# Evaluation of Fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl Ether ("compound A") Effects on Urine Protein Excretion in Rats Using Mass Spectrometry

Keling Dong<sup>1</sup>, Marjorie S Minkoff<sup>1</sup>, Matthew Willetts<sup>1</sup>, James E Carlson<sup>1</sup>, Jeffrey D Miller<sup>1</sup>, Evan. D. Kharasch<sup>2</sup> <sup>1</sup>Applied Biosystems, 500 Old Connecticut Path, Framingham, MA, United States; <sup>2</sup>Department of Anesthesiology, Washington University, St. Louis, MO, United States.

## ABSTRACT

Fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE or "compound A"), a haloalkene degradant of the volatile anesthetic sevoflurane, is nephrotoxic in rats. FDVE bioactivation mediates the toxicity, but the molecular and cellular mechanisms of toxification are unknown. FDVE caused rapid and brisk changes in kidney gene expression, providing potential insights into mechanisms of toxicity, and potential biomarkers for nephrotoxicity[1]. Nevertheless, it is unknown whether gene expression changes are reflected in protein expression, or whether such tissue changes would be reflected in excreted urine proteins. This investigation was to evaluate FDVE effects on urine protein excretion using mass spectrometry and 8-plex iTRAQ® reagents for relative quantitiation. Results demonstrate that FDVE causes certain alterations in urine protein/peptide excretion. Multiple components were differentially expressed in a time-dependent manner.

# INTRODUCTION

Fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE or "compound A"), a haloalkene degradant of the volatile anesthetic sevoflurane, is nephrotoxic in rats. FDVE bioactivation mediates the toxicity, but the molecular and cellular mechanisms of toxification are unknown. FDVE caused rapid and brisk changes in kidney gene expression, providing potential insights into mechanisms of toxicity, and potential biomarkers for nephrotoxicity[1]. Nevertheless, it is unknown whether gene expression changes are reflected in protein expression, or whether such tissue changes would be reflected in excreted urine proteins. This investigation was to evaluate FDVE effects on urine protein excretion using mass spectrometry and 8-plex iTRAQ Reagents for relative quantitation.

### MATERIALS AND METHODS

After Animal Use Committee approval, Male Fisher 344 rats (250-300g) housed in individual metabolic cages received a single intraperitoneal injection of 0.25 mmol/kg FDVE, and all urine was collected daily for one week, as described previous/[2].

Equal volumes of 6 replicate time points were pooled to create assay time point samples. 150 uL of each pool was brought to 2mls PBS. Each sample was applied to an anti-HSA column (POROS® Affinity Depletion Cartridges). The flow-through (albumin depleted) was desalted on a POROS R150 column. The protein was eluted and dried. Samples were then reconstituted in 1M TEAB. 50ug of each sample (from day 0 to day 7) was processed with the 8-plex iTRAQ® reagents according to manufacturer's instructions.

The iTRÃQ® reagent labeled sample was then subjected to strong cation exchange chromatoghapy separation and nine fractions were collected. Six of the fractions were analyzed using LC-MALDI on the 4800 MALDI TOF/TOF™ Analyzer (AB/MDS SCIEX). MS and MS/MS data were processed and searched against the IPI rat database (ipi.RAT.v3.26.fasta) using ProteinPilot™ Software (ABSciex).

# RESULTS

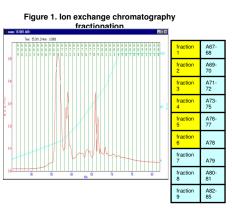
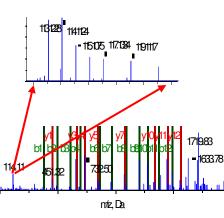




Figure 2. Example of MSMS

spectrum.



iTRAQ labeled peptide fragmentation spectrum is shown. ADLSGITEDAPLK[IT8] Alpha-1-antiproteinase precursor

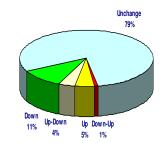
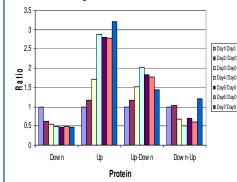




Figure 3. Protein expression pie chart

In this experiment there are 231 proteins identified from the FDVE treated rat urine samples. As would be expected, the majority of the identified proteins (79%) show no change in protein expression levels after FDVE treatment. The proteins which do show expression level changes are categorized into 4 groups: There are 11% showing downward trend; 5% upward; 4% up first then down; and 1% down first and then up (see Figure 4 for examples).

