## Ion AmpliSeq<sup>™</sup> Microbiome Health Research Kits USER GUIDE

For manual library preparation

for use with: Ion AmpliSeq<sup>™</sup> Microbiome Health Research 540 Kit Ion AmpliSeq<sup>™</sup> Microbiome Health Research 550 Kit

Catalog Numbers A46495, A46496, and A46497 Publication Number MAN0018602 Revision D.0



For Research Use Only. Not for use in diagnostic procedures.



Life Technologies Corporation | 5781 Van Allen Way | Carlsbad, California 92008 USA For descriptions of symbols on product labels or product documents, go to thermofisher.com/symbols-definition.

| Revision | Date                 | Description                                                                                                                                                                                                                                                                                                                                      |
|----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D.0      | 18 September<br>2023 | Updated Ion S5 <sup>™</sup> Chef Supplies to include the PCR Plate Frame.                                                                                                                                                                                                                                                                        |
| C.0      | 10 March 2023        | <ul> <li>Added support for Ion AmpliSeq<sup>™</sup> Microbiome Health Research Kit, Assay Only Bundle.</li> <li>Updated Guidance for Bacterial Marker field.</li> <li>Number of possible false positive species corrected.</li> <li>Troubleshooting content replaced with links to thermofisher.com.</li> <li>Content reorganization.</li> </ul> |
| B.0      | 14 May 2020          | <ul> <li>Support added for Ion AmpliSeq<sup>™</sup> Microbiome Health Research 550 Kit.</li> <li>Support added for Ion Reporter<sup>™</sup> Software analysis workflows.</li> </ul>                                                                                                                                                              |
| A.0      | 10 December<br>2019  | New document for the Ion AmpliSeq <sup>™</sup> Microbiome Health Research 540 Kit. Provides instruction for the preparation, templating, and sequencing of libraries with the Ion AmpliSeq <sup>™</sup> Microbiome Health Research – 16S rRNA Gene Pool and Ion AmpliSeq <sup>™</sup> Microbiome Health Research – Target Species Pool.          |

#### Revision history: MAN0018602 D.0 (English)

The information in this guide is subject to change without notice.

**DISCLAIMER**: TO THE EXTENT ALLOWED BY LAW, THERMO FISHER SCIENTIFIC INC. AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

**Important Licensing Information**: These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

**TRADEMARKS**: All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Agencourt and Ampure are trademarks of Beckman Coulter, Inc. Eppendorf and LoBind are trademarks of Eppendorf AG. Bioanalyzer<sup>™</sup> and Agilent<sup>™</sup> are trademarks of Agilent Technologies, Inc. Seraseq<sup>™</sup> and SeraCare<sup>™</sup> are trademarks of SeraCare Life Sciences, Inc. TaqMan is a trademark of Roche Molecular Systems, Inc., used under permission and license. Qiime2 is a trademark of the Qiime2 community (https://qiime2.org/).

©2019-2023 Thermo Fisher Scientific Inc. All rights reserved.

## Contents

| CHAPTER 1 | Product information                                                        | 6   |
|-----------|----------------------------------------------------------------------------|-----|
| Prod      | uct description                                                            | 6   |
| Sequ      | encer compatibility                                                        | 7   |
| Cont      | ents and storage                                                           | . 7 |
|           | Kit summary                                                                | 7   |
|           | Ion AmpliSeq <sup>™</sup> Microbiome Health Research Panel                 | 8   |
|           | Ion AmpliSeq <sup>™</sup> Library Kit Plus                                 | . 8 |
|           | IonCode <sup>™</sup> Barcode Adapters                                      | 8   |
|           | Sequencing chips                                                           | . 8 |
|           | Ion Chef <sup>™</sup> reagents and materials                               | 9   |
|           | Ion S5 <sup>™</sup> sequencing reagents and materials                      | 9   |
| Work      | flow                                                                       | 10  |
| CHAPTER 2 | Reagents, supplies, and required materials                                 | 11  |
| Requ      | uired materials not supplied                                               | 11  |
| Reco      | ommended materials                                                         | 12  |
| CHAPTER 3 | Before you begin                                                           | 14  |
| Proc      | edural guidelines                                                          | 14  |
| Befo      | re each use of the kit                                                     | 14  |
| Tips      |                                                                            | 14  |
| CHAPTER 4 | Library Preparation                                                        | 16  |
| Guid      | elines for DNA isolation, quantification, and input                        | 16  |
| Prep      | are libraries                                                              | 17  |
|           | Prepare DNA target amplification reactions                                 | 17  |
|           | Amplify the DNA targets                                                    | 18  |
|           | Partially digest amplicons                                                 | 19  |
| Ligat     | e adapters to the amplicons and purify                                     | 19  |
|           | lon Xpress <sup>™</sup> Barcode Adapters only: Combine and dilute adapters | 20  |
|           | Perform the ligation reaction                                              | 20  |
|           | Purify the library                                                         | 21  |
|           | Elute the library                                                          | 22  |

|   | Quantify the library by qPCR         Prepare library dilutions         Quantify library by qPCR and calculate dilution factor         Combine libraries         Guidelines for templating and sequencing                                                                                                    | 22<br>22<br>23<br>25<br>25       |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|   | CHAPTER 5 Create a Planned Run                                                                                                                                                                                                                                                                              | 26                               |
|   | About Planned Runs       Confirm the IonReporterUploader plugin version         Create a Planned Run template       Create a Planned Run template         Create a Planned Run       Create a Planned Run         (Optional) Create a Sample Table template file       Create file                          | 26<br>27<br>27<br>29<br>32       |
|   | CHAPTER 6 Data Analysis using Ion Reporter <sup>™</sup> Software                                                                                                                                                                                                                                            | 33                               |
|   | <ul> <li>Analysis workflows in Ion Reporter<sup>™</sup> Software</li></ul>                                                                                                                                                                                                                                  | 33<br>34<br>35<br>35<br>36<br>41 |
|   | APPENDIX A Troubleshooting and FAQs                                                                                                                                                                                                                                                                         | 47                               |
| 1 | APPENDIX B Supplemental information                                                                                                                                                                                                                                                                         | 48                               |
|   | Update Ion AmpliSeq <sup>™</sup> Microbiome Health Research Kit templates in Torrent<br>Suite <sup>™</sup> Software<br>Configure the IonReporterUploader plugin in Torrent Suite <sup>™</sup> Software<br>Edit sample attributes in Ion Reporter <sup>™</sup> Software<br>Sample analysis and visualization | 48<br>48<br>49<br>50             |
| 1 | APPENDIX C AmpliSeq_Microbiome_Health_Analysis plugin for<br>Torrent Suite <sup>™</sup> Software                                                                                                                                                                                                            | 52                               |
|   | Review AmpliSeq_Microbiome_Health_Analysis plugin results in Torrent<br>Suite <sup>™</sup> Software<br>View the <b>High level summary</b> table<br>View the species detected by the assay<br>View taxonomy results                                                                                          | 52<br>53<br>55<br>55             |

| Manually run the AmpliSeq_Microbiome_Health_Analysis plugin                                                   | 56 |
|---------------------------------------------------------------------------------------------------------------|----|
| Micropiome Analysis plugin parameters                                                                         | 57 |
| Download and install the AmpliSeq_Microbiome_Health_Analysis plugin in<br>Torrent Suite <sup>™</sup> Software | 59 |
| PPENDIX D Safety                                                                                              | 60 |
| Chemical safety                                                                                               | 60 |
| Biological hazard safety                                                                                      | 61 |
| PPENDIX E Documentation and Support                                                                           | 62 |
| Related documentation                                                                                         | 62 |
| Customer and technical support                                                                                | 62 |
| Limited product warranty                                                                                      | 63 |



# **Product information**

| Product description     | 6  |
|-------------------------|----|
| Sequencer compatibility | 7  |
| Contents and storage    | 7  |
| Workflow 1              | 10 |

**IMPORTANT!** Before using this product, read and understand the information in the "Safety" appendix in this document.

## **Product description**

The Ion AmpliSeq<sup>™</sup> Microbiome Health Research Kit is a comprehensive, targeted next-generation sequencing (NGS) assay for characterizing the human gut microbiome. The assay consists of two pools of Ion AmpliSeq<sup>™</sup> oligonucleotide primers and associated reagents to generate amplicon libraries for NGS on Ion Torrent platforms. Using the kit, microbial DNA isolated from human stool samples is used to generate libraries for templating and sequencing on the Ion Chef<sup>™</sup> and Ion GeneStudio<sup>™</sup> systems.

