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ETD Multiple Fills Proof of Concept 

The multiple fills ETD approach has been previously demonstrated3,4 and is 
advantageous as it has the capability to provide higher S/N ratio ETD spectra, while 
providing facile ETD sequestration conditions. A flow diagram detailing the approach is 
presented in Figure 5. Figures 6, 7, and 8 compare and contrast the multiple fills 
approach to the scan averaging approach in terms of spectral S/N ratio scan 
acquisition speed.  
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Conclusions 
 Single fill ETD limited by space charge capacity of the back section of the ion 

trap in the Orbitrap Fusion Tribrid MS. 

 The sequestration conditions during ETD need careful consideration in order to 
minimize trap-like collision induced dissociation. 

 A multiple fills methodology has been presented based on ETD reaction in the 
high pressure trap followed by accumulation of ETD products in the low pressure 
trap.  

 The geometry of the Orbitrap Fusion Tribrid MS in conjunction with the ability to 
run both analyzers in parallel allows for acquisition of high S/N ratio spectra in a 
much shorter time than can be done with scan averaging alone.  
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Overview 
Purpose: Improve ETD Signal to Noise (S/N) ratio and scan duty cycle. 

Methods: Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer with the 
Thermo Scientific™ EASY-ETD™ ion source. 

Results: Developed a methodology incorporating multiple fills of ETD products into a 
storage cell followed by a single m/z analysis leading to improved spectral S/N ratio 
and acquisition speed. 

Introduction 
Electron transfer dissociation (ETD) has been demonstrated to be a useful tool for the 
analysis of polypeptide compounds including peptides with labile PTM’s, peptides with 
many basic sites, and large proteins. One drawback of the approach is that it leads to a 
reduction of both scan duty cycle and total MS2 ion signal, compared to conventional 
resonant CID, due to necessity to perform the ion-ion reaction and the fact that the 
reaction consumes charge. This research explores the possibility to circumvent these 
limitations by performing multiple ETD reactions per m/z analysis in a 2D linear ion trap 
on a three-analyzer hybrid instrument based upon a mass resolving quadrupole, 
Orbitrap (OT), collision cell, and dual linear ion trap (Q-OT-LT) architecture.  

Methods  
The multi-fill per m/z analysis scan mode in the dual cell linear ion trap is accomplished 
by using the high pressure trap (HPT) as a reaction vessel, and utilizing the low 
pressure trap (LPT) as an accumulation and m/z analysis cell. In this fashion, the 
multiple fills ETD scan cycle becomes a loop over n (the number of fills requested) 
ETD reaction, transfer and storage cycles, followed by a single m/z analysis in either 
the low pressure trap of the dual cell or, after the appropriate transfer, in the OT mass 
analyzer. All experiments were performed on an Orbitrap Fusion Tribrid MS. 

FIGURE 1. Schematic of the Orbitrap Fusion Tribrid mass spectrometer 
showing the location of the Easy-ETD reagent ion source within the overall ion 
optics path. The exploded view shows how the reagent ion source is 
incorporated into the S-Lens/Q00 region.  

Results  
Motivation for Employing Multiple Fills ETD 

Performing the ETD reaction in the HPT of the Orbitrap Fusion Tribrid MS requires the 
cation precursor population to be sequestered to the back section of the HPT, so that 
the reagent anion species can be injected into the trap prior to the charge sign 
independent trapping (CSIT) and ETD reaction events. As a result, the maximum 
number of cation precursor charges that can be employed per ETD reaction is a 
function of the space charge capacity of the section employed for sequestration. 
Figure 2 shows the potentials employed during the cation sequestration/reagent 
injection events and the relative locations of the cationic and anionic species.  

 
FIGURE 2. Cation sequestration and reagent injection conditions prior to the 
ETD reaction in the high pressure cell of the dual cell linear trap  

FIGURE 8. Scan acquisition time per spectrum for the ETD multiple fills 
experiment and the uScans approach taken at a variety of Orbitrap transient 
durations. 

