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RESULTS ABSTRACT  

Purpose: We explored sequential methods for complementary phosphopeptide enrichment to find an 

effective  strategy for enrichment of multiply phosphorylated peptides. We also evaluated 

fractionation strategy with the phosphopeptide enrichment method to show the comprehensive 

phosphoproteomes. 

Methods: We implemented a SMOAC strategy. One milligram of Nocodazole-arrested HeLa cell 

digest sample is our starting sample. We use a titanium dioxide (TiO2) chromatography first for 

phosphopeptide enrichment. Flow-through and wash fraction s from TiO2 were pooled and used for 

Fe-NTA chromatography for the second enrichment. We subsequently used  high pH RP 

fractionation. We expanded our analytical depth by performing fractionation with pooled 

phosphopeptide eluates from both TiO2 and Fe-NTA  performed in series.  

Results: The SMOAC strategy enabled effective enrichment of multiply phosphorylated peptides and 

emphasizes the utility of SMOAC with fractionation to elucidate the comprehensive 

phosphoproteome. 

INTRODUCTION 
 

The identification of multiply phosphorylated peptides in a complex biological sample has been a 

major challenge. Previously, a SIMAC (Sequential elution from IMAC) strategy was deployed for 

sequential separation of monophosphorylated peptides and multiply phosphorylated peptides from a 

complex sample with a significant increase in recovery of multiply phosphorylated peptide (1).  We 

recently launched two phosphopeptide enrichment kits, Thermo  Scientific™ Pierce™ HiSelect™  Fe-

NTA and Thermo Scientific™ Pierce™ HiSelect™ TiO2 phosphopeptide enrichment kits with newly 

optimized buffer conditions. Here we evaluated a SMOAC (Sequential enrichment of Metal Oxide 

Affinity Chromatography) method where phosphopeptides were enriched by TiO2 first and the TiO2 

flow-through (FT) and wash fraction were pooled and subjected to Fe-NTA. In parallel we evaluated 

SIMAC (Sequential enrichment of Immobilized Metal Affinity Chromatography) where the order of 

phosphopeptides enrichment was reversed. We also performed deep phosphoproteome analysis by 

using high pH RP fractionation after the enrichment of phosphopeptides with SMOAC. 

MATERIALS AND METHODS 

Sample Preparation 

HeLa S3 cells were cultured in S-MEM/glutamate/10% FBS media and treated with nocodazole (2.5 

µl/mL) for 16 hours to achieve homogeneous mitotic arrest. Cells were harvested, lysed in 100mM 

TEAB/8M Urea containing  Thermo Scientific™ Halt™ phosphatase inhibitor (PN#78427) followed by 

sonication, reduced, alkylated, digested with Thermo Scientific™ Pierce™ Trypsin/Lys-C (PN#90059; 

90307) overnight, and desalted. For the SMOAC method, one milligram of Nocodazole-treated HeLa 

tryptic digest was subjected to Thermo Scientific™ Pierce™ HiSelect TiO2 phosphopeptide 

enrichment kit (PN#A32993) and the TiO2 eluent was saved for MS analysis. The TiO2 flow-through 

(FT) and wash fractions were pooled, and the phosphopeptides were enriched by Thermo 

Scientific™ Pierce™ HiSelect Fe-NTA phosphopeptide enrichment kit (PN#32992). For the SIMAC 

method, another milligram (1 mg) of Nocodazole-treated HeLa tryptic digested peptides was 

subjected to HiSelect Fe-NTA phosphopeptide enrichment kit. The Fe-NTA FT and wash fractions 

were combined and applied to the HiSelect TiO2 phosphopeptide enrichment kit. After SMOAC, 

phosphopeptides were fractionated with the Thermo Scientific™ Pierce™ high pH reversed-phase 

peptide fractionation kit (PN#84868). All eluents were quantitated with Thermo Scientific™ Pierce™ 

quantitative colorimetric peptide assay. The eluents were analyzed by the Thermo Scientific™ 

Orbitrap Fusion™ Tribrid™  instrument and the phosphorylation sites were localized. 