The kit includes the following key features:

- Up to 64 paired libraries (32 samples) can be combined and loaded onto a single lon 540<sup>™</sup> Chip in a single workflow.
- Up to 96 paired libraries (48 samples) can be combined and loaded onto a single lon 550<sup>™</sup> Chip in a single workflow.
- Typically, the entire workflow can be completed in 3 days for a single chip including the analysis.
- The minimum input is 1 ng/pool for the Ion AmpliSeq<sup>™</sup> Microbiome Health Research 16S rRNA Gene Pool.
- The minimum input is 10 ng/pool for the Ion AmpliSeq<sup>™</sup> Microbiome Health Research Target Species Pool.

## Sequencer compatibility

In this user guide, Ion GeneStudio<sup>™</sup> S5 Series Sequencer or Ion GeneStudio<sup>™</sup> S5 Series System refers generically to following systems, unless otherwise specified.

- Ion GeneStudio<sup>™</sup> S5 System (Cat. No. A38194)
- Ion GeneStudio<sup>™</sup> S5 Plus System (Cat. No. A38195)
- Ion GeneStudio<sup>™</sup> S5 Prime System (Cat. No. A38196)

The lon S5<sup>™</sup> Sequencer and the lon S5<sup>™</sup> XL Sequencer are no longer available for purchase and are replaced by the lon GeneStudio<sup>™</sup> S5 Sequencer and lon GeneStudio<sup>™</sup> S5 Prime Sequencer, respectively. Both of the lon S5<sup>™</sup> and lon S5<sup>™</sup> XL Sequencers continue to be supported by Thermo Fisher Scientific. The lon AmpliSeq<sup>™</sup> Microbiome Health Research Kits are compatible with both the lon S5<sup>™</sup> and lon GeneStudio<sup>™</sup> S5 Series Sequencers.

## Contents and storage

#### Kit summary

The Ion AmpliSeq<sup>™</sup> Microbiome Health Research Kits (Cat. Nos. A46496 and A46497) consist of the Ion AmpliSeq<sup>™</sup> Microbiome Health Research – 16S rRNA Gene Pool, the Ion AmpliSeq<sup>™</sup> Microbiome Health Research – Target Species Pool, the Ion AmpliSeq<sup>™</sup> Library Kit Plus, IonCode<sup>™</sup> Barcode Adapters, and reagents for templating and sequencing barcoded sample libraries from bacterial DNA on the Ion 540<sup>™</sup> and Ion 550<sup>™</sup> Chips. Sufficient reagents are provided to prepare uniquely barcoded DNA-libraries from 256 or 384 research samples.

| Component                                                  | Quantity per kit      |                       |                       |
|------------------------------------------------------------|-----------------------|-----------------------|-----------------------|
| Component                                                  | A46496 <sup>[1]</sup> | A46497 <sup>[2]</sup> | A46495 <sup>[3]</sup> |
| Ion AmpliSeq <sup>™</sup> Microbiome Health Research Panel | 6                     | 8                     | 1                     |
| Ion AmpliSeq™ Library Kit Plus<br>(Cat. No. A35907)        | 6                     | 8                     | 1                     |
| IonCode™ Barcode Adapter 0101–0196                         | 1                     | 1                     | 1                     |
| Ion 540™ Kit – Chef (Cat. No. A30011)                      | 1                     | N/A                   | N/A                   |
| Ion 540™ Chip Kit (Cat. No. A27766)                        | 1                     | N/A                   | N/A                   |
| Ion 550™ Kit – Chef (Cat. No. A34541)                      | N/A                   | 1                     | N/A                   |
| Ion 550™ Chip Kit (Cat. No. A34537)                        | N/A                   | 1                     | N/A                   |

<sup>[1]</sup> Ion 540<sup>™</sup>bundle, 256 samples (32/chip)

<sup>[2]</sup> Ion 550<sup>™</sup>bundle, 384 samples (48/chip)

<sup>[3]</sup> 48 samples, assay bundle only



#### Ion AmpliSeq<sup>™</sup> Microbiome Health Research Panel

| Contents                                                                       | Amount     | Storage       |
|--------------------------------------------------------------------------------|------------|---------------|
| 5X Ion AmpliSeq™ Microbiome Health Research – 16S rRNA Gene Pool (green cap)   | 1 × 260 μL | –30°C to –5°C |
| 5X Ion AmpliSeq™ Microbiome Health Research – Target Species Pool (purple cap) | 1 × 260 µL |               |

**Note:** For the Ion AmpliSeq<sup>™</sup> Microbiome Health Research – Target Species Pool, with the following exceptions, all the primers in this pool are designed to be targeted to a single bacterial species.

- Escherichia coli primers—Also detect and amplify DNA from Shigella.
- Streptococcus infantarius primers—Also detect and amplify DNA from Streptococcus equinus, due to extremely high biological identity between strains of the above species.

#### Ion AmpliSeq<sup>™</sup> Library Kit Plus

The Ion AmpliSeq<sup>™</sup> Library Kit Plus (Cat. No. A35907) provides reagents for manually preparing 96 libraries.

| Component                           | Amount     | Storage                     |
|-------------------------------------|------------|-----------------------------|
| 5X Ion AmpliSeq™ HiFi Mix (red cap) | 480 μL     | –30°C to –10°C              |
| FuPa Reagent (brown cap)            | 192 µL     |                             |
| Switch Solution (yellow cap)        | 384 μL     |                             |
| DNA Ligase (blue cap)               | 192 µL     |                             |
| 25X Library Amp Primers (pink cap)  | 192 µL     |                             |
| 1X Library Amp Mix (black cap)      | 4 × 1.2 mL |                             |
| Low TE                              | 2 × 6 mL   | 15°C to 30°C <sup>[1]</sup> |

<sup>[1]</sup> Can be stored at  $-30^{\circ}$ C to  $-10^{\circ}$ C.

#### IonCode<sup>™</sup> Barcode Adapters

| Contents                            | Amount                              | Storage       |
|-------------------------------------|-------------------------------------|---------------|
| IonCode™ Barcode Adapters 0101–0196 | 1 × 96-well plate (20 $\mu$ L/well) | –30°C to –5°C |

#### Sequencing chips

| Chip kit          | Cat. No. | Amount  | Storage      |
|-------------------|----------|---------|--------------|
| Ion 540™ Chip Kit | A27765   | 4 chips | 15°C to 30°C |
| Ion 550™ Chip Kit | A34537   |         |              |

## Ion Chef<sup>™</sup> reagents and materials

| Contonto                           | Amour           | Champion        |                |  |
|------------------------------------|-----------------|-----------------|----------------|--|
| Contents                           | Cat. No. A30011 | Cat. No. A34541 | Storage        |  |
| lon S5 <sup>™</sup> Chef Supplies  |                 |                 |                |  |
| Chip Adapter                       | 2               | 2               | 15°C to 30°C   |  |
| Enrichment Cartridge v2            | 1               | 1               |                |  |
| Tip Cartridge v2                   | 1               | 1               |                |  |
| PCR Plate                          | 1               | 1               |                |  |
| PCR Plate Frame                    | 1               | 1               |                |  |
| Frame Seal v2                      | 1               | 1               |                |  |
| Recovery Station Disposable Lid v2 | 2               | 2               |                |  |
| Recovery Tube v2                   | 12              | 12              |                |  |
| Ion S5 <sup>™</sup> Chef solutions |                 |                 |                |  |
| Ion S5 <sup>™</sup> Chef Solutions | 4 cartridges    | NA              | 15°C to 30°C   |  |
| Ion 550™ Chef Solutions            | NA              | 4 cartridges    |                |  |
| Ion S5™ Chef reagents              |                 |                 |                |  |
| Ion 540 <sup>™</sup> Chef Reagents | 4 cartridges    | NA              | –30°C to –10°C |  |
| Ion 550™ Chef Reagents             | NA              | 4 cartridges    |                |  |

