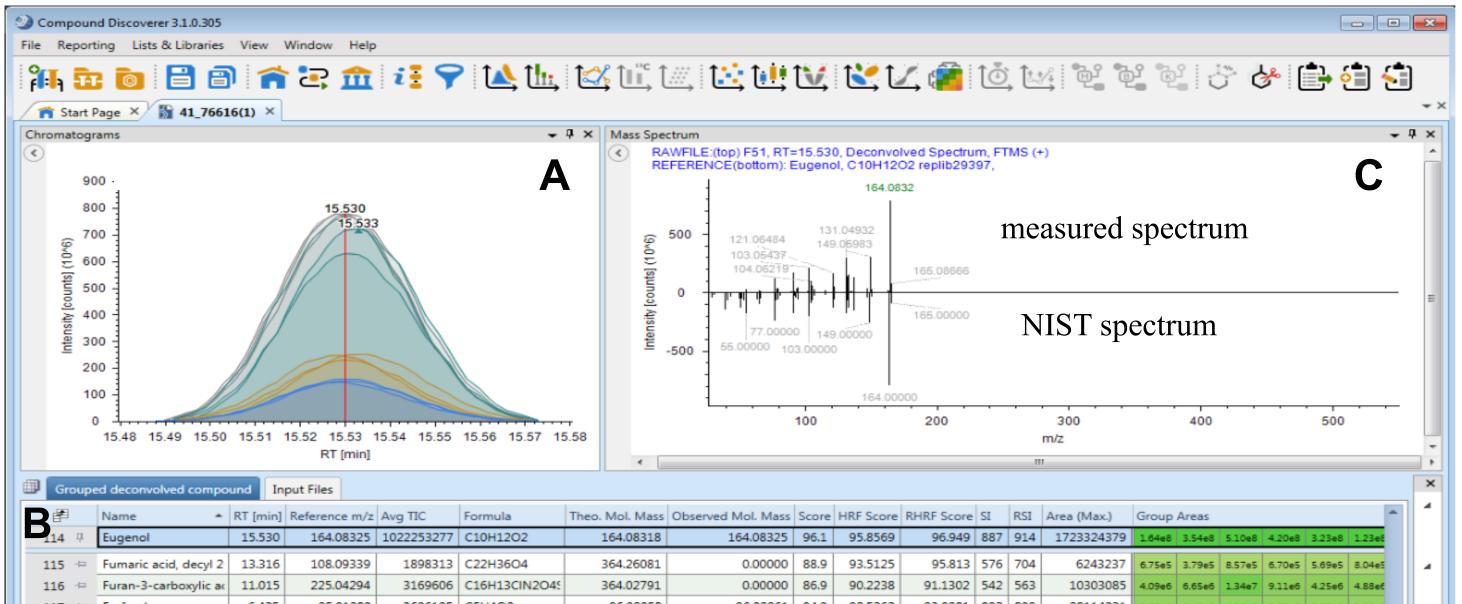
Chemometric Assessment of Volatile Fraction of Pesto by SPME Arrow GC Orbitrap Mass Spectrometry

Giulia Riccardino¹, Cristian I. Cojocariu,¹ Dominic Roberts, ¹ and Michele Suman² 1. Thermo Fisher Scientific, Runcorn, UK, 2. Barilla SpA – Advanced Research Laboratories, Parma, IT

Figure 1. Exactive GC Orbitrap GC-MS coupled with a TriPlus RSH autosampler.

ABSTRACT


"Pesto genovese' is a well-known pasta sauce. Pesto is a basil-based sauce characterized by unique organoleptic features associated with its ingredients, consisting mainly of crushed basil leaves, cheese (parmesan or pecorino), pine nuts and garlic blended with extra-virgin olive oil.

The production of pesto for wide distribution requires the use of additional ingredients and various technologies such as pasteurization and sterilization to extend the product shelf-life ensuring freshness for consumers. The preservation processes usually require high temperatures that can lead to changes in pesto composition affecting its taste and aroma.

In this study headspace solid phase micro-extraction (SPME) with Arrow technology coupled with gas-chromatography (GC) and Thermo Scientific[™] Orbitrap[™] high resolution mass spectrometry (HRMS) was used to determine the volatile profile of various pesto samples that were produced using various technological methods.

