Determination of Polar Pesticides in Grapes Using an IC-MS/MS System

Beibei Huang, and Jeffrey Rohrer, Thermo Fisher Scientific, Sunnyvale, CA, USA, 94085

ABSTRACT

Purpose: To develop and test a method based on ion chromatography (IC) coupled with a triple quadrupole MS/MS (IC-MS/MS) for the determination of polar pesticides and their metabolites in grapes. Method performance should be in compliance with statutory maximum residue levels (MRL)/Tolerance levels, residue definitions, and relevant guidelines for method validation and analytical quality control.

Methods: We introduced a new workflow based on a modified Quick Polar Pesticides Method (QuPPe Method) and IC-MS/MS that supports simultaneous multi-residue analysis of grape samples for polar pesticides. The IC-MS/MS method was developed using a Thermo Scientific™ Dionex[™] IonPac[™] AS19 4-µm column set and a compact IC system coupled to a Thermo Scientific[™] TSQ Quantis[™] Triple Quadrupole Mass Spectrometer.

Results: A good IC-MS/MS separation was achieved to resolve 16 analytes in different SRM channels. Peak shape and sensitivity were good for the majority of polar pesticides at 10 µg/L in grape matrix (equivalent to 20 µg/kg in sample). Acceptable peak shapes were obtained for AMPA (10 μ g/L), bialaphos (10 μ g/L), and maleic hydrazide (20 μ g/L). The results showed that the sensitivity, linearity, retention time precision, and recovery comply with the SANTE/11813/2017 method performance criteria¹. The method provides lower LOQs than EU maximum residue limits (MRLs). Overall, this workflow supported simultaneous multiresidue analysis of polar pesticides in the grape samples using the modified QuPPe method.

INTRODUCTION

The group of polar ionic pesticides includes some of the most frequently used pesticides worldwide. Although these compounds result in residues in food and have been the subject of recent controversy, they have been monitored infrequently in food testing programs. In the United States, for example, a report by the Government Accounting Office criticized the responsible government agencies [Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and Department of Agriculture (USDA)] with respect to the lack of testing for glyphosate residues in food. The lack of testing is in part due to the analytical difficulties and higher costs associated with the single-residue methods that were until recently the only options available.

IC-MS offer a number of advantages for the separation and quantification of polar anionic and cationic polar pesticides and their polar metabolites. Ion chromatography provides excellent chromatographic resolution in a wide range of matrices, while triple guadrupole mass spectrometry offers low detection limits and high selectivity when operated in the selected reaction monitoring (SRM) mode. The IC-MS system robustness allows the routine analysis of food and environmental samples.

MATERIALS AND METHODS

Sample Preparation

Modified QuPPE

Extraction

Sample preparation and consumables analysis kits

Software

Data Acquisition

- Thermo Scientific[™] Chromeleon[™] Chromatography Data System software version 7.2.6 or higher
- Thermo Scientific[™] Xcalibur[™] 4.1 software with SII for Xcalibur software
- Thermo Scientific[™] TraceFinder[™] 4.1 software

Data Processing

TraceFinder 4.1 software

Test Method

IC conditions				
IC system:	Dionex Integrion HPIC system			
Mobile Phase:	KOH, Source: EGC 500 KOH			
Column:	Dionex IonPac AS19-4 µm Gua Dionex IonPac AS19-4 µm Ana			
Gradient:	15–20 mM (0–4 min), 20–75 m min), 75–15 mM (18),15 mM (1			
Suppressor:	Dionex ADRS 600 Suppressor			
Pump Flow:	0.35 mL/min			
Injection Volume:	25 μL			
Column Temp:	30° C			
Detector Comp. Temp:	20°C			
Suppressor Current:	65 mA external water mode via rate (0.70 mL/min)			
IC-MS Interface: post	Tee union to combine the analy			
suppressor Makeup	fitting tubing, and acetonitrile a			
solution:	AXP-MS Pump.			
Triple quadrupole MS/MS detection				
Ionization Mode:	Heated Electrospray (H-ESI)			

Ionization Mode:	Heated Electros		
Scan Type:	SRM		
Polarity:	Negative		
Spray Voltage:	3800 V		
Sheath Gas Pressure:	42 Arb		
Aux Gas Pressure:	12 Arb		
Ion Sweep Gas Pressure:	1 Arb		
Ion Transfer Tube Temp:	300°C		
Vaporizer Temp:	300° C		
Cycle Time:	1.25 s		
Q1 Resolution:	0.7		
Q3 Resolution:	1.2		
Source Fragmentation:	0 V		
Use Calibrated RF Lens:	each componen		

