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ABSTRACT

Purpose: To demonstrate the applicability of MS" spectral library data for the
determination of previously unknown molecules through substructure identification
combined with in silico fragmentation prediction.

Methods: HRAM MS" fragmentation data was acquired for a set of known compounds
which were not present in a reference fragmentation library. The data was searched
against a reference spectral library of chemically diverse compounds containing
MS/MS and MS" data on >17,000 chemical standards. Substructure information was
obtained by matching portions of the query tree to reference spectral trees and
assembling the proposed substructures to putative candidates which underwent
fragmentation prediction to assist in rank order determination of the best candidates.

Results: Out of twenty compounds in the study, the approach used was able to
propose the correct structure for one while the other nineteen compounds had
structures proposed that were similar to the correct structure with some small
structure variations potentially due to chemical substructure coverage of the reference
library.

INTRODUCTION

A multi-spectrum match against a high quality reference spectral library is an important tool
for the identification of unknown compounds in any sample. However, given the potential
chemical diversity possible in a real world sample, it is unreasonable to assume that every
potential unknown exists within the currently available reference spectral libraries. While
those libraries will continue to grow over time, alternative techniques to propose candidate
structures for unknowns are necessary. Here we demonstrate the application of high
resolution accurate mass multi-stage fragmentation data (HRAM MS") in the determination of
substructures for unknown compounds by searching the query data against a large and
diverse MS" reference library. Substructures determines through library searching were
assembled into putative candidates with the candidates being ranked for their likelihood
based on in silico fragmentation prediction annotation of the original query MS" data.

MATERIALS AND METHODS

Sample Preparation

Chemical standards for twenty small molecule plant and fungal metabolites were obtained
(AnalytiCon Discovery GmbH, Germany) and prepared both as mixes of the pure standards
and spiked into an extract of St. Johns Wart to provide a background matrix, prepared by
extracting 1g of dried St. Johns Wart powder with 10mL MeOH:Water followed by
centrifugation. Samples were prepared so that the final concentration for the compounds
was 1uM

Mass Spectrometer Acquisition Conditions

High resolution accurate mass fragmentation data was acquired on a Thermo Scientific™
Orbitrap Fusion™ Tribrid™ mass spectrometer connected to a Thermo Scientific™
Vanquish™ UHPLC system. Samples were separated after injection ona 100 X 2.1mm, 1.9
um Thermo Scientific™ Hypersil GOLD™ aQ column with a gradient elution of methanol and
water with 0.1% formic acid over a fifteen minute run time at a flow rate of 0.5 mL/min (Table
1). Data dependent precursor ion selected MS" data was acquired by triggering an
fragmentation event using high energy collisional dissociation (HCD) at a 50% normalized
collision energy to generate the MS? level spectra with up to 3 productions being
subsequently serially isolated for MS?3 fragmentation using trap collisional dissociation (CID) at
a 45% energy with a helium collision gas.

Table 1. LC Gradient for Sample Analysis

Time (min) % A (Water + 0.1% Formic Acid) % B (MeOH + 0.1% Formic Acid)
0.0 99 1
1.0 99 1
10.0 1 99
11.5 1 99
11.51 99 1
15.0 99 1

RESULTS
Search Approach

The acquisition method chosen was designed to acquire fragmentation data on
substructures small in relative size to the precursor structure. The on-mass resonance
excitation of trap CID leads to the creation of fewer fragment ions resulting from the
most energetically favorable fragmentation mechanisms. Utilizing HCD fragmentation
for the MS?2 stage provided a wider range of fragment ions, including those at a lower
m/z, which were available for selection for subsequent MS?3 fragmentation. This
approach gives a broad spectral tree which branches quickly resulting in access to
fragmentation of small substructures (low m/z) from the unknown.

