# High Quality Episomal Human iPSC derived from Cord Blood with a Zero **Footprint: Applications in Serum-Free and Xeno-Free Culture**

Shruthi Pal<sup>1</sup>, Jasmeet Kaur<sup>2</sup>, MacArthur Chad<sup>3</sup>, Ann Peters<sup>\*</sup>, Tea Soon Park<sup>\*</sup>, Xuan Yuan<sup>\*</sup>, Paul Burridge<sup>\*</sup>, Udaykumar Kolkundkar<sup>1</sup>, Elias Zambidis<sup>\*</sup>, and Mohan Vemuri<sup>2</sup> <sup>1</sup>Life Technologies, Bangalore, INDIA, <sup>2</sup>Life Technologies, Frederick, MD, USA, \*Johns Hopkins Institute for Cell Engineering, JHU, Baltimore, Maryland, USA

# **ABSTRACT**

Nonviral, non-integrated human induced pluripotent stem cell (hiPSC) lines were generated using cord blood-derived CD34+ progenitors with seven episomal expressed factors (OCT4, SOX2, KLF4, MYC, NANOG, LIN28, SV40 T) expressed with the pCEP4 plasmid system. Zero foot print iPSC lines were derived first on feeders and subsequently adapted to feeder free conditions in serum free and xeno-free culture conditions. In all three culture conditions, the iPSC lines showed robust proliferation with normal karyotype and expressed a panel of pluripotency markers OCT 4 SOX2 and NANOG by RT-PCR and OCT4, SSEA4, TRA-1-60 and TRA-1-81 by ICC. Whole genome expression and epigenetic profiling analyses demonstrated that these lines were of extremely high quality and molecularly indistinguishable from human embryonic stem cell lines. In a directed differentiation and teratoma analysis, the lines retained potential to the three germ layers, ectoderm, endoderm and mesodermal lineages. This report presents an optimized culture system for nonintegrated human iPS cells in a feeder – free, serum – free and Xeno-free conditions, that enable the use of iPSC line as a positive control in reprogramming methods for iPSC generation. In addition, viral free vascular, hematopoietic, neural and cardiac lineages were derived with robust efficiencies that support cell therapy applications.

## INTRODUCTION

In 2006, Yamanaka and colleagues reported the successful reprogramming of mouse fibroblasts into induced pluripotent stem cells (iPSCs) by transducing them with four genes (OCT4, SOX2, KLF4, c-MYC). Human iPSCs hold great promise for the future of regenerative medicine as they functionally and phenotypically resemble human embryonic stem cells. At an incredibly rapid rate, researchers have been able to reprogram adult human fibroblasts, keratinocytes, neural stem cells, B cells, liver, and stomach epithelial cells into iPSCs that are capable of differentiating into multiple clinically relevant cell types. Initial methods of iPSC generation employing genome-integrating retroviral or lentiviral vectors, displayed caveats such as tumor formation and residual transgene expression that affected their differentiation potential. This field is currently in flux, as iPSCs could provide a system whereby patient-specific pluripotent cells can be readily generated to gain further insights for studying and potentially treating many diseases.

Herein, we describe the generation of nonintegrated, virus-free human iPSC from ex vivo expanded human cord blood CD34+ progenitors with seven episomal expressed factors (OCT4, SOX2, KLF4, c-MYC, NANOG, LIN28, SV40 T).

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GIBCO <sup>®</sup> Episomal hiPSC Line supplied as                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>cryopreserved</li> </ul>                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>≥1×10<sup>6</sup> cells/mL in iPSC medium with 10%</li> </ul> |
| GIBCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DMSO                                                                   |
| hiPSC Line or<br>Cat # A 13700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>exhibit ≥70% viability</li> </ul>                             |
| fir insearch use only. Not in<br>first search use on<br>first search use first search use first search use<br>first | <ul> <li>iPSC line is grown on mouse feeder layer</li> </ul>           |
| invitragen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>characterized for the pluripotency and</li> </ul>             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>in-vitro and in-vivo differentiation potential</li> </ul>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |

