected PTMs will be interrogated. Every form containing a nonselected PTM will be excluded from the interrogation.

Table 15. Absolute Mass Search Parameter
--

Advice on Use	Use the following strategies when running absolute mass searches.
Precursor Search Window Size	A 1000 Da Precursor Search Window search is often used as the first search for an unknown protein. If there are few modifications on the unknown protein not in the PTM Warehouse, a 1000 Da intact search will frequently identify, but not characterize, the protein.
	If a protein has a large number of ions matching one terminal, that is evidence of a protein's identity and further characterization in the Sequence Gazer [®] is usually warranted.
Δm Mode	Use the Δm mode to locate unknown modifications near either terminus.
	If the 1000 Da absolute mass search fails to identify a protein, consider running another absolute mass search with a 1000 Da precursor search window in Δm mode. By activating the Δm mode, the search is more likely to identify proteins with unknown modifications but will take approximately three times longer then the corresponding absolute mass search.

Sequence Tag Search	The sequence tag search as a two-step process to identify, but not
-	characterize, proteins. The two steps are compilation and search.

Compilation Compilation (also known as *De Novo* sequencing) orders the mass list from largest to smallest, looking for sets or ladders of mass differences exactly equal to the mass of an amino acid, within the compiler tolerance you defined. The compiler tolerance is always given in ppm.

Compilation returns only those sequence tags equal to or longer than the defined minimum tag size.

Note Multiple independent sequence tags are frequently found with ECD data.

Search The sequence tag list is queried against every base sequence within the proteome database for the presence of any of the sequence tags. Any sequence found containing one or more of the sequence tags will be scored. Any sequence scoring above the defined minimum tag score will be reported.

The sequence tag search automatically searches both the forward and reverse direction of every sequence tag.

Parameters Sequence tag searches require the parameters defined in Table 16.

Table 16.	Sequence	Tag Search	Parameters
-----------	----------	------------	------------

Parameter	Description
Database	The proteome database against which the search is being run.
Minimum Tag Score	The lowest acceptable sequence tag score reported as a match.
Compiler Tolerance	The permissible error, measured in ppm, between two fragment ion masses that will still be considered matching an amino acid.
Minimum Tag Size	The shortest length of a sequence tag ladder to be reported by the sequence tag compiler.
	Always an integer value equal to or greater than 2.
Fragment Type	Declares whether the sequence tag compiler uses monoisotopic or average mass.
Fixed Modifications	A chemical modification present on all instances of a given type of amino acid in the observed protein.
	Enables the selection of no more than one fixed modification per amino acid type.

Parameter	Description
Manually Enter Tags	Instead of compiling sequence tags, you can manually enter sequence tags.
	Each sequence tag consists of the single letter designation of the amino acid separated by a space.
	Isobaric amino acids can be entered as a Pipe ' ' separated list enclosed in square brackets, for example: [I L].
	Multiple sequence tags can be entered, properly fomatted, with one Sequence Tag per line in the space provided.
	The sequence tag search will automatically search for the entered sequence tag and its reverse.

Table 16. Sequence Tag Search Parameters, continued

Advice on Use

The following suggestions are recommended when conducting sequence tag searches.

- If absolute mass or biomarker searches fail to identify the protein in the presence of rich fragmentation data, a sequence tag search can frequently identify, but not characterize, the protein.
- The output of a sequence tag search can be entered in series into a gene-restricted search to perform a hybrid search. This frequently identifies and characterizes a protein.
- A sequence tag search is frequently the first step in MSⁿ experiments.
- Unresolved amino acid pairs, such as isolucine and lucine, should be manually entered as a pipe-separated list in square brackets; for example, [I|L] with no spaces.

Biomarker Search

In typical top-down experimental preparation, not all polypeptides are intact proteins. Use a Biomarker Search to identify those proteins that are a product of biological degradation and cannot be logically predicted. A Biomarker Search compares the observed precursor mass to all possible subsequences of a particular database within a defined tolerance (for example, less than 10ppm). Those subsequences that fall within the defined tolerance are theoretically fragmented and the observed fragment ions are compared.

A biomarker search is a two-step process which is repeated for each base protein sequence in the proteome database. The steps are:

- 1. Identify a candidate subsequence matching an observed precursor mass.
- 2. Calculate all possible theoretical fragment ions for the candidate subsequence then compare the theoretical fragment ion masses against the observed fragment ion masses.

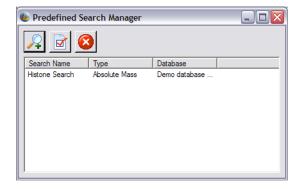
In a biomarker search, the precursor search tolerance is an estimation of measurement error on the observed precursor mass. The value is usually small compared to an absolute mass precursor search window.

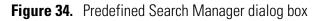
Parameters Biomarker searches require the parameters described in Table 17.

Parameter	Description
Database	Defines the proteome database the search is being run against.
Precursor Type	Defines whether monoisotopic or average precursor ions will be used.
Precursor Search Tolerance	Defines precursor tolerance as either absolute, measured in Da; or relative, measured in ppm.
	A protein subsequence matches the observed precursor mass if the protein subsequences theoretical mass is within plus or minus the Precursor Search Tolerance of the observed precursor mass.
Fragment Type	Defines whether the search uses monoisotopic or average mass of the fragment ions.
Fragment Tolerance	Defines fragment tolerance as either absolute, measured in Da; or relative, measured in ppm.
	An observed fragment ion matches a theoretical fragment ion if the observed fragment ion mass is within plus or minus the fragment tolerance of the theoretical fragment ion mass.

Table 17. Biomarker Search Parameters

Parameter	Description
Minimum Matches	Defines the minimum number of matching fragment ions that must be present before a protein form will be reported.
	This parameter acts as a filter of returned protein forms.
Δm Mode	Defines whether the search is conducted in Δm mode.
Fixed Modifications	Enables the selection of no more than one fixed modification per amino acid type.
	A fixed modification is a chemical modification present on all instances of a given type of amino acid in the observed protein.


Table 17. Biomarker Search Parameters, continued


Advice on Use

Se Thermo recommends the following while conducting biomarker searches:

- If an absolute mass analysis fails to identify a protein, use a biomarker search.
- Increasing the precursor tolerance results in longer run times.
- Biomarker searches are well suited for identifying biologically relevant proteolytic products.
- Proteins or peptides containing non-reduced disulfide bonds can be identified by setting the precursor search tolerance to 2.5 Da and running the search in Δm mode.

Predefined Searches	Predefined searches represent a strategy to simplify repeating identical searches on different sets of MS/MS data. This is accomplished by assigning a name to a set of parameters, which can then be appended to any experiment.
	Note The search parameters within predefined searches are persistent until modified or deleted.
	Tip Use a predefined search to set up defaults for frequently run searches. Instead of using Add Search to manually append the same search to multiple experiments, create a predefined search and append it to your experiments as needed.
Predefined Search Manager	Use the Predefined Search Manager to create, edit, or delete predefined searches.
Accessing Predefined Search Manager	Access the Predefined Search Manager through the Tools menu of ProSightPC.
	To access the Predefined Search Manager
	• Choose Tools > Manage Predefined Searches to open the Predefined Search Manager dialog box, as Figure 34 shows.

Navigating Predefined Search Manager

All predefined searches already created appear in the Predefined Search Manager grid. Table 18 describes the options in the Predefined Search Manager dialog box.

ltem	Description
Search Name	Displays the name attributed to the Predefined Search.
Туре	Displays the Search Mode attributed to the Predefined Search.
Database	Displays the Database the Search is run against.

Table 18. Predefined Search Manager

The Predefined Search Manager has three primary functions:

- Create a New Predefined Search
- Edit a Predefined Search
- Remove a Predefined Search

Create a New Predefined Search To create a new predefined search

- 1. Select **Create**. The New Predefined Search dialog box appears, as Figure 35 shows.
- 2. Type a Name for the New Predefined Search in the Search Name field.
- 3. Select **Search Type** from the pull-down menu.
- 4. Select parameters, based on search type, from the pull-down menu.
- 5. Click Save.

New Predefined Search	
Search Name	
Search Type	bsolute Mass 👻
Absolute Mass Search	
Database	Demo database for ProSi 💌
Precursor Mass Type	Monoisotopic 👻
Precursor Search Window	500 Da
Fragment Mass Type	Monoisotopic 💌
Fragment Tolerance	20 ppm 💌
Minimum Matches	10
Δm Mode	Γ
Fixed Modifications	
Crysteine Acrylamide Cysteine Vinylpyridine Cysteine Iodoacetamide Cysteine BME Cysteine BME Cysteine	
PTMs	
Tier 1 Formylation Acetylation	T
	,
Save	Cancel

Figure 35. New Predefined Search dialog box

Edit a Predefined Search To edit a predefined search

1. Select a predefined search name from the list in the predefined search manager Data Grid.

- 2. Click **Edit.** The Edit Predefined Search dialog box appears, as Figure 36 shows.
- 3. Edit the parameters as desired.
- 4. Click Save.

Note Altering search parameters has no effect on searches already added to MS/MS experiments.

👞 Edit Predefined Search Histone Search 🛛 🖃 🖾		
Search Name	Histone Search	
Search Type	Absolute Mass	
Absolute Mass Search	,	
Database	Demo database for ProSi 👻	
Precursor Mass Type	Monoisotopic 🗨	
Precursor Search Windo	500 Da	
Fragment Mass Type	Monoisotopic 🗨	
Fragment Tolerance	10 ppm 👻	
Minimum Matches	5	
∆ <i>m</i> Mode		
Fixed Modifications		
 		
	Þ	
PTMs		
B. ☑ Tier 1		
Save	Cancel	

Figure 36. Edit Predefined Search dialog box

Remove Predefined Search

To remove a predefined search

- 1. Select a predefined search name from the list in the predefined search manager Data Grid.
- 2. Click Remove.
- 3. Confirm Remove by clicking Yes or No.

Note Click No to return to the Predefined Search Manager without removing the selected Predefined Search.

Add A Predefined Search

To add a predefined search to an experiment

1. Open the Data Manager of the experiment.

2. Choose **Experiment Tools > Append Predefined Search**. The Predefined Search dialog box appears, as Figure 37 shows.

Alternatively, right-click any search in the experiment listed on the Data Grid and select **Add Search**.



Figure 37. Predefined Search Manager dialog box

3. Select a predefined search to append to the experiment and click **Append**.

You can also execute the search from the Data Manager by clicking **Run** Search.

Tip Choose **Tools > Batch Run** to process several predefined searches automatically.

