
Tim Stratton1, Michal Raab2, Jakub Mezey2, Ioanna Ntai1, Ralf Tautenhahn1, Robert Mistrik2

1Thermo Fisher Scientific, Austin TX, USA; 2HighChem LLC, Bratislava, Slovakia

ABSTRACT
Purpose: To demonstrate an algorithmic approach to rank putative chemical database 
candidates for unknown compounds by utilizing reference spectral library data.

Methods: HRAM MS/MS and MSn data on a series of compounds not present in the 
reference spectral library was acquired.  This data was processed using an algorithm 
(mzLogic™) that performed, broadly, three steps consisting of chemical database search 
(ChemSpider™) to obtain putative structures followed by spectral library similarity search 
(mzCloud™) and a ranking of putative structures based on the common substructure 
explained by fragments observed in the reference library.

INTRODUCTION
Identification of compounds is typically the most difficult step in many fields of small molecule 
analysis including metabolomics and environmental research. While matching MS/MS or MSn

query data against a reference spectral library such as NIST, MassBank, or mzCloud is often 
one of the best ways to provide identification information, the limited size and coverage of 
available libraries necessitates alternative approaches. An extremely common approach is to 
search the unknown molecular weight or elemental composition against chemical information 
databases for putative hits, which still require some additional sorting or ranking to find 
relevant or likely candidates. We present here an approach that leverages both reference 
spectral library searching (in a similarity mode) with chemical database searching, merging 
them together to provide a data driven ranking of putative candidates. The algorithm, 
mzLogic, was implemented both in Thermo Scientific™ Mass Frontier™ 8.0 software and 
Thermo Scientific™ Compound Discoverer™ 3.0 software.

MATERIALS AND METHODS
Sample Preparation
Standards, as either single compounds or mixes of up to ten compounds, were prepared by 
dissolving the test material in a suitable solvent (DMSO or MeOH) to create a stock solution 
of between 0.1 to 0.5 mM. These stock solutions were further diluted with MeOH:water to 
create the final concentration for injection (50 nM).

Mass Spectrometer Acquisition Conditions
Samples were separated on a Thermo Scientific™ Hypersil GOLD™ 100 x 5 mm, 3 µm C18 
column maintained at 35 ºC. Ionization was performed by electrospray ionization in positive 
and negative ionization mode (separate injections). The initial high resolution acquisition 
obtained full MS1 data at a resolution of 60,000 (FWHM @ m/z 200). Data-dependent MS2

was triggered using higher energy collisional dissociation (HCD) with a stepped collision of 
40%±20% normalized collision energy at a resolution of 30,000. MS3 fragmentation on the 
top 3 MS2 ions was performed by trap collisional dissociation (CID) at 30% normalized 
collision energy (NCE).

Mass spectrometer: Thermo Scientific™ Orbitrap Fusion™ Tribrid™ MS
LC: Thermo Scientific™ Vanquish™ UHPLC system

CONCLUSIONS
 mzLogic combines chemical database searching for putative candidates with reference 

spectral library similarity searching in a new unique approach.

 Utilizing reference spectral library data removes the limitations and potential risk of purely in 
silico approaches by making use of real world observed fragmentation information.
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Table 1. LC gradient for sample analysis

Figure 5. Fragmentation annotation available on mzCloudRESULTS
The mzLogic Process Overview
The process of ranking putative candidates utilized in mzLogic is unique in that it combines streams 
of information previously not collectively considered. The concept of attempting to use fragmentation 
information to rank order database hits is not a new one. Approaches such as MAGMa1, CDM-ID2, 
and others have implemented this. These methods vary primarily in how they predict fragmentation 
from putative candidates in silico but they all do some form of prediction. For compounds where a 
spectral library match is not obtained, a spectral similarity search is performed to find potentially 
structurally related candidates. In parallel, a chemical database search (using molecular weight or 
elemental composition) is performed to obtain a list of putative candidates. These independent 
sources of data are combined by the algorithm (Figure 1). The details of each step and the critical 
aspects for each are discussed following.

Figure 1.  Workflow for mzLogic

Elemental Composition Determination and Database Searching

Although the molecular weight of the unknown can be used for chemical database searching, using 
the elemental composition can often give fewer putative candidates – reducing the complexity.  The 
difficulty lies in accurate elemental compositions determination for the unknown compound. The 
application of very high resolution, accurate mass data allows for elemental composition 
determination using fine isotopic information (Figure 2), which can be combined with MS/MS fragment 
spectra coverage to provide a refined elemental composition calculation.  

