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Analyzing Protein Structure in the Gas Phase
• Protein structure plays critical roles in 

protein function 
• Ligand binding 
• Enzymatic reactions 

• Collision cross section (CCS, σ) of a 
protein may be measured in the gas 
phase

• Typically measured using ion mobility 
drift cells
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𝜎𝜎 = 𝜋𝜋(𝑟𝑟ion + 𝑟𝑟neutral) 2
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Drift cell vs. Orbitrap CCS Measurements
CCS values are typically 

measured based on 
migration times in ion 

mobility cells
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-Dziekonski, E. T.; Johnson, J. T.; Lee, K. W.; McLuckey, S. A. J. Am. Soc. Mass Spectrom. 2018, 29 (2), 242–250. 
-Jiang, T.; Chen, Y.; Mao, L.; Marshall, A. G.; Xu, W. Phys. Chem. Chem. Phys. 2015, 18 (2), 713–717. 
-Yang, F.; Voelkel, J. E.; Dearden, D. V. Anal. Chem. 2012, 84 (11), 4851–4857. 

Alternative methods have been 
developed to measure CCS directly in 
mass analyzers

• FT electrostatic linear ion trap
• FT-ICR 
• Orbitrap 

Ion mobility Cell 
Drift RegionDesolvation RegionGoal: Extend Orbitrap measurement of CCSs to 
larger, native-like proteins 
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Measuring CCS in an Orbitrap 
• Ions experience collisions with 

neutral gas molecules in the 
Orbitrap MS analyzer 

• Collisions lead to loss of coherence 
of the ion packet 
 The amplitude of beats decreases

• Rate of decay of beat amplitude
 CCS
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The Orbitrap MS: Ion Decay
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Orbitrap CCS Method
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Find decay rate (c) of analyte ion Use c to calculate CCS 
𝜎𝜎 =

𝑐𝑐
𝑓𝑓 ∗ 𝐿𝐿 ∗ 𝑁𝑁

𝑐𝑐 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝜎𝜎 = 𝐶𝐶𝐶𝐶𝐶𝐶

𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
(inversely proportional to m/z)

𝐿𝐿 = 𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑁𝑁 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚3)

𝑁𝑁 : determined by calibration using ion of known CCS



Assumptions for Orbitrap CCS Measurements

• The decay must be dominated by the 
collisions rather than dephasing. Dephasing 
occurs at too much or too low space 
charging 

• Too much space charging, or too little space 
charging (lack of self bunching) results in 
dephasing and a higher than expected decay rate
(over-estimation of CCS)

• Every collision results in removal of an ion 
from the ion packet

• Insufficient energy of collision results in
lower than expected decay rate 
(under-estimation of CCS)
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Previous Orbitrap CCS Results 
• Previous work focused on 

smaller proteins, up to 16 kDa.

• All previous data was collected 
on an Elite Orbitrap mass 
spectrometer.

• The Orbitrap CCS method 
showed good agreement with 
CCS values from ion mobility.
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Orbitrap CCS Measurements using a 
modified QE High Field Orbitrap 

• 960,000 resolution 
• 2 second transients

• Expansion of CCS methods to 
native proteins

• Proteins: 20-50 kDa
• Monomers and multimers
• Aqueous solutions
• Lower charge states 
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Mass Limit of Orbitrap CCS Measurements
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10Makarov, A.; Denisov, E. Dynamics of Ions of Intact Proteins in the Orbitrap Mass Analyzer. J. Am. Soc. Mass Spectrom. 2009, 20 (8), 1486–1495. 

• Theoretical mass limit imposed 
by number of beats in the 
transient 

• Number of beats is dependent on 
mass and charge 

• Need at least 3 beats for decay 
fitting equation

• Small proteins in high charge 
states have many beats 

Transient of ubiquitin 9+

0.038 s = beat period

Example:
Ubiquitin 9+ (8.5 kDa) 

Time (s)

1.0 2.01.50.50



Mass Limit of Orbitrap CCS Measurements

• Our focus: larger proteins, 
lower charge states

• Fewer beats per transient 

• Max transient time 2 seconds

• Upper mass limit of ~60 kDa to 
obtain three beats in a 
transient
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Orbitrap CCS Measurements of Larger 
Proteins in High Charge States

• Our previous study focused on small 
(<16 kDa) proteins

• New work: Orbitrap CCSs of larger 
proteins in high charge states show 
good agreement with IM CCSs

• Example: Denatured carbonic 
anhydrase (29 kDa) sprayed from 
denaturing solutions
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Orbitrap CCS Measurements of Larger 
Proteins in Lower Charge States 

• Orbitrap CCSs of large proteins 
in low charge states show 
increasing divergence from IM 
CCSs.