The charge capacity of the back section of the HPT is determined by the axial potential 
well and radial pseudopotential, and can be measured by a number of methods. We 
choose to examine the product yield from the ETD reaction of Angiotensin I as a 
function of the starting precursor ion population. Fragment TIC plotted as a function of 
the axial potential in the back section of the high pressure trap during the ion 
sequester event (Figure 3) is characterized by a linear region where ETD products 
increase with the initial precursor population, followed by a transition to a plateau 
region where additional precursor does not yield additional product species. The 
location of the plateau is dictated by the balance of space charge forces with that of 
the effective RF focusing forces, and has been well modeled in the literature.1   
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Unfortunately, certain combinations of axial well depth and RF pseudopotential can 
lead to ion excitation as the ions spend more time at greater radii. The increased 
kinetic energy in these situations causes fragmentation which generates significant 
amounts of b and y series ions2, and contributes to overall lower signal to noise (S/N) 
ratio ETD spectra. We demonstrate that the precursor fragmentation is occurring 
during the sequester events by monitoring the fragment TIC in the absence of ion-ion 
reaction time, Figure 4. 

FIGURE 3. Angiotensin I ETD product ion yield vs. the starting precursor 
population for a single ETD reaction.  

FIGURE 5. Flow diagram describing the ETD multiple fills approach when the 
ETD reaction is conducted in the HPT and product accumulation is conducted 
in the LPT. Mass analysis can be conducted in either analyzer. 

FIGURE 4. a) Angiotensin I b and y ion formation observed at high precursor 
initial targets resulting from harsh sequestration conditions. b) Fragment yield 
versus precursor target demonstrating the onset of b and y ion formation. 

FIGURE 6. Comparison of the Angiotensin I ETD c and z ion fragment TIC for an 
up to 8-fills ETD approach versus a single fill. The multiple fill data was taken at 
three individual precursor targets per fill corresponding  to 1e4 (blue squares), 
5e4 (red circles), and 1e5 (green triangles) charges/fill. 

a) 

b) 

It is apparent (Figure 6) that the working range using the multiple fills approach is 
much greater than that for a single fill, while preserving soft sequestration conditions. 

The fit to the data (Figure 7) represents the theoretical gains that could be realized if 
the S/N ratio increases linearly with the ion population and as a square root function 
for scan averaging.  

The geometry of the Orbitrap Fusion Tribrid MS in conjunction with it’s ability to run 
scans in a parallel/pipelined fashion affords a significant decrease in scan acquisition 
time per spectrum for the multiple fills approach (Figure 8) as the ETD fills are run in 
parallel with OT m/z analysis. 
 

FIGURE 7. Comparison of the S/N ratio of ETD c and z fragments from 
tetrapeptide MRFA [M+2H]2+ after reaction for 100 msec versus the number of 
injection events. For the case of multiple ETD fills this represents the number of 
precursor fills/ETD cycles before m/z analysis; uScans represents the number 
of scans averaged.  
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Results  
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cation precursor population to be sequestered to the back section of the HPT, so that 
the reagent anion species can be injected into the trap prior to the charge sign 
independent trapping (CSIT) and ETD reaction events. As a result, the maximum 
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Figure 2 shows the potentials employed during the cation sequestration/reagent 
injection events and the relative locations of the cationic and anionic species.  
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FIGURE 8. Scan acquisition time per spectrum for the ETD multiple fills 
experiment and the uScans approach taken at a variety of Orbitrap transient 
durations. 

