Determination of Perchlorate by U.S. EPA Method 332.0 Using an Updated IC-MS System

Beibei Huang, and Jeffrey Rohrer, Thermo Fisher Scientific, Sunnyvale, CA, USA, 94085

ABSTRACT

Purpose: Our study evaluated the performance of a Thermo Scientific[™] Dionex[™] Integrion HPIC[™] system coupled with a Thermo Scientific[™] ISQ[™] EC single quadrupole mass spectrometer to fulfill the requirements of EPA Method 332.0 for determination of perchlorate in environmental waters.

Methods: The method uses a Thermo Scientific[™] Dionex[™] IonPac[™] AS20 column set, on a compact IC system (Dionex Integrion HPIC system) coupled with a recently introduced single quadrupole mass spectrometer (ISQ EC MS).

Results: The results showed this new IC-MS platform can successfully execute EPA Method 332 for the determination of perchlorate in drinking water. This study demonstrated great sensitivity, good precision and accuracy, and ruggedness. Method detection limit (MDL) values in deionized water are 20–60 ng/L, and MDLs in high-ionic-strength matrix are 30–60 ng/L.

INTRODUCTION

Perchlorate has been used as an oxidizer in rockets, munitions, and fireworks since the 1950s. It has been found to cause thyroid dysfunction, and has been linked to tumors in humans. Perchlorate is regulated under the Safe Drinking Water Act (2011). Massachusetts and California have established standards for drinking water of 2 μ g/L and 6 μ g/L, respectively, according to EPA website (https://www.epa.gov/dwstandardsregulations/perchlorate-drinking-water-frequent-questions#hassafe-level- determined). Determination of perchlorate in environmental samples has also gained the attention of the International Standards Organization (ISO).

U.S. EPA Method 332.0 — Ion Chromatography with Suppressed Conductivity and Electrospray Ionization/Mass Spectrometry is one of the most sensitive and robust characterization methods available for perchlorate determinations. Mass spectrometry (MS) provides lower detection limits in high-ionic-strength matrices than conductivity detection alone. These low detection limits are achieved without sample preparation.

MATERIALS AND METHODS

System Configuration

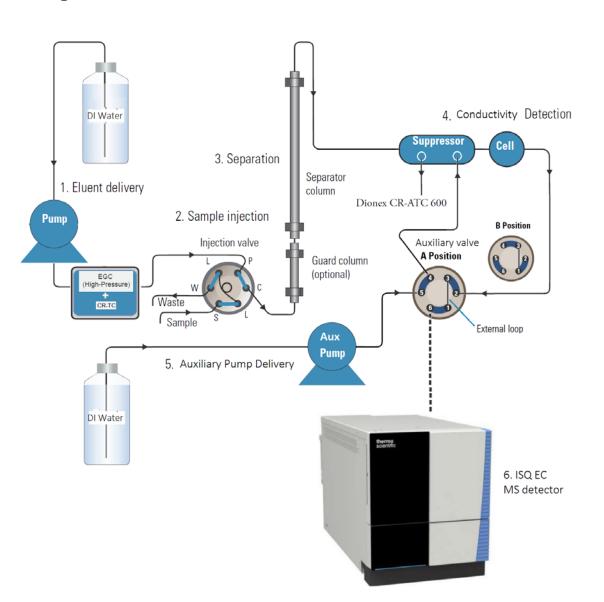


Figure 1. IC-MS Configuration with matrix diversion.

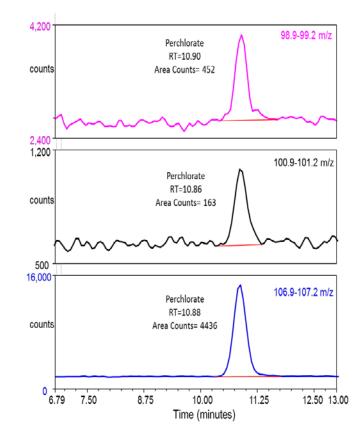
See Figure 1 for a schematic of the setup used for this study. In this method, the auxiliary six-port valve was placed between the conductivity detector and the mass spectrometer.

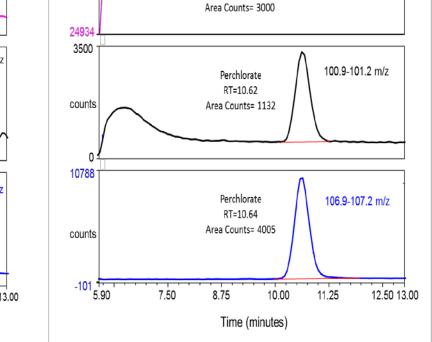
In U.S. EPA Method 332, this valve may be placed between the exit of the column and the entrance of the suppressor, or alternatively, it may be placed between the conductivity detector and the MS. In the later configuration, a 50/50 water/acetonitrile mixture is mixed with the eluate before it enters the MS using a static mixing tee. Our study used the later configuration, but without the need for the acetonitrile (i.e. 100% DI water is sent to the MS when the flow from the cell is sent to the suppressor regenerant channel). Ionization improvements to the electrospray source of the ISQ EC mass spectrometer eliminate the need for addition of organic solvents, and thus simplify operation.

