Determination of Proteins and Carbohydrates by 2D HPLC (RPLC and HILIC) with Charged Aerosol and Ultraviolet Detection

Marc Plante¹, Ian N Acworth¹, Bruce Bailey¹, Evert-Jan Sneekes², Frank Steiner² ¹Thermo Fisher Scientific, Chelmsford, MA, ²Thermo Fisher Scientific, Dornierstrasse 4, Germering, Germany

FIGURE 1. System schematic of 2D HPLC method development system using a sample loop between the RPLC and HILIC gradient elution methods.

Methods

Sample Preparations

Standards for BSA and each of the carbohydrates were dissolved in deionized water at 10 mg/mL and then diluted to 2000 μ g/mL for the protein to which an equal volume of 2000 μ g/mL of each carbohydrate solution was added. These stock solutions were then serially diluted with water down to 3.9 μ g/mL.

Liquid Chromatography

HPLC System:	Thermo Scientific™ Dionex™ UltiMate™ 3000 DGP-3600SD, WPS-3000RS autosampler, and TCC-3000RS column oven
	with 2-position 10-port valve
HPLC Column 1:	Shodex™ Asahipak ODP-40 2D
HPLC Column 2:	Shodex™ HILICpak VG-50 4E
Column Temperature:	50 °C
Mobile Phase A1:	0.05 v/v-% Formic acid in water
Mobile Phase A2:	20 mM Ammonium acetate, 5 v/v-% Acetic acid in water
Mobile Phase B:	Methanol
Mobile Phase C:	Acetonitrile
Injection Volume:	2 μL
Detector 1A:	DAD, 214 nm and 280 nm
Detector 1B (Protein):	Corona Veo SD, Temp High, Power function= 1.40
Detector 2 (Sugars):	Corona Veo SD, Temp High, Power function= 1.15
Filter:	5
Data rate:	10 Hz
Flow Gradients:	

Flow Rate %A1 %B %C Time (min) (m/min) 0.25 80 20 -5 0 0 0.25 80 20 0 2 0.25 80 20 0 10 0.25 20 20 60 16 0.25 20 20 60 0 25 16 80 0 20 18 0.25 80 0 20

Pump 2

Pump 1

Time (min)	Flow Rate (m/min)	%A2	%В	%C	Left Valve	Comment
-5.00	0.50	5	0	95	1_2	Precondition
0.00	0.50	5	0	95		
0.90	0.50	5	0	95	10_1	MeCN to Loop
1.35	0.50	5	0	95	1_2	Gradient
1.35	0.50	12	15	73		
1.90	0.85	12	15	73		
11.00	0.85	12	33	55		
16.00	0.50	12	33	55		
18.00	0.50	5	0	95		

Data Analysis

All HPLC chromatograms were obtained and compiled using Thermo Scientific™ Dionex™ Chromeleon™ Chromatography Data Station, 7.2 SR 2 software.

Results

The method effectively separated the hydrophilic sugars from the protein on the reverse phase C18 column, which allowed for the retention of the protein for quantitation and protected the HILIC column used for the carbohydrate analysis. The use of a large transfer sample loop allows for the aqueous carbohydrate collected from the reverse phase column to be adjusted to high acetonitrile for analysis by HILIC.

Calibration, Sensitivity, and Precision

Standards of both BSA and carbohydrates from 3.9 to 1000 μ g/mL were analyzed in triplicate. An overlay of chromatograms of the carbohydrates (in combinations for convenience), at 1000 μ g/mL (2000 ng on column (ng o.c.)), is shown in Figure 2. Maltose and lactose are reducing sugars, which tend to react with the amines of most HILIC columns and thereby reduce response, but the Shodex VG-50 column mitigates this effect by using hindered amines on the solid phase.^{4,5} This provided better response for these carbohydrates.

carbohydrates are at 2000 ng o.c.

A plot of the calibration data for five of the carbohydrates, with linear regression fits, is shown in Figure 3. The calibration curve for BSA by HPLC-CAD is shown in Figure 4, from amounts of 15.6 to 2000 ng o.c. All of the linear correlation coefficients, R², were greater than 0.997, as shown in Table 1.

The peak area percents for the triplicate injects were between 0.3 and 4.4%, with the greater values expectedly found closer to the limits of quantitation (LOQ), which are provided in Table 1. The LOQ values, calculated using the signal-to-noise ratio of 10, for the carbohydrates were between 14 and 29 ng o.c.

Also in Table 1 are the sensitivity and regression correlation values for the BSA, both by CAD and UV at 280 nm. Interestingly, for the BSA detection, the CAD technique provided a better signal-to-noise ratio than UV. For UV at 280 nm, the LOQ value was 79 ng o.c., and the LOQ value for CAD was 12 ng o.c., or over five times improved. This was attributed to due to better baseline stability and lower noise, as shown in Figure 5, with 125 ng o.c. of BSA analyzed by CAD and UV at 280 nm o.c. The baseline at 214 nm was much less stable (data not shown).