Advanced Searches	They can only be r completed absolut	arches look at all protein forms of explicitly listed genes. made from the results, or hit list, of a previously e mass, biomarker, or sequence tag search. arches are most often performed with a sequence tag ybrid search.
	ProSightPC autom previous search.	natically generates a gene ID list from the results of a
	Gene-restricted sea related, types of sea	arches consists of two functionally different, but closely arches:
	• Gene-Restricte	ed Absolute Mass Search
	Gene-Restricte	ed Biomarker Mass Search
Gene-Restricted Absolute Mass Search Parameters	mass search on eve theoretical precurs minimum matches Gene-restricted ab Table 19.	ed absolute mass (GRAM) search to perform an absolute ry protein form of each gene in the gene list, regardless of or mass. Only those protein forms meeting the defined s parameter will be reported. solute mass searches require the parameters described in estricted Absolute Mass Search Parameters
	Parameter	Description
	Database	Set automatically to the proteome database of the parent search.
	Fragment Type	Declares whether the search uses monoisotopic or average mass of the fragment ions.
	Fragment Tolerance	Defines whether fragment tolerance is expressed as absolute, measured in Da; or relative, measured in ppm.
		An observed fragment ion matches a theoretical fragment ion if the observed fragment ion mass is within plus or minus the fragment tolerance of the theoretical fragment ion mass.
	Minimum Matches	Defines the minimum number of matching fragment ions that must be present before a protein form will be reported.
		Acts as a filter for which protein forms are returned.
	Δm Mode	Defines whether the search is conducted in Δm mode.
	Fixed Modifications	A chemical modification present on all instances of a given type of amino acid in the observed protein

Parameter	Description
PTMs	Displays PTMs arranged in one or more tiers based upon the proteome database.
	Only theoretical protein forms containing zero or more of the selected PTMs will be interrogated. Every form containing a nonselected PTM will be excluded.

Table 19. Gene-Restricted Absolute Mass Search Parameters, continued

Gene-Restricted Use a gene-restricted biomarker search (GRBM) to perform a biomarker search on all protein forms of the genes listed in the gene ID list.

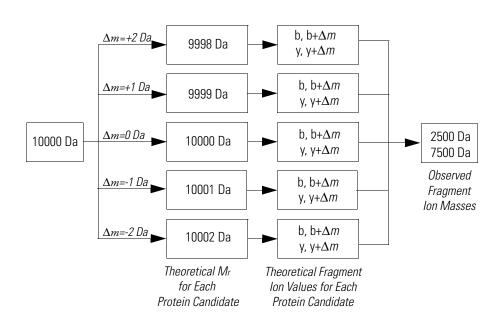
Because the query is limited to the gene IDs listed, a gene-restricted biomarker mass search runs substantially quicker than a simple biomarker search.

Parameters

Gene-restricted biomarker mass searches require the parameters described in Table 20.

Table 20.	Gene-restricted Biomarker Mass Search Parameters
-----------	--

Parameter	Description
Database	Set to the proteome database of the parent search automatically.
Precursor Type	Defines whether monoisotopic or average precursor ions are used.
Precursor Search Tolerance	Defines whether precursor tolerance is expressed as absolute, measured in Da; or relative, measured in ppm.
	A protein subsequence matches the observed precursor mass if the protein subsequence's theoretical mass is within plus-or-minus the precursor search tolerance of the observed precursor mass.
Fragment Type	Defines whether the search uses monoisotopic or average mass of the fragment ions.
Fragment Tolerance	Defines whether fragment tolerance is expressed as either absolute, measured in Da; or relative, measured in ppm.
	An observed fragment ion matches a theoretical fragment ion if the observed fragment ion mass is within plus-or-minus the fragment tolerance of the theoretical fragment ion mass.
Minimum Matches	Defines the minimum number of matching fragment ions that must be present before a protein form will be reported.
	Acts as a filter for which protein forms are returned.
Δm Mode	Defines whether the search is conducted in Δm mode.
Fixed Modifications	A chemical modification present on all instances of a given type of amino acid in the observed protein.
	Enables the selection of no more than one fixed modification per amino acid type.


MS/MS Experiments	ProSightPC is built on the concept of the MS/MS experiment. Analyzing an MS^{3+} experiment requires the following steps:
	1. An MS/MS experiment is constructed with the MS ² data as precursor masses and the MS ³ data as fragment ion masses. This MS/MS experiment is used to run a sequence tag search.
	2. Next an MS/MS experiment is created using the MS data as precursor ions and the MS ² data as fragment ions.
	3. A sequence tag search is added to the experiment from step 2, and the sequence tags from the first experiment are manually entered. When this search is run, a gene list will be created for all proteins containing sequences consistent with the MS ³ fragmentation data.
	4. A gene-restricted absolute mass search is then added to the second experiment and used to identify and characterize the observed protein.
	For additional information on MS ^{<i>n</i>} of top-down proteomics data, see Zabrouskov (2005). ¹
Δm Mode Demystified	The Δm mode is a technique for identifying protein forms containing unknown PTMs.
<i>∆m</i> Mode Demystified	
<i>∆m</i> Mode Demystified	unknown PTMs. The Δm is the difference between the observed precursor mass and the theoretical precursor mass. When a search is run in Δm mode, three
∆ <i>m</i> Mode Demystified	unknown PTMs. The Δm is the difference between the observed precursor mass and the theoretical precursor mass. When a search is run in Δm mode, three interrogations per sequence are performed concurrently: • The theoretical fragment ion masses of the protein sequence are
∆ <i>m</i> Mode Demystified	 unknown PTMs. The Δm is the difference between the observed precursor mass and the theoretical precursor mass. When a search is run in Δm mode, three interrogations per sequence are performed concurrently: The theoretical fragment ion masses of the protein sequence are compared to the observed fragment ion list as usual. The theoretical fragment ion masses derived from the sequence and the Δm applied to the N-terminal are compared to the observed fragment
∆ <i>m</i> Mode Demystified	 unknown PTMs. The Δm is the difference between the observed precursor mass and the theoretical precursor mass. When a search is run in Δm mode, three interrogations per sequence are performed concurrently: The theoretical fragment ion masses of the protein sequence are compared to the observed fragment ion list as usual. The theoretical fragment ion masses derived from the sequence and the Δm applied to the N-terminal are compared to the observed fragment ion mass list. The theoretical fragment ion masses derived from the sequence and the Δm applied to the C-terminal are compared to the observed fragment

¹Zabrouskov, V., M. W. Senko, Y. Du, R. D. LeDuc and N. L. Kelleher (2005) New and Automated MSn Approaches for Top-Down Identification of Modified Proteins. Journal of the Americal Society of Mass Spectrometry 16:12, 2027-2038.

Interpreting the Output

By carefully observing the pattern of fragments with and without Δm , you can frequently locate the Δm .

For example, if a particular result returned with the two smallest N-terminal fragments matching without the Δm , but all other matching N-terminal fragments contain the Δm , the unknown PTM must be on an amino acid between the second and third N-terminal fragment.

Figure 38. Schematic of Δm Mode

In Figure 38, the observed precursor mass is first checked against the theoretical precursor masses of every protein within the specified precursor mass window and the mass difference (Δm) is calculated and stored. Next, the theoretical fragment ion list for each protein is doubled; for each b/y or c/z. ion. Both the original fragment mass and the modified fragment mass (plus the Δm) are checked against the observed fragment ion mass list. The result is that any observed fragment ions having the same mass shift as the precursor protein will be returned as positive matches.

6 Search Modes Advanced Searches

Chapter 7 Sequence Gazer and Single Protein Searches

The Sequence Gazer is an interactive environment for interrogating MS/MS data.

This chapter describes how to use the Sequence Gazer. It contains the following sections:

- About Sequence Gazer
- Accessing Sequence Gazer
- Navigating Sequence Gazer
- Using Sequence Gazer

About Sequence Gazer

The Sequence Gazer is an interactive environment for interrogating MS/MS data against a known protein sequence. Use the Sequence Gazer to characterize identified proteins by selectively adding or removing PTMs or custom masses to amino acids within a protein sequence. Once you have made all your modifications to the amino acids, the ion data can be rescored.

The Sequence Gazer is usually used for one of two purposes. First, MS/MS data might have been gathered on a known, and pure, protein containing one or more unknown PTMs. In this case, a single protein mode search is built and added to the MS/MS experiment and the Sequence Gazer is used to test hypotheses of which PTMs are present.

Alternatively, the result of any other search mode might identify, and possibly partially characterize a protein, but full characterization does not occur. In this case, the Sequence Gazer can be used to fully characterize the protein.

Accessing Sequence Gazer

Access Sequence Gazer through one of two strategies:

- By running a single protein search
- By clicking **Take to Sequence Gazer** from any protein identification of a completed search

To run a single protein search

- 1. Open the desired experiment in a Data Manager.
- 2. Choose **Experiment Tools > Add Search**. The New Search dialog box appears, as Figure 39 shows.
- 3. Select Search Type > Single Protein.
- 4. Select Precursor Mass Type as monoisotopic or average mass.
- 5. Select Fragment Type as monoisotopic or average mass.
- 6. Type the Fragment Tolerance, in Da or ppm.
- 7. Select Δm mode, if desired.
- 8. Select Fixed Modifications, if desired.
- 9. Enter the sequence in the field by either typing it or using a sequence from another source.
- 10. Click Save.

Note After step 10, a new search is added to the Data Manager. It appears in blue highlighted text to indicate the new search is pending and has not yet been run.

11. From the Data Manager, click Run Search.

7 Sequence Gazer and Single Protein Searches

Accessing Sequence Gazer

www.search in Experime	ent 1 📃 🗆 🔀	
Search Type	Single Protein	
Single Protein Mode		
Precursor Mass Type	Monoisotopic 🔹	
Fragment Mass Type	Monoisotopic 🔹	
Fragment Tolerance	10 ppm 💌	
Δm Mode		
Fixed Modifications		
	F	
Sequence	_	
ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEA ELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEIREAFRV FDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQV NYEEFVQMMTAK		
Save	Cancel	

Figure 39. Add Single Protein Search dialog box

To access Sequence Gazer from any protein identified in a completed search

- 1. Select the desired search and click its corresponding side arrow.
- 2. Locate the desired protein identification within the search results and click its corresponding side arrow.
- 3. Click Take to Sequence Gazer (shown with the oval in Figure 40).

Accessing Sequence Gazer

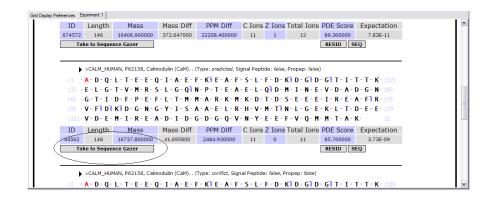
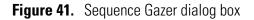


Figure 40. Take To Sequence Gazer Button


Navigating Sequence Gazer

Fragment ion information within the Sequence Gazer interface is organized into the following regions:

- Search Parameter Display
- Scores Box
- Fragments Explained Box
- Mass Diagram
- Interactive Fragment Map
- Amino Acid Information Box
- Fixed Modifications Box
- Matching Fragment Table
- Nonmatching Fragments Table

These regions are illustrated in Figure 41.

