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Routine HelLa Peptide Screening

Kerry Hasselll, Mary Blackburn?, Michael Belford?, Michael Volny?, Scott Peterman?, Romain Huguet?; 1 265 Davidson Ave, Suite 101, Somerset, NJ 07783, 2 355 River Oaks Parkway, San Jose, CA 95112

ABSTRACT

Purpose: To demonstrate a discovery to quantitation work flow for peptide panel using FAIMS.

Methods: Used high resolution data to pick peptides for proteins and converted them to an SRM
table to be analyzed on a triple quadrupole mass spectrometer.

Results: Improvement of 95% of the transitions monitored was seen using the new FAIMS source
which lead to lower limits of detection.

INTRODUCTION

Highly multiplexed protein panels are developed to enable routine sample screening while
maintaining high throughput. The challenge to creating an analytically robust SRM method is
determining which peptides to select per protein and creating the resulting SRM table for confident
data acquisition. Each protein added to the target list increases total SRM count by 9 quickly causing
acquisition challenges on triple quadrupole mass spectrometers as most proteotypic peptides cluster
into small hydrophobicity groups. To increase the selectivity space, we have incorporated a novel
source, field asymmetric waveform ion mobility spectrometry (FAIMS) interface for both profiling and
screening to increase the selectivity metrics for an SRM method monitoring over 300 HelLa proteins
in 60 minutes.

MATERIALS AND METHODS

Sample Preparation

A stock solution of Thermo Scientific™ Pierce™ HeLA Protein Digest was used for all experiments,
injection 200 ng of HeLa. Pierce Retention Time Calibration (PRTC) mixture was spiked in at 5
fmol/uL.

LC/MS

Hela proteome profiling was performed using an Thermo Scientific™ Easy-nLC 1200™, Thermo
Scientific™ Orbitrap Tribrid™ mass spectrometer with a Thermo Scientific™ FAIMS Pro™ interface.
A Hel a digest was injected and analyzed using a single compensation voltage (CV) setting by
standard DDA methods and repeated for eight different CV settings. Each RAW file was processed to
create a data matrix of proteins and peptides, retention time, CV, and precursor and product ion
distribution profiles.

Data Analysis

Aroutine was created to construct a scheduled SRM table for the top 300 HeLa proteins using over
2500 SRM transitions. The SRM table was imported into a triple quadrupole mass spectrometer,
Thermo Scientific™ TSQ Altis™ with the FAIMS Pro interface and evaluated for analytical
performance. e

Figure 1. From left to right, the new FAIMS Pro interface, Easy Nano 1200, and TSQ Altis triple
guadrupole mass spectrometer.
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Figure 2. Workflow of discovery to routine quantitation of a large peptide panel.

RESULTS

Discovery HRAM Experiments

The discovery method was used to fully characterize the HeLa digest. Replicate sample injections
using single CV settings significantly increases the protein coverage from 310 proteins without FAIMS
to over 500 proteins with FAIMS. Example of the base peak is shown in Figure 3, demonstrating the
improvement using FAIMS.
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Figure 3. HRAM spectra of the overall base peak chromatogram with and without FAIMS. The inset
demonstrates a low level peptide gaining intensity with FAIMS

Optimization of compensation voltages is demonstrated in Figure 4 for three different peptides,
showing the importance of using the correct CV for individual peptides.

Figure 5 is an example of the improvement of peptide fragmentation when using FAIMS.
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Peptide/Protein Selection — Pinnacle Software

Pinnacle software (Optys Tech Corporation) offers capabilities of searching routing (either spectral or
sequence matching), new library creation, facilitating user-defined protein selections, establishment
of peptide selection rules, and building the PRM/SRM assay. Example of the peptide selection is
shown in Fig';" e
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Figure 6. Screenshot of workflow of the selection of proteins/peptides from Pinnacle.