### Ion S5<sup>™</sup> sequencing reagents and materials

**IMPORTANT!** Do not store the Ion S5<sup>™</sup> Sequencing Reagents (Part No. A30011) on dry ice or in a closed environment containing dry ice.

| Contents                                       | Amount / box | Storage                       |  |  |  |  |
|------------------------------------------------|--------------|-------------------------------|--|--|--|--|
| Ion S5™ Sequencing Solutions (Part No. A27767) |              |                               |  |  |  |  |
| Ion S5 <sup>™</sup> Wash Solution              | 4 × 1.5 L    | 15°C to 30°C                  |  |  |  |  |
| Ion S5 <sup>™</sup> Cleaning Solution          | 250 mL       |                               |  |  |  |  |
| Ion S5™ Sequencing Reagents (Part No. A30011)  |              |                               |  |  |  |  |
| Ion S5 <sup>™</sup> Sequencing Reagents        | 4 cartridges | -30°C to -10°C <sup>[1]</sup> |  |  |  |  |

<sup>[1]</sup> Cartridges ship at 2°C to 8°C. Store as indicated, do not store on dry ice.

## Workflow

The following workflow summarizes the procedure for generating Ion AmpliSeq<sup>™</sup> DNA libraries using the Ion AmpliSeq<sup>™</sup> Microbiome Health Research Kits for templating and sequencing on the Ion Chef<sup>™</sup> and Ion GeneStudio<sup>™</sup> S5 Systems.

| Pre<br>Pre<br>am          | epare libraries (page 17)<br>pare DNA amplification reactions. Amplify the targets. Partially digest<br>plicons.                                                                                                                                                                              |   |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <b>Liç</b><br>Dilu        | <b>gate adapters to the amplicons and purify (page 19)</b><br>Ite adapters. Perform the ligation reaction. Purify and elute the library.                                                                                                                                                      |   |
| Qu<br>Det<br>that         | antify the library (page 22)<br>remine the library concentration by qPCR and calculate the dilution factor<br>t results in a concentration of ~50 pM.                                                                                                                                         |   |
| <b>Cc</b><br>Cor          | mbine libraries (page 25)<br>mbine libraries into a single library pool.                                                                                                                                                                                                                      |   |
| <b>Te</b><br>Pro<br>Ger   | mplate and sequence (page 25)<br>ceed to templating and sequencing on the Ion Chef™ Instrument and Ion<br>neStudio™ S5 Series Sequencer.                                                                                                                                                      |   |
| Cre<br>Cre<br>seq<br>crea | eate a Planned Run (page 29)<br>ate a planned run by entering run parameters for templating and<br>juencing your samples. Planned Runs are digital instructions that are<br>ated in Torrent Suite <sup>™</sup> Software for controlling the template preparation and<br>juencing instruments. | Ç |



# Reagents, supplies, and required materials

This chapter lists the reagents, supplies, and materials needed to operate the Ion GeneStudio<sup>™</sup> S5 Series Sequencer, and provides consumables ordering and storage information. Reagents and supplies can be ordered as kits and starter packs, but most consumables can also be ordered individually as your needs require.

**Note:** Consumables that have catalog numbers are orderable. Components that have part numbers cannot be ordered individually.

## **Required materials not supplied**

Unless otherwise indicated, all materials are available through **thermofisher.com**. "MLS" indicates that the material is available from **fisherscientific.com** or another major laboratory supplier.

| Item                                                                                                                                                                                                                                                                                        | Source                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Agencourt™ AMPure™ XP Kit                                                                                                                                                                                                                                                                   | A63880 or A63881<br>Beckman Coulter |
| <ul> <li>One of the following thermal cyclers:</li> <li>AB<sup>™</sup> 2720 Thermal Cycler</li> <li>Veriti<sup>™</sup> Dx 96-well Thermal Cycler, 0.2 mL</li> </ul>                                                                                                                         | thermofisher.com                    |
| <ul> <li>ProFlex<sup>™</sup> 96-well PCR System</li> <li>GeneAmp<sup>™</sup> PCR System 9700<sup>[1]</sup> or Dual 96-well Thermal Cycler</li> </ul>                                                                                                                                        |                                     |
| <ul> <li>One of the following Real-Time PCR instruments:</li> <li>QuantStudio<sup>™</sup> Real-Time PCR System</li> <li>Applied Biosystems<sup>™</sup> 7900HT, or 7500</li> <li>StepOne<sup>™</sup>, or StepOnePlus<sup>™</sup></li> <li>ViiA<sup>™</sup> 7 Real-Time PCR System</li> </ul> | thermofisher.com                    |
| Microcentrifuge (must accommodate standard 1.5-, 0.5-, and 0.2-mL microcentrifuge tubes)                                                                                                                                                                                                    | MLS                                 |
| Vortex mixer                                                                                                                                                                                                                                                                                | MLS                                 |

#### (continued)

| Item                                                                             | Source                 |
|----------------------------------------------------------------------------------|------------------------|
| 96-well plate centrifuge                                                         | MLS                    |
| Ion Library TaqMan™ Quantitation Kit                                             | 4468802                |
| MicroAmp <sup>™</sup> Optical 96-well Reaction Plate                             | N8010560               |
|                                                                                  | 4306737 (with barcode) |
| MicroAmp <sup>™</sup> Fast Optical 96-Well Reaction Plate                        | 4346907                |
| MicroAmp <sup>™</sup> Optical Adhesive Film                                      | 4311971                |
| MicroAmp <sup>™</sup> Adhesive Film                                              | 4306311                |
| MicroAmp <sup>™</sup> Compression Pad                                            | 4312639                |
| DynaMag™-96 Side Magnet, or other plate magnet                                   | 12331D                 |
| Eppendorf™ DNA LoBind™ Microcentrifuge Tubes, 1.5 mL                             | 13-698-791             |
|                                                                                  | fisherscientific.com   |
| Teknova DNA Suspension Buffer                                                    | 50-843-203             |
|                                                                                  | fisherscientific.com   |
| Nuclease-free Water                                                              | AM9932                 |
| Absolute ethanol                                                                 | MLS                    |
| Pipettors, 2–200 $\mu$ L, and low-retention filtered pipette tips                | MLS                    |
| <i>(Optional)</i> IonCode <sup>™</sup> Barcode Adapters 1–384 Kit <sup>[2]</sup> | A29751                 |

<sup>[1]</sup> Supported but no longer available for purchase.

[2] The kits contain IonCode<sup>™</sup> Barcode Adapters 1-96. However, you can use additional IonCode<sup>™</sup> Barcode Adapters with the kits.

## **Recommended materials**

Unless otherwise indicated, all materials are available through **thermofisher.com**. "MLS" indicates that the material is available from **fisherscientific.com** or another major laboratory supplier.

| Item                                                            | Source            |  |
|-----------------------------------------------------------------|-------------------|--|
| Recommended additional equipment                                |                   |  |
| Qubit <sup>™</sup> 4 Fluorometer <sup>[1]</sup> Q33238          |                   |  |
| Recommended for nucleic acid isolation                          |                   |  |
| MagMAX <sup>™</sup> Microbiome Ultra Nucleic Acid Isolation Kit | A42358 and A42357 |  |

## 2

#### (continued)

| Item                                        | Source                                              |  |  |
|---------------------------------------------|-----------------------------------------------------|--|--|
| Recommended for nucleic acid quantification |                                                     |  |  |
| Qubit™ dsDNA HS Assay Kit                   | Q32851/Q32854                                       |  |  |
| Qubit™ dsDNA BR Assay Kit                   | Q32853 /Q32850                                      |  |  |
| Recommended controls                        |                                                     |  |  |
| Gut Microbiome Genomic Mix                  | MSA-1006<br>American Type Culture Collection (ATCC) |  |  |
| Nuclease-free Water                         | See "Required materials not supplied" on page 11.   |  |  |

<sup>[1]</sup> Qubit<sup>™</sup> 2.0 & Qubit<sup>™</sup> 3.0 Fluorometers are supported but no longer available for purchase.



