Software development for improved sensitivity of mass spectrometry-based thermal shift assays (MS-TSA) for target engagement and drug discovery

Amanda M. Figueroa-Navedo^a, Clifford Phaneuf^{ab}, Konstantin Aizikov^c, Alexander R. Ivanov^a

^aDepartment of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, ^bTranslational Sciences, Sanofi, Cambridge, MA, ^cThermo Fisher Scientific, Bremen, Germany

Overview

Thermal shift assays are designed to follow the rate of change in solubility of a protein with increasing temperatures

Thermal Proteome Profiling (TPP) is the first software implemented for mass spectrometry-based assay -Identifies stabilized protein-drug interactions using melting temperature change (ΔT_m)

Figure 1. Schematic showing the melting temperatures (T_m) in a stabilizing event between vehicle and treated samples

H₁: Thermal shift identified, two fitted splines curves needed

No shift : RSS₀ ≈ RSS₁	F
Thermal shift: RSS₁ << RSS₀	

$$=\frac{\frac{d_2}{d_1}}{\frac{RSS_1}{RSS_1}}$$

curves by 27% in overlaps from 8 different approaches

Quality Control

Missing val

f the raw reporter ion abundance intensities are lower at the baseline C) B) Upset plot at the PSM-level show higher charge states have lower S/N values at the baseline temperature C) Relative standard deviation of the reporter ion abundances increase with higher temperatures due to a decrease in reporter ion abundance

PhD Network

ermo Fisher Scientific