Contents

Preface .. 11
Accessing Documentation ... 11
System Requirements ... 12
Special Notices .. 13
Contacting Us .. 14

Chapter 1 Introduction .. 15
Mass Spectra .. 15
Base Peak ... 16
Neutral Losses ... 17
Effect of Ionization Modes ... 17
Adduct Formation ... 19
Effect of Isotopes ... 20
Isotope Patterns in High-Resolution Data .. 20
Analysis Modes for the Mass Spectrometer ... 20
Full Scan ... 20
Selected Ion Monitoring (SIM) .. 21
MS/MS .. 21
Qualitative Analysis Tools .. 22
New Features and Enhancements ... 23

Chapter 2 Using the FreeStyle Window ... 25
Startup Window .. 26
File Menu ... 27
Communicator Bar ... 29
Opening Raw Data Files or Sequence Files .. 29
Factory Default Layout ... 31
Hierarchy of the Chromatogram and Spectrum Views ... 32
Using Workspace Pages .. 33
Arranging Views ... 36
Selecting the Columns to Display in a View or Dialog Box with
 Tabular Data ... 38
Saving and Applying Layout Templates .. 39
Restoring the Default Settings ... 40
Using the Pointer to Update the Timebase or Rescale a Graph 41
Contents

Chapter 3 Reviewing Chromatographic Data

Adding Chromatogram Views ... 62
Closing Chromatogram Views ... 62
Adding Chromatogram Traces ... 63
 Adding Chromatogram Traces Manually 64
 Adding Chromatogram Traces with the Auto Filter Feature 65
Deleting Chromatogram Traces ... 68
Defining a Chromatogram Trace from the Chromatogram Ranges View 69
 Manually Defining Chromatogram Ranges 69
 Defining Chromatogram Ranges by Using a Spreadsheet File 72
Displaying Mass Defect Filtered Chromatogram Traces 73
 Applying Mass Defect Filter in a Chromatogram. 75
 Linking a Spectrum View to an MDF Chromatogram Trace 78
Setting up Instrument Status Traces 79
Displaying an EIC Trace ... 80
Using the Scan Filters Page to Display a Filtered Chromatogram 84
Setting Up the Display Options for a Chromatogram Trace 85
 Formatting Chromatogram Plots .. 85
 Labeling Chromatogram Peaks or Local Maxima 86
 Filling the Chromatogram Peaks 89
 Normalizing Chromatogram Traces 90
 Changing the Y-Axis Title and Scale of the Chromatogram View 95
Changing the Zoom Level of a Chromatogram 96
Automatically Detecting and Integrating Chromatographic Peaks 97
Selecting the Manual Noise Region for the Genesis and ICIS Algorithms ... 101
Chapter 5 Reviewing Map Data ... 199

Working with the Map View... 199
Adding Map Views to the Workspace....................................... 200
Linking and Releasing Map to and from a Chromatogram......... 201
 Linking Status of a Map View... 201
 Releasing a Linked Map View from the Chromatogram......... 202
 Linking a Map View to a Chromatogram.............................. 203
Changing the Zoom level of a Map View.................................. 203
Map View – Specific Toolbars.. 204
 Map View – Workspace Options Toolbar............................ 204
 Map View – Display Options Toolbar................................ 205
Map-Specific Views... 208
 Map Ranges Dialog Box.. 208
Setting Map Ranges... 209
 Defining the Retention Time and Mass Ranges................... 210
Saving a Map View... 210
Setting the Map Display Options.. 210
 Setting the Format Options... 211
 Setting the Map Axis Options.. 213
 Setting the Map Color Options.. 214
 Setting the Band Width.. 215
Chapter 6 Analyzing MS Data using Data Analytics View ... 217
 Adding Data Analytics View to the Workspace ... 217
 Plotting the Data as a Histogram ... 218
 Plotting the Data in a Trend Chart .. 219
 Data Analytics View - Specific Toolbars .. 219
 Data Analytics View – Workspace Options Toolbar 219
 Data Analytics View – Display Options Toolbar 220
 Saving a Data Analytics Plot .. 221
 Data Analytics Ranges .. 222
 Filtering Data Analytics Views by Trace Types .. 222
 Creating a Data Analytics Plot .. 226

Chapter 7 Determining the Elemental Composition of Ions 229
 Overview of an Elemental Composition Analysis ... 229
 Starting an Elemental Composition Analysis .. 231
 Using the Fragments Matching Algorithm for Confirmation 231
 Reviewing the Elemental Composition Results .. 233
 Reviewing the Best-Matching Formulas ... 233
 Intensity Tolerances .. 235
 Reviewing the MS/MS Coverage Score for Matching Fragments 238
 Reviewing MS/MS Annotation Results ... 238
 Modifying the Elements in the Elements in Use Table 238
 Adding Elements to the Elements in Use Table .. 239
 Removing Elements from the Elements In Use Table 240
 Using Custom Periodic Table for Analysis .. 240
 Elemental Composition Results View ... 242
 Simple Elemental Composition Results View .. 245
 Elemental Composition Page ... 246

Chapter 8 Searching Mass Spectrum Libraries ... 253
 Performing a Local NIST or mzVault Library Search 253
 Setting Up the Default Library Search Parameters 253
 Selecting the Query Spectrum ... 255
 Starting a Library Search .. 255
 Reviewing the Results of a Local NIST or mzVault Library Search 256
 Reviewing the Results of a NIST Library Search 256
 NIST Search Results View ... 257
 Reviewing the Results of an mzVault Search .. 258
 mzVault Search Results View ... 260
 Modifying the Settings for a Local NIST or mzVault Library Search 261
 Modifying a NIST Search from the NIST Search Page 262
 Modifying an mzVault Search from the mzVault Search Page 266
 Searching the Online mzCloud Mass Spectral Database 272
 Exporting a Mass Spectrum to the NIST MS Search Application 273
 Managing Libraries ... 274
 Spectrum Workspace Processing Toolbar – Library Search Features 276
Preface

This guide describes how to use the Thermo FreeStyle™ application to view and analyze raw mass spectrometry data.

For contact information and information about related documentation and system requirements, see these topics.

For a list of new features, see New Features and Enhancements.

- **To open the FreeStyle application**
 - From the Microsoft™ Windows™ taskbar, choose Start > Thermo FreeStyle > FreeStyle.
 - or—
 - Click the FreeStyle icon, , on the desktop.

Accessing Documentation

The FreeStyle application includes complete documentation. In addition to this guide, you can also access the application Help.

- **To view the product manual**
 From the taskbar, choose Start > Thermo FreeStyle > FreeStyle User Guide.

- **To open the Help system from the FreeStyle window**
 Choose File > Help.
To view context-sensitive Help

If information is available for a specific view, page, dialog box, or toolbar, click Help or press the F1 key.

To view manuals or animations from the website

1. Go to thermofisher.com.
2. Point to Support.
3. On the left, click Manuals.
4. In the Search box, search by the product name.
5. From the results list, click the title to open the document or animation in your web browser.

To return to the document list, click the browser Back button.

System Requirements

Your system must meet the following minimum system requirements.

<table>
<thead>
<tr>
<th>System</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer</td>
<td>• 3.6 GHz quad core processor with a minimum of 8 GB RAM (16 GB recommended)</td>
</tr>
<tr>
<td></td>
<td>• CD/R-ROM or DVD drive</td>
</tr>
<tr>
<td></td>
<td>• 1 TB hard drive</td>
</tr>
<tr>
<td></td>
<td>• Video card and monitor capable of 1920 × 1080 resolution</td>
</tr>
<tr>
<td>Software</td>
<td>• Adobe Reader™ 10.1 or later</td>
</tr>
<tr>
<td></td>
<td>• Microsoft .NET Framework 4.7.2</td>
</tr>
<tr>
<td></td>
<td>• Microsoft Office 2013 (for exported data)</td>
</tr>
<tr>
<td></td>
<td>• Microsoft Windows 7 SP1 (64-bit), Windows 10 (64-bit)</td>
</tr>
<tr>
<td></td>
<td>• Thermo Xcalibur™ 4.2 SP1 or later (for the NIST™ Library Browser)</td>
</tr>
<tr>
<td></td>
<td>• Thermo Foundation™ 3.1 SP6 or later</td>
</tr>
</tbody>
</table>
Special Notices

Make sure that you follow the special notices presented in this guide. Special notices appear in boxes; those concerning safety or possible system damage also have corresponding caution symbols.

This guide uses the following types of special notices.

<table>
<thead>
<tr>
<th>IMPORTANT</th>
<th>Highlights information necessary to prevent damage to software, loss of data, or invalid test results; or might contain information that is critical for optimal performance of the system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>Highlights information of general interest.</td>
</tr>
<tr>
<td>Tip</td>
<td>Highlights helpful information that can make a task easier.</td>
</tr>
</tbody>
</table>
Contacting Us

<table>
<thead>
<tr>
<th>Contact</th>
<th>Email</th>
<th>Telephone</th>
<th>QR Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Technical Support</td>
<td>us.techsupport.analyze@thermofisher.com</td>
<td>(U.S.) 1 (800) 532-4752</td>
<td></td>
</tr>
<tr>
<td>U.S. Customer Service and Sales</td>
<td>us.customer-support.analyze@thermofisher.com</td>
<td>(U.S.) 1 (800) 532-4752</td>
<td></td>
</tr>
</tbody>
</table>

Global support

✧ To find global contact information or customize your request
1. Go to thermofisher.com.
2. Click Contact Us, select the country, and then select the type of support you need.
3. At the prompt, type the product name.
4. Use the phone number or complete the online form.

✧ To find product support, knowledge bases, and resources
Go to thermofisher.com/us/en/home/technical-resources.

✧ To find product information

Note To provide feedback for this document, send an email message to Technical Publications (techpubs-lcms@thermofisher.com).
Introduction

Use the FreeStyle application to visualize and qualitatively analyze mass spectrometry data. A qualitative analysis focuses on identifying unknown compounds and confirming the presence of target (expected or known) compounds.

With the FreeStyle application, you can display chromatograms and spectra, detect and integrate chromatographic peaks, search mass spectral libraries, simulate mass spectra, subtract background spectra, apply scan filters, annotate plots with text and graphics, create and save layouts, view the status of various instrument parameters during data acquisition, and create a 2D or 3D representation of an analysis displaying the acquired mass/wavelength scans. You can also export spectral data to the NIST application or mzCloud.org, calculate the elemental composition of a component from its exact mass, set the parameters for defining the charge state for peptide fragment matching, and perform Xtract deconvolution.

For a general understanding of mass spectrometry data and to get started with the application, see these topics.

Contents

• Mass Spectra
• Analysis Modes for the Mass Spectrometer
• Qualitative Analysis Tools
• New Features and Enhancements

Mass Spectra

There are many different types of mass spectrometry (MS) detectors, but the basic principles are the same in all cases: the MS ionizes the sample, separates the ions according to their mass\(^1\), and moves the separated ions toward a detector where they are counted. The data system compiles a spectrum showing the mass distribution of the ions produced from the sample—a snapshot of ion intensities plotted against their mass-to-charge (m/z) ratios.

\(^1\) In the majority of cases \(z=1\) and the \(x\) axis becomes equivalent to mass, \(m\).
Ionization initially produces molecular ions, but complex secondary processes can cause the molecular ions to fragment. Together with molecular ions, these fragment ions make up the mass spectrum. For individual chemical substances, a mass spectrum can be a characteristic molecular fingerprint.

Mass spectra have these common features:

- **Base Peak**
- **Neutral Losses**
- **Effect of Ionization Modes**
- **Adduct Formation**
- **Effect of Isotopes**
- **Isotope Patterns in High-Resolution Data**

Base Peak

To plot the MS detector’s response, the most abundant ion, called the base peak, is given an arbitrary abundance or intensity of 100. The application reports other peaks as a percentage of the size of the base peak. After this normalization, the data system can compare spectra directly.

Figure 1 is an example of a NIST library spectrum showing the fragmentation of acetone C₃H₆O (molecular weight = 58 Da). The mass-to-charge labels appear above the spectrum peaks for the most abundant ions. In this example, the molecular ion (58 Da) is not the most abundant ion. The most abundant ion is the acetyl ion CH₃CO (molecular weight = 43 Da).

Figure 1. 70 eV electron ionization (EI) mass spectrum of acetone
Neutral Losses

You can use fragmentation patterns, similar to the pattern displayed in Figure 1 for acetone, to determine the molecular structure of a compound. For example, the neutral loss of 15 Da from the molecular ion of acetone indicates the presence of a methyl group in the original molecule. A subsequent loss of 28 Da corresponds to the loss of CO. Table 1 lists commonly observed neutral losses, measured by the molecular weight of the compound. Assign such losses to help deduce the structure of an unknown compound. A full structural analysis generally relies on the presence of a molecular ion and the measurement of the molecular weight of the compound.

Table 1. Common neutral losses

<table>
<thead>
<tr>
<th>Loss</th>
<th>Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>CH₃</td>
</tr>
<tr>
<td>18</td>
<td>H₂O</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
</tr>
<tr>
<td>28</td>
<td>CO</td>
</tr>
<tr>
<td>29</td>
<td>C₂H₅ or CHO</td>
</tr>
<tr>
<td>35</td>
<td>Cl</td>
</tr>
<tr>
<td>46</td>
<td>NO₂</td>
</tr>
<tr>
<td>59</td>
<td>C₆H₅O, COOCH₃ or CH₂COOH</td>
</tr>
<tr>
<td>77</td>
<td>C₆H₅</td>
</tr>
</tbody>
</table>

In some cases, fragmentation is extensive, leaving little or no trace of a molecular ion. With no molecular ion, determining either the molecular weight or the structure is difficult.

Effect of Ionization Modes

The ionization mode affects the spectrum characteristics of a compound. The ionization modes for LC/MS (liquid chromatograph/mass spectrometer) instruments are different from those used with GC/MS (gas chromatograph/mass spectrometer) instruments:

- Ionization Modes for LC/MS Instruments
- Ionization Modes for GC/MS Instruments

Ionization Modes for LC/MS Instruments

LC/MS instruments use a variety of ionization techniques, collectively called atmospheric pressure ionization (API). Detectors of this type can detect positive or negative ions.
API techniques offer soft ionization, usually with little or no fragmentation. An API spectrum typically contains peaks for only the protonated or deprotonated molecule. Compounds with basic sites (such as amines) can form protonated molecules \([M+H]^+\). In the positive ion detection mode (polarity +), these ions produce a spectrum peak at the \(m/z\) value \(M+1\) (where \(M\) represents the molecular weight of the neutral compound).

Compounds with acidic sites (sulphonic acids, for example) can form deprotonated molecules \([M–H]–\). In the negative ion detection mode (polarity –), these ions produce a spectrum peak at the \(m/z\) value \(M–1\).

Ionization Modes for GC/MS Instruments

GC/MS instruments offer two techniques: electron ionization (EI) and chemical ionization (CI).

EI is commonly used because it is simple and reproducible. The fragmentation pattern is effectively determined by the energy of the impacting electrons alone (electron energy, measured in eV). Different types of mass spectrometers that use EI can produce virtually identical spectra as long as they have same electron energy.

This reproducibility has led to an extensive library compilation for 70 eV EI spectra. With the FreeStyle application, you can access the NIST/EPA/NIH Mass Spectral Library with over 108 000 reference EI spectra. You can use library data to select confirmatory ions for your target compounds.

Note You can purchase the NIST Mass Spectral Search application from the National Institute of Science and Technology. Thermo Fisher Scientific provides local versions of the NIST application and its libraries with the Xcalibur data system.

Chemical ionization (CI) offers a softer method of forming ions. In CI, a controlled flow of a reagent gas, commonly ammonia, methane, or isobutane, is introduced into the area where ionization occurs (the ion source). Energetic electrons that pass through the source ionize the reagent gas, as in EI. These ions can then collide with neutral molecules, causing hydrogen transfer. This process is repeated when the reagent gas ions collide with analyte molecules.

CI usually produces protonated molecules, generally at a mass one unit greater than the molecular mass of the compound. Significantly less fragmentation occurs than in comparable EI spectra. Depending on your choice of reagent gas, adduct ions can form. For example, when you use ammonia as the reagent gas, \(M+NH_4\) is a typical adduct ion.

Under certain conditions, CI produces negative molecular ions formed by electron capture. The sensitivity of negative ion CI for certain classes of compounds (those containing double bonds, sulfur, phosphorus, chlorine, or bromine) can be orders of magnitude greater than positive CI or EI modes for those compounds.

For more information about the ionization modes available on your instrument, read the hardware manual and the instrument manual on how to get started.
Adduct Formation

If ionization takes place in the presence of contaminants or additives, such as ammonium or sodium ions, some compounds are susceptible to adduct formation. These spectra show other ions in addition to, or instead of, the molecular ion (Figure 2).

Note The FreeStyle application can automatically add elemental composition and \(m/z \) annotations to the mass spectrum peaks (see Labeling Spectrum Peaks). To add custom annotations, such as those shown in Figure 2, you can use the application’s text annotation tools.

![Figure 2. Mass spectrum showing sodium and acetonitrile adducts](image)

Table 2 lists common adducts for the positive and negative ESI modes.

<table>
<thead>
<tr>
<th>Cationized adducts (positive mode)</th>
<th>Anionized adducts (negative mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([M+NH_4]^+)</td>
<td>([M+OAc]^-)</td>
</tr>
<tr>
<td>M+18</td>
<td>M+18</td>
</tr>
<tr>
<td>([M+Na]^+)</td>
<td>([M+Na^-])</td>
</tr>
<tr>
<td>M+23</td>
<td>M+21</td>
</tr>
<tr>
<td>([M+CH_3OH+H]^+)</td>
<td>([M+Cl^-])</td>
</tr>
<tr>
<td>M+33</td>
<td>M+35</td>
</tr>
<tr>
<td>([M+K]^+)</td>
<td>([M+K^-])</td>
</tr>
<tr>
<td>M+39</td>
<td>M+37</td>
</tr>
<tr>
<td>([M+CH_3CN+H]^+)</td>
<td>([M+HCOO^-])</td>
</tr>
<tr>
<td>M+42</td>
<td>M+59</td>
</tr>
</tbody>
</table>

Take care when determining molecular weights to account for possible adduct ions.
Effect of Isotopes

In some cases, the effect of less abundant isotopes might cause you to use an average molecular weight rather than one based on the most abundant isotopes. When the molecular structure of the target compound contains large numbers of certain elements, the less abundant isotopes become significant. This situation might result in a shift in the mass peaks from their expected m/z values.

For example, the most abundant isotope of chlorine is Cl35. However, Cl37 occurs with a natural abundance of 24.47 percent. When a compound contains four chlorine atoms, its molecular ion is two mass units greater than that expected from a calculation based solely on Cl35. Using chlorine’s average atomic weight (35.453), you can correctly identify the molecular ion. Also, you observe a distribution of molecular ions across eight mass units from molecules containing between zero and four Cl37 atoms.

Isotope Patterns in High-Resolution Data

The mass spectra acquired with a high-resolution, accurate-mass (HRAM) mass spectrometer include isotope clusters for analytes with elements that have more than one stable isotope. The mass difference between the isotopic peaks is proportional to the mass difference of the isotopes, and the relative intensity of the isotopic peaks is proportional to the natural abundance of the isotopes.

To confirm the identity of an unknown analyte, compare the theoretical isotope pattern for its proposed chemical formula to the experimental mass spectrum. Use the Isotope Simulation Page in the Info Bar to predict the isotope pattern for any chemical formula or peptide sequence.

Analysis Modes for the Mass Spectrometer

A Thermo Scientific mass spectrometer has these analysis modes:

- Full Scan
- Selected Ion Monitoring (SIM)
- MS/MS

Full Scan

In full-scan operation, the MS detector scans repetitively over a wide mass range throughout the analysis and sends the data to the data system computer.

With the FreeStyle application, you can display the chromatograms (measured intensity versus analysis time) for full-scan MS data in these ways (plot types):
• As a total ion current (TIC) chromatogram. A TIC chromatogram represents the summed intensities of all the ions in the scanned mass range (mass spectrum) plotted against the chromatographic retention time. Each peak in the TIC represents one or more eluting compounds, which can be identified from the mass spectra recorded across the peak.

• As a mass chromatogram for a range of masses within the scan range. Mass chromatograms show the ion intensities of selected mass-to-charge ratios (m/z). The application extracts these mass spectra from each stored scan and plots them against the analysis time. Use this technique to increase selectivity by displaying an m/z value that is characteristic of the compound of interest but not present in other sample components.

• As a base peak chromatogram. Base peak chromatograms show the ion intensities of the most intense ions for each time point in the chromatogram.

Note The FreeStyle application uses the accurate mass and isotope pattern information in the full-scan MS1 data to calculate the elemental composition of unknown compounds. It then uses the accurate mass data for the fragment ions in the data-dependent MS2 scans to confirm the best matching formulas.

Selected Ion Monitoring (SIM)

In the selected ion monitoring (SIM) mode, the MS detector monitors a limited number of m/z values that are characteristic of a targeted compound or compounds. During an analytical run, the mass analyzer repeatedly switches between the selected m/z values and monitors each m/z value for a programmed dwell time before averaging the measured ion intensities and moving on to the next value.

SIM generates mass chromatograms of only the monitored m/z values, not complete mass spectra as in the full-scan mode. Without a complete mass spectrum, you cannot perform a library search to identify an unknown.

SIM is ideally suited to trace analysis and offers reduced file sizes compared to full-scan operation because SIM records only the information of interest.

MS/MS

Depending on your instrument, you might also be able to do additional stages of mass analysis called MS/MS.

In an MS/MS experiment, you select specific ions for further fragmentation while discarding all other masses. The selected ion is called a precursor (parent) ion and its fragment ions are called product ions. An ion trap mass spectrometer (a mass spectrometer with an ion trap mass analyzer) can perform additional stages of MS (called MSⁿ), up to MS¹⁰.
The MS detector can monitor the product ions in either the full-scan mode or the SIM mode. When you set up the MS detector to monitor a specific product ion of a specific precursor (parent) ion, the scan type is called selective reaction monitoring (SRM).

You can create your own libraries of full-scan MS/MS data to use for matching.

You can display the chromatograms for full-scan MS/MS data in these plot types: TIC, mass range, base peak, neutral fragment, or mass defect filter. With the neutral fragment plot type, you must specify the neutral fragment.

Note The query spectrum for a library search against your local mzVault™ database file or the online mzCloud™ mass spectral library must be an MS2 spectrum from a data-dependent full-scan MS/MS experiment.

Qualitative Analysis Tools

The FreeStyle application includes the following qualitative analysis tools:

• Automated library searches of local mzVault and NIST mass spectral databases and the online mzCloud database. See Chapter 8, “Searching Mass Spectrum Libraries.”

• Automated peak detection algorithms for the evaluation of chromatographic data (see Automatically Detecting and Integrating Chromatographic Peaks).

• Elemental composition tool that determines the chemical formulas of ions by using their exact mass and isotope pattern. Includes confirmation of the best match formula by comparing the m/z values of the ions in the data-dependent fragmentation scans of the precursor ion to the possible set of fragment ions based on their m/z values. See Chapter 7, “Determining the Elemental Composition of Ions.”

• Isotope simulation tool that displays a simulated mass spectrum from the following input: chemical formula, adduct species, and charge distribution. You can compare the simulated spectrum to an experimental spectrum. See Chapter 9, “Simulating Isotope Distributions.”

• Xtract tool for the deisotoping and deconvolution of mass spectra. See Chapter 13, “Running the Xtract Algorithm on Spectra and Chromatogram Data.”

• Spectrum averaging for noise reduction and mass accuracy (see Averaging Spectra).

• Background subtraction for the removal of spectral peaks—for example, matrix-related peaks—that are not related to the target components (see Subtracting Background Spectra).
New Features and Enhancements

The following features are new in the FreeStyle 1.8 application:

• Display peak labels produced by the APD algorithm that runs on the embedded instrument computer during data acquisition (Thermo Scientific™ Orbitrap Exploris™ MS Series: ICSW 4.0 or later and Thermo Scientific Orbitrap Tribrid™ MS Series: Tune 3.5 or later)

• Elemental composition calculation based on mass only

• Thermo Scientific FAIMS Pro™ interface CV optimization data processing and export for TSQ ICSW version 3.4 or later

• Apply Xtract All deconvolution to chromatograms

• Peak area label with full numerical display

• MSn browser mass tolerance and precursor masses support 4 decimals

• Improved usability by reorganizing the ribbon menu and right-click menu options

• Backward compatibility with Thermo Scientific Foundation™ software 3.1 SP6 or later

The following features were new in the FreeStyle 1.7 application:

• Data Analytics feature that displays options to analyze the MS trending information from mass spectrometers. The analysis is available as a Histogram or Trend plot in a separate window.

• A Mass Defect Filter (MDF) feature is introduced to create a mass defect filtered chromatogram for one or more user-defined mass and mass defect ranges.

• Modifies the Elemental Composition Info page with the addition of a custom periodic table that lets you add custom isotope abundance to the elements for elemental composition calculation and isotope simulations.

• Includes an option to compare the theoretical isotope pattern for the proposed chemical formula by displaying the matched and missed isotopes in the Spectrum view.

• A new customizable File Header view that displays information from the acquisition sequence, the autosampler, and the mass spectrometer.

In addition, these enhancements let you do the following:

• Includes an option to save text and structure annotations in the Spectrum View.

• Includes Ranges as a right-click option in the Map View.

• Modifies the Map Ranges dialog box with the addition of Mass range and Retention Time value fields.

• Includes a new peak identification group section in the Peak Detection Info bar page to identify the nearest, highest, or all peaks.

• Includes an option to import component parameters from the processing method to the current or copy of the selected trace.
1 Introduction
New Features and Enhancements
Using the FreeStyle Window

The FreeStyle window includes multiple toolbars, views, and Info Bar pages. These topics describe the FreeStyle window, the default workspace layout, the hierarchy of the interactive views, and some common tasks.

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Startup Window</td>
</tr>
<tr>
<td>• File Menu</td>
</tr>
<tr>
<td>• Communicator Bar</td>
</tr>
<tr>
<td>• Opening Raw Data Files or Sequence Files</td>
</tr>
<tr>
<td>• Factory Default Layout</td>
</tr>
<tr>
<td>• Hierarchy of the Chromatogram and Spectrum Views</td>
</tr>
<tr>
<td>• Using Workspace Pages</td>
</tr>
<tr>
<td>• Arranging Views</td>
</tr>
<tr>
<td>• Selecting the Columns to Display in a View or Dialog Box with Tabular Data</td>
</tr>
<tr>
<td>• Saving and Applying Layout Templates</td>
</tr>
<tr>
<td>• Restoring the Default Settings</td>
</tr>
<tr>
<td>• Using the Pointer to Update the Timebase or Rescale a Graph</td>
</tr>
<tr>
<td>• Adding Text, Graphic, and Structure Annotations to a Graphical View</td>
</tr>
<tr>
<td>• Setting FreeStyle as the Default Data Visualization Application</td>
</tr>
<tr>
<td>• Toolbars</td>
</tr>
<tr>
<td>• Views</td>
</tr>
<tr>
<td>• Info Bar Pages</td>
</tr>
</tbody>
</table>
Startup Window

The FreeStyle window opens to the Isotope Simulation and Elemental Composition pages in the Info Bar to the left and the getting started links to the right (Figure 3).

You can use the Isotope Simulation page without opening a raw data file (see Isotope Simulation Page).

You can use the Elemental Composition page without opening a raw data file (see Elemental Composition Page).

Figure 3. Startup window

Note This user guide uses the following terms to describe the user interface:

- **View**—A defined area in a workspace, such as a Spectrum view or a Chromatogram view.
- **Page**—A tabbed document, for example, a page in the Info Bar or a Workspace page in the main window. In any of these tabbed groups, only one of these pages is the active page.
- **Dialog box**—A graphical element that accepts user input. Only one dialog box can be open at a time. When it is open, a dialog box blocks you from working in other parts of the application.
File Menu

Use the File menu (see Figure 4) of the FreeStyle window to open raw data files or sequence files, create a sequence list, save the active workspace as a template, view the list of recently opened raw data files and folders, and access the default settings.

For more information about workspaces, see Using Workspace Pages. For more information about templates, see Saving and Applying Layout Templates. For more information about default settings, see Appendix A, “FreeStyle Default Settings.”

Figure 4. File menu

Table 3 describes the File menu commands. For information about using each command, see the related topics.

Table 3. File menu commands (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands</td>
<td></td>
</tr>
<tr>
<td>New Workspace</td>
<td>Opens a dialog box where you can choose existing raw data files (.raw) or sequence files (.sld) to open and create new Workspace page. See Using Workspace Pages.</td>
</tr>
<tr>
<td>Create Sequence</td>
<td>Opens a dialog box where you can choose a set of raw data files to open and create a sequence in a new Workspace page. See Working with Sequences.</td>
</tr>
<tr>
<td>Save as Default</td>
<td>Automatically saves the current layout of the active Workspace page to the default template file. See Saving and Applying Layout Templates.</td>
</tr>
</tbody>
</table>
Table 3. File menu commands (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save As</td>
<td>Opens a dialog box where you can save the current layout to a template file with a different name. In the File Name box, type the new name and click Save. See Saving and Applying Layout Templates.</td>
</tr>
<tr>
<td>Default Options</td>
<td>Opens the Default Options Configuration dialog box, where you specify the default settings for the application (see FreeStyle Default Settings).</td>
</tr>
<tr>
<td>Print</td>
<td>Prints a report showing chromatogram and spectrum information for the currently selected Workspace page.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens the FreeStyle Help window.</td>
</tr>
<tr>
<td>Report an Issue</td>
<td>Opens a mail dialog box in the Microsoft Outlook™ application with a default email address. You can enter a detailed description of the issue, along with the steps to reproduce it, and send this information to Thermo Fisher Scientific.</td>
</tr>
<tr>
<td>About FreeStyle</td>
<td>Displays the FreeStyle version information and the release and copyright dates, and shows the version information of other Thermo Scientific applications and instruments installed on your system.</td>
</tr>
<tr>
<td>Close</td>
<td>Closes the File menu.</td>
</tr>
<tr>
<td>Button</td>
<td>Exit Closes the FreeStyle application.</td>
</tr>
</tbody>
</table>
Communicator Bar

The communicator bar (located immediately below the toolbar) provides general information about the current task or warning messages. This symbol, ⭕, precedes general information, and this symbol, ⚠, precedes warnings.

The communicator is displayed by default and is specific to each workspace. When you close the communicator bar in a workspace, it is not automatically closed in other opened workspaces.

Figure 5. Communicator bar with informational message

Opening Raw Data Files or Sequence Files

In the FreeStyle application, you can open two file types—raw data files (.raw) or sequence files (.sld). A raw data file contains the data from a single acquisition run; a sequence file contains a list of associated raw data files from multiple runs. When you open either of these file types, the application creates a new Workspace page.

Follow these procedures:

- To open a raw data file or a sequence file
- To open a raw data file to a custom layout
- To open a file from the startup window
To open a raw data file or a sequence file

1. Do one of the following:
 • In the menu bar, choose File > New Workspace.
 —or—
 • In the Create area of the Workspace Options toolbar, click New Workspace.

2. In the Open Raw File dialog box, browse to and select a raw data file (.raw) or a sequence file (.sld), and then click Open.
 • For a raw data file, a new Workspace page appears to the right of the Info Bar and has two stacked views. When the file includes mass spectrometry data, the Chromatogram view at the top displays the TIC trace, and the Spectrum view at the bottom displays the first scan.
 • For a sequence file, the Sequence File page appears in the Info Bar with a list of raw data files, and the Workspace page displays data from the first raw data file in the list.

For information about viewing a trace other than the TIC trace, see Defining a Chromatogram Trace from the Chromatogram Ranges View.

To open a raw data file to a custom layout

1. In the startup window, under New Workspace, click From Layout Template.

2. In the Browse Templates dialog box, select a template (XML) and click Open.

3. In the Open Raw File dialog box, select a raw data file and click Open.

Tip The From Layout Template command is available only in the startup window. To apply a custom layout to an active workspace, from the Workspace Options toolbar, choose Apply > Named Layout Template.

To open a file from the startup window

Do the following:
 • To open a recent file, under Open a Recent Item, click the link to the file.
 • To open a raw data file or a sequence file, under New Workspace, click From File.
 • To open only a sequence file, under New Workspace, click From Sequence.
Factory Default Layout

Figure 6 shows the default FreeStyle window with two raw data files. Each raw data file appears as a separate tabbed Workspace page, with only one tabbed Workspace page displayed at a time.

The default layout displays the tabbed Isotope Simulation, Peak Detection, MSn Browser, and Detector Type pages in the Info Bar to the left and the stacked Chromatogram and Spectrum views in the workspace area to the right.

In the title bar for a Chromatogram view or a Spectrum view, the tilde symbol (~) to the left the view’s name indicates that actions in an interactive view or the toolbar affect this view.

Note To open a new Workspace page, see the previous topic “Opening Raw Data Files or Sequence Files.”
2 Using the FreeStyle Window
Hierarchy of the Chromatogram and Spectrum Views

A Workspace page can contain multiple Chromatogram, Spectrum, and MultiSpectrum views, one each of the report views, and one Chromatogram Ranges view. You can select only one view on the Workspace page at a time. Selecting a view turns its title bar a darker shade and adds a tilde to the left of the view’s name.

There are three hierarchical states for the Chromatogram, Spectrum, and MultiSpectrum views: selected, active, and inactive (Table 4).

Table 4. Hierarchical states for the Chromatogram, Spectrum, and MultiSpectrum views

<table>
<thead>
<tr>
<th>State</th>
<th>Indicated by</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected (and active)</td>
<td>Darker title bar with a tilde (~) to the left of the view’s name and a green bar with the selected view’s name—Chromatogram, Spectrum, or MultiSpectrum—above the toolbar</td>
<td>Determines the view-specific toolbars and the view-specific tools in the Workspace Processing toolbar. The actions in the view-specific toolbars and the tools in the Workspace Processing toolbar affect the selected view.</td>
</tr>
</tbody>
</table>
| Active | Lightly shaded title bar with a tilde (~) to the left of the view’s name. The last selected view of each view type is active. | Actions in the selected interactive view affect the active view:
 - The actions performed in a linked and selected Spectrum or MultiSpectrum view or the Chromatogram Ranges view affect the active chromatogram plot.
 - The actions performed in the selected chromatogram plot affect the active and linked spectrum.

Choosing Chromatogram > Insert Trace in the Workspace Options toolbar adds a chromatogram trace to the active or selected Chromatogram view.
Choosing Spectrum > Multi Spectrum in the Workspace Options toolbar changes the active or selected Spectrum view to a MultiSpectrum view.
Choosing Chromatogram > Insert View or Spectrum > Insert View in the Workspace Options toolbar adds a copy of the active Chromatogram view or the active Spectrum view, respectively, to the current Workspace page. |
| Inactive | Lightly shaded title bar without a tilde | Unaffected by the toolbar actions or actions in other views. |
Using Workspace Pages

The FreeStyle application creates a new Workspace page whenever you open a raw data file or a sequence of raw data files. The Workspace page displays the processed data for the associated raw data files (see Factory Default Layout).

Follow these procedures:

- To create multiple workspaces
- To reposition the Workspace page
- To display a Workspace page when multiple workspaces are open
- To refresh the Chromatogram or Map View for a workspace
- To close a Workspace page

❖ To create multiple workspaces

1. Choose **File > New Workspace**.
2. Do one of the following:
 - Select multiple raw data files and click **Open**.
 - Drag the files into the FreeStyle window.

 Tip Use the SHIFT key (for consecutive files) or the CTRL key (for nonconsecutive files).

 --or--

 - Drag the files into the FreeStyle window.

 Note When you drag files into the Chromatogram Ranges view, this action adds new traces to the view instead of adding new Workspace pages.

A separate Workspace page appears for each raw data file. In the default factory layout, additional workspaces appear as horizontal tabs above the Chromatogram view.

❖ To reposition the Workspace page

1. Right-click the Workspace page title bar or click its **Window Position** icon, ▼, to open the shortcut menu.

Figure 7. Workspace page shortcut menu

Thermo Scientific FreeStyle User Guide 33
2. Do one of the following:

- Choose **Floating** to detach the Workspace page into a floating window.
- Choose **Dockable** to return the Workspace page back to its default position in the FreeStyle window.

—or—

- Choose **Auto Hide** or click the **Auto Hide** (vertical pin) icon, ![Auto Hide icon](image), in the title bar (Figure 8) to temporarily hide the Workspace page.

Figure 8. Workspace vertical Auto Hide icon

The Workspace page collapses as a vertical tab to the right of the Info Bar (Figure 9).

Figure 9. Workspace tab

Pointing to the tab displays the Workspace page again. When Auto Hide is on, the Auto Hide icon is horizontal, ![Auto Hide icon](image), (Figure 10). To turn off the Auto Hide function, choose **Auto Hide** in the shortcut menu again to clear the check mark, or click the Auto Hide icon to change it back to vertical, ![Auto Hide icon](image).
To display a Workspace page when multiple workspaces are open

- Click the target workspace tab.

To refresh the Chromatogram or Map View for a workspace

1. Open a raw data file in the acquisition queue.
2. In the Workspace Options toolbar, in the Create area, click Refresh, or press the F5 key on your computer.

 The application refreshes the data of the raw data file.

As the acquisition is in progress, the application:

- Updates the associated Chromatogram traces.
- Updates the Map View, Scan Filters, and MSn Browser that have an associated Time range.
- Automatically applies peak detection to update the retention time of views.
- Updates the associated peak list table.

Note When you apply Refresh, the application refreshes all the views of data that is currently being acquired. For files that are not in the acquisition mode in a workspace, the Refresh icon is inactive.

When the acquisition is completed, the Refresh icon is inactive and the F5 key does not produce any effect.

To close a Workspace page

- Right-click the title bar and choose Close.

 –or–

- Click the Close icon, ✗.
Arranging Views

You can move or reposition the views to change the layout of the workspace and then save the modified layout to a template. For information about templates, see Saving and Applying Layout Templates.

To arrange views with the mouse

1. Drag the title bar of the view that you want to move to a second view until the view arranger tool appears.

![View Arranger Tool](image)

2. Do one of the tasks in the following table.

<table>
<thead>
<tr>
<th>Task</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move the first view above the second view.</td>
<td>Drag the title bar to the up icon, </td>
</tr>
<tr>
<td>Move the first view below the second view.</td>
<td>Drag the title bar to the down icon, </td>
</tr>
<tr>
<td>Move the first view to the left of the second view.</td>
<td>Drag the title bar to the left icon, </td>
</tr>
<tr>
<td>Move the first view to the right of the second view.</td>
<td>Drag the title bar to the right icon, </td>
</tr>
<tr>
<td>Make both views tabbed.</td>
<td>Drag the title bar to the tabs icon, </td>
</tr>
</tbody>
</table>

The application displays the first view and creates a tab for the second view.

Figure 11 shows the Spectrum view being dragged to the right of a Chromatogram view, and Figure 12 shows the end result.
Figure 11. Spectrum view being dragged to the right of a Chromatogram view

Figure 12. Result of repositioning a Spectrum view to the right of a Chromatogram view
Selecting the Columns to Display in a View or Dialog Box with Tabular Data

To minimize the display of infrequently used information, some of the table columns in a view or dialog box are hidden by default. You can change which columns to display or hide in a specific table by accessing the table’s Field Chooser dialog box.

To open a Field Chooser dialog box and change the column selections

1. Click the Field Chooser icon, to the left of the table heading row.

2. Do the following:
 • To display a column, select its associated check box.
 • To hide a column, clear its associated check box.

Figure 13 shows the Field Chooser dialog box for the Chromatogram Ranges view. In this view, the following columns are hidden by default—Chemical Formula, Mass Tolerance, and Comment.

You can display or hide table columns in these views and dialog boxes:

• Chromatogram Ranges View
• Spectrum List View
• Status Log View
• Sample Information View
• Peaks List View
Saving and Applying Layout Templates

A FreeStyle template contains the settings that define the workspace layout. The template specifies what views are in a Workspace, how the views are arranged, and what labeling the views contain. The template also specifies which pages the Info Bar initially displays. For future use, you can save the template as a new XML file, or save it as the default template.