The charge capacity of the back section of the HPT is determined by the axial potential 
well and radial pseudopotential, and can be measured by a number of methods. We 
choose to examine the product yield from the ETD reaction of Angiotensin I as a 
function of the starting precursor ion population. Fragment TIC plotted as a function of 
the axial potential in the back section of the high pressure trap during the ion 
sequester event (Figure 3) is characterized by a linear region where ETD products 
increase with the initial precursor population, followed by a transition to a plateau 
region where additional precursor does not yield additional product species. The 
location of the plateau is dictated by the balance of space charge forces with that of 
the effective RF focusing forces, and has been well modeled in the literature.1   
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Unfortunately, certain combinations of axial well depth and RF pseudopotential can 
lead to ion excitation as the ions spend more time at greater radii. The increased 
kinetic energy in these situations causes fragmentation which generates significant 
amounts of b and y series ions2, and contributes to overall lower signal to noise (S/N) 
ratio ETD spectra. We demonstrate that the precursor fragmentation is occurring 
during the sequester events by monitoring the fragment TIC in the absence of ion-ion 
reaction time, Figure 4. 

FIGURE 3. Angiotensin I ETD product ion yield vs. the starting precursor 
population for a single ETD reaction.  

FIGURE 5. Flow diagram describing the ETD multiple fills approach when the 
ETD reaction is conducted in the HPT and product accumulation is conducted 
in the LPT. Mass analysis can be conducted in either analyzer. 

FIGURE 4. a) Angiotensin I b and y ion formation observed at high precursor 
initial targets resulting from harsh sequestration conditions. b) Fragment yield 
versus precursor target demonstrating the onset of b and y ion formation. 

FIGURE 6. Comparison of the Angiotensin I ETD c and z ion fragment TIC for an 
up to 8-fills ETD approach versus a single fill. The multiple fill data was taken at 
three individual precursor targets per fill corresponding  to 1e4 (blue squares), 
5e4 (red circles), and 1e5 (green triangles) charges/fill. 

a) 

b) 

It is apparent (Figure 6) that the working range using the multiple fills approach is 
much greater than that for a single fill, while preserving soft sequestration conditions. 

The fit to the data (Figure 7) represents the theoretical gains that could be realized if 
the S/N ratio increases linearly with the ion population and as a square root function 
for scan averaging.  

The geometry of the Orbitrap Fusion Tribrid MS in conjunction with it’s ability to run 
scans in a parallel/pipelined fashion affords a significant decrease in scan acquisition 
time per spectrum for the multiple fills approach (Figure 8) as the ETD fills are run in 
parallel with OT m/z analysis. 
 

FIGURE 7. Comparison of the S/N ratio of ETD c and z fragments from 
tetrapeptide MRFA [M+2H]2+ after reaction for 100 msec versus the number of 
injection events. For the case of multiple ETD fills this represents the number of 
precursor fills/ETD cycles before m/z analysis; uScans represents the number 
of scans averaged.  
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Unfortunately, certain combinations of axial well depth and RF pseudopotential can 
lead to ion excitation as the ions spend more time at greater radii. The increased 
kinetic energy in these situations causes fragmentation which generates significant 
amounts of b and y series ions2, and contributes to overall lower signal to noise (S/N) 
ratio ETD spectra. We demonstrate that the precursor fragmentation is occurring 
during the sequester events by monitoring the fragment TIC in the absence of ion-ion 
reaction time, Figure 4. 

FIGURE 3. Angiotensin I ETD product ion yield vs. the starting precursor 
population for a single ETD reaction.  

FIGURE 5. Flow diagram describing the ETD multiple fills approach when the 
ETD reaction is conducted in the HPT and product accumulation is conducted 
in the LPT. Mass analysis can be conducted in either analyzer. 

FIGURE 4. a) Angiotensin I b and y ion formation observed at high precursor 
initial targets resulting from harsh sequestration conditions. b) Fragment yield 
versus precursor target demonstrating the onset of b and y ion formation. 

FIGURE 6. Comparison of the Angiotensin I ETD c and z ion fragment TIC for an 
up to 8-fills ETD approach versus a single fill. The multiple fill data was taken at 
three individual precursor targets per fill corresponding  to 1e4 (blue squares), 
5e4 (red circles), and 1e5 (green triangles) charges/fill. 

a) 

b) 

It is apparent (Figure 6) that the working range using the multiple fills approach is 
much greater than that for a single fill, while preserving soft sequestration conditions. 

