Build Curated and Annotated HRAM MSⁿ Spectral Libraries To Aid In Unknown Structure Elucidation

Caroline Ding¹, Kate Comstock¹, Seema Sharma¹, Mark Sanders¹, Michal Raab², ¹Thermo Fisher Scientific, San Jose, CA, USA 95134, ²HighChem, Bratislava, Slovakia

ABSTRACT

Purpose: Validate new library searching algorithms and structure ranking algorithm mzLogic[™] for local proprietary MSⁿ spectral libraries to aid in structure elucidation of unknown drug metabolites, impurities or degradants.

Methods: Ten Sildenafil drug standards were infused onto the Thermo Scientific[™] Orbitrap ID-X[™] Tribrid[™] mass spectrometer to obtain MSⁿ spectral trees for building a spectral library. LCMS data were collected with a mixture of four sildenanfil standards to test library searching, mzLogic and unknown structure elucidation. Mass Frontier™ 8.0 software was used for the complete workflow including library building, data processing, identification and structure elucidation.

Results: Curated HRAM MSⁿ spectral library which contains substructure annotations helps to elucidate the structures of true unknowns. mzLogic utilizes the spectra and structure information in the local library for unknown structure ranking.

INTRODUCTION

Small molecule structure elucidation is a very challenging and time consuming task. A mass spectral library with extensive MSⁿ spectral tree and substructure information is a valuable tool for rapid identification of small molecule unknowns and unknown unknown structure characterization. The objective of this work is to demonstrate a complete workflow from building local version of "mzCloud" - HRAM MSⁿ spectral library using the Orbitrap ID-X Tribrid mass spectrometer for in-house proprietary compounds with automated curation and structure annotations in Thermo Scientific™ Mass Frontier[™] structure identification software 8.0. The MSⁿ spectral library with structure annotations not only enables library searching to quickly identify unknown compounds in the library, but also enables substructure matching. The new mzLogic structure ranking algorithm is able to use the spectral knowledge in the library, rank possible structure candidates based on a combination of spectral similarity and common substructure overlapping, which results in quick and confident structure identification of unknown drug metabolites, impurities or degradants.

MATERIALS AND METHODS

Data Acquisition

An Orbitrap ID-X Tribrid mass spectrometer coupled with a Thermo Scientific[™] Vanguish[™] UHPLC system were used for data acquisition. As proof of concept, a library was created for ten sildenafil drug analog standards. Compounds were infused by electrospray ionization and MSⁿ data collected with varying collision energies for multiple fragmentation activation types. Four sildenafil standards with same mass (two of them were in the library, and two of them were not in the library) were mixed and analyzed by LC/MSⁿ.

LCMS data of the 4 standards was processed in Mass Frontier 8.0 by JCD component detection and spectral tree deconvolution, followed by library-searching including identity, tree search, similarity forward, identity substructure, subtree search, and mzLogic structure ranking.

Figure 3. JCD detected four components with m/z of 489.2285 which corresponded to the four sildenafil compounds in the LCMS mixture.

Figure 4. Deconvoluted spectral tree in Mass Frontier 8.0 for each of the 489 compounds with up to MS⁴ fragmentation spectra from the Orbitrap ID-X.

RESULTS

Compound Identification with Library Searching

The four components with spectral trees were searched against the local Sildenafil compound library in Chromatogram Processor module. Mass Frontier 8.0 includes new library searching types, new and improved matching algorithms that are trained on the extensive mzCloud database with real fragmentation data.

Below is a summary of the library search types, used stages and constraints and use in Mass Frontier 8.0.