In addition, the resulting data are used to create a four-dimensional library that consists of the protein
and corresponding peptides, and for each peptide, the measured retention time, CV setting, and
optimal precursor m/z value and product ion distribution.

Targeted Experiments — Triple Quadrupole Mass Spectrometry

The addition of FAIMS enhances the selectivity and sensitivity of peptides, increasing the number of
available peptides per targeted protein and resulting in more options to be considered in creating the
scheduled SRM table.

The set of experiments was performed on a high-end triple quadrupole mass spectrometer capable
of acquiring robust data with less than 5 msec dwell times per SRM transition and variable dwell
time settings per SRM transition. The SRM table is presented in Figure 7. For each peptide one to
three transitions were selected to monitor; this resulted in many transitions to be monitored. In order
to determine if there was enough dwell time, a visualization tool in the method editor software was
used to schedule windows, and is shown in Figure 8.

Compound Retention Time [min] RT Window [min) Precursor (m/z) Product (m/z) Collision Energy (V) Min Dwell Time {ms) FAIMS CV (V)
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462  DSHGVAQVR(=2) | 25.06 15 454,749 567.252 1838 -50
463 DSHGVAQVR[+2] | 25.06 15 484749 572351 188 .50 H
Figure 7. SRM table
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Figure 8. Visualization tool with the method editor showing the number of transitions per
time as well as the dwell times of different precursor masses over the chromatographic
timescale.

e Ratio
P - R
TP P N A A P P PR e A P W A P AP o

For the different protein groups targeted, the optimal peptides were selected based on relative
response in the discovery method, but more importantly on the retention time and CV setting as the two
values were used to create the final SRM table. Peptides were grouped into overlapping retention time
and CV bins to maximize duty cycle while maintaining analytical performance. FIG. 7 depicts the
variation of transmitted ion abundance with CV value for two peptides.
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Figure 7. Comparison of peak area of no FAIMS, red, to different compensation voltages
highlighted in blue.

PRTC, a well known heavy labeled peptide standard was used to show overall intensity improvement
using FAIMS and the results can bee seen in Figure 8. The standard was than made into a dilution
series to study if linearity or lower limit of detection can be obtained using FAIMS. Figure 8 illustrates
that the linearity is not affected by FAIMS, and Figure 9 demonstrates the ability to reach a lower LLOQ
because of diminishing interferences in the quadrupole’s isolation window.
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Figure 8. PRTC total ion current of peak intensity with and without FAIMS.
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Figure 9. Peptide LTILEELR (heavy labeled) spiked into HeLa in
concentration range 1 attomol/uL — 100 fmol/uL linearity remains
consistent with FAIMS across linear range.
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Figure 10. Peptide LTILEELR (heavy labeled) spiked into HeLa in concentration range 1
attomol/uL — 1 fmol/uL at low concentration interferences are present and with FAIMS the
linearity is improved at lower concentrations.

Of the 150 proteins monitored there was 95% improvement of peptide signal, with varying results of
improvement.
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Figure 12. Different peptides showing the wide range of area response.
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Figure 13. Consistency of source and instrumentation. The figure to the left is HRAM data at
different compensation voltage, whereas the right figure is compensation voltages on a triple
guadrupole. The same CV is ideal for this peptide on both instruments

CONCLUSIONS

» Field asymmetric waveform ion mobility spectrometry (FAIMS) can be used in a discovery
environment to determine a peptide screening panel. These peptides can be put into a targeted panel
to be monitored by a triple quadrupole mass spectrometer. The use of the FAIMS Pro interface
increases signal-to-noise of these peptides.

= Different compensation voltages can be run early in the workflow process to determine the optimal
voltage this is than translated to the targeted panel without additional optimization.

= Due to the improvement of signal-to-noise, linearity of calibration curves is improved and lower
LLOQs can be obtained.

= Further analysis will be done to inquire on looking at the number of transitions per peptide and
determining what protein expression levels can be monitored
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