# Before you begin

## **Procedural guidelines**

- Minimize freeze-thaw cycles of Ion AmpliSeq<sup>™</sup> Microbiome Health Research pools by aliquoting as needed for your experiments. Pools can be stored at 4°C for up to one year.
- Use good laboratory practices to minimize cross-contamination of products. If possible, perform PCR setup in an area or room that is free of amplicon contamination. Always change pipette tips between samples.
- Use a calibrated thermal cycler specified in "Required materials not supplied" on page 11.
- Pipet viscous solutions, such as 5X Ion AmpliSeq<sup>™</sup> HiFi Mix, FuPa Reagent, Switch Solution, DNA Ligase, and panels, slowly and ensure complete mixing by vortexing or pipetting up and down several times.

## Before each use of the kit

- Thaw components that contain enzymes—such as 5X Ion AmpliSeq<sup>™</sup> HiFi Mix, FuPa Reagent, DNA Ligase, and 1X Library Amp Mix—on ice, and keep on ice during procedure. All other components, including primer pools, can be thawed at room temperature. Gently vortex and centrifuge before use.
- If there is visible precipitate in the Switch Solution after thawing, vortex or pipet up and down at room temperature to resuspend.
- Bring the Agencourt<sup>™</sup> AMPure<sup>™</sup> XP Reagent to room temperature.

**IMPORTANT!** Do NOT substitute a Dynabeads<sup>™</sup>-based purification reagent for the Agencourt<sup>™</sup> AMPure<sup>™</sup> XP Reagent.

## Tips

- Target amplification reaction master mixes can be made with 5X Ion AmpliSeq<sup>™</sup> HiFi Mix and primer pools, transferred to a 96-well plate, and sample DNA added. However, be careful to add equal amounts of DNA to avoid pool imbalance.
- Arrange samples in columns on the plate for easier pipetting with multichannel pipettes during purification with the DynaMag<sup>™</sup> Side Magnet.
- If you observe evaporation in target amplification reactions, avoid using outside wells.
- Plate seals can be firmly applied using the applicator in the MicroAmp<sup>™</sup> Adhesive Film Applicator. Plate seals can be removed with less effort when hot. Try removing seals right after taking the plate out of the thermal cycler.

- When using the Qubit<sup>™</sup> Fluorometer, or the Agilent<sup>™</sup> 2100 Bioanalyzer<sup>™</sup> instrument, amplified libraries with little or no detectable product can still be quantified with qPCR.
- When transfer to a new plate is specified, solutions can be transferred to a clean well in the same plate instead, if desired.
- When setting up sample-specific master mixes for panels with two or more primer pools, master mixes can be set up in 96-well plates instead of tubes.
- During target amplification, 98°C can be used for the enzyme activation and denaturation steps for some panels, especially those targeting cDNA. This change can improve underperforming amplicons.



# **Library Preparation**

| Guidelines for DNA isolation, quantification, and input | 16 |
|---------------------------------------------------------|----|
| Prepare libraries                                       | 17 |
| Ligate adapters to the amplicons and purify             | 19 |
| Quantify the library by qPCR                            | 22 |
| Combine libraries                                       | 25 |
| Guidelines for templating and sequencing                | 25 |

## Guidelines for DNA isolation, quantification, and input

- We recommend the MagMAX<sup>™</sup> Microbiome Ultra Nucleic Acid Isolation Kit (Cat. Nos. A42358 or A42357) for isolating bacterial DNA from research stool samples.
- We recommend the Qubit<sup>™</sup> dsDNA HS Assay Kit (Cat. Nos. Q32851 or Q32854) or Qubit<sup>™</sup> dsDNA BR Assay Kit (Cat. Nos. Q32850 or Q32853) for quantification of DNA samples.
- Quantification methods such as spectrophotometry (for example, using a NanoDrop<sup>™</sup> spectrophotometer) are not recommended, because they are not specific for DNA. Use of these methods can lead to gross overestimation of the concentration of sample DNA, under-seeding of the target amplification reaction, low library yields, and poor chip loading.
- Each Ion AmpliSeq<sup>™</sup> Microbiome Health Research 16S rRNA Gene Pool library target amplification reaction requires 1.0 ng (≥0.167 ng/µL) of bacterial DNA.
- Each Ion AmpliSeq<sup>™</sup> Microbiome Health Research Target Species Pool library target amplification reaction requires 10 ng (≥1.67 ng/µL) of bacterial DNA.
- Increasing the amount of DNA can result in higher-quality libraries, especially when DNA quality is poor or unknown.

## **Prepare libraries**

#### Prepare DNA target amplification reactions

**IMPORTANT!** Primer pools and 5X Ion AmpliSeq<sup>™</sup> HiFi Mix are viscous. Pipet slowly and mix thoroughly.

- 1. Place a 96-well plate on ice or in a pre-chilled 4°C cold block.
- 2. Dilute each purified template DNA in Low TE or nuclease-free water.

| Pool           | Description                         |
|----------------|-------------------------------------|
| Target Species | Dilute template DNA to 1.67 ng/µL.  |
| 16S            | Dilute template DNA to 0.167 ng/µL. |

**3.** Prepare separate target amplification reactions for the Target Species and 16S primer pools. Add the following components to individual wells of a 96-well PCR plate.

**Note:** If processing multiple samples, prepare a reaction master mix (+ 5–10% overage) without DNA template for each primer pool. Pipet 14.0  $\mu$ L of each primer pool-specific reaction master mix into an individual well, then add 6.0  $\mu$ L of the sample-specific DNA template dilution (1.67 ng/ $\mu$ L or 0.167 ng/ $\mu$ L) to each well.

| Component                                                                     | Volume per sample |          |
|-------------------------------------------------------------------------------|-------------------|----------|
| oompohent                                                                     | Species Pool      | 16S Pool |
| 5X Ion AmpliSeq™ HiFi Mix (red cap)                                           | 4 µL              | 4 µL     |
| 5X Ion AmpliSeq <sup>™</sup> Microbiome Health Research – Target Species Pool | 4 µL              | _        |
| 5X Ion AmpliSeq™ Microbiome Health Research – 16S rRNA Gene Pool              | _                 | 4 µL     |
| 10 ng DNA (≥1.67 ng/μL) <sup>[1]</sup>                                        | ΧμL               | _        |
| 1.0 ng DNA (≥0.167 ng/μL) <sup>[1]</sup>                                      | _                 | ΧμL      |
| Nuclease-free Water                                                           | 12–X µL           | 12–X µL  |
| Total Volume                                                                  | 20 µL             | 20 µL    |

<sup>[1]</sup> Substitute an equal volume of nuclease-free water to prepare a no-template control (NTC).



- lon AmpliSeq<sup>™</sup> Microbiome Health Research Target Species Pool
- (Optional) No template control (NTC)
- lon AmpliSeq<sup>™</sup> Microbiome Health Research 16S rRNA Gene Pool
- *(Optional)* Positive control (PC)

#### Note:

- The NTC and PC wells that are shown in this example plate layout can be included as controls for each pool.
- We recommend using Nuclease-free Water as the NTC. See "Required materials not supplied" on page 11.
- 4. Seal the plate with a new MicroAmp<sup>™</sup> Adhesive Film, vortex thoroughly, then briefly centrifuge to collect droplets. Alternatively, mix by pipetting at least half the total volume up and down at least 5 times before sealing the plate.

**IMPORTANT!** When mixing, use a new tip for each well. Do not cross contaminate the target amplification reactions.

#### Amplify the DNA targets

- 1. Place a MicroAmp<sup>™</sup> Compression Pad on the plate, then load the plate into the thermal cycler.
- 2. Run the following program to amplify the target regions.

| Stage     | Step                | Temperature | Time   |
|-----------|---------------------|-------------|--------|
| Hold      | Activate the enzyme | 99°C        | 2 min  |
| 20 Cycles | Denature            | 99°C        | 15 sec |
|           | Anneal and extend   | 60°C        | 4 min  |
| Hold      | -                   | 10°C        | Hold   |

3. Remove the plate from the thermal cycler, then briefly centrifuge the plate to collect the contents.

**STOPPING POINT** Target amplification reactions may be stored at 10°C overnight on the thermal cycler. For longer periods, store at –20°C.