The FreeStyle application stores all templates in the following folder:

```
drive:Users\your name\AppData\Local\Thermo Scientific\FreeStyle\Templates\``

 четы To save the template as the default template

1. Click the **Workspace Options** tab to open the Workspace Options toolbar (see Figure 19).
2. Click **Layouts** and choose **Save As Default** from the dropdown menu.

Note You can also choose **File > Save As Default**.

The application saves the layout as the default template file, DefaultTemplate.xml.

To apply the default template

1. Click the **Workspace Options** tab to open the Workspace Options toolbar.
2. Click **Layouts** and choose **Apply Default** from the dropdown menu.

To name the template and save it as an XML file

1. Click the **Workspace Options** tab to open the Workspace Options toolbar.
2. Click **Layouts** and choose **Save As** from the dropdown menu.
   The Save Settings dialog box opens.
3. Type a name for the template and click **Save**.

**IMPORTANT** Do not navigate to a different folder. The application reads the template files only from the default template folder.
To apply a saved template
1. Click the Workspace Options tab to open the Workspace Options toolbar.
2. Click Layouts and choose Apply from the dropdown menu.
   The Browse Templates dialog box opens.
3. Locate and select a template and click Open.

Restoring the Default Settings

The FreeStyle application includes the Default Options Configuration dialog box with a set of pages containing initial default settings upon installation. You can modify these settings as needed or restore them to the factory default values.

For information about these settings, see Appendix A, “FreeStyle Default Settings.”

To open the Default Options Configuration dialog box
- In the Workspace Options toolbar, click Default Options.
- or –
  - Choose File > Default Options.

To restore the settings of a particular page to the factory default settings
1. Open the Default Options Configuration dialog box.
2. In the navigation pane, click the page for which you want to restore the default settings.
3. In the upper right corner, click Revert to Factory Default Values.
   The application immediately saves these changes. There is no undo. Clicking Cancel does not return your custom values.

To restore all settings for all pages to the factory default settings
1. Open the Default Options Configuration dialog box.
2. In the bottom left corner, click Revert All to Factory Default Values.
3. When prompted to restore all default settings, click OK.
4. When prompted to apply these default settings to open workspaces, click Yes or No.
   The application saves these changes. There is no undo. Clicking Cancel does not return your custom values.
Using the Pointer to Update the Timebase or Rescale a Graph

Within a Chromatogram View, Spectrum view, or MultiSpectrum view, use the pointer in three ways:

• To select a retention time or scan number, click the linked chromatogram trace at that retention time.
• To select a range, drag a line parallel to any axis.
• To select an area, drag in any diagonal direction.

Pointer actions scale the view according to the dimensions of the dragged line or area (see Table 5).

Note To restore the original scale, right-click the view and choose Reset Scaling.

Table 5. Pointer effects

<table>
<thead>
<tr>
<th>Pointer action</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag parallel to the x axis</td>
<td>Rescales the graph to the selected x-axis range. The y-axis range might rescale depending on the selected normalization display options.</td>
</tr>
<tr>
<td>Drag parallel to the y axis</td>
<td>Rescales the graph to the selected y-axis range, with the same x-axis range.</td>
</tr>
<tr>
<td>Drag diagonally over the x and y axes</td>
<td>Rescales the graph to the selected x- and y-axes ranges.</td>
</tr>
</tbody>
</table>

In addition, when you select a retention time in a Chromatogram view, the application automatically synchronizes to display data at that selected RT for the linked Spectrum view, or the active spectrum in the linked MultiSpectrum view, the Scan Header view, and the Status Log view in the Workspace.

Adding Text, Graphic, and Structure Annotations to a Graphical View

To add custom text, graphics, and structures to the graphical views, use the features on the Text and Graphic Annotation toolbar.

Note Except for the Structure icon, the toolset for the Text and Graphic Annotation toolbar are same for the Chromatogram and Spectrum views. To add labels that the application generates from the data, use the features on the Labels area of the Display Options toolbar.

After you select the view and open the Text and Graphic Annotation toolbar, follow these procedures:

• To place a drawing object behind the plot
• To draw a line
• To draw a box or a filled box
• To add a text label
• To edit a text label
• To remove one or more labels
• To save text and structure annotations in the Spectrum view
• To import text and structure annotations
• To annotate a spectral peak with a structure

❖ To place a drawing object behind the plot
   Click the Behind Graph icon, before you use the pointer to draw the object.

❖ To draw a line
   1. To select the line color, click the Line Color icon, and then select a color from the graphic.
   2. Do one of the following:
      • To draw a horizontal line, click the Horizontal Line icon, and then drag the pointer horizontally across the view.
      • To draw a vertical line, click the Vertical Line icon, and then drag the pointer vertically across the view.
      • To draw a diagonal line, click the Diagonal Line icon, and then drag the pointer diagonally across the view.

❖ To draw a box or a filled box
   1. To select the border color, click the Line icon, and then select a color from the graphic.
   2. Click the Box icon, or the Filled Box icon.
   3. For a Filled Box, click the Fill Color icon, and then select a color from the graphic.
   4. Click the view where you want to place the top left corner of the box, and then drag the pointer across the view to size the box. You can continue to increase or decrease the box dimensions until you release the mouse button.

❖ To add a text label
   1. Click the Add Text icon, to add a text label.

The Add/Edit Text Annotation dialog box opens.
2. Type the text in the text box.
   You can enter several lines of text by pressing ENTER after each line.

3. To format the text, do the following:
   • To display the text in bold and italic, select **Bold** and **Italic**.
   • To display the text in box or rotate the text, select **Boxed** or **Rotated**.
   • To specify a text label with a callout line, select **Callout**.
   • To align the text, select Left, Center, or Right.
     By default, when there are multiple lines, the text is left aligned. You can change the alignment to Center or Right.
   • To select the text and line color, under **Color**, click the down-arrow icon.
     The default line color is blue and text color is red.

4. To add the text in the Spectrum or Chromatogram view, click the location where you want to add the text.
   The text appears in the selected location.

5. To move the text, point to the text, and when the red box appears, drag the text to the new location.

**Note** When you move the text with a callout line, the callout anchor remains at the original location and only the text moves.
To edit a text label

1. Double-click the text label that you want to edit.
   
The Add/Edit Text Annotation dialog box opens with the text format options.

2. Select the options to edit, and click **Edit**.

To remove one or more labels

Do any of the following:

- To clear selected text labels, click **Selected Text**, in the toolbar. Then, drag the pointer across the text that you want to remove.

- To clear a single label, double-click the text label. Then, remove the text from the Add/Edit Text Annotation dialog box, and click **Edit**.

- To clear selected graphic labels, click **Selected Graphics**, in the toolbar. Then, drag the pointer across the graphics that you want to remove.

- To clear all the labels, click **All**, in the toolbar.

To annotate a spectral peak with a structure

1. Select the Spectrum or MultiSpectrum view.

2. To add a structure annotation, do one of the following:

   - In the Tools area, click **Structure**.

   The Structure Annotation dialog box opens and displays the m/z value in the Mass box.

*Figure 15. Structure Annotation*

**Note** By default, the Structure Annotation dialog box displays five rows. The application automatically adds additional rows to add more annotations. The structure list added is specific for each spectrum plot and you cannot copy the structures to a new plot.
3. Click the **Mass** box and type the \( m/z \) value.

4. Click the **File Name** box, and browse to the location of the .mol file saved in your system.

5. Select the mol file and click **Open** to import the structure.

6. Specify the appearance of the two-dimensional molecular structure as follows:
   - From the Structure Scale dropdown list, select the relative size.
   - From the Font Name dropdown list, select the font for the structure’s atoms.
   - From the Font Size dropdown list, select the relative size of the text for the structure’s atoms.
   - To bold the text for the structure’s atoms, select the **Bold** check box.
   - To select different colors for the structure’s bonds and atoms, open the respective color palettes and select the colors.

7. To display the overlapped structures when the structure is bigger than the workspace and does not appear, select the **Draw Overlap Structures** check box. By default, the check box is not selected.

8. Click **Apply**, and then click **OK**.

   The annotated structure is displayed at the selected mass point in the spectra.

9. To change relative size of the structure directly from the Text and Graphic Annotation toolbar, click and move the **Scale** slider.

   **Figure 16.** Structure Scale Slider

10. To change a structure’s position, drag and drop the structure within the view.

    The structure changes only the position but remains linked to the original mass value until you edit the mass.

11. To clear the structure annotations, right-click the Spectrum view and choose **Clear Structure Annotations**.

    Choosing Clear Structure Annotations removes the annotations for the Spectrum view and clears the list from the Structures Annotation dialog box.

   **Note** The application does not import the annotations to a copy of the spectrum within the workspace, but when you copy the spectrum to the Clipboard and paste it into other applications (such as PowerPoint™, Paint™, and so on), the application also copies the annotations to the new file.
To save text and structure annotations in the Spectrum view

1. Select the Spectrum or MultiSpectrum view.
2. In the Save area, click ![Save Annotations].
   The Save Settings dialog box opens.
3. Select the file to save the annotation, and click Save.
   The XML file saves the following information:
   - Text annotations
   - Structure annotations
   - Boxed label
   - Bold and Italic styles
   - Callout link
   - Rotated format
   - Text color
   - Line color
   - Alignment

To import text and structure annotations

1. In the Save area, click ![Apply Annotations].
   The Browse Templates dialog box opens.
2. Select the annotation XML file you want to import to the workspace.
3. Click Open.
   The application imports the text and structure annotation to the Spectrum view.

Copying, Exporting, and Printing Graphical Images and Tabular Data

You can copy graphical views and tabular data to the Clipboard, send the contents of a Workspace or view to a printer, or export the contents of a Workspace or view to a CSV or an EMF file.

Follow the instructions in these topics:

- Copying an Image of a Graphical View to the Clipboard
- Copying Tabular Data to the Clipboard
- Exporting or Printing the Contents of a View or Workspace
Copying an Image of a Graphical View to the Clipboard

You can copy an image of the following views or floating window to paste into other Microsoft Office applications: Chromatogram view, Spectrum view, MultiSpectrum view, and Isotope Simulation window.

- **To copy an image of a graphical view or floating window to the Clipboard**
  
  Right-click the view or window and choose *Copy To Clipboard*.

Copying Tabular Data to the Clipboard

You can copy the contents of the eight report views (see Reports) to the Clipboard.

- **To copy all the contents of a report view to the Clipboard**
  
  1. Open a report view.
  2. Click the view.
  3. Press CTRL+C.

  The application copies the report contents to the Clipboard.

Exporting or Printing the Contents of a View or Workspace

To print, copy, or export the contents of a view or workspace, use commands on the Exports menu on the Workspace Options toolbar.

Clicking either command opens the Copy to Clipboard/Export dialog box where you select the export type, the output size for a Clipboard image, and the number of pages to print.

- **To export, copy, or print the contents of a view or workspace**
  
  1. Do one of the following:
     
    - To export the contents of a view, click the view, click *Exports*, and choose *Export Selection As* from the dropdown menu.
    - To export the contents of a workspace, click *Exports*, and choose *Export Workspace As* from the dropdown menu.

  The Copy to Clipboard/Export dialog box opens (Figure 17).
2. In the Export Type area, select one of these options:

   • To export the data in tabular format to a CSV file, select the **To CSV File** option. Then, go to **step 4**.

   • To send an enhanced metafile image to the Clipboard, select the **To Clipboard in EMF** option. Then, in the Output Size (For Clipboard) area, use the Width (in.) and Height (in.) boxes to specify the size of the image.

   • To send the printing information to the selected printer, select the **Print** option. Then, select one of the following:
     
     – To print the graphical views in a workspace on one page, select the **One Page** option.
     
     – To print the graphical views in a workspace on separate pages or all the pages in a report view, select the **Separate Page** option.

3. **Click OK**.

4. Depending on the export type, do the following:

   • For the **To CSV File** option, in the Export Data dialog box, select the folder location, name the file, and click **Save**.

   • For the **To Clipboard in EMF** option, paste the image from the Clipboard to the appropriate document.

   • For the **Print** option, in the Print dialog box, select the printer, the printing preferences, the page range, and the number of copies. Then, click **Print**.

   **Tip** To create a PDF file, select the Adobe PDF printer.
Setting FreeStyle as the Default Data Visualization Application

Currently, Thermo Fisher Scientific provides two data visualization applications: Xcalibur and FreeStyle.

✔ To specify the FreeStyle application as the default data visualization application

1. Open Windows Explorer and browse to a raw data file.

2. Right-click the file, and then choose Open With > FreeStyle Version (Figure 18).

Figure 18. Choosing FreeStyle as the default data visualization application

Toolbars

Use the FreeStyle toolbar features to display views and to perform functions. The FreeStyle window has these toolbars:

- Workspace Options Toolbar
- Workspace Processing Toolbar
- Display Options Toolbar
- Zoom Options Toolbar
- Text and Graphic Annotation Toolbar
- Sequence Toolbar (in the Reviewing Chromatographic Data chapter)

Tip The FreeStyle window displays only the toolbars and toolbar features that are appropriate for the selected view. For example, the Peak Detection features in the Workspace Processing toolbar are available only when a Chromatogram view is selected, and the Library Search icons in this toolbar are available only when a Spectrum or MultiSpectrum view is selected.

The Sequence toolbar appears when you select a file on the Sequence File page.
Workspace Options Toolbar

Use the features in the Workspace Options toolbar to create, customize, and refresh workspaces.

❖ To display the Workspace Options toolbar

Click the **Workspace Options** tab.

Figure 19 shows the Workspace Options toolbar features that are available when you select a Chromatogram view.

![Workspace Options tab](image)

Depending on the active view, these additional features—Ranges, Multi Spectrum, CV Plot, and Write to .RAW—become available as follows:

- Selecting a Spectrum view or a Multi Spectrum view makes the Ranges and Spectrum commands available on the Spectrum menu.

- Opening a raw data file (.raw) with FAIMS data makes the CV Plot icon available.

- Selecting a Chromatogram view, a Spectrum view, or a Multi Spectrum view makes the Exports – Write to .RAW command available.

Table 6 describes the menus and icons in the Workspace Options toolbar, from left to right.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Workspace</td>
<td>Displays the Open Raw File dialog box. You create a workspace by opening a raw data file or a sequence of raw data files. A workspace can display selected information from one or more raw data files. The workspace tab includes the file name of the raw data file when the Workspace displays information from only one raw data file.</td>
</tr>
<tr>
<td>Create Sequence</td>
<td>Opens the Create Sequence dialog box. Use the Create Sequence dialog box to build a sequence from raw data files.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Updates a view that is showing a chromatogram or a map from a raw data file that is currently being acquired. The data system expands the display range to show the full range of the data acquired.</td>
</tr>
</tbody>
</table>
Table 6. Workspace Options toolbar commands (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Workspace area</strong></td>
<td></td>
</tr>
<tr>
<td>Chromatogram menu</td>
<td></td>
</tr>
<tr>
<td>Ranges</td>
<td>Opens the Chromatogram Ranges view where you can specify the chromatogram traces to display.</td>
</tr>
<tr>
<td>Insert Trace</td>
<td>Adds another chromatogram trace within the selected Chromatogram view. Use the Chromatogram Ranges view or the Auto Filter icon to select the chromatograms of interest.</td>
</tr>
<tr>
<td>Insert View</td>
<td>Adds a Chromatogram view to the Workspace.</td>
</tr>
<tr>
<td>Spectrum menu</td>
<td></td>
</tr>
<tr>
<td>Ranges</td>
<td>Available when a Spectrum view or a MultiSpectrum view is selected and these views do not include a library spectrum.</td>
</tr>
<tr>
<td></td>
<td>Displays the Spectrum Ranges dialog box, where you select the spectral trace or traces to display in a Spectrum view or MultiSpectrum view, respectively.</td>
</tr>
<tr>
<td>Multi Spectrum</td>
<td>Displays the MultiSpectrum view, where you can group multiple spectra together in one view.</td>
</tr>
<tr>
<td>Insert View</td>
<td>Displays a Spectrum view, where you view the spectrum for the chosen retention time (RT) and scan number.</td>
</tr>
<tr>
<td>CV Plot</td>
<td>Compensation voltages (CV) plot is available for raw data files with FAIMS data.</td>
</tr>
<tr>
<td></td>
<td>Opens the CV Plot Traces dialog box, where you select the CV plots of interest.</td>
</tr>
<tr>
<td>Map View menu</td>
<td></td>
</tr>
<tr>
<td>Ranges</td>
<td>Opens the Map Ranges dialog box to specify ranges for a map view.</td>
</tr>
<tr>
<td>Insert View</td>
<td>Adds a Map View of the active chromatogram trace.</td>
</tr>
<tr>
<td></td>
<td>Displays a map of the currently selected raw file in the map view where you can view the retention time (RT) and m/z values.</td>
</tr>
<tr>
<td>Data Analytics menu</td>
<td></td>
</tr>
<tr>
<td>Ranges</td>
<td>Opens the Data Analytics Ranges dialog box to specify the filename, detector type, trace type, and filter for the view.</td>
</tr>
<tr>
<td>Insert View</td>
<td>Inserts a Data Analytics View in the workspace.</td>
</tr>
<tr>
<td>Layouts menu</td>
<td></td>
</tr>
<tr>
<td>Save As</td>
<td>Saves the current layout as an XML template file. See Saving and Applying Layout Templates.</td>
</tr>
<tr>
<td>Save As Default</td>
<td>Saves the current layout as the default template file, DefaultTemplate.xml. See Saving and Applying Layout Templates.</td>
</tr>
<tr>
<td>Apply</td>
<td>Opens the DataBrowser Templates dialog box, where you select a previously saved layout template. See Saving and Applying Layout Templates.</td>
</tr>
</tbody>
</table>
Table 6. Workspace Options toolbar commands (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply Default</td>
<td>Applies the default layout template, DefaultTemplate.xml. See Saving and Applying Layout Templates.</td>
</tr>
<tr>
<td>Exports menu</td>
<td></td>
</tr>
<tr>
<td>Write to .RAW</td>
<td>For a chromatogram trace, saves the MS scans for the displayed time range of the selected chromatogram trace to a new raw data file and appends _FS to the file name (see Exporting Scans for a Filtered Chromatogram to a New Raw Data File). The new raw data file includes only the MS scans for the filtered chromatogram. For a spectrum or multispectrum plot, saves the selected spectrum to a new raw data file, appends Scan [scan number] to the file name (see Exporting a Selected Spectrum to a New Raw Data File), and records the action in the Audit Trail.</td>
</tr>
<tr>
<td>Note</td>
<td>When the raw data file contains Advanced Peak Determination (APD) data—such as species ID, monoisotopic mass, and top peak in the cluster—the exported file does not include the APD data.</td>
</tr>
<tr>
<td>Export Workspace As</td>
<td>Opens the Copy to Clipboard/Export dialog box, where you specify settings to print all the workspace pages, export them to a CSV file, or copy them to the Clipboard (see Exporting or Printing the Contents of a View or Workspace).</td>
</tr>
<tr>
<td>Export Selection As</td>
<td>Opens the Copy to Clipboard/Export dialog box, where you specify settings to print the selected view, export it to a CSV file, or copy it to the Clipboard (see Exporting or Printing the Contents of a View or Workspace).</td>
</tr>
<tr>
<td>Filter icons</td>
<td></td>
</tr>
<tr>
<td>Auto Filter</td>
<td>Opens the To specify the maximum number of chromatogram traces to display, where you can specify the filters to use to repopulate an existing Chromatogram view with filtered plots. Depending on the selections you made in the Auto Filter dialog box, the Chromatogram View is populated with the selected scan filters. The default selected scan filters are dependent on the number specified on the Workspace Options page of the Default Options Configuration dialog box. Also populates the Chromatogram Ranges view with the specified number of scan filters. See Adding Chromatogram Traces with the Auto Filter Feature.</td>
</tr>
<tr>
<td>Scan Filters</td>
<td>Opens the Scan Filters page in the Info Bar (see Using the Scan Filters Page to Display a Filtered Chromatogram).</td>
</tr>
<tr>
<td>Reports menu</td>
<td></td>
</tr>
<tr>
<td>Spectrum List</td>
<td>Displays the Spectrum List view, where you view spectral peak information in a table. Click the chromatogram trace to display the spectrum list for the chosen retention time and scan number.</td>
</tr>
<tr>
<td>File Header</td>
<td>Displays the File Header view, where you view information from the acquisition sequence, the autosampler, and the mass spectrometer.</td>
</tr>
</tbody>
</table>
The available features in the Workspace Processing toolbar depend on whether you select a Chromatogram view or a Spectrum (or MultiSpectrum) view.

**Note** The Isotope Simulation and Library Manager features are available for both Chromatogram and Spectrum views.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Header</td>
<td>Displays the Scan Header view, where you view the scan header of the active raw data file. Click the chromatogram trace to display the scan header for the chosen retention time and scan number. See Scan Headers and Scan Header Abbreviations.</td>
</tr>
<tr>
<td>Instrument Method</td>
<td>Displays the Instrument Method view, where you view the instrument method parameters that the instrument used to obtain the raw data file.</td>
</tr>
<tr>
<td>Status Log</td>
<td>Displays the Status Log view, where you view instrument readback parameters. Click the chromatogram trace to display the status log for a specific retention time and scan number.</td>
</tr>
<tr>
<td>Tune Method</td>
<td>Displays the Tune Method view, where you view the tune method parameters that the instrument used to obtain the raw data file.</td>
</tr>
<tr>
<td>Sample Information</td>
<td>Displays the Sample Information view, where you view sample-specific information.</td>
</tr>
<tr>
<td>Error Log</td>
<td>Displays the Error Log view, where you view a list of error messages generated during data acquisition.</td>
</tr>
<tr>
<td>Default Options</td>
<td>Opens the Default Options Configuration dialog box, where you specify the default settings for the application (see FreeStyle Default Settings).</td>
</tr>
</tbody>
</table>
For information about the Workspace Processing toolbar, see these topics:

- Chromatogram – Workspace Processing Toolbar
- Spectrum – Workspace Processing Toolbar
- Map View – Workspace Options Toolbar
- Data Analytics View – Workspace Options Toolbar

**Display Options Toolbar**

For information about specific features on the Display Options toolbar, see these topics:

- Chromatogram – Display Options Toolbar
- Spectrum – Display Options Toolbar
- Spectrum List – Display Options Toolbar
- Map View – Display Options Toolbar
- Data Analytics View – Display Options Toolbar

**Zoom Options Toolbar**

Use the features in the Zoom Options toolbar to adjust the display of chromatograms or spectra.

**Note** The Zoom Options toolbar is available when a Chromatogram view, a Spectrum view, a Map view, or a MultiSpectrum view is selected.

Figure 20 shows the Zoom Options toolbar, and Table 7 describes the toolbar features.

**Figure 20.** Zoom Options toolbar

![](image)

**Table 7.** Zoom Options toolbar icons (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Reset" /></td>
<td>Restores the data display to the full range of the x axis and y axis.</td>
</tr>
<tr>
<td><img src="image" alt="Zoom In Y" /></td>
<td>Zooms in on the y axis by a factor of two from the current baseline to show more detail. For example, you can change the y-axis range from 0–100 to 0–50.</td>
</tr>
</tbody>
</table>
Text and Graphic Annotation Toolbar

Use the features in the Text and Graphic Annotation toolbar to annotate chromatograms and spectra with text, lines, and boxes. You can also select color, text alignment, and various text options.

For information about working with the Text and Graphic Annotation toolbar, see Adding Text, Graphic, and Structure Annotations to a Graphical View.

**Note** The Text and Graphic Annotation toolbar is available when you select a Chromatogram view, a Spectrum view, or a MultiSpectrum view.

Figure 21 shows the Text and Graphic Annotation toolbar, and Table 8 describes the toolbar features.

**Figure 21.** Text and Graphic Annotation toolbar
### Table 8. Text and Graphic Annotation toolbar commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Drawing area</strong></td>
<td></td>
</tr>
<tr>
<td>Add Text</td>
<td>Annotates with a text label (see To add a text label).</td>
</tr>
<tr>
<td>Horizontal Line</td>
<td>Draws a horizontal line when you drag the mouse pointer horizontally.</td>
</tr>
<tr>
<td>Vertical Line</td>
<td>Draws a vertical line when you drag the mouse pointer vertically.</td>
</tr>
<tr>
<td>Diagonal Line</td>
<td>Draws a diagonal line when you drag the mouse pointer diagonally.</td>
</tr>
<tr>
<td>Box</td>
<td>Draws an empty box when you drag the mouse pointer diagonally.</td>
</tr>
<tr>
<td>Filled Box</td>
<td>Draws a box filled with the fill color when you drag the mouse pointer diagonally.</td>
</tr>
<tr>
<td><strong>Modes area</strong></td>
<td></td>
</tr>
<tr>
<td>Line Color</td>
<td>Opens the color box to select the line color.</td>
</tr>
<tr>
<td>Fill Color</td>
<td>Opens the color box to select the fill color and the text color.</td>
</tr>
<tr>
<td>Behind Graph</td>
<td>Places text, lines, and boxes behind the chromatogram traces or mass spectra.</td>
</tr>
<tr>
<td><strong>Clear area</strong></td>
<td></td>
</tr>
<tr>
<td>Selected Text</td>
<td>Deletes text annotations when you drag the pointer over them.</td>
</tr>
<tr>
<td>Selected Graphics</td>
<td>Deletes graphic annotations when you drag the pointer over them.</td>
</tr>
<tr>
<td>All</td>
<td>Deletes all text and graphic annotations.</td>
</tr>
<tr>
<td><strong>Structure area</strong></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Displays the structure annotations of the selected spectrum.</td>
</tr>
<tr>
<td>Scale</td>
<td>Adjusts the scale of the structure annotations.</td>
</tr>
<tr>
<td><strong>Save area</strong></td>
<td></td>
</tr>
<tr>
<td>Save Annotations</td>
<td>Saves the text annotation for the selected trace in XML format.</td>
</tr>
<tr>
<td>Apply Annotations</td>
<td>Imports the text annotation to the selected trace.</td>
</tr>
</tbody>
</table>
Views

A view is a pane on a Workspace page. Use the available views to display results and to open lists for entering parameters or selecting options. You can drag views to arrange them within the workspace of the application (see Arranging Views).

The FreeStyle window displays these individual views (by type in alphabetical order) inside the Workspace page. In addition, Table 9 lists related topics for detailed information and the type of data the view contains for export.

Table 9. Views (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>View</th>
<th>Topic</th>
<th>Copy as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromatogram</td>
<td>Chromatogram View</td>
<td>Image</td>
</tr>
<tr>
<td>Chromatogram Ranges</td>
<td>Chromatogram Ranges View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>MultiSpectrum</td>
<td>MultiSpectrum View</td>
<td>Image</td>
</tr>
<tr>
<td>Spectrum</td>
<td>Spectrum View</td>
<td>Image</td>
</tr>
<tr>
<td>Map View</td>
<td>Working with the Map View</td>
<td>Image</td>
</tr>
<tr>
<td>Data Analytics View</td>
<td>Adding Data Analytics View to the Workspace</td>
<td>Image</td>
</tr>
<tr>
<td>Reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Log</td>
<td>Error Log View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>File Header</td>
<td>File Header View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>Instrument Method</td>
<td>Instrument Method View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>Sample Information</td>
<td>Sample Information View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>Scan Header</td>
<td>Scan Header View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>Spectrum List</td>
<td>Spectrum List View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>Status Log</td>
<td>Status Log View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>Tune Method</td>
<td>Status Log View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>Data processing – Elemental composition</td>
<td>Elemental Composition Results View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>Data processing – Chromatographic peak detection and integration</td>
<td>Peaks List View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>Data processing – Library searches</td>
<td>Chemical Structure view from mzVault or NIST</td>
<td>Image</td>
</tr>
</tbody>
</table>
Table 9. Views (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>View</th>
<th>Topic</th>
<th>Copy as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compounds list</td>
<td>mzVault Search Results View</td>
<td>Tabular text</td>
</tr>
<tr>
<td>Compounds list</td>
<td>NIST Search Results View</td>
<td>Tabular text</td>
</tr>
<tr>
<td><strong>Data processing – Xtract deconvolution</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deconvolved Spectrum</td>
<td>Deconvolved Spectrum View</td>
<td>Image</td>
</tr>
<tr>
<td>Xtract Results</td>
<td>Xtract Results View</td>
<td>Tabular text</td>
</tr>
</tbody>
</table>
Info Bar Pages

On the left of the FreeStyle window, use the pages of the Info Bar to select detector, sequence, or filter options. You can also set the parameters for peak detection, isotope simulation, elemental composition, peptide fragments analysis, searching mass spectrum libraries, or applying the Xtract deconvolution algorithm.

The following pages appear in the Info Bar:

- Chromatogram-range pages: Only one of these two pages is available at any time.
  - Detector Type Page
  - Trace Type Page
- Scan Filters Page
- Elemental Composition Page
- Isotope Simulation Page
- Modifying an mzVault Search from the mzVault Search Page
- MSn Browser Page
- Peptide Fragments Info Bar
- Modifying a NIST Search from the NIST Search Page
- Peak Detection Page
  - Avalon Peak Detection Page
  - Genesis Peak Detection Page
  - ICIS Peak Detection Page
  - PPD Peak Detection Page
- Sequence File Page
- Xtract Page for a Selected Spectrum

To rearrange or hide the Info Bar pages, follow the procedures in these topics:

- Rearranging the Info Bar Pages
- Hiding the Info Bar Pages
- Docking or Floating the Info Bar Pages
Rearranging the Info Bar Pages

❖ To move an Info Bar page
Drag its tab left or right.

Hiding the Info Bar Pages

❖ To hide an Info Bar page
Right-click its tab and choose Auto Hide.

❖ To hide all the Info Bar pages
Right-click the Info Bar title bar and choose Auto Hide.

Docking or Floating the Info Bar Pages

Do one of the following:

• Right-click the Info Bar title bar and choose Floating to detach the Info Bar pages into a floating window.

• Right-click the Info Bar title bar and choose Dockable to return the Info Bar pages back to their default position in the FreeStyle window.
Reviewing Chromatographic Data

To review the chromatographic data, follow the procedures in these topics.

Contents

- Adding Chromatogram Views
- Closing Chromatogram Views
- Adding Chromatogram Traces
- Deleting Chromatogram Traces
- Displaying Mass Defect Filtered Chromatogram Traces
- Setting up Instrument Status Traces
- Displaying an EIC Trace
- Using the Scan Filters Page to Display a Filtered Chromatogram
- Setting Up the Display Options for a Chromatogram Trace
- Changing the Zoom Level of a Chromatogram
- Automatically Detecting and Integrating Chromatographic Peaks
- Selecting the Manual Noise Region for the Genesis and ICIS Algorithms
- Manually Adding, Undoing, and Deleting Chromatographic Peaks
- Importing Components from a Processing Method
- Exporting Scans for a Filtered Chromatogram to a New Raw Data File
- Working with Sequences
- Chromatogram-specific Toolbars
- Chromatogram-Specific Views
- Chromatogram-specific Pages in the Info Bar

Note For information about adding images and annotations to and copying an image of a Chromatogram view, see Using the FreeStyle Window.
Adding Chromatogram Views

You can add multiple Chromatogram views to a Workspace.

✦ To add a Chromatogram view

In the Workspace Options toolbar, click Chromatogram View.

Result:

• When the Workspace includes one or more Chromatogram views, a copy of the selected or active Chromatogram view (as indicated by the tilde in its title bar) appears.

• When the Workspace does not include a Chromatogram view, a new Chromatogram view appears with the default chromatogram (based on the raw data file) and display settings. The chromatogram trace is linked to the MSn Browser page and any other opened view.

Note When the Workspace does not include a Chromatogram view, you can also add the first Chromatogram view by clicking Auto Filter on the Workspace Options toolbar (see Adding Chromatogram Traces with the Auto Filter Feature).

Closing Chromatogram Views

A Workspace must include at least one of the following views: a Spectrum view, a Chromatogram view, a Map View, or a report view. When you close all the Chromatogram views, the remaining views and the MSn Browser page retain information based on the last selected chromatogram trace.

✦ To close a Chromatogram view

Click the Close icon.

The effect of closing a Chromatogram view depends on whether it is the only Chromatogram view in the Workspace, whether any other views are open, and the linkage state of any spectra (Table 10).
Adding Chromatogram Traces

The factory default Workspace includes a Chromatogram view with a single trace and a Spectrum view that is linked to the trace (see Opening Raw Data Files or Sequence Files). You can add multiple chromatogram traces to the Chromatogram view and multiple Chromatogram views to the Workspace.

By default, when you add multiple traces to a Chromatogram view, the traces are stacked. As you add more traces, each successive trace appears in a different color until the view contains eight traces. The color order is as follows: (1) black, (2) brick-red, (3) green, (4) blue, (5) light orange, (6) magenta, (7) blue-green, and (8) gray. As you add more traces, this color pattern repeats.

The application supports the following types of chromatogram traces for MS data (Table 11). To select the TIC, BPC, Mass Range, Base Peak, Neutral Fragment, or Mass Defect Filter trace type, use the Chromatogram Ranges view.

Table 10. Effect of closing a Chromatogram view

<table>
<thead>
<tr>
<th>When you close …</th>
<th>The application does the following …</th>
</tr>
</thead>
<tbody>
<tr>
<td>The last Chromatogram view in the Workspace</td>
<td>• Releases any spectrum that is linked to the chromatogram. The text appended to the Spectrum view’s title bar changes from CxTy to Released.</td>
</tr>
<tr>
<td></td>
<td>• Closes the Chromatogram Ranges view.</td>
</tr>
<tr>
<td></td>
<td>• Closes the CV Plot view.</td>
</tr>
<tr>
<td></td>
<td>• Closes the Workspace if the Chromatogram view was the last view in the Workspace.</td>
</tr>
<tr>
<td>One of the Chromatogram views in the Workspace</td>
<td>• Makes any spectrum that was linked to a chromatogram in the closed view available for linking to another chromatogram.</td>
</tr>
<tr>
<td></td>
<td>– The text appended to the Spectrum view’s title bar changes from CxTy to ‘Select Trace to Link’.</td>
</tr>
<tr>
<td></td>
<td>– Clicking another Chromatogram view automatically links the spectrum to the selected chromatogram.</td>
</tr>
<tr>
<td></td>
<td>• Links an opened Chromatogram Ranges view to the active Chromatogram view.</td>
</tr>
<tr>
<td></td>
<td>• Closes the CV Plot.</td>
</tr>
</tbody>
</table>
Table 11. Supported chromatogram traces

<table>
<thead>
<tr>
<th>Trace type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ion current (TIC)</td>
<td>A trace of the signal of all ions combined as a function of the retention</td>
</tr>
<tr>
<td></td>
<td>time or scan number.</td>
</tr>
<tr>
<td>Base peak (BPC)</td>
<td>A trace of the most intense ion signal as a function of the retention time</td>
</tr>
<tr>
<td></td>
<td>or scan number.</td>
</tr>
<tr>
<td>Mass range</td>
<td>A trace of the ion signal of all ions in one or more mass ranges as a</td>
</tr>
<tr>
<td></td>
<td>function of the retention time or scan number.</td>
</tr>
<tr>
<td>Extracted ion (EIC or XIC)</td>
<td>A trace of the signal of a single ion as a function of the retention time</td>
</tr>
<tr>
<td></td>
<td>or scan number.</td>
</tr>
<tr>
<td>Neutral fragment</td>
<td>A trace of the ion signal of all ions that produce a specific neutral</td>
</tr>
<tr>
<td></td>
<td>fragment as a function of the retention time or scan number.</td>
</tr>
<tr>
<td>Mass Defect Filter</td>
<td>A trace of the ion signal of all ions in one or more mass defect ranges as</td>
</tr>
<tr>
<td></td>
<td>a function of the retention time or scan number.</td>
</tr>
</tbody>
</table>

Follow the procedures in these topics as needed:

- Adding Chromatogram Traces Manually
- Adding Chromatogram Traces with the Auto Filter Feature

Adding Chromatogram Traces Manually

To manually add chromatogram traces to a Chromatogram view, follow these procedures as needed:

- To add a chromatogram trace by using the Chromatogram menu
- To add a chromatogram trace by using the shortcut menu command
- To add chromatogram traces by using the Chromatogram Ranges view
- To add a chromatogram trace from a raw data file in a sequence list

**Note** To automatically populate a Chromatogram view with traces from multiple scan filters, see the next topic Adding Chromatogram Traces with the Auto Filter Feature.

- **To add a chromatogram trace by using the Chromatogram menu**

  1. Click a Chromatogram view or a specific trace in the Chromatogram view to select it.
  2. Click the **Workspace Options** tab to display the Workspace Options toolbar.
  3. Click **Chromatogram** and choose **Insert View** from the dropdown menu.
     
     A copy of the selected chromatogram appears at the bottom of the view.
To add a chromatogram trace by using the shortcut menu command

Right-click a Chromatogram view and choose Insert Chromatogram.

A copy of the selected chromatogram appears at the bottom of the view.

To add chromatogram traces by using the Chromatogram Ranges view

1. In the Workspace Options toolbar, choose Chromatogram > Ranges.

The Chromatogram Ranges dialog box linked to the active or selected Chromatogram view opens.

2. In the last row, select the check box in the Display column.

The application populates the row with a copy of the currently selected row in the list, and a duplicate chromatogram trace appears in the Chromatogram view. To fill multiple rows, see Using the Fill Down Feature. To populate the Chromatogram Ranges view with ranges from a spreadsheet file, see To specify the ranges of the chromatogram traces by using data in a spreadsheet file.

To add a chromatogram trace from a raw data file in a sequence list

1. Open an existing sequence file (SLD), or create a temporary sequence list by clicking Create Sequence in the Workspace Options toolbar and selecting a set of raw data files.

2. To display the Sequence toolbar, click the Sequence File tab in the Info Bar.

3. Click New Trace.

4. Click a raw data file in the sequence.

The application adds the raw data file to the chromatogram ranges list and displays the new chromatogram trace in the selected Chromatogram View.

Adding Chromatogram Traces with the Auto Filter Feature

Use the To specify the maximum number of chromatogram traces to display to specify the filters to use to repopulate an existing Chromatogram view with these possible characteristics:

- A plot showing the chromatogram without any scan filters
- A plot showing the chromatogram using generic scan filters, such as MS, MSn, CID, ETD, HCD, or UVPD.
- Plots for specific scan filters applied to the chromatogram up to the number of scan filters in the data file or the maximum number specified on the Workspace Options Page, whichever is fewer

Note To manually add traces to a Chromatogram view, see Adding Chromatogram Traces.
To display a filtered chromatogram

1. Open the raw data file of interest.

2. In the Workspace Options toolbar, in the Filter area, click the Auto Filter icon.

Figure 22. Auto Filter dialog box

Table 12. Auto Filter dialog box parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Filter</td>
<td>Applies no filter.</td>
</tr>
<tr>
<td>Generic Filters</td>
<td>Lists filters such as MS, MSn (2–10), CID, ETD, HCD, or UVPD.</td>
</tr>
<tr>
<td>Specific Filters</td>
<td>Lists all specific filters or only those that match the filter parameters specified in the Subset box. When you select the Specific Filters option, clear the Empty Filter and Generic Filters options, and select the Merge – CV option, the application ignores the CV values and merges the scan filters for which all other values are identical in the FAIMS raw data file.</td>
</tr>
<tr>
<td>Subset</td>
<td>Specifies scan filter parameters. For descriptions of valid scan filters, see Appendix B, “Scan Filters and Scan Headers.”</td>
</tr>
<tr>
<td>CV</td>
<td>Merges the filters based on the compound names.</td>
</tr>
<tr>
<td>Use Time Limits</td>
<td>Specifies a range (in minutes) to limit the filtered scans. Range: based on range in the raw data file</td>
</tr>
<tr>
<td>Help</td>
<td>Opens the Help to the Auto Filter dialog box page (this page).</td>
</tr>
</tbody>
</table>
3. In the Auto Filter dialog box, select the type of filter options that you want to use. The application lists all filters that match the filter criteria.

4. (Optional) In the Filter list, clear the check boxes for any individual filters that you want to exclude.

5. Click Apply to apply the specified filters to the current Chromatogram view, or click OK to apply the filters and close the dialog box.

- When you select the Specific Filters option, clear the Empty Filter and Generic Filters options, and select the CV option, the returned scan filters are merged based on the precursor mass in the FAIMS raw data file.

- When you select other combinations of filter parameters, the application plots the number of traces as the number of scan filters seen on the Scan Filters Page on the Info Bar with maximum limit as set on the Workspace Options Page on the Default Options Configuration.

This figure shows the result of applying filters to the drugx_01.raw file.

**Figure 23.** Chromatogram view for a data file with five scan filters and one unfiltered TIC

---

* To specify the maximum number of chromatogram traces to display

1. Open the Workspace Options Page.

2. In the #Number of Auto Filter box, type an integer from 1 to 500.

The default maximum number of traces is 8.
Deleting Chromatogram Traces

To delete chromatogram traces or undo the most recent deletion of a chromatogram trace in a Chromatogram view, follow these procedures as needed:

- To delete a trace by clicking the delete icon
- To delete a trace by using the Chromatogram Ranges view
- To undo the most recent deletion of a chromatogram trace

**Note** Deleting a chromatogram trace makes any spectrum that is linked to it available for linking to another trace—that is, the text appended to the Spectrum view’s title bar changes from CxYy to ‘Select Trace to Link’. Deleting all the traces in a chromatogram view closes the view.

**To delete a trace by clicking the delete icon**

1. In the Chromatogram view, point to the name of the trace that you want to delete.
   A delete icon appears to the right of the trace.
   This figure shows a Chromatogram view with three stacked traces. The pointer is on the delete icon, , for the first trace.
   **Figure 24.** Chromatogram view with three stacked traces
   ![Chromatogram view with three stacked traces](image)

2. Click the delete icon, , to delete the trace.

**To delete a trace by using the Chromatogram Ranges view**

- Clear the trace’s associated check box in the Display column.
  —or—
  a. Select the row, and then press the Delete key.
b. At the prompt, click **Yes**.

**To undo the most recent deletion of a chromatogram trace**

Right-click the Chromatogram view and choose **Undo Delete Chromatogram**.

### Defining a Chromatogram Trace from the Chromatogram Ranges View

The following parameters define the range for a chromatogram trace—raw data file, detector, scan filter, trace type, and mass range for the Mass Range trace type. After you open a raw data file (see To open a raw data file or a sequence file), you use the Chromatogram Ranges view to select the parameter settings for each chromatogram plot.

You can copy the rows in the Chromatogram Ranges view to the Clipboard, and you can copy the data from a CSV file into the Chromatogram Ranges view.

To define the chromatogram ranges, follow the procedures in these topics as needed:

- Manually Defining Chromatogram Ranges
- Defining Chromatogram Ranges by Using a Spreadsheet File

#### Manually Defining Chromatogram Ranges

To specify the range for each chromatogram trace by manually entering the parameter settings in the Chromatogram Ranges view, follow these procedures:

- To manually specify the ranges of the chromatogram traces
- To specify smoothing for a plot
- To specify reference (fixed) plots

For information about setting a delay time or using the plot operators, see Chromatogram Ranges View. For information about adding multiple rows with the same settings, see Using the Fill Down Feature.

**To manually specify the ranges of the chromatogram traces**

1. In the Workspace, select the Chromatogram view to define.

2. In the Workspace Options toolbar, choose **Chromatogram > Ranges**.

   The Chromatogram Ranges view opens. Its title bar specifies the linked Chromatogram view.

   **Note** Each row in the Chromatogram Ranges view defines one trace in the selected Chromatogram view.
3. For each trace to display in the Chromatogram view, select another check box in the Display column.

4. In the File Name column, select the raw data file for each trace.

   The available detector types depends on the experimental data in the raw data file.

5. In the Detector Type column, select the detector.

   Other selections, such as Filter and Trace Type, depend on the selected detector.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Mass spectrometry data</td>
</tr>
<tr>
<td></td>
<td>The raw data files generated by an LC/MS or LC/MS/MS experiment typically contain multiple scan filters to optimize data collection. Use the remaining columns to define the trace range.</td>
</tr>
<tr>
<td>MS Trending</td>
<td>Instrument status readings for the mass spectrometer</td>
</tr>
<tr>
<td></td>
<td>Use the Trace Type column to specify the specific status readback. For more information, see Setting up Instrument Status Traces.</td>
</tr>
<tr>
<td>UV</td>
<td>Data from an analog detector</td>
</tr>
<tr>
<td></td>
<td>Use the Trace Type column to define the trace.</td>
</tr>
<tr>
<td>PDA</td>
<td>Wavelength scan data from a photodiode array detector</td>
</tr>
<tr>
<td>A/D Card</td>
<td>Data from an analog-to-digital converter</td>
</tr>
</tbody>
</table>

6. For MS data, select a scan filter from the Filter list or from the Scan Filter page.

   **Tip** To display the Scan Filter page in the Info Bar, in the Workspace Options toolbar, click Scan Filters.

7. In the Trace Type column, do one of the following:

   • For UV data, select the channel.

   • For PDA data, select the trace type to determine the signal intensity for each measured time point.

<table>
<thead>
<tr>
<th>Trace type</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Scan</td>
<td>Plots the total signal.</td>
</tr>
<tr>
<td>Wavelength Range</td>
<td>Plots the total signal for the wavelength range that you specify in the Ranges box. Continue at step 10.</td>
</tr>
<tr>
<td>Spectrum Maximum</td>
<td>Plots the maximum signal.</td>
</tr>
</tbody>
</table>

   • For A/D data, select the card.
3 Reviewing Chromatographic Data

Defining a Chromatogram Trace from the Chromatogram Ranges View

- For MS data, select **TIC, Mass Range, Base Peak, Neutral Fragment, or Mass Defect Filter**.

  **Note** Entering a chemical formula or peptide sequence in the Chemical Formula column automatically changes the trace type to Mass Range and populates the Range column with a calculated \( m/z \) value.

- For MS Trending data, select the status readback.

  8. For MS data and the Mass Range, Base Peak, or Neutral Fragment trace type, specify the mass range by doing one of the following:

     - In the Ranges box, type the mass range. Use a hyphen to define the mass range.
     
     - **or**-
     
     a. In the Chemical Formula column, click the table cell to open a dialog box.

     b. Select **Chemical Formula** or **Peptide**.

     c. Type a chemical formula or a peptide sequence.

     Use the IUPAC nomenclature (periodic table symbols) for chemical formulas. Use the one-letter amino acid abbreviations for peptide sequences. See Appendix C, “One- and Three-Letter Abbreviations for Amino Acid Residues.”

     d. Select an adduct species and a charge.

     e. Click **Apply**.

     The application populates the Chemical Formula column with the specified formula or peptide sequence. It also populates these columns:

     - Trace Type: Mass Range
     
     - Ranges: \( m/z \) value of specified ion
     
     - Mass Tolerance: 0.05 amu for ion trap data or 5 ppm for FTMS data

     The EIC trace for the specified mass range appears in the Chromatogram view.

  9. For the Mass Range trace type, in the Mass Tolerance column, specify the mass tolerance and the units.

  10. For PDA data and the Wavelength Range trace type, in the Ranges box, type the wavelength range. Use a hyphen to define the wavelength range.
To specify smoothing for a plot

1. In the Smoothing column, select one of these smoothing algorithms: None, Gaussian, or Moving Mean.

2. For Gaussian and Moving Mean smoothing, select the smoothing level from a list of odd integers: 3, 5, 7, 9, and 11.

The smoothing level increases as the selected value increases.

To specify reference (fixed) plots

Note A reference plot is a fixed plot—that is, the application does not replace a reference plot when you compare raw data files in a sequence set.

Select the check box in the Reference column.

Defining Chromatogram Ranges by Using a Spreadsheet File

For information about editing the columns in the Chromatogram Ranges view, see Chromatogram Ranges View.

To add defined chromatograms by using the data in a spreadsheet file, follow this procedure.

To specify the ranges of the chromatogram traces by using data in a spreadsheet file

1. Copy rows from the Chromatogram Ranges view to a spreadsheet file as follows:
   a. In the Workspace Options toolbar, choose Chromatogram > Ranges.
   b. Click in the area to the left of a row to select the row to copy.

   Figure 25. Example pointer location to copy a row

   Click this area.

   Tip Use the CTRL key to select non-adjacent rows. Use the SHIFT key for adjacent rows, or drag the pointer across a group of rows.

c. Press CTRL+C.

d. Open the Excel file and select the starting cell that you want to paste into.
e. Press CTRL+V, and then save the file.

In the Excel file, the pasted rows appear to the right and down from the starting cell.

**Tip** To copy the entire contents of the Chromatogram Ranges view to a CSV file, click **Selection As** in the Workspace Options toolbar.

2. Open the CSV file and edit its contents. Do not change the column format.

3. Paste rows from a spreadsheet file into the Chromatogram Ranges view, as follows:
   a. In the spreadsheet file, select the rows that you want to copy. Make sure that this block is highlighted and has the same number of columns as in the Chromatogram Ranges view.
   b. Click **Copy** or press CTRL+C.
   c. In the Chromatogram Ranges view, select the row where you want to paste the data.
   d. Press CTRL+V.

   The FreeStyle application overwrites the selected row and the rows below it with the copied rows.

### Displaying Mass Defect Filtered Chromatogram Traces

Mass defect is the difference between the accurate mass of an element (or compound) and its closest integer value (nominal mass). It might be positive (larger than the nominal mass) or negative (smaller than the nominal mass). To use MDF, you must use high mass accuracy data from high resolution analyses.

The Multiple Mass Defect Filter (MMDF) in the FreeStyle application is a data filtering method that removes ions with the mass defect outside the defined mass defect window. The filtering of ions can be based on the mass defect of the parent compound and its modifications. In the FreeStyle application, you can combine the results from multiple mass defect filters.

Mass defect filter is applied to remove the ions that fall outside the defined molecular weight range, and those that lies within the range but exceeds the expected mass defect range. This method lets you to focus on the analysis of potential drug metabolites.

**Figure 26** shows an example of the Mass Defect Filtered (MDF) Chromatogram Trace.
Figure 26. Mass Defect Filtered Chromatogram

The mass defect filtered chromatogram displays the sum of intensities of multiple centroid masses within the specified mass defect range.

This table displays the parameters for calculating the mass defect filtered chromatogram trace.

**Table 13. Mass Defect Filter Parameters (Sheet 1 of 2)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound Name</td>
<td>Specifies the name of the parent compound.</td>
</tr>
<tr>
<td>Compound Mass (amu)</td>
<td>Specifies the exact mass or chemical formula in atomic mass units (amu). You can also leave the column empty for calculation.</td>
</tr>
<tr>
<td></td>
<td>• Format: 9999.9999</td>
</tr>
<tr>
<td></td>
<td>• Compound Mass: 0.0000 and/or empty.</td>
</tr>
<tr>
<td></td>
<td>When you add the chemical formula, the Compound Mass box becomes non-editable.</td>
</tr>
<tr>
<td>Mass Defect (mmu)</td>
<td>Displays the compound mass in milli mass units (mmu), rounded to the third decimal place.</td>
</tr>
<tr>
<td>Use Chemical Formula</td>
<td>Select to calculate the mass defect based on the chemical formula.</td>
</tr>
</tbody>
</table>
Applying Mass Defect Filter in a Chromatogram

To apply a mass defect filter

1. Select the Chromatogram view, and then choose **Chromatogram > Ranges** in the Workspace Options toolbar.

### Table 13. Mass Defect Filter Parameters (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Formula</td>
<td>Specifies the chemical formula used for calculation.</td>
</tr>
<tr>
<td>Species</td>
<td>Specifies the element.</td>
</tr>
<tr>
<td>Charge</td>
<td>Specifies the charge.</td>
</tr>
<tr>
<td>Low Mass (amu)</td>
<td>The lower end of the mass defect range.</td>
</tr>
<tr>
<td></td>
<td>• When the compound mass is specified, the value is relative to the compound mass.</td>
</tr>
<tr>
<td></td>
<td>• When the compound mass is empty or zero, the value is an absolute value used for the mass defect filter calculation.</td>
</tr>
<tr>
<td>High Mass (amu)</td>
<td>The upper end of the mass defect range.</td>
</tr>
<tr>
<td></td>
<td>• When the compound mass is specified, the value is relative to the compound mass.</td>
</tr>
<tr>
<td></td>
<td>• When the compound mass is empty or zero, the value is an absolute value used for the mass defect filter calculation.</td>
</tr>
<tr>
<td>Low Mass Defect (mmu)</td>
<td>Three digits in mmu.</td>
</tr>
<tr>
<td></td>
<td>• When the compound mass is empty or zero, the low mass defect value is an absolute value.</td>
</tr>
<tr>
<td></td>
<td>• When the compound mass is given, the value is a relative value used for calculation.</td>
</tr>
<tr>
<td></td>
<td>Valid range: 0–500 mmu</td>
</tr>
<tr>
<td></td>
<td>Default: 50 mmu</td>
</tr>
<tr>
<td>High Mass Defect (mmu)</td>
<td>Three digits in mmu.</td>
</tr>
<tr>
<td></td>
<td>• When the compound mass is empty or zero, the High Mass Defect value is an absolute value.</td>
</tr>
<tr>
<td></td>
<td>• When the compound mass is given, the value is a relative value used for calculation.</td>
</tr>
<tr>
<td></td>
<td>Valid range: 0–500 mmu</td>
</tr>
<tr>
<td></td>
<td>Default: 50 mmu</td>
</tr>
<tr>
<td>Defect Range (amu)</td>
<td>Low Mass Defect–High Mass Defect</td>
</tr>
</tbody>
</table>
2. In the Trace Type list, select **Mass Defect Filter**.

3. In the Mass Defect Range, click **MDF Ranges**.

4. In the Mass Defect Filter dialog box, enter the following parameters:
   - Compound Name: Specify the compound name or leave the column empty.
   - Compound Mass (amu): Specify the exact mass of the compound or leave the column empty.
   - Use Chemical Formula: Select if you want to use the chemical formula. The compound mass and mass defect automatically populates when you use chemical formula for calculation.
   - Chemical Formula: Type the chemical formula that you want to use for calculation.
   - Species: Select the species from the dropdown list.
   - Charge: Select the charge from the dropdown list.
   - Select the check box next to the first row.
   - Enter the low mass, high mass, low mass defect, and high mass defect.
   - Select the check box next to each row, and then repeat entering the multiple mass range and mass range defect parameters to create a Multiple Mass Defect Filtered trace.

5. Click **Apply**, and then click **OK**.

   The mass defect filtered chromatogram displays.

