CTS™ Immune Cell SR for Serum Free Culture and Expansion of Human T cells Sandy Kuligowski², Corey Smith¹, Grethe Økern², Tanja Aarvak², Rajiv Khanna¹, Karoline W. Schjetne² ¹QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory; QIMR Berghofer Medical Research Institute, Brisbane, Australia. ²Thermo Fisher Scientific, Ullernchausseen 52, N-0379 Oslo, Norway or Grand Island, NY ### Introduction The manufacture of a majority of clinical T cell products for immunotherapy applications requires in vitro T cell culture and expansion. Commercialization of T cell manufacturing processes requires reagents that meet regulatory guidelines and ultimately help reduce manufacturing cost of goods. A key component in many T cell culture protocols, in addition to cell culture media and growth factors, is human serum. Human serum is expensive and requires extensive testing prior to use for manufacturing of a cGMP-compliant T cell product. To this end, we have tested a XenoFree serum replacement; CTSTM Immune Cell SR. CTSTM Immune Cell SR contains only defined components and can be used in combination with several different cell culture media to support in vitro culture and expansion of T cells. # Expansion of Dynabeads® CD3/CD28 CTS™ isolated and activated T cells #### Methods - Polyclonal T cells from fresh PBMC were isolated and activated with Dynabeads® CD3/CD28 CTSTM and expanded for two weeks - Cell culture media tested were CTSTM OpTmizerTM T cell Expansion SFM and X-VIVOTM 15 (not shown) - Cell culture media were supplemented with either pooled AB human serum or CTS™ Immune Cell SR CTS™ Immune Cells SR supports transduction of T cells using a lentiviral vector expressing GFP #### **ACKNOWLEGDEMENT** We thank James L. Riley and Andrew Medvec from the University of Pennsylvania, Department of Microbiology for providing the pELNS-GFP lentiviral vector ## Expansion of virus-specific T cells #### Methods - PBMC from healthy CMV seropositive donors were cultured with autologous PBMC pulsed with a pool of CMV-encoded CD8⁺T cell peptides for 14 days - Cell culture media tested were RPMI with FBS or CTSTM OpTmizerTM T cell Expansion SFM with CTS™ Immune Cell SR. Both media were supplemented with 120 U/ml IL-2 from day 3 and then every 3-4 days - \bullet T cell specificity was determined using an intracellular IFN- γ assay following recall with a pool of defined CMV-encoded, CD8+T cell peptide epitopes. ## Expansion of OKT3-activatedd T cells #### Methods: - Polyclonal T cells were negatively isolated from fresh PBMC, activated in vitro with OKT3 mAb, irradiated pooled feeder cells and high dose IL-2 and expanded for two weeks - \bullet Cell culture media tested were CTSTM OpTmizerTM T cell Expansion SFM , X-VIVOTM 15 or CTSTM AIM-V $^{\bullet}$ Medium - Cell culture media were supplemented with either pooled AB human serum or 10% CTS™ Immune Cell SR ## Conclusions - CTS™ Immune Cell SR supports expansion of Dynabeads® CD3/CD28 CTS™-activated polyclonal T cells and virusspecific T cells in combination with several commonly used cell culture media - CTS™ Immune Cell SR supports transduction and expansion of gene-modified T cells - CTS™ Immune Cell SR is xeno-free and contains only fully tested human-derived or human recombinant proteins which facilitates supply security for clinical large scale and commercial therapies - CTS™ Immune Cell SR facilitates expansion of T cells with T central memory phenotype