#### Partially digest amplicons

**IMPORTANT!** Keep the plate on ice or in a prechilled 4°C cold block while preparing the reactions.

- 1. Keep the FuPa Reagent (brown cap) on ice, gently vortex to mix, then briefly centrifuge to collect.
- 2. Carefully remove the adhesive film from the plate.

**IMPORTANT!** Be careful when removing the film to minimize contamination.

- 3. Add 2  $\mu$ L of FuPa Reagent to each amplified sample. The total volume is ~22  $\mu$ L.
- 4. Seal the plate with a new clear adhesive film, vortex thoroughly, then centrifuge briefly to collect droplets. Alternatively, mix by pipetting at least half the total volume up and down at least 5 times before sealing the plate.
- 5. Place a compression pad on the plate, load in the thermal cycler, then run the following program:

| Temperature | Time                    |
|-------------|-------------------------|
| 50°C        | 10 min                  |
| 55°C        | 10 min                  |
| 60°C        | 20 min                  |
| 10°C        | Hold (for up to 1 hour) |

6. Remove the plate from the thermal cycler, then briefly centrifuge the plate to collect the contents.

Proceed immediately to "Perform the ligation reaction" on page 20. Do not store the partially digested amplicons overnight.

## Ligate adapters to the amplicons and purify

When sequencing multiple libraries on a single run, you *must* ligate a different barcode to each library. DNA libraries from the same sample using different pools also require different barcodes.

IonCode<sup>™</sup> Barcode Adapters are provided at the appropriate concentration and include forward and reverse adapters in a single well. No further handling is necessary.

Ion Xpress<sup>™</sup> Barcode Adapters require handling and dilution as described in "Ion Xpress<sup>™</sup> Barcode Adapters only: Combine and dilute adapters".

**IMPORTANT!** When handling barcoded adapters, be careful to avoid cross-contamination by changing gloves frequently and opening one tube at a time.

#### Ion Xpress<sup>™</sup> Barcode Adapters only: Combine and dilute adapters

For each barcode X selected, prepare a mix of Ion P1 Adapter and Ion Xpress<sup>™</sup> Barcode X at a final dilution of 1:4 for each adapter. Scale volumes as necessary. Use 2 µL of this barcode adapter mix in the ligation reaction.

For example, combine the volumes indicated in the following table.

| Component                                        | Volume |
|--------------------------------------------------|--------|
| Ion P1 Adapter                                   | 2 µL   |
| Ion Xpress <sup>™</sup> Barcode X <sup>[1]</sup> | 2 µL   |
| Nuclease-free Water                              | 4 µL   |
| Total                                            | 8 µL   |
|                                                  |        |

<sup>[1]</sup> X = barcode chosen

Note: Store diluted adapters at -20°C.

#### Perform the ligation reaction

- 1. If there is visible precipitate in the Switch Solution or the tube cap after thawing, vortex or pipet up and down at room temperature to resuspend before pipetting.
- 2. Briefly centrifuge the plate to collect the contents.
- **3.** Carefully remove the plate seal, then add the following components in the order that is listed to each well containing digested amplicons.

**IMPORTANT!** Add the DNA Ligase last. Do not combine DNA Ligase and adapters before adding to digested amplicons.

| Order of addition | Component                                                                                                               | Volume |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|--------|
| 1                 | Switch Solution (yellow cap)                                                                                            | 4 µL   |
| 2                 | IonCode <sup>™</sup> Adapters <i>or</i><br>diluted Ion Xpress <sup>™</sup> barcode adapter mix (for barcoded libraries) | 2 µL   |
| 3                 | DNA Ligase (blue cap)                                                                                                   | 2 µL   |
| _                 | Total volume (including ~22 µL of digested amplicon)                                                                    | ~30 µL |

4. Seal the plate with a new MicroAmp<sup>™</sup> Clear Adhesive Film, vortex thoroughly, then briefly centrifuge to collect droplets. Alternatively, mix by pipetting at least half the total volume up and down at least 5 times before sealing the plate.



5. Place a MicroAmp<sup>™</sup> Compression Pad on the plate, load in the thermal cycler, then run the following program:

| Temperature | Time                      |
|-------------|---------------------------|
| 22°C        | 30 minutes                |
| 68°C        | 5 minutes                 |
| 72°C        | 5 minutes                 |
| 10°C        | Hold (for up to 24 hours) |

**STOPPING POINT** Samples can be stored for up to 24 hours at  $10^{\circ}$ C on the thermal cycler. For longer term, store at  $-20^{\circ}$ C.

#### Purify the library

#### **IMPORTANT!**

- Bring Agencourt<sup>™</sup> AMPure<sup>™</sup> XP Reagent to room temperature and vortex thoroughly to disperse the beads before use. Pipet the solution slowly.
- Do NOT substitute a Dynabeads<sup>™</sup>-based purification reagent for the Agencourt<sup>™</sup> AMPure<sup>™</sup> XP Reagent.
- 1. Prepare 70% ethanol (350 µL × # of samples) fresh daily.
- 2. Briefly centrifuge the plate to collect the contents in the bottom of the wells.
- Carefully remove the plate seal, then add 45 µL (1.5X sample volume) of Agencourt<sup>™</sup> AMPure<sup>™</sup> XP Reagent to each library. Pipet up and down 5 times to mix the bead suspension with the DNA thoroughly.

Note: Visually inspect each well to ensure that the mixture is homogeneous.

- 4. Incubate the mixture for 5 minutes at room temperature.
- Place the plate in a magnetic rack such as the DynaMag<sup>™</sup>-96 Side Magnet, then incubate for 2 minutes or until the solution clears. Carefully remove, then discard the supernatant without disturbing the pellet.
- 6. Add 150 μL of freshly prepared 70% ethanol, then move the plate side-to-side 3 times in the two positions of the magnet to wash the beads. Carefully remove, then discard the supernatant without disturbing the pellet.

**Note:** If your magnet does not have two positions for shifting the beads. Remove the plate from the magnet, gently pipet up and down 5 times (with the pipettor set at 100  $\mu$ L), then return the plate to the magnet and incubate for 2 minutes or until the solution clears.

7. Repeat step 6 for a second wash.

**8.** Ensure that all ethanol droplets are removed from the wells. Keeping the plate in the magnet, air-dry the beads at room temperature for 5 minutes. Do not overdry.

**IMPORTANT!** If needed, centrifuge the plate and remove remaining ethanol before air-drying the beads. Under conditions of low relative humidity, the beads air-dry rapidly. Do not overdry.

#### Elute the library

- 1. Remove the plate with purified libraries from the plate magnet, then **add 50 µL of Low TE** to the pellet to disperse the beads.
- Seal the plate with MicroAmp<sup>™</sup> Clear Adhesive Film, vortex thoroughly, then briefly centrifuge to collect droplets. Alternatively, mix by pipetting at least half the total volume up and down at least 5 times before sealing the plate.
- 3. Incubate at room temperature for at least 2 minutes.
- 4. Place the plate on the magnet for at least 2 minutes.
- 5. Carefully remove the plate seal, then transfer the supernatant (~50 μL) to a new 96-well plate or 1.5-mL Eppendorf LoBind<sup>™</sup> tube.

STOPPING POINT Libraries can be stored at 4–8°C for up to 1 month. For longer term, store at –20°C. We recommend transferring the supernatant to a 1.5-mL Eppendorf LoBind<sup>™</sup> tube for long-term storage.

## Quantify the library by qPCR

Determine library concentration by qPCR with the Ion Library TaqMan<sup>™</sup> Quantitation Kit (Cat. No. 4468802). After quantification, determine the dilution factor that results in a concentration of ~50 pM.

For instructions, see the *Ion Library TaqMan™ Quantitation Kit User Guide* (Pub. No. MAN0015802).

#### Prepare library dilutions

Before qPCR quantification, the libraries must be diluted to a concentration that falls inside the range of the standards. We recommend diluting the libraries 500-fold.

