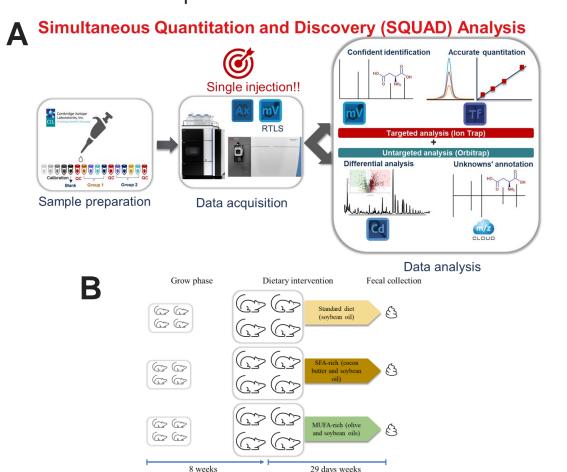
Simultaneous quantitation and discovery (SQUAD) metabolomics workflow on the orbitrap IQ-X for the analysis of fecal bile acids

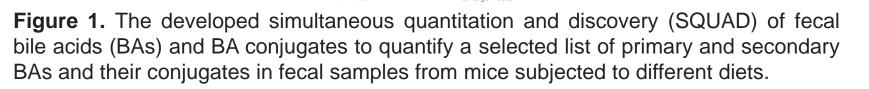
Allison Stewart¹, Bashar Amer², Rahul Deshpande¹, Andrew Percy³, Krista Backiel³, Joshua P. Kline², Brandon Bills², and Susan Bird² ¹ThermoFisher Scientific, San Jose, CA; ²Thermo Fisher Scientific, San Jose, CA; ³Cambridge Isotope Laboratories, Tewksbury, Massachusetts

Abstract

Purpose: Develop and implement a comprehensive metabolomics workflow for the simultaneous quantitation and discovery (SQUAD) of fecal bile acids (BAs) and BA conjugates to quantify a selected list of primary and secondary BAs and their conjugates in fecal samples from mice subjected to different diets.

Methods: Thermo Scientific[™] Vanguish[™] Horizon LC and Thermo Scientific[™] Orbitrap IQ-X[™] Tribrid[™] mass spectrometer were used to develop a SQUAD workflow. Additionally, the workflow incorporates AcquireX[™] and Real-Time Library Search (RTLS) to enhance confidence in annotating relevant unknowns, thereby enabling the detection and annotation of BA-related metabolites that may be implicated in pathophysiological conditions due to microbiome perturbations.


Results: Calibration curves were generated using both unlabeled and labeled BA standards to achieve absolute quantitation. This approach enables accurate quantification using an ion trap across a broad dynamic range, spanning five orders of magnitudes, for the targeted BA in feces. Most of the targets exhibited a lower limit of quantification (LLOQ) of 5 pg on column. In the mice dietary intervention study, the method successfully provided absolute quantification of the targeted BAs and their conjugates in fecal samples. Additionally, untargeted analysis was employed to detect and annotate relevant compounds in the different experimental groups.

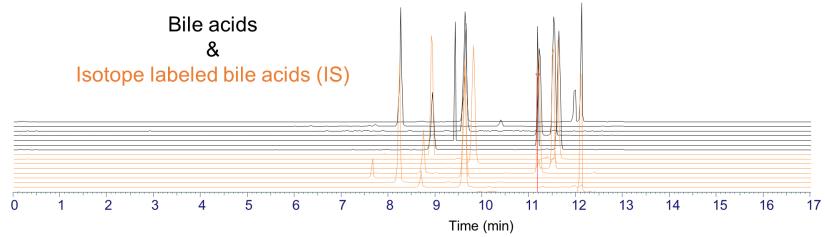

Introduction

Bile acids (BAs) are synthesized from cholesterol in the liver and are integral to lipid digestion and absorption. In the gastrointestinal tract, fecal bile acids serve as critical biomarkers and signaling molecules, interacting intricately with the gut microbiota. Perturbations in the gut microbiome can modify the composition and volume of the bile acid pool, resulting in the generation of various conjugated bile acids and structurally analogous metabolites, which may be implicated in pathophysiological conditions.

This study presents a metabolomics workflow for the simultaneous quantitation and discovery (SQUAD), Figure 1A, of fecal BAs and BA conjugates obtained from Cambridge Isotope Laboratories, Inc., utilizing the Thermo Scientific[™] Orbitrap IQ-X[™] Tribrid[™] mass spectrometer. The workflow incorporates Real-Time Library Search (RTLS) to assess spectral similarity, thereby enhancing the confidence in relevant unknowns' annotation during method execution.

