Thermo Fisher SCIENTIFIC

Food authenticity

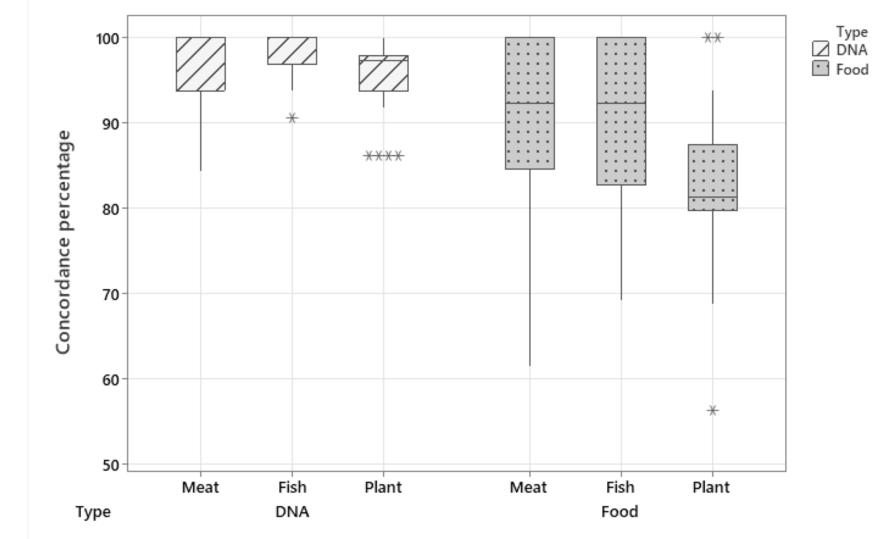
Identification of Animal and Plant Species in Food-Based Products Using **Next Generation Sequencing: Results from an Interlaboratory Study**

Nicole Prentice^{1,} Tiina Karla², Milja Tikkanen², Hanna Lehmusto², Cristina Barbosa³, Sofia Pires³, Franck Pandiani³, Rita Alberty⁴, Tiago Machado⁴, Isabel Mâncio⁴, Manuela Sol⁴, Maelle Prorok-Hamon⁵, Marika Ramassamy⁵, Julien Gernigon⁵, Paola De Santis⁶, Ugo Marchesi⁶, Daniela Verginelli⁶, Katia Spinella⁶, Bianca Maria Varcasia⁶, RobertaPellesi⁷, Michele Suman⁷, Geoffrey Cottenet⁸, Carine Blancpain⁸, Anne-Catrin Geuthner⁹, Ralf Reiting¹⁰, Anke Rullman¹¹, Stefanie Dobrovolny¹², Rupert Hochegger¹², Lotte Hougs¹³, Birgitte Nauerby¹³, Ines Vazquez¹⁴, (1)Thermo Fisher Scientific, Basingstoke, United Kingdom, (2)Thermo Fisher Scientific, Vantaa, Finland, (3)SGS Molecular, Lisbon, Portugal, (4)ASAE - DRAL - LSA, Lisboa, Portugal, (5) SCL, Montpellier, France, (6) Istituto Zooprofilattico Sperimentaledel Lazio e della Toscana "M.Aleandri" (IZS), Roma, Italy, (7) BarillaAnalytical Food Science, Barilla G&R Fratelli, Parma, Italy, (8) NestléResearch, Lausanne, Switzerland, (9) Landesamt für VerbraucherschutzSachsen-Anhalt, Halle, Germany, (10) Landesbetrieb HessischesLandeslabor (LHL), Kassel, Germany, (11) Chemisches und Veterinäruntersuchungsamt (CVUA), Karlsruhe, Germany, (12) AustrianAgency for Health and Food Safety, AGES, Vienna, Austria, (13) The DanishVeterinary and Food Administration (DVFA), Ringsted, Denmark, (14) Fera, York, United Kingdom

Abstract

Purpose: An interlaboratory study involving 11 European laboratories from eight countries was conducted to support the implementation of NGS for routine food authenticity analysis. In this study the Thermo Scientific[™] NGS Food Authenticity Workflow was used to determine the species composition in a range of different samples

Methods: A total of 72 samples were received by each participant. The targets included meat, fish, and plant. Each participant used the Thermo Scientific NGS Food Authenticity Workflow using the Ion Torrent[™] Ion Chef[™] instrument and the Thermo Scientific[™] Ion GeneStudio[™] S5 instrument, data was analyzed with the Thermo Scientific[™] SGS[™] All Species ID software. The performance of each participant was scored, and the robustness and reliability of the workflow was evaluated.