Figure 4. Examples of rat urine protein expression level changes after FDVE treatment.



| 5 | Example  | Protein                             |  |  |  |  |
|---|----------|-------------------------------------|--|--|--|--|
| . | Dow n    | Haptoglobin precursor               |  |  |  |  |
| 니 | Up       | Protein-tyrosine phosphatase LC-PTP |  |  |  |  |
|   | Up-Dow n | Neuroligin-3 precursor              |  |  |  |  |
|   | Dow n-Up | Alpha-2-macroglobulin precursor     |  |  |  |  |
|   |          |                                     |  |  |  |  |

There are generally 4 types of trends in the protein level changes: 1) protein level decreases after initial FDVE treatment and slowly levels off; 2) protein level increases after initial FDVE treatment and reaches maximum at the end of sampling; 3) protein level increases initially after FDVE treatment then slowly decreases after reaches maximum; 4) protein level decreases initially after FDVE treatment and slowly levels off the turns upward.

#### Table 1. List of identified proteins with expression level change after FDVE treatment

Poster No.

| N    | Accession #           | Name                                              | Trend | N    | Accession #                                | Name                                                             | Trend  |
|------|-----------------------|---------------------------------------------------|-------|------|--------------------------------------------|------------------------------------------------------------------|--------|
| #6   | sotiP17475IA1AT RAT   | Alpha-1-antiproteinase precursor                  | Up    | #66  | sp(P13635)CERU_RAT                         | Ceruloplasmin precursor                                          | Down   |
| #7   |                       | Serotransferrin precursor                         | Up    | #67  | satiP31211/CBG_RAT                         | Corticosteroid-binding globulin<br>precursor                     | Down   |
| #8   |                       | Hemopekin precursor                               | Up    | #07  | spipalizi i jobdi HAT                      | Ezrin-radixin-moesin-binding                                     | DOWN   |
| -    | 41                    |                                                   | **    | #71  | spt/QBJJ19/NHERF_RAT                       |                                                                  | Down   |
| #12  |                       | Alpha-2-HS-glycoprotein precursor                 | Up    | #82  | str/P42854REG3G RAT                        | Regenerating islet-derived protein 3                             | Down   |
| #13  | spt[P08932 KNT2_RAT   | T-kininogen 2 precursor                           | Up    | #95  |                                            | Kinesin heaw chain isoform 5A                                    | Down   |
| #16  | spt[P09006]CPI6_RAT   | Contrapsin-like protease inhibitor 6<br>precursor | Up    | #171 | spt 070535 LIFR RAT                        | Leukemia inhibitory factor receptor<br>precursor                 | Down   |
| #17  | spt(Q9QX79)FETUB_RAT  | Fetuin-B precursor                                | Up    | #173 | splQ9R1J4[MYOC_RAT                         | Myocilin precursor                                               | Down   |
| #20  | spt/P02767/TTHY_RAT   | Transthyretin precursor                           | Up    |      |                                            | Tyrosine-protein phosphatase ron-<br>receptor type 7             |        |
| #27  | spt P06866 HPT_RAT    | Haptoglobin precursor                             | Up    | #194 | spt[P49445[PTN7_RAT<br>spt[Q8K3M6]ERC2_RAT |                                                                  | Down   |
| #34  | spt/P02625/PRVA_RAT   | Parvalbumin alpha                                 | Up    | #204 | spiluonavojenuz nal                        | Human immunodeficiency virus                                     | Down   |
| #38  | spt/P04276/VTDB_RAT   | Vitamin D-binding protein precursor               | Up    | #209 | spt/Q00900/ZEP2 RAT                        | type I enhancer-binding protein 2                                | Dow    |
| #1   | spt(P02770)ALBU_RAT   | Serum albumin precursor                           | Up    | #218 | spt/Q8R500/MFN2 RAT                        | Transmembrane GTPase MFN2                                        | Down   |
| #44  | spt[P36963]AFAM_RAT   | Afamin precutsor                                  | Up    | #107 | sotiP51400(RED1_RAT                        | Double-stranded RNA-specific<br>address 1                        | Up-Dov |
| #49  | spt/P00502/GSTA1_RAT  | Glutathione S-transferase alpha-1                 | Up    | #124 |                                            | Serum amyloid P-component                                        | Up-Doi |
| #50  | spt(Q63556(SPA3M_RAT  | Serine protease inhibitor A3M<br>precursor        | Up    | #140 | spt Q5BK85(TMED1_RAT                       | Transmembrane emp24 domain-<br>containing protein 1 precursor    | Up-Dox |
|      |                       |                                                   |       | #175 | spt/Q62889[NLGN3_RAT                       |                                                                  | Up-Don |
| #53  |                       | Alpha-1-acid glycoprotein precursor               | Up    | #217 |                                            | Anionic trypsin-2 precursor                                      | Up-Dox |
| #60  | spt/P20760/GCA_RAT    | lg gamma-2A chain C region                        | Up    | #226 | spt(Q62824/EXOC4 RAT                       | Exocyst complex component 4                                      | Up-Dox |
| #73  | spt[P62898 CYC_RAT    | Cytochrome c, somatic                             | Up    | #87  | entiP02783ISUP2 BAT                        | Seminal vesicle protein 2 precursor                              | Up-Dox |
| #78  |                       | T-kininogen 1 precursor                           | Up    | +0.  |                                            | Extracellular superoxide dismutase                               | 00 001 |
| #97  | oper mede mile rati   | Thioredoxin                                       | Up    | #145 | spt Q08420 SODE_RAT                        | Cu-Zn] precursor                                                 | Up-Do  |
| #105 |                       | Heparin cofactor 2 precursor                      | Up    | #84  | AND CONTRACTOR DAT                         | Microtubule-associated protein 1B                                | Up-Dor |
| #120 | spt/Q62671/EDD1_RAT   | Ubiquitin-protein ligase EDD1                     | Up    | 104  | spiriozuojwarib_hai                        | wicroscosed protein 16                                           | up-uo  |
| #166 | sptiQ8R515jZHX1 RAT   | Zinc fingers and homeoboxes<br>protein 1          | Up    | #127 | spt[P06238]A2MG_RAT                        | Alpha-2-macroglobulin precursor<br>Interferon-induced quarylate- | Down-I |
| #169 | sofIQ51/2V9ICE152 BAT | Protein C6orf152 homolog                          | Un    | #228 | srtiD63663(GBP2_BAT                        |                                                                  | Down-  |

