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Enhanced ocean metaproteomic profiling with Orbitrap Astral MS in data independent acquisition

Results

Abstract
Herein we present a comprehensive metaproteomic profiling of a marine microbial 
community using the Thermo Scientific  Orbitrap  Astral  Mass Spectrometer. A 
highly complex ocean sample from North Atlantic Ocean was profiled using multiple 
data acquisition strategies including Data-Dependent Acquisition (DDA) and Data-
Independent Acquisition (DIA) to determine which approach enhances depth of 
coverage.

Tryptic digest of the sample was analyzed using chromatographic gradients spanning 
14, 30 and 60 min. in both DDA and DIA modes. Data processing was performed 
using Thermo Scientific  Proteome Discoverer  3.2. software and Spectronaut® 19  
with a custom-built database.

DIA offered remarkable depth with 25,892 proteins and 81,815 peptides, with a 
dynamic range of protein abundances expanding approximately six orders of 
magnitude. In comparison, DDA data identified 18,363 protein groups and 53,316 
peptides, offering a less extensive coverage. Taxonomic analysis covered 52 bacterial 
phyla, representing a threefold increase compared to previously reported results1. In 
addition, high functional diversity was observed in the DIA results from KEGG 
Orthology (KO) pathway analysis. 

Introduction
Ocean metaproteomic studies play a crucial role in advancing our understanding of 
marine microbiomes and their influence on global biogeochemical processes. The 
extreme complexity of marine samples makes a significant challenge for achieving 
deep proteome coverage. Recent advancements in Mass Spectrometry (MS), 
particularly with the Thermo Scientific  Astral  analyzer, have significantly enhanced 
sensitivity and scan rate, thereby improving proteomic depth. While DDA remains the 
most widely used approach in the oceanic and other metaproteomic studies, DIA has 
gained traction for its ability to deliver deep protein profiling in complex samples. In the 
present study, we generated comprehensive metaproteomic datasets utilizing DIA 
mode. High sensitivity and rapid acquisition of MS/MS spectra by the Astral analyzer 
led to a significantly higher number of identified proteins and peptides.

Materials and methods
Sample Preparation

Ocean metaproteomic samples were collected from the euphotic zone of the North 
Atlantic Ocean (31.66 N 64.166 W, depth 80m, on June 16th, 2018) as a part of an 
interlaboratory LC-MS comparison project1. Samples were prepared by Waldbauer lab 
at University of Chicago. First, the filtered oceanic sample was treated with 2% 
Sodium Dodecyl Sulfate, sonicated at 95° C and acetone precipitation was performed. 
The protein pellet was then cleaned up and digested using a standard FASP protocol. 

LC-MS/MS Analysis 

A Thermo Scientific  Vanquish  Neo UHPLC system equipped with Aurora Ultimate  
XT 25 cm x 75 μm C18 UHPLC column coupled to an Orbitrap Astral mass 
spectrometer was used for sample analysis. Data acquired at two different gradient 
lengths including 30 and 60 minute, with and without Thermo Scientific  FAIMS Pro 
Duo Interface, employing both DDA and DIA modes. In both DIA and DDA, MS1 
spectra were acquired in Orbitrap  at 240,000 resolution with 5ms injection time and 
MS2 spectra acquired in Astral at 80,000 resolution with 2 m/z isolation width and 3.5 
ms injection time.

.

Conclusions
The results clearly demonstrate the high potential of the Orbitrap Astral mass spectrometer 
in DIA mode for metaproteomic analysis, highlighting its effectiveness and reliability for 
comprehensive profiling.

 Over 25,000 protein groups were identified from a single sample run in DIA mode, 
sequencing 81815 peptides. 

 High sensitivity and dynamic range enhance the detection of proteins expressed at very 
low abundances.

 The increased identifications in DIA suggest that this approach better suited for 
metaproteomic analysis, where high taxonomic and functional diversity is expected.
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Figure 1. Schematic diagram of Orbitrap Astral Mass Spectrometer

To assess the depth of metaproteomic analysis using the Orbitrap Astral MS in DIA 
mode versus DDA mode, two LC-MS/MS gradients were evaluated, both with and 
without the use of the FAIMS Pro Duo interface. 