Table 1. Meat products, expected content and concordance of participant results

Target	Food type	#	Sample name	Expected content and concordance
	Dry food	1	Beef jerky	Bos taurus: 100 %
		2	Risotto with chicken	Gallus gallus: 90.9 %, Bos taurus: 86.4 %
	Deep frozen food	3	Minced lamb meat	Ovies aries: 100 %, Bos taurus: 100 %
		4	Beef burgers	Bos taurus: 68.2 %
	Canned food	5	Canned ham	Sus scrofa: 86.4 %
MEAT		6	Canned chicken	Gallus : 79.5 %
	Liquid food	7	Beef soup with tomatoes	Bos taurus: 100 %
		8	Chicken soup	Gallus : 84.1 %
	Fresh raw food	9	Minced turkey meat	Meleagris gallopavo: 77.3 %, Sus scrofa: N/A
		10	Minced meat patties	Sus scrofa: 100 %, Bos taurus: 100 %

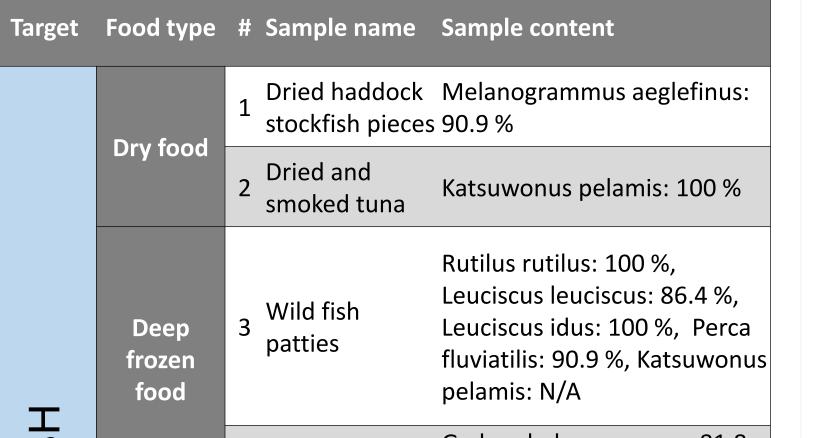
Table 4. Artificial DNA mixtures (meat), concordance of participant results

Target	#	Sample content	% of sample	% concordance
	1	Bos taurus	100	100
	2	Sus scrofa	100	100
		Bos taurus	33	100
	3	Sus scrofa	33	100
		Gallus	33	100
		Meleagris gallopavo	40	100
	4	Rangifer tarandus	40	100
		Ovis aries	20	100
		Rangifer tarandus	5	100
	5	Ovis aries	5	100
		Odocoileus hemionu/virginianus	90	100
		Bos taurus	1	100
∢	6	Sus scrofa	5	100
ラ		Gallus	94	100
AT DNA		Cervus elaphus	50	100
	7	Equus caballus	30	90.9
		Alces alces	20	86.4
	8	Ovis aries	99	43.2
ME		Cervus elaphus	1	43.2
2	9	Theragra chalcogramma (fish)	45	100
		Perca fluviatilis (fish)	45	100
		Meleagris gallopavo	10	95.5
	10	Theragra chalcogramma (fish)	90	100
		Equus caballus	5	100
		Alces alces	5	100
	11	Perca fluviatilis (fish)	94	100
		Equus caballus	5	95.5
		Alces alces	1	95.5
	12	Theragra chalcogramma (fish)	99	100
		Meleagris gallopavo	1	97.7
	13	Theragra chalcogramma (fish)	100	100
	14	Perca fluviatilis (fish)	100	100

Figure 2. Result concordance percentage for each sample type

Results: The real food samples produced the most variable results which can be explained by the possible heterogeneity of the samples. Among artificial DNA mixtures, 17 of 25 meat species, 20 of 27 fish species and 17 of 25 plant species were successfully identified by all participants in all parallel samples (concordance 100%). Some of the species were identified at low concentration levels (1%).

Introduction


The complexity of the food supply chain is challenging the abilities of analytical tools used for traceability of ingredients. Although there is no reference method for food authenticity analysis, the introduction of Next Generation Sequencing (NGS) in recent years has demonstrated the suitability of this method to verify species composition of food products.