The developed SQUAD method was employed to quantify a selected list of primary and secondary BAs and BA conjugates in fecal samples collected from 8-week-old mice subjected to different diets with varying fat sources for 29 days, Figure 1B. Additionally, the method utilized an untargeted discovery approach to detect and annotate BArelated unknowns in the fecal samples.

Materials and methods


Sample Preparation

Unlabeled and stable-isotope-labeled BA standards were acquired from CIL. These standards were then utilized to prepare dilution series solutions in 50% methanol, which were used to create calibration curves for the quantitation of BAs in fecal samples collected from 8-week-old mice. These mice were subjected to different diets with varying fat sources for a duration of 29 days; standard diet (soybean oil), SFA-rich diet (cocoa butter and soybean oil), and MUFA-rich diet (olive and soybean oils) Before analysis, metabolites were extracted using 80% methanol. Extracts were dried down and reconstituted in 50% methanol solution containing BA-labeled internal standards (IS).

The BA standards also played a crucial role in constructing an MS² spectral library. This library facilitated intuitive MS³ fragmentation via the RTLS workflow. Additionally, aside from their use in generating calibration curves, the labeled BAs served as quality control measures. Their retention time and peak area robustness and reproducibility were measured in the various samples, ensuring the reliability and consistency of the analysis.

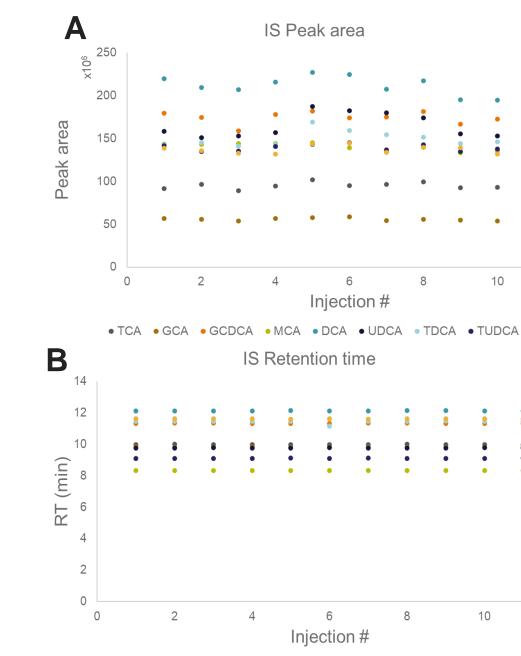
Test Method(s)

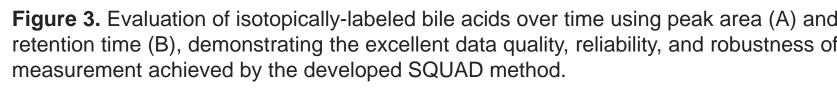
The development of a SQUAD workflow involved the utilization of the Thermo Scientific Vanguish Horizon LC and Orbitrap IQ-X Tribrid mass spectrometer. A Thermo Scientific[™] Hypersil GOLD[™] C18 reversed-phase column was used for the separation of BAs and other small molecules extracted from the fecal samples, Figure 2. To further enhance confidence in annotating relevant unknowns, the workflow incorporates AcquireX and Real-Time Library Search (RTLS) features.

column.

Data Analysis

Thermo Scientific[™] TraceFinder[™] 5.1 and Thermo Scientific[™] Compound Discoverer[™] 3.4 software were used for data processing, analytes quantitation, and unknown annotation.


Results


SQUAD method

By assessing the performance of isotopically labeled bile acids over time using metric tracking (such as retention time and signal response), the developed SQUAD method showcased excellent data quality, reliability, and robustness of measurement. The IS exhibited minimal chromatographic shift and consistent signal responses, as indicated by % CVs below 10% across analyzed samples, Figure 3. These stable metrics provide strong assurances regarding the quality of data obtained from the targeted and untargeted MS-based workflow.

To achieve absolute quantitation, calibration curves were created utilizing both unlabeled and labeled BA standards. This methodology allows for precise quantification using an ion trap instrument over a wide dynamic range, encompassing five orders of magnitude, specifically targeting BAs in fecal samples. The majority of the targets demonstrated a lower limit of quantification (LLOQ) of 5 pg on column, Figure 4.