Precursor Mass Type: Mono or Avg	Scores:	
Fragment Tolerance: 025 Da ppm Mass Type: Mono or Avg	P Score: 5.18E-15 Expected: 3.73E-09 PDF: 85.7	-
Difference: 41.6958 Da 24	84.9300 ppm Cancel	
.1 <th>- P - T - E - A - E - L - Q 7 D - 299 Amino Acid: A RESID 41</th> <th>148</th>	- P - T - E - A - E - L - Q 7 D - 299 Amino Acid: A RESID 41	148
c76 - M - K - D - T - D - S - E - E - E - I - R - E - A - F Ì R - V - F c101 - S - A - A - E - L - R - H - V - M - T Ì N - L - G - E - K - L - T c126 - R - E - A - D - I - D - G - D - G - O - V - N - Y - E - E - F - V	- D - E - E - V - D - E - M - I - 224 	_

Search Parameter Display

Use the search parameter display to display the data options and tolerances you selected during the last round of scoring, as Table 21 shows.

	Table 21.	Search Parameters
--	-----------	-------------------

Display	Function
Fragment Tolerance	Displays the Fragment Tolerance at the time the search was last scored.
Precursor Mass Type	Displays Mass Type as monoisotopic or average mass
Fragment Mass Type	Displays Mass Type as monoisotopic or average mass
Δm Mode	Displays whether Δm Mode has been selected.

Note

- 1. User-defined selections appear in red. These can be changed by clicking on a new selection. The new selection appears in red.
- 2. None of the changes made in the Search Parameter Display are implemented until you click **Rescore**.

Scores Box Three scores are computed. These scores are explained in Table 22.

Table 22. Scores

Score	Source
P_Score	Lists the P_Score as noted by Meng, et al. $*$
Expectation	Lists the Expected Score as noted by LeDuc, et al.**
PDE	Lists the PDE Score as noted by Reid, et al.***

^{*}Meng, F. B. J. Cargile, L. H. Miller, A. J. Forbes, J. R. Johnson and N. L. Kelleher. (2001) Informatics and Multiplexing of intact protein identification in bacteria and the archaea. Nature Biotechnology 19: 952-957.

^{**}LeDuc, R. D., G. K. Taylor, Y. B. Kim, T. E. Januszyk, L. H. Bynum, J. V. Sola, J. S. Garavelli and N. L. Kelleher. (2004) ProSIght PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Research 32: W340-W345.

^{***}Reid, G. E., H. Shang, J. M. Hogan, G. U. Lee and S. A. McLuckey. (2002) Gas-phase concentration, purification, and identification of whole proteins from complex mixtures. Journal of the American Chemical Society 124: 7353-7362.

Fragments Explained Box

The fragments explained box displays a percentage representing the number of matching fragments divided by the total number of fragments. The fragments explained box has three additional controls described in Table 23.

Table 23.Fragments Explained Box

Control	Description
Rescore	Recalculates all scores and matching fragment information.
Save	Adds a new completed single protein mode search to the experiment.
Cancel	Discards the changes the user has made and returns to the Data Manager.

Mass Diagram The mass diagram displays the difference between the observed and theoretical mass, expressed in Da and ppm. The functions of these two elements are described in Table 24.

Table 24.Mass Diagram

ltem	Function
Observed Precursor Mass	Displays the experimental precursor mass.
Theoretical Precursor Mass	Displays the theoretical Precursor Mass, including all user-input changes, as of the last Score.

Tip The drop-down menu displays the observed precursor mass used in scoring. When toggled, you can switch between the precursor masses.

Interactive Fragment Map	The interactive fragment map is an interactive display of the protein sequence, along with any PTMs, and the matching fragment information.
	A black box around an amino acid indicates the amino acid selected. Choosing a PTM from the amino acid box affixes that PTM to the selected amino acid. A colored background behind an amino acid indicates the matching PTM is currently assigned to that amino acid.
	Note Click on an amino acid to access to all available PTMs contained in the RESID database that can be applied to that amino acid.
Amino Acid Information Box	The Amino Acid Information box refers to the selected amino acid in the interactive fragment map.

The functions of the amino acid information are described in Table 25.

ltem	Function
Position	Displays the relation of the selected amino acid to the N and C terminals.
Amino Acid	Displays the IUPAC single letter designation of the selected amino acid.
RESID	Displays the RESID designation of the selected PTM.
Start PTM	Displays the PTM attached to the amino acid as of the last score.
PTM Tiers	Displays PTMs in user-defined tiers that can be added to this amino acid.

Table 25. Amino Acid Information

Fixed Modifications Box	Each fixed modification supported by ProSightPC is listed by amino acid.
-------------------------	--

Tip You can select fixed modifications in the search adder, or they can be changed during rescoring.

Select **None** to indicate that no fixed modifications are presently selected for that type of amino acid and will not be included at the next rescore.

Each amino acid can have no more than one fixed modification.

Matching Fragment Table The matching fragment table contains a summary of all fragment ions matching the protein.

The interactive fragment map and matching fragment table are linked for convenient data browsing. Click a fragment name in the table to select the terminal amino acid within the fragment map. Alternatively, select the terminal amino acid of a fragment in the graphical map to highlight the corresponding fragment name in the fragment table.

Information relating to the matching fragments is described in Table 26.

Table 26.	Matching	Fragment	Table
-----------	----------	----------	-------

Display	Function
ID	Displays a unique (within each MS/MS experiment) ProSightPC-assigned numerical identification of the fragment.
Name	Displays a name formed by noting the ion type followed by the terminal amino acid number.

Display	Function
Mass (type)	Displays the observed mass of the fragment ion, measured in Da. The type will be monoisotopic or average depending on which was selected during the last rescoring.
Theoretical Mass	Displays the mass of the corresponding theoretical fragment ion.
Error (Da)	Displays the difference between the fragment mass and the theoretical fragment mass, measured in Da.
Error (ppm)	Displays the difference between the fragment mass and the theoretical fragment mass, measured in ppm.
Δm Mode	Displays the word \mathtt{True} if the corresponding fragment is a match considering the Δm .

Table 26. Matching Fragment Table, continued

Nonmatching Fragments Table

The nonmatching fragments table lists every fragment not matching the sequence.

The information within the nonmatching fragments table is described in Table 27.

 Table 27.
 Nonmatching Fragments Table

Display	Function
Mass (type)	Displays the observed mass of the fragment ion, measured in Da.
m/z (type)	Displays the m/z value corresponding to the fragment ion.
Intensity	Displays the intensity of the fragment ion.

Using Sequence Gazer

Use Sequence Gazer to characterize a previously identified protein.

When a protein sequence is taken to Sequence Gazer, ProSightPC automatically scores the sequence based on the initial search parameters.

You can change parameters and add or remove PTMs or fixed modifications. The modified sequence is then rescored. Ideally, changes to the sequence followed by rescoring net more matching fragments than before, thus narrowing the possible matching protein forms explaining the MS/MS data.

By rescoring, ProSightPC compares the new protein sequence configuration with all changes in place to the fragment ion data to determine the new number of fragments explained, along with all corresponding scores.

Chapter 8 Understanding the Data Manager

The Data Manager provides a visual representation of all the information related to a single MS/MS experiment.

This chapter describes how the Data Manager displays information. It contains the following sections:

- About Data Manager
- Data Manager Organization
- Building Gene-Restricted Searches from a Results List

About Data Manager

Use the Data Manager to view all information regarding a single experiment. Use the context-sensitive controls to determine what information is displayed. Figure 42 shows the Data Manager.

Source: Experimen	t Adder (1	.6779.5)		
modulin ECD				
Fragmentation Method: ECD	Ion Type: CZ			
 Precursor Mass List Fragment Mass List 				
Search 1: Absolute Mass Search				
 Search 2: Absolute Mass Search Search 3: Single Protein Search 				

Figure 42. Data Manager

Display Controls Click the display control arrows to reveal or conceal various displays The arrows indicate the status of the displayed information.
 Side Arrows A side arrow indicates that information relating to a search is concealed. Click the side arrow, as shown in Figure 43, to reveal the information. This turns the side arrow icon into a down arrow.

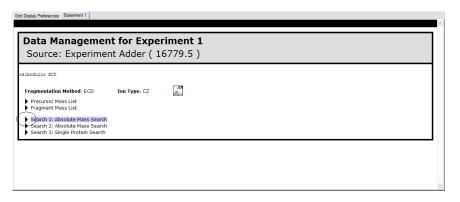


Figure 43. Data Manager Side Arrow

Down Arrows Down arrows indicate that information relating to a search is presently displayed. Click the down arrow to conceal the information. The arrow changes to a side arrow.

Data Manager Organization	Information within the Data Manager is displayed in two functional groups:
Organization	Instrument Data
	Search Data
Instrument Data	Instrument data includes the mass values, fragmentation method, and ion type of the MS/MS experiment.
	Note If you have defined an experiment-level comment, it is displayed at the top of the Data Manager.
Adding or Editing an Experiment Comment	Add or edit an experiment comment by using the Experiment Tools > Edit Comment menu.
	To add or edit an experiment comment
	1. Choose Experiment Tools > Edit Comment.
	2. Type the comment in the field provided.
	3. Click Save to save the comment.
	Tip Use an experiment comment to record information relating to all the searches, which liquid chromatography fraction the data came from, and information regarding the mass spectra used to create the mass list.
Editing Mass Values	You can edit mass values within an experiment.
	Use one of the following two methods to edit mass values:
	Click Edit Masses within the Data Manager.
	 Choose Experiment Tools > Edit Masses.

Either method opens a new tab in the Data Manager, as Figure 44 shows.

Data Manager Organization

044.0	Display Preference	. I Environment	1 Edit Massar	(Ex 1)		
	🛛 💆 Fra	agmentation Me	ethod ECD		•	
Intac	ct Mass List					
	mz_monoisot	mz_average	mass_monois	mass_averag	intensity	id
•	0	0	16779.5	0	1	1
*						
Frag	gment Mass List					
	mz_monoisot	mz_average	mass_monois	mass_averag	intensity	id
•		0	5441.498524		1	1
		0	3343.573756		1	2
			4559.217405		1	3
			10436.04081		1	4
			10550.73046		1	5
			10679.11834		1	6
			7380.707086		1	1
		0	8610.689941 12393.73135		1	8
<u> </u>			2499.206536		1	10
			2433.206536		1	11
			6747.222183		1	12
-			12221.86987		1	13
			8428.081058		1	14
		0	2843.297473		1	15

Figure 44. Edit Mass Values

The mass values display in a series of columns within two fields:

- Intact Mass List
- Fragment List

To edit mass values

- 1. Select any value from either of the two mass lists.
- 2. Click **Delete** or use the backspace key to remove the old value. Type a new value in the blank space.
- 3. Click **Save Changes** to save the changes. ProSightPC returns you to the Data Manager.

Tip

- 1. The last row of the Data Grid is marked with a "*." You can add a new value, if you prefer.
- 2. Click in the margin to the left of the mass list to select an entire row. Click **Delete** to remove the entire row from the mass list

Fragmentation and Ion Types When a M

When a MS/MS experiment is generated, the fragmentation method used to generate the MS/MS data is declared. From this input, ProSightPC determines which of the following ion types to use during searches:

• Electron capture dissociation (ECD) fragmentation is analyzed using *c/z*, ions.

