Maximizing proteome coverage through improved on-line Orbitrap peak determination

Graeme C. McAllister, Christopher Thoelke, Helene L. Cardasia, Alex S. Heberl, Romain Huguet, Phillip Rene, Andreas Kuehn, Mike Senko, Shannon Ellik, Joshua J. Coon, Vlad Zabarowski

Thermo Fisher Scientific, San Jose, CA; Thermo Fisher Scientific, Bremen, Germany; University of Wisconsin, Madison, WI

OVERVIEW

Maximizing proteome coverage through improved on-line Orbitrap peak determination

INTRODUCTION

The Advanced Peak Determination (APD) algorithm is a novel tool that addresses a critical challenge: the determination of peak locations in mass spectra. This challenge is evident in both biological and chemical applications, where accurate peak locations are essential for subsequent analysis.

APD offers several key improvements over existing methods:

1. **Increased Sensitivity**: APD reduces false positive identification rates, thereby enhancing sensitivity for protein identification.
2. **Robustness**: APD is more robust to variations in experimental parameters, ensuring consistent performance across different conditions.
3. **Efficiency**: APD streamlines the analysis workflow, allowing for faster processing and analysis of large datasets.

APD is particularly advantageous in applications requiring high sensitivity and accuracy, such as proteomics and metabolomics.

MATERIALS AND METHODS

The Thermo Scientific™ Tribrid™ mass spectrometer, equipped with an Orbitrap Fusion Lumos mass analyzer, was used throughout the study. Full MS and higher resolution MS/MS analyses were performed using ECD or CID fragmentation. Acquisition parameters were optimized to achieve high sensitivity and resolution.

RESULTS

- **Enhanced Sensitivity**: APD significantly reduced false positives, improving overall sensitivity.
- **Robust Performance**: APD maintained consistent performance across varied experimental conditions.
- **Efficiency**: APD algorithms processed large datasets more efficiently, reducing analysis times.

CONCLUSIONS

APD represents a significant advancement in peak determination algorithms, offering improved sensitivity, robustness, and efficiency. Its applications span across various fields, including proteomics and metabolomics, making it a valuable tool for researchers worldwide.

REFERENCES

TOP-DOWN RESULTS

Demonstration of the utility of APD for top-down analysis

The APD algorithm significantly improves top-down identification, showcasing its capability to accurately pinpoint peak locations in complex mass spectra.

ACKNOWLEDGEMENTS

The authors would like to thank... for their support. Special thanks to [colleagues/organizations] for their invaluable contributions.

© 2021 Thermo Fisher Scientific Inc. All rights reserved. Thermo Fisher Scientific and/or its subsidiaries reserve the right to change or modify this material without notice.