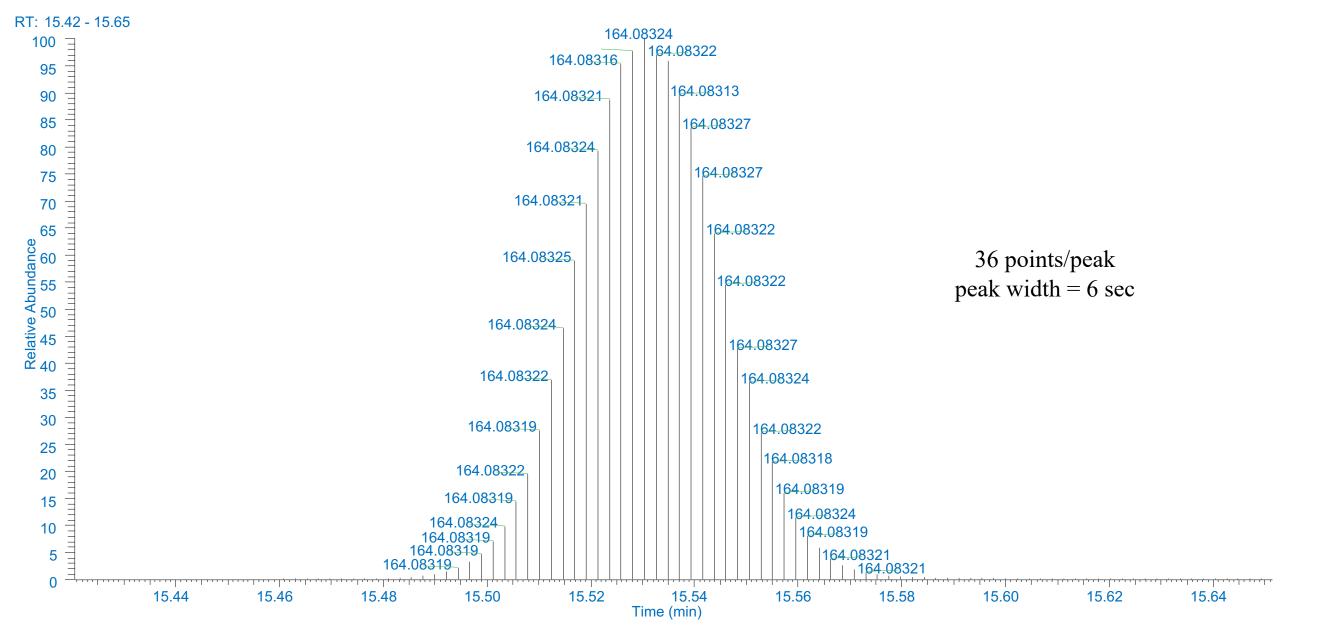
The SPME Arrow allowed for sample extraction and concentration in a single step, without the need of time consuming sample preparation and in a fully automated way. The improved geometry of the fiber provided a larger volume and a thicker coating phase allowing for fast extraction (15 minutes) of a large number of VOC ranging from major monoterpenes (like anethole, RT=13 min) to the Figure 3. Compound Discoverer result browser showing peak deconvolution results with for eugenol as an example (RT=15.53 min, *m/z* 164.08325). Overlaid XIC (extracted ion chromatogram) of m/z 164.08325 corresponding to eugenol base peak ion in all samples analysed (A); results table with list of compounds detected and identified based on library search (B); deconvoluted El spectrum of eugenol (C).

less predominant ones (such as y-terpinene, RT=9.56 min).

The study of the composition of the volatile fraction of pesto sauce ingredients (volatolomic profile) can help to discriminate among different production processes, for example y-terpinene and linalool are predominant in heat-processed samples. Volatile compounds can be easily extracted and concentrated using the headspace solid phase microextraction (HS-SPME) technique while a confident detection of the compound can be achieved through the high resolution accurate mass Orbitrap technology coupled with gas chromatography. In this study the Orbitrap technology coupled with SPME Arrow extraction was used to assess the volatile profile of pesto sauce. Thermo Scientific[™] Compound Discoverer[™] 3.1 software was used for unknown compound deconvolution, identification, sample group assessment and multivariate statistical analysis. Principal component analysis (PCA) resulted in identification of the main components linked to the different production processes and that are responsible for the differences observed between the samples.