Figure 2. Chromatographic separation of bile acids (BAs) and isotope-labeled BAs from fecal samples using a Thermo Scientific Hypersil GOLD C18 reversed-phase

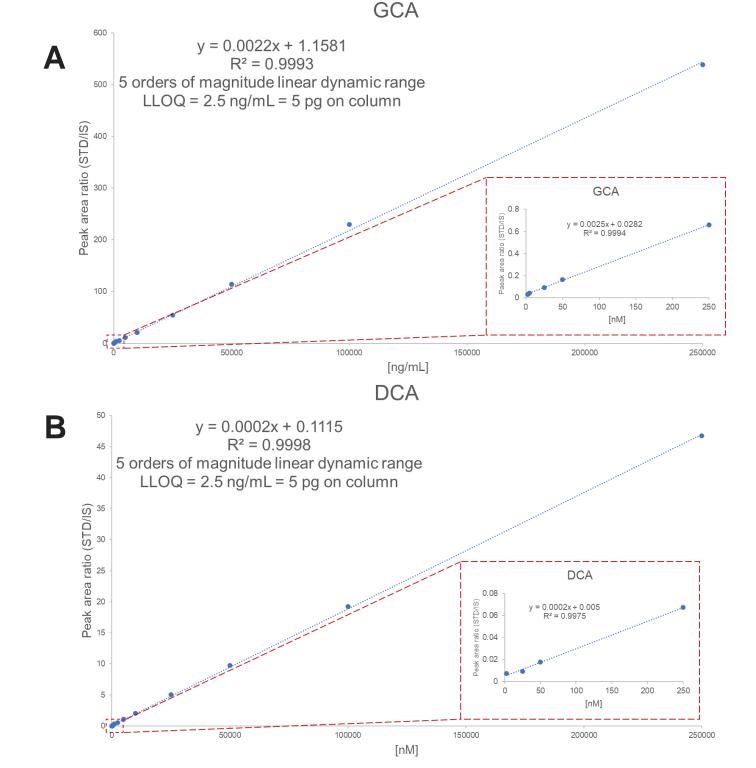
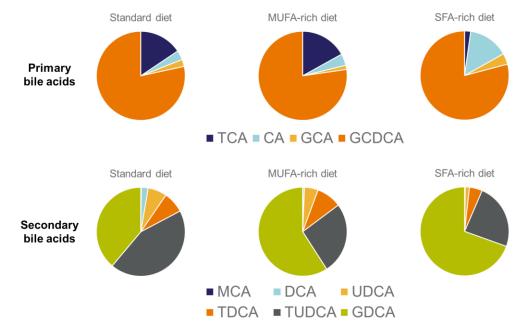


Figure 4. Calibration curves for absolute quantitation of primary (A) and secondary (B) bile acids (BAs) using both unlabeled and labeled BA standards. This approach enables precise quantification across a wide dynamic range, spanning five orders of magnitude, utilizing an ion trap instrument. The majority of the targets exhibit a lower limit of quantification (LLOQ) of 5 pg on the column.

		CV%	
• •	•	TCA GCA GCDC MCA DCA UDCA TDCA TUDC	3.6 5.7 8.8 5.5 A 2.8
10	1	2 GDCA	3.5
• TUDCA	• GDCA	A	
• •	•	CV%	
		TCA GCA GCDCA	0.07 0.08 0.07

UDCA 0.09 **TDCA** 0.75 **TUDCA** 0.09

•TCA •GCA •GCDCA •MCA •DCA •UDCA •TDCA •TUDCA •GDCA


MCA 0.10

DCA 0.07

GDCA 0.07

Bile acids guantitation

The developed SQUAD method was employed to quantify a selection of primary and secondary bile acids in fecal samples obtained from a dietary-based intervention study conducted on mice. The results reveal distinct variations in the levels of these bile acids across the different experimental groups, as depicted in Figure 5.

Figure 5. Quantification of primary and secondary bile acids in fecal samples from a dietary-based intervention study in mice using the developed SQUAD method. The figure illustrates notable variations in the levels of these bile acids among the different experimental groups.

Untargeted discovery

Figure 6 displays the results of the untargeted discovery analysis within the SQUAD workflow, showcasing variations in the fecal metabolome among the samples from different dietary groups. This is evidenced by the PCA scores (Figure 6A) and loadings heat map plots (Figure 6B). Further data analysis highlights distinct patterns and differences among the groups as shown in Figure 6C, which presents a clear variation in the level of annotated fatty acids among the different groups..