Table 1. Library Search Types in Mass Frontier 8.0

Search Types	Used Stages and Constraints	Use
Identity	 Compares the MS² library spectra against the MS² query spectra; uses best confidence match score calculation. The MS² precursor ions must match. 	Compound Identification
Identity Substructure	 Compares any MSⁿ library spectra against any MSⁿ query spectra; uses best confidence match score calculation. The precursor ions at any MSⁿ stage must match. 	Substructure Identification
Similarity (Forward and Reverse)	 Compares the MS² library spectra against the MS² query spectra, uses best confidence match score calculation. The MS² precursor ions do not have to match. 	Identify structurally similar compounds
Tree Search	 Compares any MSⁿ library spectra against any MSⁿ query spectra; takes into account of the whole MSⁿ hierarchy; uses aggregated tree match score calculation. The MS² precursors for the query spectrum and the library spectrum must match. 	Compound Identification with increased specificity
Subtree Search	 Compares any MSⁿ library spectra against any MSⁿ query spectra; takes into account of the MSⁿ subtree hierarchy; uses aggregated subtree match score calculation. The precursor ions at any MSⁿ stage must match. 	Substructure Identification with increased sensitivity

Compound Identification

For the two 489 compounds (RT 5.97min and 6.25min) that are in the local Sildenafil library, Mass Frontier 8.0 returned the right compound with 99 confidence match scores for both Identity search and Tree Search.

Figure 5. Compound matches with Identity search.

Nam	ie	Scan No.	Precursor m/z	Match	MSn	t _R (min) ^	Abundance	Annotation Sources
- C	omponents							
	Component 1	1569	489.2285	99 Homosildenafil	4	5.966	2,205,419,520	Identity
	Component 2	1732	489.2284	99 Dimethylsildenafil	4	6.254	1,925,246,848	Identity
	-Component 4	1937	489.2285	57 Dimethylsildenafil	4	6.620	794,834,816	Identity
	Component 6	2024	489.2284	58 Dimethylsildenafil	4	6.766	1,999,293,184	Identity

Figure 6. Compound matches with tree search.

Name		Scan No.	Precursor m/z	Match	MSn	t _R (min) [▲]	Abundance	Annotation Sources
- Co	mponents							
	Component 1	1569	489.2285	99 Homosildenafil	4	5.966	2,205,419,520	Tree Search
-	Component 2	1732	489.2284	99 Dimethylsildenafil	4	6.254	1,925,246,848	Tree Search
-	Component 4	1937	489.2285	57 Dimethylsildenafil	4	6.620	794,834,816	Tree Search
	Component 6	2024	489.2284	58 Dimethylsildenafil	4	6.766	1,999,293,184	Tree Search

MSⁿ Tree search was able to separate out the two library compound hits more in match scores compared to identity search which is MS² vs MS² only. Comparison of identity search vs tree search for component #1 are shown below.

Figure 7. The two library hits and match scores for component #1 with identity search (MS² vs MS² only).

Figure 8. The two library hits and tree match scores for component #1 with MSⁿ tree search (MSⁿ vs MSⁿ).

Search Ty	ype .	Tree Search 🔹 🔅					¥
Library		Sildenafi	ls				,
	*	Search S	elected		🕌 Se	arch All	
Matches	for C	ompone	nt 1 using	g Tree S	earch profil	e	
L	_		ID: 10			Sildenafils	^
1	1 Water		Homosil				
C ₂	3H32N	l₀O₄S	MM: 48	8.220€	Tree M	latch: 98.8	
Đ	0			ESI	MS ² ;	98.8	
	1		ID: 2			Sildenafils	
2	Y.	Ŕ	Dimethylsildenafil				
				_			

Similarity and Substructure Matching

For the other two 489 compounds (RT 6.62min and 6.77min) that are not in the Sildenafil library, identity or tree search gave 57, 58 confidence scores due to no exact compound matches in the Sildenafil library which is expected. The next step is to try the similarity, identity substructure and subtree search to identify substructure matches in the library.

With similarity search, we got confidence score of 38 for both of these two 489 compounds. Since similarity search compares query MS² vs library MS² only, it did not give good substructure matches from the library.

Figure 9. Similarity forward search results for the two 489 compounds at RT 6.62min and 6.77min.