FIGURE 3. Linear calibration curves for four sugars by HPLC-CAD, 15.6 – 2000 ng o.c.

FIGURE 4. Linear calibration curves for BSA protein by HPLC-CAD, 5.6 – 2000 ng o.c.

Table 1. Experimental sensitivity and linear calibration regression coefficients
(R ²) for seven carbohydrates, and BSA, by CAD and UV at 280nm.

Analyte	LOD (ng o.c.)	LOQ (ng o.c.)	Linear R ²
Sorbitol	5.9	5.9 20	
Mannitol	5.6	19	0.9998
Glucose	8.6	29	0.9997
Sucrose	4.3	14	0.9978
Lactose	5.3	18	0.9993
Maltose	6.8	22	0.9982
Trehalose	4.5	15	0.9985
BSA-CAD	3.5	12	0.9993
BSA-UV280	24	79	0.9991

FIGURE 5. Overlaid HPLC chromatograms of BSA at 125 ng o.c. by UV at 280 nm (blue) and CAD (black).

Recovery

The 1000 ng o.c. solutions, of each BSA and a carbohydrate, were analyzed in duplicate and were used as samples to determine accuracy of the method and calibration. The summary of results is shown in Table 2. The range of recovery values for the seven carbohydrates was from 97.5 to 101.3%. For the BSA, accuracy was 96% by CAD and 101.9% by UV at 280 nm. These recovery values demonstrate that accurate results can be obtained from this fast and reliable method.

Table 2.	Experimental	recovery c	lata for	seven	carbohydrates	, and BSA,	by CAD
and UV	at 280 nm.						

Analyte	Amount (ng o.c.)	Found (ng o.c.)	Recovery (%)	
Sorbitol	1000	975.0	97.5	
Mannitol	1000	1013	101.3	
Glucose	Glucose 1000 1008		100.8	
Sucrose	1000	988.4	98.8	
Lactose	1000	990.6	99.1	
Maltose	1000	1013	101.3	
Trehalose	1000	1003	100.3	
BSA-CAD	1000	960.4	96.0	
BSA-UV280	1000	1019	101.9	

Conclusions

- A simple and useful workflow capable of characterizing a biologic formulation was developed. This approach enabled the simultaneous measurement of a protein and carbohydrate formulants in a bioformulation
- CAD is a universal detector and could be used to accurately determine underivatized carbohydrates and protein in bioformulations. Use in a QA/QC environment would save time, money, and the need for extensive sample preparation
- CAD was found to be over five-fold more sensitive for protein (BSA) than UV at 280 nm
- During method development two CADs were used for ultimate flexibility.
 However, the platform can be simplified by using just the UV detector for protein measurement, if sensitivity is not an issue

References

- Gokarn, Y.R., Kosky, A., Kras, E., McAuley, A., and Remmele, Jr. R.L. Excipients for Protein Drugs in Excipient Development for Pharmaceutical, Biotechnology, and Drug Delivery Systems 2006, eds. Katdare, A. and Chaubal, M.V. Taylor & Francis Group, LLC.
- Medi, M.B., Chintala, R., and Bhambhani, A. Excipient selection in biologics and vaccines formulation development 2014 European Pharmaceutical Review 19, pp. 16 – 20.
- 3. Chi, E.Y., Excipients and their effects on the quality of biologics 2012 AAPS J.
- 4. Brons, C.; Olieman, C. J. Chromatogr. A 1983, 259, 79
- http://shodexhplc.com/wp-content/uploads/2015/06/PITTCON2014-POSTER_New-Saccharides-EDITS-VG-Not-final-PDF.pdf (accessed 04 Feb 2016)

Acknowledgements

We would like to thank Dr. Ron Benson of Showa Denko America for the use of the Shodex VG-50 column used in this work.

www.thermofisher.com

©2016 Thermo Fisher Scientific Inc. All rights reserved. Shodex is a trademark of Showa Denko K.K. Corporation. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

Africa +43 1 333 50 34 0 Australia +61 3 9757 4300 Austria +43 810 282 206 Belgium +32 53 73 42 41 Brazil +55 11 2730 3006 Canada +1 800 530 8447 China 800 810 5118 (ree call domestic) 400 650 5118

Denmark +45 70 23 62 60 Europe-Other +43 1 333 50 34 0 Finland +358 10 3292 200 France +33 1 60 92 48 00 Germany +49 6103 408 1014 India +91 22 6742 9494 Italy +39 02 950 591 Japan +81 6 6885 1213 Korea +82 2 3420 8600 Latin America +1 561 688 8700 Middle East +43 1 333 50 34 0 Netherlands +31 76 579 55 55 New Zealand +64 9 980 6700 Norway +46 8 556 468 00 Russia/CIS +43 1 333 50 34 0 Singapore +65 6289 1190 Sweden +46 8 556 468 00 Switzerland +41 61 716 77 00 Taiwan +886 2 8751 6655 UK/Ireland +44 1442 233555 USA +1 800 532 4752 PN64685-EN 0616S

A Thermo Fisher Scientific Brand