装置の停止と起動

装置の停止

PC のシャットダウンをしてください。
 (注) PC のシャットダウンは、正しく行わないと故障の原因になります。

PC がシャットダウンされ電源が切れます。

2. 本体の**電気系スイッチ**を OFF にしてください。

3. 真空を解除する場合は、本体のメインスイッチを OFF にしてください。

(注)停電時、長期間使用予定のない場合以外はメインのスイッチは切らないことをお勧めします。 ロータリーポンプ・ターボポンプはメインスイッチを OFF することで停止します。

4. 長期間停止される場合は、元電源のブレーカーなどを落として下さい。

装置の起動

1. 本体のメインスイッチを ON にしてください。

(注) ロータリーポンプ・ターボポンプはメインスイッチを ON することで作動します。

- 2. Transfer Capillary の穴 (Sweep Cap の穴) に栓をしてください。

注意:通常メインスイッチを ON にして 10 分程で、ターボポンプが正常の回転数に達します。 メインスイッチを ON にしてロータリーポンプの音などを確認し異常がなければ、PC の起動 を行ってください。

3. PCを立ち上げてください。

PC の電源を ON にしてください。 Login を行うウィンドウが表示されます。 Login user をクリックして Login してください。 Password は設定されておりません。

ログイン直後の画面

InstrumentConsole (PC と MS の通信状況表示)

4. 本体の**電気系スイッチ**を ON にしてください

PCと本体とが通信を始めます。

Instrument Console 画面に通信状況が表示され始めます。

🗊 Thermo TSQ Endura Console 1.0.727.34	ß
🔒 🖬 🗙 🎾	?) -
0076Turbo pump speed (revolution per sec): 799 Convectro 0077Source is OK. Increase Ion Transfer Tube Temperature.	•
0078Turbo pump speed (revolution per sec): 800 Convectro 0079Turbo pump speed (revolution per sec): 800 Convectro	
0080Turbo pump speed (revolution per sec): 800 Convectro	
0082 Enabling Ion gauge, Please wait	
0083 Sleeping for 5 seconds before reading ion Gauge 0084 Ion gauge is enabled.	
0085Monitoring ion gauge pressure 0086Current ion gauge pressure (Torr): 3.15624e-06	
0087Current ion gauge pressure (Torr): 5.13275e-06 0088Current ion gauge pressure (Torr): 5.1004e-06	
0089Current ion gauge pressure (Torr): 5.10398e-06	
0091 Initialize baseline zero ring buffer (size 2048)	
0092 baseline data count 2048 0093 baseline offset -470814, STD 24.719229	
0094 Wait For HV OK: 1 0095 Zeroing collision cell pressure gauge.	=
0096 Collision cell pressure gauge successfully zeroed. 0097 Retenting contribution cell to previous pressure setting of 0	
009 Entering Main Loop	-
\mathbf{N}	

正常に接続されると Entering Main Loop と表示されるでしょう。

5. Windows7 のデスクトップ上の

をダブルクリックして Tune 画面を開いて下さい。

Thermo 15Q chudra Tune Apj	plication 1.0.727.34						sufficiency said pressure	
Thermo TSQ	ENDURA	D	Positive Positive M Profile S Avg. () OFF	 Valve ✓ Syringe 	1-2 A ▼ OFF ▽ Rec	c:\Thermo\Data Rawdata	_20140203020844 Vie	ew Changir
ON SOURCE DEFINE SO	CAN CALIBRATION							-
Scan	Optimization							
Scan Type	Full Scan (Q1)	₹ 90 80						
Scan Range (Da)	100-1100	70						
Q1 Peak Width (Da)	0.7	× 50						
Scan Rate (unit/sec)	1000	• 40						
CID Gas (mTorr)	0	· 20						
		10				/		
			10	20 30	40	50 60	70 80	90
						/		
						-		
		ily						