• Collisionally-induced dissociation (CID) fragmentation is analyzed as *b/y* ions.

Search Data	A numerical list of searches arranged by search ID follows the instrument
	data. The search type and status are displayed.

If the search is highlighted in blue, the search is Pending and has yet to be run.

Pending SearchClick the side arrow of a pending search to reveal the search parameters and
a Run Search button. Click the Run Search button to run the search.

Note Search Parameters are discussed in Chapter 6: Search Modes

Edit Comment Click the **Edit Comment** button to enter and save information specific to the search.

Results A completed search generates a results list, as Figure 45 shows.

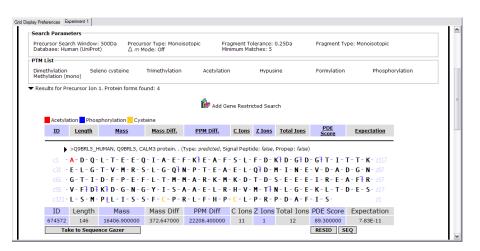


Figure 45. Results List

IMPORTANT Absolute mass and biomarker searches return one result list for each precursor ion.

Each result list displays the number of protein forms found. Click the side arrow next to the results list to display the results contained in the result table. Each result table contains complete information about each matching protein form. Information within the result table is organized into the three regions described in Table 28

Table 28. Result Table Regions

Region	Description
Description	This is a short description of the protein form.
Fragment Map	This is a graphical representation of the protein form, showing the location of PTMs and matching fragment ions.
Statistics Table	This organizes information relating to the search. See Table 29.

The statistics table is subdivided into the display elements described in Table 29.

Statistic	Description
ID	The internal identifier for the protein form.
Length	The number of amino acids in the protein form.
Mass	The theoretical precursor mass of the protein form.
Mass Difference	The observed mass minus the theoretical mass.
PPM Difference	The mass difference in terms of ppm.
N-terminal lons	The total number of matching N-Terminal ions.
C-terminal lons	The total number of matching C-Terminal lons.
Total lons	The total number of matching ions.
PDE Score	The PDE score.
Expectation	The expectation score.

Each result has three context-sensitive buttons, described in Table 30.

Table 30. Context-Sensitive Buttons

Button	Description
Take to Sequence Gazer	Creates a new Single Protein Mode search based on the result. See Chapter 7 for details.
RESID	Displays a RESID-annotated sequence.
SEQ	Displays the sequence.

	Note					
	 Click the text within the header column to sort the results list in ascending or descending order. Click again to reverse the order. ProSightPC automatically generates a color-coded legend. An amino acid bearing a PTM will be color coded according to this legend. Cysteines are always colored yellow. 					
Reading the Fragment Map	The matching fragment table contains a summary of all fragment ions matching the protein.					
	Absolute mass, biomarker, single protein, gene-restricted absolute mass, a gene-restricted biomarker mass searches all return similar results.					
	Table 31 describes the functions displayed in the matching fragments table.					
	Table 31. Matching Fragment Table					
	Display Function					
	ID	A unique (within each MS/MS experiment) ProSightPC-assigned numerical identification of the matching fragment.				
	Name	The ion type followed by the distance from the terminus.				
	Mass (type)	The observed mass of the fragment ion, measured in Da. The type is either monoisotopic or average depending on search parameters.				
	Theoretical Mass	The mass of the corresponding theoretical fragment ion.				
	Error (Da)	The difference between the fragment mass and the theoretical fragment mass, measured in Da.				
	Error (ppm)	The difference between the fragment mass and the theoretical fragment mass, measured in ppm.				
	Δm Mode	The word \mathtt{True} if the corresponding fragment is a match considering the mass shift, Δm .				

Building Gene-Restricted Searches from a Results List

Build a gene-restricted search for any results list within the Data Manager.

To access the new gene-restricted search dialog box

1. Click the **Add Gene Restricted Search** icon, shown in the oval in Figure 46.

	eriment 1								
Search Paramete	ers								
Precursor Search Database: Huma			sor Type: Monoiso Iode: Off		agment Tolerance: nimum Matches: 5	0.25Da	Fragment Ty	ype: Monoisotopic	
PTM List									
Dimethylation Methylation (mo		cysteine	Trimethylation	Acetylation	n Hypus	sine	Formylation	Phosph	orylation
 Results for Prec 	cursor Ion 1. P	rotein forms fo	und: 4	/		~			
				·	ene Restricted Sea	\cdot			
				MEP Add Ge	ene Restricted Sea	ron			
Acetylatio	on <mark>–</mark> Phospho	rylation <mark>Cys</mark> l	teine	<u> </u>		/			
ID							PDE		
	<u>Length</u>	Mass	Mass Diff.	PPM Diff.	C Ions Z Ions	Total Ions	Score	Expectation	
_								Expectation	
• >					<u>C Ions</u> <u>Z Ions</u> gnal Peptide: <i>false</i> ,			Expectation	
,	Q9BRL5_HUM/	AN, Q9BRL5, C/	ALM3 protein (Ty	pe: predicted, Si		Propep: false)	Score		-
d • A	Q9BRL5_HUM/	AN, Q9BRL5, C/	ALM3 protein (Ty)- I - A - E - F	pe: <i>predicted</i> , Sig	gnal Peptide: false,	Propep: false)	<u>Score</u> - G7 T - I -	T - T - K - z117	-
c1 · A c31 · E	Q9BRL5_HUM/ - D - Q - L - - L - G - T -	AN, Q9BRL5, C/ T - E - E - C V - M - R - S	ALM3 protein (Ty) - I - A - E - F 5 - L - G - Q - N	pe: <i>predicted</i> , Si - KT E - A - F - P - T - E - A	gnal Peptide: false, - S - L - F - D -	.Propep: false) K TD - G TD M - I - N - E	- G T - I - - V - D - A -	T - T - K - z117 D - G - N - z87	-
c1 A c31 E c61 G	Q9BRL5_HUM/ - D - Q - L - - L - G - T - G - T - I - D -	AN, Q9BRL5, C/ T - E - E - C V - M - R - S F - P - E - F	ALM3 protein (Ty 2 - I - A - E - F 5 - L - G - Q - N - 5 - L - T - M - M	pe: <i>predicted</i> , Sig - KT E - A - F - P - T - E - A - A - R - K - M	gnal Peptide: <i>false</i> , - S - L - F - D - - E - L - Q - D -	. Propep: false) K TD - G TD M - I - N - E S - E - E - E	Score - G T - I - - V - D - A - - I - R - E -	T - T - K - 2117 D - G - N - 287 A - FT R - 257	_
c1 · A c31 · E c61 · G c91 · V	Q9BRL5_HUM/ - D - Q - L - - L - G - T - - T - I - D - / - F T D T KT	AN, Q9BRL5, C/ T - E - E - C V - M - R - S F - P - E - F D - G - N - C	ALM3 protein (Ty Q - I - A - E - F - 5 - L - G - Q - N - 5 - L - T - M - M - 5 - Y - I - S - A -	pe: predicted, Sig - KT E - A - F - P - T - E - A - A - R - K - M - A - E - L - R	gnal Peptide: false, - S - L - F - D - - E - L - Q - D - - K - D - T - D -	. Propep: false) KT D - GT D M - I - N - E S - E - E - E N - L - G - E	Score - G] T - I - - V - D - A - - I - R - E - - K - L - T -	T - T - K - 2117 D - G - N - 287 A - FT R - 257	_
c1 · A c31 · E c61 · G c91 · V c121 · L	Q9BRL5_HUM/ - D - Q - L - - L - G - T - - T - I - D - - F - D - K - S - M - P +	AN, Q9BRL5, C/ T - E - E - C V - M - R - S F - P - E - F D - G - N - C L - I - S - S	ALM3 protein (Ty 2 - I - A - E - F - 5 - L - G - Q - N - - L - T - M - M - 5 - Y - I - S - A - 5 - F - C - P - R -	pe: predicted, Sig - KT E - A - F - P - T - E - A - A - R - K - M - A - E - L - R - L - F - H - P	gnal Peptide: false, - S - L - F - D - - E - L - Q - D - - K - D - T - D - - H - V - M - T - - C - L - P - R -	, Propep: false) KT D - GT D M - I - N - E S - E - E - E N - L - G - E P - D - A - F	Score - G- T - I - V - D - A - - I - R - E - K - L - T - - I - S -	T - T - K - 2117 D - G - N - 287 A - F7 R - 257 D - E - S - 227 21	-
c1 A c31 E c61 G c91 V c121 L ID	Q9BRL5_HUM/ - D - Q - L - - L - G - T - - T - I - D - / F T D K - S - M - P t Length	AN, Q9BRL5, C/ T - E - E - C V - M - R - S F - P - E - F D - G - N - C L - I - S - S Mass	ALM3 protein (Ty 2 - I - A - E - F - 5 - L - G - Q - N - 5 - L - T - M - M - 5 - Y - I - S - A - 5 - F - C - P - R - Mass Diff	pe: predicted, Sių - K] E - A - F - P - T - E - A - A - R - K - M - A - E - L - R - L - F - H - P PPM Diff	gnal Peptide: false, - S - L - F - D - - E - L - Q - D - - K - D - T - D - - H - V - M - T - - C - L - P - R - C Ions Z Ions	Propep: false) K ¹ D - G ¹ D M - I - N - E S - E - E - E N - L - G - E P - D - A - F Total Ions	Score - G - T - I - - V - D - A - - I - R - E - - K - L - T - - I - S - PDE Score	T - T - K - 2117 D - G - N - 287 A - F7 R - 257 D - E - S - 227 21 Expectation	-
c1 - c31 - c61 - c91 - c121 - ID - 674572 -	Q9BRL5_HUM/ - D - Q - L - - L - G - T - - T - I - D - / F T D K - S - M - P t Length	AN, Q9BRL5, C T - E - E - C V - M - R - S F - P - E - F D - G - N - C L - I - S - S Mass 5406.900000	ALM3 protein (Ty 2 - I - A - E - F - 5 - L - G - Q - N - 5 - L - T - M - M - 5 - Y - I - S - A - 5 - F - C - P - R - Mass Diff	pe: predicted, Sig - KT E - A - F - P - T - E - A - A - R - K - M - A - E - L - R - L - F - H - P	gnal Peptide: false, - S - L - F - D - - E - L - Q - D - - K - D - T - D - - H - V - M - T - - C - L - P - R -	, Propep: false) KT D - GT D M - I - N - E S - E - E - E N - L - G - E P - D - A - F	Score - GT T - I - - V - D - A - - I - R - E - - K - L - T - - I - S - PDE Score 89.300000	T - T - K - 2117 D - G - N - 287 A - F7 R - 257 D - E - S - 227 21	-

Figure 46. Add Gene Restricted Search

2. The New Gene Restricted Search dialog box appears, as Figure 47 shows.

New Gene Restricted Se	arch in Experi 🖃 🗆 🔀
Search Type	Gene Restricted Absolute Ma 💌
Gene Restricted Absolu	ite Mass Search
Database	Demo database for ProSight 💌
Precursor Mass Type	Monoisotopic 💌
Fragment Mass Type	Monoisotopic 🗨
Fragment Tolerance	20 ppm 💌
Minimum Matches	10
∆ <i>m</i> Mode	Г
Fixed Modifications	
Cysteine Methionine	FI
PTMs	
Tier 1 Fornylation Acetylation	
	•
Save	Cancel

Building a New Gene Restricted Search

Build a new gene-restricted biomarker or gene-restricted absolute mass search after the New Gene Restricted Search dialog box appears.

