Advantages of High-Resolution Separation Media for Monoclonal Antibody Analysis

Srinivasa Rao, Yuanxue Hou, Hongmin Zhang, Ilze Birznieks, Gurmil Gendeh, Yury Agroskin, and Chris Pohl; Thermo Fisher Scientific, Sunnyvale, CA, USA
Overview

Purpose: Demonstrate advantages of high-resolution media for monoclonal antibody (MAb) analysis.

Methods: High-resolution separation of a MAb is achieved with the new Thermo Scientific™ UltiMate™ 3000 BioRS Liquid Chromatography (LC) high-pressure, inert system using Thermo Scientific™ Chromeleon™ Chromatography Data System software.

Results: High-pressure, bioinert column hardware was specifically developed to achieve high-resolution MAb analysis. Longer columns with small particle separation media were used to achieve this objective.

Introduction

MAbs represent a major class of biotherapeutic molecules that usually display complex microheterogeneity with several post-translational modifications, including oxidation, isomerization, deamidation, glycation, and others. Primary structure alterations, such as lysine truncations, are also known to occur in the C-terminus region of MAbs. Therefore, quality control and stability assessment of MAbs are very challenging tasks. The increasing utilization of MAbs in the pharmaceutical industry is driving a growing demand for improved high-resolution stationary phases for characterization of MAbs.

Previously introduced Thermo Fisher™ Scientific MAbPac™ strong cation-exchange phases are based on particle sizes of 10 μm, 5 μm, and 3 μm resins for MAb charge variant separations. These small particle size phases were developed specifically to address the requirement for high-resolution, high-throughput variant analysis on the same column. However, there is a need in the industry to have analytical columns that combine uncompromised resolution power with high flow rate compatibility.

With the launch of a new, totally bioinert UltiMate 3000 BioRS high-pressure system with maximum pressure of 15000 psi, we have developed a longer format of the 3 μm and 5 μm polymeric-particle columns that are suitable for high-resolution MAb analysis. Bioinert column hardware is a critical component for any MAb separation to avoid metal interferences with analytes of interest. In order to achieve this objective, we utilize a PEEK™-lined, stainless steel column bodies suitable for operation up to 1,000 bar, providing a totally metal-free fluidic path. These columns take advantage of smaller resin size as well as longer column length to maximize the resolution of MAb separation.

This work describes the development and applications of 3 μm and 5 μm small particle columns for high-resolution MAb analysis.

Methods

Samples
The MAb sample is a gift from a local biotech company. Cytochrome C (equine) and other chemicals were from Sigma-Aldrich®.

Columns
Prototype MAbPac SCX-10, 3 μm, 4.6 × 150 mm (PEEK-lined stainless steel)
Prototype: MAbPac SCX-10, 5 μm, 4.6 × 250 mm (PEEK-lined stainless steel)
MAbPac SCX-10, 3 μm, 4 × 50 mm (PEEK), P/N 077907
MAbPac SCX-10, 5 μm, 4 × 50 mm (PEEK), P/N 078656
MAbPac SCX-10, 10 μm, 4 × 250 mm (PEEK), P/N 074625

High-Pressure LC (HPLC)
HPLC experiments were carried out using an UltiMate 3000 BioRS system (Figure 1) equipped with:

- TCC-3000RS/SD Biocompatible Rapid Separation Thermostatted Column Compartment
- HPG-3400RS Biocompatible Binary Rapid Separation Pump
- WPS-3000TBRS Biocompatible Rapid Separation Wellplate Sampler, Thermostatted (in-line, split-loop)
- VWD-3400RS Rapid Separation Four Channel Variable Wavelength Detector with Flow Cell

Chromatography was controlled by Chromeleon Chromatography Data System software.
FIGURE 1. The UltiMate 3000 BioRS high-pressure, bioinert system.

The UltiMate 3000 BioRS system delivers optimal separations at ultrahigh speed while maintaining resolution by combining:
- Bioinert materials
- Pressure of up to 1034 bar
- Flow rates of up to 8 mL/min
- Short sampler cycle times
- High column temperatures
- Ultrafast data collection and processing

FIGURE 2. Separation media and mechanism of cation exchange column.

Mechanism of separation:
- Charge-charge interaction
- Based on ionic strength
- Based on pH
Advantages of High-Resolution Separation Media for Monoclonal Antibody Analysis

High-resolution separation of a MAb is achieved with the new Thermo Scientific™ UltiMate™ 3000 BioRS high-pressure, inert system. The UltiMate 3000 BioRS system delivers optimal separations at ultrahigh speed while combining uncompromised resolution power with high flow rate compatibility. Short sampler cycle times, high column temperatures, and 5 µm polymeric phases are based on particle sizes of 10 µm, 5 µm, and 3 µm resins for MAb charge separation.