Figure 2. Total ion chromatograms of ocean metaproteomic sample analyzed by 
DDA and DIA

The number of protein groups identified using 30- and 60-minute gradients with 500 
ng sample injections were significantly higher in DIA mode compared to DDA 
mode(Fig.3). DIA data analyzed using Spectronaut® 19 yielded the highest number of 
protein groups identified, with the 60-minute method identifying 22,478 protein groups 
with FAIMS and 25,892 protein groups without FAIMS. In comparison to the protein 
groups identified by all three methods in DDA, DIA increased protein identifications by 
45%.

Figure 3. Comparison of the number of protein groups identified by each method

Similar trends were observed in peptide group identifications, with the 60-minute 
method identifying 63857 peptide groups with FAIMS and 81815 peptide groups 
without FAIMS (Fig.4). The peptide groups detected by the Orbitrap Astral MS is ~5 
times greater compared to those reported in a prior inter-laboratory study using the 
same sample1.
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Figure 4. Number of peptide groups identified by each method

The signal intensities of protein groups 
exhibit a dynamic range spanning 
approximately six orders of magnitude 
(Fig.5). This analysis was performed 
using data collected under DIA mode 
with 60-minute gradient without FAIMS. 
The results highlight the sensitivity of 
the DIA mode in Astral, as well as the 
depth of coverage, which enables 
detection of proteins expressed at very 
low levels.  

Figure 5. Ranked protein groups

Data Analysis

Raw files were searched against the metagenomic database1 and analyzed using 
Proteome Discoverer 3.2. using CHIMERYS  intelligent search algorithm and 
Spectronaut® 19
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A taxonomic analysis was performed on total peptides identified through match-
between-runs across three sample runs for both DDA and DIA (Fig.6). Consistent 
taxonomic distribution patterns were observed between the two acquisition types, with 
Alphaproteobacteria and Cyanobacteria being the most abundant classes. Overall, the 
DIA data covered 93 bacterial classes, while the DDA data covered only 54 bacterial 
classes. 
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Figure 6. Taxonomic distribution comparison between DIA and DDA (MBR)

In ocean metagenome annotations, Proteobacteria, Bacteroidetes, and Cyanobacteria 
are among the most abundant bacterial phyla. Notably, Proteobacteria are especially 
prevalent in deep-sea environments, while Cyanobacteria are more abundant in 
surface waters. The 93 bacterial classes identified through DIA (MBR) analysis 
represented 52 phyla (Fig. 7), whereas DDA (MBR) analysis identified only 38 phyla. 
Among these, Pseudomonadota (Proteobacteria), Cyanobacteriota, and Bacteroidota 
were the most dominant, reflecting the common patterns observed in metagenomic 
annotations. Additionally, the Orbitrap Astral MS data showed three times higher phyla 
coverage compared to the combined results reported in the inter-laboratory project 
using the same sample1.

Figure 7. Phylum distribution of data acquired by DIA 
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Similar trends were observed in the KEGG 
Orthology (KO) group analysis regarding 
functional diversity (Fig.8). The distribution of 
peptides across KO categories was comparable 
between DDA and DIA datasets. However, DIA 
demonstrated a clear advantage in the number of 
KO categories identified with 3,387 detected 
compared to 2,891 in the DDA dataset. The higher 
number of KO categories identified in DIA data 
could reflect its enhanced sensitivity in detecting 
lower-abundance peptides, which may be 
underrepresented in DDA.

Figure 8. KEGG Orthology (KO) group 
analysis: DIA vs. DDA (MBR)

Pe
rc

en
ta

ge
 o

f p
ep

tid
es

 p
er

 K
EG

G
 O

rth
ol

og
y 

gr
ou

p

0 5 10 15 20 25
0

1

2

3

4

5

6

7

Lo
g1

0 
M

ed
ia

n 
Pr

ot
ei

n 
G

ro
up

 Q
ua

nt
ity

8

Rank (x103)

Log10 
Abundance = 6.61

Log10

 Abundance = 0.67


	Slide Number 1