For Thermo Scientific™ TMTzero™ (PN#90060) reagent labeling, 100 µg of desalted peptides were 

resuspended in 100 µl of 100 mM TEAB, pH8.5 (PN#90115). TMTzero reagent (0.8 mg) was 

dissolved in acetonitrile (41 µl). TMTzero labeling reaction was initiated by mixing the desalted 

peptides with TMTzero reagent (total 141 µl) and incubated for 1 hr. Multiple reactions were set up for 

scaling up. The reaction was quenched with hydroxylamine (PN#90115) to a final concentration of 

0.27% v/v. The TMTzero reagent labeled samples were pooled and desalted. 

LC-MS and Data Analysis 

For the LC-MS analysis, 1~2 ug was injected onto a 50cm Thermo Scientific™ EASY-Spray™ C18 

LC column (3 µm particle size) to separate peptides with a 5-25% acetonitrile gradient over 180 min 

at a flowrate of 300 nL/min. Spectra were acquired on an Thermo Scientific™ Orbitrap Fusion™ 

Tribrid™ mass spectrometer at top speed using the following parameters: FTMS full scan at 120,000, 

AGC 4e5, IT 50ms followed by IT MS2 scans at 1.6 isolation, HCD 30% collision energy, rapid, AGC 

134, IT 50ms.  For data analysis, Thermo Scientific™ Proteome Discoverer™ 1.4 software using the 

SEQUEST®HT search engine was used with a precursor mass tolerance of 10 ppm and fragment 

mass tolerance of 0.02 Da. Carbamidomethylation (+57.021 Da) for cysteine was used as a fixed 

modification with methionine oxidation (+15.996 Da) and phosphorylation (+79.966 Da, T, Y, S) as 

variable modifications with phosphoRS for site localization. Data was searched against a Swiss-Prot® 

human database with a 1% FDR criteria using Percolator.  

 

CONCLUSIONS 

 We find that the SMOAC strategy effectively enriched multiply phosphorylated peptides. 

 The SMOAC strategy enabled enrichment of multiply phosphorylated TMT-labeled peptides. 

 Using SMOAC followed by fractionation strategy enabled the comprehensive analysis of the proteome and 

phosphoproteome. 
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Sequential enrichment from Metal Oxide Affinity Chromatography (SMOAC), a phosphoproteomics strategy for the separation 

of multiply phosphorylated from monophosphorylated peptides. 

Figure 2. Analysis of peptides from Nocodazole-arrested proteins from HeLa using TiO2 

chromatography followed by Fe-NTA with flow-through/wash fraction from TiO2  (SMOAC), 

and conversely Fe-NTA first followed by TiO2 (SIMAC). 

Figure 6. Fractionation with high pH reversed-phase chromatography of the combined 

phosphopeptide eluates from the SMOAC strategy.  
Figure 1. SMOAC vs. SIMAC strategy. One milligram of Nocodazole-arrested HeLa cells  

protein digested peptide mixture was used as a starting sample. Details are given in the text. We also evaluated the SIMAC method (Figure 1. SIMAC). One milligram of Nocodazole-treated HeLa 

tryptic digest peptides were subjected to Fe-NTA column (Figure 1. SIMAC). We identified The 11956 

monophosphorylated peptides,  1747 double, 163 triple phosphorylated peptides, and 1017 

nonphosphorylated peptides were identified by the Fe-NTA (Figure 2. SIMAC). Thus 93% of the 

peptides identified were phosphorylated. Unlike the SMOAC method, the SIMAC method with these kit 

buffers and columns identified fewer multiply phosphorylated peptides and relatively few additional 

phosphopeptides. Only 8% additional unique peptides were identified, indicating a minimum benefit of 

the SIMAC strategy for the analysis of the  Fe-NTA FT and wash fraction with TiO2 (Figure 3. SIMAC). 