- Combine 2 µL of supernatant, containing the library, with 998 µL of Nuclease-free Water in a 96-well deep-well plate or 1.5-mL Eppendorf LoBind<sup>™</sup> tube.
- 2. Seal the plate with a new MicroAmp<sup>™</sup> Adhesive Film, vortex thoroughly, then briefly centrifuge to collect droplets. Alternatively, mix by pipetting at least half the total volume up and down at least 5 times before sealing the plate.

#### Quantify library by qPCR and calculate dilution factor

Determine the concentration of each lon AmpliSeq<sup>™</sup> Microbiome Health Research Kit library by qPCR with the Ion Library TaqMan<sup>™</sup> Quantitation Kit (Cat. No. 4468802). Analyze each sample, standard, and negative control in duplicate reactions. Sample libraries typically have yields of 100–2,500 pM. NTC libraries typically yield below 50 pM. However, library yield is not indicative of library quality. After quantification and determination of the dilution factor that results in a concentration of ~50 pM, dilute the libraries to 50 pM.

1. Prepare three 10-fold serial dilutions of the *E. coli* DH10B Ion Control Library (~68 pM; from the Ion Library TaqMan<sup>™</sup> Quantitation Kit) at 6.8 pM, 0.68 pM, and 0.068 pM. Mark these tubes as standards, then use these concentrations in the qPCR instrument software.

| Standard | Control Library                | Nuclease-free water <sup>[1]</sup> | Dilution factor | Concentration |
|----------|--------------------------------|------------------------------------|-----------------|---------------|
| 1        | 5 µL undiluted Control Library | 45 μL                              | 1:10            | 6.8 pM        |
| 2        | 5 µL Std 1                     | 45 μL                              | 1:100           | 0.68 pM       |
| 3        | 5 µL Std 2                     | 45 μL                              | 1:1000          | 0.068 pM      |

<sup>[1]</sup> Not DEPC-treated.

**Note:** When you program the qPCR instrument, enter the concentration of each standard in the "Amount" field.

2. Calculate, then prepare the required volume of PCR Master Mix for duplicate reactions of each library sample, standard, and NTC using the following table. Include a 5–10% overage to accommodate pipetting errors.

| Component             | Volume per reaction |                |  |
|-----------------------|---------------------|----------------|--|
| Component             | 96-well plate       | 384-well plate |  |
| 2X TaqMan™ Master Mix | 10 µL               | 5 µL           |  |
| 20X Ion TaqMan™ Assay | 1 µL                | 0.5 μL         |  |
| Total                 | 11 µL               | 5.5 μL         |  |

**3.** In an Optical PCR plate setup duplicate PCR reactions for each sample, standard, and NTC. To each well add the following components:

| Component                                   | Volume per reaction |                |  |
|---------------------------------------------|---------------------|----------------|--|
| Component                                   | 96-well plate       | 384-well plate |  |
| PCR Master Mix                              | 11 μL               | 5.5 µL         |  |
| 1:500 dilution of the sample <sup>[1]</sup> | 9 µL                | 4.5 μL         |  |
| Total                                       | 20 µL               | 10 µL          |  |

<sup>[1]</sup> Substitute E. coli DH10B standards prepared in step 1 for standards. Substitute nuclease-free water for NTC.

- 4. Program your real-time instrument.
  - a. Enter the following thermal cycling parameters.

| Stage                        | Temperature | Time   |
|------------------------------|-------------|--------|
| Hold (UDG incubation)        | 50°C        | 2 min  |
| Hold (polymerase activation) | 95°C        | 20 sec |
|                              | 95°C        | 1 sec  |
|                              | 60°C        | 20 sec |

- b. Enter the concentrations of the control library standards.
- c. Select ROX<sup>™</sup> Reference Dye as the passive reference dye.
- d. Select a reaction volume of 20 µL for a 96-well plate or 10 µL for a 384-well plate.
- e. Select FAM<sup>™</sup> dye/MGB as the TaqMan<sup>™</sup> probe reporter/quencher.
- f. Set the analysis parameters:
  - Threshold-deselect Automatic Threshold, then enter a Threshold value of 0.2.
  - Automatic Baseline ensure that Automatic Baseline is selected.
- **5.** Following qPCR, calculate the average concentration of each library by multiplying the determined concentration by the dilution factor used (1:500 recommended).
- Based on the calculated library concentration, determine the dilution factor for the undiluted library that results in a concentration of ~50 pM.

For example:

- The undiluted library concentration is 300 pM.
- The dilution factor is 300 pM/50 pM = 6.
- Therefore, 10 µL of library that is mixed with 50 µL of Low TE (1:6 dilution) yields approximately 50 pM.
- 7. Dilute library to 50 pM as described, then combine all libraries to be sequenced on a single chip into a single pool (see "Combine libraries" on page 25).

## **Combine libraries**

When combining Target Species and 16S pool libraries into a single library pool, from the same or from different samples, we recommend combining all libraries in equal proportions. At least 25 µL of library pool is required to perform the templating reaction on the Ion Chef<sup>™</sup> Instrument.

**IMPORTANT!** Prepare a fresh library dilution before each Ion Chef<sup>™</sup> Instrument run. Use the diluted library within 48 hours.

 Combine 5 µL of each uniquely barcoded, 50 pM diluted library together into a 1.5-mL Eppendorf LoBind<sup>™</sup> tube.

#### Note:

- If combining fewer than 5 libraries together into a library pool, combine enough volume of each library to ensure that you have a final volume of 25  $\mu$ L. You must have 25  $\mu$ L to perform the templating reaction.
- We recommend combining up to 64 libraries into a single pool for sequencing on a single lon 540<sup>™</sup> Chip. Libraries can be paired (from the same sample) or unpaired (from different samples), as long as each library has a unique barcode.
- Do not use a library with a concentration less than 50 pM.
- For runs that include a no-template control (NTC), dilute the NTC library 1:10 in Low TE buffer and then add in the same volume of diluted NTC library as is added for DNA sample libraries.
- 2. Vortex thoroughly, then briefly centrifuge to collect droplets. Alternatively, mix by pipetting at least half the total volume up and down at least 10 times.

## Guidelines for templating and sequencing

| Chip             | Template<br>System | Sequencer                                             | Kit                                                  | User Guide                                                     |
|------------------|--------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|
| lon 540™<br>Chip | lon Chef™          | Ion GeneStudio™ S5<br>Series Sequencer <sup>[1]</sup> | lon 540™ Kit – Chef<br>(Cat. Nos. A27759,<br>A30011) | <i>Ion 540™ Kit – Chef User Guide</i><br>(Pub. No. MAN0010851) |
| lon 550™<br>Chip | lon Chef™          | Ion GeneStudio™ S5<br>Series Sequencer <sup>[1]</sup> | lon 550™ Kit – Chef<br>(Cat. No. A34541)             | <i>Ion 550™ Kit – Chef User Guide</i> (Pub.<br>No. MAN0017275) |

Proceed to template preparation and sequencing using one of the following kits.

[1] The Ion S5<sup>™</sup> Sequencer and the Ion S5<sup>™</sup> XL Sequencer are supported but no longer available for purchase. Ion AmpliSeq<sup>™</sup> Microbiome Health Research kits are compatible with both the Ion S5<sup>™</sup> and Ion GeneStudio<sup>™</sup> S5 Series Sequencers.

To create a specific Run Plan for use in templating and sequencing, see Chapter 5, "Create a Planned Run". For additional information, see the user guide for the Ion 540<sup>™</sup> Chip or Ion 550<sup>™</sup> Chip.



# Create a Planned Run

| About Planned Runs                             | 26 |
|------------------------------------------------|----|
| Confirm the IonReporterUploader plugin version | 27 |
| Create a Planned Run template                  | 27 |
| Create a Planned Run                           | 29 |

#### **IMPORTANT!**

- This kit is compatible with Torrent Suite<sup>™</sup> Software version 5.12 or later. Before proceeding, check for updates to the Torrent Suite<sup>™</sup>, Ion Reporter<sup>™</sup>, and Ion Chef<sup>™</sup> System software. Contact your service representative for help with upgrading the software.
- Before creating a Planned Run you must enable the Ion AmpliSeq<sup>™</sup> Microbiome Health Research template, and upload the **Reference Library** on the Torrent Server. See Appendix B, "Supplemental information" for more information. Contact your local service representative to obtain the most current file.

