

Precision oncology

## Oncomine Dx Target Test—enable your laboratory for the future of cancer care

Analyze all key biomarkers for *EGFR*, *ALK*, *BRAF*, and *ROS1* kinase inhibitors, and many more currently in clinical trials, from one sample, in one report, in 4 days

The Ion Torrent™ Oncomine™ Dx Target Test enables next-generation sequencing (NGS) in your laboratory with *in vitro* diagnostic test quality and support.

## The only solid tumor biomarker test, which can:

- Detect 46 cancer driver gene variants, including EGFR mutations (including L858R, T790M, and exon 19 deletions); BRAF, KRAS, ERBB2, and MET exon 14 skipping mutations; and ALK, ROS1, RET, and NTRK1/2/3 fusions
- Offers an all-in-one report to support treatment decisions—including multiple drug indication options—enabling time and cost savings
- Designed to deliver results even for challenging small samples, meaning more patients can potentially access targeted therapies
- Enable faster treatment decisions by generating laboratory results in 4 days

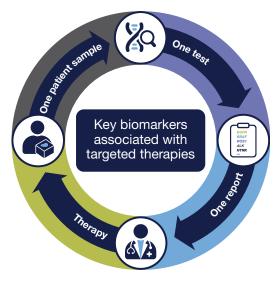



Figure 1. The Oncomine Dx Target Test offers key biomarkers associated with targeted therapies from one sample, in one test workflow, and one report.



## With the Oncomine Dx Target Test, you and your care team are ready for the future

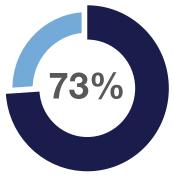



Figure 2. The percent of oncology drugs in development that are personalized medicines.\*

In oncology, most of the drugs in development are precision medicines associated with molecular testing. As such, fast, broad, and accessible genomic profiling is becoming one of the key factors to ensure patients' access to the therapies they could potentially benefit from.

The 46 gene targets included in the Oncomine Dx Target Test are cancer driver genes, based on their role in cancer pathogenesis, that have the potential to be therapy targets. Many of them are already targets of approved or investigational therapies for solid tumors.

The Oncomine Dx Target Test can help ensure that your lab will be ready to provide your oncologists with these biomarkers as they become relevant, without the need for additional resources to implement new and emerging tests.

|           | M         |           | 649       | ١         |
|-----------|-----------|-----------|-----------|-----------|
| NSCLC     | Colon     | Melanoma  | Ovarian   | Gastric   |
| AKT1      | ALK       | ALK       | AKT1      | ALK       |
| ALK       | BRAF      | BRAF      | BRAF      | EGFR      |
| BRAF      | EGFR      | GNA11     | FGFR3     | ERBB2     |
| EGFR      | ERBB2     | GNAQ      | GNA11     | ERBB3     |
| ERBB2     | ERBB3     | HRAS      | GNAQ      | FGFR2     |
| ERBB3     | HRAS      | KIT       | HRAS      | FGFR3     |
| KRAS      | IDH1      | KRAS      | KRAS      | MET       |
| MET       | KRAS      | MAP2K1    | MAP2K1    | NTRK1/2/3 |
| NTRK1/2/3 | NRAS      | NRAS      | NRAS      | PIK3CA    |
| PIK3CA    | NTRK1/2/3 | NTRK1/2/3 | NTRK1/2/3 |           |
| RET       | PIK3CA    | RAF1      |           |           |
| ROS1      | ROS1      | ROS1      |           |           |
|           |           |           |           |           |

Figure 3. Examples of genes with cancer driver variants associated with different tumor types.

| DNA panel, hotspot genes  | AKT1 ALK AR BRAF CDK4 CTNNB1 DDR2 EGFR ERBB2 ERBB3 ERBB4 ESR1 | FGFR2 FGFR3 GNA11 GNAQ HRAS IDH1 IDH2 JAK1 JAK2 JAK3 KIT KRAS | MAP2K1<br>MAP2K2<br>MET<br>MTOR<br>NRAS<br>PDGFRA<br>PIK3CA<br>RAF1<br>RET<br>ROS1<br>SMO |  |
|---------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| RNA panel, fusion drivers | ABL1<br>ALK<br>AXL<br>BRAF<br>ERBB2<br>ERG<br>ETV1            | ETV4 ETV5 FGFR1 FGFR2 FGFR3 MET NTRK1                         | NTRK2<br>NTRK3<br>PDGFRA<br>PPARG<br>RAF1<br>RET<br>ROS1                                  |  |

Figure 4. All genes included in the Oncomine Dx Target Test.

Table 1. Concordance between Oncomine Dx Target Test and reference method for 4 companion diagnostic markers.

| Variants for therapy selection | Validated comparator methods   | Positive percent agreement | Negative percent agreement | Overall percent agreement |
|--------------------------------|--------------------------------|----------------------------|----------------------------|---------------------------|
| BRAF v600E                     | Validated BRAF v600E qPCR test | 100%                       | 100%                       | 100%                      |
| EGFR                           |                                | 98.6%                      | 99.2%                      | 99.0%                     |
| EGFR exon 19 deletions         | Validated EGFR PCR test        | 97.6%                      | 99.2%                      | 99.0%                     |
| EGFR exon 21 L858R             |                                | 100%                       | 100%                       | 100%                      |
| ROS1 fusions                   | Validated ROS1 FISH test       | 80%                        | 100%                       | 96.5%                     |
| ALK fusions                    | Vysis ALK FISH test            | 87%                        | 98%                        | 93%                       |



## Find out more at oncomine.com

<sup>\*</sup> The Personalized Medicine Report: Opportunity, Challenges, and the Future (2017) Personalized Medicine Coalition (PMC).