Test Method

IC System:	Dionex Integrion HPIC system				
MS Detector:	Thermo Scientific ISQ EC single quadrupole mass spectrometer				
Columns:	Dionex IonPac AG20 Guard, 2 × 50 mm Dionex IonPac AS20 Analytical, 2 × 250 mm				
Eluent Source:	Thermo Scientific TM Dionex TM EGC 500 KOH Eluent Generator Cartridge with Thermo Scientific TM Dionex TM CR-ATC 600				
Eluent:	55 mM KOH				
Flow Rate:	0.3 mL/min				
Injection Volume:	100 μL				
Temperature:	30 °C (column compartment), 20 °C (detector compartment)				
System					
Backpressure:	~2350 psi				
Detection:	Suppressed Conductivity, Dionex AERS 500e Electrolytically Regenerated Suppressor (2 mm), AutoSuppression, 41 mA, external water mode via Thermo Scientific™ AXP™ Pump, external water flow rate (0.6 mL/min)				
Background					
Conductance:	~ 0.3 µS				
Run Time:	14 min				
Mass Spectrometric	c Detection				
Ionization Interface:	Electrospray ionization (ESI), negative mode				
Divert Valve Switch					
Time:	6.0–14.0 min (0.0–6.0 min to waste, 6.0–14.0 min to ISQ EC MS)				
	Sheath gas pressure: 50 psi				
Gas Control:	Aux gas pressure: 5 psi				
	Sweep gas pressure: 0.0 psi				
Source Voltage:	-2500 v				
Vaporizer	450 °C				
temperature:					
Ion transfer tube	200 °C				
temperature:					
	Dwell or				
	_{Mass} Scan SIM Source				
	list Times Widths Ion CID				

temperature:	200 °C					
·	Scan Name	Mass list (amu)	Dwell or Scan Times (sec):	SIM Widths (amu):	Ion Polarity:	Source CID Voltage:
Advanced Scan mode:	Perchlorate 99	99	1.2	0.3	Negative	0
	Perchlorate 101	101	1.2	0.3	Negative	0
	Perchlorate ISTD	107	1.2	0.3	Negative	0
Groups:	Chrom. Filter	Peak Wid	th (sec): 25			


Script for the matrix diversion method in the Thermo Scientific™ Chromeleon™ 7.2 Chromatography Data System (CDS) software


The ISQ EC MS method editor follows the same rules and logic as other IC modules and detectors. Once the MS instrument is properly connected and controlled by the Chromeleon CDS software, the user may create an instrument method. Due to the need for matrix diversion, we should manually insert commands to make a method that includes keeping the divert valve in the B position before the run, switching from B position to A position at the appropriate running time, and eventually switching back to B position after the run.

RESULTS

Separation

Figure 2 shows chromatograms of a 125 ng/L calibration standard with retention times for the ions monitored in this method (m/z 99, 101, and 107). Figure 3 shows chromatograms of a 1.0 µg/L perchlorate laboratory fortified synthetic sample matrix (LFSSM) solution containing 1000 mg/L of chloride, sulfate, and carbonate. Figure 3 also illustrates the effect of a high background at m/z 99 due to $H^{34}SO_4^{-1}$.

98.9-99.2 m/z

Figure 3. Mass chromatograms of an LFSSM containing 1.0 µg/L perchlorate and 1.0 µg/L internal

Method Calibration and Limit of Detection

Figure 2. Mass chromatograms of a standard

containing 125 ng/L perchlorate and 1.0 µg/L

An 18 O-enriched perchlorate (35 Cl 18 O $_4$ -) internal standard (m/z 107) is recommended to be used for quantitation to improve accuracy and ruggedness of the method in EPA Method 332. In our study, calibration curves with seven concentration levels ranging from 125 to 5000 ng/L were constructed for perchlorate in DI water and laboratory synthetic sample matrix (LSSM) using the internal standard method (Table 1).

Table 1. Method calibration and LOD for IC-MS of perchlorate.

	Quantitation Ion	Calibration Method	Coefficient of Determination (r ²)	LOD ^a (ng/L)
Perchlorate in deionized water over	m/z 99	Internal standard	0.9994	20-60
the range of 125-5000 ng/L	<i>m/z</i> 101	Internal standard	0.9997	30-60
Perchlorate in LSSM over the range of 400- 5000 ng/L	m/z 99	Internal standard	0.9995	n.a.
Perchlorate in LSSM over the range of 125- 5000 ng/L	<i>m/z</i> 101	Internal standard	0.9993	30-60

The calibration curves for perchlorate in the reagent water and high-ionic-strength matrix at 101 m/z over the range of 125–5000 ng/L using the internal standard method showed good linearity with the coefficients of determination being 0.9997 and 0.9993, respectively. The ISQ EC MS provides lower detection limits in high-ionic-strength matrices than conductivity detection alone. (See the details in AU72507)¹

Method Performance

Single laboratory precision in drinking waters, as measured by percent relative standard deviation (%RSD) of replicate analyses (n=7), was < 5% at concentrations > 150 ng/L perchlorate (Table 2). Accuracy, as measured by percent recoveries of fortified drinking water samples and external quality control samples, was 95.6 - 102% for concentrations > 150 ng/L perchlorate, and 111% for concentrations <150 ng/L perchlorate (Table 3).