**Relative and Absolute Mass Range Calculation**

Mass defect filtering of a chromatogram trace is calculated as either relative or absolute. When you type a compound mass value in the Mass Defect Filter dialog box or use a chemical formula, the mass defect range is calculated relative to the compound mass and its mass defect. When you type zero or leave the compound mass column empty, the mass defect value used for calculation is an absolute range based on the low and high mass, and the low and high mass defect that you have entered.

⚠️ **To calculate the relative and absolute mass and mass defect values**

1. In the Chromatogram Ranges view, select:
   - Detector Type: **MS**
   - Trace Type: **Mass Defect Filter**

2. In the Mass Defect Range column, click **MDF Ranges**.
The Mass Defect Filter dialog box opens.

3. In the Compound Mass (amu) column, type the compound mass value for relative calculation

—or–

Type zero or leave the column empty for absolute calculation.

When you type a compound mass value, the Mass Defect columns display the first three decimal values of the compound mass, rounded to the third decimal place. For example, if you type 348.122, the application automatically populates the mass defect value as 122.

4. Select each row and type the low mass and high mass range values (for example, 300–305) and the low mass and high mass defect values.

5. Click Apply, and then click OK.

This figure indicates how the relative and absolute calculation of mass and mass defect values differ for different chromatogram traces in the FreeStyle application.

**Figure 27.** Relative and absolute mass defect and mass range changes for different chromatograms
Linking a Spectrum View to an MDF Chromatogram Trace

When you select an MDF chromatogram, the Spectrum view displays mass spectral peaks corresponding to the mass defect filters applied to the chromatogram. When you select a single scan or link a scan to an MDF chromatogram trace, the active or the linked spectrum does the following:

- Displays the spectrum title as \textit{MMDF T: +c d Full ms2...}
- Updates the filtered mass data corresponding to the active MDF chromatogram trace.
- Updates the Spectrum list with the filtered mass data corresponding to the active MDF chromatogram trace.
- Makes the Write to .RAW feature available.
- Deactivates the NIST search and mzVault search options.

\textbf{Figure 28.} Spectrum linked to the MDF Chromatogram trace

\begin{center}
\includegraphics[width=\textwidth]{SpectrumLinkedMDFChromatogramTrace.png}
\end{center}

\begin{itemize}
\item To link a spectrum view to an MDF chromatogram trace
\item 1. In the Chromatogram Ranges view, select:
  \begin{itemize}
  \item Detector Type: \textit{MS}.
  \item Trace Type: \textit{Mass Defect Filter}.
  \end{itemize}
\item 2. In the Mass Defect Range column, click \textit{MDF Ranges}.
  
  The Mass Defect Filter dialog box opens.
\item 3. In the Mass Defect Filter dialog box, enter the low mass, high mass range, low mass defect, and high mass defect values.
\end{itemize}
4. Click **Apply**, and then click **OK**.

The title of the Spectrum view describes the linked MDF chromatogram trace in the following format:

MMDF T: +c d Full ms

### Setting up Instrument Status Traces

You can specify traces for the MS detector’s status readbacks and compare these traces to possible disturbances in the chromatographic data.

#### To add instrument status traces to the Chromatogram view

1. Select the Chromatogram view where you want to add the trace.
2. In the Workspace Options toolbar, choose **Chromatogram > Ranges**.
3. For each status readback of interest, do the following:
   a. Add a plot to the Chromatogram view (see To add a chromatogram trace by using the Chromatogram menu or To add chromatogram traces by using the Chromatogram Ranges view).
   b. In the Detector Type list of the Chromatogram Ranges view, select **MS Trending**.
   c. In the Trace Type list, select a readback parameter.

This figure shows the ion transfer tube temperature readback as a function of time.

**Figure 29.** Status readback displayed in the Chromatogram view

Selected readback parameter

Readback trace for the ion gauge pressure during the 13 min run
Displaying an EIC Trace

You can use the commands in the Tools area of the Spectrum – Workspace Processing toolbar to define an EIC trace. The features in the Tools area are context-sensitive to whichever view (Spectrum or Chromatogram) is active.

The Tools area has two icons for adding EIC traces to the Chromatogram view—the EIC Masses icon, \([m/z]\), and the EIC Range icon, \([m/z]\). To add a plot for multiple discrete \(m/z\) values, use the EIC Masses icon. To add a trace for contiguous \(m/z\) ranges, use the EIC Range icon.

| Tip | To display an EIC trace for a single mass-to-charge value, double-click the mass-to-charge label for the peak in the Spectrum view. The Spectrum view displays the EIC trace for the selected mass-to-charge ratio ± 1 Da. |

To display an EIC trace for multiple discrete \(m/z\) values

1. Select the Spectrum view.
2. In the Tools area of the Workspace Processing toolbar, click the EIC Masses icon, \([m/z]\).
3. In the Spectrum view, click the mass-to-charge label for each peak that you want to use for the EIC trace.

   A red vertical marker indicates a selected peak. Figure 30 shows the selection of three mass peaks.
4. Click the **EIC Masses** icon, $m/z$, again to create an EIC trace from the selected masses. A new EIC trace appears at the bottom of the Chromatogram view (**Figure 31**), and the selected masses appear in the Ranges column in the Chromatogram Ranges view.
Figure 31. EIC trace created from three mass peaks

To specify the mass ranges for an EIC trace

1. In the Tools area of the Workspace Processing toolbar, click the EIC Range icon, \[\text{m/z}\].
2. In the Spectrum view, drag the pointer horizontally through a contiguous or noncontiguous mass range to select the mass range that you want to use for the EIC trace. A horizontal red line with start and end markers indicates the start and end of the selected range (Figure 32).
3. To create an EIC trace from the selected mass ranges, click the **EIC Range** icon, again.

The selected mass ranges appear in the Ranges column of the Chromatogram Ranges view and a new EIC trace appears at the bottom of the Chromatogram view. Figure 33 shows the EIC trace for two noncontiguous mass ranges.
Using the Scan Filters Page to Display a Filtered Chromatogram

Use the Scan Filters page or the Filters column of the Chromatogram Ranges view to display filtered chromatograms.

- **To display a filtered chromatogram**
  1. Open the raw data file of interest.
  2. In the Workspace Options toolbar, in the Filter area, click the **Scan Filters** icon,.

The Scan Filters page appears in the Info Bar. By default, the Time Range (min) box contains an asterisk and the Track check box is clear. The asterisk means that the time range is set to the full length of the acquisition time for the raw data file.
3. (Optional) To limit the displayed time range to a portion of the acquisition time, do one of the following:
   - In the Time Range (min) box, type the retention-time range as follows: 
     \[ \text{Start time - End time} \]
   –or–
   - Select the Track check box, and then in the Chromatogram view, drag the pointer across the retention time of interest.

4. Select or type a filter in the filter list.
   The filtered chromatogram appears in the Chromatogram view.

### Setting Up the Display Options for a Chromatogram Trace

For the Chromatogram view, you can use the features in the Chromatogram – Display Options toolbar to stack or overlay chromatogram traces, format and label the chromatogram peaks and axes, specify how the application normalizes the chromatogram traces, and change the y-axis title and scale.

**Note** Except for the Decimal Places icon, all the icons are available on the Chromatogram – Display Options toolbar. The Decimal Places icon becomes available after you add the Retention Time label to your chromatograms.

Although the Peak Area, Signal To Noise, and Height icons are always available, the application adds these labels only to integrated peaks.

To customize the display options for chromatogram plots, see these topics:

- Formatting Chromatogram Plots
- Labeling Chromatogram Peaks or Local Maxima
- Normalizing Chromatogram Traces
- Changing the Y-Axis Title and Scale of the Chromatogram View

### Formatting Chromatogram Plots

Use the Format area of the Chromatogram – Display Options toolbar to format the chromatogram plots. You can display chromatogram traces as point-to-point graphs (line graphs) or as discrete sticks for each scan. When the Chromatogram view contains multiple plots, you can stack the plots or overlay them.
With the default factory settings, the application displays multiple traces as stacked line graphs, with the top graph plotted in black. The Stack, Overlay, Point-to-Point, and Stick format options apply to all the plots. To select different colors for overlaid plots, select the color for each active plot before you overlay them. Use the Elevation slider to change the percentage overlay of the plots. Setting the slider full left overlays the traces to the same elevation on the y axis. Use the Skew slider to offset the x axis of the plots. You cannot offset the x axis when the traces are 100% overlaid to the same elevation on the y axis.

For information about all the display options, see Setting Up the Display Options for a Chromatogram Trace.

Figure 34 shows two overlaid stick plots.

Figure 34. Overlaid stick plots

Labeling Chromatogram Peaks or Local Maxima

Use the Labels section of the Chromatogram – Display Options toolbar to label the chromatogram traces. When using the default factory layout, the application labels the retention time of each localized maxima in the chromatogram plots to two decimal places. When you apply a peak detection algorithm or manually draw the chromatographic baseline, the application only labels the retention time of the detected peaks.

For information about all the display options, see Setting Up the Display Options for a Chromatogram Trace.

To label chromatogram traces, follow these procedures:

- To add the peak area, peak height, and signal-to-noise labels to each detected peak
- To remove a label
- To specify the format of the retention time label
- To change the number of decimal places for the numeric labels
• To change the labeling threshold

• To display peak height or peak area in general format

• To display peak height and peak area in exponential format

❖ To add the peak area, peak height, and signal-to-noise labels to each detected peak

1. Run a peak detection algorithm or manually draw the chromatographic baseline.

2. In the Labels area in the Chromatogram – Display Options toolbar, click the following icons:
   • To add the peak area label, click the Peak Area icon, .
     
     **Note** The letters MA or AA next to the value indicate manual integration or automatic integration, respectively.

   • To add the peak height label, click the Peak Height icon, .
     
     **Note** The letters MH or AH next to the value indicate manual integration or automatic integration, respectively.

   • To add the signal-to-noise label, click the Signal To Noise icon, .
     
     **Note** The Avalon peak detection algorithm does not calculate a signal-to-noise ratio. For the Genesis and ICIS peak detection algorithms, you can choose to report the root mean square (RMS) noise values. For manual peaks, the application calculates the RMS signal-to-noise ratio. The letters $SN$ next to the value indicate that it is a signal-to-noise ratio.

❖ To remove a label

In the Labels area in the Chromatogram – Display Options toolbar, click the associated icon.

❖ To specify the format of the retention time label

**Note** By default, the Retention Time label is turned on and set to Decimal Minutes.

1. If the Retention Time label is turned off, click the Retention Time icon, , in the Labels area in the Chromatogram – Display Options toolbar.
2. Click the **Retention Time Format** icon, and select the format for the RT label from the dropdown list.

3. Click the **Retention Time Decimal** icon, and select the number of decimal places for the RT label from the dropdown list.

- **To change the number of decimal places for the numeric labels**
  
  Click **Decimal Places** and select a value from 0 to 5 from the list.

- **To change the labeling threshold**
  
  In the Label Threshold box, type a percentage from 0 to 100.

  For a value of 0%, the application labels all the trace maxima or detected peaks. At a value of 100%, the application labels only the highest data point on the trace. When the peak apex of a detected peak falls below this height, the application does not label the peak.

- **To display peak height or peak area in general format**
  
  1. In the Labels area, click the **Peak Height** icon, or the **Peak Area** icon.
  2. In the Labels Format area, click the **General** icon.

  The Chromatogram view displays the peak height and peak area in general format.

- **To display peak height and peak area in exponential format**
  
  1. In the Labels area, click the **Peak Height** icon, or the **Peak Area** icon.
2. In the Labels Format area, click the **Exponent** icon,  \[ 10^x \].

   The Chromatogram view displays the peak height and peak area in exponential format.

![Peak Area and Peak Height in exponential (scientific notation) format](image)

### Filling the Chromatogram Peaks

Use the Peak Fill area in the Chromatogram – Displays Options toolbar to color the chromatogram peaks. You can turn on or off the peak colors. The default color is blue.

- **To fill the chromatogram peaks**

1. Click the Chromatogram view to make it active.
2. Click the **Display Options** tab to open the Display Options toolbar.
3. In the Peak Fill area, click the **Color** icon, .

   The Color Palette dialog box opens where you can select a preset color or customize a color.

4. Open the Peak Detection Info bar page.
5. Select the **Peak Detection Algorithm**, and then click **Apply**.

   The peaks are filled with the selected color.

![Figure 35. Peak Fill](image)

6. To color the peaks of a PPD peak detection algorithm, select **Apply to PPD Peaks**.
7. To turn off the color, in the Peak Fill area, click the **Fill** icon, .

---

**Note** The Fill icon displays or hides the color of the peaks.
Normalizing Chromatogram Traces

Use the Normalization area of the Chromatogram – Display Options toolbar to normalize chromatogram traces. You can apply local or global normalization or turn off normalization.

Changing the normalization type changes the $y$-axis scaling:

- Local normalization scales each trace independently to its largest peak in the displayed time range.
- Global normalization scales each trace to the largest peak across the traces in the displayed time range.
- Turning off normalization scales each trace to the largest peak across the traces in the full time range, regardless of the displayed time range.

Follow the procedures in these topics:

- Applying Local Normalization
- Applying Global Normalization
- Turning Off Normalization
- Changing the Y-Axis Range for Normalized Chromatograms

For information about all the display options, see Setting Up the Display Options for a Chromatogram Trace.

Applying Local Normalization

When you apply local normalization (the default setting), the application normalizes the chromatogram traces so that, within the displayed time range, the most intense peak for each trace is set to 100 percent of the $y$-axis scale.

❖ To apply local normalization

1. Click the Chromatogram view to select it.

2. Click the Display Options tab to open the Display Options toolbar.

3. In the Normalization area, click the Local icon, .

Figure 36 shows an example of local normalization. Each trace is independently scaled to its largest peak in the displayed time range, which is the full time range.
Figure 36. Local normalization with full time range displayed

Figure 37 shows the TIC traces for the same scan filters as those shown in Figure 36, but only the 1 to 2 min time range is displayed. In this case, each trace is independently scaled to its largest peak in the displayed time range of 1 to 2 min.

Figure 37. Local normalization for the 1 to 2 minute time range

Applying Global Normalization

For global normalization, the application normalizes the chromatogram traces so that the most intense peak of all traces is scaled to 100% of the y axis.

To apply global normalization

1. Click the Chromatogram view to select it.
2. Click the **Display Options** tab to open the Display Options toolbar.

3. In the Normalization area, click the **Global** icon.

   **Figure 38** shows an example of global normalization. Both traces are scaled to the largest peak across the traces, rather than being independently scaled to the largest peak in each trace.

   **Figure 38.** Global normalization with the full time range displayed

   ![Figure 38](image)

   **Figure 39** shows the TIC traces for the same scan filters as those shown in **Figure 38**, but only the 1 to 2 minute time range is displayed. In this case, each trace is scaled to the largest peak across the traces in the displayed time range of 1 to 2 minutes.

   **Figure 39.** Global normalization with the 1 to 2 minute time range displayed

   ![Figure 39](image)
Turning Off Normalization

When you turn off normalization, the application scales all the traces by using the maximum and minimum absolute values in the full time range, regardless of the time range displayed.

❖ To turn off normalization

1. Click the Chromatogram view to select it.
2. Click the **Display Options** tab to open the Display Options toolbar.
3. In the Normalization area, click the **Off** icon, .

A comparison of Figure 40 and Figure 41 shows the effect of turning off normalization. Regardless of the time range displayed, the traces are scaled to the largest peak across the traces in the full time range. In addition, the Max box displays the absolute intensity of the largest peak (apex height).

**Figure 40.** Normalization turned off with the full time range displayed
3 Reviewing Chromatographic Data
Setting Up the Display Options for a Chromatogram Trace

Figure 41. Normalization turned off with the 1 to 2 minute time range displayed

Changing the Y-Axis Range for Normalized Chromatograms

Use the Min and Max boxes in the Normalization area of the Chromatogram – Display Options toolbar to change the y-axis range from its default of full zoom (0–100%) to another zoom level.

Note Regardless of whether the y-axis scaling (Y Scale) is set to Absolute or % Relative, when normalization is turned on (local or global), the Min and Max boxes accept positive and negative values as percentages of the full y-axis scale. The Max value must be greater than the Min value.

For example, to zoom in on the –10 to 50% portion of the y axis, type –10 in the Min. box and 50 in the Max. box.

Figure 42 shows the result.
3 Reviewing Chromatographic Data
Setting Up the Display Options for a Chromatogram Trace

Figure 42. Modified y-axis range of –10 to 50%

Changing the Y-Axis Title and Scale of the Chromatogram View

Use the Y Axis and Y-Scale area of the Chromatogram – Display Options toolbar to change the y-axis title and scale of the Chromatogram view.

Follow the procedures in these topics:

- Changing the Y-Axis Title
- Changing the Y-Axis Scale

Changing the Y-Axis Title

Makes available the Separate Axis icon in the y-axis area to change the y-axis title of the individual traces of the Chromatogram view.

❖ To change the Y-Axis title of the Chromatogram view

1. Click the Chromatogram trace to select it.
2. Click the Display Options tab to open the Display Options toolbar.
3. In the Y Axis area, click the Separate Axis icon,  

   A text box opens where you can type a y-axis title.
4. (Optional) type a new y-axis title and press RETURN.

   The new title appears in the active Chromatogram trace in the Chromatogram view.

   Note When you add a new Chromatogram trace, the y-axis title of the active Chromatogram trace reflects on the new trace.
Changing the Y-Axis Scale

Relative abundance is the default y-axis scale (units) for the Chromatogram view. You can change the y-axis units of individual traces of the Chromatogram view by enabling the Separate Axis option in the Y Axis area. Use the Default Workspace Options to change the y-scale units for each detector type. For information on how to set the units according to the detector type, see Workspace Options Page.

To change the Y-Axis units from relative abundance to absolute

1. Click the trace in the Chromatogram view to select it.
2. Click the Display Options tab to open the Display Options toolbar.
3. In the Y-Scale area, click |Y|Absolute.
4. You can view the y-axis units in either exponent (10^n) or general form by clicking or in the Y-Scale area.

Figure 43 shows a Chromatogram view with the y-axis scale set to absolute (where the title is intensity) and normalization set to local.

Figure 43. Units for the y-axis set to absolute intensity

Changing the Zoom Level of a Chromatogram

You can zoom in on or out of a region of a chromatogram by using the Zoom Options toolbar or the mouse pointer.

Follow these procedures:

• To incrementally zoom in and out on the x axis
• To zoom in on a specific section of the x axis
• To incrementally zoom in and out on the y axis
• To reset the zoom level of the x and y axes
To incrementally zoom in and out on the x axis
1. Select the view.
2. To zoom in, in the Zoom Options toolbar, click the Zoom In X icon.

   Each click zooms in on a 50% smaller section of the x axis—that is, it decreases the displayed range by a factor of 2.
3. To zoom out, in the Zoom Options toolbar, click the Zoom Out X icon.

   Each click increases the displayed time range by 200%.

To zoom in on a specific section of the x axis
Drag the pointer horizontally across the specific section of the x axis.

To incrementally zoom in and out on the y axis
1. Select the view.
2. In the Zoom Options toolbar, click the Zoom In Y icon.

   Each click zooms in on a 50% smaller section of the y axis. For example, in a Chromatogram view where the y axis is set to relative abundance, clicking once zooms in on the 0 to 50% range, clicking twice zooms in on the 0 to 25% range, and so on.
3. To incrementally undo the zoom level, do the following:
   • Click the Zoom Out Y icon.
   —or—
   • Right-click the view and choose Undo Zoom.

   Each click zooms out to a 200% larger section of the y axis.

To reset the zoom level of the x and y axes
1. Select the view.
2. Do any of the following:
   • In the Zoom Options toolbar, click the Reset icon.
   • Right-click the view and choose Reset Scaling.

Automatically Detecting and Integrating Chromatographic Peaks

Use the Peak Detection page in the Info Bar to select and apply any of the automated peak detection algorithms—Genesis, ICIS, Avalon, or PPD. When using the Genesis or ICIS algorithm, you can manually select the chromatographic time range that the application uses to determine the baseline noise level.
Follow these procedures:

- To display the Peak Detection page
- To define the identification criteria for a component
- To run any of the peak detection algorithms
- To run the elemental composition algorithm
- To reset the zoom level in the Chromatogram view

❖ To display the Peak Detection page

1. Open a raw data file (.raw) or a sequence file (.sld).
   The Peak Detection page appears in the Info Bar.
2. Click the **Peak Detection** tab.

❖ To define the identification criteria for a component

1. In the Identification area, select one of the following from the Returned Peaks dropdown list:
   - All Peaks: Select to identify all peaks in the chromatogram based on the selected algorithm for component identification.
   - Nearest Peak: Select to identify the nearest peak in the chromatogram within the specified time window.
   - Highest Peak: Select to identify the highest peak in the chromatogram within the specified time window.
2. When Nearest Peak or Highest Peak is selected, in the Expected Time (min) box, type or select the expected retention time for the component. The valid range is 0 to 999 minutes.
3. When Nearest Peak or Highest Peak is selected, in the Window (sec) box, type or select the retention time window for the component. The valid range is 1.0 to 999.0 seconds.
4. Specify the component name used in the processing method.

❖ To run any of the peak detection algorithms

1. In the list, select one of these algorithms:
   - Genesis—Use for mass spectrometry data.
   - ICIS—Use for mass spectrometry data.
   - Avalon—Use for UV or PDA data. This algorithm detects negative chromatographic peaks more accurately than the ICIS or Genesis algorithms.
   - PPD—Use to minimize the number of optimization parameters.
2. When the Chromatogram view contains multiple plots, do one of the following:
   - To process all the plots, select the **Apply to All Plots** check box.
   - To process only the selected plot, clear the **Apply to All Plots** check box.

3. When necessary, modify the parameters settings for the selected algorithm.
   For information about the parameters settings for each algorithm, see these topics:
   - Genesis Peak Detection Page
   - ICIS Peak Detection Page
   - Avalon Peak Detection Page
   - PPD Peak Detection Page
   For information about selecting the manual noise region for the ICIS or Genesis algorithms, see Selecting the Manual Noise Region for the Genesis and ICIS Algorithms.

4. (Optional) To save the modified settings as the default settings for the selected algorithm, click **Save As Defaults**.

   **Note** You can view the saved settings on the Peak Detection page of the Default Options Configuration dialog box. See Appendix A, “FreeStyle Default Settings.”

5. Depending on the algorithm, do one of the following:
   - For the Genesis, ICIS, or PPD algorithm, click **Apply**.
   - For the Avalon algorithm, click **Auto Calc Initial Events**. When necessary, customize the integration by adding more events to the table. Each time you add an event, the algorithm automatically reintegrates the plots.

   After the peak detection finishes, the application does the following:
   - Adds the detected peaks to the peak list in the Peaks List view.
   - Colors the integrated region of the detected peaks in the Chromatogram view.
   - Draws a baseline under the integration region.
   - Adds square integration markers at the beginning and end of the integration region. You can change the integration region by dragging the markers.

   **Note** When the instrument method used to acquire the raw data file specifies the compound names of the analytes, the application displays these names above the detected peaks. The instrument control software for the Thermo Scientific TSQ Endura™ and TSQ Quantiva™ mass spectrometers provides this feature.
To check the integration for each chromatographic peak

1. If you applied the algorithm to multiple plots, in the Peaks List view, select the plot from the trace list.

   **Note** The Peaks List view defaults to displaying a list of all the peaks (All Peaks) detected across the chromatogram plots.

   Figure 44 shows the second trace (Trace 2) selected from a list of three chromatogram plots.

   **Figure 44.** Peak list for Trace 2

2. To check the integration of a peak, select its row in the peak list.

   In the Chromatogram view, the application zooms in on the selected peak.

   Figure 45 shows the selection of the second peak in the second chromatogram plot.
Selecting the Manual Noise Region for the Genesis and ICIS Algorithms

To run the elemental composition algorithm
Select the Empirical Formula check box.
The Empirical Formula column appears to the left of the File Name column.

To reset the zoom level in the Chromatogram view
In the Peaks List view, click the Reset icon.

Selecting the Manual Noise Region for the Genesis and ICIS Algorithms

You can manually select the noise region for the Genesis and ICIS peak detection algorithms.

To specify the manual noise region for the Genesis or ICIS peak detection algorithm
1. Open the Peak Detection page (see To display the Peak Detection page).
2. From the peak detection algorithm list, select ICIS or Genesis, and then specify the appropriate parameter settings.
3. Click the Workspace Processing tab to display the Workspace Processing toolbar.
4. In the Peak Detection area of the toolbar, click Select Manual Noise Range.
5. Drag the pointer horizontally across a region of the chromatographic baseline (the x axis).
In the Chromatogram view, the application indicates the noise region with a red line and updates the peak integration. On the Peak Detection page, it automatically selects the Manual Noise Region check box and populates the RT Range box with the selected time range. In the Peaks List view, the application updates the detected peaks list.

6. Do the following:

   • To change the noise region, in the Workspace Processing toolbar, click Select Manual Noise Range, and then drag the pointer horizontally across a different region of the chromatographic baseline.

   • To undo the manual noise region, in the Workspace Processing toolbar, click Clear Manual Noise Range, and then drag the pointer horizontally across the highlighted noise region.

   The application automatically updates the peak detection and integration.

**Manually Adding, Undoing, and Deleting Chromatographic Peaks**

You can manually add peaks to a chromatogram and the Peaks List view without running a peak detection algorithm. You can also delete peaks from the Peaks List view or undo the last peak that you added manually.

Follow the procedures in these topics:

- Manually Adding Chromatographic Peaks
- Undoing the Last Manually Added Peak
- Deleting Chromatographic Peaks

**Manually Adding Chromatographic Peaks**

 القادمة

1. Click a Chromatogram view to select it.

2. Turn on the Add Peak pointer, click Add Peak in the Chromatogram – Workspace Processing toolbar.

3. Drag the pointer, along the bases of the peaks that you want to integrate and add to the peak list.

After the peak detection finishes, the application does the following:

   • Adds the detected peaks to the peak list in the Peaks List view, and identifies their integration method as Manual.

   • Colors the integrated region of the detected peaks blue.

   • Draws a baseline under the integration region.
• Adds square integration markers at the beginning and end of the integration region. You can change the integration region by dragging the markers.

Figure 46 shows a manual peak and its integration markers.

**Figure 46.** Manual peak with integration markers and peaks list with a manual peak

4. To turn off the Add Peak pointer, click the **Add Peak** icon again.

**Undoing the Last Manually Added Peak**

- To undo the last peak that you added manually
  
  Right-click the chromatogram and choose **Undo Add Peak**.

**Deleting Chromatographic Peaks**

You can delete chromatographic peaks, regardless of their integration method.

- To delete chromatographic peaks
  
  1. Click the Chromatogram view to select it.
2. To turn on the Delete Peak pointer, click **Delete Peak** in the Chromatogram – Workspace Processing Toolbar.

3. Click the peak that you want to delete.

4. To turn off the Delete Peak pointer, click the **Delete Peak** icon again.

**Importing Components from a Processing Method**

Use the Import Component feature to import components from a processing method to the existing workspace. The imported processing method contains component identification parameters that you can apply to the current or new traces in the chromatogram. Processing methods are PMD files.

† To import components

1. Click the Chromatogram view to make it active.

2. In the Workspace Processing toolbar, click **Import Component**.

   The Import Component from Processing Method dialog box opens.

   ![Import Component from Processing Method dialog box](image)

3. In the Select processing method file box, click the **Browse** icon to locate the .pmd file.

4. In the Open File dialog box, select the .pmd file, and then click **Open**.

   The application imports the components and automatically displays the first component.

5. To change the component, click the **Select component** down arrow icon, and then select another component.

6. Select the Current Trace or New Trace option to add the component to the current or new trace.

7. Click **Apply**, and then **OK**.
The peak detection is applied to the current or new trace based on the selected option. The component parameters are imported from the processing method to the Peak Detection Info bar page and the Chromatogram Ranges.

**Note** The Component Name box of the Peak Detection Info page displays the imported component, and you can edit the component name.

### Exporting Scans for a Filtered Chromatogram to a New Raw Data File

Raw data files can contain gigabytes of data. To work with only the scans related to the displayed time range of a filtered chromatogram, you can export the scans to a new raw data file, which will have a smaller file size. The new raw data file does not include the instrument method or sample information.

**To export a scan for a filtered chromatogram to a new raw data file**

1. Select the chromatogram trace.
2. In the Workspace Options toolbar, click **Exports** and choose **Write to .RAW** from the dropdown menu.

**Note** When the raw data file contains Advanced Peak Determination (APD) data—such as species ID, monoisotopic mass, and top peak in the cluster—the exported file does not include the APD data.

In Figure 48, the scan header for the selected trace indicates that it is a filtered trace for the full MS scans (F: MS).

**Figure 48.** Chromatogram view with filtered traces

The Export Data dialog box opens to the location of the original raw data file. By default, the application appends _FS to the file name of the original raw data file.
3. Click **Save**.

   A progress bar indicates the number of scans written to the new raw data file.

   ![Image](exporting-scans-to-new-file.png)

   **Note** When the chromatogram trace is filtered, the application renumbers the scans from 1 to the number written to the new raw data file.

The application records the creation of new raw data file in the Audit Trail.

### Working with Sequences

A sequence is a list of raw data files where the file names link to the actual raw data files. You can open an existing sequence or create a new sequence from a set of raw data files.

To open an existing sequence, see *Opening Raw Data Files or Sequence Files*.

Follow the procedures in these topics:

- Creating a New Sequence
- Comparing Chromatogram Traces in a Sequence

### Creating a New Sequence

You can create a sequence for any raw data file set.

**To create a new sequence**

1. Do one of the following:
   
   - Choose **File > Create Sequence**.
   
   - **or**
   
   - In the Workspace Options toolbar, click **Create Sequence**.

2. Browse to and select a set of raw data files.

3. Click **Open**.

   The Sequence File page opens in the Info bar. By default, the new sequence list is named NoName.sld.

4. To save the sequence, do the following:
   
   a. At the bottom of the Sequence File page, click **Save Sequence**.
   
   b. Browse to an appropriate file directory, name the file, and click **Save**.
Comparing Chromatogram Traces in a Sequence

To compare one or more fixed traces against other traces, specify the fixed traces as reference traces in the Chromatogram Ranges view.

To compare chromatogram traces in a sequence

1. Open a sequence (see Using Workspace Pages) or create a sequence (see Working with Sequences).

2. In the sequence list, select the raw data file that you want to use as a reference file.
   The Chromatogram view displays the TIC trace for the raw data file.

3. Specify the reference trace as follows:
   a. In the Workspace Options toolbar, choose Chromatogram > Ranges to open the Chromatogram Ranges view.
   b. Define the trace that you want to use as a reference trace. For example, select the detector type, trace type, filter, and so on.
   c. Copy this definition to the last row in the Chromatogram Ranges view by selecting its corresponding check box in the Display column.
      A copy of the first chromatogram trace appears below it.
   d. Select the check box in the Reference column of the row corresponding to the reference trace.

4. Click the raw data files in the sequence to compare their chromatogram traces to the reference chromatogram trace.

Figure 49 shows a Chromatogram view with two plots. The comparison trace for the selected file is on the top, and the reference trace is on the bottom.
Figure 49. Chromatogram view with a comparison trace and a reference trace

Chromatogram-specific Toolbars

Use the following toolbars to format the Chromatogram view, detect chromatographic peaks, and work with sequence lists.

- Chromatogram – Display Options Toolbar
- Chromatogram – Workspace Processing Toolbar
- Sequence Toolbar
Chromatogram – Display Options Toolbar

Use the features on the Chromatogram – Display Options toolbar to customize the Chromatogram view.

To display the Chromatogram – Display Options toolbar

1. Click a Chromatogram view to select it.
2. Click the Display Options tab to open the Display Options toolbar.

Figure 50 shows the Chromatogram – Display Options toolbar, and Table 14 describes the toolbar features.

Figure 50. Chromatogram Display Options toolbar

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Format area</strong></td>
<td>Use the features in the Format area to modify the appearance of the Chromatogram view.</td>
</tr>
</tbody>
</table>

**Plot Options menu**

- **Stack**
  - Vertically stacks the chromatogram traces.

- **Overlay**
  - Vertically overlays the chromatogram traces with optional horizontal skew (time offset).

- **Skew**
  - Sets the skew angle (time offset) to a value from 0–45 degrees for an overlay arrangement of chromatogram traces.
  - To set the skew, drag the Skew slider.

- **Elevation**
  - Sets the vertical spacing for an overlay arrangement of chromatogram traces.
  - To set the vertical spacing, drag the Elevation slider. Move the Elevation slider to the farthest left to overlay the plots on top of each other.

**Plot Style menu**

- **Point-to-point**
  - Connects the signal data points to form a continuous curve.

- **Stick**
  - Displays the signal data points by using vertical lines.
### Table 14. Chromatogram – Display Options toolbar (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Trace Color" /></td>
<td>Displays the color palette, where you select the colors of the chromatogram traces.</td>
</tr>
</tbody>
</table>

#### Labels area

Use the features in the Labels area to annotate chromatogram peaks.

- **Retention Time**
  - Adds a retention time label (in minutes) above each local maxima or chromatogram peak.
  
  The order of chromatogram labels for an undetected peak, from top to bottom, is retention time, base peak, and scan number. The Chromatogram view displays the retention time on all peaks that meet the selection criteria.
  
  The letters $RT$ to the left of the value indicate a retention time.

- **Retention Time Format**
  - Specifies the units and format for the retention time label.
  
  Selections: Decimal Minutes, Decimal Minutes with Units, Minutes and Seconds, Seconds, Seconds with Units

- **Decimal Places**
  - Changes the number of decimal places in the retention time label.
  
  Range: 0–5

- **Peak Area**
  - Adds a peak area label above each detected chromatogram peak.
  
  The letters $MA$ or $AA$ next to the value indicate manual integration or automatic integration, respectively.

- **Base Peak**
  - Adds a base peak mass-to-charge ratio label (in $m/z$) above each local maxima or each detected chromatogram peak.
  
  The letters $BP$ next to the value indicate a base peak.

- **Signal To Noise**
  - Adds a signal-to-noise ratio label above each detected chromatogram peak.
  
  The Avalon peak detection algorithm does not calculate a signal-to-noise ratio. For the Genesis and ICIS peak detection algorithms, you can choose to report the root mean square (RMS) noise values. The application calculates the RMS signal-to-noise ratio for manual peaks.
  
  The letters $SN$ next to the value indicate that it is a signal-to-noise ratio.

- **Scan Number**
  - Adds the active scan number label above the chromatogram peak.
  
  The letter $S#$ next to the value indicates the scan number.

- **Height**
  - Adds a peak height above each detected chromatogram peak.
  
  The letters $MH$ or $AH$ next to the value indicate manual integration or automatic integration, respectively.
### Table 14. Chromatogram – Display Options toolbar (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               | Label Threshold | Sets the percentage of highest data point in the trace to 100%.  
The application labels only the local maxima or chromatographic peak apexes that are above the specified height threshold.  
Range: 0–100; default: 0% |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               | Labels Format area | Exponent | Sets the label unit in exponent form (scientific notation) for Peak Area and Height. |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               | General | (Default) Sets the label unit in general form for Peak Area and Height. |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               | Peak Fill area | Fill | Turns on or off peak fill in the active chromatogram view. |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               |                      | Color | Opens the color palette, where you can select the colors to fill the integrated peaks. |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               |                      | Apply to PPD peaks | Fills the PPD peaks in the active chromatogram view with the selected color from the color palette. |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               | Normalization area | Local | Normalizes each chromatogram trace with respect to the intensity of the most intense peak in that trace. |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               |                      | Global | Normalizes the chromatogram traces so that the most intense peak of all chromatograms is 100 percent. |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               |                      | Off | Scales all chromatograms by using the maximum and minimum absolute values. |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               |                      | Note | When you set the normalization to Off, the y-axis scale to Absolute, and change the trace type, the new trace might not display. To remedy this, set the normalization to Local and then to Off. |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               | Min. | Displays the minimum of the y axis. Enter a value in the box to change the minimum. The application indicates whether the value is a percentage or an intensity. |
| ![Image](https://via.placeholder.com/15) | ![Image](https://via.placeholder.com/15)               | Max. | Displays the maximum of the y axis. Enter a value in the box to change the maximum value. The application indicates whether the value is a percentage or an intensity. |
Table 14. Chromatogram – Display Options toolbar (Sheet 4 of 4)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Axis area</td>
<td>Use the features in the Y Axis area to specify how the application labels and displays the y axis. See Changing the Y-Axis Title and Scale of the Chromatogram View.</td>
</tr>
<tr>
<td><img src="image" alt="Show Labels" /></td>
<td>Shows or hides the y-axis label.</td>
</tr>
<tr>
<td><img src="image" alt="Offset Axis" /></td>
<td>Sets the location of the displayed plot at a specified distance from the y axis. The y-axis offset moves the x axis slightly to the right of the y axis so that you can see the plot details at low x-axis values.</td>
</tr>
<tr>
<td><img src="image" alt="Separate Axis" /></td>
<td>Sets the Separate Axis title for the active Chromatogram trace. Note Makes the Separate Axis icon available in the text box. Use this box to change the y-axis title.</td>
</tr>
<tr>
<td><img src="image" alt="Y-Scale" /></td>
<td>Use the features in the Y-Scale area to specify how the application scales the y axis. See Changing the Y-Axis Title and Scale of the Chromatogram View.</td>
</tr>
<tr>
<td><img src="image" alt="Relative" /></td>
<td>Scales the chromatograms traces by using percentages.</td>
</tr>
<tr>
<td><img src="image" alt="Absolute" /></td>
<td>Scales the chromatograms traces by using the absolute values. Note When you set the normalization to Off, the y axis to Absolute, and change the trace type, the new trace might not display. To remedy this, set the normalization to Local and then to Off.</td>
</tr>
<tr>
<td><img src="image" alt="Exponent" /></td>
<td>Sets the Y-Scale unit in exponent form.</td>
</tr>
<tr>
<td><img src="image" alt="General" /></td>
<td>Sets the Y-Scale unit in general form.</td>
</tr>
<tr>
<td>X Axis</td>
<td>Use the features in the X Axis area to specify how the application labels and displays the x axis.</td>
</tr>
<tr>
<td><img src="image" alt="Show Labels" /></td>
<td>Shows or hides the x-axis label.</td>
</tr>
<tr>
<td><img src="image" alt="Offset Axis" /></td>
<td>Sets the location of the displayed plot at a specified distance from the x axis. The x-axis offset moves the y axis up slightly so that you can see the plot details at low y-axis values.</td>
</tr>
<tr>
<td>Legend</td>
<td>Trace Title Moves the title of the chromatogram trace from above the trace to beside it.</td>
</tr>
</tbody>
</table>
Chromatogram – Workspace Processing Toolbar

Use the features in the Peak Detection area of the Workspace Processing toolbar to detect peaks in chromatogram traces.

✧ To display the Chromatogram Workspace Processing toolbar

1. Click a Chromatogram view to select it.

2. Click the Workspace Processing tab to open the Workspace Processing toolbar.

The Peak Detection Area and the Tools Area are unique to the Chromatogram view.

Peak Detection Area

Figure 51 shows the Peak Detection area of the Workspace Processing toolbar. The Delete Peaks menu becomes available after you apply a peak detection algorithm or manually add a peak.

Figure 51. Peak Detection area of the Workspace Processing toolbar

Table 15 describes the Peak Detection area features.

Table 15. Workspace Processing toolbar – Peak Detection area commands (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detect Peaks menu</td>
<td></td>
</tr>
<tr>
<td>Detect in Active Plot</td>
<td>Runs the Genesis, ICIS, or Avalon peak detection algorithm on the active chromatogram plot. Click a chromatogram plot to make it active. The Chromatogram view shades the active plot area gray. See Automatically Detecting and Integrating Chromatographic Peaks.</td>
</tr>
<tr>
<td>Detect in All Plots</td>
<td>Runs the Genesis, ICIS, or Avalon peak detection algorithm on all chromatogram plots. See Automatically Detecting and Integrating Chromatographic Peaks.</td>
</tr>
<tr>
<td>Add/Delete Peak menu</td>
<td></td>
</tr>
<tr>
<td>Add Peak</td>
<td>Adds a peak to the peak list. See Manually Adding Chromatographic Peaks.</td>
</tr>
</tbody>
</table>
Table 15. Workspace Processing toolbar – Peak Detection area commands (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete Peak</td>
<td>Deletes a peak from the peak list. See Deleting Chromatographic Peaks. Available after you apply a peak detection algorithm or manually add a chromatographic peak.</td>
</tr>
<tr>
<td>Peaks List</td>
<td>Displays the Peaks List view. When you run a peak detection algorithm, the Peaks List view lists the peaks that the application found in the chromatogram. You can also manually add peaks to the peak list with the Add Peak icon.</td>
</tr>
</tbody>
</table>

**Manual Noise Range menu**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Manual Noise Range</td>
<td>Freezes the Chromatogram view (temporarily turns off zooming with the mouse pointer) so that you can use the mouse pointer to define a noise region (see Selecting the Manual Noise Region for the Genesis and ICIS Algorithms).</td>
</tr>
<tr>
<td>Clear Manual Noise Range</td>
<td>Freezes the Chromatogram view (temporarily turns off zooming with the mouse pointer) so that you can use the mouse pointer to clear the selection of a manual noise region (see Selecting the Manual Noise Region for the Genesis and ICIS Algorithms).</td>
</tr>
</tbody>
</table>

**Tools Area**

**Figure 52** shows the Tools area of the Workspace Processing toolbar.

**Figure 52.** Tools area of the Workspace Processing toolbar

Table 16. Workspace Processing toolbar – Tools area commands (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>∑ Average Spectrum</td>
<td>Averages the mass spectra over a selected retention-time range. Clicking the icon toggles between Average Range and Zoom Range methods. A blue ball, range curly bracket, indicates the active method. To create an average spectrum, see Averaging Spectra.</td>
</tr>
</tbody>
</table>
3 Reviewing Chromatographic Data
Chromatogram-specific Toolbars

Use the Sequence toolbar features to determine which traces appear in the Chromatogram view as you click through the raw data files in a sequence.

To display the Sequence toolbar

1. Open a sequence (see Using Workspace Pages) or create one (see Working with Sequences).

2. If the Sequence File page is not open, click the Sequence File tab in the Info Bar.

**Tip** The Sequence toolbar is visible only when the Sequence File page is open.

Figure 53 shows the Sequence toolbar, and Table 17 describes the toolbar icons.

**Figure 53.** Sequence toolbar

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg Range</td>
<td>Drag the cursor across the x-axis to choose an RT range, average the scans, and update the active spectrum.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Click in the box to activate the Average Range method.</td>
</tr>
<tr>
<td>Zoom Range</td>
<td>Enter a retention time (RT) range within the chromatogram RT limits and then press ENTER. The view rescales to display the chromatogram within the entered time range.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Click in the box to activate the Zoom Range method.</td>
</tr>
<tr>
<td><img src="image" alt="Range1" /></td>
<td>Subtracts the mass spectrum of one retention-time range from the active mass spectrum, as entered in the Range1 box.</td>
</tr>
<tr>
<td><img src="image" alt="Range2" /></td>
<td>Subtracts the mass spectra of two retention-time ranges from the active mass spectrum, as entered in the Range1 and Range2 boxes.</td>
</tr>
</tbody>
</table>

To create a background subtracted spectrum, see Subtracting Background Spectra.
### Table 17. Sequence toolbar icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace All Traces</td>
<td>Replaces all the raw data files in the chromatogram ranges list—and their chromatogram traces in the Chromatogram view—with the raw data file that you select in the sequence.</td>
</tr>
<tr>
<td></td>
<td>Select <strong>Replace All Traces</strong>, and then select a raw data file in the sequence on the Sequence File page for replacement.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> The application does not replace a trace that is set as a reference trace (its Reference check box is selected) with the selection from the sequence.</td>
</tr>
<tr>
<td>Current Trace</td>
<td>Replaces only the raw data file that you select in the chromatogram ranges list—and its chromatogram trace displayed in the Chromatogram view—with the raw data file that you select in the sequence.</td>
</tr>
<tr>
<td></td>
<td>Select a trace row in the chromatogram ranges list, select <strong>Current Traces</strong>, and then select a raw data file in the sequence for replacement.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> The application does not replace a trace that is set as a reference trace (the box in the Reference column is selected) with the selection from the sequence.</td>
</tr>
<tr>
<td>New Trace</td>
<td>Adds new raw data files to the chromatogram ranges list and displays their chromatogram traces in the Chromatogram view.</td>
</tr>
<tr>
<td></td>
<td>Select <strong>New Trace</strong>, and then select one or more raw data files in the sequence to add to the list.</td>
</tr>
</tbody>
</table>

## Chromatogram-Specific Views

For information about the chromatogram-related views, see these topics:

- Chromatogram View
- Chromatogram Ranges View

### Chromatogram View

Use the Chromatogram view to display chromatogram traces. You can delete a Chromatogram view, add multiple chromatogram traces to each Chromatogram view, and add multiple Chromatogram views to the Workspace.
Figure 54 shows an example of a Chromatogram view with two traces. For information about the scan header that appears at the top right of each chromatogram trace, see Scan Headers and Scan Header Abbreviations.

**Figure 54.** Chromatogram view with two traces

You can set a minimum trace height value, in centimeters, in the Default Workspace Options page. When you adjust the height of a Chromatogram view, if the height of the traces becomes smaller than the set minimum value, a scrollbar automatically appears to the right of the view.

Right-clicking a Chromatogram view displays a shortcut menu (Figure 55) with the commands described in Table 18.

**Figure 55.** Shortcut menu for a Chromatogram view
Reviewing Chromatographic Data

Chromatogram-Specific Views

These toolbars are available when a Chromatogram view is selected:

- Chromatogram – Workspace Processing Toolbar
- Chromatogram – Display Options Toolbar
- Zoom Options Toolbar
- Text and Graphic Annotation Toolbar

Related Topics

- Reviewing Chromatographic Data

### Table 18. Chromatogram view shortcut menu commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset Scaling</td>
<td>Resets the scaling of all the plots in the Chromatogram view.</td>
</tr>
<tr>
<td>Copy To Clipboard</td>
<td>Copies an image of the Chromatogram view to the Clipboard.</td>
</tr>
<tr>
<td>Undo Zoom</td>
<td>Undoes the last zoom.</td>
</tr>
<tr>
<td>Redo Zoom</td>
<td>Reapplies the last zoom that you undid.</td>
</tr>
<tr>
<td>Ranges</td>
<td>Adds the Chromatogram Ranges view to the workspace display.</td>
</tr>
<tr>
<td>Insert Chromatogram</td>
<td>Inserts a copy of the selected chromatogram trace.</td>
</tr>
<tr>
<td>Undo Delete Chromatogram</td>
<td>Displays the most recently deleted chromatogram trace.</td>
</tr>
<tr>
<td>Undo Manual Integration</td>
<td>Removes the most recently added manual peak from the Chromatogram view and</td>
</tr>
<tr>
<td></td>
<td>the Peaks List view.</td>
</tr>
<tr>
<td>Average Spectrum</td>
<td>Lets you create an average spectrum by dragging the cursor across the x-axis</td>
</tr>
<tr>
<td></td>
<td>to choose an RT range.</td>
</tr>
</tbody>
</table>

These toolbars are available when a Chromatogram view is selected:

- Chromatogram – Workspace Processing Toolbar
- Chromatogram – Display Options Toolbar
- Zoom Options Toolbar
- Text and Graphic Annotation Toolbar

### Chromatogram Ranges View

Use the Chromatogram Ranges view (Figure 56) to select which chromatogram traces to display in a Chromatogram view. For instructions, see Defining a Chromatogram Trace from the Chromatogram Ranges View.

**Note** For information about exporting the tabular data in the Chromatogram Ranges view to a CSV file, see Exporting or Printing the Contents of a View or Workspace. You can paste the contents of a CSV file to the Chromatogram Ranges view if the table columns match.
To open the Chromatogram Ranges view

In the Workspace Options toolbar, choose Chromatogram > Ranges.

To add, delete, and move rows in the Chromatogram Ranges view, see these topics:

- Using the Fill Down Feature
- Moving a Row
- Deleting Rows

Figure 56 shows an example of the Chromatogram Ranges view.

Figure 56. Chromatogram Ranges view showing the entry of a chemical formula

Table 19 describes the parameters and icons for the Chromatogram Ranges view. The following columns have corresponding pages in the Info Bar: Detector Type, Trace Type, and Filter.

Table 19. Chromatogram Ranges view parameters and icons (Sheet 1 of 4)

<table>
<thead>
<tr>
<th>Parameter/Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Select this check box to display the chromatogram trace in a Chromatogram view. Clear this check box to remove the trace.</td>
</tr>
<tr>
<td>File Name</td>
<td>Displays the path and name of the raw data file. To display the Open Raw File dialog box, click at the end of the file name.</td>
</tr>
<tr>
<td>Detector Type</td>
<td>Select the detector type. The application autosenses the available detector types based on the information in the raw data file. For details, see Detector Type Page.</td>
</tr>
<tr>
<td>Filter</td>
<td>Select or type a filter to apply to the raw data file. The application autosenses the metafilters (including SRM or compound filters) in the raw data file in this order: MS, MS2, ETD, HCD, and then the individual scan filter list. For data files with more than one MS/MS order, enter MSn to include all the MS/MS data. For grouped filters, the Filter dropdown list displays only the first filter in the group. The Spectrum view displays the actual filter for the scan. For more information, see Scan Filter Parameters and Scan Filters Page.</td>
</tr>
</tbody>
</table>
Table 19. Chromatogram Ranges view parameters and icons (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Parameter/Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace Type</td>
<td>Select the trace type as follows:</td>
</tr>
<tr>
<td></td>
<td>• For MS, select TIC, Base Peak, Mass Range, Neutral Fragment, or Mass Defect Filter.</td>
</tr>
<tr>
<td></td>
<td>• For PDA, select Total Scan, Wavelength Range, or Maximum Spectrum.</td>
</tr>
<tr>
<td></td>
<td>• For MS Trending, select one of the instrument status parameters, such as the API source voltage.</td>
</tr>
<tr>
<td>Mass Defect Range</td>
<td>When the Trace Type is set to Mass Defect Filter, this icon opens the Mass Defect Filter dialog box.</td>
</tr>
<tr>
<td>Ranges</td>
<td>Specify the m/z ranges of the displayed spectrum, such as 443.2, 534.6, 600–800. The application autosenses the default range from the raw data file. If the field is inactive, it is not applicable based on the trace type.</td>
</tr>
<tr>
<td>Smoothing</td>
<td>Select which type of smoothing, if any, to apply to the chromatogram trace.</td>
</tr>
<tr>
<td></td>
<td>• Gaussian: Uses weighting coefficients corresponding to a Gaussian peak shape to average each data point with neighboring points to give the displayed value.</td>
</tr>
<tr>
<td></td>
<td>• Moving mean: Uses equal weighting to average each data point with neighboring points to give the displayed value.</td>
</tr>
<tr>
<td>Chemical Formula</td>
<td>Clicking this table cell (not the header) opens the following dialog box.</td>
</tr>
<tr>
<td></td>
<td><img src="image" alt="Chemical Formula dialog box" /></td>
</tr>
<tr>
<td></td>
<td>Select <strong>Chemical Formula</strong> or <strong>Peptide</strong>:</td>
</tr>
<tr>
<td></td>
<td>• For a compound, select <strong>Chemical Formula</strong>, use the symbols in the periodic table to specify the elements in the chemical formula, select the ionization species, and type or select the charge of the adduct ion of interest.</td>
</tr>
<tr>
<td></td>
<td>Example: For calcium copper titanate (which is made up of one calcium atom, three copper atoms, four titanium atoms, and twelve oxygen atoms), enter the chemical formula: CaCu₃Ti₄O₁₂.</td>
</tr>
</tbody>
</table>

**Note** To create a custom adduct, select Chemical Formula from the dropdown list, enter any valid chemical formula, select a species, and type or select the charge of the adduct ion.
• For a peptide, select Peptide, enter the peptide sequence using the one-letter symbols for the amino acid residues (see One- and Three-Letter Abbreviations for Amino Acid Residues), select the ionization species, and type or select the charge of the adduct ion of interest.

Example: For Hexarelin (a hexapeptide), use the one-letter code—HWAWFK.