The fit to the data (Figure 7) represents the theoretical gains that could be realized if 
the S/N ratio increases linearly with the ion population and as a square root function 
for scan averaging.  

The geometry of the Orbitrap Fusion Tribrid MS in conjunction with it’s ability to run 
scans in a parallel/pipelined fashion affords a significant decrease in scan acquisition 
time per spectrum for the multiple fills approach (Figure 8) as the ETD fills are run in 
parallel with OT m/z analysis. 
 

FIGURE 7. Comparison of the S/N ratio of ETD c and z fragments from 
tetrapeptide MRFA [M+2H]2+ after reaction for 100 msec versus the number of 
injection events. For the case of multiple ETD fills this represents the number of 
precursor fills/ETD cycles before m/z analysis; uScans represents the number 
of scans averaged.  
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ETD Multiple Fills Proof of Concept 

The multiple fills ETD approach has been previously demonstrated3,4 and is 
advantageous as it has the capability to provide higher S/N ratio ETD spectra, while 
providing facile ETD sequestration conditions. A flow diagram detailing the approach is 
presented in Figure 5. Figures 6, 7, and 8 compare and contrast the multiple fills 
approach to the scan averaging approach in terms of spectral S/N ratio scan 
acquisition speed.  

Improved Electron Transfer Dissociation (ETD) Duty Cycle and Spectral Signal to Noise Ratio in a Dual Cell Linear Ion Trap 
 
Christopher Mullen1, Lee Earley1, Jean-Jacques Dunyach1, John E.P. Syka1, Jeffrey Shabanowitz2, A. Michelle English2, Donald F. Hunt3  
1Thermo Fisher Scientific, San Jose, CA; 2Department of Chemistry, University of Virginia, Charlottesville, VA 

Conclusions 
 Single fill ETD limited by space charge capacity of the back section of the ion 

trap in the Orbitrap Fusion Tribrid MS. 

 The sequestration conditions during ETD need careful consideration in order to 
minimize trap-like collision induced dissociation. 

 A multiple fills methodology has been presented based on ETD reaction in the 
high pressure trap followed by accumulation of ETD products in the low pressure 
trap.  

 The geometry of the Orbitrap Fusion Tribrid MS in conjunction with the ability to 
run both analyzers in parallel allows for acquisition of high S/N ratio spectra in a 
much shorter time than can be done with scan averaging alone.  
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Overview 
Purpose: Improve ETD Signal to Noise (S/N) ratio and scan duty cycle. 

Methods: Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer with the 
Thermo Scientific™ EASY-ETD™ ion source. 

Results: Developed a methodology incorporating multiple fills of ETD products into a 
storage cell followed by a single m/z analysis leading to improved spectral S/N ratio 
and acquisition speed. 

Introduction 
Electron transfer dissociation (ETD) has been demonstrated to be a useful tool for the 
analysis of polypeptide compounds including peptides with labile PTM’s, peptides with 
many basic sites, and large proteins. One drawback of the approach is that it leads to a 
reduction of both scan duty cycle and total MS2 ion signal, compared to conventional 
resonant CID, due to necessity to perform the ion-ion reaction and the fact that the 
reaction consumes charge. This research explores the possibility to circumvent these 
limitations by performing multiple ETD reactions per m/z analysis in a 2D linear ion trap 
on a three-analyzer hybrid instrument based upon a mass resolving quadrupole, 
Orbitrap (OT), collision cell, and dual linear ion trap (Q-OT-LT) architecture.  

Methods  
The multi-fill per m/z analysis scan mode in the dual cell linear ion trap is accomplished 
by using the high pressure trap (HPT) as a reaction vessel, and utilizing the low 
pressure trap (LPT) as an accumulation and m/z analysis cell. In this fashion, the 
multiple fills ETD scan cycle becomes a loop over n (the number of fills requested) 
ETD reaction, transfer and storage cycles, followed by a single m/z analysis in either 
the low pressure trap of the dual cell or, after the appropriate transfer, in the OT mass 
analyzer. All experiments were performed on an Orbitrap Fusion Tribrid MS. 