To build a new gene-restricted search

- 1. Select the Search Type.
- 2. Type the appropriate gene-restricted parameters. These parameters are described in Chapter 6, "Search Modes."
- 3. Click **Save** to append the new search to the experiment and return to the Data Manager. The status of the new search is pending.
- 4. Click **Run Search** to run the search.

Chapter 9 Proteome Databases

Proteome databases are a critical element of ProSightPC. The various searches require sequence information in order to identify and characterize proteins. This sequence information is stored in proteome databases within the PTM Warehouse.

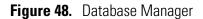
This chapter describes the PTM Warehouse and how to create, manipulate, and modify proteome databases. It contains the following sections:

- The PTM Warehouse
- About Proteome Databases
- The Database Manager
- Import a Proteome Database
- Export a Proteome Database
- Create a Proteome Database
- Remove a Proteome Database
- Change View
- ProSightPC Proteome Database Tools
- View Database Information

The PTM Warehouse

The PTM Warehouse stores protein sequence and PTM information in proteome databases. The sequence and PTM information are combined using shotgun annotation, as explained in Chapter 1, "Top-Down Proteomics."

About Proteome Databases	The PTM Warehouse consists of a collection of proteome databases and a small amount of metadata. Proteome databases contain the shotgun annotation of all possible combinations of PTMs on each basic sequence in the proteome. Any given possible combination of PTMs on a basic sequence is referred to as a protein form.
Internal Database Names	Each proteome is stored as a proteome database and is uniquely identified by an internal name consisting of one or more letters A-Z without spaces or punctuation. For example, E. coli (UniProt) might be designated as ecoli_uniprot.
Importing Data into the PTM Warehouse	Use the following two methods for importing data into the PTM Warehouse. Each method is covered in more detail in the Database Manager section of this chapter. • Load databases from PWF Files
	 Create Databases from Swiss-Prot or FASTA-formatted text files.


The Database Manager

Use the database manager to handle all PTM Warehouse management and manipulation functions. Access the database manager from the ProSightPC Applications folder located on your desktop.

To access the Database Manager

- 1. Double-click **ProSightPC Applications**.
- 2. Double-click **Database Manager**. A new window appears, as Figure 48 shows.

Database Ma	nager						
()	» 🗙 [2					
Database Name	Internal Name	Proteome	Strain	Annotated By	Basic Sequences	Protein Forms	Size (MB)
Human (UniP	human_unip	Homo s	none	UniProt	37683	720709	473
🖥 Demo databa	demo	Human	none	UniProt	3	19	0.045

Database Manager	The database manager graphical user interface (GUI) consists of the
Organization	following two elements:

- The Data Grid
- The Toolbar

The Data Grid The data grid contains one row for each proteome database within the PTM Warehouse.

Table 32 describes the organization of the Data Grid.

Component	Description
Database Name	Describes the proteome database.
Internal Name	Displays the internal name.
Proteome	Describes the proteome from which the protein sequence data is derived.
Strain	Displays optional information about the strain of the organism from which the proteome was derived.
Annotated By	Describes the source of the proteome data.
Basic Sequence	Lists the number of basic sequences in the database.
Protein Forms	Lists the number of protein forms in the database.
Size (Mb)	Lists the physical size of the database in MB.

Table 32.Data Grid Columns

The Toolbar Use the toolbar to do the following:

- Import a Proteome Database
- Export a Proteome Database
- Create a Proteome Database
- Remove a Proteome Database
- Change View

Import a Proteome Database

Use the Import Proteome Database tool in the ProSightPC Application folder to load an existing proteome database into your PTM Warehouse.

When opened, the Import Databases dialog box shown in Figure 49 displays a list of all patches and proteome databases in the PWF file. All patches and proteome databases, when present, are preselected. You must manually deselect them to prevent them from being loaded.

To import a proteome database

- 1. Click Import Proteome Database.
- 2. Select the desired PWF file.
- 3. Select one or more proteome databases and patches to be loaded.
- 4. Click Import.

b Import Database(s)	
Databases	
human_uniprot	
Import Car	ncel

Figure 49. Import Database(s) dialog box

If any internal name already exists within the PTM Warehouse, the Internal Name Conflict dialog box appears, as Figure 50 shows.

Internal Name:	rat_uniprot
Database Nam	e: None
The internal na database.	ame of this database conflicts with an existing
The internal na	ames of databases in the ProSight PC
Warehouse mu	
Warehouse mu Rename	
	ist be unique.
	ist be unique.

Figure 50. Internal Name Conflict dialog box

The Internal Name Conflict dialog box alerts you if the entered internal name already exists within the PTM Warehouse. The appearance of this dialog box prompts you for one of the following actions:

- Rename
- Skip
- Replace
- Cancel

Note Importing databases as PWF files is faster than recreating a proteome database with the Create Proteome Database option, a process detailed in the following sections.

Export a Proteome Database

Click the Export Proteome Database icon to export proteome databases from your PTM Warehouse to a PWF file. The Export Database(s) dialog box appears, as Figure 51 shows.

Use the Export Databases tool, located in the Database Manager, to export one or more databases.

To export a proteome database

- 1. Select the database to export. To combine multiple databases into a single export file, press the CTRL key and select additional databases.
- 2. Click **Export ProSight Database**. A new dialog box appears, as Figure 51 shows.

Export Database(s)		
Output PWF File:		
J		
human_uniprot	Compre	ssion Level:
	6	0 - None, Fast 9 - Highest, Slow
Export	Cancel]

Figure 51. Export Database(s) dialog box

- 3. Type a destination PWF file, either manually or with the file picker provided.
- 4. Select a compression level by typing an integer ranging from 9(slow export but small file size) to 0 (fast and large file size). This controls the final PWF file size.
- 5. Click **Export** to execute the procedure and create a new PWF file.

Create a Proteome Database

Create your own shotgun-annotated proteome databases. These databases are restricted to one of the following two input file formats:

- Swiss-Prot
- FASTA

Accessing Create Proteome Database

Use the Create Proteome Database tool in the database manager to create a proteome database.

To access create proteome database

• Click **Create Proteome Database**. The following dialog box appears, as Figure 52 shows.

🐠 Create Database	_ 🗆 🛛	
Database Information -		
Internal Name:	e_coli	
Database Name:	E. coli	
Sequence Information		
Input File: ecoli f	asta 🗁	
Input File Type:	Fasta	
Proteome:		
Strain:	none	
Annotation:		
Last Updated:	Thursday , May 04, 2006 💌	
Fasta PTM Information		
L	Dad Cancel	

Figure 52. Create Proteome Database dialog box

Organization of Create Proteome Database

Information within the Create Proteome Database dialog box appears in the following three regions:

- Database Information
- Sequence Information

• PTM Information

Database Information

Database information is divided into two fields, as Table 33 describes:

Table 33. Database Information
--

ltem	Description
Internal Name	Type the internal name of the new proteome database. This name must be unique.
Database Name	Type the name for the new proteome database. This is the name that displays in the ProSightPC interface.

Sequence Information

Sequence information is divided into the following fields, as Table 34 describes.

Table 34. Sequence Information

ltem	Description
Input File	Type or use the tool to select the path to the input files.
Input File Type	Select Swiss-Prot or FASTA.
Proteome	Enter a description of the proteome.
Strain	(Optional) Enter strain information for the proteome database.
Annotation	Type a short description of the source of the data.
Last Updated	Type the date when the database was last updated.

PTM Information This frame filters which PTM information is shotgun annotated into the new proteome database. The selectable content of the PTM information frame is determined by file type (Swiss-Prot or FASTA).

FASTA FASTA files contain no PTM information, thus only predicted PTMs can be shotgun annotated to their sequences.

Swiss-Prot Swiss-Prot files store a large amount of PTM information. For this reason, all PTMs listed in RESID are available for shotgun annotation. However, only the PTM information in the source Swiss-Prot file can actually be shotgun annotated into the proteome database.

PTMs are arranged in PTM tiers. These tiers are described in Chapter 11, "PTM Tier Editor."

Creating a Proteome Database

Create proteome databases from within the Database Manager.

To create a proteome database from either a FASTA or Swiss-Prot file

- 1. Click Create Proteome Database.
- 2. Type the database name in the field provided.
- 3. Type the internal name in the field provided.
- 4. Type the path to the file containing the sequence information.
- 5. Select the input file type from the drop down menu.
- 6. Type the proteome name in the field provided.
- 7. (Optional) Type the Strain name in the field provided.
- 8. Type the annotation information in the field provided.
- 9. Click the drop-down menu to display a calendar and select a different date. The current date defaults to the Last Modified field.
- 10. Select the PTMs you want to use from the list.
- 11. Click **Load** to create the new database.

IMPORTANT This process can take several hours or, in some cases, days to complete, depending on your hardware and the data being shotgun annotated.

Remove a Proteome Database

Eliminate unwanted proteome databases from the PTM Warehouse by selecting the proteome databases in the Data Grid and using the **Remove Database** function.

To remove a proteome database

- 1. Select the unwanted proteome database in the data grid.
- 2. Click Remove Proteome Database.
- 3. Click Yes to remove the proteome database from the PTM Warehouse.

CAUTION Removing a proteome database from the PTM Warehouse is a permanent change and cannot be undone except by reloading the data from the original source into the PTM Warehouse.

Change View

Click the **Change View** button to change the display of databases in the database manager. Choose whether the databases are displayed in detail, list, and small or large icons.

Note

You can drag-and-drop files within the database manager.

- PWF files trigger the Import Proteome Database function.
- FASTA and Swiss-Prot files trigger the Create Proteome Database function.

ProSightPC Proteome Database Tools

ProSightPC provides two additional tools for managing the PTM Warehouse:

- Individual Sequence Adder
- View Database Information

Individual Sequence Adder

Use the Individual Sequence Adder to add all shotgun-annotated forms of a single protein to an existing proteome database. Access the Individual Sequence Adder through the Tools menu.

To access the Individual Sequence Adder

• Choose **Tools > Individual Sequence Adder**. A new dialog box appears, as Figure 53 shows.