Figure 1. IC-MS/MS workflow

- ard 2X50 mm alytical 2X250 mm
- nM (4–10 min), 75–75 mM (10–18
- 18–20 min)
- r (2 mm)

AXP-MS Pump, external water flow

lyte from conductivity detector via viper at 0.2 mL/min via Thermo Scientific™

spiay (⊓-ESI)

Compound	Retention Time (min)	RT Window (min)	Precursor (m/z)	Product (m/z)	Collision Energy (V)	RF Lens (V)
Fosetyl- Al	4.21	2	109	63	29.49	95
Fosetyl- Al	4.21	2	109	81	10.45	95
Maleic hydrazide	6.50	4	111	42	40.55	113
Maleic hydrazide	6.50	4	111	82	18.18	113
Maleic Hydrazide	6.50	4	111	55	16.14	113
Maleic Hydrazide	6.50	4	111	83	13.34	113
Bialaphos	7.50	4	322	172	22.32	209
Bialaphos	7.50	4	322	216	18.45	209
Bialaphos	7.50	4	322	233	17.96	209
AMPA	7.80	4	110	63	19.55	116
AMPA	7.80	4	110	79	22.74	116
AMPA	7.80	4	110	81	12.27	116
Glufosinate	7.80	3	180	95	16.82	141
Glufosinate	7.80	3	180	136	16.29	141
Chlorate	7.73	2	83	51	28.12	125
Chlorate	7.73	2	83	67	20.5	125
Chlorate	7.73	2	85	69	20.84	122
N-acetyl glufosinate	8.00	2	222	136	21.68	140
N-acetyl glufosinate	8.00	2	222	180	16.82	140
HEPA	8.10	2	125	79	21.07	110
HEPA	8.10	2	125	95	13.11	110
N-acetyl AMPA	8.40	2	152	63	25.43	123
N-acetyl AMPA	8.40	2	152	79	42.34	123
N-acetyl AMPA	8.40	2	152	110	12.5	123
Ethephon	8.93	3	143	79	17.96	75
Ethephon	8.93	3	143	107	10.23	75
MPPA	8.50	2	151	107	15.91	112
MPPA	8.50	2	151	133	12.69	112
Phosphonic acid	9.00	2	81	63	26.76	96
Phosphonic acid	9.00	2	81	79	14.28	96
Cyanuric acid	12.5	4	128	42	14.47	90
Cyanuric acid	12.5	4	128	85	10.23	90
N-Acetyl glyphosate	12.2	2	210	150	13.07	123
N-Acetyl glyphosate	12.2	2	210	192	10.23	123
glyphosate	12.3	2	168	63	22.62	110
glyphosate	12.3	2	168	79	38.85	110
giypnosate ISID	12.3	2	1/2	63	25	110
Perchiorate	17.8	3	99	83	26.19	152
Percniorate ISTD: Internal Standard	17.8	3	101	85	26.3	152

RESULTS

IC-MS/MS Separation

An good IC-MS/MS separation was achieved to resolve 16 analytes in different SRM channels. (Figure 3). SRM chromatograms in grape samples are shown in Figure 4.

Figure 3 SRM chromatograms of 16 polar pesticides (10 µg/L each).

nt was optimized

Figure 4 SRM chromatograms of 16 polar pesticides in spiked grape matrix at 10 µg/L with the exception of the 20 µg/L spike concentration for maleic hydrazide and 1 µg/L spike concentration for the glyphosate ISTD.

Method calibrations

Three calibration curves are constructed using standards in neat solvents, matrix-matched calibration standards (MMS), and Matrix Extracted Standards (MES) respectively. Table 1 shows the quantitation ions, calibration ranges, calibration method, and the coefficients of determination (r²); correlation coefficients obtained ranged from 0.9953–0.9999. The method provides better LOQs than EU maximum residue levels (MRLs) (Figures 5-10).

