Optimized PTV method for analysis of brominated dioxins and furans using magnetic sector GC-HRMS

Heinz Mehlmann, Thermo Fisher Scientific, Hanna-Kunath-Str.11, 28199 Bremen, Germany

Abstract

Purpose: The analysis of brominated Dioxins and Furans are known to be challenging due to their thermolability. Therefore, a robust method need optimized settings in each part of the analysis such as injection, oven and mass spectrometer. The use of a Programmed Temperature Vaporizing (PTV) Injector module is the best choice for this type of analysis.

Methods: Brominated Dioxin and Furan standards were measured using a GC-HRMS system equipped with a PTV Injector module following the concept of isotope dilution technique, analog to the EPA Method 1613 for Chlorinated Dioxins and Furans. All instrument parameters especially the injector parameter were optimized towards the best performance with the focus on the octa bromo Dioxin and Furan.

Table 1. Global settings of the 5 Segment Multi Ion Detection.

Parameter	Value	Mass (m/z)	Int.	Time [ms]
Segments	5	480.96910) 10	8
Acquire time	40 [min]	483.69490) 1	89
MID mode	Lock	485.69288	3 1	89
Data type	Centroid	495.73520	5	17
Width 1st lock	0.2 [amu]			
Sweep peak width	3	497.73313	5	17
Offset	20 uV	497.69190) 1	89

 Table 2. MID Section 1, Tetra Bromo
 Dioxin/Furan, (Start: 7 min, End: 12 min, Cycle time: 0.55 s).

Mass (m/z)	Int.	Time [ms]	Compound	Comment
480.96910	10	8	PFK	Lockmass
483.69490	1	89	TBrCDF	QM 100%
485.69288	1	89	TBrCDF	RM 64.85%
495.73520	5	17	[13]C12-TBrCDF	QM 100%
497.73313	5	17	[13]C12-TBrCDF	RM 64.85%
497.69190	1	89	TBrCDD	RM 68.53%

TBrCDD

[13]C12-TBrCDD

[13]C12-TBrCDD

PFK

Dioxin/Furan, (Start: 17 min, End: 25 min,

 Table 4. MID Section 3, Hexa Bromo

 Table 6. MID Section 5, Octa Bromo

Dioxin/Furan, (Start: 33 min, End: 40 min,

QM 100%

RM 68.53%

QM 100%

Calimass

Comment

Lockmass

RM 77.10%

QM 100%

RM 77.10%

QM 100%

QM 100%

RM 72.96%

RM 77.10%

QM 100%

89

17

Cycle time: 1.2 s).

Cycle time: 0.9 s).

Table 8. TRACE 1610 GC parameters.

TRACE 1610 GC parameters			
Maximum temperature	350 °C	Use ramped pressure	No
Prep-run timeout	10 min	Transfer temperature delay	1 min
Equilibration time	0.50 min	Injection time	0.05 min
Ready delay	0 min	Transfer rate	3°C/s
Oven on/off	On	Transfer temperature	300°C
Cryogenics enable	Off	Transfer time	1 min
Initial temperature	120.0 °C	Cleaning rate	14.5 °C/s
Number of ramps	3	Cleaning temperature	300° C
Ramp 01 rate	20 °C/min	Cleaning time	20 min
Ramp 01 final temperature	220 °C		
Ramp 01 hold time	5 min		
Ramp 02 rate	3°C/min		
Ramp 02 final temperature	235 °C		
Ramp 02 hold time	7 min		
Ramp 03 rate	4.6 °C/min		
Ramp 03 final temperature	300 °C		
Ramp 03 hold time	2 min		

Results: In contrast of using a Split Spitless (SSL) injector for this type of analysis, a robust routine instrument method could only be achieved by using instant connected PTV injector module with optimized parameters.