Deplay Preferences Experiment 1 Individual Sequence Adder Individual Sequence Adder Database Name: Humar	an (I liviProf)	
Please Enter Your Sequence: ADQLTEEQIAEFKEAFSLFDKDDGDTITKELGTVKRSLGQNPTEAELQ A DMINEVDADNONTIDFEETLINBABAKKOTDSEEEIREAFKVFDKDGNKO YISAAELRHVHTNLGEKLTDESLSNPLISSFCPRLFHPCLPRPDAFIS	Optional External ID: Accession Number: Q9BRL5	
Add PTMs: Edit		
Upd	date DB	

Figure 53. Individual Sequence Adder dialog box

To use the Individual Sequence Adder

- 1. Type the sequence, without spaces or extra characters, in the field provided.
- 2. Click **Edit** to add PTMs. A new dialog box appears that displays the sequence, as Figure 54 shows.
- 3. First click an amino acid to select a PTM. A box appears around the amino acid. Any PTMs known to occur on the selected amino acid appear in the Amino Acid Information Box to the right.

- 4. Click the name of the PTM. A colored box matching the PTM appears around the amino acid.
- 5. Select an amino acid and click **None** to remove the PTM from the amino acid.
- 6. Click **Accept** to integrate the PTM changes to the Individual Sequence Adder.

Figure 54. Individual Sequence Adder PTM Selection

Entering Optional Data

Add additional information into the Individual Sequence Adder before or after PTM selection This information is optional data and is described in Table 35.

Table 35. Optional Data

Data	Description
External ID	Type any sequence identifier.
Accession Number	Type the Accession Number, if available.
Description	Type a description of the protein, up to 255 characters.

Note

- 1. All of the data elements in Table 35 display if the sequence is found during a search.
- 2. ProSightPC functions without any of these three optional selections but including at least one of these data elements aids in identification.

View Database Information

View Database Information displays a summary of all proteome databases currently loaded into the PTM Warehouse.

To view Database Information

• Choose **Tools > View Database Information**. A new window appears, as Figure 55 shows.

Database Name	Internal Name	Proteome	Strain	Anno	Basic Sequences	Protein Forms	Size (MB)
Human (UniProt) Demo database for ProSight PC	human_uniprot demo	Homo sapiens Human	none none	UniProt UniProt		720709 19	473 0.045

Figure 55. View Database Information dialog box

Table 36 describes the organization of the Database Information tab.

	Table 36.	Database	Information
--	-----------	----------	-------------

ltem	Description
Internal Name	Displays the internal name of the proteome database. This name must be unique.
Proteome	Lists the description of the proteome.
Strain	Lists the strain information for the proteome database.
Annotated By	Lists the source of the proteome data.
Basic Sequence	Lists the number of unmodified protein forms within the proteome database.
Protein Forms	Lists the total number of shotgun annotated protein forms within the Proteome Database.
Size	Lists the physical size of the proteome database in MB.

Chapter 10 Noise Reducer

Fragmentation data frequently contains chemical noise peaks. Use the Noise Reducer to identify and remove these fragment masses.

This chapter describes how to use the Noise Reducer. It contains the following sections:

- About Noise Reducer
- Accessing Noise Reducer
- Using Noise Reducer
- Interpreting the Result
- Deleting Spurious Fragments

About Noise Reducer

Fragmentation data frequently contains chemical noise peaks. These undesirable peaks consists of fragment mass values representing observed ions that do not correspond to b/y or c/z. fragments of the precursor ion or are data processing noise. These values arise from errors in peak picking algorithms or as a by-product of the fragmentation mechanism. Use the Noise Reducer to identify and remove some of these undesirable masses from an MS/MS experiment.

Once Noise Reducer has run, a new experiment identical to the source experiment is placed on the Data Grid. The new experiment lacks the undesirable fragment masses and previous experiment results are removed as they might contain the deleted noise peaks.

Table 37 describes three sources of chemical noise.

Iable 37. Sources of Chemical Noise	Table 37.	. Sources of Chemical Noise
---	-----------	-----------------------------

Source	Description
NH ₃ loss	Describes two or more peaks with masses differing by 17.01 Da plus or minus the user supplied tolerances. The lighter peak would be considered noise from the heavier.
H ₂ O loss	Describes two or more peaks with masses differing by 18.01 Da plus or minus the user supplied tolerances. The lighter peak would be considered noise from the heavier.
lsotope	Describes two or more peaks from different charge states, with masses differing exactly by 1.0 Da.

Accessing Noise Reducer

Access the Noise Reducer through the Experiment Tools menu.

To access Noise Reducer

- 1. Open the Data Manager of the experiment to be processed.
- 2. Choose **Experiment Tools > Reduce Noise**. The Noise Reducer window appears, as **Figure 56** shows.

xperiment Number: 1				
earch tolerance				
0.1)a			
Use monoisotopic i	nasses			
OUse average mass	96			
Reduce Cancel	-			

Figure 56. Noise Reducer

Note The Noise Reducer applies to the MS/MS experiment in the active Data Manager. If no Data Manager is active, the Noise Reducer is unavailable.

Using Noise Reducer

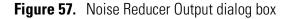
Use the Noise Reducer to identify and minimize the effects of chemical noise within an experiment.

The Noise Reducer requires two user-defined pieces of information, as Table 38 describes.

Table 38. Noise Reducer Inputs

Element	Description
Search Tolerance	Search tolerance is an allowable error, measured in Da, between the expected or observed mass differences.
Mass Type	Mass type indicates whether the noise reducer should consider monoisotopic or average mass types.

To run Noise Reducer


- 1. Type the desired search tolerance, measured in Da, in the field provided.
- 2. Select Monoisotopic or Average Mass Type.
- 3. Click **Reduce** to activate the Noise Reducer.

Interpreting the Result

The output of Noise Reducer consists of sets of fragment ion masses. The fragment ion masses are grouped together by

- Differences of one Dalton (Da)
- Loss of one NH₃
- Loss of one H₂O

Fragment ID	MZ Monoisotopic	MZ Average	Mass Monoisotopic	Mass Average	Intensity	Delete Fragment
21	0	0	6229.967841	0	1	
31	0	0	6228.9678	0	1	v
		These peaks are	1 Da apart			
25	0	0	7952.80639	0	1	
29	0	0	7934.8002	0	1	
	These fragm	ents are within ar	H2O loss of each other			
26	0	0	8168.744426	0	1	
30	0	0	8151.744	0	1	
	These fragm	ents are within ar	NH3 loss of each other			

Inspect the fragment data displayed in Figure 57 to determine which, if any, of the fragments are possibly not true b/y or c/z. ions. Spurious fragments appear as shaded entries. Spurious fragments are generally undesirable within an experiment and should be deleted. For more information, see Deleting Spurious Fragments.

Note If all fragment ions in a set are shaded, the Noise Reducer is unable to determine which is most likely to be spurious.

Deleting Spurious Fragments

The Noise Reducer groups fragments that might be spurious.

To delete spurious fragments

- 1. Check the box next to each of the undesired peaks within each group.
- 2. Repeat for each group in the list.
- 3. Click **Reduce** to remove the spurious fragment masses.

A duplicate experiment is added. The spurious fragments are omitted from the Mass List of the new MS/MS experiment.

Note All searches within the new spurious fragment-free MS/MS experiment will be pending.

Chapter 11 **PTM Tier Editor**

ProSightPC groups all PTMs in a multitier structure, allowing you to find and select PTMs quickly.

This chapter describes how to use the Tier Editor to view and to change the tier assignment of PTMs. It contains the following sections:

- About PTM Tier Editor
- Accessing PTM Tier Editor
- Including and Excluding PTMs
- Moving PTMs Between Tiers

About PTM Tier Editor

Assigning PTMs into tiers is intended to help you locate and select PTMs quickly and efficiently in your searches. All of the PTMs in the Tier Editor come from the RESID database.

The PTM Tier Editor has two functions:

- To permit you to reassign PTMs within the tier system
- To display which PTMs are currently included or excluded

You select which PTMs will be available to be included in or excluded from analyses conducted by ProSightPC.

ProSightPC automatically assigns many PTMs to Tier 1 and Tier 2. Tier 1 PTMs represent the most common PTMs while rarer PTMs are assigned to Tier 2.

Note

- 1. Tier assignments greater than 2 can be entered.
- 2. The Tier Editor does not append PTM information into databases. The PTM information must be present in the proteome database prior to analyzing MS data.

Accessing PTM Tier Editor

Access the Tier Editor through the ${\bf Tools}$ menu.

To access Tier Editor

• Choose **Tools** > **Tier Editor**. The PTM Tier Editor dialog box appears, as Figure 58 shows.

	uded PTMs (To exclude a PTM, change tier to -1)		
	Name	Tier	Resid ID 🛛
	N-formyI-L-methionine	1	AA0021
	L-selenocysteine	1	AA0022
	L-aspartic 4-phosphoric anhydride	1	AA0033
	S-phospho-L-cysteine	1	AA0034
	1'-phospho-L-histidine	2	AA0035
	O-phospho-L-serine	1	AA0037
	O-phospho-L-threonine	1	AA0038
	O4'-phospho-L-tyrosine	1	AA0039
	2'-[3-carboxamido-3-(trimethylammonio)propyl]-L-histidine	2	AA0040
	N-acetyl-L-alanine	1	AA0041
	N-acetyI-L-aspartic acid	1	AA0042
	N-acetyl-L-cysteine	1	AA0043
	N-acetyl-L-glutamic acid	1	AA0044
	N pootel L alutamino	1	VV004E
(3 3 4 5 1 1 1	Iuded PTMs (To include a PTM, check it) =:2.3-didehydrotyrosine" :3".5-triiodo-L-thyronine" .4-dihydroxy-L-arginine" .5-dihydroxy-L-lysine" -hydroxy-No.No.Ko.Frimethyl-L-lysine" :2.4,5-tonguinone" -3.4,5-trihydroxyphenylalanine" -3.4,5-trihydroxyphenylalanine"		

Figure 58. PTM Tier Editor dialog box

The PTM Tier Editor has two main display areas:

- Included PTMs
- Excluded PTMs

Including and Excluding PTMs	Use the Tier Editor to include or exclude PTMs. Included PTMs are available to the Sequence Gazer, the Database Loader, and to all search modes. ProSightPC comes with a preset list of included PTMs. Any PTM not listed				
	ProSightPC comes is excluded.	with a preset list of included PTMs. Any PTM not listed			
Included PTMs	Within the Included PTMs area, information relating to all presently included PTMs is arranged in three columns, as Table 39 shows.				
	Table 39. Included	PTM Information			
	PTM Information	Description			
	Name	States the RESID name of the included PTM.			
	Tier	States the current tier assignment of the included PTM.			
	RESID ID	States the RESID identifier of the included PTM.			
	Tip Sort the columns of Included PTMs in ascending or descending or by clicking on the header.				
Excluded PTMs		ded PTMs are listed in the Excluded PTMs field. Use the o reclassify an excluded PTM as included.			
Excluded PTMs		o reclassify an excluded PTM as included.			
Excluded PTMs	PTM Tier Editor to To reclassify an Ex	o reclassify an excluded PTM as included.			
Excluded PTMs	PTM Tier Editor to To reclassify an Ex 1. Check the box	o reclassify an excluded PTM as included. xcluded PTM			
Excluded PTMs	PTM Tier Editor to To reclassify an Ex 1. Check the box 2. Click Update to	to reclassify an excluded PTM as included. xcluded PTM to the left of any desired PTMs.			

