Quantitative Analysis of 7 Antiepileptic Drugs in Human Serum for Research Using a Two-Channel LC-MS/MS System

Ed Goucher¹, Joe Di Bussolo¹ & Mohamed Youssef², ¹Thermo Fisher Scientific, San Jose, CA, USA, ²Amerispec Diagnostics, Dubai Science Park, Dubai, UAE

INTRODUCTION

Clinical research laboratories traditionally rely on immunoassay and, more recently, on HPLC for quantitative analysis of antiepileptic drugs (AEDs). We developed a high-throughput analytical research method for the separation, detection and quantification of 7 antiepileptic drugs (Table 1) in donor human blood serum using LC-MS/MS. This method employs protein precipitation followed by dilution before injection into a two-channel LC-MS/MS system, enabling analysis of 7 AEDs in each injection every 2.2 minutes.

Table 1. Analytical ranges of AEDs

METHODS

Table 2. LC method parameters

Column: Accucore PFP, 2.6 μ, 50 x 2.1 mm, @ 50°C							
Solvent A: Water + 10 mM ammonium acetate							
Solvent B: Methanol + 0.1% formic acid							
Step	Start	Sec	Flow	Gradient	%A	%B	
1	0.00	30	0.5	Step	85	15	
2	0.50	60	0.5	Ramp	45	55	
3	1.50	30	0.5	Ramp	15	85	
4	2.00	45	0.5	Step	2	98	
5	2.75	75	0.5	Step	85	15	
Start data: 0.2 min Duration: 2.0 min							
Total run time: 4.5 min (includes prestart & refill)							

Table 3. MS/MS method parameters

Ion Source: HESI @ +3500 V, Vaporizer @ 400°C, Ion-Transfer @ 350°C

Sheath gas @ 55, Aux @ 10, Sweep @ 2 arbitrary units

SRM Transitions: Q1 & Q3 resolutions = 0.7 FWHM, CID gas = 1.5 mTorr

RESULTS

Table 4. Inter- & Intra-assay QC results

			Inter-assay			Intra-assay		
AED	UTAK	Nominal (µg/mL)	Mean (µg/mL)	SD	% CV	Mean (µg/mL)	SD	% CV
Oskensutin	QC1	10	9.4	0.3	3.3	9.7	0.8	8.6
Gabapentin	QC2	40	34.7	1.2	3.3	35.9	3.0	8.2
Dresshalin	QC1	5	4.7	0.2	3.6	4.7	0.6	13.4
Pregabalin	QC2	15	14.5	0.5	3.4	14.7	1.8	12.0
	QC1	15	14.4	0.5	3.8	14.5	1.0	6.5
Levetiracetam	QC2	40	39.2	1.6	4.0	39.6	2.8	7.2
Zenicomido	QC1	20	23.7	1.8	7.7	20.3	2.1	10.4
Zomsamide	QC2	60	68.1	4.6	6.8	63.5	5.8	9.2
10 OH Overenherenine	QC1	20	22.3	1.1	5.1	19.4	2.4	12.2
10-On-Oxacarbazepine	QC2	60	59.9	3.7	6.2	57.7	6.7	11.6
Lamatrigina	QC1	5.5	6.6	1.6	5.8	6.2	0.6	9.8
Lamotrigine	QC2	22	27.0	1.6	5.8	25.7	2.9	11.4
Toniromoto	QC1	15	16.5	0.6	3.7	15.0	1.0	6.5
	QC2	50	49.8	3.1	6.1	50.5	2.3	4.6
				n=10			า=20	

Gabapentin	0.30 - 30 µg/mL
Pregabalin	0.25 - 25
Levetiracetam	0.60 - 60
Zonisamide	0.60 - 60
10-OH-Oxacarbazepine	0.60 - 60
Lamotrigine	0.40 - 40
Topiramate	0.30 - 30

METHODS

Samples included serum-based calibrators and quality controls (QCs) purchased from UTAK Laboratories (Valencia, CA, USA) and donor serum specimens. A mixture of AED stable isotopes - Gabapentin- D_{10} , Levetiracetan- D_6 and Topiramate- D_{12} - served as internal standards (IS).