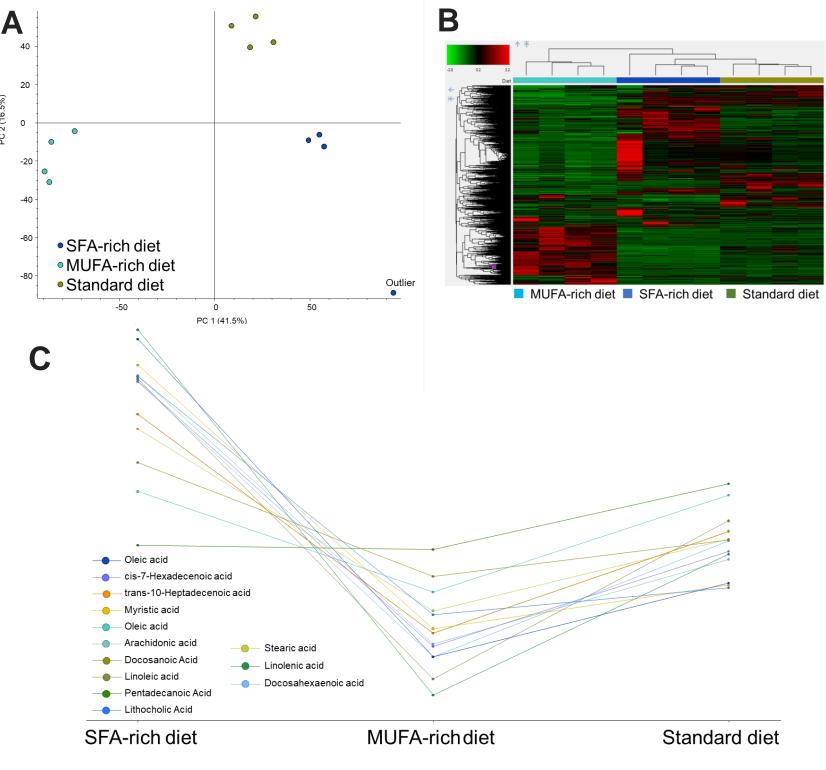
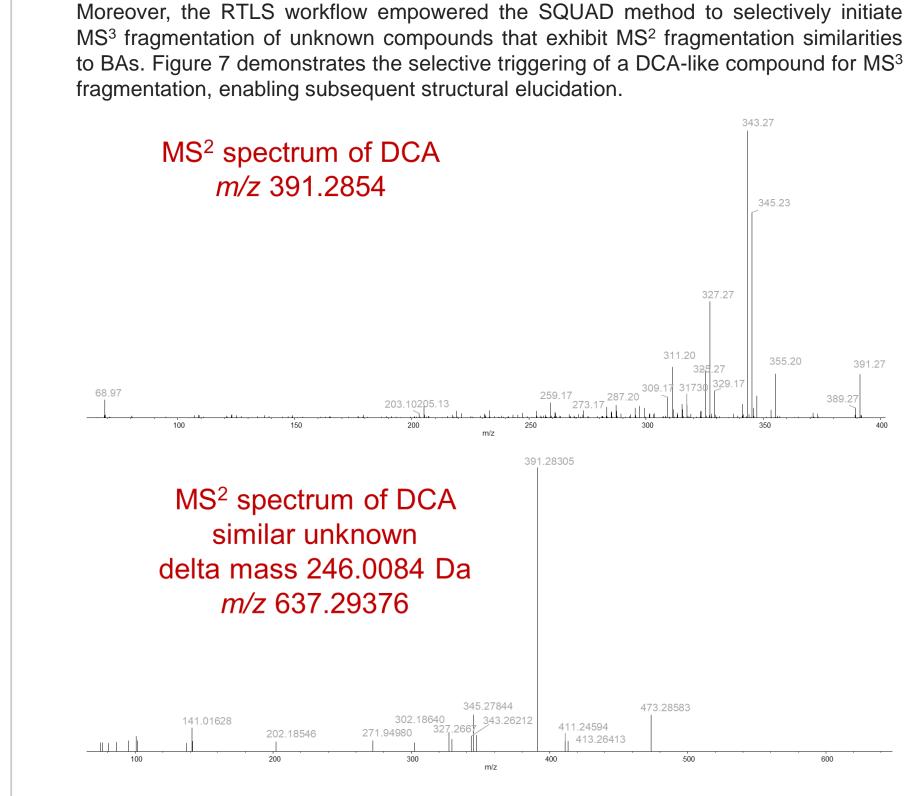



Figure 6. PCA scores (A) and loadings heat map (B) plots highlight distinct patterns and differences among the groups, which are further revealed in 6C, providing valuable insights into the metabolic profiles.

Thermo Fisher

S C I E N T I F I C

Figure 7. An example of selected compounds for MS³ fragmentation using the Real-Time Library Search (RTLS) workflow within the SQUAD method.

Conclusions

We have successfully developed the SQUAD workflow for simultaneous quantitation and discovery of fecal bile acids (BAs) and BA conjugates. This comprehensive metabolomics approach utilizes advanced instrumentation, including the Thermo Scientific Vanquish Horizon LC and Orbitrap IQ-X Tribrid mass spectrometer, to achieve accurate quantification and confident annotation of unknowns. Incorporating AcquireX and Real-Time Library Search (RTLS) enhances the detection and annotation of BA-related metabolites, potentially relevant to pathophysiological conditions resulting from microbiome perturbations.

Acknowledgments

The authors extend their gratitude to Ayush Midha and Isha Jain from the Gladstone Institute, UCSF, San Francisco, California, for conducting the mice intervention study and providing the fecal samples used in this research.

Trademarks/licensing

© 2024 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others. PO165-2024-EN

> p you want to learn more about SQUAD metabolomics? Scan here