When you click Apply, the Trace Type changes to Mass Range, and the mass-to-charge ratio of the specified ion appears in the Ranges column.

**Chemical Formula**

When entering a chemical formula in the Chemical Formula column or selecting Mass Range in the Trace Type column makes this table cell available.

Specify the mass tolerance for the mass-to-charge ratio of the specified ion.

Range: 0.00 to 10.00; default: 0.5 amu

**Delay Time**

Specify a delay time (in minutes) to shift trace 1 (Trace Type column) so that it aligns with trace 2 (Trace Type2 column). A positive delay time shifts trace 1 to higher retention times by this amount.

Range: –5.00 to 5.00; default: 0.00

**Reference**

Select this check box to make the chromatogram trace a reference trace. A reference trace is always displayed in the Chromatogram view so that you can compare other traces to it.

**Plot Operator**

Select a plot operator, either + (add) or – (subtract).

• When you select +, the Chromatogram view displays trace 1 plus trace 2.

• When you select –, the Chromatogram view displays trace 1 minus trace 2.

For example, from a chromatogram you can use the subtract (–) plot operator to subtract contributions from a solvent or from other noise.

For MS detectors, these are the trace 1 and trace 2 combinations:

• mass range ± mass range

• mass range ± base peak

• base peak ± mass range

• base peak ± base peak

• TIC – mass range

• TIC – base peak
Using the Fill Down Feature

To specify several similar chromatogram traces, use the Fill Down feature in the Chromatogram Ranges view. With this feature, you can copy the selected parameter values from the currently selected row to other specified rows.

To fill down data

1. In the Chromatogram Ranges view, select the trace row that you want to copy data from.
2. Click the Fill Down icon, .

The Fill Down dialog box opens (Figure 57).
3. Do one of the following:
   - Select the check box for each parameter value that you want to fill down.
   - Click All to select all the check boxes.

   —or—

   - Click Clear to clear all the check boxes.

4. In the Fill Rows boxes, type the starting and ending row numbers, and then click OK.

The application copies the selected parameter values from the currently selected row and pastes them into the specified starting and ending rows. If a value is invalid, it appears in red.

**Moving a Row**

You can move a row in the Chromatogram Ranges view by dragging it to the new location.

❖ **To move a row**

1. Place the pointer in an area somewhere in the row that you want to move, but not inside an editable field and not in the blank area to the left of the row.

   For example, place the pointer in the area next to the Display check box (Figure 58).
2. Drag the row up or down to move it to the new location.

As you drag the row above or below another row, that other row temporarily turns red. After you drop the row, it appears above or below the red row.

Deleting Rows

You can delete rows in the Chromatogram Ranges view. For each row that you delete, the application automatically deletes the corresponding trace in the Chromatogram view.

**Note** When the view has only one row, you cannot delete the row.

**To delete rows in the Chromatogram Ranges view**

1. Select the rows that you want to delete as follows:

   - To select a single row, click the arrow icon, ➡️, that appears when you point to the left of the Display column.
   - To select adjacent rows, drag the pointer across the group of rows (in the column to the left of Display column) or use the SHIFT key.
   - To select nonadjacent rows, press the CTRL key and click to the left of the Display column for each row.

   Selected rows are highlighted in blue.

2. Press the DELETE key and click **Yes** in the confirmation dialog box to remove the selected rows.
Peaks List View

The Peaks List view lists the chromatogram peaks that the peak detection algorithm automatically finds and also lists the peaks that you manually add.

❖ To display the Peaks List view

• Apply the ICIS, Genesis, Avalon, or PPD peak detection algorithm (see Automatically Detecting and Integrating Chromatographic Peaks).

   IMPORTANT Applying the peak detection algorithm the first time automatically opens the Peaks List view. However, if you then close this view and apply the peak detection algorithm again, the Peaks List view does not automatically reopen. To manually open this view, click the Workspace Processing tab to display the Workspace Processing toolbar, and then click Peak List in the Workspace Processing toolbar.

• Manually add a peak (see Manually Adding, Undoing, and Deleting Chromatographic Peaks).

—or—

a. Click the Workspace Processing tab to display the Workspace Processing toolbar.

   b. Click Peaks List.

Figure 59 and Figure 60 show examples of the Peaks List view. In Figure 60, the Name column is populated with the compound name specified in the instrument method for the selected scan filter. The table values are read-only.

Figure 59. Peaks List view
### Figure 60. Peak List view with a populated Name column

![Peak List view](image)

Table 20 describes the parameters and icons for the Peaks List view.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Reset</strong></td>
<td>Restores the data display in the Chromatogram view to the full range of the x axis and y axis after you zoom in by clicking a row in the peaks list.</td>
</tr>
<tr>
<td><strong>Field Chooser</strong></td>
<td>Displays the Field Chooser dialog box, where you select which fields appear in the peaks list (see Selecting the Columns to Display in a View or Dialog Box with Tabular Data).</td>
</tr>
<tr>
<td><strong>Elemental Composition</strong></td>
<td>Select to run the elemental composition algorithm. This algorithm requires full-scan data.</td>
</tr>
<tr>
<td><strong>Index</strong></td>
<td>Unique identification number for each chromatogram peak. The index increments from lowest to highest retention time in a trace and from the top trace to the bottom trace.</td>
</tr>
</tbody>
</table>
Table 20. Peaks List view parameters and icons (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Compound name from the instrument method (<a href="#">Figure 60</a>).</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>For some Thermo Scientific mass spectrometers, for example, the triple quadrupole product line, the instrument method that you use for data acquisition includes a table where you can associate a compound name with each scan filter. When you view the scan filters on the Scan Filters page, the associated compound names appear next to the scan filter. You cannot edit the names in the FreeStyle application.</td>
</tr>
<tr>
<td>RT (Min)</td>
<td>Retention time (in minutes) corresponding to the apex of the peak.</td>
</tr>
<tr>
<td>RT (Sec)</td>
<td>Retention time (in seconds) corresponding to the apex of the peak.</td>
</tr>
<tr>
<td>Start RT</td>
<td>Retention time corresponding to the start of the chromatographic peak, where the detection signal increases beyond the threshold criteria.</td>
</tr>
<tr>
<td>End RT</td>
<td>Retention time corresponding to the end of the chromatographic peak, where the detection signal decreases below the threshold criteria.</td>
</tr>
<tr>
<td>Base Peak</td>
<td>Mass-to-charge ratio of the most abundant ion at the apex of the peak. The Peak List view displays 0.00 if no mass spectral data is present.</td>
</tr>
<tr>
<td>Peak Area</td>
<td>Area of the peak in units of counts × seconds. Displayed in either general or exponential format (<a href="#">see Labeling Chromatogram Peaks or Local Maxima</a>).</td>
</tr>
<tr>
<td>Peak Height</td>
<td>Number of counts at the peak apex. Displayed in either general or exponential format (<a href="#">see Labeling Chromatogram Peaks or Local Maxima</a>).</td>
</tr>
<tr>
<td>Baseline Width</td>
<td>Difference (in minutes) between the start and end retention times.</td>
</tr>
<tr>
<td>Signal To Noise</td>
<td>Signal-to-noise ratio of the integrated peak.</td>
</tr>
<tr>
<td>Empirical Formula</td>
<td>Chemical formula determined by the elemental composition algorithm.</td>
</tr>
<tr>
<td>By default, this column is hidden. Selecting the Empirical Formula check box adds the column to the table and runs the elemental composition algorithm.</td>
<td></td>
</tr>
<tr>
<td>File Name</td>
<td>Displays the path and name of the raw data file.</td>
</tr>
<tr>
<td>To display the Open Raw File dialog box, click the browse icon, , at the end of the file name.</td>
<td></td>
</tr>
<tr>
<td>Scan Filter</td>
<td>Select a filter to apply to the raw data file. The application autosenses the metafilters (including SRM or compound filters) in the raw data file in this order: MS, MS2, ETD, HCD, MSN, and then the individual scan filter list. For grouped filters, the Filter list displays only the first filter in the group. The Spectrum view displays the actual filter for the scan. For more information, see <a href="#">Scan Filter Parameters</a>.</td>
</tr>
<tr>
<td>Trace ID</td>
<td>Number that identifies the chromatogram trace. The Trace ID increments from the top trace to the bottom trace.</td>
</tr>
<tr>
<td>% Area</td>
<td>Peak area as a percentage of the total peak area.</td>
</tr>
<tr>
<td>% Height</td>
<td>Peak height as a percentage of the total peak height.</td>
</tr>
<tr>
<td>Integration Method</td>
<td>Displays the integration method: ICIS, Genesis, Avalon, PPD, or manual.</td>
</tr>
</tbody>
</table>
Chromatogram-specific Pages in the Info Bar

Before you open a workspace in the FreeStyle window, the Info Bar contains only the Isotope Simulation page (see Isotope Simulation Page). Opening a raw data file adds the Peak Detection, MSn Browser, and Detector Type pages to the Info Bar; whereas, opening a sequence file opens these pages and the Sequence Files page. The Detector Type page lists the detectors used to acquire data for the active raw data file and the MS Trending selection if the raw data file contains mass spectrometry data.

Note When you click a row in the Filter or Trace Type columns in the Chromatogram view, the application replaces the Detector Type page with the Scan Filters page or the Trace Type page, respectively.

These are the pages in the Info Bar:

- Detector Type Page
- Trace Type Page
- Scan Filters Page
- Peak Detection Page
  - Genesis Peak Detection Page
  - ICIS Peak Detection Page
  - Avalon Peak Detection Page
  - PPD Peak Detection Page
- Sequence File Page

Detector Type Page

The detector type determines what types of traces the Chromatogram view displays. Use the Detector Type page of the Info Bar to select the detector type. The detector types shown on this page are the same as those in the Detector Type list in the Chromatogram Ranges view.

These are the possible detector types:

- MS—Mass spectrometry data
- A/D Card—Data from an analog-to-digital converter
- MS Trending—Instrument status readings for the mass spectrometer
- UV—Data from an analog detector
- PDA—Wavelength scan data from a photodiode array detector
3 Reviewing Chromatographic Data

Chromatogram-specific Pages in the Info Bar

- **To display the Detector Type page**
  
  Click the **Detector Type** tab in the Info Bar.

  *Figure 61* shows a typical Detector Type page.

  **Figure 61.** Detector Type page

![Detector Type page](image)

- **To display a plot in the Chromatogram view**
  
  On the Detector Type page, do one of the following:
  
  - To display an unfiltered plot of the MS data, click **MS**.
  - To display a total scan plot for the PDA data, click **PDA**.
  - To display a plot for a UV channel, click **UV**.
  - To display a plot for the data acquired with an analog-to-digital converter, click **A/D Card**.
  - To display a plot for one of the MS detector’s status readbacks, click **MS Trending**, click a row in the Trace Type column in the Chromatogram Ranges view, and then, on the Trace Type page, click a trace type (instrument readback).

**Trace Type Page**

Use the Trace Type page to select the type of trace that the Chromatogram view displays. The available trace types depend on which detector type you select on the Detector Type page:

- For MS detectors, choose the TIC, mass range, base peak, neutral fragment, or mass defect filter trace type.
- For PDA detectors, choose the wavelength range, total scan, or spectrum maximum trace type.
- For analog detectors, choose the analog 1, 2, 3, or 4 trace type.
- For MS Trending, choose any of the instrument status selections.

The trace types that the Trace Types page lists are the same as in the Trace Type list in the Chromatogram Ranges view.
To display the Trace Type page

1. Open the Chromatogram Ranges view.
2. Click the dropdown arrow in the Trace Type column.

Figure 62 shows trace types for an MS detector type.

**Figure 62.** Trace Type page

---

**Scan Filters Page**

Use the Scan Filters page to select the type of scan filter, if any, that the application applies to the raw data file. The filter types on the Scan Filters page are the same as in the Filter box dropdown list in the Chromatogram Ranges view.

For instructions on using the Scan Filters page, see Using the Scan Filters Page to Display a Filtered Chromatogram.

**Note** For grouped filters (MS, MS2, HCD, and so on), the Scan Filters page displays only the first filter in the group. The scan header in the Spectrum view displays the actual filter for the scan.

To display the Scan Filters page in the Info Bar

In the Workspace Options toolbar, in the Filter area, click **Scan Filters**.

Figure 63 shows a Scan Filters page.

**Figure 63.** Scan Filters page
Table 21 describes the parameters on the Scan Filters page.

**Table 21. Scan Filters page parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Filter Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>Time Range (min)</td>
<td>Specifies the time range to display in the filter list. Filters outside the specified time range do not appear in the filter list. The specified time range must be within the retention time range for the data file. Use an asterisk to specify the full retention time range.</td>
</tr>
<tr>
<td>Track</td>
<td>Specifies the time range by dragging the pointer across the Time axis in the Chromatogram view.</td>
</tr>
<tr>
<td><strong>Filter list</strong></td>
<td></td>
</tr>
<tr>
<td>&lt;No Filter&gt;</td>
<td>Displays an unfiltered chromatogram.</td>
</tr>
<tr>
<td>MS</td>
<td>Displays only full-scan MS data.</td>
</tr>
<tr>
<td>MSn (where n = 2 or higher)</td>
<td>Displays MS/MS data of the selected MS/MS order only.</td>
</tr>
<tr>
<td>Scan filters</td>
<td>Displays a chromatogram for a specific scan filter.</td>
</tr>
<tr>
<td><strong>Buttons</strong></td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td>Copies the file name of the raw data file and the contents of the Scan Filters page to the Clipboard.</td>
</tr>
<tr>
<td>Print</td>
<td>Opens the Print dialog log box for selecting the printer and print preferences for printing the contents of the Scan Filters page.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens the Help to the Scan Filters page topic.</td>
</tr>
</tbody>
</table>

**Peak Detection Page**

Use the Peak Detection Page to identify and integrate the chromatogram peaks in an active chromatogram plot. Specify a peak detection algorithm that the application applies to detect the chromatogram peaks in the active chromatogram plot. For instructions on using the Peak Detection Page, see *Automatically Detecting and Integrating Chromatographic Peaks*. Figure 64 shows the parameters for the peak identification and detection algorithms.
Table 23 describes the parameters for the peak identification and detection algorithms.

**Table 23. Peak Identification and Detection algorithm parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Identification</strong></td>
<td></td>
</tr>
<tr>
<td>Returned Peaks</td>
<td>Type of peak detection results to be returned:</td>
</tr>
<tr>
<td></td>
<td>- All Peaks: Displays all the peaks based on the selected algorithm for component identification.</td>
</tr>
<tr>
<td></td>
<td>- Nearest Peak: Displays the peak with the nearest retention in the chromatogram within the specified retention time window for component identification.</td>
</tr>
<tr>
<td></td>
<td>- Highest Peak: Displays the peak with the highest retention in the chromatogram within the specified retention time window for component identification.</td>
</tr>
<tr>
<td>Expected Time (min)</td>
<td>Expected retention time for the component. Available only when you select the Nearest or Highest peak.</td>
</tr>
<tr>
<td>Window (sec)</td>
<td>Retention time window for the component. Available only when you select the Nearest or Highest peak.</td>
</tr>
<tr>
<td>Component Name</td>
<td>Specifies the component name used for processing. Automatically imports the component name when a processing method is imported to the trace.</td>
</tr>
</tbody>
</table>
Reviewing Chromatographic Data
Chromatogram-specific Pages in the Info Bar

The Genesis peak detection algorithm is the original Thermo Xcalibur peak detection algorithm and has been provided for backward compatibility with Xcalibur 1.0 data system studies. Use the Genesis Peak Detection page of the Info Bar to specify peak identification and peak integration criteria that the Genesis algorithm applies toward chromatograms in the Chromatogram view.

For information about using the Genesis peak detection algorithm, see Automatically Detecting and Integrating Chromatographic Peaks.

To display the Genesis Peak Detection page

1. Click the Peak Detection tab in the Info Bar.
2. In the list, select Genesis.

Figure 65 shows the parameters for the Genesis peak detection algorithm.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Algorithm</td>
<td>Specifies the peak detection algorithm to be used for processing the chromatographic peaks:</td>
</tr>
<tr>
<td></td>
<td>• Genesis—Use for mass spectrometry data.</td>
</tr>
<tr>
<td></td>
<td>• ICIS—Use for mass spectrometry data.</td>
</tr>
<tr>
<td></td>
<td>• Avalon—Use for UV or PDA data. This algorithm detects negative chromatographic peaks more accurately than the ICIS or Genesis algorithms.</td>
</tr>
<tr>
<td></td>
<td>• PPD—Use to minimize the number of optimization parameters.</td>
</tr>
</tbody>
</table>

Table 22. Peak Identification and Detection algorithm parameters
Figure 65. Genesis Peak Detection page

Table 23 describes the parameters for the Genesis Peak Detection page.

Table 23. Genesis peak detection parameters (Sheet 1 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of Settings</td>
<td>Apply the peak identification and integration settings to all displayed chromatograms.</td>
</tr>
<tr>
<td></td>
<td>To apply the criteria to only the active chromatogram, clear this option.</td>
</tr>
</tbody>
</table>
Table 23. Genesis peak detection parameters (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Highest Peak</td>
<td>Specify a percentage threshold to limit the number of peaks to be submitted for further processing. The algorithm discards any detected peak that has an intensity less than the threshold percentage of the most intense peak. Range: 0.0–100.0; default: 10.0</td>
</tr>
<tr>
<td>Minimum Peak Ht (S/N)</td>
<td>Specify the peak signal-to-noise (S/N) value to equal or exceed as a criterion for peak detection. The algorithm ignores all chromatogram peaks that have S/N values less than the minimum peak height S/N value. Range: 1.0 (all peaks) to 999.0; default: 2.0</td>
</tr>
<tr>
<td>S/N Threshold</td>
<td>Specify the threshold for detecting peak edges. The algorithm calculates the S/N ratio by using only the baseline signal. It excludes any extraneous or minor detected peaks from the calculation. Range: 0.0–999.0; default: 2.0</td>
</tr>
<tr>
<td>Valley Detection Enabled</td>
<td>Select the valley detection approximation method to detect unresolved peaks. This method drops a vertical line from the apex of the valley between unresolved peaks to the baseline. The intersection of the vertical line and the baseline defines the end of the first peak and the beginning of the second peak.</td>
</tr>
<tr>
<td>Expected Width (sec)</td>
<td>Specify the expected peak width (in seconds). This value controls the minimum width that a peak must have if you selected the Valley Detection Enabled option. With valley detection selected, the algorithm ignores any valley points nearer than the expected width/2 to the top of the peak. When it finds a valley point outside the expected peak width, the algorithm terminates the peak at that point. The algorithm always terminates a peak when the signal reaches the baseline, independent of the value set for the expected peak width. Range: 0.0–999.0; default: 0.0</td>
</tr>
<tr>
<td>Constrain Peak Width</td>
<td>Limits the peak width of a component during peak integration. To control when peak integration is turned on and off, specify a peak height threshold and a tailing factor.</td>
</tr>
</tbody>
</table>
### Table 23. Genesis peak detection parameters (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Ht (%)</td>
<td>Specify the peak height (as a percentage) where the algorithm tests the width of target peaks.</td>
<td>0.0–100.0; default: 5.0</td>
<td></td>
</tr>
<tr>
<td>Tailing Factor</td>
<td>Specify a factor that controls how the algorithm integrates the tail of a peak. This factor is the maximum ratio of the trailing edge to the leading edge of a constrained peak.</td>
<td>0.5–9.0; default: 1.0</td>
<td></td>
</tr>
<tr>
<td><strong>Advanced</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>Calculate noise as a root-mean-square (RMS) value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak to Peak</td>
<td>Calculate noise as a peak-to-peak value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT Range</td>
<td>Specify the RT range that the algorithm uses to determine noise. The RT range must be within the chromatogram range.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline Noise Tolerance (%)</td>
<td>Specify a percentage value that controls how the algorithm draws the baseline in the noise data. The higher the baseline noise tolerance value, the higher it draws the baseline through the noise data.</td>
<td>0.0–100.0; default: 10.0</td>
<td></td>
</tr>
<tr>
<td>Min Number of Scans in Baseline</td>
<td>Specify the minimum number of scans that the algorithm uses to calculate a baseline. A larger number includes more data in determining an averaged baseline.</td>
<td>2–100; default: 16</td>
<td></td>
</tr>
<tr>
<td>Baseline Noise Rejection Factor</td>
<td>Specify the baseline noise rejection factor. This factor controls the width of the RMS noise band above and below the peak detection baseline. The algorithm applies this factor to the raw RMS noise values to raise the effective RMS noise that the algorithm uses during peak detection. It responds by assigning the left and right peak boundaries above the noise and, therefore, closer to the peak apex value. This action effectively raises the peak integration baseline above the RMS noise level.</td>
<td>0.1–10.0; default: 2.0</td>
<td></td>
</tr>
</tbody>
</table>
**Table 23. Genesis peak detection parameters (Sheet 4 of 4)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak S/N Cutoff</td>
<td>Specify the S/N level that the algorithm defines as the top of the peak edge. For example, if the S/N level at the apex is 500 and the Peak S/N Cutoff value is 200, the algorithm defines the right and left edges of the peak when the S/N reaches a value less than 200. Range: 50.0–10 000.0; default: 200.0</td>
</tr>
<tr>
<td>Rise Percentage</td>
<td>Specify how much above the baseline the trace can rise (as a percentage) after passing through a minimum inflection point in the trace (before or after the peak). If the trace exceeds this value, the algorithm applies valley detection peak integration criteria. It applies this test to both the left and right edges of the peak. The rise percentage criterion is useful for integrating peaks with long tails. Range: 0.1–500.0; default: 10.0</td>
</tr>
<tr>
<td>Valley S/N</td>
<td>Specify the S/N criterion that the algorithm uses for valley detection. Range: 1.0–100.0; default: 1.0</td>
</tr>
<tr>
<td>Background Recomputation (min)</td>
<td>Specify the background recomputation interval (in minutes). The algorithm periodically recalculates the representative background scan it uses for background subtraction to compensate for the possibility that the composition of the background might change over the course of a run. The background recomputation interval is the time interval between these recalculations. Range: 0.5–10.0; default: 5.0</td>
</tr>
<tr>
<td>Number of Scans in Background</td>
<td>Specify the number of background scans the algorithm uses to determine the background. Range: 2–100; default: 5</td>
</tr>
</tbody>
</table>

**Button**

- **Apply** Starts peak detection by using the Genesis peak detection algorithm.
- **Save As Defaults** Saves the current settings as default settings. After you save the settings as defaults, you can restore these values at any time by clicking Load Default.
- **Load Defaults** Restores the current default settings.
- **Help** Opens the FreeStyle Help to the Genesis peak detection topic.
ICIS Peak Detection Page

The ICIS peak detection algorithm is the default algorithm that was designed for MS data. It is known for peak detection efficiency at low MS signal levels.

Use the ICIS Peak Detection page of the Info Bar to specify peak detection and integration criteria. The application applies the peak detection algorithm to the active plot or all the plots in the Chromatogram view.

For more information, see Automatically Detecting and Integrating Chromatographic Peaks.

To display the ICIS peak detection parameters

1. Click the Peak Detection tab in the Info Bar.
2. In the list, select ICIS.

Figure 66 shows the parameters for the ICIS peak detection algorithm.

Figure 66. ICIS Peak Detection page

Table 24 describes the parameters for the ICIS peak detection algorithm.
### Table 24. ICIS Peak Detection page parameters (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Application of Settings</strong></td>
<td></td>
</tr>
<tr>
<td>Apply to All Plots</td>
<td>Apply the current chromatogram peak identification and integration settings to all displayed plots.</td>
</tr>
<tr>
<td></td>
<td>To apply the criteria to only the active plot, clear this option.</td>
</tr>
<tr>
<td><strong>Peak Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>Baseline Window</td>
<td>Specify the number of scans, from the apex down each side of the peak, that the peak detection algorithm uses to determine the minimum baseline for the peak. A higher number of scans means a wider scan range, resulting in a lower baseline.</td>
</tr>
<tr>
<td></td>
<td>Range: 1–500; default: 40</td>
</tr>
<tr>
<td>Area Noise Factor</td>
<td>Specify the noise level multiplier that the peak detection algorithm uses to determine the peak edge after the location of the possible peak.</td>
</tr>
<tr>
<td></td>
<td>Range: 1–500; default: 500</td>
</tr>
<tr>
<td>Peak Noise Factor</td>
<td>Specify the noise level multiplier that the peak detection algorithm uses to determine the potential peak signal threshold.</td>
</tr>
<tr>
<td></td>
<td>Range: 1–1000; default: 10</td>
</tr>
<tr>
<td>Constrain Peak Width</td>
<td>Limits the peak width of a component during the peak integration of a chromatogram. You can then set values that control when peak integration turns on and off by specifying a peak height threshold and a tailing factor.</td>
</tr>
<tr>
<td>Peak Ht (%)</td>
<td>Specify how much above the baseline (as a percentage) a signal must be of the total peak height before integration turns on or off.</td>
</tr>
<tr>
<td></td>
<td>Range: 0.0–100.0; default: 5.0</td>
</tr>
<tr>
<td>Tailing Factor</td>
<td>Specify a factor that controls how the algorithm integrates the tail of a peak. This factor is the maximum ratio of the trailing edge to the leading edge of a constrained peak.</td>
</tr>
<tr>
<td></td>
<td>Range: 0.5–9.0; default: 1.0</td>
</tr>
<tr>
<td><strong>Advanced</strong></td>
<td></td>
</tr>
<tr>
<td>Manual Noise Region</td>
<td>Specify a region of the chromatogram that the peak detection algorithm uses to determine noise. You can enter the retention time (RT) in the RT Range box. See Selecting the Manual Noise Region for the Genesis and ICIS Algorithms.</td>
</tr>
</tbody>
</table>
### 3 Reviewing Chromatographic Data

#### Chromatogram-specific Pages in the Info Bar

**Table 24. ICIS Peak Detection page parameters (Sheet 2 of 2)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT Range</td>
<td>Specify the RT range that the algorithm uses to determine noise. The RT range must be within the chromatogram range.</td>
</tr>
<tr>
<td>INCOS Noise</td>
<td>Use a single pass algorithm to determine the noise level. For more information, see <a href="#">ICIS Signal-to-noise Estimation</a>.</td>
</tr>
<tr>
<td>Repetitive Noise</td>
<td>Use a multiple pass algorithm to determine the noise level. In general, this algorithm is more accurate in analyzing the noise than the INCOS Noise algorithm; however, it might take longer depending on the data. For more information, see <a href="#">ICIS Signal-to-noise Estimation</a>.</td>
</tr>
<tr>
<td>RMS</td>
<td>Calculate noise as root mean square (RMS). By default, the algorithm uses peak-to-peak for the noise calculation. When you determine the noise region manually, the algorithm automatically selects RMS.</td>
</tr>
<tr>
<td>Min Peak Width</td>
<td>Enter the minimum number of scans required in a peak.</td>
</tr>
<tr>
<td></td>
<td>Range: 0–100; default: 3</td>
</tr>
<tr>
<td>Multiplet Resolution</td>
<td>Specify the minimum separation in scans between the apexes of two potential peaks. This criterion determines if two peaks are resolved.</td>
</tr>
<tr>
<td></td>
<td>Range: 1–500; default: 10</td>
</tr>
<tr>
<td>Area Tail Extension</td>
<td>Specify the number of scans past the peak endpoint to use in averaging the intensity.</td>
</tr>
<tr>
<td></td>
<td>Range: 0–100; default: 5</td>
</tr>
<tr>
<td>Area Scan Window</td>
<td>Specify the number of scans on each side of the peak apex to include in the area integration.</td>
</tr>
<tr>
<td></td>
<td>Range: 0–100; default: 0</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Specifying zero scans means that the algorithm includes all scans in the area integration, from the peak start to the peak end.</td>
</tr>
</tbody>
</table>

#### Button

- **Apply** Starts the ICIS peak detection algorithm.
- **Save As Defaults** Saves the current settings as the default settings.
- **Load Defaults** Restores the current default settings.
- **Help** Opens the FreeStyle Help to the ICIS peak detection topic.
ICIS Signal-to-noise Estimation

ICIS peak detection uses one of two algorithms for signal-to-noise ratio (SNR) estimation:

- **INCOS Algorithm** (single pass algorithm)
- **Repetitive Algorithm** (multiple pass algorithm)

See also, Baseline in ICIS.

**INCOS Algorithm**

For a chromatogram of intensities—$I(n)$—(where $n$ is a retention time position from 1 to $N$, which does not take into account time spacing), the application calculates a noise value for each point ($n=2$ to $N–1$) as follows:

$$noise(n) = \text{abs}(I(n - 1) - 2*I(n) + I(n + 1))$$

This is a triangular method in which the noise for every point is estimated by using only its direct neighbors. It assumes that direct neighbors should have a very similar intensity. If the three points have equal intensity, the estimated noise will be zero. If two of the points have equal or very similar intensity and the other point has an intensity difference of $\Delta I$, the estimated noise will be approximately $\Delta I$.

The noise for the chromatogram is then the average of all $noise(n)$, such that:

$$noise(n) < 8 \times \sqrt{\text{min}[I(n - 1), I(n), I(n + 1)$$

**Repetitive Algorithm**

The repetitive algorithm is similar to the INCOS algorithm; the application calculates a local noise value for each data point using the same method used for the INCOS algorithm.

The application saves all local noise/intensity value pairs in an array. The decision whether a local noise event is accepted or not is postponed until all noise events are recorded (unlike INCOS where only events smaller than 8 times the square root of the minimum of the current three scans are accepted as noise).

The starting value for the noise is the average of all local noise events.

In each iteration (maximal 10), the local noise values of the intensities that are bigger than the average intensity of all remaining noise events are discarded and a new average noise is calculated. If the new average noise is smaller than $\text{old}_\text{noise} / 1.1$, the application performs another iteration; if not (or if there were already 10 iterations), the process is finished.

In a final step, the application discards the most intense third and the least intense third of the remaining values and uses the remaining values to calculate the noise.
Baseline in ICIS

The application calculates noise in ICIS II similar to the INCOS algorithm. The baseline estimation is trivial: a sum of intensities of all scans, which are counted for INCOS noise, divided by the number of those scans.

$$\text{baseline} = \frac{\sum_{n \in \text{noise}} I_n}{n_{\text{noise}}}$$

The baseline correction works as follows:

1. For each scan x in the chromatogram, the application determines whether the scan in question is a baseline scan or not (the first and last scan in the display area are always baseline scans).

2. For the remaining x scans, a baseline scan is available if a line can be placed in the chromatogram using the point (Scan x / Intensity of Scan x), so that the intensities of all neighboring right and left scans come to lie above the straight line.

3. After all baseline scans have been determined, the intensities between the baseline scans are corrected (an amount is deducted from the intensity values between the baseline scans, which results from the Y value of a straight line through the neighboring baseline scans at the scan (x) point.

4. The intensities of all baseline scans are set to zero.

5. After the (optional) smoothing and the baseline correction (optional in CHRO), the actual peak detection takes place:

   The criterion for peak detection is an intensity threshold ITR, which is determined as follows:

   * For baseline corrected chromatograms: $\text{ITR} = \text{nm} \times \text{Noise}$ ($\text{nm} = \text{Noisemultiplier}$)
   * For uncorrected chromatograms: $\text{ITR} = \text{baseline} + \text{nm} \times \text{noise}$

Avalon Peak Detection Page

The Avalon peak detection algorithm supports detectors other than mass spectrometers and detects negative chromatographic peaks more accurately than the Genesis or ICIS peak detection algorithms. Use the Avalon Peak Detection page in the Info Bar to specify peak identification and integration criteria. You can apply this algorithm to the active plot or all the plots in the Chromatogram view.

To display the Avalon Peak Detection page

1. Click the Peak Detection tab in the Info Bar.
2. Select the Avalon search algorithm.
Figure 67 shows the parameters for the Avalon peak detection algorithm.

**Figure 67.** Avalon Peak Detection Settings page

![Avalon Peak Detection Settings page](image)

Table 25 describes the parameters for the Avalon peak detection algorithm.

**Table 25.** Avalon Peak Detection page parameters (Sheet 1 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of Settings</td>
<td>Apply the current chromatogram peak identification and integration settings to all displayed chromatogram plots. To apply the criteria to only the active plot, clear this check box.</td>
</tr>
</tbody>
</table>
To calculate values for initial events, click **Auto Calculate Initial Events**.

To change the settings in the event list, highlight the row and then enter the revised settings in the boxes below the list. Click **Add** to add a new row of entered values to the event list. Click **Change** to update automatically both the event list and the chromatogram display.

There are seven permanent integration events, identified by the Initial Value setting in the Time column. These are the default integration events that the Avalon integration algorithm requires. You can change the value of an initial entry integration event, but you cannot delete it or change its time value.

### Table 25. Avalon Peak Detection page parameters (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event List</td>
<td>Specify the settings for initial events and user-defined timed events in the event list.</td>
</tr>
<tr>
<td>Event List Entry</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Specify the value for the Time column for the highlighted entry in the event list. You cannot change the time entry for initial value events.</td>
</tr>
</tbody>
</table>
### Table 25. Avalon Peak Detection page parameters (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Event     | Select the event type from these options:  
- Start/End Threshold: Directly related to the RMS noise in the chromatogram, this value is the start or end threshold, the fundamental control used for peak detection.  
- Area Threshold: Controls the area cutoff. The algorithm does not detect any peaks with a final area less than the area threshold. This control is in units of area for the data.  
- P-P Threshold: The peak-to-peak resolution threshold controls how much peak overlap must be present before two or more adjacent peaks create a peak cluster. Peak clusters have a baseline drop instead of valley-to-valley baselines. This option is specified as a percentage of the peak height overlap.  
- Negative Peaks: Allows or denies negative peaks.  
- Bunch Factor: The number of points that are grouped together during peak detection. It controls the bunching of chromatographic points during integration and does not affect the final area calculation of the peak. The Bunch Factor must be an integer between 1 and 6; a high bunch factor groups peaks into clusters.  
- Tension: Controls how closely the baseline must follow the overall shape of the chromatogram. A lower baseline tension traces the baseline to follow changes in the chromatogram more closely. A higher baseline tension follows the baseline less closely over longer time intervals. This option is specified in minutes.  
- Tangent Skim: For fused peaks that are significantly different in size, the tangent skim method allocates area to the various peaks. By default, the algorithm chooses the tallest peak in a cluster as the parent. You can also identify which peak in the cluster is the parent. The algorithm detects tangent skim peaks on one or both sides of the parent peak. Tangent skim automatically resets at the end of the peak cluster.  

The threshold and bunch factor parameters are the most important ones in controlling peak detection.  

| Value | Specify the value for Value column for the currently highlighted entry in the event list. The range of factors allowed for each value is specific to each event. |
Reviewing Chromatographic Data

Chromatogram-specific Pages in the Info Bar

The PPD peak detection algorithm fits the data to model peak functions.

Use the PPD Peak Detection page of the Info Bar to specify peak detection criteria. The application applies the peak detection algorithm to the active raw data file displayed in the FreeStyle window.

For information about using the PPD peak detection algorithm, see Automatically Detecting and Integrating Chromatographic Peaks.

To display the PPD Peak Detection page

1. Click the Peak Detection tab in the Info Bar.
2. Select the PPD algorithm.

Figure 68 shows the settings for the PPD peak detection algorithm.
For information about adding peak labels, see Labeling Chromatogram Peaks or Local Maxima.

Table 26 describes the parameters for the PPD peak detection algorithm.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Application of Settings</strong></td>
<td></td>
</tr>
<tr>
<td>Apply to All Plots</td>
<td>Applies the current chromatogram peak identification and integration settings to all displayed plots.</td>
</tr>
<tr>
<td></td>
<td>To apply the criteria to only the active plot, clear this option.</td>
</tr>
<tr>
<td><strong>Peak Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>Signal To Noise</td>
<td>Specifies the absolute signal-to-noise threshold. A value of 0 applies no filtering.</td>
</tr>
<tr>
<td></td>
<td>Range: 0.00–100.00; default: 1.0</td>
</tr>
<tr>
<td>Merge Overlapping</td>
<td>(Default) Merges overlapping peaks into one peak. Use this option for LC/MS data to avoid reporting small shoulders as separate peaks.</td>
</tr>
<tr>
<td>Resolve</td>
<td>Resolves overlapping or touching peaks into two chromatographic peaks. Use this option for GC/MS data.</td>
</tr>
<tr>
<td>Merge Touching</td>
<td>Merges two peaks whose edges barely overlap at the 1% intensity level.</td>
</tr>
<tr>
<td><strong>Button</strong></td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td>Starts the PPD peak detection algorithm.</td>
</tr>
<tr>
<td>Save As Defaults</td>
<td>Saves the current settings as the default settings.</td>
</tr>
</tbody>
</table>
The PPD peak detection algorithm automatically resolves all the chromatographic peaks, and selecting the Resolve option displays all the detected peaks (see Figure 69).

**Figure 69.** PPD peak detection with the Resolve option

By default, the Merge Overlapping option is selected. For LC/MS data, use Merge Overlapping to avoid reporting small shoulders as separate peaks. Compare Figure 70 where the overlapping peaks are merged and reported as two peaks to Figure 69 where all the peaks are resolved and reported as seven separate peaks.

**Table 26.** PPD Peak Detection page parameters (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Defaults</td>
<td>Restores the current default settings.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens the FreeStyle Help to the PPD peak detection topic.</td>
</tr>
</tbody>
</table>
Sequence File Page

The Sequence File page of the Info Bar displays a sequence of raw data files that you created or opened. Click a raw data file in the list to display its trace in the Chromatogram view.

To display the Sequence File page

Create or open a sequence of raw data files.

For more information, see Using Workspace Pages or Working with Sequences.

Figure 71 shows a typical Sequence File page.

Figure 71. Sequence File page
3 Reviewing Chromatographic Data
Chromatogram-specific Pages in the Info Bar
Reviewing Spectral Data

Use the spectra-specific toolbars, views, and Info Bar pages of the FreeStyle application to review spectral data from the mass spectrometer or PDA detector.

To display spectra of interest, follow the procedures in these topics.

Contents

- Displaying the Scan for a Time Point in a Chromatogram
- Adding Spectrum Views to the Workspace
- Selecting Spectra from the Spectrum Ranges Dialog Box
- Creating a MultiSpectrum View and Changing Its Spectrum Plots
- Formatting a MultiSpectrum View
- Linking and Releasing Spectra to and from a Chromatogram
- Averaging Spectra
- Subtracting Background Spectra
- Exporting a Selected Spectrum to a New Raw Data File
- Using Precursor Markers to Open Data-Dependent Scans
- Selecting Spectra from an MSn Tree
- Specifying the Display Options for a Spectrum View
- Changing the Zoom Level in a Spectrum View or MultiSpectrum View
- Spectra-specific Toolbars
- Spectra-specific Views
- Spectrum Ranges Dialog Box
- MSn Browser Page

Note  For information about scan headers and custom annotations, see Scan Headers and Scan Header Abbreviations and Adding Text, Graphic, and Structure Annotations to a Graphical View, respectively.
Displaying the Scan for a Time Point in a Chromatogram

Follow this procedure to display the scan for a particular time point of a chromatogram.

- **To display the scan corresponding to a particular time point in a chromatogram**
  1. Display the chromatogram plots of interest as described in Defining a Chromatogram Trace from the Chromatogram Ranges View.
  2. Make sure that the Spectrum view or MultiSpectrum view links to the chromatogram.

In the Chromatogram view, a red vertical marker, ‹›, indicates the selected data point. The Spectrum view displays the spectrum for that retention time or scan number. On the computer keyboard, use the right or left arrow keys to increment or decrement the scan number.

- **Note** The text appended to a Spectrum view indicates its linkage status. For example, the text C1T1 at the end of a Spectrum view’s name indicates that actions performed on trace 1 in Chromatogram view 1 affect the spectrum displayed.

Adding Spectrum Views to the Workspace

You can add multiple Spectrum views and MultiSpectrum views to the workspace.

- **To add a Spectrum view**
  1. Open a raw data file (see Opening Raw Data Files or Sequence Files).

     With the factory default layout, the Chromatogram view appears at the top and the Spectrum view appears at the bottom and displays scan #1.

  2. To add another Spectrum view to the workspace, do one of the following:

     - In the Workspace Options toolbar, click Spectrum.

       A copy of the active spectrum appears in the new Spectrum view.

     - Open the MSn Browser page and select the fragmentation spectra of interest (see Selecting Spectra from an MSn Tree).

       A new Spectrum view opens for each selected spectrum.
Selecting Spectra from the Spectrum Ranges Dialog Box

You can use the Spectrum Ranges dialog box to select the spectrum to be displayed in a Spectrum view or the spectra to be displayed in a MultiSpectrum view. For information about creating an average spectrum or performing background subtraction, see these topics: Creating an Average Spectrum from the Spectrum Ranges Dialog Box or Using the Spectrum Ranges Dialog Box to Subtract Background Spectra.

Note When a spectrum is linked to a chromatogram, you cannot select a different raw data file, detector, or scan filter from the Spectrum Ranges dialog box.

To select spectra with the Spectrum Ranges dialog box

1. Do one of the following:
   • Click either a Spectrum view or a MultiSpectrum view to select it. Then, in the Workspace Options toolbar, click Spectrum and choose Ranges from the dropdown menu.
   —or—
   • Right-click a Spectrum view or a MultiSpectrum view and choose Ranges.

   The Spectrum Ranges dialog box opens with a list of the scans currently displayed in the selected view (Figure 72).

Figure 72. Spectrum Ranges dialog box

2. Do any of the following:
   • To add another spectrum plot, select the last check box in the Display column.
   • For a MultiSpectrum view, to remove a spectrum plot, clear its associated check box.
4 Reviewing Spectral Data
Creating a MultiSpectrum View and Changing Its Spectrum Plots

- (Released spectrum only) From the File Name list, browse to and select a different raw data file.
- (Released spectrum only) From the Detector Type list, select a different detector.
- (Released spectrum only) From the Filter list, select a different scan filter.
- In the Retention Time box, type a different retention time, and then click elsewhere in the same row.
  The corresponding scan number appears in the Scan Number box.
- In the Scan Number box, type a different scan number, and then click elsewhere in the same row.
  The retention time of the selected scan appears in the Retention Time box.

3. Click **OK**.

When you add multiple plots to a Spectrum view, the Spectrum view becomes a MultiSpectrum view.

Creating a MultiSpectrum View and Changing Its Spectrum Plots

To compare spectrum plots using the same normalization level, you must use the MultiSpectrum view (see Applying Local or Global Normalization in a MultiSpectrum View).

To specify the spectrum plots in a MultiSpectrum view, follow these procedures

- To change a Spectrum view to a MultiSpectrum view
- To add spectrum plots to a MultiSpectrum view
- To select a different spectrum for any of the plots in a MultiSpectrum view

**To change a Spectrum view to a MultiSpectrum view**

1. Click the **Workspace Options** tab to open the Workspace Options toolbar.
2. Select a Spectrum view, click **Spectrum**, and choose **Multi Spectrum** from the dropdown menu.

  The view’s title bar changes to MultiSpectrum and a copy of the selected spectrum appears below the original spectrum (Figure 73).
To add spectrum plots to a MultiSpectrum view

1. Click the MultiSpectrum view to select it.

2. In the Workspace Options toolbar, click Spectrum and choose Multi Spectrum from the dropdown menu.

   A copy of the last plot appears at the bottom of the view.

To select a different spectrum for any of the plots in a MultiSpectrum view

- Use the Spectrum Ranges dialog box (see Selecting Spectra from the Spectrum Ranges Dialog Box).

  --or--

a. Click the plot to select it.

   An active plot has a darker background than the other plots in the view (Figure 74).

Figure 74. MultiSpectrum view with plots from different raw data files

b. In the Chromatogram view, select a point by using the pointer or the left and right keyboard keys.
Formatting a MultiSpectrum View

For more information about the formatting options, see MultiSpectrum – Display Options Toolbar.

❖ To format the spectrum plots in a MultiSpectrum view

1. Click the MultiSpectrum view to select it.
2. Click the Display Options tab to open the Display Options toolbar.
3. Do one or more of the following in the Format area:
   • To change the color of a spectrum plot, select the plot, and then click the Color icon and select a color.
   • To change the orientation of the plots from stacked to overlaid, click Plot Options and choose Overlay from the dropdown menu.
   • To change the skew of the overlaid plots, use the Skew slider.
   • To change the relative elevation of the overlaid plots, use the Elevation slider.
   • To add a backdrop to the overlaid plots, click Draw Backdrop.

Figure 75 show a MultiSpectrum view with two spectrum plots with a 25% overlay, a 45° skew, and a backdrop.

Figure 75. MultiSpectrum view with two overlaid spectrum plots
Linking and Releasing Spectra to and from a Chromatogram

When you add a Spectrum view to the Workspace, the application automatically links the spectrum to the active chromatogram trace. You can release the spectrum from the trace and link it to another trace.

See these topics:
- Linkage States for a Spectrum Plot
- Releasing a Linked Spectrum from the Chromatogram
- Linking a Spectrum View to a Chromatogram

Linkage States for a Spectrum Plot

Table 27 describes the linkage states for a spectrum plot.

<table>
<thead>
<tr>
<th>Linkage state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked to a chromatogram</td>
<td>When a spectrum plot is linked to a chromatogram, clicking another time point in the linked chromatogram changes the displayed spectrum. The title bar of the Spectrum (or MultiSpectrum) view describes the linked chromatogram by its view number and trace number in the following format: $C_xT_y$ where $x =$ the number of the Chromatogram view $y =$ the number of the trace in the Chromatogram view</td>
</tr>
<tr>
<td>Available for linking</td>
<td>The following text is appended to the title bar of the Spectrum (or MultiSpectrum) view—Select Trace to Link. When a spectrum plot is available for linking, clicking any chromatogram in the Workspace links the plot to the selected chromatogram, updates the spectrum plot to the selected time point, and changes the appended text in the view’s title bar to $C_xT_y$.</td>
</tr>
<tr>
<td>Released</td>
<td>When you release a spectrum plot from its chromatogram, the text appended to the Spectrum (or MultiSpectrum) view changes to Released. In the Released state, the spectrum plot is not affected by any actions in a Chromatogram view. To update a released spectrum plot, you must use the Spectrum Ranges dialog box.</td>
</tr>
</tbody>
</table>
Releasing a Linked Spectrum from the Chromatogram

For a spectrum in a Spectrum view, the text appended to the view’s name indicates the linkage status of the spectrum. For a MultiSpectrum view, the appended text applies to the selected spectrum.

- **To release a spectrum from its linked chromatogram**
  
  Right-click the spectrum and choose *Release from Chromatogram*.
  
  The application appends the following text to the view’s name: Released.

  **Note** After you release a spectrum, you can use the Spectrum Ranges dialog box to select a different detector, scan filter, or raw data file.

Linking a Spectrum View to a Chromatogram

- **To link a spectrum to a chromatogram**
  
  1. Right-click the spectrum and choose *Link to Chromatogram*.
  2. Click the chromatogram to link it.
  
  To describe the linkage state, the application appends the following text to the view’s name:

  CxTy

  where $x$ indicates the Chromatogram view’s number and $y$ indicates the trace number.

  **Note** When a spectrum is linked to a chromatogram, you cannot use the Spectrum Ranges dialog box to select a different detector, scan filter, or raw data file.

Averaging Spectra

You can increase mass accuracy and reduce noise in a spectrum by averaging the spectrum over an appropriate scan range.

To generate an averaged spectrum, the application uses the original intensity versus frequency data from the mass spectrometer, bins the data into frequency intervals, and then uses the instrument’s mass calibration file to convert the frequency data to $m/z$ values.

You can create an averaged spectrum by using the Tools area of the Chromatogram – Workspace Processing toolbar or the Spectrum Ranges dialog box.
See these topics:

- Creating an Average Spectrum from the Chromatogram Shortcut Menu
- Creating an Average Spectrum from the Spectrum Ranges Dialog Box

**Creating an Average Spectrum from the Chromatogram Shortcut Menu**

When a spectrum is linked to a chromatogram trace, you can use the Average Spectrum shortcut menu command to create an average spectrum.

**To create an average spectrum by using the shortcut menu**

1. Right-click the Chromatogram view and choose **Average Spectrum** from the shortcut menu.

   The cursor changes to the averaging cursor: 📊.

2. Drag the pointer through the time range that defines the scans to average.

   A red line in the Chromatogram view marks the time range.

   **Figure 76** shows a Workspace page with two Spectrum views. The Spectrum view on the right shows the average spectrum for the time range.

   **Tip** To retain the average spectrum while working with the chromatogram, release the spectrum from the chromatogram.
Creating an Average Spectrum from the Spectrum Ranges Dialog Box

To create an average spectrum by using the Spectrum Ranges dialog box:

1. Right-click the Spectrum view of interest and choose **Ranges**.  
The Spectrum Ranges dialog box opens.

2. In the Retention Time box, enter the time range for averaging spectra in the following format:
   
   \[ \text{RT}_\text{start} - \text{RT}_\text{end} \]

   **Figure 77.** Spectrum Ranges dialog box with a time range for the averaged spectrum

3. Click **Apply**.
Subtracting Background Spectra

The solvent or other noise can create unwanted background spectra. You can subtract them from the spectrum for one or two ranges. The background subtraction algorithm subtracts an average of the selected scans and redraws the spectrum. The spectrum view header shows the number of subtracted scans. For example, SB: 12 indicates that the algorithm has applied background subtraction (SB) to the spectrum by using 12 scans. To the right of that is subtraction range_1 and range_2.

See these topics:

- Using the Tools Commands to Subtract Background Spectra
- Using the Spectrum Ranges Dialog Box to Subtract Background Spectra

Using the Tools Commands to Subtract Background Spectra

You can use the background subtraction commands in the Tools area of the Chromatogram – Workspace Processing toolbar to subtract background spectra in a linked spectrum.

To subtract background spectra from the spectrum

1. Select the Chromatogram view of interest.
2. In the Tools area on the Workspace Processing toolbar, click the Subtract Background (one range) icon, or the Subtract Background (two ranges) icon, to background subtract over one or two ranges, respectively.
3. Drag the pointer through the time ranges that define the scans to subtract: once for one range or twice for two ranges. Or, enter the time ranges in the Range1 and Range2 boxes.

You can undo the background subtraction by clicking the Subtract Background (one range) icon, or the Subtract Background (two ranges) icon, again.

Figure 78 shows the process of dragging the pointer across range 1.

Figure 78. Background subtraction process for the first time range
Figure 79 shows the process of dragging the pointer across range 2.

**Figure 79.** Background subtraction process for range 2

Figure 80 shows the selected background-subtraction ranges and the spectrum produced by subtracting 24 scans.

**Figure 80.** Spectrum produced by subtracting 24 scans
Using the Spectrum Ranges Dialog Box to Subtract Background Spectra

When a Spectrum view is not linked to a chromatogram, use the Spectrum Ranges dialog box to subtract background spectra.

**To subtract background spectra by using the Spectrum Ranges dialog box**

1. Select the Spectrum view of interest.
2. In the Spectrum – Workspace Options toolbar, click **Spectrum** and choose **Ranges** from the dropdown menu.
   
   The Spectrum Ranges dialog box opens.
3. Use the File Name list and the Retention Time or Scan Number box to define the spectrum.
4. In the Subtract Background list, select **1 Range** or **2 Ranges**.
5. Enter the time range for the background spectra in the Background Range 1 and Background Range 2 boxes as appropriate.
6. Click **Apply**.

Exporting a Selected Spectrum to a New Raw Data File

Raw data files can contain gigabytes of data. To work with only a selected spectrum, you can export the spectrum to a new raw data file. The new raw data file contains the selected spectrum and the sample data from the original raw data file and has a much smaller file size.

**To export a spectrum to a new raw data file**

1. Open a raw data file.
2. Set up the spectrum of interest in a Spectrum or MultiSpectrum view.
   
   The spectrum can be a single scan, a portion of a scan, an averaged spectrum, or a composite spectrum.
3. Click the spectrum plot of interest to select it.
4. Click the **Workspace Options** tab to open the Workspace Options toolbar.
5. Click **Exports** and choose **Write to .RAW** from the dropdown menu.

   The Export Data dialog box opens. The File name box contains the original file name appended with Scan[scan number].

   **Note** When the raw data file contains Advanced Peak Determination (APD) data—such as species ID, monoisotopic mass, and top peak in the cluster—the exported file does not include the APD data.
6. Browse to an appropriate storage folder and rename the file as necessary.

7. Click **Save**.

The new raw data file contains only the exported spectrum and the export date, which is listed in the File Header report as the acquisition date and time.

The application records the creation of new raw data file in the Audit Trail.

---

**Using Precursor Markers to Open Data-Dependent Scans**

You can add these two markers to the tops of the spectrum peaks in precursor scans: Precursor Flag and Nearby Precursors. Double-clicking these markers opens the data-dependent scans in another view.

For information about turning on these markers and using them, see these topics:

- Using the Precursor Flag Marker
- Using the Nearby Precursors Marker

---

**Using the Precursor Flag Marker**

The application can label the spectrum peaks that triggered data-dependent scans with triangles called precursor markers.

- **To turn on the precursor flag marker**
  1. Click a Spectrum view to select it.
  2. Click the **Display Options** tab to open the Display Options toolbar.
  3. In the Labels area, click the **Precursor Flag** icon.

  Figure 81 shows a full MS scan with a precursor flag at *m/z* 195.0877.
Figure 81. Spectrum view with the Precursor Flag marker turned on

- **To display the fragmentation scan triggered by the precursor ion**

  Double-click a peak’s precursor marker to display its product ion spectrum in a separate Spectrum view.