Introduction

Dioxins are widespread environmental pollutants that can be found in air, products, soil residues and wastewater, allowing them to easily enter the food chain and become the main source of dioxin in humans. Considering their high toxicity, numerous studies are focused on dioxin research and quantitation, with polychlorinated dibenozodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) being the main targets. However, there are also other halogenated dioxins existing such as the polybrominated dibenzodioxins (PBrDD) and polybrominated dibenzofurans (PBrDF) or even mixed halogenated dioxins, and furans substituted with both chlorine and bromine. The knowledge of brominated dioxins in terms of occurrence, quantity and health risk is limited compared to chlorinated dioxins. One reason for this limitation are analytic challenges associated with the analysis of brominated dioxins. These compounds are known to be less stable compared to chlorinated dioxins, especially in terms of temperature, with octabromo-dibenzodioxin and the octabromo-dibenzofuran being extremely thermolabile. This challenge can be addressed by using Programmed Temperature Vaporizing (PTV) Injector instead of a standard Split/Spitless (SSL) Injector since PTV ensures a smooth transfer from the extract onto the analytical GC column, especially for the higher brominated dioxins/furans, and it reduces the thermal stress. Here we present an optimized workflow for the analysis of brominated dioxins and furans.

Materials and methods

All measurements are performed using Thermo Scientific[™] DFS[™] magnetic sector GC-HRMS including Thermo Scientific[™] TriPlus[™] RSH Autosampler and Thermo Scientific[™] TRACE[™] 1610 GC equipped with the Thermo Scientific[™] iConnect[™] PTV Injector Module. The instrument method was tested on Bromodioxin/Furan Calibration Standard Solution in nonane from Cambridge Isotope Laboratories Inc. (CS1 PN: EDF5407-1; CS3 PN: EDF5407-3 and CS5 PN: EDF5407-5). The data evaluation was done with Thermo Scientific[™] TargetQuan Software.

Measure/Lock ratio	1	499.68980	1
Magnetic delay	60 [ms]	509.73210	5
Electric delay	8 [ms]	511.73010	5
		516.96910	10

Table 3. MID Section 2, Penta Bromo Dioxin/Furan, (Start: 12 min, End: 17 min, Cycle time: 1 s).

		,			•		,	
Mass (m/z)	Int.	Time (ms)	Compound	Comment	Mass (m/z)	Int.	Time (ms)	Compound
554.96590	10	17	PFK	Lockmass	630.9595	10	21	PFK
561.60540	1	175	PeBrCDF	QM 100%	639.51590	1	214	HxBrCDF
563.60340	1	175	PeBrCDF	RM 97.28%	641.51390	1	214	HxBrCDF
573.64570	5	35	[13]C12-PeBrCDF	QM 100%	651 55620	5	12	
575.64360	5	35	[13]C12-PeBrCDF	RM 97.28%	031.33020		42	
577.60040	1	175	PeBrCDD	QM 100%	653.55420	5	42	[13]C12-HxBrCDF
579.59830	1	175	PeBrCDD	RM 97.28%	657.50880	1	214	HxBrCDD
589.64060	5	35	[13]C12-PeBrCDD	QM 100%	659.50677	1	214	HxBrCDD
591.63860	5	35	[13]C12-PeBrCDD	RM 97.28%	667.55110	5	42	[13]C12-HxBrCDD
592.96270	10	17	PFK	Calimass	669.54910	5	42	[13]C12-HxBrCDD

Table 5. MID Section 4, Hepta Bromo Dioxin/Furan, (Start: 25 min, End: 33 min, Cycle time: 1 s).

Mass (m/z)	Int.	Time (ms)	Compound	Comment	Mass (m/z)	Mass Int. (m/z)	Mass Int. Time (m/z) (ms)	Mass Int. Time Compound (m/z) (ms)
716.95630	10	17	PFK	Lockmass	780.94990	780.94990 10	780.94990 10 15	780.94990 10 15 PFK
719.42440	1	175	HpBrCDF	QM 100%	797.33490	797.33490 1	797.33490 1 156	797.33490 1 156 OBrCDF
721.42240	1	175	HpBrCDF	RM 97.28%	799.33290	799.33290 1	799.33290 1 156	799.33290 1 156 OBrCDF
731.46470	5	35	[13]C12-HpBrCDF	QM 100%	809.37520	809.37520 5	809.37520 5 31	809.37520 5 31 [13]C12-OBrCDF
733.46260	5	35	[13]C12-HpBrCDF	RM 97.28%	811.37310	811.37310 5	811.37310 5 31	811.37310 5 31 [13]C12-OBrCDF
735.41930	1	175	HpBrCDD	QM 100%	813.32980	813.32980 1	813.32980 1 156	813.32980 1 156 OBrCDD
737.41730	1	175	HpBrCDD	RM 97.28%	815.32780	815.32780 1	815.32780 1 156	815.32780 1 156 OBrCDD
747.45960	5	35	[13]C12-HpBrCDD	QM 100%	825.37010	825.37010 5	825.37010 5 31	825.37010 5 31 [13]C12-OBrCDD
749.45750	5	35	[13]C12-HpBrCDD	RM 97.28%	827.36810	827.36810 5	827.36810 5 31	827.36810 5 31 [13]C12-OBrCDD
780.94990	10	17	PFK	Calimass	842.94680	842.94680 10	842.94680 10 15	842.94680 10 15 PFK