#### Figure 1. Morphology



Progressive day-wise morphology of the GIBCO<sup>®</sup> Episomal hiPSC Line on mouse feeder layer

# Zero Footprint Gibco<sup>®</sup> Episomal hiPSC line





Lack of genomic episomal vector or transgene integration was demonstrated by PCR and Southern Blot

# **Pluripotent Analyses of Gibco<sup>®</sup> Episomal hiPSC line**

#### Figure 4. Immunocytochemistry





G banding chromosome analysis of GIBCO<sup>®</sup> Episomal hiPSC Line shows a normal karyotype

# Figure 3. Southern Blot

#### Figure 5. Teratoma Results

88

Teratoma Formation results show the gross morphology of cystic teratomas which were formed on injection of CD34 iPSC into immunodeficient mice (upper panel). Analysis of H&E stains of tumor sections showed robust differentiation to a diverse of well-differentiated array ectoderm, mesoderm, endoderm germ layers (lower panels)



Micro RNAs Expression Profile in Viral and Nonviral iPSCs: Viral iPSCs have expression profile close to starter cells. • Nonviral iPSCs have less MiRNA Expression profile Micro RNA expression resembles core hESC like in episomal derived iPSCs.

- High quality human episomal iPSC line

# Differentiation Potential of Gibco<sup>®</sup> Episomal hiPSC line

### Figure 8. Neural and Blood Lineages

| Nestin      | TuJ1 | <b>A</b> |
|-------------|------|----------|
| Nestin TuJ1 | DAPI | С        |

ICC analysis of neural rosettes Nestin-positive neural shows progenitors cells and beta III tubulin (TuJ1)- positive immature neurons panel); Merged image (upper (lower left) and (lower right) image showing DAPI counter stain of nucleus.

#### Figure 9. Cardiac Lineage





Differentiation into Cardiac Lineage. A. ICC of cardiac markers in hEB differentiated from the iPSC line B. Calcium Micromapping of the beating hEB (left panel), Voltage micromapping of the beating hEB (right panel)





Gibco<sup>®</sup> Episomal hiPSC line ability the showed to differentiate into vascular and hematopoietic progenitors

# Feeder Free Adaptation of Gibco<sup>®</sup> Episomal hiPSC line

#### Figure 10. Morphology and Immunocytochemistry





Progressive day-wise morphology (left panel) and ICC for pluripotent markers of the Gibco<sup>®</sup> Episomal hiPSC Line on Geltrex in StemPro<sup>®</sup> hESC SFM medium (right panel)

#### Figure 12. RT-PCR



#### Figure 13. Karyotype Analysis



RT-PCR shows expression of pluripotent markers

#### **CONCLUSIONS**

- Karyotyping of hiPSC Line cultured in StemPro<sup>®</sup> hESC SFM medium
- GIBCO<sup>®</sup> Episomal hiPSC line is a footprint- free iPSC line derived from CD34<sup>+</sup> progenitors using episomal vectors to deliver reprogramming genes Oct4, Sox2, Klf4, c-Myc, Nanog, Lin28 and SV40T.
- GIBCO<sup>®</sup> Episomal hiPSC line shows robust proliferation with a normal karyotype and expresses a panel of pluripotency markers as determined by RT-PCR (Oct4, Sox2, and Nanog) and by **immunocytochemistry** (Oct4, SSEA4, TRA-1-60, and TRA-1-81) in both feeder-based and feeder-free culture conditions
- GIBCO<sup>®</sup> Episomal hiPSC line is **molecularly indistinguishable** from hESCs in terms of the whole genome expression and epigenetic profiling analyses. The line shows directed differentiation (vascular, hematopoietic, neural and cardiac *lineages*) and teratoma analyses, into all the three lineages with robust efficiency

#### REFERENCES

1. Burridge P.W. et al. (2011) A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS ONE 6(4): e18293. 2. Yu J. et al. (2009) Human Induced Pluripotent Stem Cells Free

of Vector and Transgene. Science 324: 797-801.

#### ACKNOWLEDGEMENTS

We thank Dr. Purushotham Reddy for help with characterization.

### **TRADEMARKS/LICENSING**

© 2011 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.

