INTRODUCTION

As one of the most common endocrine cancers, breast cancer remains a major cause of cancer-related death in females. The standard treatment for breast cancer, however, is a high number of patients who are not responsive to therapy. Furthermore, standard therapy has been shown to be ineffective for many patients. Therefore, the development of new therapies targeting the breast cancer cells is of utmost importance. The aim of this study is to evaluate the potential of a novel immunoassay for the detection of breast cancer cells. The potential of this immunoassay will be assessed in terms of its specificity, sensitivity, and reproducibility.

SAMPLE MATERIALS AND METHODS

Sample Preparation

Thrombin was used to clot human plasma and red and white blood cells. The clot was then lysed with a lysis solution. The lysate was then centrifuged at 4000 g for 20 min to remove the cellular debris. The supernatant was then collected and stored at -80°C until use.

RESULTS

An immunoassay was developed for the detection of breast cancer cells. The immunoassay was tested on various human plasma samples and the results were compared to the results obtained from the standard method. The immunoassay was shown to be highly specific and sensitive, with a detection limit of 100 ng/mL.

CONCLUSIONS

The immunoassay developed in this study has shown promising results in the detection of breast cancer cells. The assay is highly specific and sensitive, with a detection limit of 100 ng/mL. Further studies are needed to validate the assay in a clinical setting.

ACKNOWLEDGEMENTS

The authors would like to thank the following individuals for their contributions: Dr. John Doe, Dr. Jane Smith, and Dr. John Doe. This work was supported by grant number XXY-1234567 from the National Institutes of Health.