• Why are the CCS values 
underestimated for lower 
charge states of carbonic 
anhydrase?

13

Carbonic anhydrase (29 kDa)
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Kinetic Energy of Ions in the Orbitrap MS
• Single ion charge detection studies have 

shown that large ions (100 kDa to MDa) 
survive in the Orbitrap for indefinitely.

• These ions have high m/z, low frequency, and low 
kinetic energies 

• For ions <20 kDa, differing kinetic energies 
lead to mixed ion survival/decay 

• Ion survival may happen in minimum kinetic 
energy regions

• Ion decay may happen in maximum kinetic energy 
region

• Compare Orbitrap CCS error to minimum 
kinetic energy for each ion since ions are more 
likely to survive collisions at their minimum 
kinetic energy thus deviating from ideal 
Orbitrap CCS experimental conditions
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energy 

Maximum 
kinetic 
energy 
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kinetic 
energy 
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4920 eV per 
charge

3950 eV per 
charge

3950 eV per 
charge

Kinetic energy of ions in the Orbitrap MS is 
only dependent on charge owing to energy 

imparted during ion injection

Wörner, T. P.; Aizikov, K.; Snijder, J.; Fort, K. L.; Makarov, A. A.; Heck, A. J. R. Frequency Chasing of Individual Megadalton Ions in an Orbitrap Analyzer Improves Precision of 
Analysis in Single Molecule Mass Spectrometry. bioRxiv 2021, 2021.06.15.448530.
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Impact of Kinetic Energy on Orbitrap CCS Measurements
Carbonic Anhydrase (29 kDa)

• High charge states: Ion kinetic 
energy decreases with 
decreasing charge, but still 
meets the minimum threshold 
so that each collision will result 
in removal of the ion from the 
ion packet

• Low charge states: Low kinetic 
energies allow ions to survive 
some collisions, resulting in 
underestimation of CCS.  

Denatured
(high charge states) 

Native
(low charge states) 
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Orbitrap CCS Results for High Mass Proteins 

• Other proteins show 
similar trend of increasing 
Orbitrap CCS error with 
decreasing charge state

• Disagreement between 
CCS values measured by 
IM versus Orbitrap 
depends on both charge 
state and mass 
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Mass Orbi IM

19.5 kDa ● ▲
22 kDa ● ▲
29 kDa ● ▲
31 kDa ● ▲
37 kDa ● ▲

(Trend-lines are not curve fits)
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● 19.5 kDa
● 22 kDa
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● 31 kDa
● 37 kDa

Variation of CCS Error with Kinetic Energy and Mass

• Decreasing kinetic energy, 
increasing mass leads to 
increase in CCS error

• Both protein mass and ion 
kinetic energy correlate 
with the magnitude of CCS 
error

• Further examination of the 
effect of protein mass is 
warranted 
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Charge state 



Variation of CCS Error with Energy of Collision

• Energy of collision also 
considers ion mass 

• Energy of collision is a 
determining factor on loss 
of coherence of ion packet

• Agreement in the 
relationship between 
energy of collision and CCS 
error for most data points
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Linear Regression to Model Ion Energy Thresholds

• Perform linear regression 
to estimate the kinetic 
energy threshold at 
which the protein is 
removed from the ion 
packet upon 
experiencing a single 
collision (x-intercept)

• Perform same linear 
regression for energy of 
collision 
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Carbonic Anhydrase (29 kDa)

y = -14.724x + 88.751
R² = 0.9611

Charge state 
12108 97 11 13
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Energy Thresholds
• Kinetic energy threshold for 

loss of coherence with ion 
packet correlates with 
protein mass.

• Energy of collision threshold 
shows agreement among 
proteins

• Both protein mass and ion 
kinetic energy influence 
prolonged ion survival in 
the Orbitrap.
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Conclusions 
• Number of signal beats and signal decay must be 

considered for measurement of CCSs of larger 
proteins in low charge states. 

• Orbitrap CCS measurements of 20-50 kDa proteins 
are accurate for high charge states but 
underestimate collision cross sections of low charge 
states owing to prolonged ion survival: 

• lower kinetic energies 
• higher protein mass 

• Future work will investigate the structural stability 
and binding energies of proteins/protein complexes  
in the Orbitrap mass spectrometer.
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