Prototype MAbPac SCX-10, 3 µm, 4.6 × 50 mm column clearly shows better efficiency when compared to the shorter 50 mm column (Figure 5). In both cases, the MAbPac SCX 3 µm, 4.6 × 150 mm column showed several-fold increase in efficiency when compared to the shorter columns. The ruggedness of the prototype MAbPac SCX-10, 3 µm, 4.6 × 150 mm column is demonstrated in Figure 7 and Table 3.

A new UltiMate 3000 BioRS high-pressure, totally inert system was developed. The system supports the view that the column is quite rugged (Figure 7 and Table 3). Currently, packing conditions are being optimized for both the 3 µm and 5 µm particle columns that are suitable for high-resolution MAb analysis.

Samples

Cytochrome C (equine) and other chemicals were from Sigma-Aldrich®. The MAb sample is a gift from a local biotech company.

TABLE 1. Comparison of prototype MAbPac SCX, 3 µm, 4.6 × 150 mm column with the MAbPac SCX, 3 µm, 4 × 50 mm column (see Figure 3 for chromatography details).

<table>
<thead>
<tr>
<th>Column</th>
<th>Flow Rate (mL/min)</th>
<th>RT (min)</th>
<th>Asymmetry</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. MAbPac SCX, 3 µm prototype, 4.6 × 150 mm</td>
<td>0.66</td>
<td>14.3</td>
<td>1.22</td>
<td>13152</td>
</tr>
<tr>
<td>B. MAbPac SCX, 3 µm, 4 × 50 mm</td>
<td>0.5</td>
<td>5.67</td>
<td>1.21</td>
<td>5371</td>
</tr>
</tbody>
</table>

FIGURE 3. Isocratic testing of the prototype MAbPac SCX, 3 µm, 4.6 × 150 mm column and comparison with the MAbPac SCX, 3 µm, 4 × 50 mm column.

FIGURE 4. MAb separation on the prototype MAbPac SCX, 3 µm, 4.6 × 150 mm column. Peak width at half height (min) and peak resolution are shown for lysine truncation peaks, respectively.

TABLE 2. Assessed peak width at half height (min) is shown in Table 2 for lysine truncation and other peaks in Figure 6.

<table>
<thead>
<tr>
<th>Lysine Variant</th>
<th>Prototype MAbPac SCX, 3 µm, 4.6 × 150 mm</th>
<th>MAbPac SCX, 3 µm, 4 × 50 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptide Variant</td>
<td>0.464 2.10</td>
<td>0.464 2.10</td>
</tr>
<tr>
<td>Other Basic Variants</td>
<td>0.464 3.10</td>
<td>0.464 3.10</td>
</tr>
</tbody>
</table>

Currently, packing conditions are being optimized for both the 3 µm and 5 µm particle columns that are suitable for high-resolution MAb analysis.

Samples

Cytochrome C (equine) and other chemicals were from Sigma-Aldrich®. The MAb sample is a gift from a local biotech company.

TABLE 1. Comparison of prototype MAbPac SCX, 3 µm, 4.6 × 150 mm column with the MAbPac SCX, 3 µm, 4 × 50 mm column (see Figure 3 for chromatography details).

<table>
<thead>
<tr>
<th>Column</th>
<th>Flow Rate (mL/min)</th>
<th>RT (min)</th>
<th>Asymmetry</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. MAbPac SCX, 3 µm prototype, 4.6 × 150 mm</td>
<td>0.66</td>
<td>14.3</td>
<td>1.22</td>
<td>13152</td>
</tr>
<tr>
<td>B. MAbPac SCX, 3 µm, 4 × 50 mm</td>
<td>0.5</td>
<td>5.67</td>
<td>1.21</td>
<td>5371</td>
</tr>
</tbody>
</table>

FIGURE 3. Isocratic testing of the prototype MAbPac SCX, 3 µm, 4.6 × 150 mm column and comparison with the MAbPac SCX, 3 µm, 4 × 50 mm column.

FIGURE 4. MAb separation on the prototype MAbPac SCX, 3 µm, 4.6 × 150 mm column. Peak width at half height (min) and peak resolution are shown for lysine truncation peaks, respectively.

TABLE 2. Assessed peak width at half height (min) is shown in Table 2 for lysine truncation and other peaks in Figure 6.
This work describes the development and bar, providing a totally metal-free fluidic path. These columns take advantage of columns for high-resolution MAb analysis. However, there is a need in the industry to have analytical columns that address the requirement for high-resolution, high-throughput variant analysis on the same column. Therefore, quality control and stability assessment of MAbs are very challenging tasks. MAbs represent a major class of biotherapeutic molecules that usually display complex microheterogeneity with several post-translational modifications, including oxidation, isomerization, deamidation, glycation, and others. Primary structure alterations, such as lysine truncations, are also known to occur in the C-terminus region of MAbs. Primary structure alterations, such as lysine truncations, are also known to occur in the C-terminus region of MAbs.

The MAb sample is a gift from a local biotech company. Cytochrome C (equine) and other chemicals were from Sigma-Aldrich®.