6. STATUS タブをクリックしてください。

Participation (2014) Thermo TSQ Endura Tune Applic	cation 1.0.727.34							- • ×
Thermo TSQ	ENDURA			Walve 1-2 A ▼ ✓ Syringe OFF ▽	Record	c:\Thermo\Data	_20140203021006	Changing
ION SOURCE DEFINE SCAN Scan Type Scan Type Scan Range (Da) Q1 Peak Width (Da) Scan Rate (unit/sec) CID Gas (mTorr)	ENDURA N CALIBRATION Optimization	90 80 70 60 50 40 30 20 10	Image: Non-State Profile Profile	Syringe OFF •	Record	Rawdata	20140203021006 View View View View Particular Status By Function Control Particular Status Particular Status Power Supplies Peripheral Devices	Changing STUTATE VHOTINH STITHOUT
	Apply							
4	Apply						<u>ک</u> آ	

7. Vacuum の表示と Peripheral Devices 内の Turbo Pump の表示を確認してください。

⊞ をクリックすると表示を確認できます。

* Transfer Capillary に栓をしない状態での目安の値

	ENDURA	QUANTIVA
Turbo Pump Speed	800 Hz	800 HZ
Turbo Pump Power	80 W 前後	90 W 前後
Source Pressure	2 Torr 以下	4 Torr 前後
Analyzer Pressure	4 e-006 Torr 以下	4 e-006 Torr 前後

注意:

Analyzer Pressure の値が 許容値 を超えると Capillary Heater の電源が自動的に OFF になります。

URCE Optimization Type Fill Scan (Q1) Page (Da) 100-1100 0	ENTIFIC 150	2 ENDURA		Profile E Avg.() OFI			· \$	Record	c:\Thermo\Data Rawdata	_20140207	084317	··· View	Normal
Scan Optimization Tripe Fill Scan (0) 100-100 0 100-100 0 100-100 0 100-100 0 100-100 0 100-100 0 100-100 0 100-100 0 100-100 0 100-100 0 100-100 0 100-100 0 100-100 0 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 100-100 <th>SOURCE DEFINE S</th> <th>CAN CALIBRATION</th> <th></th> <th>- (</th>	SOURCE DEFINE S	CAN CALIBRATION											- (
Type Fill Scale (01) ** 100 00 ** 100 ** 0 ** 100 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **	Scan	Optimization											
Range (0a) 100-110 text Width (0a) 0.7 Range (mfor) 100 0 0 100 0 <td< td=""><td>can Type</td><td>Full Scan (Q1)</td><td>· 80</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	can Type	Full Scan (Q1)	· 80										
Verk With (0a) 0.7 v #Rate (unt/sec) 1000 v 66 (mTor) 0 v 100 20 100 v 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20	an Range (Da)	100-1100	70										
Rate (unifore)	L Peak Width (Da)	0.7	* 60										
0 v 30 20 10 10 20 10 10 20 10 <td>an Rate (unit/sec)</td> <td>1000</td> <td>- 40</td> <td></td>	an Rate (unit/sec)	1000	- 40										
	D Gas (mTorr)	0	* 30										
10 20 30 40 50 60 70 80 90			10										
				10	20	30	40	50	60	70	80	90	
				10	20	30	40	50	60	70	80	90	

このボタンが緑色の場合は Capillary Heater が OFF になっています。

このボタンをクリックして(緑色にして) Capillary Heater を ON にしてください。

hermo ISQ Endura Tune Ap	ENDURA	C		+ Po Μ Pro Σ Avg	sitive ofile g- () OFF	*	🛞 Valve 💉 Syring	1-2 / je OFF	• •	Record	c\The Rawd	ermo\Data ata			Changing
DN SOURCE DEFINE S Scan Type Scan Range (Da) Q1 Peak Width (Da) Scan Rate (unit/sec) CID Gas (mTorr)	CALIBRATION Coptimization Full Scan (Q1) 100-1100 0.7 1000 0		90 80 70 60 50 40 30 20 10										172 9 4 9 9 9 9 9	AtUs By Function AtUs Dy Function I on Source I on Guide Q1 Q2 Q3 Detector Vacuum Source Pressure Coll. Cas Pressure1 Ed.	1.657 Torr L000-005 Torr
	A	oly		10	20	30	40	50	60	70	80	90		Analyzer Pressures48 Power Supplier Peripheral Devices Turbo Pump 1 Status Life Time Speed Temperature Power Divect Valve 1 Syringe Pump	Running 4884.16 hours 800 Hz 39 *C 76.8 Wetts

/