MATERIALS AND METHODS

Twenty industry manufactured pesto samples were prepared in triplicate by weighting 1.0 g from each sample and transferring it into a 10 mL crimp top headspace vial (vials P/N 10-CV, caps P/N 20-MCBC-ST3). Each jar was well mixed to homogenize the matrix before weighting. A blend (pooled sample group) was obtained by pooling together all the samples. In order to reduce the bias in the results the sample vials were analysed in randomly. A retention index mix (Sigma Aldrich, C7-C30 saturated alkanes, P/N 49451-U) was injected at the beginning of the sequence and used to derive the RI of chemical components putatively identified by NIST17 library following spectral deconvolution. In all experiments, a Thermo Scientific[™] Exactive[™] GC Orbitrap[™] GC-MS equipped with two Thermo Scientific[™] Instant Connect split/splitless SSL Injectors (SPME Arrow liner 1.7 mm ID, P/N 453A0415) was coupled with a Thermo Scientific[™] TriPlus[™] RSH[™] autosampler with SPME Arrow configuration. Chromatographic separation was achieved on a Thermo Scientific[™] TraceGOLD[™] TG-1MS capillary column, 30 m × 0.32 mm × 1.0 µm (P/N 26099-2910). Additional HS-SPME Arrow and Orbitrap GC parameters are detailed in Table 1. The triple coating phase of the DVB/CWR/PDMS fiber (P/N 36SA11T3) allowed for effective extraction of a wide range of volatiles such as alcohols, aldehydes, ketones and esters. Data was acquired Thermo Scientific[™] TraceFinder[™] software. Compound Discoverer software was used for spectral deconvolution, compound identification and multivariate statistical analysis.