Results

We demonstrate successful application of the PTV methodology for analysis of polybrominated dibenzo-furans and -dioxins. Especially the challenging octabromodibenzodioxin and the octabromo-dibenzofuran could be measured down to the CS1 Standard. The RF values for tetrabromo-dibenzofurans and hexabromo-dibenzodioxin could be improved by selecting Ratio masses with less chemical noise on the mass trace caused by PFK ions.

Figure 1. DFS Magnetic Sector GC-HRMS coupled to two TRACE 1610 GCs.

Mass Spectrometer

DFS Magnetic Sector GC-HRMS is operated in Electron Impact (EI) ionization mode set to 47 eV with an emission current of 1 mA and a source temperature of 270 °C. Full acceleration voltage of the instrument is 5 kV. The resolution is set to 10.000 at 5 % height and high boiling perfluoro kerosine (PFK) is used as a

For native hexa-bromo dibenzodioxin, the ion $C_{12}H_2^{79}Br_2^{81}Br_4O_2$ mass 659.50677 m/z (72.96%) was used as Ratio ion due to elevated noise caused by PFK on the mass trace of ion $C_{12}H_2^{79}Br_4^{81}Br_2O_2$ mass 667.55110 m/z (77.10%).

Figure 3. iConnect PTV Injector Module (left) and temperature, flow and valve status plot (right).

Gas chromatograph and autosampler

All experiments were carried out on using a 5% Diphenyl / 95% Dimethylpolysiloxan GC column. Detailed analytical setup for the TriPlus RSH Autosampler, the iConnect PTV injector module, and the TRACE 1610 GC is listed in Tables 7 and 8.

Figure 4. Chromatogram of native and ¹³C₁₂ labeled standard of Octa-Bromo Dioxin and Furan.

Figure 5. Response Graph of Octa-Bromo Dioxin and Furan with a linear Fit plot.

Conclusions

A robust routine instrument method could be defined using Thermo Scientific DFS Magnetic Sector GC-HRMS in combination with an iConnect PTV injector module.

reference gas.

All measurements are done in multi-ion detection (MID) mode and the acquisition time is divided into 5 segments, one for each bromination degree starting from tetra-bromo to octa-bromo (Figure 2 and Tables 1-6)

Figure 2. Chromatogram of Br-Dioxin / Furans divided by 5 Multi Ion Detection Segments.

Table 7. Triplus RSH Autosampler and iConnect PTV injector module parameter.

TriPlus RSH Autosampler par	rameters	iConnect PTV injector module parameters				
Injection mode	Basic	PTV mode	Splitless			
Rapid mode	disabled	Temperature enable	On			
Syringe volume	10 mL	Temperature	150°C			
Needle length	57 mm	Split flow	70 mL/min			
Sample volume	2 mL	Splitless time	2 min			
Plunger strokes	3	Purge flow	5 mL/min			
Air and filling mode	Custom	Constant septum purge	On			
Air volume	3 mL	Carrier mode	Constant Flow			
Filling Volume	2 mL	Carrier flow	1.3 mL/min			
Bottom sense	enabled	Vacuum compensation	On			
Height from bottom	0.3 mm	Carrier gas saver enable	On			
Sample type	Custom	Carrier gas saver flow	20 mL/min			
Sample pullup speed	1 mL /sec	Carrier gas saver time	5 min			
Delay after plunger strokes	1 s	Cyrogenics enable	Off			
Viscosity delay	0 s	Use evaporation phase	No			
		Use cleaning phase	Yes			

Cross experiments using a Split Spitless (SSL) injector showed bad performance or no acceptable results at all with this type of injector.

References

1.US EPA Method 1613 revision B

Trademarks/licensing

© 2024 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others. PO-003410-em-en-0924

> Science at a scan Scan the QR code on the right with your mobile device to find out more about Thermo Scientific Magnetic Sector GC-HRMS.