  

   

  

Figure 5. MS/MS peptide spectra of Condensin Ser-975, Ser-97, Ser-984 triple phosphopeptide 
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One milligram of Nocodazole-treated HeLa tryptic digest peptides were subjected to TiO2 tip (Figure 1. 

SMOAC). The phosphopeptides eluted from the tip yielded a total of 9460 monophosphorylated 

peptides, 3908 double phosphorylated peptides, 839 triple phosphorylated peptide  and 381 

nonphosphorylated peptides (Figure 2 SMOAC). Thus 97% of the peptides identified were 

phosphorylated. Next the TiO2 flow-through and wash fraction were pooled, dried, and the pooled 

samples were subjected to Fe-NTA (Figure 1. SMOAC). This serial Fe-NTA  enrichment yielded 12735 

monophosphorylated, 171 double phosphorylated, 30 triple phosphorylated, and 371 

nonphosphorylated. (97% phosphopeptide selectivity). The serial Fe-NTA  enrichment identified 36% 

additional unique peptides compared to TiO2 alone. Interestingly, 98% of multiply phosphorylated 

peptides were identified from TiO2. Overall, the results clearly indicate the benefit of the SMOAC 

strategy for the analysis of the FT and wash fraction of TiO2 with Fe-NTA (Figure 3. SMOAC).  
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Figure 3. Venn diagram illustrating the overlap of phosphorylated peptides, mono- 

Phosphorylated peptides, or multiply phosphorylated peptides betweenTiO2 and  

Fe-NTA in the SMOAC strategy or in the SIMAC strategy.  
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Figure 7. Analysis of peptides from fractionation from combined phosphopeptide 

sample after the SMOAC strategy.  

  Multiple-Phos Mono-phos Total Unique Phos 

SMOAC 4041 18124 22165 

SMOAC + Fractionation 5065 27520 32584 

Next we fractionated phosphopeptides eluted from after SMOAC by using a high pH reversed-phase 

spin column (Figure 6). Fractionation reduced complexity of the phosphopeptide sample and 

increased peptide identification by LC/MS analysis. The two eluates from the SMOAC method were 

combined, dried, and reconstituted in 0.1% TFA. The combined eluates were subjected to 

fractionation, and 9 fractions were collected and analyzed in LC/MS (figure 7). Fractionation 

identified an additional ~10,000 phosphopeptides compared to the SMOAC method  alone (Table 1). 

 

 

 

Table 1. Table showing number of phosphorylated and multiply phosphorylated peptides 

between SMOAC strategy and SMOAC followed by fractionation. 

Table 2. List of phosphorylated peptides in CDC25C identified from TiO2 chromatography,  

SMOAC strategy, and SMOAC followed by fractionation. 

TiO2 SMOAC SMOAC > Fractionation 

CDC25A 
  LLFAcsPPPASQPVVK 

MGSSESTDSGFcLDsPGPLDSK  

LFDsPSLcSSSTR 

  

  

MGSSESTDSGFcLDsPGPLDSK 

LLGcsPALK  

LFDsPSLcSSSTR 

AHETLHQSLSLAsSPK 

SHSDsLDHDIFQLIDPDENK 

CDC25B 
sLcHDEIENLLDSDHR sLcHDEIENLLDSDHR sLcHDEIENLLDSDHR 

sVTPPEEQQEAEEPK 

MEVEELsPLALGR 

LLGHsPVLR 

CDC25C 
EEGSsGSGPSFR   

DTSFTVcPDVPRtPVGK (Thr-48) 

 

YLGsPITTVPK (Ser-168) 

 

TVsLcDITITQMLEEDSNQGHLIGDFSK 

EEGSsGSGPSFR 

DTSFtVcPDVPRtPVGK (Thr-48) 

FLGDSANLSILsGGTPK (Thr-67) 

YLGsPITTVPK (Ser-168) 

SGLYRsPSMPENLNRPR (Ser-214) 