FIGURE 1. Schematic of the Orbitrap Fusion Tribrid mass spectrometer 
showing the location of the Easy-ETD reagent ion source within the overall ion 
optics path. The exploded view shows how the reagent ion source is 
incorporated into the S-Lens/Q00 region.  

Results  
Motivation for Employing Multiple Fills ETD 

Performing the ETD reaction in the HPT of the Orbitrap Fusion Tribrid MS requires the 
cation precursor population to be sequestered to the back section of the HPT, so that 
the reagent anion species can be injected into the trap prior to the charge sign 
independent trapping (CSIT) and ETD reaction events. As a result, the maximum 
number of cation precursor charges that can be employed per ETD reaction is a 
function of the space charge capacity of the section employed for sequestration. 
Figure 2 shows the potentials employed during the cation sequestration/reagent 
injection events and the relative locations of the cationic and anionic species.  

 
FIGURE 2. Cation sequestration and reagent injection conditions prior to the 
ETD reaction in the high pressure cell of the dual cell linear trap  

FIGURE 8. Scan acquisition time per spectrum for the ETD multiple fills 
experiment and the uScans approach taken at a variety of Orbitrap transient 
durations. 

The charge capacity of the back section of the HPT is determined by the axial potential 
well and radial pseudopotential, and can be measured by a number of methods. We 
choose to examine the product yield from the ETD reaction of Angiotensin I as a 
function of the starting precursor ion population. Fragment TIC plotted as a function of 
the axial potential in the back section of the high pressure trap during the ion 
sequester event (Figure 3) is characterized by a linear region where ETD products 
increase with the initial precursor population, followed by a transition to a plateau 
region where additional precursor does not yield additional product species. The 
location of the plateau is dictated by the balance of space charge forces with that of 
the effective RF focusing forces, and has been well modeled in the literature.1   
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Unfortunately, certain combinations of axial well depth and RF pseudopotential can 
lead to ion excitation as the ions spend more time at greater radii. The increased 
kinetic energy in these situations causes fragmentation which generates significant 
amounts of b and y series ions2, and contributes to overall lower signal to noise (S/N) 
ratio ETD spectra. We demonstrate that the precursor fragmentation is occurring 
during the sequester events by monitoring the fragment TIC in the absence of ion-ion 
reaction time, Figure 4. 

FIGURE 3. Angiotensin I ETD product ion yield vs. the starting precursor 
population for a single ETD reaction.  

FIGURE 5. Flow diagram describing the ETD multiple fills approach when the 
ETD reaction is conducted in the HPT and product accumulation is conducted 
in the LPT. Mass analysis can be conducted in either analyzer. 

FIGURE 4. a) Angiotensin I b and y ion formation observed at high precursor 
initial targets resulting from harsh sequestration conditions. b) Fragment yield 
versus precursor target demonstrating the onset of b and y ion formation. 

FIGURE 6. Comparison of the Angiotensin I ETD c and z ion fragment TIC for an 
up to 8-fills ETD approach versus a single fill. The multiple fill data was taken at 
three individual precursor targets per fill corresponding  to 1e4 (blue squares), 
5e4 (red circles), and 1e5 (green triangles) charges/fill. 

a) 

b) 

It is apparent (Figure 6) that the working range using the multiple fills approach is 
much greater than that for a single fill, while preserving soft sequestration conditions. 

The fit to the data (Figure 7) represents the theoretical gains that could be realized if 
the S/N ratio increases linearly with the ion population and as a square root function 
for scan averaging.  

The geometry of the Orbitrap Fusion Tribrid MS in conjunction with it’s ability to run 
scans in a parallel/pipelined fashion affords a significant decrease in scan acquisition 
time per spectrum for the multiple fills approach (Figure 8) as the ETD fills are run in 
parallel with OT m/z analysis. 
 