  Figure 82 shows a full MS1 scan with one precursor ion at \( m/z \) 195.0877 and its data-dependent product ion spectrum in a second Spectrum view.
**Figure 82.** Precursor and product ion scans in separate Spectrum views

Figure 83 shows the product ion scans for the two marked precursor ions in the data-dependent MS2 scan.
Using the Nearby Precursors Marker

Use the Nearby Precursors marker to mark the peaks in the current MS(n-1) scan that the instrument selected for data-dependent MSn acquisition in the current scan or another scan. The application searches for matching data-dependent scans (by the precursor ion’s m/z value within the specified mass tolerance) within the specified time range of the current scan.

Double-clicking a marker opens the average spectrum of the data-dependent scans in a separate Spectrum view or individual spectrum plots for each data-dependent scan in a MultiSpectrum view.

You can change the default behavior for this marker on the Workspace Options page.
To specify the display options for the fragmentation scans

1. In the toolbar, click Default Options.
   The Default Options Configuration dialog box opens.

2. In the navigation pane, click Workspace Options.

   Tip  Do not confuse this with the main Workspace Options toolbar.

3. In the Nearby Precursor area, specify the search and display options for the data-dependent scans:
   - Set the time range to search within the raw data file.
     Tip  Consider the experiment type when setting the time range. For infusion experiments consider setting the search range to the entire file. For chromatography experiments, consider basing the search range on the chromatographic peak width.
   - Set the maximum number of hits (matching data-dependent scans) to return.
   - Set the plot type for the data-dependent scans to an average spectrum in a Spectrum view or individual plots in a MultiSpectrum view.
   - Set the mass tolerance for matching the m/z values of the peaks in the current scan to the m/z values of the precursor ions for the data-dependent scans in the next level of MS/MS activation.

To turn on the Nearby Precursor marker

1. Click a Spectrum view to select it.

2. Click the Display Options tab to open the Display Options toolbar.

3. In the Labels area, click the Precursor Flag icon.

To display the related data-dependent scans for a precursor ion

Double-click the peak’s Nearby Precursor marker (○).

Figure 84 shows a precursor scan with Nearby Precursor markers on the left and the average spectrum for the related data-dependent scans on the right.
Figure 84. Full MS scan with Nearby Precursor markers and an average spectrum of its four related data-dependent scans (matching \( m/z \) value within specified RT).

Figure 85 shows the four matching (by precursor \( m/z \) value) data-dependent scans that the application found within the specified retention time of scan #1795.

Figure 85. MultiSpectrum view showing the data-dependent scans.
Selecting Spectra from an MSn Tree

On the MSn Browser page in the Info Bar view, you can select scans of interest from an MSn spectrum tree. You can also select to display an average spectrum for all the MSn scans of a specific precursor ion or a composite spectrum that includes the mass peaks from all the fragmentation scans that originate from the same precursor ion. For information about the parameter settings and the MSn tree structure, see MSn Browser Page.

Follow these procedures:

- To display the MSn Browser page
- To filter the MSn tree by a selected time range
- To filter the MSn tree by a selected mass range
- To modify the grouping of the scan data in the MSn tree
- To expand the entire MSn tree
- To display all the individual scan items
- To display an average spectrum
- To normalize a composite spectrum

❖ To display the MSn Browser page

1. Open a raw data file (see Opening Raw Data Files or Sequence Files).
2. In the Info bar, click the MSn Browser tab.

In the MSn Parameters area, use the Time Range and Mass Range settings in the MSn parameters area to filter the spectra in the MSn Tree area. Use the Mass Tolerance setting to change the grouping of the MSn nodes.

In the MSn Tree area, the branches for each MS2 precursor appear as nested groups ordered by their increasing m/z value. Expanding an MS2 precursor node displays the MS3 precursor nodes when available, expanding the MS3 precursor nodes displays the MS4 precursor nodes when available, and so on.

When an MSn level includes more than one scan, the application displays the average spectrum for the level. When the experimental data includes multiple fragmentation levels, for example MS2 and MS3, the MS3 level includes a composite spectrum made up of the MS2 precursor scan and the MS3 fragmentation scans. An MS4 level node includes a composite spectrum made up of the MS2 and MS3 precursor scans and the MS4 fragmentation scans.
To filter the MSn tree by a selected time range

- In the MSn Parameters area, in the Time Range (min) box, type the time range that you want to review.

—or—

a. In the MSn Parameters area, select the Track check box.

b. In the Chromatogram view, drag the pointer across the x-axis range that you want to review.

The selected time range appears in the Time Range (min) box, and the MSn Tree view displays the scans within the selected time range.

To filter the MSn tree by a selected mass range

In the Mass Range box, type a beginning mass and an ending mass, separated by a hyphen (lowest mass-highest mass). The specified mass range must be within the mass range of the scan data.

The MSn Tree view displays only the scans where the mass of the precursor ion falls within the specified mass range.

To modify the grouping of the scan data in the MSn tree

In the Mass Tolerance box, type an m/z value from 0.00 to 10.00.

Figure 86 shows the effect of decreasing the mass tolerance from 0.50 to 0.00 and the effect of increasing the mass tolerance from 0.50 to 1.00.

- Decreasing the mass tolerance below that of the experimental data increases the number of MS2 precursor nodes.

- Increasing the mass tolerance from 0.50 to 1.00 combines the scans under the MS2 Precursor 100.08 node with the scans under the MS2 Precursor 101.06 node, as the mass difference between these nodes is less than 1.00.
Selecting Spectra from an MSn Tree

Figure 86. Effect of changing the mass tolerance on the MSn tree

To expand the entire MSn tree

Right-click the MSn Tree area and choose Expand List.

To display all the individual scan items

Right-click the MSn Tree area and choose Include Individual Scans.

To display the spectrum for a single scan

In the MSn Tree area, double-click any of the Single Spectrum Precursor items or any of the Scan Number at Retention Time items.

A new Spectrum view appears in the Workspace.
To display an average spectrum

In the MSn Tree area, double-click an *Average Spectrum MSn precursor values (scan range)* item.

A new Spectrum view appears in the Workspace. The scan header includes the term Average Spectrum, the number of averaged scans, and the scan number range for the individual scans.

Figure 87 shows average MS2 level spectrum.

**Figure 87.** Average spectrum of two individual scans

To display a composite spectrum

**Note** The MSn tree includes a composite spectrum for each branch that includes multiple fragmentation levels.

In the MSn Tree area, double-click a *Composite Spectrum MSn precursor values* item.

A new Spectrum view appears in the Workspace. The scan header includes the term Composite Spectrum and the number of averaged scans.

Figure 88 shows a composite spectrum and the two scans (MS2 and MS3 fragmentation levels) that the application combined to create it.
To normalize a composite spectrum

Select the Normalize Composite Spectrum check box, and then double-click the composite spectrum of interest in the MSn tree.

Figure 89 shows the normalized composite spectrum for scans 3760 and 3761.
Specifying the Display Options for a Spectrum View

Use the Spectrum – Display Options toolbar to customize the display of the selected Spectrum or MultiSpectrum view.

To specify the display options for the Spectrum view, follow the procedures in these topics:

- Modifying the Scan Header for the Spectrum View
- Applying Local or Global Normalization in a MultiSpectrum View
- Labeling Spectrum Peaks
- Labeling APD Data in Spectrum Peaks
- Labeling Mass Spectrum Peaks with Chemical Formulas
- Changing the Y-Axis Scale of a Spectrum View
Modifying the Scan Header for the Spectrum View

By default, the scan header for the Spectrum view displays the following: Short File Name, Scan Number, Retention Time, Average Number of Scans, Background Subtraction Scan Numbers, Normalized Intensity, Polarity, Scan Filter String, and Mass Ranges.

Figure 90 shows a scan header for scan #166 at a retention time of 2.01 minutes and with background subtraction applied to two ranges.

Figure 90. Default scan header for scan #166 in steroids04.raw with background subtraction

❖ To add or delete information from the scan header for a Spectrum view

1. Open a raw data file.

2. If you are using a custom layout that does not include a Spectrum or MultiSpectrum view, in the Workspace Options toolbar, click Spectrum or Multi Spectrum.

3. Click the Spectrum (or MultiSpectrum) view of interest.

4. In the Spectrum – Display Options toolbar, click Scan Header.

   The Scan Header dialog box opens (Scan Headers and Scan Header Abbreviations).

5. Do the following:

   • To display a field, select its corresponding check box.
   • To hide a field, clear its corresponding check box.

6. Click OK.
Applying Local or Global Normalization in a MultiSpectrum View

In a MultiSpectrum view, you can normalize the mass spectra to the most intense peak in all the spectra, or you can normalize the mass spectral peaks in each spectrum to the most intense peak in the spectrum.

For information about displaying spectra in a MultiSpectrum view, see Creating a MultiSpectrum View and Changing Its Spectrum Plots.

❖ **To normalize each spectrum separately**

In the Normalization area of the Multi Spectrum – Display Options toolbar, click Local.

Figure 91 shows a set of locally normalized spectrum plots. Each spectrum is normalized to the most intense peak in the spectrum.

![Figure 91. Local normalization](image)

❖ **To normalize the spectra against the most intense peak across the spectra**

In the Normalization area of the Multi Spectrum – Display Options toolbar, click the Global icon, ![Global](image).

Figure 92 shows the effect of global normalization where both spectrum plots are normalized to the largest peak across the plots. The global normalization (GNL) is equal to 2E5, and the low intensity peak in scan# 3716 is barely visible.
Labeling Spectrum Peaks

Use the Labels area of the Spectrum – Display Options toolbar to add or remove labels that appear above the spectrum peaks. By default, the application adds the mass-to-charge label to each mass spectrum peak.

**Note** The Precursor Flag and Nearby Precursor icons do not add text labels to the spectrum peaks; these icons add markers to the precursor scans. For instructions on how to use these markers, see Using Precursor Markers to Open Data-Dependent Scans.

**To add or remove the labels for the mass spectrum peaks**

1. Open a raw data file and display a spectrum in a Spectrum view (or MultiSpectrum view).
2. Click the Spectrum (or MultiSpectrum) view of interest.
3. Click the **Display Options** tab to open the Display Options toolbar.
4. In the Labels area, click the labels that you want to display.

**Note** With the default value set to 0 in the Label Threshold box, the application labels all the mass peaks.

5. (Optional) To avoid labeling low-intensity mass peaks, type a higher relative intensity value in the Label Threshold box.

**Figure 93** shows a mass spectrum with several labels and a labeling threshold of 50% relative intensity.
Labeling APD Data in Spectrum Peaks

Use the Labels area of the Spectrum – Display Options toolbar to add or remove labels specific to Advanced Peak Determination (APD) data—such as species ID, monoisotopic mass, and top peak in the cluster.

**Note** To display the APD extended data in the FreeStyle application, you must write the extended data to the raw data file during acquisition. You can write the APD extended data to the raw data file for the Exploris and Tribrid MS instruments. Depending on the instrument, you might need to set the development diagnostics menu to write the extra raw data to the raw data file.

The APD algorithm improves the determination of the charge states and monoisotopic m/z values of isotopic envelopes.

**Monoisotopic mass**—The monoisotopic mass of a species is the mass obtained using the exact mass of the most abundant isotope of each constituent element.

**Top peak**—A centroid is labeled as the top peak of an isotope distribution by the APD algorithm if it triggered a new charge state detection based on the surrounding peak pattern.
Average mass—The average mass is the average of the neutral masses of the top peaks of the charge envelope members. The average mass is available instead of the monoisotopic mass if the species is not isotopically resolved. When the APD algorithm identifies the mass as an average mass, the application does the following:

- Labels the mass spectral peaks with average mass in the active spectrum view.
- Labels the mass spectral peaks with the label AvgM in the format: AvgM=123.05.
- For the mass spectral peaks with no identified average mass, applies no label.

To add or remove the APD-specific labels

1. Open a raw data file that contains APD data, and display a spectrum in a Spectrum view (or MultiSpectrum view).
2. Click the Spectrum (or MultiSpectrum) view to select it.
3. Click the Display Options tab to open the Display Options toolbar.
4. In the Labels area, click the labels that you want to display.

- Displays the monoisotopic mass and peak label (MM) in the Spectrum view. Alternatively, when the species is not isotopically resolved, this icon displays the average mass (AvgM) instead of the monoisotopic mass.
- Displays a species ID label (S) to the mass spectral peaks that belong to the same chemical species (with the same species ID).
- Displays a label (T) on the top peak in the cluster as identified by the Advanced Peak Determination algorithm.

![Figure 94. APD labels](image)

Labeling Mass Spectrum Peaks with Chemical Formulas

You can add formula labels to the peaks in your mass spectra.

**Note** When calculating the elemental compositions of all the mass peaks in a spectrum, the application uses the settings on the default Elemental Composition page. When you change the settings on this page, the new settings take effect after you restart the application.
To add formula labels to the mass peaks in a spectrum plot

1. Click a Spectrum view to select it.
2. Open the Workspace Processing toolbar.

**Figure 95.** Workspace Processing toolbar for the Spectrum view

![Workspace Processing toolbar](image)

3. On the Elemental Composition page in the Info Bar, select the **Pick Scan** option, and then click **Calculate**.

The Theoretical Mass, $\mathcal{M}$, and Delta Mass, $\Delta \mathcal{M}$, icons become available in the Labels area of the Display Options toolbar.

**Figure 96** shows the parameters on the Elemental Composition page and the chemical formula labels in the Spectrum view. You can use the Elemental Composition page to find the best matching formulas for a specific mass peak.
4. (Optional) To label the peaks with the theoretical mass for the displayed formula and the mass difference between the experimental \( m/z \) value and the theoretical mass, click **Theo.** and **Delta Mass**, respectively.

Figure 97 shows the mass peaks labels, from top to bottom: the experimental \( m/z \) value, the formula and calculated \( m/z \) value of the ion, and the mass difference between the experimental \( m/z \) value and the calculated \( m/z \) value.

**Figure 97.** Mass peaks with formula, theoretical mass, and delta mass labels
Changing the Y-Axis Scale of a Spectrum View

You can select the relative intensity scale or the absolute intensity scale for the y axis of a spectrum plot.

With the factory default template, a Spectrum View opens with the y-axis scale set to relative intensity and a y-axis label of Relative Abundance.

❖ **To change the y-axis scale from relative intensity to absolute intensity**

1. Click a Spectrum view to select it.
2. Click the Display Options tab to open the Display Options toolbar.
3. In the Y-Scale area of the Display Options toolbar, click Absolute.

In the Normalization area, the y-axis maximum changes from 100% to the normalization (NL) value (or slightly less than the NL value) for the scan, and the y-axis label changes from Relative Abundance to Intensity (Figure 98).

Figure 98. Spectrum plot of (absolute) Intensity versus m/z value

Changing the Zoom Level in a Spectrum View or MultiSpectrum View

You can zoom in on or out of a region of a spectrum by using the Spectrum – Zoom Options toolbar, the MultiSpectrum – Zoom Options toolbar, or the mouse pointer.

Follow these procedures:

- To incrementally zoom in and out on the x axis
- To zoom in on a specific section of the x axis
- To incrementally zoom in and out on the y axis
- To reset the zoom level of the x and y axes
To incrementally zoom in and out on the x axis

1. Select the view.
2. To zoom in, click the **Zoom In X** icon, in the Zoom Options toolbar.
   Each click zooms in on a 50% smaller section of the x axis—that is, it decreases the displayed range by a factor of 2.
3. To zoom out, click the **Zoom Out X** icon, in the Zoom Options toolbar.
   Each click increases the displayed m/z range by 200%.

To zoom in on a specific section of the x axis

Drag the pointer horizontally across the specific section of the x axis.

To incrementally zoom in and out on the y axis

1. Select the view.
2. In the Zoom Options toolbar, click the **Zoom In Y** icon, .
   Each click zooms in on a 50% smaller section of the y axis. For example, in a Spectrum view where the y axis is set to relative abundance, clicking once zooms in on the 0 to 50% range, clicking twice zooms in on the 0 to 25% range, and so on.
3. To incrementally undo the zoom level, do the following:
   - Click the **Zoom Out Y** icon, .
   - or—
   - Right-click the view and choose **Undo Zoom**.

To reset the zoom level of the x and y axes

1. Select the view.
2. Do either of the following:
   - In the Zoom Options toolbar, click the **Reset** icon, .
   - or—
   - Right-click the view and choose **Reset Scaling**.
Spectra-specific Toolbars

Use the spectra-specific toolbars as follows:

- **Spectrum – Workspace Processing Toolbar:** For determining the elemental composition of an ion; simulating isotope distributions; Xtract deconvolution; NIST library, mzVault library, and mzCloud.org searches.
- **Spectrum – Display Options Toolbar:** For customizing the Spectrum view
- **MultiSpectrum – Display Options Toolbar:** For customizing the MultiSpectrum view
- **Spectrum List – Display Options Toolbar:** For formatting the spectrum list

These two toolbars are specific to the Spectrum, MultiSpectrum, and Chromatogram views:

- **Zoom Options Toolbar:** For adjusting the display of the spectra (and chromatograms).
- **Text and Graphic Annotation Toolbar:** For annotating spectra (and chromatograms) with text, lines, boxes, and symbols.

**Spectrum – Workspace Processing Toolbar**

Use the features in the Elemental Analysis, Protein Analysis, and Library Search areas of the Workspace Processing toolbar to analyze spectra.

- **To display the Workspace Processing toolbar for a spectrum**
  1. Click a Spectrum view or a MultiSpectrum view to select it.
  2. Click the **Workspace Processing** tab to open the Workspace Processing toolbar.

Figure 99 shows the Workspace Processing toolbar, and Table 28 describes the toolbar commands.

**Figure 99.** Workspace Processing toolbar

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Elemental Analysis area</strong></td>
<td></td>
</tr>
<tr>
<td>Isotope Simulation</td>
<td>Displays the Isotope Simulation page in the Info Bar, where you create a simulated isotopic distribution spectrum of a chemical formula.</td>
</tr>
</tbody>
</table>
Table 28. Spectra-specific Workspace Processing commands (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Protein Analysis area</strong></td>
<td></td>
</tr>
<tr>
<td>Peptide Fragments</td>
<td>Displays the Peptide Fragments page of the Info Bar, where you set parameters to annotate the active spectrum using the CID or ETD activation types. Not available for Multi Spectrum view.</td>
</tr>
<tr>
<td>Xtract Deconvolution</td>
<td>Displays the Xtract page of the Info Bar, where you set parameters for the Xtract algorithm. See Chapter 13, “Running the Xtract Algorithm on Spectra and Chromatogram Data.”</td>
</tr>
<tr>
<td><strong>Library Search area</strong></td>
<td></td>
</tr>
<tr>
<td>Library Search menu</td>
<td></td>
</tr>
<tr>
<td>NIST Search</td>
<td>Opens the Library Search page in the Info Bar, where you run a NIST library search on the selected spectrum and displays the results in the NIST Search Results view. You can modify the library search parameters on the Modifying a NIST Search from the NIST Search Page of the Info Bar. See Performing a Local NIST or mzVault Library Search.</td>
</tr>
<tr>
<td>mzVault Search</td>
<td>Opens the mzVault Search page in the Info Bar, runs an mzVault library search on the selected spectrum, and displays the results in the mzVault Search Results and mzVault Chemical Structure views.</td>
</tr>
<tr>
<td>mzCloud Search</td>
<td>Uploads a spectrum to mzCloud.org for a search. The website opens and displays the search parameters. Select the appropriate settings and click OK. The website displays the results. See Searching the Online mzCloud Mass Spectral Database.</td>
</tr>
<tr>
<td>Export to NIST</td>
<td>Exports a spectrum to the NIST application for a search. The NIST application opens and displays the search results. See Exporting a Mass Spectrum to the NIST MS Search Application.</td>
</tr>
<tr>
<td>Library Manager</td>
<td>Opens the Thermo Library Manager dialog box, where you select or create NIST libraries. See Managing Libraries.</td>
</tr>
</tbody>
</table>

**Spectrum – Display Options Toolbar**

Use the features in the Spectrum – Display Options toolbar to customize the Spectrum view (see Specifying the Display Options for a Spectrum View). You can label the spectral peaks, determine the elemental composition for a peak, and specify how the application normalizes the spectrum.

- To display the Spectrum – Display Options toolbar
  1. Click a Spectrum view to select it.
  2. Click the **Display Options** tab to open the Display Options toolbar.
Figure 100 shows the Spectrum – Display Options toolbar. Table 29 describes the features in the Spectrum – Display Options toolbar.

**Figure 100.** Spectrum – Display Options toolbar

![Spectrum Display Options toolbar](image)

**Table 29.** Spectrum – Display Options toolbar commands (Sheet 1 of 4)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Format area</strong></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Displays the color palette, where you select the color of the spectrum.</td>
</tr>
<tr>
<td><strong>Labels area</strong></td>
<td></td>
</tr>
<tr>
<td>Nearby Precursors</td>
<td>Adds markers (○) to the tops of the spectrum peaks in scans that have related data-dependent scans. Depending on the configuration setting for the Nearby Precursor Plot Type parameter, clicking a peak’s marker opens a Spectrum view with an average spectrum for all the related data-dependent scans or a MultiSpectrum view with a separate plot for each related data-dependent scan (within the specified RT window).</td>
</tr>
<tr>
<td>Mass to Charge</td>
<td>Adds a mass-to-charge ratio label to each peak in the spectrum.</td>
</tr>
<tr>
<td>Z+ Charge State</td>
<td>Adds a charge state label to each peak in the spectrum.</td>
</tr>
<tr>
<td>Peak Resolution</td>
<td>Adds a peak resolution label to each peak in the spectrum.</td>
</tr>
<tr>
<td>Precursor Flag</td>
<td>Adds one or more pink triangles to a peak if it triggered data-dependent scans.</td>
</tr>
<tr>
<td>Noise</td>
<td>Adds a noise magnitude label to each peak in the spectrum.</td>
</tr>
<tr>
<td>Signal To Noise</td>
<td>Adds a signal-to-noise label (intensity/noise) to each peak in the spectrum.</td>
</tr>
<tr>
<td>Width (m/r)</td>
<td>Adds a width label to each peak in the spectrum. The width equals the mass, in mμm units, divided by the peak resolution.</td>
</tr>
<tr>
<td>Baseline</td>
<td>Adds a baseline label to each peak in the spectrum.</td>
</tr>
</tbody>
</table>
### Flags
Displays one of the following letters or symbols above flagged peaks:
- **S**—Saturated peaks are peaks with a signal too large to measure—that is, the signal was so high that it was outside the dynamic range of the detector, causing saturation.
- **R**—Reference peaks are peaks from a reference compound used for an internal recalibration of a scan.
- **L**—Lock peaks are local references used to calculate the accurate mass of nearby peaks.
- **E**—Exception peaks are peaks from a reference compound that are not used for recalibration. These are typically small isotopes or fragments of the main references.
- **#**—Mathematically modified peaks are peaks where the peak mass was recalculated by the instrument, usually due to a calibration process.
- **M**—Merged peaks are peaks where the centroider combined two nearby peaks.
- **F**—Fragmented peaks are peaks separated into multiple peaks by the centroiding activity.
- **T**—Top peak in the cluster identified by the Advanced Peak Determination algorithm.
- **U**—Peak identified as an unresolved isotope where the resolution settings used to acquire the data are not sufficient to resolve isotopes of a given mass and charge state as determined from charge state deconvolution.

### Monoisotopic Mass
Displays the monoisotopic mass and peak label (MM) in the Spectrum view.
- For peaks in the cluster that are not monoisotopic, the label is shown as MM:1234.
- For the monoisotopic peak in the cluster, the label is shown as MM=1234.

### Species ID
Displays a species ID label (S) in the Spectrum view on the top of mass spectral peaks that belong to the same chemical species (with the same species ID). For mass spectral peaks that do not have assigned species ID, the application does not label the peak.

The application updates the Spectrum List view with a Species ID column and data.

Format: S=123

### Elemental Comp.
Displays the formula labels on all the peaks in the spectrum.

### Theo.
Labels the peaks in the mass spectrum with the theoretical mass-to-charge ratios of the best matched ions.
Delta Mass Labels the peaks in the mass spectrum with the differences between the experimentally
determined mass-to-charge ratios and the theoretical mass-to-charge ratios.

The unit options are amu (atomic mass units), mmu (millimass units), and ppm
(parts-per-million).

Label Threshold Sets the percentage of the base peak so that the application labels only the peaks above
that percentage. For example, if the base peak is 100 percent and the label threshold
setting is 50 percent, the application labels only the peaks in the Spectrum view or
MultiSpectrum view that are at or above 50 percent.

Range: 0–100; default: 0%

Reference area
Displays or hides the reference and exception peaks in the Spectrum view.

Normalization area
Use the features in the Normalization area to specify how the application normalizes the mass spectrum.

Local Scales the y-axis range as a percentage.

Global Normalizes the spectra traces so that the most intense peak of all the spectra is 100
percent.

Available for a MultiSpectrum view.

Off Scales all spectra traces by using the maximum and minimum absolute values.

Note When you set the normalization to Off, the y-axis scale to Absolute, and
change the trace type, the new trace might not display. To remedy this, set the
normalization to Local and then to Off.

Min. Displays the minimum of the y axis. Enter a value in the box to change the minimum.
For local normalization, the value is a percentage. For normalization set to Off, the
value is an intensity.

Max. Displays the maximum of the y axis. Enter a value in the box to change the maximum.
For local normalization, the value is a percentage. For normalization set to Off, the
value is an intensity.

Y-Scale area
Use the features in the Y-Scale area to specify how the application scales the y axis.

Relative Plots the spectrum with the intensity expressed in counts.
Table 29. Spectrum – Display Options toolbar commands (Sheet 4 of 4)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Y</strong></td>
<td>Absolute</td>
</tr>
</tbody>
</table>

**Y Axis**

Use the features in the Y Axis area to specify how the application labels the y axis.

- **Show Labels** Shows or hides the y-axis label.
- **Offset Axis** Sets the location of the displayed plot a specified distance from the y axis. The y-axis offset moves the x axis slightly to the right of the y axis so that you can see plot details at low x-axis values.

**X Axis area**

Use the features in the X Axis area to specify how the application labels the x axis.

- **Show Labels** Shows or hides the x-axis label.
- **Offset Axis** Sets the location for the displayed plot a specified distance from the x axis. The x-axis offset moves the y axis up slightly so that you can see plot details at low y-axis values.

**Legend area**

- **Scan Header** Opens the Scan Header dialog box, where you specify what scan header information the Spectrum view displays. For additional information, see Scan Headers and Scan Header Abbreviations.

**MultiSpectrum – Display Options Toolbar**

Use the features in the Spectrum – Display Options toolbar to customize the MultiSpectrum view.

Figure 101. MultiSpectrum – Display Options toolbar
In addition to the Display Options in the Spectrum view, Table 30 describes the Format and Label options specific to the MultiSpectrum – Display Options toolbar. For information about the other toolbar areas, see Spectrum – Display Options Toolbar.

**Table 30.** Spectrum – Display Options toolbar features

<table>
<thead>
<tr>
<th>Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Format area</strong></td>
<td></td>
</tr>
<tr>
<td>Plot Options menu</td>
<td></td>
</tr>
<tr>
<td>Stack</td>
<td>Vertically stacks the spectrum traces.</td>
</tr>
<tr>
<td>Overlay</td>
<td>Vertically overlays the spectrum traces with an optional horizontal skew (time offset).</td>
</tr>
<tr>
<td>Draw Backdrop</td>
<td>Draws a backdrop for overlaid plots.</td>
</tr>
<tr>
<td>Skew</td>
<td>Sets the skew angle (time offset) to a value from 0–45 degrees for an overlay arrangement of spectrum traces.</td>
</tr>
<tr>
<td>Elevation</td>
<td>Sets the vertical spacing for an overlay arrangement of spectrum traces.</td>
</tr>
</tbody>
</table>

To set the skew, drag the Skew slider.

To set the vertical spacing, drag the Elevation slider. Move the Elevation slider to the farthest left to overlay the plots on top of each other.

**Spectra-specific Views**

The FreeStyle window has these spectra-specific views:

- Spectrum view: Displays a spectrum corresponding to the retention time or scan number that you select in the Chromatogram view.
- MultiSpectrum view: Displays multiple spectra, but only the active spectrum updates corresponding to the retention time or scan number that you select in the Chromatogram view.
- Spectrum List view: Lists in tabular form the positions, intensities, and relative intensities of the peaks in the Spectrum view.

For information about the shortcut menu for the Spectrum and MultiSpectrum views, see Table 32.

For more information, see these topics:

- Spectrum View
- MultiSpectrum View
- Spectrum List View (in the Viewing Experiment and Instrument Information chapter)
Spectrum View

The Spectrum view (Figure 102) displays a spectrum for the retention time that you either select in a chromatogram trace or specify in the Scan Ranges dialog box.

For information about displaying and reviewing the spectral data in a raw data file, see the list of topics at the beginning of this chapter, “Reviewing Spectral Data.”

To add a Spectrum view to the Workspace

1. Click the Workspace Options tab to open the Workspace Options toolbar.
2. Click Spectrum and choose Insert View from the dropdown menu.

Figure 102 shows an example of a selected Spectrum view. The view’s title bar displays the scan number of the displayed spectrum, the file name of the raw data file, and the view’s link status. C1T1 specifies that the view is linked to trace 1 in Chromatogram view 1.

Figure 102. Spectrum view

Note: You can set a minimum trace height value in centimeters on the Default Workspace Options page. When you adjust the height of the Spectrum view, if its height becomes smaller than the set minimum value, a scrollbar automatically appears to the right of the view.
The scan header describes the experiment. Table 31 describes the default scan header information. If the scan header is not visible, resize the Spectrum view.

**Table 31.** Default header information symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#S</td>
<td>Scan number</td>
</tr>
<tr>
<td>RT</td>
<td>Retention time</td>
</tr>
<tr>
<td>AV</td>
<td>Averaged (followed by the number of averaged scans)</td>
</tr>
<tr>
<td>SB</td>
<td>Subtracted (followed by the number of subtracted scans and the scan range)</td>
</tr>
<tr>
<td>NL</td>
<td>Normalization level</td>
</tr>
<tr>
<td>T</td>
<td>Scan filter string</td>
</tr>
</tbody>
</table>

Right-clicking a Spectrum or MultiSpectrum view displays a shortcut menu (Figure 103) with the commands described in Table 32.

**Figure 103.** Shortcut menu for the Spectrum view (left) or the MultiSpectrum view (right)

**Table 32.** Spectrum (or MultiSpectrum) view shortcut menu commands (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset Scaling</td>
<td>Resets the scaling of the plot in the Spectrum view or all the plots in the MultiSpectrum view.</td>
</tr>
<tr>
<td>Copy To Clipboard</td>
<td>Copies an image of the Spectrum view to the Clipboard.</td>
</tr>
<tr>
<td>Undo Zoom</td>
<td>Undoes the last zoom.</td>
</tr>
<tr>
<td>Redo Zoom</td>
<td>Reapplies the last zoom that you undid.</td>
</tr>
<tr>
<td>Link to Chromatogram / Release from Chromatogram</td>
<td>Links or releases the selected spectrum from its chromatogram.</td>
</tr>
<tr>
<td>Ranges</td>
<td>Opens the Spectrum Ranges dialog box for defining the spectrum.</td>
</tr>
</tbody>
</table>
Panel View

These toolbars are available when a Spectrum view or MultiSpectrum view is selected:

- **Spectrum – Workspace Processing Toolbar**
- **Spectrum – Display Options Toolbar**
- **Zoom Options Toolbar**
- **Text and Graphic Annotation Toolbar**

### MultiSpectrum View

Use a MultiSpectrum view to display multiple spectrum traces when you want to compare the traces using the same normalization level or you want to simultaneously zoom in on the same mass range.

**Note** In the Normalization area of the Spectrum – Display Options toolbar, the Global icon is unavailable when the spectra being compared are in two separate views.

Instead of zooming in on each spectrum individually in a Spectrum view, use a MultiSpectrum view to zoom in and out on all of the spectra at once. In a MultiSpectrum view, the selected spectrum (the spectrum with the darker gray background) is the only one that updates when you click the chromatogram.

You can perform background subtraction, Xtract deconvolving and deisotoping, isotope simulation, or library searches on any selected spectrum in this view.

The MultiSpectrum view’s shortcut menu contains the same commands as that for the Spectrum view with the exception of one additional command—Undo Delete Spectrum.

To create and work with a MultiSpectrum view, see [Creating a MultiSpectrum View and Changing Its Spectrum Plots](#).

For more information about the MultiSpectrum view and its shortcut menu, see [Spectrum View](#).
Spectrum Ranges Dialog Box

Use the Spectrum Ranges dialog box to select the spectra to display, create an average spectrum, and perform background subtraction.

Table 33 describes the columns in the Spectrum Ranges dialog box.

**Table 33. Spectrum Ranges dialog box**

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Specifies whether to add the defined spectrum to the Spectrum or MultiSpectrum view.</td>
</tr>
<tr>
<td>Release</td>
<td>Specifies the linkage status of the defined spectrum.</td>
</tr>
<tr>
<td></td>
<td>Selected: Releases the spectrum from the chromatogram.</td>
</tr>
<tr>
<td></td>
<td>Clear: Links the spectrum to the chromatogram.</td>
</tr>
<tr>
<td>File Name</td>
<td>Specifies the location and file name of the raw data file with the spectral data of interest.</td>
</tr>
<tr>
<td>Detector Type</td>
<td>Specifies the detector used to acquire the data.</td>
</tr>
<tr>
<td></td>
<td>Unavailable when the spectrum is linked to a chromatogram.</td>
</tr>
<tr>
<td>Filter</td>
<td>Specifies the scan filter (same selections as the Scan Filters page of the Info bar).</td>
</tr>
<tr>
<td></td>
<td>Unavailable when the spectrum is linked to a chromatogram.</td>
</tr>
<tr>
<td>Retention Time</td>
<td>Specifies the retention time for a single spectrum or the retention time range for an average spectrum.</td>
</tr>
<tr>
<td></td>
<td>The Retention Time and Scan Number columns are interactive; that is, changing the retention time range updates the scan number range.</td>
</tr>
<tr>
<td>Scan Number</td>
<td>Specifies the scan number for a single spectrum or the scan number range for an average spectrum.</td>
</tr>
<tr>
<td>Subtract Background</td>
<td>Specifies whether to perform background subtraction or whether to subtract the scans from one or two time ranges.</td>
</tr>
<tr>
<td>Background Range 1</td>
<td>Specifies the time range for one set of background scans.</td>
</tr>
<tr>
<td></td>
<td>Format: TimeStart–TimeEnd, where the start time point is earlier than the end time point</td>
</tr>
<tr>
<td>Background Range 2</td>
<td>Specifies the time range for a second set of background scans.</td>
</tr>
</tbody>
</table>
Use the MSn Browser page in the Info Bar to select spectra of interest from an MS tree view of the spectra in a raw data file.

For information about displaying spectra, see Selecting Spectra from an MSn Tree.

Figure 104 shows the MSn Browser page, and Table 34 describes the parameters on the page.

**Figure 104.** Info Bar – MSn Browser page (with a collapsed MSn tree)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MSn Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>Time Range (min)</td>
<td>Specifies the time range of the MSn Tree (see To filter the MSn tree by a selected time range). Limits the spectra available for display in the MSn tree to MS2 or higher level scans acquired during the specified time range. There are two ways to change the Time Range: • Type the time range in minutes in the Time Range box. The format is From-To. • Select the Track check box, and then drag the pointer horizontally across the Chromatogram view from the minimum time to the maximum time of interest. Default: 0.00–acquisition time (in minutes)</td>
</tr>
</tbody>
</table>

**Note** The MS^n browser information page is not available for all Thermo Scientific mass spectrometers.
4 Reviewing Spectral Data

**MSn Browser Page**

**Track**
Activates the selection of a time range by using the mouse pointer. To reset the time range, right-click the Chromatogram view and choose **Reset Scaling**.
Default: Clear

**Mass Range**
Specifies the mass range of the MSn Tree (see **To filter the MSn tree by a selected mass range**).
The format is *From–To*.
Default: * (Mass range from the instrument method)

**Mass Tolerance**
Specifies the mass tolerance for grouping the precursor nodes and their associated scans. Decreasing the mass tolerance to 0.00 creates an MSn Tree where most, if not all, the individual scans are associated with a separate MS2 precursor node (see **To modify the grouping of the scan data in the MSn tree**).
Default: 0.05 m/z; Range: 0.00–10.00 m/z

**Normalize Composite Spectrum**
Normalizes the spectral peaks in a composite spectrum so that you can view low-intensity peaks from the higher-order fragmentation spectra (see **To normalize a composite spectrum**).
Each MS^n spectrum is individually normalized (NL) so that its highest peak is displayed at a Relative Abundance of 100%; therefore, the relative peak heights of this display are not meaningful. For example, a composite spectrum for an MS^3 experiment displays both the MS^2 base peak and the MS^3 base peak at a Relative Abundance of 100% (unless the base peaks in the MS2 and MS3 are within the specified mass tolerance) and maintains all other relative abundances of the other ions in each spectrum. When the base peaks in the MS2 and MS3 scans are within the specified mass tolerance, the application averages these peaks, causing the Relative Abundance of the MS3 base peak to be less than 100%.

**MSn Tree**

**MS2 Precursor nodes**
Display the precursor masses that triggered the MS2 level scans. To display the spectrum tree for each node, click the expand icon to the left of the node, or right-click the MSn Tree view and choose **Expand List**.

**MSn Precursor nodes**
Display the precursor masses that triggered the MSn level scans.
### Table 34. MSn Browser page parameters (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Spectrum</td>
<td>Double-click to display a Spectrum view with the averaged spectrum for the selected MSn level. The MSn tree includes an average spectrum when the data file includes scans for the selected scan filter.</td>
</tr>
<tr>
<td>Composite Spectrum</td>
<td>Double-click to display a Spectrum view with the composite spectrum for all the MSn levels down to the selected MSn level.</td>
</tr>
<tr>
<td></td>
<td>A composite spectrum for an MSn level is a summed spectrum of all the fragmentation scans derived from the same original precursor mass down to the current level.</td>
</tr>
<tr>
<td>Single Spectrum or Scan Number at Time</td>
<td>Double-click to display a Spectrum view for the specified scan number.</td>
</tr>
<tr>
<td><strong>Shortcut menu</strong></td>
<td></td>
</tr>
<tr>
<td>Include Individual Scans</td>
<td>Displays the individual scans (see To display all the individual scan items).</td>
</tr>
<tr>
<td>Normalize Composite Spectrum</td>
<td>Normalizes the composite spectra (see To normalize a composite spectrum).</td>
</tr>
<tr>
<td>Expand List</td>
<td>Expands all the MSn Precursor nodes (see To expand the entire MSn tree).</td>
</tr>
<tr>
<td></td>
<td>Available when the MSn tree is collapsed.</td>
</tr>
<tr>
<td>Collapse List</td>
<td>Collapses all the MS2 Precursor nodes.</td>
</tr>
<tr>
<td></td>
<td>Available when the MSn tree is expanded.</td>
</tr>
<tr>
<td>Export</td>
<td>Copies the MSn Tree to the Clipboard.</td>
</tr>
<tr>
<td>Print</td>
<td>Opens the Print dialog box where you can specify your print preferences and print the contents of the MSn Tree.</td>
</tr>
</tbody>
</table>
Reviewing Map Data

Use the Map View-specific toolbars and display options of the FreeStyle application to review the map view data from mass spectrometer.

These procedures describe how to set the ranges and display options for a map view.

### Contents
- Working with the Map View
- Adding Map Views to the Workspace
- Changing the Zoom level of a Map View
- Linking and Releasing Map to and from a Chromatogram
- Map View – Specific Toolbars
- Map Ranges Dialog Box
- Setting the Map Display Options
- Setting the Format Options

### Working with the Map View

A map is a 2D or 3D representation of an analysis showing the mass scans acquired during an analysis. Use the Freestyle application to open a raw data file, create map views, and customize using the display options.

The Map View consists of a time point (x axis) versus an m/z value (z axis) versus a relative abundance value (y axis) map plot. The scan header contains File name, RT range, Mass range, NL values, and filter details. These values change based on the changes in the Map View.
Adding Map Views to the Workspace

You can add multiple Map Views to the workspace.

❖ To add a Map View

1. Open a raw data file (see Opening Raw Data Files or Sequence Files).
2. With the factory default layout, the Chromatogram view appears at the top and the Spectrum view appears at the bottom.
3. In the Workspace Options toolbar, click Map View and choose Insert View from the dropdown menu.

A new Map View opens for each selected chromatogram with RT on the x axis and m/z on the z axis.

Note When the Workspace includes one or more Chromatogram views, a map view of the selected or active Chromatogram view appears.

When the Workspace does not include a Chromatogram view, a map view of the chromatogram associated with the active spectrum view appears.

You can create multiple map views, but a single map view cannot have multiple traces. To increase the intensity, use the Up and Down arrow keys on your computer.
Displaying the Scan for a Time Point in Map View

To display the scan corresponding to a specific time point

1. Select the Map View.
2. Click any time point.

In the Map View, a red vertical marker, ▼, indicates the selected data point. The Spectrum view displays the spectrum for that retention time or scan number. The Retention Time marker position in the chromatogram also is updated correspondingly to sync with the Map View.

Linking and Releasing Map to and from a Chromatogram

When you create a Map View in a workspace, the application automatically links the map view to the active chromatogram trace. The displayed map view changes when you click another trace in the linked chromatogram view. If you do not want to change the map view, you can release the map view from the trace and link to another chromatogram trace.

See these topics:

- Linking Status of a Map View
- Releasing a Linked Map View from the Chromatogram
- Linking a Map View to a Chromatogram

Linking Status of a Map View

When you link or release the map view, the application appends the linking status to the view’s name.

Figure 106. Map View Linking Status

Table 35 describes the different linking status for a Map View.
Releasing a Linked Map View from the Chromatogram

In a Map View, the title bar of the view’s name indicates the linking status of the Map View.

To release a Map View from its linked chromatogram

Right-click the Map View and choose Release from Chromatogram.

The application releases the link to the chromatogram trace and appends the following text to the view’s name: Released.

Note When you close the chromatogram trace linked to a Map View, the application automatically releases the linking status. The Map View displays the RT marker, which is not synced with a chromatogram or spectra.

Table 35. Map View Linking Status

<table>
<thead>
<tr>
<th>Linking status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link to chromatogram</td>
<td>When a Map View is linked to a chromatogram, the title bar of the Map View displays the linked chromatogram by its view number and trace number in the following format: CxTy</td>
</tr>
<tr>
<td></td>
<td>where</td>
</tr>
<tr>
<td></td>
<td>$x$ = the number of the Chromatogram view</td>
</tr>
<tr>
<td></td>
<td>$y$ = the number of the trace in the Chromatogram view</td>
</tr>
<tr>
<td>Available for linking</td>
<td>The following text is appended to the title bar of the Map View—Select Trace to Link.</td>
</tr>
<tr>
<td></td>
<td>When a map view is available for linking, clicking any chromatogram in the Workspace links the view to the selected chromatogram, updates the RT marker in Map View and displays the spectrum based on the selected time point in the Chromatogram trace, and changes the appended text in the view’s title bar to CxTy.</td>
</tr>
<tr>
<td>Released</td>
<td>When you release a Map View from its chromatogram, the text appended to the Map View changes to Released. In the Released state, the Map View is not affected by any actions in the Chromatogram view. The Spectrum view also does not change as you navigate to different retention times. To update a released Map View, you must use the Map Ranges dialog box.</td>
</tr>
</tbody>
</table>
Linking a Map View to a Chromatogram

- **To link a map to a chromatogram**

1. Right-click the map and choose **Link to Chromatogram**. The application appends the following text to the view’s name: **Select trace to link**.
2. Click the chromatogram trace to link. The application links to the chromatogram trace and appends the following text to view’s name:

\[ \text{CxTy} \]

where \(x\) indicates the Chromatogram view’s number and \(y\) indicates the trace number.

Changing the Zoom level of a Map View

You can reset, zoom in, or out of a Map View using the mouse pointer, Zoom options toolbar, or right-click menu options.

To understand more about zooming a map view, follow these procedures:

- **Using the Mouse Pointer**

- **To zoom in and out using the mouse pointer**

Select the view, and do any of the following:

- To zoom in the retention time (\(x\) scale), position the mouse pointer and drag horizontally across the specific section. Release the mouse to zoom.
- To zoom in the \(m/z\) scale, position the mouse pointer and drag vertically across the specific section. Release the mouse to zoom.
- To zoom in both \(x\) and \(m/z\) scales, click and drag the mouse within the map to form a box containing the region to zoom. Release the mouse to zoom.
- To return to the previous scale, right-click and select **Undo Zoom**.

- **Using the Zoom Options Toolbar**

- **To zoom in and out on the \(x\) axis**

1. Select the view.
2. To zoom in, from the Zoom Options toolbar, click **Zoom In \(X\)**. Each click zooms in the \(x\) axis larger by a factor of two (2) to show more detail. For example, you can change the \(x\)-axis range from 0–20 to 5–15.
3. To zoom out, click **Zoom Out X**.

   Each click increases the Time (min) range from the center. For example, you can change the x-axis range from 7.5–12.5 to 5–15.

❖ **To zoom in and out on the y axis**

1. Select the view.

2. To zoom in, from the Zoom Options toolbar, click **Zoom In Y**.

   Each click zooms in on the y axis. by a factor of two from the current baseline.

3. To zoom out, click **Zoom Out Y**.

   Each click zooms out on the y axis by a factor of two. For example, you can change the y-axis range from 0–25 to 0–50.

❖ **To reset, undo and redo zoom of the x and y axes**

1. To reset scaling, do the following:
   - Select the view and from the Zoom Options toolbar, click **Reset**.
   -or—
   - Right-click the view and choose **Reset Scaling**.

2. To undo or redo zooming, right-click the view and choose **Undo Zoom** or **Redo Zoom** respectively.

### Map View – Specific Toolbars

Use the following map view-specific toolbars to create, format, and set map ranges and display options of map views.

- **Map View – Workspace Options Toolbar**
- **Map View – Display Options Toolbar**

### Map View – Workspace Options Toolbar

Use the features in the Workspace area of the Workspace Options toolbar to create map views and set the map ranges.

❖ **To display the Map View-specific Workspace Options toolbar**

1. Click the chromatogram or spectrum to select it.

2. Click the **Workspace Options** tab to open the Workspace Options toolbar.

3. Click **Map View** and choose **Insert View** from the dropdown menu.

   The Map View-specific workspace options appear.
Figure 107. Map View – Workspace Options toolbar

Table 36. Workspace Options – Workspace area features for the Map View

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map View menu</td>
<td></td>
</tr>
<tr>
<td>Ranges</td>
<td>Opens the Map Ranges dialog box to specify a filename and scan filter for the map.</td>
</tr>
<tr>
<td>Insert View</td>
<td>Adds a Map View of the active chromatogram or spectrum.</td>
</tr>
<tr>
<td></td>
<td>Displays a map of the currently selected raw file in the map view where you can view the retention time (RT) and m/z values.</td>
</tr>
</tbody>
</table>

Map View – Display Options Toolbar

Use the features in the Display Options toolbar to customize the Map View. You can format the 3D or 2D representation of the map view, define the colors based on intensity, label the axes, and specify the band width.

❖ To display the Map View – Display Options toolbar

1. Click a Map View to select it.

2. Click the Display Options tab to open the Display Options toolbar.

The Map View specific display options appear.

Figure 108. Map View – Display Options toolbar
### Table 37. Map View – Display Options toolbar icons (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Format area</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Density</strong></td>
<td>Displays different shades in the 2D representation of the map view, where colors represent the $m/z$ bands categorized based on the intensity percentage.</td>
</tr>
<tr>
<td><strong>Overlay</strong></td>
<td>Displays the 3D representation of the map view.</td>
</tr>
<tr>
<td><strong>Skew</strong></td>
<td>Sets the skew angle (time offset) to a value from 0–45 degrees for an overlay arrangement of Map View.</td>
</tr>
<tr>
<td><strong>Elevation</strong></td>
<td>Sets the vertical spacing for an overlay arrangement of Map View.</td>
</tr>
<tr>
<td><strong>Draw Backdrop</strong></td>
<td>Adds a backdrop to overlaid views.</td>
</tr>
<tr>
<td><strong>Fill</strong></td>
<td>Sets the filling style for map view. This is applicable only for 3D representation of the map view (when Overlay is selected).</td>
</tr>
<tr>
<td><strong>Shade</strong></td>
<td>Displays the color palette, where you select the colors of the traces in the Map View.</td>
</tr>
<tr>
<td><strong>Line</strong></td>
<td>Sets the color of the framing lines</td>
</tr>
<tr>
<td><strong>Fill Solid</strong></td>
<td>Sets the color of the solid fill.</td>
</tr>
<tr>
<td><strong>Backdrop</strong></td>
<td>Changes the color of the backdrop</td>
</tr>
<tr>
<td><strong>Gray Scale</strong></td>
<td>Plots the map in gray scale</td>
</tr>
<tr>
<td><strong>Log Scale</strong></td>
<td>Displays and clears the color of the map in a logarithmic scale. Factor width value for the log scale.</td>
</tr>
<tr>
<td><strong>Factor</strong></td>
<td>Range: 1.1 through 20.0</td>
</tr>
<tr>
<td><strong>Smoothing</strong></td>
<td>Displays a smoothed density plot for the color bands (bins of $m/z$ values) in the vertical direction. This is applicable only for 2D representation of the map view.</td>
</tr>
</tbody>
</table>
Table 37. Map View – Display Options toolbar icons (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>X Axis area</strong></td>
<td></td>
</tr>
<tr>
<td><img src="image" alt="Show Labels (X Axis)" /></td>
<td>Shows or hides the x-axis label.</td>
</tr>
<tr>
<td><img src="image" alt="Offset Axis (X Axis)" /></td>
<td>Sets the location of the displayed plot at a specified distance from the x axis.</td>
</tr>
<tr>
<td><strong>Y Axis area</strong></td>
<td></td>
</tr>
<tr>
<td><img src="image" alt="Show Labels (Y Axis)" /></td>
<td>Shows or hides the y-axis label.</td>
</tr>
<tr>
<td><img src="image" alt="Offset Axis (Y Axis)" /></td>
<td>Sets the location of the displayed plot a specified distance from the y axis.</td>
</tr>
<tr>
<td><strong>Z Axis area</strong></td>
<td></td>
</tr>
<tr>
<td><img src="image" alt="Show Labels (Y Axis)" /></td>
<td>Shows or hides the z-axis label.</td>
</tr>
<tr>
<td><strong>Axis Options area</strong></td>
<td></td>
</tr>
<tr>
<td><img src="image" alt="Show Grid Lines" /></td>
<td>Displays or clears the grid lines.</td>
</tr>
<tr>
<td><strong>Band Width area</strong></td>
<td></td>
</tr>
<tr>
<td><img src="image" alt="Band Width (amu)" /></td>
<td>Specifies a band width value from 0.001 to 50.</td>
</tr>
</tbody>
</table>
Map-Specific Views

The Map View displays a 2D or 3D representation of the map view of the selected chromatogram or spectrum. The title bar of the view displays the file name of the raw data file, RT range, Mass range, NL values, and the view’s link status. C1T1 specifies that the view is linked to Trace 1 in the Chromatogram1 view.

Figure 109. Map View Title bar

Map Ranges Dialog Box

Use the Map Ranges dialog box to select the raw data file to display in the Map View, detector type used to acquire the data, scan filter, and time and mass ranges.

To open the Map Ranges Dialog box

In the Workspace Options toolbar, click Map View and choose Ranges from the dropdown menu.

Figure 110. Map Ranges Box
Table 38 describes the columns in the Map Ranges dialog box.

**Table 38. Map Ranges dialog box**

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Specifies the linking status of the Map View.</td>
</tr>
<tr>
<td></td>
<td>Selected: Releases the map view from the chromatogram. Lets you to change</td>
</tr>
<tr>
<td></td>
<td>the Filter name and raw file.</td>
</tr>
<tr>
<td></td>
<td>Clear: Links the map view to the chromatogram. You cannot change the raw</td>
</tr>
<tr>
<td></td>
<td>file and filter name.</td>
</tr>
<tr>
<td>File Name</td>
<td>Specifies the location and file name of the raw data file.</td>
</tr>
<tr>
<td></td>
<td>When the map view is not linked to a chromatogram, a browse icon is available</td>
</tr>
<tr>
<td></td>
<td>to select a different raw data file.</td>
</tr>
<tr>
<td>Detector Type</td>
<td>Specifies the detector used to acquire the data. By default, the detector</td>
</tr>
<tr>
<td></td>
<td>type is set to MS and is non-editable.</td>
</tr>
<tr>
<td></td>
<td>Unavailable when the map view is linked to a chromatogram.</td>
</tr>
<tr>
<td>Time</td>
<td>Specifies a valid time range based on the raw file settings. Default: ‘*’.</td>
</tr>
<tr>
<td></td>
<td>• where ‘*’ indicates All.</td>
</tr>
<tr>
<td>Mass</td>
<td>Specifies a valid mass range based on the raw file settings. Default: ‘*’.</td>
</tr>
<tr>
<td></td>
<td>• where ‘*’ indicates All.</td>
</tr>
</tbody>
</table>

**Setting Map Ranges**

❖ **To set the file and filter options**

1. Click a map view to make it active.

2. From the Workspace Options toolbar, click **Map View** and choose **Ranges** from the dropdown menu or right-click and choose **Ranges**.
   
   By default, the map view is linked to the chromatogram.

3. To change the raw file and filter options, in the Map Ranges dialog box, select the release check box.

4. From the File Name list, click the dropdown arrow to select a file name or click the browse icon to select a different raw data file.

5. In the Filter box, type or select the scan filter from the dropdown list, which displays filter options stored in the raw data file.

6. In the Retention Time and Mass boxes, enter a valid retention time and mass range values.

7. To save the settings and close the Map Ranges dialog box, click **OK**.
Defining the Retention Time and Mass Ranges

You can define the time and mass ranges in the Retention Time and Mass boxes as follows:

- Enter valid start and end numeric values for the RT and mass ranges.
- or—
- Set the start value as ‘*’ and enter a valid end value.

The application uses the default start value from the raw file as the start value.
- or—
- Defines a valid start value and enter the end value as ‘*’.

The application takes the default end value from the raw file as the end value.

Saving a Map View

You can save customized map views in the layout in the Freestyle application.

❖ **To save a customized Map View in the layout**

1. Select the Map View that you want to save.
2. Click the **Workspace Options** tab to open the Workspace Options toolbar.
3. Click **Layouts** and choose an option to save the map view.
   
   The Map View is saved in the layout.

When you apply the saved map view in another view, it displays details, such as title bar number, state(s) (Dockable, Floating, Auto Hide), and the position of the map as it has been saved in the layout. It also displays the map ranges parameters and the status of the Map View (Linked or Released).

Setting the Map Display Options

Use the Display Options toolbar to set up the display options for a map view.

❖ **To open the Display Options dialog box for a map view**

1. Click the Map View to make it active.