- 100 μ L of sample plus 25 μ L of IS mixture were mixed with 300 μ L of methanol.
- After vortex-mixing and centrifugation, the supernatant was transferred to a micro vial or well of a microtiter plate containing 300 µL of water and mixed.
- 10 µL injections of each sample preparation

			•	0	
Analyte	RT (min)	Precursor Ion (m/z)	Product Ion (m/z)	CE (v)	RF (v)
Gabapentin (confirm)	0.60	172.25	137.10	17	42
Gabapentin (quan)	0.60	172.25	154.10	15	42
Gabapentin-D10	0.60	182.30	147.20	18	45
Pregabalin (confirm)	0.65	160.25	97.10	15	39
Pregabalin (quan)	0.65	160.25	142.20	10	39
Levetiracetan (quan)	0.70	171.25	126.10	15	33
Levetiracetan (confirm)	0.70	171.25	154.00	10	33
Levetiracetan-D6	0.70	177.30	132.10	16	30
Zonisamide (confirm)	1.30	213.15	77.10	30	51
Zonisamide (quan)	1.30	213.15	132.00	16	51
10-OH-Oxcarbazepine (confirm)	1.75	255.20	194.10	21	39
10-OH-Oxcarbazepine (quan)	1.75	255.20	237.00	10	39
Topiramate-NH4 (quan)	1.90	357.20	263.80	15	45
Topiramate-NH4 (confirm)	1.90	357.20	322.10	12	45
Topiramate-D12-NH4	1.90	369.20	270.00	15	47
Lamotrigine (confirm)	1.95	256.10	159.00	31	97
Lamotrigine (quan)	1.95	256.10	210.90	27	97

RESULTS

The 4.5-minute method with a 2-minute data window permitted throughputs of 13 samples per hour on a single channel or 26 samples per hour across both channels of the Prelude SPLC. This maximum throughput consumed only 32 mL of solvent A and 22 mL of Solvent B.

Calibration plots for each AED showed excellent linearity within the desired analytical range (e.g., 0.25 to 25 μ g/mL for Pregabalin (Figure 2), 0.6 to 60 μ g/mL for Zonisamide) with r² values greater than 0.99 and differences between calculated and theoretical concentrations for each calibrator were less than +/- 15%.

CONCLUSIONS

A reliable and rapid LC-MS/MS research method to quantitate 7 antiepileptic drugs in human blood serum was developed and evaluated. Required analytical ranges of each AED repeatedly had linear detector responses and insignificant carryover. The described method met research laboratory requirements for accuracy and precision. Reproducible results across both channels of the Prelude SPLC system permitted a maximum throughput of 26 samples per hour, which is more than an 8.5-fold improvement over a reference method (1).

REFERENCE

 M. Subramanian, A.K. Birnbaum & R.P. Remmel, High-Speed Simultaneous Determination of Nine Antiepileptic Drugs Using Liquid Chromatography-Mass Spectrometry. Ther. Drug Monit., 2008, 30(3), 347-356.

TRADEMARKS/LICENSING

were made into a 50 x 2.1 mm analytical column (Thermo ScientificTM AccucoreTM PFP, 2.6 μ m) on either channel of a Thermo ScientificTM PreludeTM sample preparation and liquid chromatography (SPLC) system (Figure 1).

- A mobile phase gradient from water containing 10 mM ammonium acetate to methanol containing 0.1% formic acid separated the AEDs. Table 2 shows LC method details.
- The AEDs were eluted into the heated electrospray interface of a Thermo Scientific[™] TSQ Quantiva[™] triple-stage quadrupole mass spectrometer and subjected to positive-ion selected-reaction monitoring (SRM), as shown in Table 3. Ammonium adducts of Topiramate and its D₁₂ IS were used as precursor ions. Data acquisition for each AED involved two SRM transitions, one for quantitation and one for confirmation, which were used for ion ratio confirmation (IRC).
- Peak identities were verified by retention time and IRC for each AED and quantitation values were determined using the appropriate internal

Figure 2. Example Quan & Confirm peaks and calibration data for Gabapentin

Blanks injected after the highest calibrator showed insignificant peak areas (carryover) for all AEDs. The analytical accuracies of measuring the 7 © 2017 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

PO65045EN

standard.

Figure 1. Two-channel SPLC-MS system

AEDs in the UTAK QCs estimated as the percentage bias between nominal and average back-calculated concentrations were between -10% and 17%. The coefficient of variation values for all AEDs were less than 8% for inter-day batches and less than 15% for intra-day batches (Table 4).