Materials and methods

Sample preparation (Thermo Fisher Scientific)

Two types of samples were provided to the interlaboratory study participants: homogenized food samples (10 g) and DNA samples with know distribution of species. Homogenized samples were prepared by processing the food sample with Precellys homogenizer (Bertin instruments). For the DNA samples, the Thermo Scientific[™] GMO extraction kit and protocol was used to extract DNA from 40-200 mg of homogenate, and DNA concentration quantified with Invitrogen[™] Qubit[™] Fluorometer. (Thermo Fisher Scientific).

Table 2. Fish products, expected content and concordance of participant results

Table 5. Artificial DNA mixtures (fish), concordance of participant results

larget	#	Sample content	% of sample	% concordance
	15	Perca fluviatilis	100	95.5
	16	Thunnus albacares	100	95.5
	17	Oncorhynchus mykiss	33	100
		Sander lucioperca	33	100
		Coregonus muksun	33	100
		Sander lucioperca	40	100
	18	Salvelinus sp.	40	100
		Perca fluviatilis	20	100
		Thunnus albacares	5	100
	19	Perca fluviatilis	5	100
		Esox lucius	90	100
		Thunnus albacares	1	90.9
	20	Perca fluviatilis	5	100
A N		Esox lucius	94	100
\leq		Salvelinus sp.	50	100
	21	Sander lucioperca	30	100
T		Thunnus albacares	20	100
FISH	22	Salmo salar	99	95.5
LL		Sander lucioperca	1	90.9
	23	Salmo salar	45	100
		Platichthys flesus	45	100
·		Gadus chalcogrammus	10	68.2
	24	Bos taurus (meat)	90	100
		Thunnus albacares	5	100
		Esox lucius	5	100
		Sus scrofa (meat)	94	100
	25	Thunnus albacares	5	100
		Esox lucius	1	95.5
	26	Bos taurus (meat)	99	100
	20	Thunnus albacares	1	100
	27	Bos taurus (meat)	100	100
	28	Sus scrofa (meat)	100	100

Conclusions

Variance between laboratories was higher with real food samples, which is congruent with sample complexity and workflow steps performed by participant laboratories.

- 76 % of food sample species and 96 % of species in DNA samples reached over 80% concordance between replicates and laboratories.
- 70 % of species were correctly identified with every sample replicate with every laboratory

Results indicate that careful upstream sample processing is a key element in species identification process to ensure robust and reliable results. Interlaboratory study showed that the Thermo Scientific NGS Food Authenticity Workflow can be easily adopted by variety of laboratories with diverse levels of experience with NGS.

Sample preparation (Participant location)

DNA was extracted with GMO extraction kit following the kit protocol from 40-200 mg of each homogenate, and DNA concentration quantified with Qubit Fluorometer. The DNA sample concentration was confirmed on participant site with Qubit fluorometer. Libraries for sequencing were prepared using The Thermo Scientific[™]SGS[™] All Species Meat, Fish and Plant Analyser kits. Unique barcodes (i.e., molecular tags) were added to each sample to enable sequencing and analysis of several samples within the same sequencing run. Sample libraries were prepared for sequencing by Ion Chef Food Protection instrument and the loaded lon chips were sequenced on GeneStudio S5 Food Protection System. Results were analyzed and reported with All Species ID Software (Thermo Fisher Scientific).

Figure 1. Ion Chef Food Protection Instrument, Ion GeneStudio Food Protection NGS System and SGS All Species ID Analyser Kits

Canned food4Fish fingersGadus chalcogrammus: 81.8 %Canned food5Canned sardinesSardina pilchardus: 77.3 %6Canned tunaKatsuwonus pelamis: 40.9 %Liquid food7Rainbow trout soupOncorhynchus mykiss: 95.5 % Pollachius virens: N/A8Salmon soupSalmo salar: 100 %Fresh raw food9Fillet of flounderPlatichthys flesus: 90.9 %, Salmo salar: N/A10Fillet of pikeEsox lucius: 100 %					
Canned food5Canned sardinesSardina pilchardus: 77.3 %6Canned tunaKatsuwonus pelamis: 40.9 %Liquid food7Rainbow trout soupOncorhynchus mykiss: 95.5 % Pollachius virens: N/A78Salmon soupSalmo salar: 100 %8Salmon soupSalmo salar: 100 % Salmo salar: N/A			4	Fish fingers	Ŭ
6 Canned tunaKatsuwonus pelamis: 40.9 %Liquid food7Rainbow trout soupOncorhynchus mykiss: 95.5 % Pollachius virens: N/A8 Salmon soupSalmo salar: 100 %Fresh raw food9Fillet of flounderPlatichthys flesus: 90.9 %, Salmo salar: N/A			5		Sardina pilchardus: 77.3 %
Liquid food' soupPollachius virens: N/A8Salmon soupSalmo salar: 100 %Fresh raw food9Fillet of flounderPlatichthys flesus: 90.9 %, Salmo salar: N/A		food	6	Canned tuna	Katsuwonus pelamis: 40.9 %
Fresh raw food9Fillet of flounderPlatichthys flesus: 90.9 %, Salmo salar: N/A		Liquid food	7		
Fresh raw ⁹ flounder Salmo salar: N/A			8	Salmon soup	Salmo salar: 100 %
			9		•
			10	Fillet of pike	Esox lucius: 100 %