Time (min) % A (Water + 
0.1% Formic acid)

% B (ACN + 
0.1% Formic acid)

0 100 0

8 50 50

9 2 98

13 2 98

13.1 100 0

15 100 0

Combining Data Sources – Deriving the Final Ranking

With the results from both searches, the algorithm determines the coverage – the maximum 
substructure – between each chemical database hit and the relevant similarity hit from the mzCloud 
spectral library search. This alone would not be sufficient, as the overlapping substructure may not be 
in common with observed fragmentation. Because of this, the implementation also considers the 
known fragmentation structure from the mzCloud library, which has extensive annotation of fragments 
(Figure 5) as a confirmation that the overlapping substructure observed in the database candidate 
does come from the real world fragment in the library.

Figure 2.  Fine isotopic pattern and predicted elemental compositions
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Similarity Search Results

The next step in the mzLogic process is to obtain results from a similarity search in mzCloud. Query 
spectra for the unknown are searched against the library without constraining for the precursor mass 
or limiting it to MS/MS (Figure 4). Matches may come from anywhere in the MSn tree of reference 
compounds and represent potential structure overlap between the similarity hit and the unknown 
compound. In addition, queries are run for similarity both forward and reverse to determine the most 
representative similarity candidate to use for subsequent substructure matching.
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Figure 3.  Improved determination of elemental composition

Elemental compositions predicted for uridine monophosphate (C9H13N2O9P) when using a large elemental composition 
prediction set. Mass accuracy, isotopic pattern, and MS/MS coverage all combined to provide a final ranking.

Putative elemental compositions, calculated from the accurate mass MS1 A0 can be refined through 
analysis of the fine isotopes present in other isotopes. These putative elemental compositions must 
also be able to explain the fragment ions observed as the fragments are substructures of the 
precursor. Scoring the ability of putative elemental compositions to predict fragment compositions 
provides an enhanced composition prediction (Figure 3).

Results for mzLogic search of data from rosmarinic acid. Top of image shows the first five hits, the bottom are the 
lowest ten hits from the chemical database search after sorting by mzLogic.

Figure 5. Base peak and XIC of potential flavonoid conjugates in orange

Figure 4. Similarity Search Result Display – Mass Frontier 8.0 software

The approach presented can help to separate a large set of putative structures easily based on the 
comparison against real world representative fragmentation data. A first example (Figure 6) shows 
the ranking of all chemical database hits (total of 36) for the molecular weight 302.1344. The query 
compound was glycyl-prolyl-glutamic acid, a compound that is not in the mzCloud reference library.  
In this case the similarity hit selected was a natural toxin, the matching explained fragments are 
highlighted in the image. The mzLogic algorithm screens through the putative chemical database 
hits looking for common substructures from the similarity hit, considering which ones also match to 
the known fragment structure. In this way we develop two different scores, the spectral similarity and 
also the structural match – how much of the compound database hit is matching to the known 
reference fragmentation. This is used, along with the proportion of the chemical database candidate 
explained, to derive a final ranking for each putative candidate. Additionally, the second candidate is 
a close structural analogue of the correct result, varying in the position of a methyl group. The third 
and fourth ranked structures are somewhat peptide-like in their structure but are sorted to a much 
lower overall score by the algorithm.

Figure 6. Example of mzLogic result for glycyl-prolyl-glutamic acid

Another example of the mzLogic sorting capability can be seen with a more complex example.  The 
data was from rosmarinic acid, another compound not present in the reference spectral library.  
Chemical database searching returned over 250 putative candidates. After sorting with mzLogic, the 
correct result was the second candidate (Figure 7), while the first and third ranked candidates were 
structurally similar. The range of structures, and resulting range of scores from the algorithm, are 
also shown with the top five candidates compared to the bottom ten. While the correct result was 
not the first, there is still a significant improvement in reducing the complexity of putative hits (from 
more than 250).

Top: mzLogic sorted results from the processing of the acquired data from glycyl-prolyl-glutamic acid.
Bottom: Query data acquired showing the HCD MS2 spectra and structure of the compound.
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