Name	Scan No.	Precursor m/z	Match	MSn	t _R (min) *	Abundance	Annotation Sources	
 Components 								
-Component 1	1569	489.2285	99 Homosildenafil	4	5.966	2,205,419,520	Tree Search	
-Component 2	1732	489.2284	99 Dimethylsildenafil	4	6.254	1,925,246,848	Tree Search	
Component 4	1937	489.2285	38 Dimethylsildenafil	4	6.620	794,834,816	Similarity Forward	
Component 6	2024	489.2284	38 Dimethylsildenafil	4	6.766	1,999,293,184	Similarity Forward	

On the other hand, identity substructure and subtree searches which match MSⁿ vs MSⁿ both gave good substructure matches for these two 489 compounds, matching substructure of O-Desethyl Sildenafil in the library. The substructure search results are consistent with the common substructure overlap between these two 489 compounds (Isobutyl Sildenafil @RT6.62min and Propoxyphenyl Sildenafil @6.77min) and O-Desethyl Sildenafil in the library.

Figure 10. Identity substructure search results for the two 489 compounds at RT 6.62min and 6.77min.

Name	Scan No.	Precursor m/z	Match	MSn	t _R (min) *	Abundance	Annotation Sources
 Components 							
-Component 1	1569	489.2285	99 Homosildenafil	4	5.966	2,205,419,520	Tree Search
-Component 2	1732	489.2284	99 Dimethylsildenafil	4	6.254	1,925,246,848	Tree Search
Component 4	1937	489.2285	90 O Desethyl Sildena	f 4	6.620	794,834,816	Identity Substructure
Component 6	2024	489.2284	90 O Desethyl Sildena	f 4	6.766	1,999,293,184	Identity Substructure

Figure 11. Subtree search results for the two 489 compounds at RT 6.62min and 6.77min.

Nam	e	Scan No.	Precursor m/z	Match	MSn	t _R (min) ^	Abundance	Annotation Sources
• C	omponents							
	-Component 1	1569	489.2285	99 Homosildenafil	4	5.966	2,205,419,520	Tree Search
	-Component 2	1732	489.2284	99 Dimethylsildenafil	4	6.254	1,925,246,848	Tree Search
	Component 4	1937	489.2285	90 O Desethyl Sildena	f 4	6.620	794,834,816	Subtree Search
	Component 6	2024	489.2284	89 O Desethyl Sildena	f 4	6.766	1,999,293,184	Subtree Search

Figure 12. Example of substructure match on the MS3 level, indicating these two 489 compounds share this common substructure from the library.

mzLogic Structure Ranking

mzLogic search algorithm in Mass Frontier 8.0 utilizes the fragmentation data and structures in the spectral library to rank the possible structure candidates for a true unknown compound that is not in the library. The ranking is based on spectral similarity and maximum common substructure overlap. For this study, we proposed nine structure isomers for mzLogic ranking for the 489 compounds @ 6.62min and @6.77min. The correct structures were ranked among the top scored candidates.

Figure 13. For the 489 compound

@6.62min, the correct structure was ranked #2 and had same mzLogic score as rank #1.

CONCLUSIONS

- Small molecule unknown structure elucidation is a very time and resource consuming task. If you have a lot of in-house standard compounds, building a curated and annotated HRAM MSⁿ spectral library can be a very valuable tool for compound identification and identifying true unknowns that are similar or share common substructures to the compounds in the library.
- mzLogic can utilize the fragmentation spectra knowledge in the spectral library to quickly narrow down the list of possible structure candidates for further validation. It is an innovative approach for unknown structure characterization utilizing the latest library searching technology.

ACKNOWLEDGEMENTS

We would like to thank Health Canada for supplying the sildenafil standard compounds.

TRADEMARKS/LICENSING

© 2019 Thermo Fisher Scientific Inc. All rights reserved. Mass Frontier and mzLogic are trademarks of HighChem LLC. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

PO65519-EN0519S

ecursor Structure	
+ NN	
$H_{19}N_4O_3S^+$	m/z 299.11724

Figure 14. For the 489 compound @6.77min, the correct structure was ranked #2 and had same mzLogic score as rank #1.