## **About Planned Runs**

Planned Runs are digital instructions that are created in Torrent Suite<sup>™</sup> Software for controlling the template preparation and sequencing instruments. Planned Runs contain settings such as number of flows, kit types, barcodes, sample information, and reference files (if any). Planned Runs are also used to track samples, chips, and reagents throughout the workflow, from template preparation on the Ion Chef<sup>™</sup> Instrument through sequencing on an Ion GeneStudio<sup>™</sup> S5 Series Sequencer and subsequent data analysis. Each chip that is prepared in an Ion Chef<sup>™</sup> run requires its own Planned Run.

**IMPORTANT!** For more information on creating a Planned Run in Torrent Suite<sup>™</sup> Software, including a complete description of each field in the **Create Plan** workflow bar, see the *Torrent Suite<sup>™</sup> Software Help*, available by clicking the **Help** button in the software.

In Torrent Suite<sup>™</sup> Software 5.12 or later, use the **Ion AmpliSeq Microbiome Health Research Panel** template as the primary Planned Run template.

| Application           | Torrent Suite <sup>™</sup> Software template  | Description                   |
|-----------------------|-----------------------------------------------|-------------------------------|
| 16S Target Sequencing | Ion AmpliSeq Microbiome Health Research Panel | DNA-only Planned Run template |

## Confirm the IonReporterUploader plugin version

Ensure that the version of the IonReporterUploader plugin is 5.12.0.4 or later.

Previous versions of the plugin do not support the upload of 2 barcodes per sample using the same sample name.

If you do not have the correct version of the plugin, contact support.

## Create a Planned Run template

We recommend creating a Planned Run template for reuse when the same conditions are used for multiple runs. For a complete description of each field in the **Create Plan** workflow bar, see the *Torrent Suite*<sup>™</sup> Software Help.

**Note:** If you are using Torrent Suite<sup>™</sup> Software version 5.12 or later and are using the Ion AmpliSeq Microbiome Health Research Panel template, proceed to "Create a Planned Run" on page 29.

- 1. Sign in to the Torrent Suite<sup>™</sup> Software.
- 2. In the Plan tab, in the Templates screen, click 16S rRNA Profiling in the research application list.
- In the 16S rRNA Profiling list, Ion AmpliSeq Microbiome Health Research Panel row, click 
   (Settings) ▶ Copy.
   The Copy Template wizard opens to the Save step.
- 4. In the **Template Name** field, enter a name for the Planned Run template.
- 5. For Analysis Parameters, ensure Default (Recommended) is selected.
- 6. Ensure that the correct **Default Reference & BED Files** are selected.

| Field              | File                              |
|--------------------|-----------------------------------|
| Reference Library: | Microbiome_health_panel_reference |
| Target Regions:    | None                              |
| Hotspots Regions:  | None                              |



7. In the Copy Template workflow bar, click the Ion Reporter step, then select:

| Copy Template |            | Research Application | Kits | Plugins | Projects | Save |
|---------------|------------|----------------------|------|---------|----------|------|
|               | $\bigcirc$ |                      |      |         |          |      |

| lon Reporter™ Software<br>version | Selection                                                                                                                                                                                                                                                                                      |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.12.1 or earlier                 | Select None.                                                                                                                                                                                                                                                                                   |
| 5.14 or later                     | <ul> <li>Your Ion Reporter<sup>™</sup> 5.14 account.</li> <li>AmpliSeq Microbiome Health - w1.0 - Single Sample under Existing Workflow.</li> <li>Self under Sample Grouping.</li> <li>Automatically upload to Ion Reporter after run completion under Ion Reporter Upload Options.</li> </ul> |

**Note:** If the Ion Reporter<sup>™</sup> 5.14 account is not configured, configure it through Ion Reporter Configure settings (see "Configure the IonReporterUploader plugin in Torrent Suite<sup>™</sup> Software" on page 48 for more information).

- 8. Click Next.
- 9. In the Research Application step, select Metagenomics and 16S Targeted Sequencing for Research Application and Target Technique respectively, then click Next.
- 10. In the Kits step, make the following selections, then click Next.

| Item                  | Selection                                                           |
|-----------------------|---------------------------------------------------------------------|
| Instrument            | Ion GeneStudio™ S5 System                                           |
| Library Kit Type      | Ion AmpliSeq™ Library Kit Plus                                      |
| Template Kit          | Select the Ion Chef radio button, then select one of the following: |
|                       | <ul> <li>Ion 540<sup>™</sup> Kit – Chef</li> </ul>                  |
|                       | <ul> <li>Ion 550<sup>™</sup> Kit – Chef</li> </ul>                  |
| Sequencing Kit        | Ion S5™ Sequencing Kit                                              |
| Base Calibration Mode | Default Calibration                                                 |
| Chip Type             | One of the following:                                               |
|                       | <ul> <li>Ion 540<sup>™</sup> Chip</li> </ul>                        |
|                       | • Ion 550™ Chip                                                     |
| Barcode Set           | IonCode                                                             |
| Flows                 | 500                                                                 |

11. In the Plugins step, select the coverageAnalysis plugin, then click Next.

- 12. In the **Projects** step, select the project or projects that receive data from the runs that use this template, then click **Next**.
- 13. In the Save step.
  - a. (Optional) Edit the Template Name.
  - b. Ensure that Microbiome\_health\_panel\_reference is selected.
  - c. Click Save Template.

The Planned Run template is added to the list on the Templates screen.

## Create a Planned Run

The following procedure requires the use of a Planned Run template. To create a template see "Create a Planned Run template" on page 27.

- 1. Sign in to the Torrent Suite<sup>™</sup> Software.
- 2. In the **Plan tab**, in the **Templates** screen, click **16S Targeted Sequencing** in the left navigation menu.
- 3. Select one of the following actions.
  - For Torrent Suite<sup>™</sup> Software version 5.12.1 or later, in the 16S Targeted Sequencing list, select **Ion AmpliSeq Microbiome Health Research Panel**.
  - In the 16S Targeted Sequencing list, click your customized Planned Run template name or click + Plan Run.

The Create Plan workflow opens to the Plan step.

4. Make the following selections.

| Field                                           | Selection                                                                                                                 |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Run Plan Name                                   | Enter a Planned Run name.                                                                                                 |
| Analysis Parameters                             | Ensure the <b>Default (Recommended)</b> radio button is selected.                                                         |
| Reference Library                               | Microbiome_health_panel_reference                                                                                         |
| Target Regions                                  | None                                                                                                                      |
| Hotspots Regions                                | None                                                                                                                      |
| Use same reference & BED files for all barcodes | Ensure that the checkbox is selected.                                                                                     |
| Number of barcodes                              | Enter the number of barcodes used in this run, then click 🔗 to the right of this field. The default value is 64 barcodes. |
| Sample Tube Label                               | Enter or scan the barcode of the Ion Chef <sup>™</sup> Library Sample Tube that is used in the run.                       |
| Chip Barcode                                    | No entry required.                                                                                                        |

#### (continued)

| Field                                 | Selection                                   |
|---------------------------------------|---------------------------------------------|
| Oncology                              | Ensure that the radio button is deselected. |
| Pre-implantation Genetic<br>Screening | Ensure that the radio button is deselected. |