2. Click the **Display Options** tab to open the Display Options toolbar.
3. Follow one or more of these procedures to set up the map display options:
   - Setting the Format Options
   - Setting the Map Axis Options
• Setting the Map Color Options
• Setting the Band Width

Setting the Format Options

Use the options in the Format area of the Display Options toolbar to format the Map View.

Figure 111. Format area

❖ To set the map format options

1. Click a map view to make it active.
2. Click the Display Options tab to open the Display Options toolbar.
3. To specify the arrangement style, select one of these options:
   • To display a density map showing different shades for each intensity, click Plot Options and choose Density from the dropdown menu.
     The default display option is Density.
   • To overlay plots vertically with optional horizontal skew (time offset) for the active map, click Plot Options and choose Overlay from the dropdown menu.
     The 3D view of the map appears.
4. To specify style options for overlaid (3D) plots, do the following in the Format area:
   • To set the elevation angle (from 0 to 60 degrees), drag the Elevation slider or click the left or right arrow on the Elevation slider until you reach the desired angle.
   • To set the skew angle (from 0 to 45 degrees), drag the Skew slider or click the left or right arrow on the Skew slider until you reach the desired angle.
     The default values for the Skew and Elevation sliders are set at 30.
   • To select a different filling style for the map view, select a fill option from the Fill list.
     The default fill pattern is intensity shaded.

The styles control the display of filling and outlining data within the map. Outlining (wireframing) produces lines between the scans (vertical or diagonal based on the skew) and the mass bands (horizontal). Data with each scan and mass band is displayed as either unfilled, filled with a solid color, or filled with a shade based on the intensity of the data (using the shade colors as represented in the 2D density map). Some modes draw a vertical line, which represents the intensity of each mass band at each scan.
Table 39 explains the available styles, and how they control filling and outlining (wireframe).

Tip: In the table, nonzero data refers to data, which when scaled to a color, would not provide a background color. When you want to view the smaller values of the plot, press the UP arrow key on the computer to increase the intensity scaling or set the log scale factor.

- To add a backdrop to 3D plots, click Draw Backdrop. To remove a backdrop, click the Draw Backdrop icon again.

Table 39. Style options for overlaid (3D) plots

<table>
<thead>
<tr>
<th>Modes</th>
<th>Fill</th>
<th>Frame</th>
<th>Vertical Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Lines</td>
<td>None</td>
<td>None</td>
<td>A vertical line at each scan and mass/band having non-zero data. All the lines are displayed of same color. To differentiate the lines, the bottom of each line is highlighted in tinted green.</td>
</tr>
<tr>
<td>Colored Lines</td>
<td>None</td>
<td>None</td>
<td>A vertical line at each scan and mass/band having non-zero data. The line is colored based on the intensity of the shade selected from the color palette.</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Creates a wireframe plot, showing small amounts of data that might otherwise hidden by large data sets</td>
<td>None</td>
</tr>
<tr>
<td>Solid Color</td>
<td>All non-zero bands are filled using the same color</td>
<td>Creates a wireframe that helps to separate the bands</td>
<td>None</td>
</tr>
<tr>
<td>Intensity shaded</td>
<td>All non-zero bands are filled and colored based on the shade selected from the color palette.</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Shaded with Frame</td>
<td>All non-zero bands are filled and colored based on the shade selected from the color palette.</td>
<td>Creates a wireframe that helps to separate the bands</td>
<td>None</td>
</tr>
</tbody>
</table>
Setting the Map Axis Options

The Map axis display options are based on the selected map view. For the Density view, the default x-axis is Time (min) and the default for the z-axis is m/z. For the overlay 3D view, there are three axes as follows:

- x axis – Time (min)
- y axis – Relative abundance
- z axis – m/z

**Figure 112. Display Options – Map Axis**

To set the map axis options

1. Click a Map View to make it active.
2. Click the **Display Options** tab to open the Display Options toolbar.
3. To show or hide the labels of x, y, or z axis, click the corresponding **Show Labels** icons.
4. To display the grid lines, click **Show Grid Lines**.
Setting the Map Color Options

Use the color options in the Display Options toolbar to set the color of the traces.

❖ To set the map color options

1. Click a Map View to make it active.
2. Click the Display Options tab to open the Display Options toolbar.
3. To select the color of the framing lines, from the Fill dropdown list in the Format area, choose Plain Lines.
4. In the Color area, click the Line Color icon.
   The color palette lets you select a preset color or customize a color.

   ![Color palette](image)

5. Click the color you want to use for the line color, or click Advanced, create a custom color, and click OK.

6. To select the color of the solid fill, from the Fill dropdown list in the Format area, choose Solid Color.

7. In the Color area, click the Fill Solid icon.
   The color palette lets you select a preset color or customize a color. See Color palette.

8. To select the color of the backdrop (background), do the following:
   a. In the Format area, click Plot Options and choose Overlay from the dropdown menu.
   b. In the Color area, click the Backdrop icon.
   The color palette lets you select a preset color or customize a color. See Color palette.

9. To select Gray Scale or color, do one of the following:
   • To plot the map in gray scale, click the Gray Scale icon.
   • To plot the map in color, click the Gray Scale icon again.
10. Use the shade icons (0%, 20%, 40%, 60%, 80%, and 100%) to change the map’s color at 0%, 20%, 40%, 60%, 80%, and 100% relative abundance.

11. To select log scale or linear scale, do the following:
   - To display the color of the map in a logarithmic scale, click the Log Scale icon. The factor width that you set in the Factor box determines the scaling between color bands.
   - To display the map in a linear scale, click the Log Scale icon again.

12. To select smoothing, click Density view and then click Smoothing.

   The solid color bands of the map view are converted to gradient color bands and the most intense band appears at the middle and gradually fades out to the upward and downward directions.

### Setting the Band Width

Use the Band Width option to specify the bandwidth in amu units. The \( m/z \) axis of the map view plot is directly related to the band width value entered in the \( m/z \) Band Width box. The default band width is set at 1.0 amu.

The Map View does not display all the peaks in scans. It merges data into mass bands displaying the most intense value in each scan. For example, when you scan a file from \( m/z \) 110 to 120, the map creates bands centered on each nominal mass, such as 109.5–110.5, 100.2–101.5, and so on. The view displays the most intense peak in each band. To increase the mass resolution, reduce the band size.

#### To define the band width in a map view

1. Open a raw data file and make a map view the active view.
2. Click the Display Options tab to open the Display Options toolbar.
3. On the Band Width area, in the \( m/z \) Band Width (amu) box, type a value from 0.001 to 50.

   ![Figure 114. Display Options – Band Width](image)

4. To save the setting and close the dialog box, press the ENTER key on your keyboard.
Analyzing MS Data using Data Analytics View

Use the Data Analytics View display options in the FreeStyle application to analyze the MS trending information from mass spectrometers. You can use the view to plot the chosen trace type properties of an MS trending detector type. You can also analyze different aspects such as frequency of occurrence, retention times, the quantity being plotted, categories, and so on. The analysis is available as a Histogram or Trend report.

Contents
- Adding Data Analytics View to the Workspace
- Plotting the Data as a Histogram
- Data Analytics View - Specific Toolbars
- Saving a Data Analytics Plot
- Data Analytics Ranges

Adding Data Analytics View to the Workspace

You can add multiple data analytics views to the workspace.

Figure 115. Data Analytics View

✧ To add a Data Analytics View

1. Open a raw data file (see Opening Raw Data Files or Sequence Files).

   With the factory default layout, the Chromatogram view appears at the top and the Spectrum view appears at the bottom.

2. In the Workspace Options toolbar, choose Data Analytics View – Insert View.
A new Data Analytics view opens for the active chromatogram. A Histogram plot displays the instrument status reading on the \( x \) axis and frequency on the \( y \) axis; and a Trend plot displays the time on the \( x \) axis and readback parameter on the \( y \) axis.

When you have selected the MS Trending detector type, the Data Analytics View process the information based on the selected trace type; otherwise, the first trace type is used to process the information.

**Note** You can add multiple Data Analytics views in the workspace. When the Workspace includes one or more Chromatogram views, a Data Analytics view of the selected or active trace of the Chromatogram view appears.

### Plotting the Data as a Histogram

When you create a new Data Analytics view with MS trending selected as the preferred trace type, a Histogram plot displays the instrument status reading plotted against the frequency. The data groups are represented as bins in the plot.

**Figure 116.** Histogram

![Histogram](image)

The MS Trending detector type data is displayed as follows in the view:

- The vertical axis of the plot is Frequency (or Number of Occurrences). The title of the vertical axis is Frequency.

- The horizontal axis of the plot is a binned representation of the data groups. The title of the horizontal axis is the name of the readback parameter.

- When representing categorical data, the categories are plotted as bars on the horizontal axis and number of occurrences are plotted on the vertical axis. In this representation, bins are not created.

**Note** If the raw data file is a non-MS trending file, the application does not display a histogram plot.
Plotting the Data in a Trend Chart

When you plot the data in a Trend chart, the plot displays the trace type readback parameter plotted against the time.

The MS Trending detector type data is displayed as follows in the view:

- The vertical axis of the plot is the readback parameter selected as the trace type. The title of the vertical axis is the name of the selected readback parameter.
- The horizontal axis of the plot displays the readback trace during specific time period.

Data Analytics View - Specific Toolbars

Use the following Data Analytics view-specific toolbars to create, format, and set data analytics ranges and display options of the view.

- Data Analytics View – Workspace Options Toolbar
- Data Analytics View – Display Options Toolbar

Data Analytics View – Workspace Options Toolbar

Use the Data Analytics view menu commands in the Workspace area of the Workspace Options toolbar to create data analytics views and set the data analytics ranges.

❖ To display the Data Analytics view-specific Workspace Options toolbar

1. Click the Chromatogram view to select it.
2. Click the **Workspace Options** tab to display the Workspace Options toolbar.
3. Click **Data Analytics View** and choose to create a new Data Analytics View or set the data analytics ranges.

**Figure 117.** Data Analytics View-specific Workspace Options
Use the features in the Display Options toolbar to customize the Data Analytics view. You can choose the plot type, define the number of bins and bar gap, and choose the color of the plot.

To display the Data Analytics View – Display Options toolbar

1. Click a Data Analytics view to select it.
2. Click the Display Options tab to open the Display Options toolbar.

The Data Analytics View-specific display options appear.

Table 40. Data Analytics View – Workspace Options features

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workspace area</td>
<td></td>
</tr>
<tr>
<td>Ranges</td>
<td>Opens the Data Analytics Ranges dialog box to specify the filename, detector type, trace type, and filter for the view.</td>
</tr>
<tr>
<td>Insert View</td>
<td>Creates a data analytics view of the selected chromatogram.</td>
</tr>
</tbody>
</table>

Data Analytics View – Display Options Toolbar

Use the features in the Display Options toolbar to customize the Data Analytics view. You can choose the plot type, define the number of bins and bar gap, and choose the color of the plot.

To display the Data Analytics View – Display Options toolbar

1. Click a Data Analytics view to select it.
2. Click the Display Options tab to open the Display Options toolbar.

The Data Analytics View-specific display options appear.

Figure 118. Data Analytics View – Display Options toolbar

Table 41. Data Analytics View – Display Options toolbar commands (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot Type area</td>
<td></td>
</tr>
<tr>
<td>Histogram</td>
<td>Displays a histogram plot view in the Data Analytics View.</td>
</tr>
<tr>
<td>Trend</td>
<td>Displays an MS trending plot view in the Data Analytics View.</td>
</tr>
<tr>
<td>Data Filter area</td>
<td></td>
</tr>
<tr>
<td>All Values</td>
<td>Displays all positive values and zeroes.</td>
</tr>
<tr>
<td>Positive Values and Zeroes</td>
<td>Displays only positive values and zeroes.</td>
</tr>
<tr>
<td>Positive Values Only</td>
<td>Displays only positive values.</td>
</tr>
</tbody>
</table>
Saving a Data Analytics Plot

You can modify and save the histogram or trend plots in the layout.

To save a customized Data Analytics View in the layout

1. Select the Data Analytics view that you want to save.
2. Click the Workspace Options tab to open the Workspace Options toolbar.
3. Click Layouts and choose an option to save the view.

   The Data Analytics view is saved in the layout.

When you apply the saved Data Analytics plot in another view, the position of the bins is displayed as it has been saved in the layout. When the imported layout has the binned distribution of quantity plotted in a range that is not present in the current view, the application displays the default distribution group.

Table 41. Data Analytics View – Display Options toolbar commands  (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Format area</strong></td>
<td></td>
</tr>
<tr>
<td>Number of bins</td>
<td>Specifies the number of data groups to display.</td>
</tr>
<tr>
<td></td>
<td>Default: 50</td>
</tr>
<tr>
<td></td>
<td>Ranges: 1–1000</td>
</tr>
<tr>
<td></td>
<td>This does not apply to the Categorical data.</td>
</tr>
<tr>
<td>Bar Gap (%)</td>
<td>Specifies the width of the gap between bars. The gap is represented as a</td>
</tr>
<tr>
<td></td>
<td>percentage of the width of the bar.</td>
</tr>
<tr>
<td></td>
<td>Default: 0–500</td>
</tr>
<tr>
<td>Log Scale</td>
<td>Displays the bar in a logarithmic scale. When you click the icon,</td>
</tr>
<tr>
<td></td>
<td>logarithmic changes are applied to y-axis values.</td>
</tr>
<tr>
<td>Color</td>
<td>Displays the color palette where you specify the color of the bars in the</td>
</tr>
<tr>
<td></td>
<td>histogram plot.</td>
</tr>
<tr>
<td>Show Bar Ranges</td>
<td>Displays the ranges of data represented by bars in the histogram plot.</td>
</tr>
<tr>
<td>Decimals</td>
<td>Specifies the required number of decimal places for the bar range values.</td>
</tr>
</tbody>
</table>
Data Analytics Ranges

Use the Data Analytics Ranges option to create or update a Histogram or Trend plot.

**Figure 119.** Data Analytics Ranges dialog box

![Data Analytics Ranges dialog box](image)

Table 42 describes the columns in the Data Analytics Ranges dialog box.

**Table 42.** Data Analytics Ranges dialog box

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Name</td>
<td>Specifies the location and file name of the raw data file with the MS Trending data. To import a new raw data file, use the browse icon to select a different file.</td>
</tr>
<tr>
<td>Detector Type</td>
<td>Specifies the detector used to acquire the data. By default, the detector type is MS Trending.</td>
</tr>
<tr>
<td>Trace Type</td>
<td>Specifies the trace type. For MS Trending, select one of the instrument status parameters, such as the API source.</td>
</tr>
<tr>
<td>Filter</td>
<td>Specifies the scan filter (same selections as the Scan Filters page of the Info bar). You can apply scan filters to filter the Trailer Extra information and Custom trace scan time values. The Status trace type is not associated with scans, and you cannot apply filters to the Status trace type.</td>
</tr>
</tbody>
</table>

Filtering Data Analytics Views by Trace Types

You can create data analytics plots based on selected trace types. The different trace type categories in the FreeStyle application are as follows:

- Status
- Trailer Extra
- Custom
Using the Status Trace Type

The first group in the Trace Type dropdown list is the Status trace type that displays the MS detector status readback that was collected over time. You cannot apply filters to Status trace types. It contains information about the different status of instrument, such as Temperature, Pressure, Turbo Pump speed, and so on.

For example, Figure 121 shows the Trend plot created by the drugs_06 raw data file when the MS Trending detector and Ambient Temperature trace type are selected. The plot displays highest and lowest temperatures recorded between 28.4 °C and 28.55 °C due to the temperature variations in the instrument.

Figure 121. Trends plot: Ambient Temperature

Similarly, in Figure 123, the raw data file displays a histogram plot with one bar when Power is selected. The x axis of the plot shows that the power remains static between 43.5 °C and 44.9 °C.
Using Trailer Extra Information

The scan header displays important information about a scan, such as retention time, and depends on the data acquisition settings for the mass spectrometer used to acquire the raw data file. The detector can record additional information about each scan called Trailer Extra. You can apply scan filters to filter the trailer extra information of each scan.

Figure 124 displays an MS2 scan filtered by number of ions.

Using Custom Trace Type

The application includes the following Custom Trace types to filter an MS Trending scan:

- Scan Time
- MS Order
- Cycle Time

Scan Time: The amount of time required to accomplish one scan, from the lowest mass to the highest mass of a specified scan range.
When a Scan Time Trend plot is created, the scan header displays the total number of scans, modal time, median time, average time, and average delta time for the selected data.

**Table 43. Scan Time Trend Plot**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median time</td>
<td>The median is a simple measure of central tendency. Median is the middle value.</td>
</tr>
<tr>
<td>Average Time</td>
<td>The average time taken per scan.</td>
</tr>
<tr>
<td>Average Delta Time</td>
<td>Average of the time taken between two consecutive MS scans.</td>
</tr>
</tbody>
</table>

**MS Order:** The MS order of the mass spectra that makes up the chromatogram. It indicates the order of the MS scan.

- MS1 is one MS scan.
- MS2 is an MS/MS scan.
- MS3 is an MS3 scan.
Cycle Time: Cycle time is the time between two consecutive full MS scans. One cycle is the start of one full MS scan to the start of the next/sequential full MS scan.

Creating a Data Analytics Plot

- To display a new plot for MS trending detector type
  1. Click a Data Analytics View to make it active.
  2. From the Workspace Options menu bar, choose Data Analytics – Ranges.
     The Data Analytics Ranges dialog box opens with a list of the scans currently displayed in the selected view.
  3. In the Data Analytics Ranges dialog box, from the File Name list, click the dropdown arrow to select a file name or click the browse icon to select a different raw data file.
     In the Detector Type list, the MS Trending type is selected by default. You cannot edit the detector type.
  4. From the Trace Type dropdown list, select the trace type. For MS Trending, select one of the instrument status parameters, such as the Ion Injection Time (ms).
5. In the Filter box, type or select a different scan filter from the dropdown list that displays the filter options stored in the raw data file.

6. Click **Apply**, and then click **OK**.
6 Analyzing MS Data using Data Analytics View

Data Analytics Ranges
Determining the Elemental Composition of Ions

To determine the elemental composition of ions, follow the procedures in these topics.

Contents

• Overview of an Elemental Composition Analysis
• Starting an Elemental Composition Analysis
• Using the Fragments Matching Algorithm for Confirmation
• Reviewing the Elemental Composition Results
• Modifying the Elements in the Elements in Use Table
• Using Custom Periodic Table for Analysis
• Elemental Composition Results View
• Simple Elemental Composition Results View
• Elemental Composition Page

Overview of an Elemental Composition Analysis

The FreeStyle application assigns chemical formulas to components by using an isotopic pattern-matching algorithm that accounts for isotope accurate mass and intensity ratios.

The basic elemental composition algorithm uses a single mass, usually the monoisotopic mass of a measured isotope pattern, to calculate all possible elemental compositions that lie within a tolerance window. Then, the algorithm calculates a theoretical isotope pattern for each elemental composition candidate. It calculates the fit between the theoretical and measured isotope pattern, sorting the identified candidates in decreasing order of isotopic pattern score. The isotopic pattern score value is a number between 0 percent (where the patterns are completely different) and 100 percent (where the patterns are indistinguishable by using the scoring parameters specified in the processing method).

The additional fragments-matching algorithm provides confirmation of the chemical formula by comparing the fragmentation scan of the selected precursor mass to the theoretical fragmentation pattern for the chemical formula.
To determine the elemental composition of a specific ion, you select the ion of interest in a spectrum of interest, and then start the elemental composition analysis from the Workspace Processing toolbar. To increase your confidence in the best matching formula, you can refine the analysis by adding the information from a fragmentation scan for the selected ion.

When an elemental composition analysis finishes, the application displays the following:

- The **Elemental Composition Results View**, which lists the best matching chemical formulas.
- The **Elemental Composition Page** of the Info Bar, where you can modify the parameters that the elemental composition algorithm uses.
- A theoretical spectrum for the best matching formula in the Spectrum view or MultiSpectrum view. The peaks in the theoretical spectrum are color-coded. Peaks above the specified intensity threshold are green, and peaks below this threshold are red.

Figure 128 shows the Elemental Composition page and the Spectrum view with the theoretical isotope pattern for the calculated elemental composition.

**Figure 128.** Elemental Composition page, Spectrum view, and Elemental Composition Results view
Starting an Elemental Composition Analysis

After you select a spectrum of interest, you can start an elemental composition analysis from the Workspace Processing toolbar. When you start the analysis from the toolbar, you can specify the analysis before the application processes the data.

To start an elemental composition analysis from the Workspace Processing toolbar

1. Click a Spectrum view to select it, or select the spectrum of interest in a MultiSpectrum view.

   For information about selecting a spectrum of interest, see Chapter 4, “Reviewing Spectral Data.”

   The Mass box at the top of the Elemental Composition page in the Info Bar is populated with the $m/z$ value for the selected spectrum’s base peak.

2. (Optional) To select another peak, double-click its $m/z$ label, and then confirm the value in the Mass box.

3. (Optional) To modify the settings for the advanced parameters, click Show Advanced Parameters.

4. (Optional) To use a custom periodic table, select the Use Custom Periodic Table check box, and then click Custom Table.

5. (Optional) Add the fragments matching algorithm to the analysis (see Using the Fragments Matching Algorithm for Confirmation).

6. Click Calculate.

   The application runs the elemental composition algorithm on the selected $m/z$ value.

Using the Fragments Matching Algorithm for Confirmation

Use the Fragments Matching area of the Elemental Composition page to specify the fragmentation scan number for the fragments matching algorithm. From the Workspace Processing toolbar, you can specify the fragmentation scan before you start the analysis.

To use the fragments matching algorithm

1. Find an appropriate fragmentation scan by doing one of the following:
   a. In the Info Bar, click the MSn Browser tab.
   b. Expand the MS2 node for the precursor mass that you selected on the Elemental Composition page.
   c. Right-click the MSn Browser page, and choose Include Individual Scans.

   Figure 129 shows the scan numbers of the individual scans for the MS2 precursor ion at $m/z$ 346.12.
Determining the Elemental Composition of Ions
Using the Fragments Matching Algorithm for Confirmation

Figure 129. MSn Browser page showing the expanded list for m/z 346.11

—or—

a. In the Chromatogram view, insert an MS2 filtered chromatogram for the selected ion.
b. Select the MS2 filtered chromatogram and use the left and right arrows to display a data-dependent MS2 scan for the precursor ion in the Spectrum view.

2. On the Elemental Composition page, in the Mass box, check the m/z value of the selected ion.

3. In the Fragments Matching area, select the Use Fragments Matching check box (Figure 130).

Figure 130. Fragments Matching area of the Elemental Composition page

4. In the MSMS Scan No. box, type the scan number that you found in step 1.

5. Click Apply.

Review the results in the MSMS Coverage and MSMS Matched Peaks columns of the Elemental Composition Results view.
Reviewing the Elemental Composition Results

After you run an elemental composition analysis, you can review the results in the Elemental Composition Results or Simple Elemental Composition Results views.

See these topics:
- Reviewing the Best-Matching Formulas
- Reviewing the MS/MS Coverage Score for Matching Fragments
- Reviewing MS/MS Annotation Results

Reviewing the Best-Matching Formulas

Review the results of an elemental composition analysis in the Elemental Composition Results View. The application displays up to the maximum number of candidates specified on the Elemental Composition page or the Default Elemental Composition page and orders the best matching formulas by rank.

To review the best-matching formulas

1. For each row in the Elemental Composition Results view, review the formula, number of matched isotopes, and MS coverage score.

2. Compare the theoretical isotope pattern for the proposed chemical formula, and then zoom in on the mass peak of interest in the Spectrum view.

In the theoretical isotope pattern, a green marker represents the matched mass peaks that fall inside the spectral distance and a red marker represents the missing mass peaks that fall outside the spectral distance (mass tolerance plus intensity tolerance) at the experimental resolution. An Orange marker represents the matched mass peaks that fall outside the spectral distance in the Spectrum view.

The isotope pattern uses the resolution provided with the scan data to perform the isotope pattern and calculate the spectral distance.

Figure 131 shows the elemental composition results for a mass peak at m/z 346.12.
Figure 131. Theoretical isotope pattern with the markers

You can view the chemical formula of each mass spectrum peak by clicking the Elemental Comp. icon, , in the Spectrum – Display Options toolbar. You can also view the theoretical mass and delta mass units of the simulated isotope profile when you point to the isotope markers.

**Note** The data that displayed when you point to the isotope markers is different from the Elemental Composition Results table. The results table displays the theoretical and delta mass units for the monoisotopic peaks; pointing to the markers display data for the simulated profile.
Intensity Tolerances

The following figures define the tolerances and zones associated with elemental composition results.

**Figure 132.** Identified tolerance bounds

- **Mass search**: A spectrum peak is considered a match when it is within these bounds (4x mass tolerance). When no data is inside these limits, this displays as red indicating that it is not matched.

- **Mass tolerance**: A spectrum peak might be a good match when it is within these bounds.

- **Isotope peak**: Drawn at the theoretical isotope mass with the width set by ± the mass tolerance.

- **Intensity tolerance**: A spectrum peak might be a good match when it is within these bounds.
Determining the Elemental Composition of Ions
Reviewing the Elemental Composition Results

**Figure 133. Zones**

**Out of zone**
This peak is out of zone for being a good match to the peak to the right. It is also a partial match to the central peak. Because such partial matches are hard to isolate, they do not improve scores.

**Green zone (not met)**
A spectrum peak is considered a good match when it is within a distance of 1. Both the peak width (mass tolerance) and the intensity tolerance limits define a distance of 1. An oval bounded by these tolerances traverses the distance=1 limit for a good match. (This annotation is not actually shown in the FreeStyle display.)

See Green zone (met).
### Figure 134. Match data for the two orange peaks

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th Isotope Intensity</td>
<td>228968.625</td>
</tr>
<tr>
<td>4th Isotope Theory</td>
<td>9025.3878158550015</td>
</tr>
<tr>
<td>Mass Measured</td>
<td><strong>271.09237670898437</strong></td>
</tr>
<tr>
<td>Mass Theory</td>
<td>271.09230831900641</td>
</tr>
<tr>
<td>Match Mode</td>
<td>Outside Unknown</td>
</tr>
<tr>
<td>Matched</td>
<td>true</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th Isotope Intensity</td>
<td>228968.625</td>
</tr>
<tr>
<td>5th Isotope Theory</td>
<td>4812.41521837429</td>
</tr>
<tr>
<td>Mass Measured</td>
<td><strong>271.09237670898437</strong></td>
</tr>
<tr>
<td>Mass Theory</td>
<td>271.09469643997028</td>
</tr>
<tr>
<td>Match Mode</td>
<td>Outside Unknown</td>
</tr>
<tr>
<td>Matched</td>
<td>true</td>
</tr>
</tbody>
</table>

Same peak matched (tentative).

### Figure 135. Green zone (met)
Reviewing the MS/MS Coverage Score for Matching Fragments

After you run the elemental composition algorithm with the additional fragments matching algorithm (see Using the Fragments Matching Algorithm for Confirmation), review the results in the MS/MS Coverage [%] and MS/MS Matched Peaks columns of the Elemental Composition Results table.

 dévelop

To compare the number of fragmentation peaks to the value in the MS/MS Matched Peaks column

1. In a Spectrum view, display the fragmentation scan that you entered on the Elemental Composition page, in the Fragments Matching area, in the MS/MS Scan No box.

2. Compare the values for MS/MS Coverage [%] and MS/MS Matched Peaks to the number of mass spectrum peaks in the fragmentation scan.

Reviewing MS/MS Annotation Results

After you perform the elemental composition, you can review the results of an MS/MS scan in the MSMS Annotation result window. The application displays the result when you type the spectral scan corresponding to the MS/MS scan number in the info bar.

To review the MS/MS annotation results

1. The spectral scan corresponding to MS/MS scan number opens only when you enable the Use fragment matching option and type a valid MS/MS scan number in the info bar.

2. When you change the MS/MS scan number and re-perform the elemental composition analysis, the result of the MS/MS scan is automatically replaced in the MS/MS Annotation result window.

3. After completing the Elemental composition analysis, the MS/MS Annotation result window is annotated with the elemental composition of the fragment masses.

Note  Zoom in on the MS/MS Annotation Result page to view the annotation of the lower intensity peaks.

Modifying the Elements in the Elements in Use Table

The elemental composition algorithm uses only the minimum and maximum number of atoms for each element in the Elements in Use table to determine the elemental composition of ions. You can edit the Elements in Use table in two locations: the Elemental Composition page (in the Info Bar) or the Default Elemental Composition page (in the Default Options Configuration dialog box).

To add elements to or remove elements from the table, follow the appropriate topic:

- Adding Elements to the Elements in Use Table
- Elemental Composition Results View
Adding Elements to the Elements in Use Table

Use the Periodic Table of Elements dialog box to add isotopes to the Elements in Use table on the Elemental Composition page or Default Elemental Composition page.

To add an element to the Elements In Use table

1. To display the dialog box of the periodic table of elements, on the Elemental Composition page or the Default Elemental Composition page, click Add below the Elements in Use table.

   ![Periodic Table of Elements](image)

2. Do the following for each element that you add:
   a. Click the element’s symbol in the table.
      The element’s isotopes appear below the periodic table.
   b. When the selected element has several isotopes, select the isotope with the highest abundance for non-labeled analytes or the appropriate isotope for labeled analytes.
   c. Specify the limits for the element as follows:
      • In the Min box, type an integer to specify the minimum number of atoms of this element that must be in the calculated elemental composition.
      • In the Max box, type an integer to specify the maximum number of atoms of this element that can be in the calculated elemental composition.
   d. Click Add to List.
3. Click OK to add the selected elements to the table.
Removing Elements from the Elements In Use Table

To remove an element from the Elements In Use Table

1. On the Elemental Composition page in the Info Bar or the Default Elemental Composition page in the Default Configuration Options dialog box, below the Elements in Use table, click to the left of the element to highlight its row (Figure 137).

Figure 137. Elements in Use area on the Elemental composition page of the Info Bar

2. Click Remove, and in the confirmation box, click OK.

Using Custom Periodic Table for Analysis

Use the Custom Periodic table for the elemental composition calculation by adding custom isotope abundance to the elements. The table provides a list of all known isotopes, including those having zero abundance. When you select an element from the list, the elemental composition details of the selected element display separately. You can edit the abundances of each isotope and change the total abundance of the element. The abundance of each isotope must be greater than 0 and the total abundance must be equal to 1. You can save the changes and also load an existing custom periodic table.

Figure 138. Custom Periodic Table
To add custom isotope abundance

1. On the Elemental Composition page in the Info Bar, below Custom Periodic Table, select the Use Custom Periodic Table check box.

2. Click Custom Table.

3. Click the element’s symbol in the table.

   The element’s isotopes appear below the periodic table.

4. Select the isotope and edit the abundance.

5. Click Save.

   The Elemental Composition page displays the name and path of the loaded custom periodic table.

Note The application highlights the Total Abundance value column in a red rectangle if the abundance is greater or less than 1.

6. Click Revert to Default to revert and use the default periodic table.

7. Click Load to use an existing custom periodic table saved in your computer.

In the following example, when N is selected from the Element list, the isotopes 14 and 15 are displayed below with an abundance of 0.99632 and 0.00368 respectively. The Total Abundance of the isotopes is 1.

Figure 139. Total Abundance equals to 1

When the abundance of isotope 14 is changed to 0.89632, the Total Abundance becomes 0.9 and the value is highlighted in a red rectangle as the abundance is less than 1.
Figure 140. Total Abundance less than 1

When you run an elemental composition analysis using the custom periodic table, the application displays the matching chemical formula for the selected peak in the spectrum based on the modified abundance. The application uses default periodic table if the custom periodic table is not selected for analysis.

**Elemental Composition Results View**

After you run an elemental composition analysis using the Pick Peak parameter, the Elemental Composition Results view appears with the best matching calculated chemical formulas for the selected peak in the spectrum.

Table 44 describes the columns in the Elemental Composition Results view. By default, the S Fit, RDB, Combined Score, MSMS Cov. [%], MSMS Shift Measure, and MSMS Matched Peaks columns are hidden. To display these columns, use the Field Chooser dialog box.

**Table 44. Elemental Composition Results view parameters (Sheet 1 of 3)**

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Chooser icon (chio)</td>
<td>Opens the Field Chooser dialog box for selecting the result columns to display.</td>
</tr>
<tr>
<td>Peak Mass</td>
<td>Displays the mass-to-charge ratio of the selected isotopic peak.</td>
</tr>
<tr>
<td>Display Formula</td>
<td>Displays the chemical formula of the match by using the elements that you specified on the Elemental Composition Page. Also displays isotope labels for elements listed in the Elements in Use table.</td>
</tr>
</tbody>
</table>
### Table 44. Elemental Composition Results view parameters (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Fit</td>
<td>Displays the spectral similarity score between the measured and theoretical isotope patterns. Fragments matching does not affect this value.</td>
</tr>
<tr>
<td>RDB</td>
<td>Displays the ring and double-bond (RDB) equivalents that the algorithm calculated for the proposed match.</td>
</tr>
<tr>
<td>Delta (ppm)</td>
<td>Displays the difference between the measured mass-to-charge ratio and the theoretical mass-to-charge ratio. The table lists only formulas whose mass is within the tolerance that you specified on the Elemental Composition Page, in the units (ppm, mmu, or amu) that you specified there.</td>
</tr>
<tr>
<td>Theoretical Mass</td>
<td>Displays the theoretical mass-to-charge ratio of the proposed match.</td>
</tr>
<tr>
<td>Rank</td>
<td>Displays the ranking of the proposed match by decreasing Combined Score values.</td>
</tr>
<tr>
<td>Combined Score</td>
<td>Displays a percentage that conveys how close the measured spectrum matches the theoretical spectrum. Fragments matching refines this value by including the relative number of matching fragments in the score. The Combined Score for a proposed formula increases if the fragmentation spectrum includes more matching fragments and decreases if the fragmentation spectrum includes fewer matching fragments relative to other formulas.</td>
</tr>
</tbody>
</table>
| #Matched Isotopes | Displays the number of isotopes in the measured isotope pattern that match the theoretical isotope pattern for the chemical formula.  
A matching isotope matches the delta mass from the A0 peak (the peak with the lowest m/z value in an isotope pattern) and the relative intensity of the theoretical isotope pattern within the specified tolerances. |
| #Missed Isotopes | Displays the number of isotopes that are missing in the measured isotope pattern for the precursor ion. An isotope peak is missing if it is part of the theoretical isotope pattern and not found in the measured spectrum within the specified mass and intensity tolerances. |
Table 44. Elemental Composition Results view parameters (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Coverage [%]</td>
<td>Displays the summed intensity of matching isotope peaks in the measured pattern relative to the summed intensity of all the peaks in the measured pattern.</td>
</tr>
<tr>
<td></td>
<td>Summed intensity of the matching isotope peaks $\times 100$                                                                álala\summed intensity of all the peaks in the measured pattern.</td>
</tr>
<tr>
<td></td>
<td><strong>IMPORTANT</strong> Low values for all the candidates might indicate an overlapping pattern rather than a lack of good matches.</td>
</tr>
<tr>
<td>Pattern Coverage [%]</td>
<td>Displays the summed intensity of the matching isotope peaks in the measured MS1 spectrum relative to the summed intensity of the theoretical isotope pattern.</td>
</tr>
<tr>
<td></td>
<td>Summed intensity of the matching isotope peaks $\times 100$                                                                álala\summed intensity of the theoretical isotope pattern.</td>
</tr>
<tr>
<td></td>
<td>Provides a quantitative measure of how well the measured isotope pattern matches the theoretical isotope pattern.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Because the A0 peak (peak with the lowest m/z value in the pattern) is typically responsible for most of the pattern intensity, even a small decrease in the percent coverage might be important. For example, a missing peak for an isotope with two $^{13}$C atoms might cause only a small decrease in the summed intensity of the measured isotope pattern.</td>
</tr>
<tr>
<td>The following columns</td>
<td>Display nonzero values when you add the fragments matching algorithm to the elemental composition analysis.</td>
</tr>
<tr>
<td>MSMS Cov. [%]</td>
<td>Displays the summed intensity of the matched fragment peaks relative to the summed intensity of all the fragment peaks in the selected MSMS scan.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Low values for all the candidates might indicate a contaminating compound within the isolation window for the fragmentation scan.</td>
</tr>
<tr>
<td>MSMS Shift Measure</td>
<td>Not used for scoring.</td>
</tr>
<tr>
<td></td>
<td>The application searches for each fragment in a range from the expected mass based on the chemical formula and the expected mass plus the delta mass between the precursor ion and its displayed formula. The MSMS Shift Measure value increases when the fragments are closer to their expected masses rather than their shifted masses.</td>
</tr>
<tr>
<td>MSMS Matched Peaks</td>
<td>Displays the number of matching fragments in the MSMS spectrum. Click the expand icon, +, to view the fragment list.</td>
</tr>
</tbody>
</table>
Simple Elemental Composition Results View

After you run an elemental composition analysis using the Mass parameter, the Simple Elemental Composition Results view appears with the best matching calculated chemical formulas in the spectrum.

Table 45 describes the columns in the Simple Elemental Composition Results view.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searched Mass</td>
<td>Displays the mass identified in the Mass box on the Elemental Composition page.</td>
</tr>
<tr>
<td>Formula</td>
<td>Displays the chemical formula of the match by using the elements that you specified on the Elemental Composition Page.</td>
</tr>
<tr>
<td>Mass</td>
<td>Displays the mass-to-charge ratio of the match.</td>
</tr>
<tr>
<td>RDB</td>
<td>Displays the ring and double-bond (RDB) equivalents that the algorithm calculated for the proposed match.</td>
</tr>
<tr>
<td>Delta (ppm)</td>
<td>Displays the difference between the measured mass-to-charge ratio and the theoretical mass-to-charge ratio. The table lists only formulas whose mass is within the tolerance that you specified on the Elemental Composition Page, in the units (ppm, mmu, or amu) that you specified there.</td>
</tr>
</tbody>
</table>

To export simple elemental composition results as a CSV file

1. Click the Simple Elemental Composition Results view to select it.
2. From the Workspace Options toolbar, choose Exports > Export Selection As.
3. In the Copy to Clipboard/Export dialog box, select the To CSV Files option and click OK.
4. In the Export Data dialog box, type a name for the CSV file and click Save.

The Excel application opens and displays the results data in the following format.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Elemental Composition Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Searched Mass: 192.077056884766</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formula: CaH₄O₂N₂ Mass: 192.07675 RDB: 6.5 Delta (ppm): 1.582</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₅H₁₀N₂S³ Mass: 192.07744 RDB: 2.5 Delta (ppm): -1.987</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note To export the entire workspace including the simple elemental composition results, choose Exports > Export Workspace As.
Elemental Composition Page

Use the Elemental Composition page (Figure 141) in the Info Bar for specifying the criteria to calculate the best matching chemical formula for a mass-to-charge ratio in a mass spectrum.

To display advanced parameters, click Show Advanced Parameters.

Figure 141. Elemental Composition page
### Table 46. Elemental Composition page parameters (Sheet 1 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Show/Hide Advanced Parameters</strong></td>
<td>The advanced parameters to show or hide are as follows:</td>
</tr>
<tr>
<td></td>
<td>• Under Prediction Settings: Min and Max RDBE, Nitrogen Rule, Centroid Algorithm, Normalization Mode, and Use Representative Elements</td>
</tr>
<tr>
<td></td>
<td>• Pattern Matching: Intensity Threshold and Intensity Tolerance</td>
</tr>
<tr>
<td></td>
<td>• Under Fragments Matching: S/N Threshold and Min. Spectral Fit</td>
</tr>
<tr>
<td><strong>Mass</strong></td>
<td><strong>Mass</strong> Specify mass (in the Mass box) for elemental composition analysis.</td>
</tr>
<tr>
<td></td>
<td>Range: 0.5 to 100 000</td>
</tr>
<tr>
<td><strong>Pick Peak</strong></td>
<td>Select the mass peak from the spectrum for elemental composition, isotope pattern matching, and fragments matching analysis.</td>
</tr>
<tr>
<td><strong>Pick Scan</strong></td>
<td>Applies elemental composition analysis for all mass peaks in the spectrum. The spectrum plot and each row of the spectrum list displays the highest scoring result for each peak. The results view is not available for this analysis.</td>
</tr>
<tr>
<td><strong>Calculate</strong></td>
<td>Calculate formulas and display them in the Elemental Composition Results View.</td>
</tr>
<tr>
<td><strong>Prediction Settings</strong></td>
<td><strong>Mass Tolerance</strong> Specify a mass tolerance to restrict the number of possible elemental compositions. The elemental composition algorithm returns results of the search only if the theoretical mass matches the submitted mass within the specified tolerance. Range: 0.00 to 100.00; default: 5.00 ppm</td>
</tr>
<tr>
<td></td>
<td><strong>Units</strong> Select the units that you want to associate with the mass tolerance. The options are amu (atomic mass units), mmu (millimass units), and ppm (parts-per-million). When you specify the error limits in ppm, the errors are mass-dependent and get larger at higher masses and smaller at lower masses. Default: ppm</td>
</tr>
<tr>
<td></td>
<td><strong>Max #Candidates</strong> Specify the maximum number of formulas to display. Range: 0 to 400; default: 10</td>
</tr>
<tr>
<td></td>
<td><strong>Charge</strong> Select the charge state that you want to use to calculate the probable formulas. Range: –99 to 99; default: 1</td>
</tr>
</tbody>
</table>
Determining the Elemental Composition of Ions

Elemental Composition Page

Min. and Max. RDBE Specify a range of values for double bonds and ring equivalents—a measure of the number of unsaturated bonds in a compound—that limits the calculated formulas to only those that make sense chemically.

Limits range: –1000.0 to 1000.0

The value is calculated by the following formula:

\[
D = 1 + \frac{\sum_{i=1}^{i_{\text{max}}} N_i (V_i - 2)}{2}
\]

where:

- \(D\) is the value for the RDB equivalents
- \(i_{\text{max}}\) is the total number of different elements in the composition
- \(N_i\) is the number of atoms of element \(i\)
- \(V_i\) is the valence of atom \(i\)

The calculation produces an integer such as 3, which indicates an odd-electron ion, or a number with a remainder of 0.5, which indicates an even-electron ion.

Minimum value: –0.5, corresponding to a protonated, saturated compound

Nitrogen Rule Select whether or how to use the Nitrogen Rule in the formula calculation:

- Do Not Use: Do not use the Nitrogen Rule.
- (Default) Even Electron Ions: Select for even-electron ions, such as protonated species.
- Odd Electron Ions: Select for odd-electron ions, such as radical cations.

Note: McLafferty states the Nitrogen Rule as follows: “If an odd-electron ion contains no (or an even number of) nitrogen atoms, its molecular ion will be at an even mass number... [Similarly,] an odd-electron ion will be at an odd mass number if it contains an odd number of nitrogen atoms.”

Centroid Algorithm Select the centroiding algorithm for profile data.

Default: FT Orbitrap
Selections: FTObitrap, GCQ, TSQ, or MAT

### Table 46. Elemental Composition page parameters (Sheet 2 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. and Max. RDBE</td>
<td>Specify a range of values for double bonds and ring equivalents—a measure of the number of unsaturated bonds in a compound—that limits the calculated formulas to only those that make sense chemically.</td>
</tr>
<tr>
<td>Nitrogen Rule</td>
<td>Select whether or how to use the Nitrogen Rule in the formula calculation:</td>
</tr>
<tr>
<td>Centroid Algorithm</td>
<td>Select the centroiding algorithm for profile data.</td>
</tr>
</tbody>
</table>
**Table 46.** Elemental Composition page parameters (Sheet 3 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Normalization Mode</strong></td>
<td>Select one of the following normalization modes for the spectral peak intensities:</td>
</tr>
<tr>
<td></td>
<td>• (Default) Base peak: The most common normalization mode. Normalizes the isotope peaks to the base peak height of 100%. Its disadvantage is the propagation of the intensity error of the base peak to all isotope intensities.</td>
</tr>
<tr>
<td></td>
<td>• Linear: Normalizes the theoretical and measured patterns so that the sum of all isotopic pattern intensities is the same.</td>
</tr>
<tr>
<td></td>
<td>• Quadratic: Normalizes the theoretical and measured patterns so that the error squares (intensity differences) are minimized.</td>
</tr>
<tr>
<td><strong>Use Representative Elements</strong></td>
<td>Select the check box to use the Representative Elements table for the elemental composition calculations. Clear the check box to use the Protein Elements table.</td>
</tr>
<tr>
<td></td>
<td>Currently the elemental composition algorithm supports two types of element tables, differing mainly in their carbon (C) abundances.</td>
</tr>
<tr>
<td></td>
<td>• The Representative Elements table has the following C abundances:</td>
</tr>
<tr>
<td></td>
<td>– 12C: 0.9893</td>
</tr>
<tr>
<td></td>
<td>– 13C: 0.0107</td>
</tr>
<tr>
<td></td>
<td>• The Protein Elements table has the following C abundances:</td>
</tr>
<tr>
<td></td>
<td>– 12C: 0.989136445</td>
</tr>
<tr>
<td></td>
<td>– 13C: 0.010863555</td>
</tr>
<tr>
<td><strong>Pattern Matching</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Intensity Threshold [%]</strong></td>
<td>Specify the isotope intensity threshold, relative to the base peak of the theoretical isotope pattern that the algorithm uses for pattern simulation. The algorithm skips isotopes below the threshold—that is, if the expected intensity of an isotopic peak is below the threshold, the algorithm does not look for the peak in the experimental spectrum, and the peak is not part of the score calculation.</td>
</tr>
<tr>
<td></td>
<td>Range: 0.00 to 10 000.00%; default: 0.10%</td>
</tr>
<tr>
<td><strong>Intensity Tolerance [%]</strong></td>
<td>Specify the relative intensity tolerance for the isotope search.</td>
</tr>
<tr>
<td></td>
<td>Range: 0.00 to 10 000.00%; default: 30.00%</td>
</tr>
</tbody>
</table>
### Table 46. Elemental Composition page parameters (Sheet 4 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fragments Matching</strong></td>
<td></td>
</tr>
<tr>
<td>Use Fragments Matching</td>
<td>Select this check box to turn on the fragment matching algorithm, which ranks the identified candidates (chemical formulas) by the number of matching peaks in the fragmentation scan for the precursor ion. The fragment matching algorithm requires a fragmentation scan for the selected precursor ion. To perform MS/MS matching, you must enter the scan number of the fragmentation scan for the selected precursor ion (m/z value) of interest.</td>
</tr>
<tr>
<td>Mass Tolerance</td>
<td>Specify the mass tolerance for the peaks in the fragmentation spectrum (expected mass versus theoretical mass).</td>
</tr>
<tr>
<td>MSMS Scan No</td>
<td>Specify the MS/MS scan number of the fragmentation scan for the selected precursor ion. For instructions on how to find an appropriate scan number, see Using the Fragments Matching Algorithm for Confirmation. Default: 0 (No fragment matching); range: 1 to the last scan number in the raw data file</td>
</tr>
<tr>
<td>S/N Threshold</td>
<td>Specify the signal-to-noise threshold for the peaks in the MS/MS spectrum. The fragments matching algorithm ignores peaks below this S/N threshold.</td>
</tr>
<tr>
<td>Min. Spectral Fit [%]</td>
<td>Restrict the candidate list to candidates that meet or exceed the minimum spectral fit value. Range: 0.00 to 100.00%; default: 10.00%</td>
</tr>
<tr>
<td><strong>Custom Periodic Table</strong></td>
<td></td>
</tr>
<tr>
<td>Use Custom Periodic Table</td>
<td>Use the custom periodic table for elemental composition analysis.</td>
</tr>
<tr>
<td><strong>Button</strong></td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>Saves the modified isotope abundances.</td>
</tr>
<tr>
<td>Save As</td>
<td>Saves the custom periodic table to your computer.</td>
</tr>
<tr>
<td>Load</td>
<td>Selects an existing custom periodic file that contains the modified isotope abundances to consider for the elemental composition analysis.</td>
</tr>
</tbody>
</table>
Table 46. Elemental Composition page parameters (Sheet 5 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Elements in Use</strong></td>
<td>Lists the isotopes and the number of occurrences for each isotope to consider when the algorithm calculates possible elemental compositions for the submitted mass value.</td>
</tr>
<tr>
<td>See</td>
<td>Modifying the Elements in the Elements in Use Table.</td>
</tr>
<tr>
<td><strong>Field Chooser icon ()</strong></td>
<td>Displays the Field Chooser dialog box for selecting which fields appear in the Elements in Use table (see Selecting the Columns to Display in a View or Dialog Box with Tabular Data).</td>
</tr>
<tr>
<td><strong>Isotope</strong></td>
<td>Select the isotopes that you want the data system to consider when it calculates the possible elemental compositions for a monoisotopic ion with the given mass (A0 mass peak).</td>
</tr>
<tr>
<td></td>
<td>To add an isotope, click <strong>Add</strong>. The dialog box for the periodic table of elements opens. You can also right-click in the grid and choose <strong>Add</strong> from the shortcut menu.</td>
</tr>
<tr>
<td></td>
<td>To remove an isotope, click to the left of the element in the table to highlight its row, and then click <strong>Remove</strong> or right-click and choose <strong>Remove</strong> from the shortcut menu.</td>
</tr>
<tr>
<td><strong>Min</strong></td>
<td>Specify the minimum number of occurrences of an isotope in the chemical formula.</td>
</tr>
<tr>
<td><strong>Max</strong></td>
<td>Specify the maximum number of occurrences of an isotope in the chemical formula.</td>
</tr>
<tr>
<td><strong>Mass</strong></td>
<td>Displays the exact isotopic mass for each isotope in the Elements in Use list. You cannot edit this value.</td>
</tr>
<tr>
<td><strong>Simulated Spectrum</strong></td>
<td>Select the <strong>Profile</strong> check box to add an overlay of the simulated spectrum. The Resolution box displays the value used to perform the elemental composition. You cannot edit the resolution value. The scores are calculated based on the peaks determined from the profile.</td>
</tr>
<tr>
<td><strong>Tip</strong></td>
<td>You can view the resolution values for each mass spectrum peak by clicking Peak Resolution in the Spectrum – Display Options toolbar (see Spectrum – Display Options Toolbar).</td>
</tr>
<tr>
<td><strong>Button</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Load</strong></td>
<td>Select a file (with an .limx file name extension) that contains a set of isotope limits.</td>
</tr>
<tr>
<td><strong>Save As</strong></td>
<td>Save a list of isotope limits to a file (with an LIMX file name extension).</td>
</tr>
<tr>
<td><strong>Apply</strong></td>
<td>Apply the elemental composition settings to the active mass spectrum.</td>
</tr>
<tr>
<td><strong>Help</strong></td>
<td>Opens the FreeStyle Help to the elemental composition topic.</td>
</tr>
</tbody>
</table>
Searching Mass Spectrum Libraries

To compare a query spectrum against a set of mass spectrum libraries, follow the procedures in these topics.

Performing a Local NIST or mzVault Library Search

Search your local NIST or mzVault mass spectrum libraries to identify unknown compounds.

Follow the procedures in these topics in order:

1. Setting Up the Default Library Search Parameters
2. Selecting the Query Spectrum
3. Starting a Library Search

Setting Up the Default Library Search Parameters

Before you can perform an mzVault library search, you must specify the location of at least one of your local mzVault database files. The application automatically links to the NIST libraries installed during the software installation process.
Follow these procedures:

- To open the Library Search page of the Default Options Configuration dialog box
- To specify the location of your local mzVault database files
- To specify the default parameter settings for a library search

To open the Library Search page of the Default Options Configuration dialog box

1. In the Workspace Options toolbar, click Default Options.
   The Default Options Configuration dialog box opens.
2. In the navigation pane, click Library Search.

To specify the location of your local mzVault database files

1. In the Library Type area on the Library Search page, select the mzVault option.
2. For each database file that you want to add to the Search list, do the following:
   a. In the Search List area, browse to the location of your mzVault database files.
   b. Select an mzVault database file (DB).
   c. Click Open.
3. Click Save.

   Tip After you run your first mzVault search, you can also specify the location of your mzVault database files on the mzVault Search page in the Info Bar.

To specify the default parameter settings for a library search

1. In the Library Type area on the Default Library Search page, select either the NIST or mzVault option.
2. Make the appropriate selections and entries.
3. Click Save.

   Note If you plan to run both NIST and mzVault searches, make sure to select and save the settings for both search types.

   Tip After you run a library search, selecting a different setting from the Display list on the mzVault Search page or the NIST Search page (in the Info Bar) automatically changes how the Spectrum view displays the query spectrum versus the matching library spectrum. You can also modify the search criteria from the Info Bar; however, to start the new search, you must click Apply.