# CONCLUSIONS

>The results obtained demonstrate/suggest? that FDVE causes certain alterations in urine protein/peptide excretion.

Multiple components were differentially expressed in a time-dependent manner. Excretion of several endogenously excreted proteins was rapidly decreased by FDVE. >Other proteins showed increased excretion following FDVE, and then gradually decreased

to pre-dose levels. >Excretion of a third set of proteins, minimally or not detectable in controls, was upregulated following. EVVE

following FDVE. > With the 8-plex ITRAQ® Reagents, relative protein excretion levels can be determined quantitatively, demonstrating that it is an ideal tool for time-course studies.

REFERENCES

1. E. D. Kharasch, J. L. Schroeder, T. Bammler, R. Beyer, and S. Srinouanprachanh

Toxicological Sciences, 90, 419-431 (2006) 2. P. Sheffels, J. L. Schroeder, T. G. Altuntus, H. D. Liggitt, and E. D. Kharasch, Chem. Res. Toxicol. 17, 1177-1189 (2004)

# ACKNOWLEDGEMENTS

This project was supported by NIH DK53765

# TRADEMARKS/LICENSING

Applera Corporation is committed to providing the world's leading technology and information for life scientists. Applera Corporation consists of the Applied Biosystems and Celera Genomics businesses. Applied Biosystems/MDS SCIEX is a joint venture between Applera Corporation and MDS Inc.

Applied Biosystems, Applera and AB (design) are registered trademarks of Applera Corporation or its subsidiaries in the U.S. and/or certain other countries. MIDAS, Paragon, Pro Group, Tempo and ProteinPilot are trademarks and O TRAP and NandSpray are registered trademarks of Applied Biosystems MDS Scies. Information subject to change without notice.

© 2007 Applera Corporation and MDS Inc. All rights reserved