Typically, the MS" data acquired is used to perform an identification search where the
query spectra must match the library spectra both in spectral content but also in
connectivity (Figure 1). In this approach, the need to match connectivity was not
considered — the precursor history of the MS" tree was not a constraint on the search
and only similarity of the MS" spectra to a library MS" reference was used. In this way
substructures can be gleaned from the library when the unknown query compound
does not exist in the library.

Figure 1. Subtree Library Search Approach
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ID Search — MS" level and precursor must match. Subtree Similarity search — Query MS" spectra can
matched against any similar reference spectra.

Data Processing Examples

The MS" spectral trees for the unknown compounds were submitted for spectral library
search in different ways. The first approach was to submit the entire MS" spectral tree
for a search using a substructure tree similarity search. The second approach was to
submit individual nodes of the unknown MS" trees for similarity search and collate the
resulting library results.

Using the complete MS" spectral tree approach, hits were sparse given that the library
did not contain the test compounds. The alternative MS" tree search approach was to
perform an MS" similarity search were the submitted unknown query tree was searched
only for similarity matches. In this approach the precursor match was not required, only
similarity between the query spectra and library hits. This provided information on the
potential substructures as shown in Figure 2 for an unknown with m/z 305.0661.

In this example, the query spectra provided a match to a substructure observed in
several library compounds. In addition, the subsequent MS" spectra for this unknown
provided additional match information against other compounds in the reference library
(Figure 3) including matching deep into some reference trees. Scrutinizing these
similarity matches provides information about potential substructures in the unknown
compound.

Figure 2. Partial MS" Tree Spectra Match — MS2 Sim Match for Unknown 305.0661
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Utilizing this search approach, collections of potential substructures were created
for each of the unknown compounds. These where used in combination with an
understanding of the nature of the compounds (plant biochemical space) to begin
to propose structures for each candidate with the proposed elemental composition
acting as an upper limit and a guide on elements and atom counts. In addition to
this approach, candidate substructures were also searched in chemical databases
of relevant plant biochemistry to further provide candidates for each unknown.

This was a time consuming process and a good potential step for automation in
the future to provide a relevant set of potential candidates based on chemical

substructure to supplement the manual assembly of the proposed substructures

obtained from the library search.

An example of the approach can be demonstrated with unknown 193.0499.
Subtree searching resulted in multiple matches for the acquired query MS" data
which provided a number of structure candidates (Figure 4). The matching
fragment ions, and the precursor fragment structures for matching MS" spectra,
formed the basis for constructing a candidate for this unknown.

Figure 4. One of Multiple Subtree Search Similarity Matches for Unknown 193.0499
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Utilizing the structure candidates from the subtree search as the starting point, the

matching fragment spectra could be studied in the reference library to provide

structures for the precursors of matching spectra as well as matching fragment ion
structures. For unknown 193.0499 a set of substructures (Figure 5) was proposed

and used to derive putative candidates.

Figure 5. Substructures Obtained from Subtree Searching of Unknown 193.0499
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Each of the putative candidate structures underwent in silico fragmentation and
annotation of the acquired MSn tree on each unknown (Figure 6). The putative
candidate providing the best annotation coverage of the query spectral tree was
assumed to be the best / correct candidate. These proposals were then compared to
the real structures for the unknowns used in this study. In general, the proposed
candidate structures were very close to the real structure however the positions of
some functional groups (hydroxylation position on aromatic rings for example) were
difficult to resolve absolutely with this approach which resulted in proposing correct
Markush style structures but not absolute structures with the exception of one unknown
where the proposed candidate was the correct structure.

Figure 6. Highest Ranking Putative Candidate for Unknown 193.0499
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= The demonstrated approach was able to provide valid and high quality putative structures for
the unknowns in the experiment

= Absolute structure and the localization of some functional groups was difficult using this
approach even with MS3 and MS4 data indicating that perhaps a more advanced acquisition
iSs necessary.

=  Further automation of several time and labor intensive steps is still required.

= Extensive MSn reference data can be leveraged to give substructure information on
unknowns that are not present in the reference library provided the library contains
compounds with representative common substructures to the unknown.
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