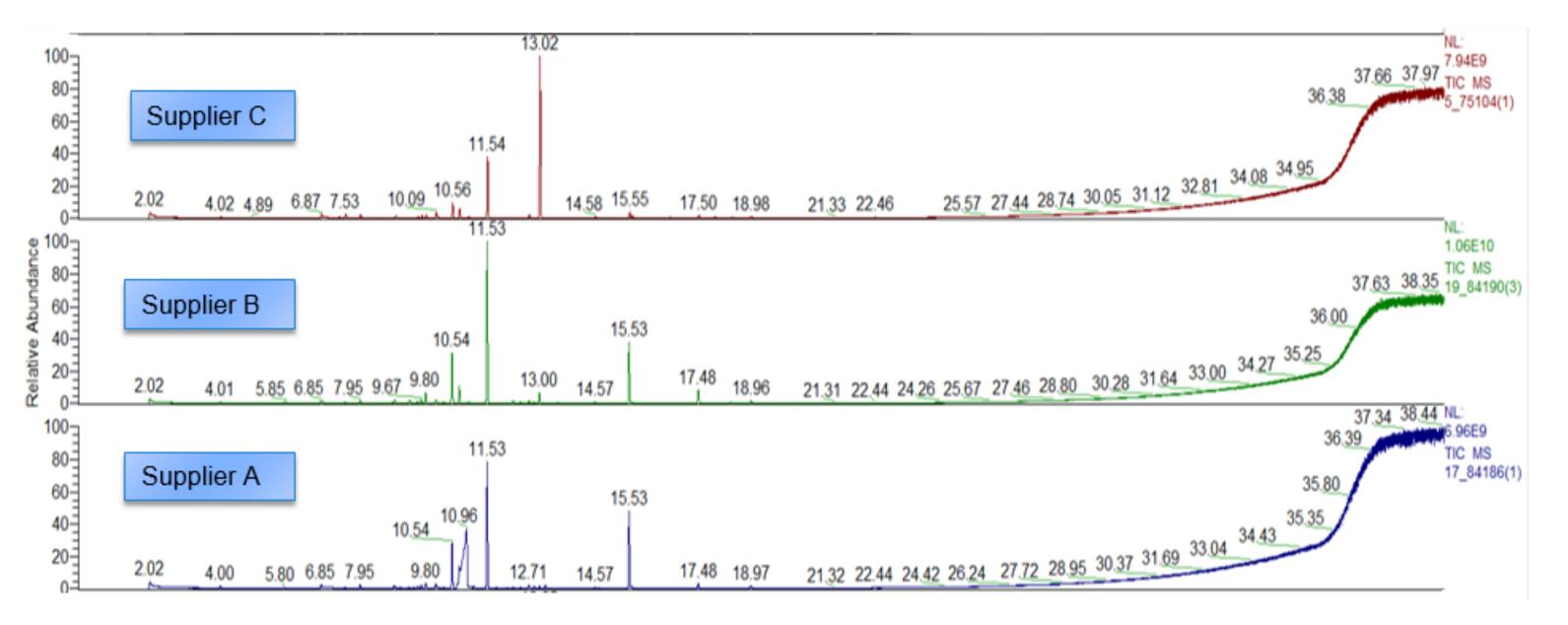

Table 1. HS-SPME Arrow and Exactive GC operating conditions for volatomic profile assessment of pesto samples

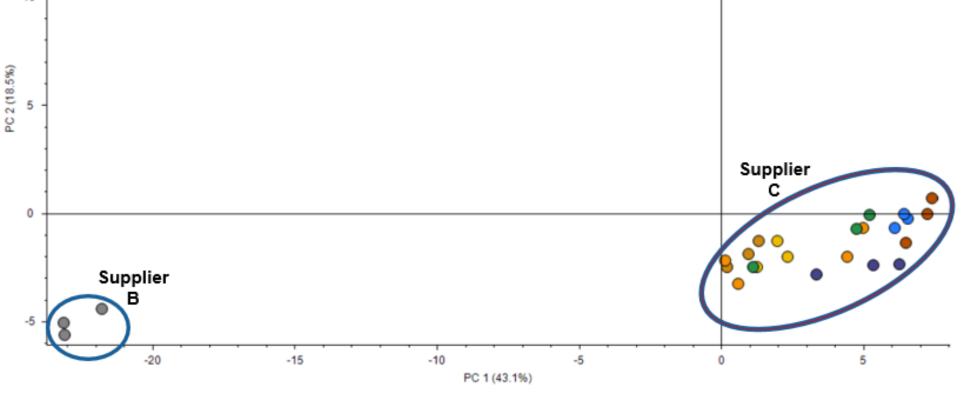
TriPlus RSH –HS-SPME Arrow	Parameters	Trace 1310 GC Parameters					
Fiber:	SPME Arrow DVB/CWR/PDMS	Inlet Module and Mode:	SSL, split				
Coating Phase Thickness (µm)	110	Split Ratio:	20:1				
Coating Phase Length (mm)	20	Carrier Gas, Carrier Mode, Flow (mL/min):	He, constant flow, 1.8				
Incubation Temperature (⁰ C):	60	Oven Temperature Program:					
Incubation Time (min):	15	Temperature 1 (⁰ C):	40				
Incubation Speed (rpm)	500	Hold Time (min):	2				
Extraction Temperature (⁰ C)	60	Temperature 2 (⁰ C):	150				
Extraction Time (min)	15	Rate (°C/min):	10				
Stirring Speed (rpm)	1500	Temperature 3 (⁰ C):	260				
Fiber Depth in Vial (mm)	25	Rate (°C/min):	5				
Fiber Depth in Injector (mm)	70	Temperature 4 (⁰ C):	300				
Desorption Time (min)	2	Rate (°C/min):	25				
Analysis Time (min)	40	Hold Time (min):	3				
Inlet for Fiber Conditioning		Total GC Run Time (min):	40				
Fiber Pre-Conditioning Time (min)	0	·					
Fiber Post-Conditioning Time (min)	15	Exactive GC mass Spectrometer Paramete					
Carrier Gas, Carrier Mode, Flow (mL/min):	He, constant flow, 6	Transfer Line Temperature (⁰ C)	: 280				
Fiber Depth in Injector (mm)	70	Ion Source Temperature (⁰ C)	280				
		Ionization Type:	EI/PCI				
		Electron Energy (eV)	70				
		Acquisition Mode:	full scan				
		Mass Range (Da)	50-550				
		Resolving Power (FWHM):	60,000 @ <i>m/z</i> 200 FWH				
ULTS		Lockmass	207.03235				