Table 2. Single laboratory precision in drinking waters.

Drinking water 1 (ng/L, n=7)	Mean (ng/L)	SD	RSD
635			
639			
651			
614	622	20.3	3.26%
609			
592			
615			
Drinking water 2 (ng/L, n=7)	Mean (ng/L)	SD	RSD
992			
994			
1022			
1037	1007	36.9	3.66%
976			
960			
300			

Table 3. Single laboratory accuracy in drinking waters and external quality control samples.

Sample	Certified Concentration (ng/L)	Measured Concentration (ng/L)	Recovery (%)
Fortified Drinking Water 1	125	139	111
Fortified Drinking Water 2	1000	980	98.0
External Quality Control Sample 1	500	478	95.6
External Quality Control Sample 2	1000	1019	101.9

Single laboratory precision in fortified synthetic waters containing up to 1,000 mg/L of each of the common anions (LFSSM), as measured by %RSD of replicate analyses (n=7), was <5% at concentrations >150 ng/L perchlorate (Table 4). Accuracy, as measured by percent recovery of fortified synthetic high ionic waters containing up to 1,000 mg/L of each of the common anions (LFSSM), was 100–104% for concentrations > 150 ng/L perchlorate (Table 5).

Table 4. Single Laboratory Precision in LFSSM.

LFSSM (ng/L, n=7)	Mean (ng/L)	SD	RSD
1005			
1046			
1013			
1056	1035	24.4	2.36%
1072			
1035			
1019			

Table 5. Single Laboratory Accuracy in LFSSM.

Fortified LFSSM (ng/L)	Measured Concentration (ng/L)	Recovery (%)
200	200	100
400	400	100
800	814	102
1000	1035	104

Table 6 lists precision and recovery data for perchlorate in various drinking water and synthetic water samples at low and high fortification concentrations. Note: When it was unable to detect the *m/z* 99 ion in the LSSM fortified with 200 ng/L perchlorate due to the high-ionic-strength matrix, a remedial action was employed that consisted of using a Ba/Ag/H cartridge to reduce high background to a level that allows better integration of the perchlorate peak at *m/z* 99, and thus, better *m/z* 99/101 area count ratios for confirmation (Figure 4).

Table 6. Precision and recovery data for perchlorate in various matrices (n=7).

Matrix	Background Conc. (ppt)	Fortification Conc. (ppt)	<i>m/z</i> 99/101 Area Ratio	Avg. Recovery (%)	RSD
Reagent	ND	50	3.54	87.5	19.6
Water	ND	500	3.17	96.0	3.35
LCCM	ND	200	2.97 (after using Ba/Ag/H cartridge)	100	7.07
LSSM	ND	1000	2.78	104	1.89
Tap water	ND	1000	2.85	101	3.66
Pottlad water	270	200	2.96	100	3.24
Bottled water		1000	3.07	98.8	2.47
Dettled weter	er <lcmrl< td=""><td>200</td><td>3.08</td><td>103</td><td>3.56</td></lcmrl<>	200	3.08	103	3.56
Bottled water	<luivirl< td=""><td>1000</td><td>3.07</td><td>98.7</td><td>1.25</td></luivirl<>	1000	3.07	98.7	1.25

ND means "not detected" LCMRL=125 ng/L

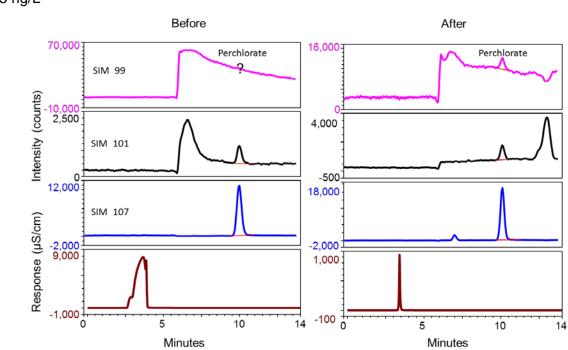


Figure 4. Conductivity and SIM chromatograms of 200 ng/L perchlorate in LSSM before and after using a Ba/Ag/H form cartridge.

Note: See Thermo Scientific Application Update 72507¹ and Application Note 72587² for more details.

REFERENCES

- Thermo Scientific Application Update 72507: Determination of perchlorate in environmental waters using a compact ion chromatography system coupled with a single quadrupole mass spectrometer. Sunnyvale, CA. 2017.
- 2. Thermo Scientific Application Note 72587: Determination of Perchlorate by U.S. EPA Method 332.0 Using a Compact Ion Chromatography System Coupled with Mass Spectrometry. Sunnyvale, CA. 2018.

TRADEMARKS/LICENSING

© 2018 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