Methods

Overview

Advantages of High-Resolution Separation Media for Monoclonal Antibody Analysis

With the launch of a new, totally bioinert UltiMate 3000 BioRS high-pressure system, MAbs represent a major class of biotherapeutic molecules that usually display complex microheterogeneity with several post-translational modifications, including oxidation, isomerization, deamidation, glycation, and others. Primary structure alterations, such as lysine truncations, are also known to occur in the C-terminus region of MAbs.

Results

Prototype MAbPac SCX, 3 μm, 4.6 x 250 mm Column

Column Comparison

<table>
<thead>
<tr>
<th>Column</th>
<th>Flow Rate (mL/min)</th>
<th>RT (min)</th>
<th>Asymmetry</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. MAbPac SCX, 5 μm prototype, 4.6 x 250 mm</td>
<td>1</td>
<td>11.14</td>
<td>1.02</td>
<td>9635</td>
</tr>
<tr>
<td>B. MAbPac SCX, 5 μm, 4.0 x 50 mm</td>
<td>0.76</td>
<td>2.45</td>
<td>1.21</td>
<td>2465</td>
</tr>
</tbody>
</table>

Methods

With the launch of a new, totally bioinert UltiMate 3000 BioRS high-pressure system, HPLC experiments were carried out using an UltiMate 3000 BioRS system with the prototype MAbPac SCX-10, 3 μm, 4.6 x 250 mm column. The ruggedness of the prototype MAbPac SCX was also assessed. Peak width at half height (min) is shown in Table 3 for lysine truncation peaks.

Conclusion

This study demonstrates successful use of New UltiMate™ 3000 BioRS high-pressure, totally bioinert system for MAb separation. The ruggedness of the prototype MAbPac SCX was assessed. Peak width at half height (min) is shown in Table 3 for lysine truncation peaks. The same linear velocity and resolution is shown for lysine truncation peaks. The same linear velocity was used.

Acknowledgements

We thank Doug Jamieson at Thermo Fisher Scientific for helping us with the column hardware acquisition, packing, and other insightful discussions.
FIGURE 7. Ruggedness testing of the prototype MAbPac SCX, 5 µm, 4.6 x 250 mm column. The MAb sample was injected intermittently and the ruggedness assessed. Peak width at half height (min) is shown in Table 3 for lysine truncation peaks 1, 2, and 3.

TABLE 3.

<table>
<thead>
<tr>
<th>Run #</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.308</td>
<td>0.305</td>
<td>0.316</td>
</tr>
<tr>
<td>23</td>
<td>0.307</td>
<td>0.305</td>
<td>0.313</td>
</tr>
<tr>
<td>40</td>
<td>0.306</td>
<td>0.303</td>
<td>0.311</td>
</tr>
<tr>
<td>57</td>
<td>0.306</td>
<td>0.302</td>
<td>0.310</td>
</tr>
<tr>
<td>74</td>
<td>0.306</td>
<td>0.301</td>
<td>0.309</td>
</tr>
<tr>
<td>85</td>
<td>0.305</td>
<td>0.300</td>
<td>0.308</td>
</tr>
</tbody>
</table>

Results

- A new UltiMate 3000 BioRS high-pressure, totally inert system was developed. PEEK-lined stainless steel columns were used to avoid any metal-related interferences with MAb/protein chromatography.
- Isocratic separation of cytochrome C on the prototype MAbPac SCX-10, 3 µm, 4.6 x 150 mm column clearly shows better efficiency when compared to the shorter 3 µm, 4 x 50 mm column (Figure 3).
- Isocratic separation of cytochrome C on the prototype MAbPac SCX-10, 5 µm, 4.6 x 250 mm column showed several-fold increase in efficiency when compared to the shorter 5 µm, 4 x 50 mm column (Figure 5). In both of these comparisons, the same linear velocity was used.
- MAb separation at a 1 mL flow rate was possible on the new high-pressure HPLC system with the prototype MAbPac SCX-10, 3 µm, 4.6 x 150 mm column for faster analysis. At 1 mL flow, back pressure reached around 13000 Psi. An example separation of a MAb at 1 mL flow rate is shown in Figure 4.
- Improved chromatography with improved resolution was seen for MAb separations with the prototype MAbPac SCX-10, 5 µm, 4.6 x 250 mm column when compared to the MAbPac SCX-10, 10 µm, 4 x 250 mm column (Figure 6). This improvement was due to decreased particle size.
- The ruggedness of the prototype MAbPac SCX, 5 µm, 4.6 x 250 mm column for over 85 runs without any major changes in peak width measurements. This clearly supports the view that the column is quite rugged (Figure 7 and Table 3).
- Currently, packing conditions are being optimized for both the 3 µm and 5 µm prototype columns to obtain increased efficiency and ruggedness for MAb separations.

Conclusion

This study demonstrates successful use of New UltiMate™ 3000 BioRS high-pressure inert system along with the PEEK lined stainless steel column hardware for high-resolution, high-efficiency MAb/Protein chromatography.

Acknowledgements

We thank Doug Jamieson at Thermo Fisher Scientific for helping us with the column hardware acquisition, packing, and other insightful discussions.