tomic profile assessment of pesto samples.							
Trace 1310 GC	Trace 1310 GC Parameters						
Inlet Module and Mode:	SSL, split						
Split Ratio:	20:1						
Carrier Gas, Carrier Mode, Flow (mL/min):	He, constant flow, 1.8						
Oven Temperature Program:							
Temperature 1 (⁰ C):	40						
Hold Time (min):	2						
Temperature 2 (⁰ C):	150						

117 👳	Furfural	6.425	95.01280	3696195	C5H4O2	96.02058	96.02061	94.9	92.5262	93.0081	892	899	28114231	2.72e6	2.43e6	4.20e6	3.35e6	2.53e6	3.95e6	
118 👳	Germacrene D	18.411	161.13243	23560002	C15H24	204.18725	204.18722	94.6	95.8156	95.8722	813	825	37342637	1.24e7	1.29e7	1.20e7	6.53e6	7.38e6	1.30e7	
119 👳	Glycerin	4.788	61.02853	6663404	C3H8O3	92.04680	0.00000	89.3	90.8319	95.6037	646	683	17053562	7.47e6	5.40e6	9.88e6	5.30e6	4.55e6	4.92et	
120 👳	Heptane, 1-chloro-	10.926	55.05444	2040333	C7H15CI	134.08568	0.00000	95.9	98.8654	98.8654	816	816	1998954	7.81e5	4.13e5	4.26e5	7.40e5	7.99e5	2.54e5	
121 👳	Heptanoic acid, 3-he	13.877	67.05430	1052478	C13H24O2	212.17708	0.00000	93.7	96.4791	96.6085	756	763	2041706	1.06e6	9.73e5	1.71e6	1.26e6	1.01e6	1.10et	
122 👳	Hexanal	5.960	67.05432	997737	C6H12O	100.08827	0.00000	92.5	94.5314	94.586	734	734	4475462	8.08e5	6.39e5	7.71e5	8.73e5	7.85e5	7.69e5	
172 -0	Hevane 2-methyla	6 391	85 101 22	080106	C7H16	100 12465	0.00000	95.8	96 5097	96 593/	858	861	2788562	7.00-5	1.02-6	6.01.05	4 7265	9 21 -5	1 72 -4	
											41									
Show Related Tables																				

Figure 4. Extracted Ion Chromatogram (EIC) for eugenol *m*/*z* 164.08324 (±5 ppm mass window) showing consistent scan-toscan mass accuracy as well as sufficient scans/peak for precise peak integration.


ores Plot Loadings Plot Variances Plot	Statistical Analysis
15 - 10 -	Multivariate statistical analysis was carried out using Compound Discovered 3.1. The PCA is a well known technique that allows the identification of largest sources of variation in omics experiments such as the one performed in this study. The significant differences in the valatile profile of the


RE

Component identification

Samples were acquired in full-scan mode at 60,000 FHWM resolving power and subjected to Compound Discoverer for Chemometric assessment and putative identification of unique features. Differences in the chromatographic profile of the samples were visible even in the TIC as demonstrated in Figure 2.

Figure 2. Total Ion Chromatogram (TIC) obtained for pesto samples. Differences in the volatile profile can be seen according to the suppliers.

differences in the volatile profile of the samples confirmed to be strictly related to the different suppliers, probably related to production techniques used. As an example, the PCA plot for n= 9 distinct samples is shown in Figure 5. The main components responsible for group differences are: βcaryophyllene, germacrene, α-bergamotene and α -guaiene mainly originating from basil for supplier A, diallyl-disulfide, methyl-allyldisulfide and diallyl-trisulfide mainly originating from garlic for supplier B, eugenol, eucalyptol, α-terpineol acetate, linalool acetate and humulene mainly originating from basil and pine nuts for supplier C.