Moving PTMs Between Tiers	Use the Tier Editor to manually reassign a PTM to another tier.			
Delween Heis	To manually reassign a PTM to a tier within the Included PTMs field			
	1. Click the Tier Number to the right of the PTM to be reassigned.			
	2. Type a new positive integer in the Tier Number column.			
	3. Click Update to commit the change.			
	Note			
	 Tier assignments greater than 2 can be entered. The Tier Editor does not append PTM information into databases. The PTM information must be present in the proteome database prior to analyzing MS data. If the information for a given PTM is not in the proteome database, that PTM will not be available for selection in database searches, even if the PTM is considered included by the Tier Editor. 			
Excluding Included PTMs	Remove PTMs from the Included PTMs list by changing the Tier Number value.			
	To remove a PTM from the Included PTM list			
	1. Select the Tier Number to the right of the PTM you want to remove.			
	2. Click Delete to remove the current value.			
	3. Type -1 as the new Tier Number.			
	4. Click Update to commit the change.			
	Note Once Update executes, any excluded PTMs reappear in the Excluded PTMs field.			

Chapter 12 Manage Data

ProSightPC provides several batch processing and reporting tools for managing large numbers of MS/MS experiments. Use these tools to simplify working with several experiments within a single PUF file.

This chapter describes how to manage multiple experiments. It contains the following sections:

- Complex Data Analysis Tasks
- Experiment Manager

Complex Data Use the following tools to manage multiple experiments: **Analysis Tasks** Batch Processing • Reports **Batch Processing** Batch processing enables a large number of searches, over any number of experiments, to be queued and run in a single action. Use Batch Processing when you have many pending searches in a PUF file and you would like to run all of them. Batch Processing is available from with the **Tools** menu. To access batch processing 1. Choose Tools > Batch Run. 2. Each pending search will be queued and will run in turn. **Tip** To save time, use predefined searches as you import data and run all your predefined searches as a single batch job. Reports You can summarize your work with two types of reports. A status report gives a summary of every search in the open PUF file, including search type and best score. Status reports are available from the ProSightPC Tools menu. To access status reports 1. **Open** the desired PUF file. 2. Choose **Tools > Reports > Status Report**. A summary of all experiments and searches contained within the PUF file displays in a new window as a text document, as Figure 59 shows. This text document is organized by experiment number and is subdivided into the types of searches.

e <u>E</u> dit	Format View Help					
ummar	y of All Experiments in File:					
Co	lumn:	(1)	(2)	(3)	(4)	
	solute Mass Searches:	86	86	100	210	
	omarker Searches:	0	0	0	0	
	quence Tag Searches:	0	0	0	0	
	ÁM Searches: BM Searches:	0	0	0	0	
	ngle Protein:	ŏ	ŏ	ŏ	ŏ	
		1			-	
(2) T (3) T	otal number of hits with an expe otal number of hits with an expe otal number of defined searches otal number of defined searches	ected sco	ore no q	reater t	han 0.5	
neri	ment ID:					
(per i	ment ID:	(1)	(2)	(3)	(4)	
operi	ment ID:	(1)	(2)	(3)	(4)	
		(1)	(2)	(3)	(4)	
	Source: test_lambda_score.pl Absolute Mass Searches:	3	3	3	3	
	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches:	3	3 0	3 0	3 0	
	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: Sequence Tag Searches:	3 0 0	3 0 0	3 0 0	3 0 0	
	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches; Sequence Tag Searches; GRAM Searches:	3 0 0 0	3 0 0 0	3 0 0 0	3 0 0 0	
	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: Sequence Tag Searches: GRAM Searches: GRBM Searches:	3 0 0 0 0	3 0 0 0 0	3 0 0 0 0	3 0 0 0 0	
	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches; Sequence Tag Searches; GRAM Searches:	3 0 0 0	3 0 0 0	3 0 0 0	3 0 0 0	
	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: Sequence Tag Searches: GRAM Searches: GRBM Searches: Single Protein: Source: test_lambda_score.pl	3 0 0 0 0 0	3 0 0 0 0 0	3 0 0 0 0 0	3 0 0 0 0 0	
1	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: Sequence Tag Searches: GRAM Searches: GRBM Searches: Single Protein: Source: test_lambda_score.pl Absolute Mass Searches:	3 0 0 0 0 0 0	3 0 0 0 0 0 0 3	3 0 0 0 0 0 0 3	3 0 0 0 0 0 0 3	
1	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: Sequence Tag Searches: GRAM Searches: GRBM Searches: Single Protein: Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches:	3 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0	
1	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: GRAM Searches: GRAM Searches: GRBM Searches: Single Protein: Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: Sequence Tag Searches:	3 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0	
1	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: GRAM Searches: GRAM Searches: Single Protein: Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: Sequence Tag Searches: GRAM Searches:	3 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0	
1	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: GRAM Searches: GRAM Searches: GRBM Searches: Single Protein: Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: Sequence Tag Searches:	3 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0	
1	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: GRAM Searches: GRAM Searches: GRAM Searches: Single Protein: Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: Biomarker Searches: GRAM Searches: GRAM Searches: Single Protein:	3 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1	Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: GRAM Searches: GRAM Searches: GRIM Searches: Single Protein: Source: test_lambda_score.pl Absolute Mass Searches: Biomarker Searches: Biomarker Searches: GRAM Searches: GRAM Searches:	3 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Figure 59. Status Report

Printable Search Report	A printable search report contains all of the information relate to one search, formatted for easy printing.
Accessing Printable Search	The Printable Search Report is accessible from the Tools menu.
Report	To access the printable search report
	1. Select an search in the Data Grid.
	2. Choose Tools > Reports > Printable Report.
	A new window appears, as Figure 60 shows.

ProSightPC - Microsoft Internet Explorer Edit View Favorites Tools Help					-
Edit View Favorites Tools Help					
Data Management Source: Experiment	•				
lmodulin ECD					
Search 2: Absolute Mass Search					
- Search Parameters					
Cysteine Modification: Intact Search Window: 500Da	Fragment Tolerance: 0.250 Intact Mass Type: Monoiso	topic Database: (UniProt)	Mass Type: Monoi: human_uniprotHu		
∆m Mode: Off	Minimum Number Of Match	es: 5			
PTM List Dimethylation Seleno cyst Phosphorylation Methylation		Acetylation	Hypusine	Formylation	
Results for Intact Ion 1. Protein form					
Acetylation Phosphorylat		PPM Diff.	<u>c</u> z	Total Ions PDE	Expectation
	LS, CALM3 protein (Type: predic		Ions Ions	Total Ions Score	
					My Computer

Figure 60. Printable Search Report

The printable report presents all relevant data for a search in a printable form similar to the Data Manager, but only contains information from the selected search.

Experiment Manager

Accessing the Experiment

Manager

Use the Experiment Manager to manipulate experiments as objects, move individual experiments between PUF files or save them in their own PUF file.

Note An experiment is defined as one or more precursor masses, one or more fragment masses, and all related searches.

The Experiment Manager is accessible in the ProSightPC applications folder on the desktop.

To access the Experiment Manager

- 1. Double-click ProSightPC Applications.
- 2. Double-click **Experiment Manager** to start the Experiment Manager. A new window appears, as Figure 61 shows.

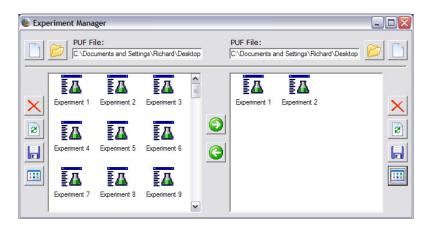


Figure 61. Experiment Manager dialog box

The top portion of the Experiment Manager contains two text boxes. Each represents a single PUF file.

You can either open an existing PUF file or create a new, but empty, file.

Creating a New PUF File

To create a new PUF file

- 1. Click Create New PUF File. A new window appears.
- 2. Select the desired directory and type the name of the new PUF file.

	3. Click Save to	save the PUF file.			
Opening an Existing PUF File	To open an existi	ng PUF file			
	1. Click Open E	xisting PUF File. A new window appears.			
	2. Select the PUI	F file from those listed.			
	3. Click Open to	o open the PUF file.			
		UF file is opened, information about all experiments in tted in the area below its name.			
Moving Experiments Between PUF Files	Experiments can b	be moved between two open PUF files.			
	To move an experiment between PUF files				
	1. Select an experiment to be copied.				
	2. Drag and drop the experiment from the source field and onto the destination field. You can also click the green arrow to send a copy of the experiment to the destination field.				
	3. Click Save .				
	IMPORTANT When copying experiments to PUF files, if two or more experiments share experiment identification numbers, the Experiment Manager reassigns the experiment number of the incoming experiment.				
Single PUF Files	The Experiment N file, as Table 40 do	Manager also provides four features affecting a single PUF escribes.			
	Table 40. Tools A	ffecting a Single PUF File			
	Modification	Description			
	Delete	Select one or more experiments and press Delete to remove the experiments from the PUF file.			
	Revert	Restores to the last Save, any experiments removed after the Save reappear in the field.			
	Save	Saves your work to a destination PUF file.			
	Change View	Changes the display of the experiments within the Source and Destination PUF file.			

Chapter 13 Fragment Predictor

The Fragment Predictor takes a known protein sequence and returns all possible *b*, *y*, *c*, and *z*. fragment ion masses. Use the Fragment Predictor to add post-translational modifications, or arbitrary custom masses, to any amino acid in the protein sequence, and see the predicted fragment ion masses.

This chapter describes how to use the Fragment Predictor. It contains the following sections:

- Accessing Fragment Predictor
- Entering A Sequence
- Interpreting the Output

Researchers might want to possess a list of all theoretical fragment ion masses particularly for modified protein sequences, prior to data collection.

Note The Fragment Predictor does not directly handle cross-linked proteins, such as trans-peptide bonds or cyclized species like disulfides. Compute these by using the Enter Custom Mass function.

Accessing Fragment Predictor

Access the Fragment Predictor through the Tools menu

To access the Fragment Predictor

• Choose **Tools > Fragment Predictor**. A window appears, as Figure 62 shows.

Grid Display Preferences Experiment 1 Fragment Pred	
Fragment Predicto	
	Please Enter Your Sequence: ADQLTEEQILEFREASELERKORDOFTITHELTOWESLOQHPTEAELQ A INHIBUTADGUIDTEFELTUMABARKONDESEZIELEREFEVETKOROMG YISAAELRHMTINLGEKLIDESLSMPLISSPORLEHPCLEREDAFIS
	Continue Enter your sequence using single letter abbreviations.

Figure 62. Fragment Predictor dialog box

Entering A Sequence

The Fragment Predictor accepts two methods for entering a protein sequence in the Protein Sequence Field.