FIGURE 7. Comparison of the S/N ratio of ETD c and z fragments from 
tetrapeptide MRFA [M+2H]2+ after reaction for 100 msec versus the number of 
injection events. For the case of multiple ETD fills this represents the number of 
precursor fills/ETD cycles before m/z analysis; uScans represents the number 
of scans averaged.  
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ETD Multiple Fills Proof of Concept 

The multiple fills ETD approach has been previously demonstrated3,4 and is 
advantageous as it has the capability to provide higher S/N ratio ETD spectra, while 
providing facile ETD sequestration conditions. A flow diagram detailing the approach is 
presented in Figure 5. Figures 6, 7, and 8 compare and contrast the multiple fills 
approach to the scan averaging approach in terms of spectral S/N ratio scan 
acquisition speed.  

Improved Electron Transfer Dissociation (ETD) Duty Cycle and Spectral Signal to Noise Ratio in a Dual Cell Linear Ion Trap 
 
Christopher Mullen1, Lee Earley1, Jean-Jacques Dunyach1, John E.P. Syka1, Jeffrey Shabanowitz2, A. Michelle English2, Donald F. Hunt3  
1Thermo Fisher Scientific, San Jose, CA; 2Department of Chemistry, University of Virginia, Charlottesville, VA 

Conclusions 
 Single fill ETD limited by space charge capacity of the back section of the ion 

trap in the Orbitrap Fusion Tribrid MS. 

 The sequestration conditions during ETD need careful consideration in order to 
minimize trap-like collision induced dissociation. 

 A multiple fills methodology has been presented based on ETD reaction in the 
high pressure trap followed by accumulation of ETD products in the low pressure 
trap.  

 The geometry of the Orbitrap Fusion Tribrid MS in conjunction with the ability to 
run both analyzers in parallel allows for acquisition of high S/N ratio spectra in a 
much shorter time than can be done with scan averaging alone.  
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Overview 
Purpose: Improve ETD Signal to Noise (S/N) ratio and scan duty cycle. 

Methods: Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer with the 
Thermo Scientific™ EASY-ETD™ ion source. 

Results: Developed a methodology incorporating multiple fills of ETD products into a 
storage cell followed by a single m/z analysis leading to improved spectral S/N ratio 
and acquisition speed. 

Introduction 
Electron transfer dissociation (ETD) has been demonstrated to be a useful tool for the 
analysis of polypeptide compounds including peptides with labile PTM’s, peptides with 
many basic sites, and large proteins. One drawback of the approach is that it leads to a 
reduction of both scan duty cycle and total MS2 ion signal, compared to conventional 
resonant CID, due to necessity to perform the ion-ion reaction and the fact that the 
reaction consumes charge. This research explores the possibility to circumvent these 
limitations by performing multiple ETD reactions per m/z analysis in a 2D linear ion trap 
on a three-analyzer hybrid instrument based upon a mass resolving quadrupole, 
Orbitrap (OT), collision cell, and dual linear ion trap (Q-OT-LT) architecture.  

Methods  
The multi-fill per m/z analysis scan mode in the dual cell linear ion trap is accomplished 
by using the high pressure trap (HPT) as a reaction vessel, and utilizing the low 
pressure trap (LPT) as an accumulation and m/z analysis cell. In this fashion, the 
multiple fills ETD scan cycle becomes a loop over n (the number of fills requested) 
ETD reaction, transfer and storage cycles, followed by a single m/z analysis in either 
the low pressure trap of the dual cell or, after the appropriate transfer, in the OT mass 
analyzer. All experiments were performed on an Orbitrap Fusion Tribrid MS. 

FIGURE 1. Schematic of the Orbitrap Fusion Tribrid mass spectrometer 
showing the location of the Easy-ETD reagent ion source within the overall ion 
optics path. The exploded view shows how the reagent ion source is 
incorporated into the S-Lens/Q00 region.  