Figure 6. Comparison between CI and EI spectra for eugenol (m/z 164.08325).

Compound Confirmation Further confirmation in the identification of compounds was achieved by assessing the PCI

Score

spectra. The PCI is useful for confirming the molecular ion of a chemical as only molecular ions will generate adducts formation. Unlike softer El ionisation at lower eV energies, in PCI experiments with methane as the reagent gas three adducts are typically observed: $[M+H]^+$, $[M+C_2H_5]^+$, $[M+C_3H_5]^+$. Figure 6 shows EI and PCI spectra of eugenol with these adducts. The presence of these adducts confirm m/z 164.08320 as the molecular ion for eugenol.

48_Pesto_84186_PCI #5346-5382_RT: 15.47-15.55_AV: 37_SB: 84_15.36-15.46 , 15.57-15.68_NL: 1.02E8 T: FTMS + p CI Full ms [65.0000-450.0000] 165.09094 C 10 H 13 O 2 = 165.09101 -0.39946 ppm [M+H] CI spectrum $[M+C_3H_5]$ $[M+C_2H_5]$ 137.05977 C₈ H₉ O₂ = 137.05971 0.46241 ppm 193.12231 105.06999 C 13 H 17 O 2 = 205.12231 C12 H17 O2 = 193.12 Cs Hs = 105.06988 0.07444 ppm 0.01441 ppm 1.05662 ppm 210 17_84186(1) #6016-6038 RT: 15.51-15.56 AV: 23 SB: 100 15.35-15.44 , 15.63-15.76 NL: 3.96E8 T: FTMS + p EI Full ms [50.0000-550.0000] 164.08320 C 10 H 12 O 2 = 164.08318 0.09425 ppm El spectrum 149.05971 131.04923 C9 H7 O = 131.04914 C9 H9 O2 = 149.05971 0.00486 ppm 103.05431 0.64790 ppm 91.05430 C₈H₇ = 103.05423 C₇H₇ = 91.05423 0.76334 ppm 0.83391 ppm 115.05428 C₉H₇ = 115.05423 0.45401 ppm 110 90 100 120 130 140 150 160 170 180 190 200 210 220

CONCLUSIONS

The results presented in this study demonstrate that the Thermo Scientific Exactive GC hybrid quadrupole-Orbitrap mass spectrometer, in combination with easy-to-use Compound Discoverer software and SPME Arrow technology, is a powerful tool for profiling complex samples and identifying unknown peaks, critical for determining chemical components in food products originating from various vendors that employ various technological processes.

Although differences can be visually seen in the TIC comparison, it is essential that all features are extracted from the data and analysed statistically. Compound Discoverer was used to extract, deconvolute and identify the unknowns basing on mass spectral library (NIST 2017). Compounds were scored based on the total score (derived from a combination of library search index score, high resolution filtering (HRF) value and presence/absence of the molecular ions) as well as retention index difference from expected values. An example of such peak identification workflow is reported in Figure 3 for eugenol.

The wide dynamic range and the <1 ppm mass accuracy ensured the detection of compounds present at high and low concentrations. Moreover, at routine 60,000 resolution enough scans/chromatographic peak are obtained as shown for eugenol (m/z 164.08324, ± 5 ppm mass window) in Figure 4.

• The consistent sub-1-ppm mass accuracy, the routine resolving power at 60,000 FWHM and the wide dynamic range deliver confident detection of unknown compounds regardless of their concentration or matrix complexity.

• The EI and PCI data together with the retention index information and the total score, allow for confident compound identification.

REFERENCES

- 1. Salvadeo P., Boggia R., Evangeliti F., Zunin P., Analysis of the volatile fraction of "Pesto Genovese" by headspace sorptive extraction (HSSE), Food Chemistry, 105 (2007), 1228-1235.
- 2. Zunin P., Salvadeo P., Boggia R., Lanteri S., Study of different kinds of "Pesto Genovese" by the analysis of their volatile fraction and chemometric methods, Food Chemistry, 114 (2009), 306-309.

TRADEMARKS/LICENSING

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