Table 1. Method Calibrations for 16 polar pesticides using neat standards, MMS, and MES

Analyte	Quantifiar	Standards in MeOH: DI water (50:50)		MMS		MES	
	Quantifier Transition	Range (µg/L)	Coefficient of Determination* (r ²)	Range (µg/L)	Coefficient of Determination * (r ²)	Range (µg/L)	Coefficient of Determination * (r ²)
AMPA	110>63	1-50	0.9989	1-100	0.9985	5-50	0.9973
Bialaphos	322>216	1-50	0.9999	1-100	0.9997	5-50	0.9993
Chlorate	83>67	1-50	0.9994	1-100	0.9984	5-50	0.9982
Cyanuric acid	128>85	2-50	0.9992	10-100	0.9994	10-50	0.9918
Ethephon	143>107	1-50	0.9997	1-100	0.9995	5-50	0.9987
Fosetyl	109>81	1-50	0.9991	1-100	0.9997	5-50	0.9991
Glufosinate	180>136	1-50	0.9993	1-100	0.9996	5-50	0.9991
	400.00	1-50	0.9990	1-100	0.9996	5-50	0.9975
Glyphosate	168>63				0.9995**		0.9992**
HEPA	125>79	1-50	0.9991	1-100	0.9999	5-50	0.9961
Maleic Hvdrazide	111>82	2-50	0.9994	10-200	0.9995	20-200	0.9992
MPPA	151>133	1-50	0.9985	1-100	0.9995	5-50	0.9986
N-acetyl	152>110	1-50	0.9988	1-100	0.9997	5-50	0.9985
N-acetyl glufosinate	222>136	1-50	0.9995	1-100	0.9995	5-50	0.9973
N-acetyl glyphosate	210>150	1-50	0.9996	1-100	0.9998	5-50	0.9980
Perchlorate	99>83	1-50	0.9995	1-100	0.9998	5-50	0.9971
Phosphonic acid	81>79	1-50	0.9995	1-100	0.9980	5-50	0.9985

* - External standard Calibration, quadratic fitting

** - Internal standard Calibration, quadratic fitting

drapes

Figure 5 SRM chromatograms of ethephon MMS (1 µg/L) and MES (0.01 mg/kg) in table grapes. The EU residue definition for ethephon is ethephon only and the MRL is set at 1 mg/kg in table grapes.

Figure 8 SRM chromatograms of chlorate MMS (1 µg/L) and MES (0.01 mg/kg) in table grapes. The EU residue definition for chlorate is chlorate only and the MRL at 0.01 mg/kg in table grapes.

Figure 9 SRM chromatograms of fosetyl MMS (1 µg/L) and MES (0.01 mg/kg) in table grapes. The EU residue definition for fosetyl is the sum of fosetyl, phosphonic acid, and their salts and the

Retention Time Stability, Selectivity, and Recovery

Retention time stability was determined by five replicates of MMS in spiked grape matrix at 10 µg/L. Our results showed good retention time stability within \pm 0.1 min. By using the SRM mode, analyte selectivity was confirmed based on the presence of the transition ions (quantifier and qualifier) at the retention times corresponding to those of the respective pesticides. The recoveries were checked at two spiking levels: 20 and 100 μg/kg (10 and 50 μg/L) except for maleic hydrazide at 40 and 100 µg/kg (20 and 50 µg/L). Samples in triplicate were extracted with a modified QuPPe method using pure methanol and a Thermo Scientific[™] Dionex[™] OnGuard[™] II RP cartridge as the clean-up step. Glyphosate labeled with 13C15N was used to control the final volume of the extract. Recoveries against MMS calibration curves were in the acceptable range (70–120%).

CONCLUSIONS

- This workflow supported simultaneous multiresidue analysis of polar pesticides in the grape samples using the modified QuPPe method.
- The IC-MS/MS method was developed using a Dionex IonPac AS19-4µm column set and a compact IC system coupled to a TSQ Quantis[™] triple quadrupole mass spectrometer.
- The results showed that the sensitivity, linearity, retention time precision, and recovery comply with the SANTE/11813/2017 method performance criteria.

Note: See Thermo Scientific Application Note 72915 for more details².

REFERENCES

- 1. SANTE/11813/2017, Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed, https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf (accessed Nov 07, 2018).
- 2. Thermo Scientific Application Note 72915: Determination of Polar Pesticides in Grapes Using a Compact Ion Chromatography System Coupled with Tandem Mass Spectrometry. Sunnyvale, CA. 2019, https://appslab.thermofisher.com/App/4249/determination-polar-pesticides-grapes.

TRADEMARKS/LICENSING

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

PO65458-EN0419S