TVsLcDITITQmLEEDSNQGHLIGDFSK 

Figure 8. Unique phosphopetides (%) identified by SMOAC strategy, SMOAC followed by  

fractionation after normalized by number of phosphopeptides identified by TiO2 
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One example of multiply phosphorylated protein identified by SMOAC, but not by SIMAC, was from 

the condensin protein. At the onset of prophase, most of condensin is associated with the 

chromosome arm and phosphorylated by Cdk1, leading to chromosome condensation as a 

preparatory step toward chromosome alignment at metaphase (2). The SMOAC identified Ser-973, 

Ser-975, and Ser-984  in one peptide (Figure 5). Previously published mitotic phosphorylation 

studies by mass spectrometry reported Ser-975 and Ser-977 (3,4), but not Ser-984. Nocodazole-

arrested cells do enter prophase but cannot form metaphase because Nocodazole-arrested cells 

arrest at prometaphase. Thus it would be interesting to see whether newly identified Ser-984 has a 

specific function at prometaphase. 

Figure 4. Venn diagram illustrating the overlap of TMT labeled phosphorylated peptides,  

mono-phosphorylated peptides, or multiply phosphorylated peptides betweenTiO2 and  

Fe-NTA in the SMOAC strategy.  
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We also evaluated  the SMOAC method with a TMT labeled sample. One milligram of Nocodazole-

treated HeLa digest peptides was labeled with TMTzero reagent and subjected to the SMOAC 

strategy. We identified 11789 and 10673 phosphorylated peptides withTiO2 and Fe-NTA  in series, 

respectively, and 39% unique phosphorylated peptides were identified from Fe-NTA. Like the SMOAC 

data with native peptides, 98% of multiply phosphorylated peptides were identified TIO2 (Figure 4), 

showing that majority of TMTzero reagent-labeled multiply phosphorylated peptides were enriched in 

TiO2. 

Figure 7. CDC25C protein sequence and identification of multiple phosphorylation sites 

previously known colored in red and newly identified by this study colored in blue. 

Multiply phosphorylated CDC25 illustrates the effectiveness of SMOAC with fractionation to reduce 

complexity of the phosphopeptide sample. CDC25 is a serine/threonine and tyrosine dual-specificity 

phosphatase. CDC25 is a family of phosphatases such as CDC25A, CDC25B, and CDC25C. 

Phosphatase activity is required for transition from G2 to prophase, specifically for removal of inhibitory 

dual phosphorylation on CDK1. Multiple kinases phosphorylate CDC25 at Thr-48, Thr-67, Ser-122, Thr-

130, Ser-168 and Ser-214 for its activation (Figure 8). TiO2 enrichment identified a unique Ser-15 site, 

SMOAC identified Thr-48, Ser-168, and a Ser-263 site. Fractionation yielded phosphorylation sites 

identified by TiO2 and SMOAC, plus two additional sites,Thr-67 and Ser-168 (Table 2). The Ser-15 site 

has never been reported before, whereas Ser-263 is a previously reported (4) phosphorylation site by 

checkpoint kinase (Chk1). We also analyzed other CDC25 paralogues, CDC25A and CDC25B. We 

observed similar trend in that SMOAC revealed additional unique phosphopeptides, and even more 

with fractionation (Table 2). 

 

We also performed a cellular pathway analysis based on phosphoproteins identified. We used the Database 

for Annotation Visualization and Integration Discovery (DAVID) tool to visualize phosphoproteins identified by 

SMOAC on KEGG pathways. For example, TiO2 identified 35 phosphorylated proteins in the AMPK signaling 

pathway. The SMOAC strategy identified 8 additional phosphorylated proteins, then fractionation added 

another 7 phosphorylated proteins in the pathway. Then we analyzed 73 additional signaling pathways to see 

how many additional proteins are identified. Overall, the SMOAC strategy identified ~25% more 

phosphoproteins than TiO2 in the 74 cellular signaling pathways. Furthermore, fractionation added ~50% 

more phosphoproteins than TiO2, demonstrating the benefit of SMOAC method followed by fractionation for 

deep phosphoproteme analysis (Figure 9). 
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