Results  
Motivation for Employing Multiple Fills ETD 

Performing the ETD reaction in the HPT of the Orbitrap Fusion Tribrid MS requires the 
cation precursor population to be sequestered to the back section of the HPT, so that 
the reagent anion species can be injected into the trap prior to the charge sign 
independent trapping (CSIT) and ETD reaction events. As a result, the maximum 
number of cation precursor charges that can be employed per ETD reaction is a 
function of the space charge capacity of the section employed for sequestration. 
Figure 2 shows the potentials employed during the cation sequestration/reagent 
injection events and the relative locations of the cationic and anionic species.  

 
FIGURE 2. Cation sequestration and reagent injection conditions prior to the 
ETD reaction in the high pressure cell of the dual cell linear trap  

FIGURE 8. Scan acquisition time per spectrum for the ETD multiple fills 
experiment and the uScans approach taken at a variety of Orbitrap transient 
durations. 

The charge capacity of the back section of the HPT is determined by the axial potential 
well and radial pseudopotential, and can be measured by a number of methods. We 
choose to examine the product yield from the ETD reaction of Angiotensin I as a 
function of the starting precursor ion population. Fragment TIC plotted as a function of 
the axial potential in the back section of the high pressure trap during the ion 
sequester event (Figure 3) is characterized by a linear region where ETD products 
increase with the initial precursor population, followed by a transition to a plateau 
region where additional precursor does not yield additional product species. The 
location of the plateau is dictated by the balance of space charge forces with that of 
the effective RF focusing forces, and has been well modeled in the literature.1   
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Unfortunately, certain combinations of axial well depth and RF pseudopotential can 
lead to ion excitation as the ions spend more time at greater radii. The increased 
kinetic energy in these situations causes fragmentation which generates significant 
amounts of b and y series ions2, and contributes to overall lower signal to noise (S/N) 
ratio ETD spectra. We demonstrate that the precursor fragmentation is occurring 
during the sequester events by monitoring the fragment TIC in the absence of ion-ion 
reaction time, Figure 4. 

FIGURE 3. Angiotensin I ETD product ion yield vs. the starting precursor 
population for a single ETD reaction.  

FIGURE 5. Flow diagram describing the ETD multiple fills approach when the 
ETD reaction is conducted in the HPT and product accumulation is conducted 
in the LPT. Mass analysis can be conducted in either analyzer. 

FIGURE 4. a) Angiotensin I b and y ion formation observed at high precursor 
initial targets resulting from harsh sequestration conditions. b) Fragment yield 
versus precursor target demonstrating the onset of b and y ion formation. 

FIGURE 6. Comparison of the Angiotensin I ETD c and z ion fragment TIC for an 
up to 8-fills ETD approach versus a single fill. The multiple fill data was taken at 
three individual precursor targets per fill corresponding  to 1e4 (blue squares), 
5e4 (red circles), and 1e5 (green triangles) charges/fill. 

a) 

b) 

It is apparent (Figure 6) that the working range using the multiple fills approach is 
much greater than that for a single fill, while preserving soft sequestration conditions. 

The fit to the data (Figure 7) represents the theoretical gains that could be realized if 
the S/N ratio increases linearly with the ion population and as a square root function 
for scan averaging.  

The geometry of the Orbitrap Fusion Tribrid MS in conjunction with it’s ability to run 
scans in a parallel/pipelined fashion affords a significant decrease in scan acquisition 
time per spectrum for the multiple fills approach (Figure 8) as the ETD fills are run in 
parallel with OT m/z analysis. 
 

FIGURE 7. Comparison of the S/N ratio of ETD c and z fragments from 
tetrapeptide MRFA [M+2H]2+ after reaction for 100 msec versus the number of 
injection events. For the case of multiple ETD fills this represents the number of 
precursor fills/ETD cycles before m/z analysis; uScans represents the number 
of scans averaged.  
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