- Manually enter a protein sequence.
- Copy and Paste a protein sequence from another source.

The Fragment Predictor window displays one sequence text box, as Figure 63 shows.

Please Enter Your Sequence:	
ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQ DMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNG YISAAELRHVMTNLGEKLTDESLSMPLISSFCPRLFHPCLPRPDAFIS	~
	V
Continue	

Enter your sequence using single letter abbreviations.

Figure 63. Protein Sequence dialog box

Note The sequence from any successful search can be accessed by clicking **RESID** or **SEQ** within the Data Manager. You can also acquire the protein sequence from external sources.

• Click **Continue** after typing the sequence in the field provided. A new window is displayed, as Figure 64 shows.

Figure 64. Fragment Predictor

The Fragment Predictor displays the protein sequences in an interactive sequence map. Click to select an amino acid. A black box around an amino acid indicates it is selected. For each selected amino acid, common PTMs display in the Amino Acid Information box to the right, as Figure 65 shows.

Alanine Information:			
Position: N:1 C:146 Amino Acid: A RESID: 41 Start PTM: None			
PTM Choices:			
Custom 0			
Tier 1			
Acetylation			
Methylation (mono)			
Trimethylation			

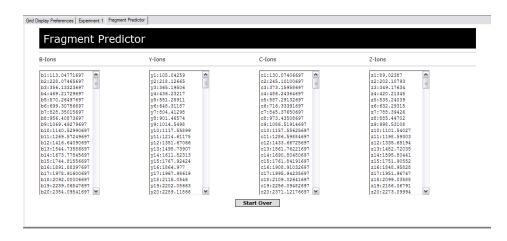
Figure 65. Amino Acid Box

PTMs are arranged in tiers. The PTM listed in red text is the current selection for the amino acid.

Tip Customize the PTM Tier assignment by using the PTM Tier Editor, covered in Chapter 11, "PTM Tier Editor."

To add a PTM to an amino acid

- 1. Select the amino acid.
- 2. Click the name of the desired PTM.


The designated amino acid changes to match the color of the PTM selected.

- 3. If desired, a custom mass in Da can be entered in the field provided.
- 4. Click Get Fragments when all mass changes have been selected.

The Fragment Predictor tool displays the theoretical fragment masses in the same tab of the Tab controller.

Interpreting the Output

Four columns of data display in the Results Window, as Figure 66 shows. All theoretical fragment ion masses are arranged in ascending order and are classified as either b, y, c, or z.

Click Start Over to return to Step 1 of Adding a Sequence.

Chapter 14 Font Converter

The Font Converter converts text into the ProSightPC fragment map font. Use the Font Converter to generate fragment maps for inclusion in publications and presentations.

This chapter describes how to use the Font Converter. It contains the following sections:

- About Font Converter
- Accessing Font Converter
- Using Font Converter to Convert Fonts

About Font Converter

The Font Converter converts typed text into the ProSightPC font used to display N-Terminal and C-Terminal fragments. Use the Font Converter to generate fragment maps for inclusion in other media, such as publications and electronic presentations.

You can find the Font Converter in the **Tools** menu.

Accessing Font Converter

Access the Font Converter through the **Tools** menu of the ProSightPC Data window.

To access the Font Converter

• Choose **Tools > Font Converter**.

The Font Converter dialog box displays information in two fields:

- Sequence Field
- ProSightPC Font Output

Underneath these fields are six buttons that correspond to the N- and C-terminal fragment marks used for b/y and c/z. fragment ions.

Using Font Converter to Convert Fonts

Use the Font Converter to convert typed text into the ProSightPC font.

1. Choose **Tools > Font Converter**. The Font Converter dialog box appears, as Figure 67 shows.

Font Conver	ter	
Sequence:		
	DQLTE#\$EQIAEFKEAF%SLFDKDGDGTITT ELGTVMRSLGQNPTEAELQD^MINEVD	
ProSightPC Font I	Equivalent:	
·A-	-D-Q-L-T-EEE-Q-I-A-E-F-K-E-A-FIS-L-F-D-K-D-G-D-	
-G-	-T-I-T-T-K-E-L-G-T-V-M-R-S-L-G-Q-N-P-T-E-A-E-L-	
-Q-	-DtM-I-N-E-V-D-	
J	Image: Constraint of the sector of the se	

Figure 67. Font Converter dialog box

2. Enter the amino acid sequence to be converted into the Sequence field.

Note The amino acid sequence can either be typed in the field, or you can **Paste** from another source.

- 3. To add fragmentation tick marks, position the cursor between the two amino acid letters and click the appropriate box. There are six boxes which correspond to b-ions, c-ions, z-ions, both b-ions and c-ions, and both y-ions and z-ions.
- 4. To display a complementary pair, click the appropriate N-terminal fragment and then click the appropriate C-terminal.
- 5. To transfer the converted font to another application, copy and paste text from the ProSightPC font-equivalent field to the other application.

You can resize the ProSight font after a paste operation.

Note Depending upon your system configuration, the font information might not transfer during a paste operation and might be displayed in another font. Correct this by selecting the incorrectly displayed output and manually changing the font to ProSight.

Index

A

Absolute mass preferences 37 search 57 AIM (analysis to infer mass) 46 Analysis to infer mass 2, 46 Annotated by data grid component 99 by database information 110 Annotation sequence information 104

B

b fragment ion masses 129, 133 Basic Sequence data grid component 99 Basic Sequence database information 110 Batch processing 124 Best Expectation Value 33 Best PDE Score 33 Biomarker preferences 39 search 61

C

c fragment ion masses 129, 133 CID 49, 51 Compiler tolerance 42 Compiler tolerance, Sequence tag search parameter 59 Completed status 29

D

Data Grid 28 Data Manager 85 Data, entering manually 50 Database absolute mass search parameter 57 biomarker search 61 Gene-restricted absolute mass search parameter 68 Gene-restricted biomarker parameter 69 Sequence tag search parameter 59 Database Name Data Grid component 99 Database information 104 Decimal precision 36 Deleting experiments 128 Disulfide bonds 62 Am mode 58, 70 absolute mass search parameter 57 Biomarker search parameter 62 Gene-restricted absolute mass search parameter 68 Gene-restricted biomarker parameter 69 Down arrows 86

Ε

ECD 49, 51 Edit Comment button 89 Editing mass values 87 Entering data manually 50 Error (Da) 82, 91 Error (ppm) 82, 91 Excluded PTMs 120 Expectation score 79, 90 Experiment comment adding 87 editing 87 Experiment Manager 127 Experiments, deleting 128 Export Proteome Database 102

F

Failed status 29 FASTA 97, 103, 104 First Precursor mass column description 33 Fixed modifications 25, 81 absolute mass search parameter 57 Biomarker search parameter 62 Sequence tag search parameter 59 Font Converter 135 Fragment ion masses 133 Fragment Map Font Converter 135 result table region 90 Fragment Predictor 129, 129 Fragment tolerance absolute mass search parameter 39, 57 biomarker preference 40 Biomarker search parameter 61 Gene-restricted absolute mass search parameter 68 Gene-restricted biomarker parameter 69 single protein preference 43 Fragment type absolute mass search parameter 57 Biomarker search parameter 61 Gene-restricted absolute mass search parameter 68 Gene-restricted absolute mass search parameter 68 Sequence tag search parameter 59

Fragmentation method 49

G

General preferences 35 Gene-restricted absolute mass search 68 biomarker search 69 searches 68 Grid preferences tab 32

H

H₂O 112 H₂O loss 115 Hardware requirements 8 Hits maximum to calculate 36 maximum to display 36 Hybrid searches 60

I

Import Proteome Database tool 100 Individual Sequence Adder 108 Installing ProSightPC 9 system requirements 8 Instrument data 87 Intact proteins 2 Internal database names 97 Internal Name Data Grid component 99 database information 104, 110 IRMPD 49, 51 Isotope 112

J

Job queue 29, 29

L

Largest Precursor Mass 33 Last Updated sequence information 104

Μ

m/z value 33 Manually enter tags, Sequence tag search parameter 60 Manually entering data 50 Mass difference 90 Mass values, editing 87 Matches, minimum Absolute mass parameter 39 biomarker preference 40 Menu bar 30 Minimum matches 40 absolute mass search parameter 57 Biomarker search parameter 62 Gene-restricted absolute mass search parameter 68 Gene-restricted biomarker parameter 69 Minimum RL value 48 Minimum Tag Score 42 Minimum Tag Score, Sequence tag search parameter 59 Minimum Tag Size 42 Minimum tag size, Sequence tag search parameter 59 Most Matching Ions 33 Moving experiments between .PUF files 128 MS mass data 2 MS/MS experiment 2 MSn 60 MSn hybrid search 70

Ν

Neutral masses 2 NH₃ 112 NH₃ loss 115 Noise Reducer 112 Number of Matching Protein Forms 33

0

Observed precursor mass 80 Options dialog 35

Ρ

P Score 79 Partial characterization 5 PDE score 79, 90 Pending search 89 Pending status 29 PPM difference 90 Precursor ions 2 Precursor mass observed 80 THRASH option 49 Precursor search tolerance Gene-restricted biomarker parameter 69 in Biomarker search 61 Precursor search window 38 Precursor search window, absolute mass search parameter 57 Precursor tolerance 40 Precursor type absolute mass search parameter 57 biomarker search 61 Gene-restricted biomarker parameter 69 THRASH option 48 Predefined Search creating 64 editing 65 removing 66 THRASH option 49 Predefined Search Manager 63 Preferences THRASH 36 Printable search report 125 example 126 ProSightPC font 136 Protein characterization 2 Protein Forms data grid component 99 database information 110 Protein identification 2 Proteome data grid component 99 Proteome database 24 information 110 removing 106 Proteome sequence information 104 Proteomics, introduction 2 PTM Warehouse 25

PTMs 120 absolute mass search parameter 57 Gene-restricted absolute mass search parameter 69 PUF file 25 PWF file 25

R

RAW file 47, 49 Remove proteome database 106 Reports 124 RESID button 90 database 3 identification number 3 identifier 3 Results 89 Run Search button 89 Running status 29

S

Search Tolerance, noise reducer input 114 SEQ button 90 Sequence Gazer 73 accessing 75 navigating 78 Sequence tag preferences 41 Sequence tag search 59 Shotgun-annotation 3, 103, 105 Side arrows 86 Signal-to-noise ratio 48 Single protein mode search 74 preferences 42 Size (Mb) data grid component 99 Size database information 110 Sources of chemical noise 112 Spurious fragments 115 deleting 116 Status reports 124 Strain data grid component 99 Strain database information 110 Strain sequence information 104 Swiss-Prot 97, 103, 104 System requirements for installation 8

T

Tab controller 29 Take to Sequence Gazer button 90 Theoretical mass 82, 91 Theoretical precursor mass 80 THRASH 47 THRASH preferences 36 Toolbar 31 Top-down funnel 4 Top-down proteomics 1, 4

V

View Database Information 110

Y

y fragment ion masses 129, 133

Ζ

z fragment ion masses 129