Go to the next topic “Selecting the Query Spectrum.”
Selecting the Query Spectrum

The query spectrum is the spectrum that you want to search against a library of mass spectra.

❖ To select the query spectrum
1. Open a raw data file that contains mass spectral data.

   IMPORTANT You can perform a library search on a mass spectrum, an average mass spectrum, or a composite mass spectrum. For an mzVault or a NIST search for a matching MS/MS spectrum, the query spectrum must be a data-dependent scan.

2. Select a mass spectrum by doing any of the following:
   - Select a data point in a chromatogram plot. If a Spectrum or MultiSpectrum view is not open, in the Workspace Options toolbar, click Spectrum.
     
     The mass spectrum for the selected time point appears in the Spectrum view or the MultiSpectrum view.
     
     • Click the MSn Browser tab, and then double-click an item in the MSn Tree.
     
     The selected spectrum opens in a new Spectrum view.
     
   –or–
   a. Click the Spectrum (or MultiSpectrum) to select it.
   b. In the Workspace Options toolbar, click Spectrum and choose Ranges from the dropdown menu.
   c. In the Spectrum Ranges dialog box, specify the spectrum of interest.

   Note You can perform a library search on a mass spectrum, an averaged mass spectrum, or a composite mass spectrum.

Go to the next topic “Starting a Library Search.”

Starting a Library Search

After you specify the default options for an mzVault or NIST library search and select a query spectrum, you are ready to start the search.

❖ To start a library search
1. Specify the default search settings (see Setting Up the Default Library Search Parameters).
2. Select a spectrum plot (see Selecting the Query Spectrum).
3. Click the Workspace Processing tab to open the Workspace Processing toolbar.
4. Click **Library Search** and choose **mzVault Search** or **NIST Search** from the dropdown menu.

The selected library search page appears in the Info Bar, and the application automatically searches the specified libraries.

When the search ends, the following items appear:

- The library spectrum for the best hit appears in the Spectrum view as a stacked plot, a mirror plot, or an exclusion plot.

**Note** From the Info Bar, you can change the display setting on the mzVault Search page or the NIST Search page without rerunning the search.

- A list of search hits appears in the search results view.
- The structure of the best hit appears in the chemical structure view.

Go to the next procedure “Reviewing the Results of a Local NIST or mzVault Library Search.”

### Reviewing the Results of a Local NIST or mzVault Library Search

To review the results of a library search, see the appropriate topics:

- Reviewing the Results of a NIST Library Search
- NIST Search Results View
- Reviewing the Results of an mzVault Search
- mzVault Search Results View

### Reviewing the Results of a NIST Library Search

*Figure 142* shows the results of a NIST library search. The Spectrum view contains a mirror plot. The NIST Search Results view lists 10 hits sorted in order of probability. The Chemical Structure View displays the two-dimensional structure of the selected hit.
Figure 142. Results of a NIST library search displayed as a mirror plot

The NIST Search Result view appears in the workspace after you submit a NIST library search. The library search algorithm returns a list of the best matches from the selected libraries. See Managing Libraries.

To display the NIST Search Results view

Perform a NIST library search (see Performing a Local NIST or mzVault Library Search).

Table 47 describes the columns for the NIST Search Results view.

Table 47. NIST Search Result view columns (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hit</td>
<td>Relative ranking of library search matches based on decreasing SI (Search Index) values.</td>
</tr>
<tr>
<td>SI (Search Index)</td>
<td>Direct matching factor for the query spectrum and the library spectrum.</td>
</tr>
<tr>
<td>RSI (Reverse Search Index)</td>
<td>Reverse search matching factor that ignores any spectrum peaks in the query spectrum that are not in the library spectrum.</td>
</tr>
<tr>
<td>Prob</td>
<td>Probability factor based on the differences between adjacent hits in an SI ordered list.</td>
</tr>
</tbody>
</table>
Three factors describe the accuracy of the match to the submitted spectrum: SI, RSI, and Prob. With the SI and RSI matching factors, a perfect match results in a value of 1000. As a general guide, 900 or greater is an excellent match; 800–900, a good match; and 700–800, a fair match. A matching factor less than 600 is a poor match. Unknown spectra with many peaks tend to yield lower match factors than similar spectra with fewer peaks.

The probability factor is a complex parameter based on the SI matching factor and the difference between adjacent matches. If a match has an SI match factor greater than 900 and the next best match has a match factor of 300, the probability of the compound being correctly identified is high. Conversely, if several matches have very similar SI matching factors, the probability of a correct assignment is low.

The Chemical Structure View appears when you perform a NIST library search. The Chemical Structure view displays the chemical structure, the compound name, and the chemical formula of the compound that you select in the NIST Search Result view.

### Reviewing the Results of an mzVault Search

For information about starting an mzVault library search, see Starting a Library Search.

Follow these procedures:

- To review the matching compounds found by an mzVault library search
- To view all the matching scans for a selected compound
To review the matching compounds found by an mzVault library search

In the mzVault Search Results view, select a compound.

The best matching spectrum for the library compound appears in the Spectrum view and its chemical structure appears in the mzVault Chemical Structure View.

Figure 143 shows the results of an mzVault library search. The query spectrum’s plot is stacked above the library spectrum’s plot. The mzVault Search Results view lists matching compounds in order of their compound ID numbers. The mzVault Chemical Structure view displays the two-dimensional structure of the compound with the highest score, from 0 to 100%.

Figure 143. mzVault library search results

To view all the matching scans for a selected compound

1. Click the expand icon, +, to open the complete list of matching scans.
2. To view a scan in the Spectrum view, select it in the subtable.
Figure 144 shows the subtable of matching scans in the mzVault database file. For details about the table columns, see the next topic “mzVault Search Results View.” To modify and rerun the search, see To reset the mzVault search parameters and query spectrum.

**Figure 144.** Subtable of matching scans in the mzVault Search Results view

### mzVault Search Results View

The mzVault Search Results view appears in the workspace after you submit an mzVault search. The mzVault search returns a list of matching compounds.

**To display the mzVault Search Results view**

Perform an mzVault library search (see Performing a Local NIST or mzVault Library Search).

The mzVault Search Results view consists of the top-level compound entries and the secondary-level spectrum entries for each compound hit.

Table 48 describes the columns in the compounds table in the mzVault Search Results view.

**Table 48.** Compounds table in the mzVault Search Results view (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound ID</td>
<td>Displays the assigned entry number in the mzVault library. The mzVault application assigns entry numbers in sequential order, beginning with the number 1 for the first entry.</td>
</tr>
<tr>
<td>Compound</td>
<td>Displays the name of the compound associated with the matching spectrum in the library.</td>
</tr>
<tr>
<td>Formula</td>
<td>Displays the chemical formula for the library entry.</td>
</tr>
</tbody>
</table>
Table 49 describes the spectrum information for each compound entry.

Table 49. Spectrum information for each compound entry

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS ID</td>
<td>Displays the unique Chemical Abstracts Service™ registry number.</td>
</tr>
<tr>
<td>High Res Score</td>
<td>Displays a score calculated by a proprietary algorithm that indicates how well the library spectrum and the query spectrum match.</td>
</tr>
</tbody>
</table>

**Modifying the Settings for a Local NIST or mzVault Library Search**

After you run a NIST or an mzVault library search, you can modify the search settings on the respective page in the Info Bar, and then restart the search.

To modify and rerun a search, see the appropriate topic:

- Modifying a NIST Search from the NIST Search Page
- Modifying an mzVault Search from the mzVault Search Page
Modifying a NIST Search from the NIST Search Page

After running a NIST search, use the NIST Search page of the Info Bar to modify the search or the display in the NIST Search Results view.

Follow these procedures:

- To display the NIST Search page
- To modify the display in the NIST Search Results view
- To modify the NIST search

To display the NIST Search page

Run a NIST library search (see Performing a Local NIST or mzVault Library Search). When the search is complete, you can reset the search parameters.

Figure 145 shows the NIST Search page.
To modify the display in the NIST Search Results view

In the Display list on the NIST Search page, make a different selection (see Display in Table 50).

To modify the NIST search

Modify the parameter settings on the NIST Search page, and then click **Apply**.

Table 50 describes the parameters for the NIST Search page.

**Table 50. NIST Search page parameters (Sheet 1 of 4)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Search List</strong></td>
<td></td>
</tr>
<tr>
<td>Library</td>
<td>Select the search libraries.</td>
</tr>
<tr>
<td>Hits</td>
<td>Select how many search results to display in the NIST Search Results View. Range: 1–100; default: 10</td>
</tr>
<tr>
<td>Display</td>
<td>Select how to display the library spectrum and measured spectrum, from these options:</td>
</tr>
<tr>
<td></td>
<td>• Stacked: Displays the submitted spectrum above the currently selected library spectrum in the match list.</td>
</tr>
<tr>
<td></td>
<td>• Exclusion: Subtracts the library spectrum from the submitted spectrum.</td>
</tr>
<tr>
<td></td>
<td>• Mirror: Plots the submitted spectrum that points up from the x axis and the library spectrum that points down from the x axis.</td>
</tr>
<tr>
<td><strong>Search Type</strong></td>
<td></td>
</tr>
<tr>
<td>Identity</td>
<td>Applies an identity-search algorithm for the library matching of spectra.</td>
</tr>
<tr>
<td>Normal</td>
<td>(Default) Applies a normal identity-search algorithm for library matching of spectra. Use a normal identity search for low quality or unusual spectra. The search algorithm uses a standard prescreen search filter.</td>
</tr>
<tr>
<td>Quick</td>
<td>Applies a quick identity-search algorithm for library matching of spectra. Use this option if you are sure the spectrum or compound exists in the library. The search algorithm uses a fast prescreen search filter.</td>
</tr>
<tr>
<td>MS/MS</td>
<td>Searches for an MS/MS spectrum in a library of MS/MS spectra.</td>
</tr>
</tbody>
</table>
Searching Mass Spectrum Libraries
Modifying the Settings for a Local NIST or mzVault Library Search

In-source HiRes Searches for an in-source electron ionization (EI) spectrum in a library containing high-resolution in-source EI spectra—that is, a library where the EI-MS spectra are annotated with \( m/z \) values to several decimal places. Also searches for an MS/MS spectrum in a library of MS/MS spectra.

Unlike an MS/MS search, this search does not compare precursor \( m/z \) values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-source HiRes</td>
<td>Searches for an in-source electron ionization (EI) spectrum in a library containing high-resolution in-source EI spectra—that is, a library where the EI-MS spectra are annotated with ( m/z ) values to several decimal places. Also searches for an MS/MS spectrum in a library of MS/MS spectra.</td>
</tr>
<tr>
<td>Similarity</td>
<td>Applies a similarity-search algorithm for the library matching of spectra.</td>
</tr>
<tr>
<td>Simple</td>
<td>Applies a simple similarity-search algorithm for library matching of spectra.</td>
</tr>
<tr>
<td></td>
<td>This option finds a large set of spectra to compare with the submitted spectrum, and is generally slower than an identity search.</td>
</tr>
<tr>
<td></td>
<td>Use a simple similarity search in these situations:</td>
</tr>
<tr>
<td></td>
<td>• You know that the unknown spectrum is not in the library.</td>
</tr>
<tr>
<td></td>
<td>• The spectrum is of poor quality so that a reliable match is unlikely.</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Applies a hybrid similarity-search algorithm for library matching of spectra.</td>
</tr>
<tr>
<td></td>
<td>This option uses a combination of the simple and neutral-loss search strategies. The neutral-loss search requires an estimate of the unknown’s molecular weight. When the unknown compound contains chemical structures that generate both characteristic ions and neutral loss patterns, the search algorithm can identify these structures from the match list produced by this search.</td>
</tr>
<tr>
<td>Neutral Loss</td>
<td>Applies a neutral-loss similarity-search algorithm for library matching of spectra.</td>
</tr>
<tr>
<td></td>
<td>The neutral losses in a spectrum are the mass differences between the molecular ion and other major ions in the spectrum. Neutral-loss peaks can be very characteristic as spectral features for certain classes of compounds.</td>
</tr>
<tr>
<td></td>
<td>In a neutral loss search, the algorithm examines the submitted spectrum and identifies the molecular ion. It submits the mass value of the molecular ion to the search algorithm along with the spectrum. The search algorithm calculates the significant neutral losses and compares them with the library data. It returns hits according to matches of the molecular ion and its neutral losses.</td>
</tr>
<tr>
<td>MS/MS Hybrid</td>
<td>Applies an MS/MS hybrid similarity-search algorithm for library matching of spectra.</td>
</tr>
<tr>
<td></td>
<td>This option uses a combination of the simple and neutral-loss search strategies. In this search, the algorithm searches for an MS/MS spectrum in a library of MS/MS spectra.</td>
</tr>
</tbody>
</table>

Options

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search With MW=</td>
<td>Restricts the library search to entries with a particular molecular weight. Use the associated box to enter the molecular weight.</td>
</tr>
</tbody>
</table>
Reverse Search

Sorts matching library spectra by the reverse search match factor. By default, the algorithm sorts matches by the forward match factor.

Penalize Rare Compounds

Limits the impact of rare compounds by reducing the match factor.

Use this option only when you select one or more of the NIST databases (such as MAINLIB). It has no effect on spectra in user libraries or other commercial libraries.

Each reference spectrum in a NIST library contains a record of other commercial databases containing information about the compound. A compound is considered rare if it is present in a limited number of these databases.

When you select the Penalize Rare Compounds option, the application reduces the match factors for matched compounds that are present in few or no databases other than the NIST libraries. The maximum reduction penalty is 50 out of 1000.

Selecting this option leads to a relative increase in the match factors of common compounds, placing them higher in the match list than exotic isomers with nearly identical spectra.

Mass Defect

Use this area to set the parameters for library searches to correct for the differences between the actual masses and the nominal integer masses of the atoms in a molecule. Assign a larger mass defect (in millimass units) for more massive molecules because, in general, they are composed of more atoms than less massive molecules. More massive molecules need a larger correction factor to approximate the linear function that the application uses to calculate masses.

Enable

Include mass defect values for library searches.

Defect (mmu)

Specify the mass defect (in millimass units).

Specify a smaller value for the lower mass ranges in the first box and a larger value for the higher mass ranges in the second box.

At Mass (amu)

Specify the masses at which the application applies the specified mass defect values to calculate mass.

Specify a smaller mass value in the first box and a larger mass value in the second box.

MS/MS and In-source HiRes Search Options

Use this area to set the parameters for library searches involving the comparison of peaks in the search spectrum with library spectra whose precursor m/z value or product mass spectral peak might need to fall within a specified tolerance setting.

Precursor +–

Specify the range of the m/z tolerance for precursor ions, in either ppm or m/z units.

Range: 0.015 to 100 000 ppm or m/z 6×10⁻⁵ to 500; default: 10 ppm

Product Ions +–

Specify the range of mass spectral peak tolerance for product ions, in either ppm or m/z units.

Range: 0.015 to 100 000 ppm or m/z 6×10⁻⁵ to 500; default: 10 ppm
Modifying an mzVault Search from the mzVault Search Page

Use the mzVault Search page in the Info Bar to search the mzVault library for library entries that match your selected fragmentation spectrum. You can filter the search by compound name, chemical formula, or precursor m/z value.

Follow these procedures:

• To open the mzVault Search page
• To modify the display in the mzVault Search Results view
• To reset the mzVault search parameters and query spectrum

❖ To open the mzVault Search page

Run an mzVault search (see Performing a Local NIST or mzVault Library Search).

When the search is complete, you can reset the search parameters.

Figure 146 shows the mzVault Search page.
To modify the display in the mzVault Search Results view

In the Display list on the mzVault Search page, make a different selection (see Display in Table 51).

To reset the mzVault search parameters and query spectrum

1. When applicable, click the Browse icon next to the Library list and select another mzVault library.

   Note The FreeStyle application lets you select the access-restricted mzVault library.

2. In the Hits box, type the maximum number of compounds that you want the search to return.

3. From the Display list, select how you want to display the matching spectra in the Spectrum view (see Setting Up the Default Library Search Parameters).
4. (Optional) In the Score Cutoff box in Search Parameters area, specify the minimum score for a match to be returned.

   Default: 0

5. Select the type of search to conduct, either Forward or Reverse.

6. (Optional) For filtered searches, do the following:
   a. Select the check box on the left to make the filter selections available. You can select up to six filters.
   b. Select a filter type. You can select the filters from the 12 filter types from the dropdown menu.
   c. Specify the filter criterion for the selected filter.
      For details about selecting the type of filters, see Table 51.
   d. From the Match/Custom dropdown list, select Match to update the filter criteria based on the selected scan, or Custom to retain the edited filter criteria as you navigate to different scans. The Custom option is applicable only for the following filter types:
      • Collision energy
      • Precursor m/z
      • Retention time
      • Retention time range

7. In the Fragment Tolerance area, select the Automatic or Manual option to indicate how to specify the fragment tolerance.

8. (Optional) Select whether you want the application to filter out low intensity peaks from the query spectrum before performing the search.

9. (Optional) To have the mzVault application ignore any mass that is within 2.2 Da of the precursor ion for the purpose of calculating scores, select the Remove Precursor check box.

10. Click Apply.

    The application applies the search parameters and displays the mzVault search results for the selected criteria.
Table 51 describes the parameters for the mzVault Search page in the Info Bar.

**Table 51.** mzVault Search page parameters (Sheet 1 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Search List</strong></td>
<td>Use the settings in this area to choose the library for library searches. Specify how many search results to display and how they are displayed.</td>
</tr>
<tr>
<td>Library</td>
<td>Select the library (database file) for the search.</td>
</tr>
<tr>
<td>Hits</td>
<td>Specify how many search results to display in the mzVault Search Results View.</td>
</tr>
<tr>
<td>Range: 1–10 000; default: 10</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>Select how to display the library spectrum and query spectrum:</td>
</tr>
<tr>
<td>• Stacked—Displays the query spectrum above the currently selected library spectrum in the match list.</td>
<td></td>
</tr>
<tr>
<td>• Mirror—Plots the query spectrum on the positive y axis from 0 to 100% intensity and the library spectrum on the negative y axis from 0 to –100% intensity.</td>
<td></td>
</tr>
<tr>
<td>• Exclusion—Subtracts the library spectrum from the query spectrum.</td>
<td></td>
</tr>
<tr>
<td><strong>Search Parameters</strong></td>
<td>Filters out results below a percentage of the highest score. For example, if the highest score for a search result is 0.900 and the setting in this box is 60, the search does not return results with scores below 0.540 (0.9 × 60% = 0.540).</td>
</tr>
<tr>
<td>Range: 0.00 to 100.00; default: 0.00</td>
<td></td>
</tr>
<tr>
<td><strong>Search Type</strong></td>
<td>Conducts a forward search, which bases the search on a comparison of the peaks in the unknown spectrum against the peaks in a library spectrum.</td>
</tr>
<tr>
<td>Forward</td>
<td>When the unknown spectrum includes a peak that is not in a given library spectrum, the score for the match is negatively affected.</td>
</tr>
<tr>
<td>Use a forward search when the unknown spectrum is of high quality—that is, when it has good fragmentation and few low-intensity background peaks.</td>
<td></td>
</tr>
<tr>
<td>Reverse</td>
<td>Conducts a reverse search, which bases the search on a comparison of the peaks in a library spectrum against the peaks in the unknown spectrum.</td>
</tr>
<tr>
<td>When the unknown spectrum does not contain a peak that is in the library spectrum, the score for the match is negatively affected, but the presence of additional peaks in the unknown spectrum has no effect on the score.</td>
<td></td>
</tr>
<tr>
<td>Use a reverse search if the unknown spectrum includes peaks from several components or has a lot of background noise.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 51. mzVault Search page parameters (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Filters</strong></td>
<td></td>
</tr>
<tr>
<td>Collision Energy</td>
<td>Filters the library entries with scan data acquired at the specified collision energy within the specified tolerance. Valid entries: Numeric value &gt; 0</td>
</tr>
<tr>
<td>Compound</td>
<td>Filters the library entries by the name or part of the name of the compound. Valid entries: Alphanumeric and special characters</td>
</tr>
<tr>
<td>Compound Class</td>
<td>Filters the library entries for the selected compound class. The Compound Class list includes only compound classes found in the selected library.</td>
</tr>
<tr>
<td>Curation Type</td>
<td>Filters the library spectra for the selected curation type. The Curation Type list includes only the curation types in the selected library.</td>
</tr>
<tr>
<td>Formula</td>
<td>Filters the library entries by the chemical formula of the library entry. Valid entries: Alphanumeric and special characters</td>
</tr>
<tr>
<td>Fragmentation Mode</td>
<td>Filters the library spectra with the same fragmentation mode as the query spectrum. Default: Set to Match</td>
</tr>
<tr>
<td>Peptide Sequence</td>
<td>Filters the library entries that include the specified peptide sequence.</td>
</tr>
<tr>
<td>Precursor mass range</td>
<td>Filters the library spectra for the specified range of precursor m/z values. Valid entries: The maximum value must be greater than the minimum value by 0.1 amu</td>
</tr>
<tr>
<td>Precursor m/z</td>
<td>Filters the library entries by the mass-to-charge ratio of the precursor ion for the library fragmentation scans. When you select this option, the Precursor m/z and the Precursor Tolerance boxes become available. Valid entries: Numeric values up to four decimal places.</td>
</tr>
<tr>
<td>Retention Time</td>
<td>Filters the library spectra from the specified retention time within a tolerance. Default: Retention time of the query scan; valid entries: Positive numeric values</td>
</tr>
<tr>
<td>Retention time range</td>
<td>Filters the library spectra from the specified retention time range. Valid entries: The maximum value must be greater than the minimum value by 0.1 min.</td>
</tr>
<tr>
<td>Scan Filter</td>
<td>Filters the library spectra for the specified scan filter. Valid entries: All or part of a valid scan filter; alphanumeric characters</td>
</tr>
</tbody>
</table>
**Table 51. mzVault Search page parameters (Sheet 3 of 4)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Filter Criterion</strong></td>
<td>Defines the filter criteria based on the Filter type.</td>
</tr>
<tr>
<td><strong>Match/Custom</strong></td>
<td></td>
</tr>
<tr>
<td>Match</td>
<td>Updates the filter criteria based on the selected scan.</td>
</tr>
<tr>
<td>Custom</td>
<td>Retains the edited filter criteria as you navigate to different scans.</td>
</tr>
<tr>
<td><strong>Query Spectrum</strong></td>
<td>Use the settings in this area to define the mass tolerance and Intensity threshold settings.</td>
</tr>
<tr>
<td><strong>Fragment Tolerance</strong></td>
<td>(Default) Uses an internal algorithm to calculate the mass tolerance.</td>
</tr>
<tr>
<td>Manual</td>
<td>Selecting this option activates the mass tolerance box and the corresponding units list. Enter the mass tolerance for the fragment ions.</td>
</tr>
<tr>
<td>Units: amu, mmu, or ppm</td>
<td>Range: 0.001 to 1000.00; default: 10.000</td>
</tr>
<tr>
<td><strong>Intensity Threshold</strong></td>
<td>Determines whether the application filters out peaks with an intensity below the Intensity Threshold (%) setting.</td>
</tr>
<tr>
<td>On or Off</td>
<td>• (Default) On—Filters out peaks that are less than the specified value. Makes the Intensity Threshold% parameters available.</td>
</tr>
<tr>
<td></td>
<td>• Off—Does not filter out peaks on the basis of their intensity.</td>
</tr>
<tr>
<td></td>
<td>The Intensity Threshold parameter calculates the score that indicates how well a spectrum matches a library spectrum and displays the score in the High Res Score column.</td>
</tr>
<tr>
<td><strong>Intensity Threshold%</strong></td>
<td>(Default) Uses an internal algorithm to calculate the threshold value.</td>
</tr>
<tr>
<td>Manual</td>
<td>Lets you to specify the threshold value to use for filtering spectrum peaks. The application takes the default value from the scan that you selected from the raw data file.</td>
</tr>
<tr>
<td><strong>Additional Query Spectrum parameter</strong></td>
<td></td>
</tr>
<tr>
<td>Remove Precursor Ion</td>
<td>Determines whether the application removes peaks within 2.2 Da of the precursor ion. In an MS/MS experiment, the fragmentation spectrum does not normally contain a peak for the precursor ion, but sometimes it can appear and interfere with the scoring algorithm. This option corrects for the presence of a peak for the precursor ion.</td>
</tr>
<tr>
<td>Default: Selected</td>
<td></td>
</tr>
</tbody>
</table>
Searching the Online mzCloud Mass Spectral Database

The mzCloud mass spectral database includes thousands of fragmentation spectra.

To perform an mzCloud library search for a matching fragmentation spectrum

1. In a Spectrum view, select a fragmentation spectrum.
2. In the Workspace Processing toolbar, choose Library Search > mzCloud Search.

Figure 147 shows the mzCloud Spectrum Search dialog box that opens in your default browser when you run an mzCloud search.

Figure 147. mzCloud search parameters in a browser
Figure 148 shows the search results for an mzCloud search.

**Figure 148.** mzCloud search results

Exporting a Mass Spectrum to the NIST MS Search Application

You can export a mass spectrum to the Library Search page of the NIST application.

**Note** Thermo Fisher Scientific provides the NIST application with the Xcalibur data system.

- To export a spectrum to the NIST application
  1. Click the Spectrum view or spectrum plot of interest.
  2. Click the **Workspace Processing** tab to open the Workspace Processing toolbar.
  3. In the Library Search area of the toolbar, click **Export to NIST**.

   The Library Search page of the NIST application opens with the search spectrum displayed.
Managing Libraries

Use the Thermo Library Manager dialog box to add a library, copy a library, or delete a library.

When you add a library to the NIST libraries list, either copy the library file to the local computer or link to the library at a remote location without copying files.

❖ To add a library

1. Click the **Workspace Processing** tab to open the Workspace Processing toolbar.

2. Click **Library Manager** to open the Thermo Library Manager dialog box (see Figure 149).

   **Figure 149.** Thermo Library Manager dialog box

3. Click **Add** to open the Add Library dialog box (see Figure 150).

   **Figure 150.** Add Library dialog box

4. Type the path for the new library file in the Source box, or click **Browse** to locate the file.

5. Select one of two options:
   - Copy the library to the local computer.
   - Link to the library from either a remote location or computer.

   **Tip** Because libraries can be large, select the link option rather than the copy option to save time.
6. Click **OK**.

   The data system adds the library to the NIST Libraries list in the Thermo Library Manager dialog box.

7. When you have no more tasks to complete with the Library Manager, click **Exit**.

❖ **To copy a library for archiving**

1. In the Thermo Library Manager dialog box (see Figure 149), select a library in the NIST Libraries list.

2. Click **Archive**.

   The Archive Library dialog box opens (see Figure 151).

   ![](image)

   **Figure 151.** Archive Library dialog box

3. In the Archive Library dialog box, type the path for the copied library file in the Destination box, or click **Browse** to find the location.

4. To copy the selected library to the remote location, click **OK**.

5. When you have no more tasks to complete with the Library Manager, click **Exit**.

You can copy a selected library to another directory on the computer or network by using the Archive feature.

❖ **To delete a selected library in the NIST Libraries list**

1. In the Thermo Library Manager dialog box (see Figure 149), select a library to delete from the NIST Libraries list.

2. Click **Delete**.

   The system prompts you to confirm the deletion.

3. Click **Yes**.

4. When you have no more tasks to complete with the Library Manager, click **Exit**.

**IMPORTANT** After you delete a library, you cannot bring it back. Make sure that you want to delete a library permanently before you proceed, especially a shared library on the network.
Spectrum Workspace Processing Toolbar – Library Search Features

Use the features in the Library Search area of the Workspace Processing toolbar to perform library searches.

❖ To display the Spectrum Workspace Processing toolbar

1. Click a Spectrum View or a MultiSpectrum View to select it.
2. Click the Workspace Processing tab to open the Workspace Processing toolbar.

Figure 152 shows the Library Search area in the Workspace Processing toolbar, and Table 52 describes the toolbar icons.

Figure 152. Library Search areas of the Workspace Processing toolbar

<table>
<thead>
<tr>
<th>Table 52. Spectra-specific Workspace Processing icons</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Command</strong></td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Library Search area</td>
</tr>
<tr>
<td>Library Search menu</td>
</tr>
<tr>
<td>NIST Search</td>
</tr>
<tr>
<td>mzVault Search</td>
</tr>
<tr>
<td>mzCloud Search</td>
</tr>
<tr>
<td>Export to NIST</td>
</tr>
<tr>
<td>Library Manager</td>
</tr>
</tbody>
</table>
Simulating Isotope Distributions

The FreeStyle application includes a utility that predicts and displays the isotopic distribution for a specified chemical formula or peptide sequence. The simulated spectrum is based on the elemental composition of the compound or peptide and the charge state distribution of its adduct ions.

To display simulated isotope distribution plots for chemical formulas and peptide sequences, see these topics.

Simulating the Isotope Distribution for a Chemical Formula or Peptide

A simulated isotopic distribution is based on a chemical formula or peptide sequence. For details about the parameter settings, see Isotope Simulation Page.

When you open the FreeStyle application, the Isotope Simulation page opens in the Info Bar. Without opening a raw data file, you can use the Isotope Simulation page to display, in a separate window, the isotope pattern at a specified resolution for compounds or peptides. After opening a raw data file (see To open a raw data file or a sequence file), you can also use the Isotope Simulation page to insert a simulated isotope pattern or profile spectrum in a Spectrum view and an EIC trace in the Chromatogram view of a Workspace.

To display isotope simulations

1. If the Isotope Simulation page is not visible, click the Isotope Simulation tab.
2. For the first simulation, do one of the following:
   - To display the simulation in the Isotope Simulation window, keep the New option.
   - or -
To display the simulation in the Spectrum view of a Workspace, open a raw data file, and then on the Isotope Simulation page, select the **Show within the Workspace** check box.

Figure 153 shows the default settings on the Isotope Simulation page.

**Figure 153.** Isotope Simulation page without an open workspace

3. Enter the formula for a compound or the sequence of a peptide:

   • For a compound, select **Chemical Formula** and enter the chemical formula using the chemical symbols in the periodic table.

   ![Elemental composition of caffeine](image)

   ![Elemental composition of caffeine where one carbon-12 atom has been replaced with carbon-13](image)

   ![Elemental composition of caffeine where all the carbon-12 atoms have been replaced with carbon-13](image)

   • To specify a specific isotope, use square brackets before the element name to enclose the isotope mass number, for example, \([13]C\).
9 Simulating Isotope Distributions
Simulating the Isotope Distribution for a Chemical Formula or Peptide

- To specify repeating moieties, such as those found in polymers, use parentheses.

<table>
<thead>
<tr>
<th>Type</th>
<th>Chemical Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>HOOC(2H40)3SH</td>
</tr>
</tbody>
</table>

- For a peptide, select **Peptide** and enter the peptide sequence using uppercase one-letter symbols for the amino acid residues (see One- and Three-Letter Abbreviations for Amino Acid Residues).

<table>
<thead>
<tr>
<th>Type</th>
<th>Peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>TPIL</td>
</tr>
</tbody>
</table>

**Note** If you enter an incorrect formula, the application outlines the Formula box in red. Examples of incorrect entries include the following:
- Peptide—Lowercase letters or three-letter abbreviations
- Chemical formula—Chemical symbols that are not in the periodic table

4. Under Adduct and Charge Distribution, do the following:
   a. Select the polarity of the ion.
   b. Select the adduct species, the charge of the most abundant ion, the concentration of the adduct species, and the half width of the charge distribution.

   For example, to simulate a spectrum for both the protonated and sodiated adduct ions of a compound in a high-concentration sodium solution, select the following:
   - Polarity: positive
   - Species: Na
   - Concentration: High
   - Half-Width: 0

5. To display an EIC trace for the specified ion in the Chromatogram view of a Workspace, open a raw data file if you have not already done so, and then select the **Show Extracted Ion Chromatogram** check box.

6. In the Simulated Spectrum area, do one of the following:
   - To display a pattern, leave the **Profile** check box clear.
   - or-
   a. To display a simulated profile spectrum, select the **Profile** check box.
   b. (Optional) Specify the resolution.
Simulating Isotope Distributions
Simulating the Isotope Distribution for a Chemical Formula or Peptide

Result:

- When you are working with raw data, the application automatically populates the Resolution box with the experimental resolution in the current raw data file.

- When you have not opened a workspace, the application populates the Resolution box with the default value of 1,000,000. You can type a value from 1 to 2,000,000.

Tip You can specify a simulated profile spectrum to determine whether your instrument is capable of resolving the theoretical isotope pattern for a specific ion, or you can specify several simulations to determine the required resolution.

c. Select the centroiding algorithm.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex Samples</td>
<td>Uses the sampling points nearest the peak apex.</td>
</tr>
<tr>
<td>All Samples</td>
<td>Uses all the sampling points in the profile peak, down to the baseline or valley between the resolved peaks.</td>
</tr>
</tbody>
</table>

Figure 154 shows a portion of a simulated profile spectrum. The two graphs show the difference between the two centroiding methods, where the left graph displays the results of the Apex Samples algorithm and the right graph displays the results of the All Samples algorithm. When you zoom in on the peak apexes, you can see the slight difference between the centroiding methods.

Note When you display a simulated profile spectrum in the Spectrum view of a Workspace, the application displays the centroids for the Gaussian-shaped peaks as vertical green lines.

Figure 154. A1 peaks in a simulated profile spectrum (in the Spectrum view)

When you leave the Show within the Workspace check box clear, the Insert and Replace options become available after you run the first simulation and the Isotope Simulation window opens.
7. Click **Apply**.

8. For additional simulations, do the following:
   a. Do one of the following:
      - To display additional simulations in separate Isotope Simulation windows, select **New**.
      - To insert additional simulations into one Isotope Simulation window, select **Insert**.
      - Or—
      - To replace the current simulation with another simulation, select **Replace**.
   b. Modify the compound or peptide information, and then click **Apply**.

   **Figure 155** shows the result of an isotope simulation for the protonated ion of caffeine.

   **Figure 155.** Simulated centroid spectrum and EIC trace shown within the Workspace

   ![Simulated centroid spectrum and EIC trace](image)

   **Note** Most peptides have multiple charge sites, which means that their spectra will show multiple charge states.
Figure 156 shows an isotope simulation for a peptide with a charge distribution pattern of 5,1—that is, a charge of +5 and a half width of 1. Notice that the monoisotopic peak (A0) is not the most intense peak. In compounds with large numbers of carbon atoms, the probability that one of the atoms will be a carbon-13 atom increases.

Figure 156. Example isotope simulation for a peptide

As shown in Figure 156 and Figure 157, when the number of carbon atom exceeds 91, the probability that the ion includes one carbon-13 atom exceeds 100% and the M+1 peak for the (A1) ion with one carbon-13 atom becomes the most intense peak.
Displaying Centroid and Profile Spectra in the Same Window

The application does not display formula labels for simulated profile spectra. To view the formulas for the simulated peaks, run the simulation in both the profile and centroid modes within the same Isotope Simulation window.

❖ To view both simulation types in the Isotope Simulation window

1. Specify the initial simulation, make sure that the Show Within the Workspace and Profile check boxes are clear, and click **Apply**.
2. Select the **Insert** option.
3. Specify a second simulation for the same formula and charge distribution.
4. Select the **Profile** check box, and then select the centroiding algorithm.

5. Click **Apply**.

   **Figure 158** shows the isotope simulation and the mass spectrum for the protonated caffeine ion. At the experimental resolution, the isotope simulation shows that the A1 peaks at \( m/z \) 196.1 will not be completely resolved. The experimental spectrum shows a similar profile at \( m/z \) 196.1.

**Figure 158.** Simulation for caffeine versus the experimental spectrum for a caffeine sample
Isotope Simulation Page

Use the Isotope Simulation page of the Info Bar to create a simulated isotopic distribution plot. The Isotope Simulation page is always available. Without opening a workspace, you can only display a simulated spectrum in the stand-alone Isotope Simulation window. After you open a workspace, you can display an EIC trace in the Chromatogram view and add an isotope simulation plot to the Spectrum view.

For information about running the isotope simulation utility and reviewing the resulting spectrum, see Simulating the Isotope Distribution for a Chemical Formula or Peptide.

Table 53 describes the parameters for the Isotope Simulation page.

**Table 53.** Isotope Simulation page parameters (Sheet 1 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Opens a separate Isotope Simulation window each time you click Apply.</td>
</tr>
<tr>
<td>Insert</td>
<td>Adds repeated simulations to the same Isotope Simulation window. Available when an Isotope Simulation window is open.</td>
</tr>
<tr>
<td>Replace</td>
<td>Replaces the current simulated spectrum with the latest simulation. Available when an Isotope Simulation window is open.</td>
</tr>
<tr>
<td>Type</td>
<td>Specify that the formula is either a Chemical Formula or a Peptide.</td>
</tr>
</tbody>
</table>
Table 53. Isotope Simulation page parameters (Sheet 2 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>Enter the formula or peptide sequence for the compound or peptide for which you want to create a simulated spectrum. After you enter a formula or peptide sequence, it appears in a selection list for this box.</td>
</tr>
<tr>
<td>• Chemical Formula</td>
<td>Uses the custom periodic table elements for isotope simulation when you select the custom periodic table for elemental composition. For entering a chemical formula, do the following:</td>
</tr>
<tr>
<td>• Use the IUPAC symbol for each element—that is, match the notation, including the capitalization, in the periodic table of elements.</td>
<td></td>
</tr>
<tr>
<td>• To enter a specific isotope, use square brackets before the element name to enclose the isotope mass number, for example, [13]C.</td>
<td></td>
</tr>
<tr>
<td>• Use parentheses to specify repeating moieties such as those found in polymers, for example, HO(C2H4O)5H.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>To create a custom adduct, enter any valid chemical formula, select a species, and type or select the charge of the adduct ion.</td>
</tr>
<tr>
<td>• Peptide</td>
<td>For a peptide sequence, do the following:</td>
</tr>
<tr>
<td>• Use the single capital letter abbreviations for amino acids.</td>
<td></td>
</tr>
<tr>
<td>• You can specify mixtures of substances by using additional symbols “+” (addition) and “×” (multiplication). Both symbols are required to specify a mixture. A valid mixture has the format \textit{substance}×\textit{quantity} + \textit{substance}×\textit{quantity}, for example, \textit{A×2+C×5}.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>To specify mixtures of substances, use + (addition) and * (multiplication) symbols. Both are required to specify a mixture. A valid mixture has the format \textit{substance}•\textit{quantity} + \textit{substance}•\textit{quantity}, for example, \textit{C4H8•2+H2O•5}.</td>
</tr>
</tbody>
</table>

Adduct and Charge Distribution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarity</td>
<td>Select the Positive or Negative option. Default: Positive</td>
</tr>
</tbody>
</table>
Species Select, if necessary, the adduct for the simulated spectrum.

- For positive polarity, you can select H, K, Na, NH₄, or no adduct. Or, you can type the chemical symbol or formula for a positive adduct such as Ca for calcium.

- For negative polarity, you can select H, Cl, OH, HCOO, or no adduct. Or, you can type the chemical symbol or formula for a negative adduct.

Charge Specify the charge of the adduct ion or peptide.

- (Positive polarity) Range: 1–25; default: 1
- (Negative polarity) Range: –1 to –25; default: –1

Half Width Simulate the number of additional charges on each side of the most abundant ion. Select a value from 0 to 99.

For example: When you simulate charge 5 and a half width of 2, then the data system draws charges 5 ± 2, giving 7, 6, 5, 4, 3 (with the largest mass peak (normalized to 100% relative intensity) at charge 5).

For most small molecules, simulate charge 1 with a half width of 0.

To simulate an intensity distribution, the peaks at the edge of the distribution are shown at 5% of the height of the most abundant peak.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Select, if necessary, the adduct for the simulated spectrum.</td>
</tr>
<tr>
<td>Charge</td>
<td>Specify the charge of the adduct ion or peptide.</td>
</tr>
<tr>
<td></td>
<td>- (Positive polarity) Range: 1–25; default: 1</td>
</tr>
<tr>
<td></td>
<td>- (Negative polarity) Range: –1 to –25; default: –1</td>
</tr>
<tr>
<td>Half Width</td>
<td>Simulate the number of additional charges on each side of the most abundant ion. Select a value from 0 to 99.</td>
</tr>
</tbody>
</table>

For example: When you simulate charge 5 and a half width of 2, then the data system draws charges 5 ± 2, giving 7, 6, 5, 4, 3 (with the largest mass peak (normalized to 100% relative intensity) at charge 5).

For most small molecules, simulate charge 1 with a half width of 0.

To simulate an intensity distribution, the peaks at the edge of the distribution are shown at 5% of the height of the most abundant peak.
Table 53. Isotope Simulation page parameters (Sheet 4 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Concentration | There are four possibilities for how the adduct is added to the ion: One, Low, High, and 100%.

- **One adduct**

  **For positive charge states**

  The application creates the specified charge state by adding the specified species for the first charge and H+ ions for subsequent charges. For example, a charge distribution of Charge 2+ (most abundant) and Half Width = 1 (2,1) and a Na+ adduct shows these ions and the simulated spectrum includes three isotope clusters:
  
  - Charge +1) Chemical_FormulaNa⁺
  - Charge +2) Chemical_FormulaHNa⁺²
  - Charge +3) Chemical_FormulaH2Na⁺³

  **For negative charge states**

  When you select H as the species, each charge state shows a loss of H+ to attain the specified charge—that is, a loss of one hydrogen ion for a charge of negative one, a loss of two hydrogen ions for a charge of negative two, and so on. When the molecule does not contain hydrogen, nothing is removed.

  For the neutral compound C8H8:
  
  - Charge −1) C8H7
  - Charge −2) C8H6
  - Charge −3) C8H5

  For negative species, such as Cl−, the −1 charge state shows the addition of the negative species to attain the specified charge. Higher charge states show the addition of one Cl− and the loss of one or more H+ to attain the specified charge.

  For the neutral compound C8H8:
  
  - Charge −1) C8H8Cl
  - Charge −2) C8H7Cl
  - Charge −3) C8H6Cl

- **Low**

  The ion with no adduct is included at 100% intensity, one adduct at 25% intensity, two adducts at 11% intensity, and so on (to the limit of the charge distribution).

- **High**

  The ion with N adducts are included at 100% intensity, N−1 adduct at 25% intensity, N−2 adducts at 11% intensity, and so on, where N is the absolute value of the maximum charge simulated (to the limit of the charge distribution).
### Table 53. Isotope Simulation page parameters (Sheet 5 of 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 100%</td>
<td>The ion of charge N contains M adducts (where M is the absolute value of N).</td>
</tr>
<tr>
<td>Show Extracted Ion Chromatogram</td>
<td>Displays an EIC trace for the monoisotopic ion in the Chromatogram view.</td>
</tr>
<tr>
<td>Show within the Workspace</td>
<td>Displays the isotope simulation in the Spectrum view of a Workspace.</td>
</tr>
<tr>
<td>Simulated Spectrum</td>
<td></td>
</tr>
<tr>
<td>Profile and Resolution</td>
<td>When the Profile check box is clear, the application generates a theoretical isotope pattern with infinite resolution—that is, it displays the peaks as one-dimensional sticks rather than as Gaussian peaks similar to the intensity versus frequency data that the instrument generates.</td>
</tr>
<tr>
<td></td>
<td>When the Profile check box is selected, for each peak in the simulated pattern, the application uses a Gaussian peak-shape model that bases the peak width on the specified resolution. The application then sums the simulated Gaussian peaks to create a simulated profile spectrum for the specified resolution. The application displays the centroid for each profile peak as a green vertical line.</td>
</tr>
<tr>
<td></td>
<td>When you open a raw data file in the workspace, the Resolution box displays the resolution value for the most intense peak (full width at half maximum [FWHM]) in the selected scan. You can overwrite this value.</td>
</tr>
<tr>
<td>Tip</td>
<td>To view the resolution values for each mass spectrum peak, click Peak Resolution in the Spectrum – Display Options toolbar.</td>
</tr>
<tr>
<td>Centroid</td>
<td>• (Default) Apex Samples—Selects the sampling points nearest the peak apex to calculate the centroid of each simulated profile peak.</td>
</tr>
<tr>
<td></td>
<td>• All Samples—Uses all the sampling points across the profile peak, down to the baseline or valley between resolved peaks.</td>
</tr>
<tr>
<td>Button</td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td>Calculates the isotope distribution and displays the simulated spectrum by using the parameter settings.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens the FreeStyle Help to the isotope simulation topic.</td>
</tr>
</tbody>
</table>
Working with CV Plots for FAIMS Data

The Thermo Scientific high-field asymmetric waveform ion mobility spectrometry (FAIMS) interface increases sensitivity by reducing chemical noise and matrix interferences. Use the CV Plot view to determine the optimal compensation voltages for your FAIMS-MS experiments.

Follow the procedures in these topics.

Contents
- CV Traces Dialog Box
- CV Plot View
- Export CV Data

CV Traces Dialog Box

The CV Traces dialog box includes check boxes for the selected traces in the Chromatogram Ranges view.

To select the traces for display in the CV Plot view

1. Open an Xcalibur raw data file with data acquired from a mass spectrometer with the FAIMS interface.
2. In the Chromatogram Ranges view, specify the traces of interest.
3. In the Workspace Options toolbar, click CV Plot.
   The CV Traces dialog box opens (Figure 159).
4. Select the check boxes for the traces of interest.
5. Click OK.
   The CV Plot view opens. For information about working with the CV Plot, see the next topic CV Plot View.
CV Plot View

Use the CV Plot view to determine the optimum compensation voltages for your LC/MS/FAIMS experiments.

To open the CV Plot view, see CV Traces Dialog Box. You can reopen the CV Traces dialog box to add or remove traces from this view.

Figure 160 shows a CV Plot view with three overlaid traces: a TIC MS trace in black, a mass range $m/z$ 507.2 ± 0.5 trace in red, and a mass range $m/z$ 997.3 ± 0.5 trace in green.

The Filter page on the left shows scans acquired at 12 stepped compensation voltages from 0.00 to 1000 and two mass ranges. The CV Plot view, which plots the relative abundance versus the compensation voltage, shows a maximum response at a compensation voltage of 20 for both mass ranges.
The CV Plot view, Chromatogram view, and Spectrum view are interactive—that is, as you move the red vertical bar across the CV voltage range on the x axis, the traces update in the Chromatogram and Spectrum views. Use this interactive behavior to determine the optimum compensation voltage for your analytes—that is, monitor the relative abundance of the ions in the Spectrum view as you move across the CV range in the CV Plot view.

At a CV of 10, the ion at m/z 508.00 is relatively more abundant than the ion at m/z 997.33 (Figure 161).
Figure 161. Compensation voltage 10

At a CV of 40, the ion at m/z 997.33 is relatively more abundant than the ion at m/z 508.00 (Figure 162).

Figure 162. Compensation voltage 40
The display options for the CV Plot view are similar to those for the Chromatogram view (see “Chromatogram – Display Options Toolbar” on page 109). Use the CV Plot icon in the Workspace Options toolbar to add the compensation voltage label to the $y$-axis maxima in the CV Plot view.

**Export CV Data**

Use the Export CV Optimization Data command to export a single CSV file with merged data from multiple CV plots.

 diá To export CV data to a file

1. Use the Auto Filter dialog box to merge the CV filters.

   See To specify the maximum number of chromatogram traces to display.

2. Right-click the CV Plot view and choose **Export CV Optimization Data** from the shortcut menu.

3. In the Export Data dialog box, type a name for the CSV file and save.

   The application saves the compound name, precursor mass, and FAIMS CV value (the value at which the relative abundance is the highest) to an CSV file.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Precursor (m/z)</th>
<th>FAIMS CV (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtG</td>
<td>221</td>
<td>14</td>
</tr>
<tr>
<td>EtG-d5</td>
<td>226.038</td>
<td>14</td>
</tr>
<tr>
<td>EtS</td>
<td>124.95</td>
<td>-2</td>
</tr>
<tr>
<td>EtS-d5</td>
<td>130</td>
<td>0</td>
</tr>
</tbody>
</table>
Export CV Data
Peptide Fragment Annotation

The Thermo Scientific mass spectrometers support different strategies for acquiring peptide fragment spectra. The ETD or CID activation types performed in mass spectrometers provide different fragment scans of the same peptide.

This chapter explains how Peptide Fragment annotation in the Freestyle application annotates the mass scans of the selected peptide sequence.

Overview of Peptide Fragments

The fragment ions of peptides are produced by a CID or ETD activation process in which a peptide ion is fragmented in a collision cell. The fragment ion spectra contain peaks of the fragment ions formed by cleavage of the peptide bond and are used to determine the amino acid sequence. A fragment must have at least one charge for it to be detected. When this charge is retained on the N-terminal fragment, the ion is classed as a, b, or c. When the charge is retained on the C-terminal fragment, the ion type is x, y, or z. A subscript indicates the number of residues in the fragment.

The Peptide Fragment annotation displays all the fragmented ion series in the spectrum. The fragment ion series includes a&x, c&z, and b&y.
Fragmentation Methods

The Peptide Fragmentation in the Freestyle application helps you to annotate the fragment ions for user defined peptide sequence in the spectrum. The spectrum header displays the following details: name of the raw file, activation type (CID or ETD) used in fragmentation, collision energy, and if the peptide is intact or fragmented. The peptide sequence is fragmented in one of the following fragmentation methods:

CID—Uses the collision-induced dissociation method of fragmentation, where molecular ions are accelerated to high kinetic energy in the vacuum of a mass spectrometer and then allowed to collide with neutral gas molecules such as helium, nitrogen, or argon. The collision breaks the bonds and fragments the molecular ions into smaller pieces. CID produces b and y ions.

ETD—Uses the electron transfer dissociation method of fragmentation, where singly charged reagent anions transfer an electron to multiply protonated peptides within an ion trap mass analyzer to induce fragmentation. ETD cleaves along the peptide backbone while side chains and modifications, such as phosphorylation, are left intact. This method is used to fragment peptides and proteins. ETD produces primarily c and z ions.

The fragment ions produced are identified according to where they are fragmented in the peptide. The a, b, and c fragment ions have a charge on the N-terminal side, and x, y, and z fragment ions have a charge on the C-terminal side. Fragment ions a*, b*, and y* are ions that have lost ammonia (−17 Da), and fragment ions a°, b°, and c° are ions that have lost water (−18 Da). The subscript next to the letter indicates the number of residues in the fragment ion.

Annotating Peptide Fragments

The spectrum view shows the annotated spectra of the selected peptide sequence. When you use a CID or ETD fragmented peptide spectra, the view shows peaks of fragmented ions formed by the cleavage of peptide bonds. These fragments are used to confirm the amino-acid sequence.

Each alphabet represents an amino acid in the peptide sequence; for example, R for Arginine, H for histidine, G for Glycine, and so on. The carboxyl group of one amino acid links to the amine group of another amino acid to form an amino-acid sequence.
To apply an amino acid sequence to a fragmented spectra

1. Open a raw data file.
2. Click the Spectrum view to make it active.
3. Click the Workspace Processing tab to open the Workspace Processing toolbar.
4. In the Protein Analysis area, click Peptide Fragments.
   The Peptide Fragments page opens in the Info Bar.
5. Specify the parameter settings that you want to apply.
   Table 54 describes the parameters for the Peptide Fragments page.
6. Click Apply.
   The application runs and annotates the selected fragment spectra.

Peptide Fragments Info Bar

Use the Peptide Fragments page in the Info Bar to specify the parameter settings.

To display the Peptide Fragments page

1. Select the Spectrum view to make it active.
2. Click the Workspace Processing tab to open the Workspace Processing toolbar.
3. Click Peptide Fragments.
Table 54 describes the parameters for the Peptide Fragments page.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Peptide Fragments</strong></td>
<td></td>
</tr>
<tr>
<td>Amino Acid Sequence</td>
<td>Specifies the amino acid sequence that you want to use to annotate the spectrum.</td>
</tr>
<tr>
<td>Charge</td>
<td>Specifies the charge state of the precursor ion. You can either select or manually enter a value.</td>
</tr>
<tr>
<td>Mass Tolerance</td>
<td>Specifies the mass tolerance. The application annotates the spectrum with ions within this mass tolerance. You can use daltons (Da) or millimass units (mmu).</td>
</tr>
<tr>
<td><strong>Activation Type</strong></td>
<td></td>
</tr>
<tr>
<td>CID</td>
<td>Collision Induced Dissociation. The application automatically selects the option based on the spectrum selected.</td>
</tr>
</tbody>
</table>
The Peptide Results table shows the analyzed spectra of the selected peptide sequence. It displays the major fragment ion series in the spectrum. The fragment ion series includes a, b, c, x, y, and z ions, as well as water and ammonia losses from b and y fragment ions. You can use the Peptide Results table to identify the spectral peaks that matches the amino-acid sequence provided.

**To display or hide the Peptide Fragments Table**

1. In the Peptide Fragments page of the Info bar, select the Show Peptide Results Table check box.

   The Peptide Fragments table appears.

   **Figure 165. Peptide Fragments Table**