Table 3. Plant products, expected content and concordance of participant results

Target	Food type	# Sample name	Sample content	
	Dry food	1 Wheat flour	Triticum aestivum: 100 %, Avena sp.	
		2 Cinnamon powder	Cinnamomum zeylanicum: 40.9 %	
	Deep frozen food	Peas, corn & 3 bell pepper mixture	Pisum sativum: 100 %, Capsicum sp.: 95.5 %, Zea mays: 90.9 %	
	1000	4 Frozen peas	Pisum sativum: 100 %	
PLANT	Canned food	5 Canned corn	Zea mays: 68.2 %, Pisum sativum: N/A, Triticum aestivum: N/A	
	1000	6 Marinated tofu	Glycine max: 100 %, Allium sativum: 81.8 %	
		7 Spinach soup	Spinacia oleracea: 36.4 %	
	Liquid food	8 Carrot & ginger soup	Daucus carota: 100 %, Allium cepa: 100 %, Avena sp.: 36.4 %	
		9 Fresh fennel	Foeniculum vulgare: 95.5 %	
	Fresh raw food	10 Fresh potato	Solanum sp./tuberosum: 86.4 %	

 Table 6. Artificial DNA mixtures (plant), concordance of
participant results

arget	#	Sample content	% of	%
			sample	concordance
·	29	Thymus vulgaris	100	86.4
	30	Coriandrum sativum	100	100
		Thymus vulgaris	33	81.8
	31	Ocimum basilicum	33	100
·		Rosmarinus officinalis	33	100
		Rosmarinus officinalis	40	95.5
	32	Coriandrum sativum	40	100
		Allium sativum	20	100
		Allium sativum	5	100
	33	Origanum sp./ vulgare	5	100
		Anethum/Foeniculum graveolens	90	100
		Allium sativum	1	90.9
\triangleleft	34	Rosmarinus officinalis	5	100
Z		Ocimum basilicum	94	95.5
ANT DNA	35	Allium sativum	50	90.9
⊢ ∣		Origanum sp./ vulgare	30	100
		Anethum/Foeniculum graveolens	20	100
\overline{A}	36	Coriandrum sativum	99	95.5
		Allium sativum	1	81.8
L	37	Oncorhynchus mykiss (fish)	45	100
		Salmo salar (fish)	45	100
		Origanum sp./Origanum vulgare	10	100
		Oncorhynchus mykiss (fish)	90	100
	38	Rosmarinus officinalis	5	100
		Anethum graveolens	5	100
		Salmo salar (fish)	94	100
	39	Coriandrum sativum	5	100
		Anethum graveolens	1	100
	40	Oncorhynchus mykiss (fish)	99	100
	40	Coriandrum sativum	1	100
	41	Oncorhynchus mykiss (fish)	100	100
	42	Salmo salar (fish)	100	100

Acknowledgements

We would like to thank all the participant laboratories (co-authors) for their contributions to this study.

Trademarks/licensing

© 2022 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others. SGS is a registered trademark of SGS Group Management S. A.

Results

Homogenized food samples

Homogenized food sample types, names, expected content and concordance of results between participating laboratories are presented in Tables 1-3. For some species, the concordance result was not calculated (N/A) as these species were not listed as ingredients and presence or absence in the sample could not be confirmed. Each laboratory analyzed meat samples in 4 replicates and fish and plant samples in 2, all replicates and laboratories are considered when calculating concordance results. Boxplots of all results are presented in Figure 2.

Artificial DNA mixtures

DNA sample content (species and relative portion) and concordance of results between participating laboratories are presented in Tables 4-6. Each laboratory analyzed meat samples in 4 replicates and fish and plant samples in 2, all replicates and laboratories are considered when calculating concordance results. Samples with non-target species are presented in grey font. Boxplots of all results are presented in Figure 2.