```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETD</td>
<td>Electron Transfer Dissociation. The application automatically selects the option based on the spectrum selected.</td>
</tr>
</tbody>
</table>

IMPORTANT By default, the FreeStyle application selects CID as the activation type for all spectrum types other ETD (for example, HCD, PQD, and so on).

Display Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Series</td>
<td>Specifies the types of ion series to annotate the spectra. The application automatically selects the b and y ion series for CID activation type and c and z ion series for ETD activation type.</td>
</tr>
<tr>
<td>Charge State</td>
<td>Displays the charge state of the precursor ion as stored in the scan header of the raw data file. You can change the charge state to filter the fragment ions.</td>
</tr>
<tr>
<td>Show peptide results table</td>
<td>Select or clear to show or hide the Peptide Fragments table.</td>
</tr>
</tbody>
</table>
```

### Table 54. Peptide Fragments Page

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETD</td>
<td>Electron Transfer Dissociation. The application automatically selects the option based on the spectrum selected.</td>
</tr>
</tbody>
</table>

**IMPORTANT** By default, the FreeStyle application selects CID as the activation type for all spectrum types other ETD (for example, HCD, PQD, and so on).

**Display Options**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Series</td>
<td>Specifies the types of ion series to annotate the spectra. The application automatically selects the b and y ion series for CID activation type and c and z ion series for ETD activation type.</td>
</tr>
<tr>
<td>Charge State</td>
<td>Displays the charge state of the precursor ion as stored in the scan header of the raw data file. You can change the charge state to filter the fragment ions.</td>
</tr>
<tr>
<td>Show peptide results table</td>
<td>Select or clear to show or hide the Peptide Fragments table.</td>
</tr>
</tbody>
</table>

---

**Peptide Results View**

The Peptide Results table shows the analyzed spectra of the selected peptide sequence. It displays the major fragment ion series in the spectrum. The fragment ion series includes a, b, c, x, y, and z ions, as well as water and ammonia losses from b and y fragment ions. You can use the Peptide Results table to identify the spectral peaks that matches the amino-acid sequence provided.

1. In the Peptide Fragments page of the Info bar, select the Show Peptide Results Table check box.

2. To hide the table, clear the check box.
The header of the Peptide Fragments table displays the terminal amino acid(s) or N-terminus for each ion; for example, (NH3+) - A>. Each entry in the grid displays the $m/z$ value of the indicated ion.

The Spectrum view displays vertical and horizontal color-coded lines to indicate the position of amino acid ions. The vertical color-coded bars indicate the position of matched ions and horizontal lines indicate the amino acids matched between adjacent ions. Each horizontal line also displays the ion series letter code and selected charge state.

**Figure 166.** Spectrum view

The following table describes the fragment ion series used in the activation type to annotate the spectra.

<table>
<thead>
<tr>
<th>Activation type</th>
<th>Ion series</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CID</td>
<td>$b$</td>
<td>b ion with charge on the N-terminal side</td>
</tr>
<tr>
<td>CID</td>
<td>$b^*$</td>
<td>b ion that has lost ammonia (-17 Da)</td>
</tr>
<tr>
<td>CID</td>
<td>$b^o$</td>
<td>b ion that has lost water (-18 Da)</td>
</tr>
<tr>
<td>CID</td>
<td>$y$</td>
<td>y ion with charge on the C-terminal side</td>
</tr>
</tbody>
</table>
Table 55. Fragment ion series (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Activation type</th>
<th>Ion series</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CID</td>
<td>y⁺</td>
<td>y ion that has lost ammonia (-17 Da)</td>
</tr>
<tr>
<td>CID</td>
<td>y⁰</td>
<td>y ion that has lost water (-18 Da)</td>
</tr>
<tr>
<td>CID</td>
<td>Immonium</td>
<td>Immonium ion</td>
</tr>
<tr>
<td>ETD</td>
<td>a⁺</td>
<td>a ion</td>
</tr>
<tr>
<td>ETD</td>
<td>z⁺</td>
<td>z ion</td>
</tr>
<tr>
<td>ETD</td>
<td>c’</td>
<td>c ion</td>
</tr>
<tr>
<td>ETD</td>
<td>y⁻</td>
<td>y ion</td>
</tr>
</tbody>
</table>

In Peptide Fragments table, colors have the following significance:

- White indicates that the peptide was not found.
- Yellow represents a series fragment ions.
- Gold represents b series fragment ions.
- Blue represents y series fragment ions.
- Orange represents c series fragment ions.
- Green represents z series fragment ions.

By default, the Peptide Fragments table displays all ion types searched in the analysis. You can remove any of these by clearing the appropriate ion check box on the right.

**Filtering the Fragmented Ions**

After you apply the parameters given in the Peptide Fragments Info Bar page, the Peptide Fragments table and Spectrum view displays all ion types based on the parameters defined. You can use the Display Options to filter the data.

- To apply filters in the display options

  1. In the Ion Series area, select or clear the check box for the appropriate ions in the Ion Series area. In CID activation type, b and y ions are selected by default. In ETD activation type, c and z ions are displayed by default.

  2. In the Charge State box, select All or specify a charge state from the dropdown to filter the charge states.

The Spectrum view and Peptide Fragments table display changes based on the filters selected.
11 Peptide Fragment Annotation
Filtering the Fragmented Ions
Viewing Experiment and Instrument Information

In addition to containing the acquired data, the raw data file contains information about the scan header, instrument status, instrument method, tune method, and sample. Use the FreeStyle application to extract this information from the raw data files. Viewing the experiment information for a particular acquisition can help you interpret the results of that acquisition. Viewing the mass spectrometer readback (MS Trending detector type) information for the acquisition can help you troubleshoot anomalies in the data.

To review the experiment and instrument information in your raw data files, follow the procedures in these topics.

Contents

- Workspace Options Toolbar – Report Area
- Spectrum List – Display Options Toolbar
- Scan Header View
- Status Log View
- Instrument Method View
- Tune Method View
- Sample Information View
- File Header View
- Error Log View
Workspace Options Toolbar – Report Area

Use the commands in the Report area of the Workspace Options toolbar to view information that is contained in the raw data file.

❖ To display the Workspace Options toolbar

Click the **Workspace Options** tab.

Figure 167 shows the Report area, and Table 56 describes the menu commands, which display information-specific views.

**Figure 167.** Report commands
Spectrum List – Display Options Toolbar

To display the Spectrum List – Display Options toolbar

1. Click the Spectrum List view to select it.
2. Click the Display Options tab to open the Display Options toolbar.

Figure 168 shows the Spectrum List – Display Options toolbar.

The Exception Flags icon is the only icon in the Spectrum List – Display Options toolbar. It displays or hides the Flags column in the Spectrum List view.
Scan Header View

Use the Scan Header view to display scan parameters and instrument data for the retention time and scan number that you select in the Chromatogram view.

❖ To open the Scan Header view

1. Click the Chromatogram view to select it.
2. Click the Workspace Options tab to open the Workspace Options toolbar.
3. Click Reports and choose Scan Header from the dropdown menu.

Figure 169 shows an example of a Scan Header view.

Figure 169. Scan Header view

The Scan Header view can include the following information:

- Scan parameters
- Instrument data
- Mass calibration parameters
- Ion optics readbacks
- Diagnostic data
Spectrum List View

The Spectrum List view lists in tabular form the peak positions, intensities, and relative intensities of the peaks in the Spectrum view for the retention time that you select in a Chromatogram view.

To open the Spectrum List view

1. Click the Workspace Options tab to open the Workspace Options toolbar.
2. Click Reports and choose Spectrum List from the dropdown menu.

Figure 170 shows an example of a Spectrum List view and the associated mass spectrum.

Figure 170. Spectrum List view (bottom) associated with the mass spectrum (top)

Some raw data files contain flags that provide supplemental information about the peak data. The possible flags are as follows:

- S—Saturated peaks are peaks with a signal too large to measure—that is, the signal was so high that it was outside the dynamic range of the detector, causing saturation.
- R—Reference peaks are peaks from a reference compound used for an internal recalibration of a scan.
- L—Lock peaks are local references used to calculate the accurate mass of nearby peaks.
- E—Exception peaks are peaks from a reference compound that are not used for recalibration. These are typically small isotopes or fragments of the main references.
• #—Mathematically modified peaks are peaks where the peak mass was recalculated by the instrument, usually due to a calibration process.

• M—Merged peaks are peaks where the centroider combined two nearby peaks.

• F—Fragmented peaks are peaks separated into multiple peaks by the centroiding activity.

• T—Top peak in the cluster identified by the Advanced Peak Determination algorithm.

• U—Peak identified as an unresolved isotope where the resolution settings used to acquire the data are not sufficient to resolve isotopes of a given mass and charge state as determined from charge state deconvolution.

If the Spectrum List view does not show the Flags column (Figure 170), you can click Exception Flags in the Display Options toolbar for the Spectrum List view to see this column and the letters representing the flags.

❖ To display flags in the spectrum list

Do one of the following:

a. Click the Spectrum List view to select it.

b. Click the Display Options tab to open the Display Options toolbar.

c. Click Exception Flags.

The Flags column appears as the last column. To hide the Flags column, click Exception Flags again.

—or–

a. Click the Field Chooser icon, ≡, to the left of the first column heading.

b. In the Field Chooser dialog box, select the Flags check box.

❖ To choose columns for the spectrum list

1. Click the Field Chooser icon, ≡, to the left of the first column heading.

The Field Chooser displays all available columns for the Spectrum List view.
2. Select the check box for each column that you want to display.

The application immediately applies the column selections.

### Status Log View

The Status Log view displays the mass spectrometer component readbacks that the system recorded at the retention time selected in the Chromatogram view.

To open the Status Log view

1. Click the Chromatogram view to select it.

2. Click the **Workspace Options** tab to open the Workspace Options toolbar.

3. Click **Reports** and choose **Status Log** from the dropdown menu.

Figure 172 shows an example of the Status Log view. The view’s title bar includes the scan number that corresponds to the selected retention time.
You can display individual instrument status readbacks, as a function of the retention time, in the Chromatogram view (see Setting up Instrument Status Traces). The readback display can aid in troubleshooting anomalies in the data.

**Instrument Method View**

The Instrument Method view displays the instrument method. An instrument method is a set of experiment parameters that define operating settings for the autosampler, liquid chromatograph (LC), mass spectrometer, divert valve, syringe pump, and so on. Instrument methods are saved as file type .meth.

For an LC/MS system, the Instrument Method view displays the instrument method settings for the autosampler, LC pump, and mass spectrometer on separate pages. This information does not change from scan to scan.

✧ **To open the Instrument Method view**

1. Click the **Workspace Options** tab to open the Workspace Options toolbar.
2. Click **Reports** and choose **Instrument Method** from the dropdown menu.

   For example, the Autosampler page lists the injection-cycle information.

   **Figure 173** shows an example of the Autosampler page of an Instrument Method view.
Figure 173. Autosampler page of the Instrument Method view

Click these links to see more information about these instruments.
The LC page can include the solvent composition and the gradient information for the acquisition.

**Figure 174** shows an example of the LC page of an Instrument Method view.

**Figure 174.** LC page of the Instrument Method view

![LC page of the Instrument Method view](image)

The Mass Spectrometer page might list the tune file, the lock masses, the scan event descriptions, the activation types, the syringe pump settings, and the divert valve settings.

**Figure 175** shows an example of the Mass Spectrometer page of the Instrument Method view.

![Mass Spectrometer page of the Instrument Method view](image)
Figure 175. Mass Spectrometer page of the Instrument Method view

Tune Method View

The Tune Method view displays the settings in the tune method. A tune method is a defined set of mass spectrometer tune parameters for the ion source, ion optics, and mass analyzer.

❖ To open the Tune Method view

1. Click the Workspace Options tab to open the Workspace Options toolbar.
2. Click Reports and choose Tune Method from the dropdown menu.

Figure 176 shows an example of a Tune Method view.
Figure 176. Tune Method view

![Tune Method view](image)
Sample Information View

Use the Sample Information view to view sample-specific autosampler, LC pump, and mass spectrometer information in a raw data file. This information does not change from scan to scan.

❖ To open the Sample Information view

1. Click the Workspace Options tab to open the Workspace Options toolbar.
2. Click Reports and choose Sample Information from the dropdown menu.

Figure 177 shows an example of a Sample Information view.

**Figure 177.** Sample Information view

File Header View

Use the File Header view to view acquisition information about the current raw data file. The File Header view displays information from the acquisition sequence, the autosampler, and the mass spectrometer.

❖ To open the File Header view

1. Open a raw data file.
2. In the Workspace Options toolbar, click File Header.
   
   The File Header view opens above the other views.
The view has three columns, each displays a custom label name and value as configured in the Heading Editor dialog box.

**Editing the File Header Values**

Use the Heading Editor dialog box to edit the values in the File Header view.

1. **To open the Heading Editor**
   
   Right-click the File Header, and click **Heading Editor**. The Heading Editor dialog box opens.

   ![Figure 179. Heading Editor dialog box](image)

   2. In the Heading Editor dialog box, choose a label name and value from the dropdown list for each column.
   
   3. Click **Apply**. The selected values are populated in the File Header.

   4. Click **OK**.

   Table 57 describes the information in the Heading Editor dialog box.

   **Table 57. Heading Editor (Sheet 1 of 3)**

<table>
<thead>
<tr>
<th>Read-only parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Date/Time</td>
<td>Displays the date and time that the displayed data was acquired.</td>
</tr>
<tr>
<td>Sample Name</td>
<td>Displays the text in the Sample Name column.</td>
</tr>
<tr>
<td>Comment</td>
<td>Displays the text in the Comment column.</td>
</tr>
<tr>
<td>Seq Row</td>
<td>Displays the number of the sequence row.</td>
</tr>
</tbody>
</table>
### Table 57. Heading Editor (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Read-only parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type</td>
<td>Displays the sample type selection in the Sample Type column.</td>
</tr>
<tr>
<td>Path</td>
<td>Displays the directory and file name in the Path column, which is the file's original storage location and file name.</td>
</tr>
<tr>
<td>Cal Level</td>
<td>Displays the calibration level in the Level column for calibration standards.</td>
</tr>
<tr>
<td>Sample Weight</td>
<td>Displays the numeric value in the Sample Wt column. The application does not use this value for any internal calculations.</td>
</tr>
<tr>
<td>Sample Volume</td>
<td>Displays the numeric value in the Sample Vol column. The application does not use this value for any internal calculations.</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Displays the sample identification text in the Sample ID column.</td>
</tr>
<tr>
<td>ISTD Amount</td>
<td>Displays the numeric value in the ISTD Corr Amt column.</td>
</tr>
<tr>
<td>CD Factor</td>
<td>Displays the numeric value in the Dil Factor column. The application does not use this value for any internal calculations.</td>
</tr>
<tr>
<td>Bar Code</td>
<td>Displays the bar code information acquired by the autosampler’s bar code reader during an injection sequence.</td>
</tr>
<tr>
<td>Bar Code Status</td>
<td>Indicates whether the autosampler read the bar code for an injection vial.</td>
</tr>
<tr>
<td>Inst Method</td>
<td>Displays the instrument method in the Inst Meth column.</td>
</tr>
<tr>
<td>Proc Method</td>
<td>Displays the processing method in the Proc Meth column.</td>
</tr>
<tr>
<td>User Text 1 to User Text 5</td>
<td>Displays the text in the respective sequence table columns.</td>
</tr>
</tbody>
</table>

- An Xcalibur sequence table can include up to five additional text columns for user-specific information. The default headings for these columns are (1) Study, (2) Client, (3) Laboratory, (4) Company, and (5) Phone. You can customize the column headings in the Xcalibur data system’s User Labels dialog box.

The following values are from the autosampler. Not all autosamplers supply this information to the data system.

<table>
<thead>
<tr>
<th>Read-only parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tray Index</td>
<td>Displays text that identifies the autosampler tray.</td>
</tr>
<tr>
<td>Tray Name</td>
<td>Displays text that identifies the type of autosampler tray.</td>
</tr>
<tr>
<td>Tray Shape</td>
<td>Displays the shape of the autosampler tray (for example, rectangular).</td>
</tr>
<tr>
<td>Vial Index</td>
<td>Displays a numeric value.</td>
</tr>
<tr>
<td>Vials Per Tray</td>
<td>Displays a numeric value.</td>
</tr>
</tbody>
</table>
**Table 57. Heading Editor (Sheet 3 of 3)**

<table>
<thead>
<tr>
<th>Read-only parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vials Per Tray X</td>
<td>Displays the number of vials across the autosampler tray.</td>
</tr>
<tr>
<td>Vials Per Tray Y</td>
<td>Displays the number of vials that the autosampler is deep.</td>
</tr>
<tr>
<td>Instrument Name</td>
<td>Displays the name of the mass spectrometer series (for example, Orbitrap Fusion).</td>
</tr>
<tr>
<td>Instrument Model</td>
<td>Displays the model name of the mass spectrometer (for example, Orbitrap Fusion).</td>
</tr>
<tr>
<td>Instrument Number</td>
<td>Displays the serial number of the mass spectrometer.</td>
</tr>
<tr>
<td>Instrument Software Version</td>
<td>Displays the version number of the mass spectrometer’s instrument control software that is installed on the data system computer.</td>
</tr>
<tr>
<td>Instrument Hardware Version</td>
<td>Displays the version number of the hardware components that are installed on the mass spectrometer.</td>
</tr>
<tr>
<td>Flags</td>
<td>Displays additional information about the scan data.</td>
</tr>
<tr>
<td>Mass Tolerance</td>
<td>Displays the default mass tolerance setting on the Mass Options page of the Xcalibur Configuration dialog box. The FreeStyle application does not use this setting.</td>
</tr>
</tbody>
</table>

**Tip** To open the Xcalibur Configuration dialog box, from the Xcalibur RoadMap view, choose **Tools > Configuration**.

| Created by           | Displays the user name. |
| File Name            | Displays the name and path of the file storing the displayed data. |

**Error Log View**

Use the error log to view errors recorded during data acquisition.

- **To open the Error Log view**

  1. Open a raw data file.
  2. Click the **Workspace Options** tab to open the Workspace Options toolbar.
  3. Click **Reports** and choose **Error Log** from the dropdown menu.

**Figure 180.** Error Log view
Running the Xtract Algorithm on Spectra and Chromatogram Data

The Xtract algorithm of the FreeStyle application uses a fitting scheme to deconvolve and deisotope isotopically resolved mass spectra of peptides, proteins, and nucleotides.

To deisotope and deconvolve the spectra for peptides, proteins, and nucleotides, follow the procedures in these topics.

Understanding the Xtract Algorithm

The Xtract algorithm first examines a cluster of isotopically resolved peaks and uses the peak spacing of a cluster to determine an initial estimate of the mass of the relevant component. For peptides and proteins, it fits an averagine\(^2\) distribution to the observed peak profile in that cluster to determine the monoisotopic mass that best reproduces that profile. (The monoisotopic mass is the mass of an ion for a given molecular formula, which is calculated by using the exact mass of the most abundant isotope of each element, for example, C = 12.000000, H = 1.007825, and O = 15.994915.)

For nucleotides, the algorithm fits a distribution that is typical for nucleotides. Finally, the Xtract algorithm combines the results for all observed charge states for each mass component to produce a single mass value for that component. The resulting spectrum shows only the monoisotopic masses and their ion populations for the components that the algorithm identified.

When used properly, the Xtract algorithm reduces spectral noise and provides a high-intensity mass spectrum of the monoisotopic peaks. You can use the Xtract Results table, which contains the monoisotopic mass list of the deconvolved mass-spectral peaks or the extracted deconvolved spectrum, as the input to various search engines.

Figure 181 shows an isotopically unresolved mass spectrum. The mass-spectral peaks represent different charge states.

Figure 182 shows an isotopically resolved mass spectrum for one charge state.

Applying the Xtract Algorithm to an Isotopically Resolved Spectrum

To apply the Xtract algorithm to an isotopically resolved spectrum

1. Review the default settings for the Xtract algorithm on the Xtract Options page of the Default Options Configuration dialog box as follows:
   a. In the Workspace Options toolbar, click Default Options.
b. In the navigation pane, click **Xtract Options**.

c. When needed, modify the settings and click **Save**.

2. Open a raw data file.

3. Select a mass spectrum.

4. Click the **Workspace Processing** tab to open the Workspace Processing toolbar.

5. Click **Xtract Deconvolution**.

   The application adds the Xtract page to the Info Bar.

6. Open the Xtract page.

   The M/Z Range boxes are populated with the \( m/z \) range of the selected spectrum.

7. When necessary, modify the \( m/z \) range by entering a range within the selected spectrum.

8. Review and modify the settings in the Deconvolution Parameters area as appropriate.

9. Click **Apply**.

   The application runs the Xtract algorithm.

---

**Xtract Page for a Selected Spectrum**

Use the Xtract page in the Info Bar to specify the parameter settings for the Xtract algorithm.

⚠️ **To display the Xtract page**

1. Click the **Workspace Processing** tab to open the Workspace Processing toolbar.

2. Click **Xtract Deconvolution**.

   Figure 183 shows the default settings on the Xtract page. The \( m/z \) range depends on the selected spectrum.
**Figure 183.** Default settings on the Xtract page

![Xtract page screenshot](image)

**Note** The default parameters on the Xtract page are for protein and peptide deconvolution in the positive polarity mode.

**IMPORTANT** Protein deconvolution in the FreeStyle application is limited to proteins of less than 30,000 Da. To deconvolve proteins larger than 30,000 Da, use the BioPharma Finder 4.1 application.

Table 58 describes the parameters for the Xtract page.
Table 58. Xtract page parameters for a spectrum (Sheet 1 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data Selection</strong></td>
<td></td>
</tr>
<tr>
<td>M/Z Range</td>
<td>Specifies the portion of the input spectrum that the Xtract algorithm processes. The options are as follows:</td>
</tr>
<tr>
<td></td>
<td>• Min: Specifies the lowest end of the input spectrum</td>
</tr>
<tr>
<td></td>
<td>• Max: Specifies the highest end of the input spectrum</td>
</tr>
<tr>
<td></td>
<td>For example, if the total mass range of the spectrum is mass 100–2000, a setting of 300–500 for the m/z Range parameter means that the Xtract algorithm processes only peaks with masses between m/z 300 and 500.</td>
</tr>
<tr>
<td></td>
<td>Range: minimum m/z of the input spectrum to the maximum m/z of the input spectrum</td>
</tr>
<tr>
<td></td>
<td>Default: minimum m/z of the input spectrum to the maximum m/z of the output spectrum</td>
</tr>
<tr>
<td><strong>Deconvolution Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>Output Mass</td>
<td>Determines whether the Xtract algorithm returns a single peak at either the monoisotopic mass or the monoisotopic MH+ mass for each of the detected components. The options are as follows:</td>
</tr>
<tr>
<td></td>
<td>• M: Specifies that the results file contains a single peak for the monoisotopic mass for each of the detected components. This option generates masses without adducts.</td>
</tr>
<tr>
<td></td>
<td>• MH+: Specifies that the results file contains a monoisotopic MH+ mass for each of the detected components. This option generates masses with adducts.</td>
</tr>
<tr>
<td></td>
<td>Default: M</td>
</tr>
</tbody>
</table>
Adduct Element

Specifies the adduct ions used during ESI processing. Adduct ions bring the charge to the molecule, and this charge converts it to an ion. The options are as follows:

- H⁺ (1.00727663): Specifies that the adduct is hydrogen.
- K⁺ (38.9631585): Specifies that the adduct is potassium.
- Na⁺ (22.9892213): Specifies that the adduct is sodium.
- Custom: Specifies that the adduct is a charge carrier other than hydrogen, potassium, or sodium. When you select this option, a box opens so that you can type the mass of the custom charge carrier.

Default: H⁺

Charge Range

Specifies the lowest and highest charge state to be deconvolved. The options are as follows:

- Low: Specifies the lowest charge state.
- High: Specifies the highest charge state.

For example, if you set this parameter range to 1–5, the Xtract algorithm considers only charge states 1 through 5 for deconvolution. It ignores charge states 6 and higher.

Default range: 5–50

Analyzer Type

Specifies the type of mass analyzer that was used to obtain the mass spectral data. Different types of mass analyzers have different mass accuracies. The options are as follows:

- FT: Specifies a Fourier transform - ion cyclotron resonance (FT-ICR) mass analyzer
- OT: Specifies an Orbitrap™ mass analyzer
- Sector: Specifies a magnetic-sector mass analyzer
- Quad: Specifies a quadrupole mass analyzer

Default: OT
Table 58. Xtract page parameters for a spectrum (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. Abund. Threshold (%)</td>
<td>Specifies a threshold (as a percentage) below which the Xtract algorithm filters out data for data reporting. This option sets a relative threshold as a percentage of the most abundant component in the spectrum. The most abundant peak in the deconvolved spectrum has a relative abundance of 100 percent, and all other peaks are calculated relative to that one. In the Xtract Results table of the Xtract Results view, the application shows only those components that are greater than or equal to this relative abundance threshold in the deconvolved spectrum. For example, if the highest peak has an absolute abundance of 1000, the relative abundance is 1 percent, and no peaks below an absolute abundance of 10 appear in the deconvolved spectrum. Zero (0) displays all results, and 100 displays only the most abundant component. Range: 0–100; default: 0</td>
</tr>
<tr>
<td>Isotope Table</td>
<td>Specifies the type of isotope table to use. Isotope tables simulate the distribution of isotopic peaks, in m/z, for different choices of the monoisotopic mass. The Xtract algorithm chooses the monoisotopic mass with the best fit between the theoretical and the observed isotope distribution. To generate an isotope table, the Xtract algorithm uses a chemical formula to describe the type of molecule. You can choose one of the following formulas: • Protein: Uses an averagine formula typical for peptides and proteins to generate the isotope table • Nucleotide: Uses an elemental formula typical for nucleotides to generate the isotope table Default: Protein</td>
</tr>
</tbody>
</table>
Table 58. Xtract page parameters for a spectrum (Sheet 4 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Negative Charge            | Indicates whether the data was acquired in positive charge mode or negative charge mode during the ESI process. You might want to use this option when you process compounds that contain nucleotides like those found in DNA and RNA. When you acquire these compounds in negative mode, the resulting mass spectra are often clearer. Deprotonation of nucleotides, which are acidic, occurs when the compound is dissolved in a basic solution and negative voltage is applied to produce negatively charged ions. The options are as follows:  
  • Selected: The data was acquired in negative charge mode.  
  • Cleared: The data was acquired in positive charge mode. Default: Cleared  
  IMPORTANT Do not select Negative Charge if your data was acquired in positive mode. The results will not be usable.                                                                                                                                                   |
| Min Num Detected Charge    | Specifies the minimum number of charge states required to produce a component. No components with less than this minimum number appear in the deconvolved spectrum. Valid values: an integer greater than or equal to 1  
  Default: 3                                                                                                                                                                                                                                                                                                   |
| Button                     |                                                                                                                                                                                                                                                                                                                                                     |
Deconvolved Spectrum View

The Xtract algorithm transforms the source mass spectrum into a deconvolved mass spectrum and displays it in the Deconvolved Spectrum view, labeled with mass units rather than with the mass-to-charge ratio on the x axis. The spectrum that the application displays in the Deconvolved Spectrum view is a mass spectrum that consists of the monoisotopic peaks of the components that the Xtract algorithm detected. The range of the mass spectrum is from the mass of the component with the lowest monoisotopic mass to the mass of the component with the highest monoisotopic mass. Information about each component can be found in the Xtract Results view.

To run the Xtract algorithm and display the Deconvolved Spectrum view
1. Select a mass spectrum for the Xtract algorithm to deconvolve.
2. Click the Workspace Processing tab to open the Workspace Processing toolbar.
3. Click Xtract Deconvolution.
   
The application adds the Xtract page to the Info Bar.
4. Open the Xtract page.
5. Set the deconvolution parameters on the Xtract page.
6. Click Apply.

Figure 184 shows the deconvolved spectrum for the myoglobin example.  
**Figure 184.** Deconvolved Spectrum view showing the two monoisotopic peaks of myoglobin (located at the endpoints)
Xtract Results View

The Xtract Results view displays the experimentally determined results for each monoisotopic mass and charge state.

Xtract deconvolves isotopically resolved mass spectra—that is, spectra in which it is possible to distinguish separate peaks for different isotopic compositions of the same component. When the Xtract algorithm finishes processing, it displays the deconvolved spectrum in the Deconvolved Spectrum View as a set of peaks in mass and relative intensity.

It also displays the component list in the Xtract Results view as a list of masses, intensities, charge state information, and quality scores (Figure 185). The values in the columns represent the outputs of the deconvolution. Each peak in the list is composed of isotopic clusters. Each isotopic cluster in the original spectrum provides evidence for the peak in the deconvolved spectrum.

To run the Xtract algorithm and display the Xtract Results view

1. Display the mass spectrum for the Xtract algorithm to deconvolve in the Spectrum or MultiSpectrum view.
2. Click the Workspace Processing tab to open the Workspace Processing toolbar.
3. Click Xtract Deconvolution.
   The application adds the Xtract page to the Info Bar.
4. Open the Xtract page, and set the parameters on the Xtract Page for a Selected Spectrum.
5. Click Apply.

Figure 185 shows the Xtract Results view for the two-component myoglobin example.

Figure 185. Xtract Results view in two parts (left and right) showing the 16,923 Da and 16,941 Da components.

<table>
<thead>
<tr>
<th>Xtract Results</th>
<th>No.</th>
<th>Monoisotopic Mass</th>
<th>Sum Intensity</th>
<th>Number of Charge States</th>
<th>Average Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16013.0291</td>
<td>572776.58</td>
<td>9</td>
<td>20.06</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>16409.8310</td>
<td>850259.11</td>
<td>12</td>
<td>20.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delta Mass</th>
<th>Relative Abundance</th>
<th>Fractional Abundance</th>
<th>RT Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>-17.95</td>
<td>67.3649</td>
<td>40.2508</td>
<td>3.654</td>
</tr>
<tr>
<td>0.000</td>
<td>100.0000</td>
<td>59.7497</td>
<td>3.654</td>
</tr>
</tbody>
</table>
Table 59 describes the parameters for the Xtract Results view.

### Table 59. Xtract Results view parameters (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>An integer, starting at one, that labels the components in the order of increasing monoisotopic mass.</td>
</tr>
</tbody>
</table>
| Monoisotopic Mass          | The weighted average of the monoisotopic masses of each charge state: \[
\text{Monoisotopic Mass} = \frac{\sum (\text{Monoisotopic Mass of This Charge} \times \text{Charge Normalized Intensity})}{\text{Sum Intensity}}
\]
|                            | where \( i \) is the sequential order of the charges in the Charge column of the expanded Xtract table.                                         |
| Sum Intensity              | The sum of the intensities of all the charge states and the isotopes of a component.                                                         |
| Number of Charge States    | The number of charge states that the Xtract algorithm used to calculate the monoisotopic mass.                                                 |
| Average Charge             | The average of the charges weighted by intensity.                                                                                           |
| Delta Mass                 | The difference in mass (in daltons) of a component from the mass of the most intense component.                                            |
| Relative Abundance         | Displays the components that are above the relative abundance threshold set by the Relative Abundance Threshold parameter on the Xtract page. The application assigns the largest peak in a deconvolved spectrum a relative abundance of 100 percent. An abundance number in the Relative Abundance column represents the intensity in the same row of the Sum Intensity column divided by the greatest intensity in the Sum Intensity column multiplied by 100. For example, if the largest peak in a deconvolved spectrum has an intensity of 1000, the application assigns it a relative abundance of 100 percent. If the next most abundant peak has an intensity of 500, the application assigns it an abundance of 50 percent: \[
\frac{500}{1000} \times 100\% = 50\%
\]
Running the Xtract Algorithm on Spectra and Chromatogram Data

Xtract Results View

Click + to expand the Xtract Results view for a component. The expanded list shows the experimentally-determined parameters for the individual charge states of a component.

In the expanded list (see Figure 186), six new columns appear: Charge State, Calculated Monoisotopic m/z, Monoisotopic Mass for This Charge, Mostabund m/z, Charge Normalized Intensity, and Fit %. These values represent the isotopic clusters with different charge states from the source spectrum that were used to produce the peak in the deconvolved spectrum.

Figure 186 shows the Xtract Results view of Figure 185 with the 16 923 Da component expanded to show results for the nine individual charge states.

**Table 59.** Xtract Results view parameters (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractional Abundance</td>
<td>The fractional abundance of a component, which is the abundance for that peak relative to the total abundance of all peaks in the spectrum, expressed as a percentage. The sum of all fractional abundances of all peaks in a deconvolved spectrum is 100 percent.</td>
</tr>
<tr>
<td>RT Range</td>
<td>The retention time (in minutes), or the retention time range (if the retention time was averaged), that produced the mass spectrum that the Xtract algorithm deconvolved.</td>
</tr>
</tbody>
</table>

**Table 60.** Expanding Xtract Results view parameters (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge State</td>
<td>The charge states of the individual isotopic clusters that constitute the total number shown in the Number of Charge States column.</td>
</tr>
<tr>
<td>Calculated Monoisotopic m/z</td>
<td>The mass-to-charge ratio of the monoisotopic mass that the Xtract algorithm calculated from the isotopic peak envelope for a specific charge state.</td>
</tr>
</tbody>
</table>
When you select any charge state row in the expanded Xtract Results view, the application automatically highlights in blue the following items:

- The blue spectral line in the **Spectrum View** or **MultiSpectrum View** corresponding to the most abundant mass-to-charge ratio (m/z) for the selected row, as shown in Figure 187 and Figure 188.

  For example, in Figure 188, a blue spectral line marks the value of 770.6924 corresponding to the Mostabund m/z value of the selected row.

- The deconvolved peak in the **Deconvolved Spectrum View**.

You might have to right-click and choose Reset to Scale to see the blue spectral lines.
Figure 187 shows the mass spectrum from Figure 181 with nine blue bars that indicate the positions of the theoretical most abundant \( m/z \) for each of the nine charge states that the Xtract algorithm used to deconvolve the spectrum.

**Figure 187.** Mass spectrum of myoglobin showing the nine charge states (blue bars) that the Xtract algorithm used to calculate the 16923 Da monoisotopic mass.

![Mass spectrum of myoglobin showing the nine charge states (blue bars) that the Xtract algorithm used to calculate the 16923 Da monoisotopic mass.](image)

Figure 188 shows the theoretical most abundant \( m/z \) for the \( z=22 \) charge state of the 16923 Da component.

**Figure 188.** Mass spectrum at the \( z = 22 \) charge state showing the location (blue bar) of the theoretical most abundant \( m/z \) for the 16923 Da monoisotopic mass.

![Mass spectrum at the \( z = 22 \) charge state showing the location (blue bar) of the theoretical most abundant \( m/z \) for the 16923 Da monoisotopic mass.](image)
Applying the Xtract Algorithm to a Chromatogram

To apply the Xtract algorithm to a chromatogram

1. Review the default settings for the Xtract algorithm on the Xtract Options page of the Default Options Configuration dialog box as follows:
   a. In the Workspace Options toolbar, click Default Options.
   b. In the navigation pane, click Xtract Options.
   c. When needed, modify the settings and click Save.
2. Open a raw data file.
3. Select the Chromatogram view.
4. Click the Workspace Processing tab to open the Workspace Processing toolbar.
5. Click Xtract Deconvolution.
   The application adds the Xtract page to the Info Bar.
6. Open the Xtract page.
   The M/Z Range boxes are populated with the m/z range of the spectrum.
7. When necessary, modify the m/z range by typing the new start and stop values.
8. Review and modify the settings in the Xtract All Parameters area as appropriate.
9. Review and modify the settings in the Deconvolution Parameters area as appropriate.
10. Click Xtract All.

   The application runs the Xtract algorithm.

   ![Running xtract for all the scans]

   It can take a few minutes depending on your filters and the amount of data in the specified range.

When the deconvolution process completes, the application writes your file to the name and location specified in the Xtract File Name box and records the extraction in the Audit Trail.
Xtract Page for a Selected Chromatogram

Use the Xtract page in the Info Bar to specify the parameter settings for the Xtract algorithm.

- To display the Xtract page
  1. Click the **Workspace Processing** tab to open the Workspace Processing toolbar.
  2. Click **Xtract Deconvolution**.

  Figure 189 shows the default settings on the Xtract page.

**Figure 189.** Default settings on the Xtract page

<table>
<thead>
<tr>
<th>Xtract Parameters</th>
<th>Data Selection</th>
<th>M/Z Range</th>
<th>0.00</th>
<th>to</th>
<th>999999.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xtract All Parameters</td>
<td>Xtract File Name</td>
<td>C:\Rcall\Examples\data</td>
<td>\r\enterprise\SS\Xtract\Raw</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scan Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xtract What</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time range (min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Save Log Files</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note** The default parameters on the Xtract page are for protein and peptide deconvolution in the positive polarity mode.

**IMPORTANT** Protein deconvolution in the FreeStyle application is limited to proteins of less than 30,000 Da. To deconvolve proteins larger than 30,000 Da, use the BioPharma Finder 4.1 application.

Table 61 describes the parameters for the Xtract page.
### Table 61. Xtract page parameters for a chromatogram (Sheet 1 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data Selection</strong></td>
<td></td>
</tr>
<tr>
<td>M/Z Range</td>
<td>Specifies the portion of the input spectrum that the Xtract algorithm processes. The options are as follows:</td>
</tr>
<tr>
<td></td>
<td>• Min: Specifies the lowest end of the input spectrum</td>
</tr>
<tr>
<td></td>
<td>• Max: Specifies the highest end of the input spectrum</td>
</tr>
<tr>
<td></td>
<td>For example, if the total mass range of the spectrum is mass 100–2000, a setting of 300–500 for the m/z Range parameter means that the Xtract algorithm processes only peaks with masses between m/z 300 and 500.</td>
</tr>
<tr>
<td></td>
<td>Range: minimum m/z of the input spectrum to the maximum m/z of the input spectrum</td>
</tr>
<tr>
<td></td>
<td>Default: minimum m/z of the input spectrum to the maximum m/z of the output spectrum</td>
</tr>
<tr>
<td>Xtract All Parameters</td>
<td></td>
</tr>
<tr>
<td>Xtract File Name</td>
<td>Optional file name for the extracted file. When you do not specify a new file name, the application uses the default file name.</td>
</tr>
<tr>
<td></td>
<td>Default: rawFileName_Xtract_dateTimeStamp</td>
</tr>
<tr>
<td></td>
<td>Example: Myoglobin_Xtract_2020-12-23_11-20-43-PM.raw</td>
</tr>
<tr>
<td>Scan Filter</td>
<td>Deconvolves the mass spectra in the chromatogram for the selected scan filter. If no scan filter is selected, the application extracts all of the scans.</td>
</tr>
<tr>
<td>Xtract What</td>
<td>Specifies that the application create one result scan for each input scan for either of the following:</td>
</tr>
<tr>
<td></td>
<td>Monoisotopic Masses: The resulting scan contains the singly charged (uncharged when MH+ is not selected) monoisotopic masses that the application recognized in the input scan.</td>
</tr>
<tr>
<td></td>
<td>Full Pattern: The resulting scan contains the singly charged (uncharged when MH+ is not selected) full pattern that the application recognized in the input scan.</td>
</tr>
<tr>
<td>Time Range</td>
<td>Start and end time for the extraction.</td>
</tr>
<tr>
<td></td>
<td>Range: The minimum and maximum of the m/z range in the current spectra</td>
</tr>
<tr>
<td>Save Log Files</td>
<td>Saves a log file for each input scan for which the Xtract deconvolution was performed.</td>
</tr>
</tbody>
</table>
### Deconvolution Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Output Mass             | Determines whether the Xtract algorithm returns a single peak at either the monoisotopic mass or the monoisotopic MH⁺ mass for each of the detected components. The options are as follows:  
  - M: Specifies that the results file contains a single peak for the monoisotopic mass for each of the detected components. This option generates masses without adducts.  
  - MH⁺: Specifies that the results file contains a monoisotopic MH⁺ mass for each of the detected components. This option generates masses with adducts.  
  Default: M                                                                                             |
| Adduct Element          | Specifies the adduct ions used during ESI processing. Adduct ions bring the charge to the molecule, and this charge converts it to an ion. The options are as follows:  
  - H⁺ (1.00727663): Specifies that the adduct is hydrogen.  
  - K⁺ (38.9631585): Specifies that the adduct is potassium.  
  - Na⁺ (22.9892213): Specifies that the adduct is sodium.  
  - Custom: Specifies that the adduct is a charge carrier other than hydrogen, potassium, or sodium. When you select this option, a box opens so that you can type the mass of the custom charge carrier.  
  Default: H⁺                                                                                         |
| Charge Range            | Specifies the lowest and highest charge state to be deconvolved. The options are as follows:  
  - Low: Specifies the lowest charge state.  
  - High: Specifies the highest charge state.  
  For example, if you set this parameter range to 1–5, the Xtract algorithm considers only charge states 1 through 5 for deconvolution. It ignores charge states 6 and higher.  
  Default range: 5–50                                                                               |
| Analyzer Type           | Specifies the type of mass analyzer that was used to obtain the mass spectral data. Different types of mass analyzers have different mass accuracies. The options are as follows:  
  - FT: Specifies a Fourier transform - ion cyclotron resonance (FT-ICR) mass analyzer  
  - OT: Specifies an Orbitrap™ mass analyzer  
  - Sector: Specifies a magnetic-sector mass analyzer  
  - Quad: Specifies a quadrupole mass analyzer  
  Default: OT                                                                                       |
### Table 61. Xtract page parameters for a chromatogram (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. Abund.</td>
<td>Specifies a threshold (as a percentage) below which the Xtract algorithm filters out data for data reporting.</td>
</tr>
<tr>
<td>Threshold (%)</td>
<td>This option sets a relative threshold as a percentage of the most abundant component in the spectrum. The most abundant peak in the deconvolved spectrum has a relative abundance of 100 percent, and all other peaks are calculated relative to that one.</td>
</tr>
<tr>
<td></td>
<td>In the Xtract Results table of the Xtract Results view, the application shows only those components that are greater than or equal to this relative abundance threshold in the deconvolved spectrum. For example, if the highest peak has an absolute abundance of 1000, the relative abundance is 1 percent, and no peaks below an absolute abundance of 10 appear in the deconvolved spectrum.</td>
</tr>
<tr>
<td></td>
<td>Zero (0) displays all results, and 100 displays only the most abundant component.</td>
</tr>
<tr>
<td>Range: 0–100; default: 0</td>
<td></td>
</tr>
<tr>
<td>Isotope Table</td>
<td>Specifies the type of isotope table to use.</td>
</tr>
<tr>
<td></td>
<td>Isotope tables simulate the distribution of isotopic peaks, in m/z, for different choices of the monoisotopic mass. The Xtract algorithm chooses the monoisotopic mass with the best fit between the theoretical and the observed isotope distribution.</td>
</tr>
<tr>
<td></td>
<td>To generate an isotope table, the Xtract algorithm uses a chemical formula to describe the type of molecule. You can choose one of the following formulas:</td>
</tr>
<tr>
<td></td>
<td>• Protein: Uses an averagine formula typical for peptides and proteins to generate the isotope table</td>
</tr>
<tr>
<td></td>
<td>• Nucleotide: Uses an elemental formula typical for nucleotides to generate the isotope table</td>
</tr>
<tr>
<td>Default: Protein</td>
<td></td>
</tr>
<tr>
<td>Negative Charge</td>
<td>Indicates whether the data was acquired in positive charge mode or negative charge mode during the ESI process.</td>
</tr>
<tr>
<td></td>
<td>You might want to use this option when you process compounds that contain nucleotides like those found in DNA and RNA. When you acquire these compounds in negative mode, the resulting mass spectra are often clearer. Deprotonation of nucleotides, which are acidic, occurs when the compound is dissolved in a basic solution and negative voltage is applied to produce negatively charged ions. The options are as follows:</td>
</tr>
<tr>
<td></td>
<td>• Selected: The data was acquired in negative charge mode.</td>
</tr>
<tr>
<td></td>
<td>• Cleared: The data was acquired in positive charge mode.</td>
</tr>
<tr>
<td>Default: Cleared</td>
<td></td>
</tr>
<tr>
<td><strong>IMPORTANT</strong></td>
<td>Do not select Negative Charge if your data was acquired in positive mode. The results will not be usable.</td>
</tr>
</tbody>
</table>
Table 61. Xtract page parameters for a chromatogram (Sheet 4 of 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Num Detected Charge</td>
<td>Specifies the minimum number of charge states required to produce a component. No components with less than this minimum number appear in the deconvolved spectrum. Valid values: an integer greater than or equal to 1 Default: 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Defaults</td>
<td>Resets all the parameters on the Xtract page to the default settings.</td>
</tr>
<tr>
<td>Xtract All</td>
<td>Runs the Xtract algorithm on each input scan/spectrum specified by the Xtract All Parameters – Time Range parameter.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens the Help topic for this page.</td>
</tr>
</tbody>
</table>
FreeStyle Default Settings

Use the pages of the Default Options Configuration dialog box to specify the initial default settings that the FreeStyle application uses when you start the application.

Follow the procedures in these topics.

**Contents**
- Default Mass Precision Page
- Default Peak Detection Algorithm Page
- Default Number of Recently Used Files Page
- Default Raw Data Files Directory Page
- Default Elemental Composition Search Parameter Page
- Factory Default Template Page
- Default Library Search Parameters Page
- Workspace Options Page
- Xtract Options Page

Modifying, Saving, and Resetting the Default Configuration Options

Use the pages of the Default Options Configuration dialog box to modify some of the parameter settings for the FreeStyle application.

Follow these procedures:

- To open the Default Options Configuration dialog box
- To display a specific page of the dialog box
- To open the Help topic for a specific page
- To save your new parameter settings
To cancel all your changes to the parameter settings

To return all the configuration parameters to their factory default settings

To apply the factory default layout to the active Workspace page

❖ To open the Default Options Configuration dialog box

• In the Workspace Options Toolbar, click Default Options.

—or—

• Choose File > Default Options. See File Menu.

The dialog box opens to the Default Mass Precision page.

❖ To display a specific page of the dialog box

In the navigation pane on the left, click the page link.

❖ To open the Help topic for a specific page

Click Help at the bottom right of the page.

❖ To save your new parameter settings

Click Save.

The Default Options dialog box closes, and the application saves all the modified parameter settings.

❖ To cancel all your changes to the parameter settings

Click Cancel.

The Default Options Configuration dialog box closes without changing the parameter settings.

❖ To return all the configuration parameters to their factory default settings

At the bottom left, click Revert All to Factory Default Values.
To apply the factory default layout to the active Workspace page

1. In the navigation pane of the dialog box, click Factory Default Template.
2. At the top right of the Factory Default Template Page, click Revert to Factory Default Values.

Default Mass Precision Page

Use the Default Mass Precision page to specify how many decimal places the application displays, by default, and also the default mass tolerance.

To display the Default Mass Precision page

1. Open the Default Options Configuration dialog box (see Modifying, Saving, and Resetting the Default Configuration Options).
2. In the navigation pane, click Mass Precision.
Figure 190 shows the Default Mass Precision page with its original default values, and Table 62 lists the default Mass Precision page parameters.

Table 62. Default Mass Precision page parameters (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
</table>
| Mass Precision            | Specify the default number of decimal places in the mass-to-charge ratios that the application displays in the Spectrum view and the MultiSpectrum view. Default:  
  • FTMS: 4  
  • ITMS: 2  
  • TQMS: 2  
  • SQMS: 1  
  • Sector: 4  
  • Unrecognized: 2  
  Range: 0–5 |
| Mass Tolerance            | Specify the default mass tolerance. The mass tolerance defines how close a measured mass must be to the mass in the mass list to be considered the same mass. Default:  
  • FTMS: 5.00 ppm  
  • ITMS: 0.50 amu  
  • TQMS: 0.50 amu  
  • SQMS: 1.00 amu  
  • Sector: 5.00 ppm  
  • Unrecognized: 0.50 amu  
  Range: 0.00–1000.00 ppm or 0.00–10.00 amu |
| Default Mass              | Tolerance Units Specify the default mass tolerance units as follows:  
  • ppm: In parts per million. Select this option for FTMS and sector mass analyzers because the peak width is proportional to the mass-to-charge ratio. When you select ppm, the size of the window around the reference mass is proportional to the mass-to-charge ratio of the reference mass.  
  • amu: In units of the mass-to-charge ratio. When you select amu, the size of the window around the reference mass remains the same regardless of the mass-to-charge ratio of the reference mass.  
  • mmu: In units of one one-thousandth of an amu. |

- ppm: In parts per million. Select this option for FTMS and sector mass analyzers because the peak width is proportional to the mass-to-charge ratio. When you select ppm, the size of the window around the reference mass is proportional to the mass-to-charge ratio of the reference mass.  
- amu: In units of the mass-to-charge ratio. When you select amu, the size of the window around the reference mass remains the same regardless of the mass-to-charge ratio of the reference mass.  
- mmu: In units of one one-thousandth of an amu.
Default Peak Detection Algorithm Page

Use the Default Peak Detection Algorithm page to select the default peak detection algorithm and its default parameters. For a description of these parameters, see these topics: Avalon Peak Detection Page, Genesis Peak Detection Page, ICIS Peak Detection Page, or PPD Peak Detection Page.

To display the Default Peak Detection Algorithm page

1. In the Workspace Options toolbar, click Default Options.
   The Default Options Configuration dialog box opens.
2. In the navigation pane, click Peak Detection.

To save your custom settings, see Modifying, Saving, and Resetting the Default Configuration Options.

Default Number of Recently Used Files Page

Use the Default Number of Recently Used Files page to set the number of recently used files that the application displays in the Recent Items area of the File menu. By default, this number is set to 10. You can change the setting to a value from 0 to 10.

To display the Default Number of Recently Used Files page

1. In the Workspace Options toolbar, click Default Options.
   The Default Options Configuration dialog box opens.
2. In the navigation pane, click Recently Used Files.
   The Default Number of Recently Used Files page appears (Figure 191).
A FreeStyle Default Settings

Default Raw Data Files Directory Page

**Figure 191.** Default Number of Recently Used Files page

![Default Options Configuration](image)

Table 63 describes the parameter and buttons on the Default Number of Recently Used Files page. To save a custom setting, see Modifying, Saving, and Resetting the Default Configuration Options.

**Table 63.** Default Number of Recently Used Files page parameter and buttons

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Recently Used Files</td>
<td>Specifies the maximum number of files that the application displays in the Recent Items area of the File menu. Range: 0 to 10; default: 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revert to Factory Default Values</td>
<td>Returns the parameter settings on this page to their factory default values.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens the Help to the topic for this page.</td>
</tr>
</tbody>
</table>

**Default Raw Data Files Directory Page**

Use the Default Raw Data Files Directory page to specify the default location where the FreeStyle application looks for raw data files.

✧ **To display the Default Raw Data Files Directory page**

1. In the Workspace Options toolbar, click **Default Options**.

   The Default Options Configuration dialog box opens.

2. In the navigation pane, click **Raw Files Directory** (Figure 192).
**Default Elemental Composition Search Parameter Page**

Use the Default Elemental Composition Search Parameter page to specify the default elemental composition search parameters. For information about the basic parameter settings and performing an elemental composition analysis, see Elemental Composition Page. To save your custom settings, see Modifying, Saving, and Resetting the Default Configuration Options. To use a custom periodic table for elemental composition analysis, see Using Custom Periodic Table for Analysis.

To display the Default Elemental Composition Search Parameter page

1. In the Workspace Options toolbar, click **Default Options**.
   
The Default Options Configuration dialog box opens.
2. In the navigation pane, click **Elemental Composition**.

---

**Table 64** describes the parameter and buttons on the Default Raw Files Directory page. To save a custom setting, see Modifying, Saving, and Resetting the Default Configuration Options.

**Table 64. Default Raw Files Directory page parameter and buttons**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select RawFiles Location</td>
<td>Default: C:\Xcalibur\examples\data</td>
</tr>
</tbody>
</table>

**Button**

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revert to Factory Default Values</td>
<td>Returns the parameter settings on this page to their factory default values.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help</td>
<td>Opens the Help to the topic for this page</td>
</tr>
</tbody>
</table>

---

**Figure 192. Default Raw Files Directory page**

[Image of Default Raw Files Directory page]

---
Figure 193 shows the Default Elemental Composition Search Parameter page. For information about the parameter settings, see Elemental Composition Page.

Figure 193. Default Elemental Composition Search Parameter page

Factory Default Template Page

Use the Factory Default Template page to apply the factory default layout to the active Workspace page (see Modifying, Saving, and Resetting the Default Configuration Options). The settings on this page are read-only.

❖ To display the Factory Default Template page

1. In the Workspace Options toolbar, click Default Options.
   
   The Default Options Configuration dialog box opens.

2. In the navigation pane, click Factory Default Template (Figure 194).
**Figure 194.** Factory Default Template page

Click to apply the factory default layout to the active Workspace page.
Default Library Search Parameters Page

Use the Default Library Search Parameters page to specify the default library search parameters for the NIST libraries and the mzVault libraries. For a description of these parameters, see Modifying a NIST Search from the NIST Search Page and Modifying an mzVault Search from the mzVault Search Page. To save your custom settings, see Modifying, Saving, and Resetting the Default Configuration Options.

To display the Default Library Search Parameters page
1. In the Workspace Options toolbar, click Default Options.
   The Default Options Configuration dialog box opens.
2. In the navigation pane, click Library Search.
   Figure 195 shows the factory default settings for the Default Library Search Parameters page.

   Figure 195. Default Library Search Parameters page

To display the NIST library parameters
On the Default Library Search page, select the NIST option in the Library Type area.
To display the mzVault library parameters

1. On the Default Library Search page, select the **mzVault** option in the Library Type area.
2. Make sure that the Library list in the Search List area includes the mzVault databases that you want to search (see To specify the location of your local mzVault database files).

Workspace Options Page

Use the Workspace Options page to specify the following:

- The minimum trace height (in centimeters) for the Chromatogram View, Spectrum View, or MultiSpectrum View
- The maximum number of scan filters to display in the Chromatogram view when applying the auto filter command (see Adding Chromatogram Traces with the Auto Filter Feature)

**Note** When you adjust the height of these views, if the height becomes smaller than the set minimum value, a scrollbar automatically appears to the right of the views.

To display the Workspace Options page

1. In the Workspace Options toolbar, click **Default Options**.
   
The Default Options Configuration dialog box opens.
2. In the navigation pane, click **Workspace Options**.
   
   Figure 196 shows the factory default settings for the Workspace Options page.
Table 65 describes the parameters on the Workspace Options page of the Default Options Configuration dialog box.

### Table 65. Workspace Options page parameters (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Chromatogram and MultiSpectrum Windows</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Trace Height (cm)</td>
<td>Specifies the minimum height, in centimeters, for the traces in the Chromatogram and MultiSpectrum views.</td>
<td>2.65</td>
<td>0.5 to 15.0</td>
</tr>
<tr>
<td><strong>Default Auto Filter</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Number of Auto Filter</td>
<td>Specifies the default number of filtered chromatograms that the application displays in the Chromatogram Ranges and Chromatogram views.</td>
<td>8</td>
<td>1 to 500</td>
</tr>
</tbody>
</table>
Nearby Precursor

Use this feature to label the spectrum peaks with related data-dependent scans within the specified time range of the current scan. A related data-dependent scan is an MSn+1 stage data-dependent scan for a precursor ion that matches the $m/z$ value of the current peak within the specified mass tolerance. See Using the Nearby Precursors Marker.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire File</td>
<td>When selected, sets the search to every scan in the file (no time range limit). Default: Clear</td>
</tr>
<tr>
<td>Backward RT</td>
<td>Specifies the first time point for the search: $RT_{\text{current scan}} - \text{Specified time in minutes}$ Default: 1.00 min; range: 0.00 to 10.00 min Not available when the Entire File check box is selected.</td>
</tr>
<tr>
<td>Forward RT</td>
<td>Specifies the last time point for the search: $RT_{\text{current scan}} - \text{Specified time in minutes}$ Default: 1.00 min; range: 0.00 to 10.00 min Not available when the Entire File check box is selected.</td>
</tr>
<tr>
<td>Maximum Allowed Number of Hits</td>
<td>Specifies the maximum number of matching data-dependent scans to display or average. If the application finds more than this maximum number, it displays the data-dependent scans with the nearest RT to the precursor “survey” scan. Default: 5; range: 1 to 50</td>
</tr>
<tr>
<td>Nearby Precursor Plot Type</td>
<td>Specifies whether double-clicking a marker in the precursor “survey” scan opens an average spectrum of the matching data-dependent scans in another Spectrum view or opens a MultiSpectrum view with a separate plot for each matching data-dependent scan. Options: Average (default) or MultiSpectrum</td>
</tr>
</tbody>
</table>
### Table 65. Workspace Options page parameters (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Tolerance</td>
<td>Specifies how close the m/z value of the precursor ion for the data-dependent scan must be to the m/z value of the current spectrum peak.</td>
</tr>
<tr>
<td></td>
<td>Default: Use Default is selected—the application uses the mass tolerance of the mass spectrometer.</td>
</tr>
<tr>
<td></td>
<td>Use Default check box is clear—the settable range is from 0.00 to 1000.00 (amu, mmu, or ppm).</td>
</tr>
</tbody>
</table>

### Default Y Axis Options

Use this feature to set the Y-Scale units as Relative or Absolute for each detector type. Change the Y Axis units of individual traces of the Chromatogram view by enabling the Separate Axis icon in the Y Axis area in Display Options toolbar.

<table>
<thead>
<tr>
<th>MS Data</th>
<th>The default Y-Scale unit for MS Data is Relative. Select the check box for MS Data to change the default setting to Absolute.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA/UV Data</td>
<td>By default, the Y-Scale unit for PDA and UV Data is set to Absolute. Clear the default check box to view the PDA and UV data in Relative scale.</td>
</tr>
<tr>
<td>Other Data</td>
<td>By default, the Y-Scale unit for Other Data is set to Absolute. Clear the default check box to view the Other data in Relative scale.</td>
</tr>
</tbody>
</table>

### Startup Dialog Options

Don’t Show Again | No longer displays this startup page when you launch the FreeStyle application. |
Xtract Options Page

Use the Xtract Options page to specify the default Xtract parameters. For more information, see Chapter 13, “Running the Xtract Algorithm on Spectra and Chromatogram Data.”

To display the Xtract Options page

1. In the Workspace Options toolbar, click Default Options.
   
The Default Options Configuration dialog box opens.
2. In the navigation pane, click Xtract Options.

Figure 197 shows the Xtract Options page with its original default values.

Figure 197. Default Xtract Options page

Table 66 lists the default Xtract parameters.

Table 66. Default parameters for the Xtract algorithm (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit Factor (%)</td>
<td>Measures the quality of the match between a measured isotope pattern and an averagine distribution of the same mass, as a percentage.</td>
</tr>
<tr>
<td></td>
<td>• 0% requires a low fit only.</td>
</tr>
<tr>
<td></td>
<td>• 100% means that the measured isotope profile is identical to the theoretical averagine isotope distribution.</td>
</tr>
</tbody>
</table>

Range: 0–100; default: 80
**Table 66.** Default parameters for the Xtract algorithm (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainder Threshold (%)</td>
<td>Specifies the height of the smaller overlapping isotopic cluster (as a percentage) with respect to the height of the most abundant isotopic cluster when the Xtract algorithm attempts to resolve overlapping isotopic clusters. For example, if one isotopic cluster in a spectrum has an abundance of 100 and you set the Remainder Threshold parameter to 30 percent, the Xtract algorithm ignores any overlapping clusters with an abundance less than 30. Range: 0–100; default: 25</td>
</tr>
<tr>
<td>Consider Overlaps</td>
<td>Determines whether the Xtract algorithm is more tolerant of errors when the spectrum intensity is significantly higher than expected for the theoretical isotopic cluster.</td>
</tr>
<tr>
<td></td>
<td>• Selected: The Xtract algorithm is more tolerant of errors when the spectrum intensity is significantly higher than expected for the theoretical isotopic cluster. Because this option can lead to increased false positives, select it only in cases where you expect overlapping isotopic clusters in a data set.</td>
</tr>
<tr>
<td></td>
<td>• Cleared: The Xtract algorithm is less tolerant of errors when the spectrum intensity is significantly higher than expected for the theoretical isotopic cluster.</td>
</tr>
<tr>
<td>Default: Selected</td>
<td></td>
</tr>
<tr>
<td>Minimum Intensity</td>
<td>Specifies a minimum intensity threshold to filter out possible background noise, even when you set the S/N Threshold parameter to zero.</td>
</tr>
<tr>
<td></td>
<td>Range: 0–9999; default: 1</td>
</tr>
<tr>
<td>Expected Intensity Error</td>
<td>Specifies the permissible percentage of error allowed in calculating the ratio of the most abundant isotope to the next isotope that is higher in mass in the isotope series.</td>
</tr>
<tr>
<td></td>
<td>Range: 0–9999; default: 3</td>
</tr>
</tbody>
</table>
Resolution at 400 m/z  
Defines the resolution of the source spectrum at m/z 400. 
This parameter is not needed if the Xtract algorithm deconvolves FTMS, Orbitrap, or Exactive data because the data contains the instrument information in the spectrum. 
You must set this parameter for all other spectrum types and for exported spectrum files (in -qb.raw data file format), which lack instrument information. 
Range: 6000–240 000; default: 60 000

S/N Threshold  
Specifies a signal-to-noise (S/N) threshold, x, above which the Xtract algorithm considers a measured peak to be a real (accepted) peak. The Xtract algorithm ignores peaks below this threshold. 
Any spectral peak must be x times the intensity of the calculated noise for that spectrum before the Xtract algorithm considers it. 
Range: 0–9999; default: 3

Table 66. Default parameters for the Xtract algorithm (Sheet 3 of 3)
Scan Filters and Scan Headers

The scan method used for each scan is recorded as a scan event. The data system creates scan filters from the scan-event settings. You can select or create scan filters to apply processing to a subset of the scans in the raw data file. Scan headers provide important information about the scan.

Contents

- Scan Filter Parameters
- Scan Headers and Scan Header Abbreviations

Scan Filter Parameters

Table 67 lists the scan filter parameters. Use only the fields that apply to your mass spectrometer. You can define additional scan filters by adhering to the following scan filter format.

Note Not all features are applicable for every mass spectrometer.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Option</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarity</td>
<td>+, –</td>
<td>Positive or negative.</td>
</tr>
<tr>
<td>Data type</td>
<td>p, c</td>
<td>Profile or centroid.</td>
</tr>
<tr>
<td>Dependent scans</td>
<td>d, !d</td>
<td>Include dependent scans or exclude dependent scans.</td>
</tr>
<tr>
<td>TurboScans</td>
<td>t, !t</td>
<td>Include TurboScan scans or exclude TurboScan scans.</td>
</tr>
<tr>
<td>Source CID</td>
<td>cid, !cid</td>
<td>Include Source CID scans or exclude Source CID scans. (Source CID scans are scans for ions that are produced by collision-induced dissociation in the ion source.)</td>
</tr>
<tr>
<td>Scan type</td>
<td>FULL, Z, SIM, SRM, CRM, Q1MS, Q3MS</td>
<td>Full scan, ZoomScan, selected ion monitoring (SIM), selected reaction monitoring (SRM), consecutive reaction monitoring (CRM), Q1 quadrupole analysis, or Q3 quadrupole analysis.</td>
</tr>
</tbody>
</table>
### Table 67. Scan filter format (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Option</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan mode</td>
<td>ms, ms2, ms3, ... MS10</td>
<td>MS&lt;sup&gt;n&lt;/sup&gt; where ( n = 1 ) to 10. Each order can be followed by the appropriate number of parents. The parents can also be omitted. Example: “ms3 345.3, 253.2” indicates an MS&lt;sup&gt;3&lt;/sup&gt; scan with parents with ( m/z ) 345.3 and 253.2.</td>
</tr>
<tr>
<td>pr</td>
<td>Parent (followed by the product mass)</td>
<td></td>
</tr>
<tr>
<td>cng</td>
<td>Constant neutral gain (followed by the mass of the neutral)</td>
<td></td>
</tr>
<tr>
<td>cnl</td>
<td>Constant neutral loss (followed by the mass of the neutral)</td>
<td></td>
</tr>
<tr>
<td>Mass Analyzer</td>
<td>ITMS, TQMS, SQMS, TOFMS, FTMS, Sector</td>
<td>Ion trap, triple-quadrupole, single-quadrupole, time-of-flight, Fourier transform, or magnetic sector mass spectrometry.</td>
</tr>
<tr>
<td>Photo Ionization</td>
<td>pi, ('pi)</td>
<td>Include photo ionization scans or exclude photo ionization scans.</td>
</tr>
<tr>
<td>Compensation Voltage</td>
<td>cv, ('cv)</td>
<td>Include compensation voltage scans or exclude compensation voltage scans.</td>
</tr>
<tr>
<td>Detector Valid</td>
<td>det, (!det)</td>
<td>Include detector valid scans or exclude detector valid scans.</td>
</tr>
<tr>
<td>Enhanced</td>
<td>E, (!E)</td>
<td>Include enhanced scans or exclude enhanced scans.</td>
</tr>
<tr>
<td>Wideband</td>
<td>w, (!w)</td>
<td>Include wideband scans or exclude wideband scans.</td>
</tr>
<tr>
<td>Supplemental Activation</td>
<td>sa, (!sa)</td>
<td>Include supplemental activation scans or exclude supplemental activation scans.</td>
</tr>
<tr>
<td>Multistate Activation</td>
<td>msa, (!msa)</td>
<td>Include multistate activation scans or exclude multistate activation scans.</td>
</tr>
<tr>
<td>Product masses or mass range of scan</td>
<td>[m1a–m1b, m2a–m2b, m3a–m3b, ...]</td>
<td>Scans with a specific mass range or mass ranges, such as SIM, SRM, and CRM.                                                                   Example: [50.00–1500.00] for a scan from ( m/z ) 50.00 to 1500.00 If a scan is exactly 1 Da wide, it appears as a single value (the center mass). This is typical for SIM, SRM, and CRM. Filters for precursor ions in dependent scans are matched with a tolerance of ( m/z ) 1.0 so that minor differences in precursor mass measurements from scan to scan do not give different filters.</td>
</tr>
<tr>
<td>Segment/scan event number pairs</td>
<td>{segment, scan number}</td>
<td>Example: “{3, 4} + c ms” indicates segment 3, scan event 4 for a positive centroid MS scan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The braces { } are required.</td>
</tr>
</tbody>
</table>
### Scan Filter Parameters

** Ionization mode**  
APCI, ESI, EI, CI, NSI, FAB, TSP, FD, MALDI, GD, PSI  
Atmospheric pressure chemical ionization (APCI), electrospray (ESI), electron ionization (EI), chemical ionization (CI), nanoelectrospray ionization (NSI), fast atom bombardment (FAB), thermospray ionization (TSP), field desorption (FD), matrix-assisted laser desorption ionization (MALDI), or glow discharge (GD), Paper Spray Ionization (PSI).

Example: “+ c ESI ms” indicates a positive centroid electrospray MS scan.

**Corona on/off**  
corona, !corona  
Corona on or corona off.

Example: “+ APCI !corona ms” indicates a positive centroid APCI scan with the corona off.

**Detector value**  
“det=#.#”  
Detector value is #.# with no spaces.

Example: “+ ESI det=–800.0” indicates a positive electrospray scan at –800.0 detector units (usually volts).

**MS/MS and MS^n CID energies**  
mass@energy  
Mass is the precursor mass and energy is the CID relative energy (no units).

Example: “– c ms2 196.1@25.0” indicates a negative centroid MS/MS scan of m/z 196.1 at 25.0 units of CID energy.

**Quadrupole identification**  
Q1MS, Q3MS  
Q1 quadrupole or Q3 quadrupole.

Example: “+ c ESI Q3MS” indicates a positive centroid electrospray MS scan using Q3 quadrupole.

**Accurate mass**  
AM, !AM, AMI, AME  
Include accurate mass scans, exclude accurate mass scans, include accurate mass internal, or include accurate mass external.

**Ultra**  
u, !u  
Include ultra scans or exclude ultra scans.

**Sector**  
BSCAN, !BSCAN  
Include magnetic sector scans or exclude magnetic sector scans.

ESCAN, !ESCAN  
Include electric sector scans or exclude electric sector scans.

**LOCK**  
lock, !lock  
Include lock scans or exclude lock scans.

**Multiplex**  
msx, !msx  
Include multiplexing scans or exclude multiplexing scans.

**Electron capture dissociation**  
edc, !edc  
Include electron capture dissociation or exclude electron capture dissociation.

**Multi-photon dissociation**  
mpd, !mpd  
Include photo dissociation or exclude photo dissociation.

---

**Table 67.** Scan filter format (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Option</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionization mode</td>
<td>APCI, ESI, EI, CI, NSI, FAB, TSP, FD, MALDI, GD, PSI</td>
<td>Atmospheric pressure chemical ionization (APCI), electrospray (ESI), electron ionization (EI), chemical ionization (CI), nanoelectrospray ionization (NSI), fast atom bombardment (FAB), thermospray ionization (TSP), field desorption (FD), matrix-assisted laser desorption ionization (MALDI), or glow discharge (GD), Paper Spray Ionization (PSI). Example: “+ c ESI ms” indicates a positive centroid electrospray MS scan.</td>
</tr>
<tr>
<td>Corona on/off</td>
<td>corona, !corona</td>
<td>Corona on or corona off. Example: “+ APCI !corona ms” indicates a positive centroid APCI scan with the corona off.</td>
</tr>
<tr>
<td>Detector value</td>
<td>“det=#.#”</td>
<td>Detector value is #.# with no spaces. Example: “+ ESI det=–800.0” indicates a positive electrospray scan at –800.0 detector units (usually volts).</td>
</tr>
<tr>
<td>MS/MS and MS^n CID energies</td>
<td>mass@energy</td>
<td>Mass is the precursor mass and energy is the CID relative energy (no units). Example: “– c ms2 196.1@25.0” indicates a negative centroid MS/MS scan of m/z 196.1 at 25.0 units of CID energy.</td>
</tr>
<tr>
<td>Quadrupole identification</td>
<td>Q1MS, Q3MS</td>
<td>Q1 quadrupole or Q3 quadrupole. Example: “+ c ESI Q3MS” indicates a positive centroid electrospray MS scan using Q3 quadrupole.</td>
</tr>
<tr>
<td>Accurate mass</td>
<td>AM, !AM, AMI, AME</td>
<td>Include accurate mass scans, exclude accurate mass scans, include accurate mass internal, or include accurate mass external.</td>
</tr>
<tr>
<td>Ultra</td>
<td>u, !u</td>
<td>Include ultra scans or exclude ultra scans.</td>
</tr>
<tr>
<td>Sector</td>
<td>BSCAN, !BSCAN</td>
<td>Include magnetic sector scans or exclude magnetic sector scans.</td>
</tr>
<tr>
<td></td>
<td>ESCAN, !ESCAN</td>
<td>Include electric sector scans or exclude electric sector scans.</td>
</tr>
<tr>
<td>LOCK</td>
<td>lock, !lock</td>
<td>Include lock scans or exclude lock scans.</td>
</tr>
<tr>
<td>Multiplex</td>
<td>msx, !msx</td>
<td>Include multiplexing scans or exclude multiplexing scans.</td>
</tr>
<tr>
<td>Electron capture dissociation</td>
<td>edc, !edc</td>
<td>Include electron capture dissociation or exclude electron capture dissociation.</td>
</tr>
<tr>
<td>Multi-photon dissociation</td>
<td>mpd, !mpd</td>
<td>Include photo dissociation or exclude photo dissociation.</td>
</tr>
</tbody>
</table>
Scan Headers and Scan Header Abbreviations

To display the Scan Header dialog box

1. Click the Spectrum View or MultiSpectrum View to select it.
2. Click the Display Options tab to open the Display Options toolbar.
3. Click Scan Header.

Figure 198 shows the default scan header selections.

Table 67. Scan filter format (Sheet 4 of 4)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Option</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulsed dissociation</td>
<td>pqd, !pqd</td>
<td>Include pulsed dissociation scans or exclude pulsed dissociation scans.</td>
</tr>
<tr>
<td>Electron transfer dissociation</td>
<td>etd, !etd</td>
<td>Include electron transfer dissociation scans or exclude electron transfer dissociation scans.</td>
</tr>
<tr>
<td>NPTR</td>
<td>nptr, !nptr</td>
<td>Include NPTR, Exclude NPTR</td>
</tr>
<tr>
<td>Higher-energy CID</td>
<td>hcd, !hcd</td>
<td>Include higher energy CID scans or exclude higher energy CID scans.</td>
</tr>
<tr>
<td>Source SID</td>
<td>sid, !sid</td>
<td>Include source SID scans or exclude Source SID scans.</td>
</tr>
<tr>
<td>(Source SID scans are surface-induced scans.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation width</td>
<td>iw ##, ##</td>
<td>Isolation width value at ##, ##</td>
</tr>
</tbody>
</table>
Figure 198. Default scan header selections

Table 68 lists the parameters that you can display in the scan header. The parameters displayed in the Scan Header dialog box depend on the data acquisition settings for the mass spectrometer used to acquire the raw data file.

**Table 68.** Scan header parameters and their abbreviations (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Abbreviation before the value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short filename</td>
<td>NA</td>
</tr>
<tr>
<td>Scan Number</td>
<td>#</td>
</tr>
<tr>
<td>Retention time</td>
<td>RT</td>
</tr>
<tr>
<td>Average Number of Scans</td>
<td>AV</td>
</tr>
<tr>
<td>Normalize Intensity</td>
<td>NL</td>
</tr>
<tr>
<td>Scan Filter String</td>
<td>T:</td>
</tr>
<tr>
<td>Polarity</td>
<td>NA (P: when the Scan Filter String is not selected)</td>
</tr>
<tr>
<td>Background Subtraction Scan Numbers</td>
<td>SB</td>
</tr>
<tr>
<td>Mass Ranges</td>
<td>[...] (MR: [...] when the Scan Filter String is not selected)</td>
</tr>
<tr>
<td>Total Ion Current</td>
<td>TIC:</td>
</tr>
<tr>
<td>Scan Low Mass</td>
<td>SLM:</td>
</tr>
</tbody>
</table>
### Table 68. Scan header parameters and their abbreviations (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Abbreviation before the value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan High Mass</td>
<td>SHM:</td>
</tr>
<tr>
<td>Scan Start Time (Min)</td>
<td>SST (Min):</td>
</tr>
<tr>
<td>Base Peak Intensity</td>
<td>BPI:</td>
</tr>
<tr>
<td>Base Peak Mass</td>
<td>BPM:</td>
</tr>
<tr>
<td>Multiple Injection</td>
<td>Multiple Injection::</td>
</tr>
<tr>
<td>Multi Inject Info</td>
<td>Multi Inject Info::</td>
</tr>
<tr>
<td>AGC (automatic gain control—On, Off, or predicted)</td>
<td>AGC::</td>
</tr>
<tr>
<td>Micro Scan Count</td>
<td>MSC:</td>
</tr>
<tr>
<td>Ion Injection Time (ms)</td>
<td>IIT</td>
</tr>
<tr>
<td>Scan segment</td>
<td>SS:</td>
</tr>
<tr>
<td>Scan Event</td>
<td>SE:</td>
</tr>
<tr>
<td>Master Index</td>
<td>Master Index::</td>
</tr>
<tr>
<td>Charge State</td>
<td>CS:</td>
</tr>
<tr>
<td>Reagent Ion AGC</td>
<td>Full parameter name</td>
</tr>
<tr>
<td>Reagent Ion Injection Time (msec)</td>
<td>Full parameter name</td>
</tr>
<tr>
<td>Elapsed Scan Time (sec)</td>
<td>EST</td>
</tr>
<tr>
<td>API Source CID Energy</td>
<td>Full parameter name</td>
</tr>
<tr>
<td>Average Scan By Instrument</td>
<td>ABSI</td>
</tr>
<tr>
<td>Charge State</td>
<td>CS</td>
</tr>
<tr>
<td>Monoisotopic Ion M/Z</td>
<td>Full parameter name</td>
</tr>
<tr>
<td>MS^n Isolation Width ($n = 2$ to $10$) ($m/z$)</td>
<td>Full parameter name</td>
</tr>
<tr>
<td>FT analyzer settings</td>
<td>Full parameter names</td>
</tr>
<tr>
<td>FT analyzer message</td>
<td>Text message</td>
</tr>
<tr>
<td>FT resolution</td>
<td>Full parameter names</td>
</tr>
<tr>
<td>Conversion parameters</td>
<td>Full parameter names</td>
</tr>
</tbody>
</table>
### One- and Three-Letter Abbreviations for Amino Acid Residues

Table 69 lists common one- and three-letter abbreviations for amino acid residues that you enter in the peptide/protein Formula box on the Isotope Simulation Page.

**Table 69.** Common one- and three-letter abbreviations for amino acid residues (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>One letter</th>
<th>Name</th>
<th>Formula</th>
<th>Three letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alanine</td>
<td>C$_3$H$_5$NO</td>
<td>Ala</td>
</tr>
<tr>
<td>C</td>
<td>Cysteine</td>
<td>C$_3$H$_5$NOS</td>
<td>Cys</td>
</tr>
<tr>
<td>D</td>
<td>Aspartate</td>
<td>C$_4$H$_5$NO$_3$</td>
<td>Asp</td>
</tr>
<tr>
<td>E</td>
<td>Glutamate</td>
<td>C$_5$H$_7$NO$_3$</td>
<td>Glu</td>
</tr>
<tr>
<td>F</td>
<td>Phenylalanine</td>
<td>C$_9$H$_9$NO</td>
<td>Phe</td>
</tr>
<tr>
<td>G</td>
<td>Glycine</td>
<td>C$_2$H$_3$NO</td>
<td>Gly</td>
</tr>
<tr>
<td>H</td>
<td>Histidine</td>
<td>C$_6$H$_7$N$_3$O</td>
<td>His</td>
</tr>
<tr>
<td>I</td>
<td>Isoleucine</td>
<td>C$_6$H$_11$NO</td>
<td>Ile</td>
</tr>
<tr>
<td>K</td>
<td>Lysine</td>
<td>C$_6$H$_12$N$_2$O</td>
<td>Lys</td>
</tr>
<tr>
<td>L</td>
<td>Leucine</td>
<td>C$_6$H$_11$NO</td>
<td>Leu</td>
</tr>
<tr>
<td>M</td>
<td>Methionine</td>
<td>C$_5$H$_9$NOS</td>
<td>Met</td>
</tr>
<tr>
<td>N</td>
<td>Asparagine</td>
<td>C$_4$H$_6$N$_2$O$_2$</td>
<td>Asn</td>
</tr>
<tr>
<td>O</td>
<td>Ornithine</td>
<td>C$_5$H$_11$N$_2$O</td>
<td>Orn</td>
</tr>
<tr>
<td>P</td>
<td>Proline</td>
<td>C$_5$H$_7$NO</td>
<td>Pro</td>
</tr>
<tr>
<td>Q</td>
<td>Glutamine</td>
<td>C$_5$H$_8$N$_2$O$_2$</td>
<td>Gln</td>
</tr>
<tr>
<td>R</td>
<td>Arginine</td>
<td>C$_6$H$_12$N$_4$O</td>
<td>Arg</td>
</tr>
<tr>
<td>S</td>
<td>Serine</td>
<td>C$_3$H$_5$NO$_2$</td>
<td>Ser</td>
</tr>
</tbody>
</table>
Table 69. Common one- and three-letter abbreviations for amino acid residues (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>One letter</th>
<th>Name</th>
<th>Formula</th>
<th>Three letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Threonine</td>
<td>C4H7NO2</td>
<td>Thr</td>
</tr>
<tr>
<td>V</td>
<td>Valine</td>
<td>C5H9NO</td>
<td>Val</td>
</tr>
<tr>
<td>W</td>
<td>Tryptophan</td>
<td>C11H10N2O</td>
<td>Trp</td>
</tr>
<tr>
<td>Y</td>
<td>Tyrosine</td>
<td>C9H9NO2</td>
<td>Tyr</td>
</tr>
</tbody>
</table>

Table 70 lists less common three-letter abbreviations for amino acid residues to enter in the peptide/protein formula for the simulated spectrum.

Table 70. Less common three-letter abbreviations for amino acid residues (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Three letter</th>
<th>Name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu</td>
<td>2-Aminobutyric acid (2-aminobutanoic acid)</td>
<td>C4H7NO</td>
</tr>
<tr>
<td>Aec</td>
<td>Aminoethylcysteine</td>
<td>C5H10N2OS</td>
</tr>
<tr>
<td>Aib</td>
<td>Aminoisobutyric acid</td>
<td>C4H7NO</td>
</tr>
<tr>
<td>Aln</td>
<td>--</td>
<td>C13H11NO</td>
</tr>
<tr>
<td>Aly</td>
<td>Alveolysin</td>
<td>C12H22N2O6</td>
</tr>
<tr>
<td>Amc</td>
<td>--</td>
<td>C6H10N2O2S</td>
</tr>
<tr>
<td>Bcy</td>
<td>--</td>
<td>C10H11NOS</td>
</tr>
<tr>
<td>Bgl</td>
<td>--</td>
<td>C12H13NO3</td>
</tr>
<tr>
<td>Bly</td>
<td>--</td>
<td>C16H26N4O3S</td>
</tr>
<tr>
<td>Bse</td>
<td>--</td>
<td>C10H11NO2</td>
</tr>
<tr>
<td>Bth</td>
<td>--</td>
<td>C11H13NO2</td>
</tr>
<tr>
<td>Cmc</td>
<td>Carboxymethylcysteine</td>
<td>C5H7NO3S</td>
</tr>
<tr>
<td>Cml</td>
<td>--</td>
<td>C8H14N2OS</td>
</tr>
<tr>
<td>Cph</td>
<td>Chlorophenylalanine</td>
<td>C9H8NOCl</td>
</tr>
<tr>
<td>Cya</td>
<td>Cysteic acid</td>
<td>C3H5NO4S</td>
</tr>
<tr>
<td>Dha</td>
<td>Dehydroalanine</td>
<td>C3H3NO</td>
</tr>
<tr>
<td>Dhb</td>
<td>Dehydro-2-aminobutyric acid</td>
<td>C4H5NO</td>
</tr>
<tr>
<td>Dpr</td>
<td>D-proline</td>
<td>C5H5NO</td>
</tr>
<tr>
<td>Dty</td>
<td>Diiodotyrosine</td>
<td>C9H7NO2I2</td>
</tr>
<tr>
<td>Fcy</td>
<td>--</td>
<td>C18N29NOS</td>
</tr>
<tr>
<td>Fph</td>
<td>--</td>
<td>C9H8NOF</td>
</tr>
<tr>
<td>Ftr</td>
<td>--</td>
<td>C12H10N2O2</td>
</tr>
</tbody>
</table>
Table 70. Less common three-letter abbreviations for amino acid residues (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Three letter</th>
<th>Name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaa</td>
<td>--</td>
<td>C4H7NO</td>
</tr>
<tr>
<td>Gcg</td>
<td>--</td>
<td>C5H5NO4</td>
</tr>
<tr>
<td>Gla</td>
<td>Carboxyglutamic acid</td>
<td>C6H7NO5</td>
</tr>
<tr>
<td>Glp</td>
<td>--</td>
<td>C5H5NO2</td>
</tr>
<tr>
<td>Hse</td>
<td>Homoserine</td>
<td>C4H7NO2</td>
</tr>
<tr>
<td>Hsl</td>
<td>Homoserine lactone</td>
<td>C4H5NO</td>
</tr>
<tr>
<td>Hya</td>
<td>Beta-hydroxyaspartate</td>
<td>C4H5NO4</td>
</tr>
<tr>
<td>Hyg</td>
<td>Hydroxyglycine</td>
<td>C5H7NO4</td>
</tr>
<tr>
<td>Hyl</td>
<td>Hydroxylysine</td>
<td>C6H12N2O2</td>
</tr>
<tr>
<td>Hyp</td>
<td>Hydroxyproline</td>
<td>C5H7NO2</td>
</tr>
<tr>
<td>IIs</td>
<td>Isolysine</td>
<td>C9H18N2O</td>
</tr>
<tr>
<td>Ity</td>
<td>Iodotyrosine</td>
<td>C9H8NO2I</td>
</tr>
<tr>
<td>Iva</td>
<td>Isovaline</td>
<td>C5H9NO</td>
</tr>
<tr>
<td>Mar</td>
<td>--</td>
<td>C7H14N4O</td>
</tr>
<tr>
<td>Mas</td>
<td>--</td>
<td>C5H7NO3</td>
</tr>
<tr>
<td>Mbt</td>
<td>--</td>
<td>C17H17NO2</td>
</tr>
<tr>
<td>Mes</td>
<td>--</td>
<td>C5H9NO3S</td>
</tr>
<tr>
<td>Mga</td>
<td>--</td>
<td>C6H10N2O2</td>
</tr>
<tr>
<td>Mgl</td>
<td>--</td>
<td>C6H9NO3</td>
</tr>
<tr>
<td>Mhi</td>
<td>--</td>
<td>C7H9N3O</td>
</tr>
<tr>
<td>Mls</td>
<td>--</td>
<td>C7H14NO</td>
</tr>
<tr>
<td>Mme</td>
<td>--</td>
<td>C6H11NOS</td>
</tr>
<tr>
<td>Mph</td>
<td>--</td>
<td>C10H11NO</td>
</tr>
<tr>
<td>MsO</td>
<td>Methioninesulfoxide</td>
<td>C5H9NO2S</td>
</tr>
<tr>
<td>Mty</td>
<td>C10H11NO2</td>
<td></td>
</tr>
<tr>
<td>Nle</td>
<td>Norleucine</td>
<td>C6H11NO</td>
</tr>
<tr>
<td>Nls</td>
<td>Norlysine</td>
<td>C12H15N3O2</td>
</tr>
<tr>
<td>Pal</td>
<td>--</td>
<td>C8H8N2O</td>
</tr>
<tr>
<td>Pcy</td>
<td>--</td>
<td>C19H35NO2S</td>
</tr>
<tr>
<td>Pec</td>
<td>--</td>
<td>C10H12N2O5</td>
</tr>
<tr>
<td>Pip</td>
<td>2-Piperidinecarboxylic acid</td>
<td>C6H9NO</td>
</tr>
<tr>
<td>Three letter</td>
<td>Name</td>
<td>Formula</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Psr</td>
<td>Phosphoserine</td>
<td>C₃H₆NO₅P</td>
</tr>
<tr>
<td>Pth</td>
<td>Phosphothreonine</td>
<td>C₄H₈NO₅P</td>
</tr>
<tr>
<td>Pty</td>
<td>Phosphotyrosine</td>
<td>C₉H₁₀NO₅P</td>
</tr>
<tr>
<td>Pyr</td>
<td>Pyroglutamic acid</td>
<td>C₅H₅NO₂</td>
</tr>
<tr>
<td>Sar</td>
<td>Sarcosine</td>
<td>C₃H₅NO</td>
</tr>
<tr>
<td>Sas</td>
<td>--</td>
<td>C₈H₈NO₅</td>
</tr>
<tr>
<td>Tml</td>
<td>E-amino trimethyl-lysine</td>
<td>C₉H₁₉N</td>
</tr>
<tr>
<td>Tys</td>
<td>Tyrosinesulfonic acid Tyr (SO₃H)</td>
<td>C₉H₉NO₅S</td>
</tr>
</tbody>
</table>
**Common Isotopes**

Table 71 lists the exact mass and natural abundance for some common isotopes.

**Table 71.** Common elements with multiple stable isotopes

<table>
<thead>
<tr>
<th>Element</th>
<th>Isotope symbol</th>
<th>Mass (Da)&lt;sup&gt;a&lt;/sup&gt;</th>
<th>%Abundance&lt;sup&gt;b&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromine</td>
<td>79Br</td>
<td>78.918336</td>
<td>50.69</td>
</tr>
<tr>
<td></td>
<td>81Br</td>
<td>80.916290</td>
<td>49.31</td>
</tr>
<tr>
<td>Carbon</td>
<td>12C</td>
<td>12.000000</td>
<td>98.93</td>
</tr>
<tr>
<td></td>
<td>13C</td>
<td>13.003354</td>
<td>1.07</td>
</tr>
<tr>
<td>Calcium</td>
<td>40Ca</td>
<td>39.962591</td>
<td>96.95</td>
</tr>
<tr>
<td></td>
<td>42Ca</td>
<td>41.958622</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>44Ca</td>
<td>43.955485</td>
<td>2.086</td>
</tr>
<tr>
<td>Chlorine</td>
<td>35Cl</td>
<td>34.968853</td>
<td>75.77</td>
</tr>
<tr>
<td></td>
<td>37Cl</td>
<td>36.965903</td>
<td>24.23</td>
</tr>
<tr>
<td>Potassium</td>
<td>39K</td>
<td>38.963708</td>
<td>93.20</td>
</tr>
<tr>
<td></td>
<td>41K</td>
<td>40.961825</td>
<td>6.73</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>14N</td>
<td>14.003074</td>
<td>99.63</td>
</tr>
<tr>
<td></td>
<td>15N</td>
<td>15.000111</td>
<td>0.37</td>
</tr>
<tr>
<td>Oxygen</td>
<td>16O</td>
<td>15.994915</td>
<td>99.76</td>
</tr>
<tr>
<td></td>
<td>18O</td>
<td>17.999159</td>
<td>0.20</td>
</tr>
<tr>
<td>Sulfur</td>
<td>32S</td>
<td>31.972071</td>
<td>95.02</td>
</tr>
<tr>
<td></td>
<td>33S</td>
<td>32.971459</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>34S</td>
<td>33.967867</td>
<td>4.21</td>
</tr>
</tbody>
</table>

---

<sup>a</sup> Mass values are for reference only.

<sup>b</sup> Isotopes with a natural abundance below 0.20% are not listed. Percent abundance values are for reference only.