#### Template Name :

Ion AmpliSeq Microbiome Health Research Panel

#### Run Plan Name (required) :

| Ion AmpliSeq Microbiome Health Research Pan | el (1)                                         |
|---------------------------------------------|------------------------------------------------|
| Analysis Parameters:                        | ded) O Custom Details + 2                      |
| Default Reference & BED Files ③             |                                                |
| Reference Library:                          | Microbiome_health_panel_reference(Microbiome - |
| Target Regions:                             | None -                                         |
| Hotspot Regions:                            | None -                                         |
| ✓ Use same reference & BED files for all b  | parcodes                                       |
| Number of barcodes :                        | 4 4                                            |
| Sample Tube Label :                         | (5)                                            |
| Chip Barcode :                              | 6                                              |
| Enter a sample name for each barcode used ( | require at least one sample) C 🖡 📋 :           |
| Oncology (7)                                | 8   Pre-implantation Genetic Screening         |
| 1 Run Plan Name                             | 5 Sample Tube Label                            |
| 2 Analysis Parameters                       | 6 Chip Barcode                                 |
| ③ Default Reference & BED files             | (7) Oncology                                   |
| (4) Number of barcodes                      | $(\hat{8})$ Pre-implantation Genetic Screening |

- 5. Complete the samples table by entering the following information.
  - To populate the **Samples Table** automatically, click **Load Samples Table**, then select an appropriate CSV file containing sample information specific for this Planned Run. (To create and save a **Samples Table** CSV file, see "(Optional) Create a Sample Table template file" on page 32.)
  - To populate the **Samples Table** manually, enter sample information into the samples table. To reveal additional columns, click vertical column headers (Control Type, Reference, Annotations).

| イ      |              | Κ |    |  |
|--------|--------------|---|----|--|
|        | $\mathbf{J}$ | - | -  |  |
| $\sim$ | T            | 2 |    |  |
|        |              |   | ۰. |  |
|        | 10           |   | Π. |  |
|        |              |   |    |  |

**Note:** Fields that are listed in the following table are required. Fields that are not listed are not required to be populated to create a Planned Run.

| Field                       | Action                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Barcode                     | For each sample select the Barcode that identifies it from the dropdown list.                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Sample Name                 | Accept the auto-populated sample names or click in a field, then enter a unique sample name.<br>We recommend that the sample names (either auto-populated or user defined) that you pick are<br>unique even between runs.<br>IMPORTANT! For barcodes from the same biological sample, use exactly the same Sample<br>Name. In the downstream workflow, the sample name is used to pair libraries from the 16S and<br>Target Species pools. |  |  |  |  |  |
| Control Type<br>(collapsed) | Click to expand, then select <b>No Template Control</b> from the dropdown list to designate a sample as a no template control.                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Sample ID                   | (Optional) Click in the field, then enter a sample ID.                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Sample<br>Description       | (Optional) Click in the field, then enter a sample description.                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Ion Reporter                | Ensure the correct workflow is selected.                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Workflow                    | <b>IMPORTANT!</b> If you have Ion Reporter <sup>™</sup> Software version 5.12.1 or earlier, leave deselected.                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Bacterial Marker            | 1. Select 16S rRNA Gene or Target Species from the dropdown list.                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| туре                        | <b>2.</b> (Optional) Click <b>(0)</b> to copy the entry to all the rows.                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                             | Note: For Torrent Suite <sup>™</sup> Software version 5.12.1 or later, the <b>Bacterial Marker Type</b> column is displayed only when the planned run is generated from the <b>AmpliSeq Microbiome Research Panel</b> template.                                                                                                                                                                                                            |  |  |  |  |  |
| IR Set ID                   | The IR Set ID links individual samples for analysis. Ensure the correct value is auto-populated. Select from the dropdown list to change.                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                             | <b>IMPORTANT!</b> For barcodes from the same biological sample, use exactly the same <b>IR Set</b><br><b>ID</b> . In the downstream workflow, samples with the same the <b>IR Set ID</b> are considered related<br>samples. The <b>IR Set ID</b> is used to pair libraries from the 16S and Targeted Species pools. Do<br>not give unrelated samples the same IR Set ID value (even if that value is zero or blank).                       |  |  |  |  |  |



- 1 Barcode
- 2 Sample Name
- (3) Control Type (collapsed)
- (4) Sample ID

- (5) Sample Description
- 6 Ion Reporter Workflow
- (7) Bacterial Marker Type
- ⑧ IR Set ID



- 6. If you are using lon Reporter<sup>™</sup> Software version 5.12.1 or earlier, in the **Ion Reporter** step, ensure that **None** is selected for **Ion Reporter Account** and **Self** is selected for **Sample Grouping**.
- 7. Click Plan Run.

The run is listed in the **Planned Runs** screen under the name that you specified and is automatically used by the Ion Chef<sup>™</sup> System when the associated Ion Chef<sup>™</sup> Library Sample Tube is loaded on the instrument.

#### (Optional) Create a Sample Table template file

- 1. In the **Plan** step of a Planned Run, Click **Save Samples Table** to save the CSV file to your computer.
- 2. Edit the CSV file by entering all required sample information into the appropriate sample information columns, then save the CSV file to your computer.



## Data Analysis using Ion Reporter<sup>™</sup> Software

**IMPORTANT!** For barcodes from the same biological sample, use exactly the same Sample Name. In the downstream workflow, the sample name is used to pair libraries from the 16S and Target Species pools. If libraries are incorrectly named, see "Edit sample attributes in Ion Reporter<sup>™</sup> Software" on page 49.

#### IMPORTANT!

- You must use Ion Reporter<sup>™</sup> Software version 5.14 or later. We recommend updating to the latest available version of Ion Reporter<sup>™</sup> Software.
- If you are using Ion Reporter<sup>™</sup> Software version 5.12.1 or earlier, skip this chapter and follow the instructions in Appendix C, "AmpliSeq\_Microbiome\_Health\_Analysis plugin for Torrent Suite<sup>™</sup> Software".

For additional information, see the help system for your version of Ion Reporter™ Software.

Note: For the Ion AmpliSeq<sup>™</sup> Microbiome Health Research – Target Species Pool, with the following exceptions, all the primers in this pool are designed to be targeted to a single bacterial species.

- Escherichia coli primers-Also detect and amplify DNA from Shigella.
- Streptococcus infantarius primers—Also detect and amplify DNA from Streptococcus equinus, due to extremely high biological identity between strains of the above species.

## Analysis workflows in Ion Reporter<sup>™</sup> Software

If the appropriate Ion Reporter<sup>™</sup> Software workflow was selected in your Planned Run in the Torrent Suite<sup>™</sup> Software, automated analysis has already been performed and you can view the analysis results in the Ion Reporter<sup>™</sup> Software. For instructions about manually launching an analysis, see "Manually launch an analysis" on page 35.

Note: Microsoft<sup>™</sup> Excel<sup>™</sup>, or other spreadsheet tool, is required for viewing VCF, CSV, and TSV files.

| Analysis workflow                                    | Description                                                                                                                                                                                 |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AmpliSeq Microbiome Health – w1.0<br>– Single Sample | Detects 73 bacterial species that are associated with disease, identifies bacterial species taxonomy of the microbial species present, and displays analysis results of the sequencing run. |

# *(Optional)* Create a custom analysis workflow for the Ion AmpliSeq<sup>™</sup> Microbiome Health Research Panel

We recommend that you start with a predefined analysis workflow or a custom analysis workflow and begin with an optimized set of parameters.

When you create a custom analysis workflow, you can change parameter settings.

You can copy predefined analysis workflows and custom analysis workflows from the current software and from previous versions of the software. When you copy analysis workflows from an earlier version of the software, you must use target regions files, hotspots files, and fusion panel files from the same version of the software. You can view the analysis workflow version in the **Details** pane. For more information, see the help system for your version of the lon Reporter<sup>™</sup> Software.

- 1. Sign in to the Ion Reporter<sup>™</sup> Software.
- 2. In the Workflows tab, click Overview.
- 3. In the Workflows table, click the row for the analysis workflow that you want to copy, then click ☆ (Actions) > Copy.

The workflow bar opens to the Research Application step.

When you copy an analysis workflow, some settings and fields are defined by the analysis workflow and remain selected.

- 4. In the Research Application step, ensure that the Research Application is Microbiome Analysis and Sample Groups is Single, then click Next.
- 5. In the Reference step, confirm that the required files are selected, then click Next.
  - For target species libraries, the reference is packaged with the software.
  - For the 16S rRNA Gene libraries, select one of the following libraries. For help in selecting a reference library, contact support (Appendix E, "Documentation and Support").
    - Custom SILVA SSU Database 138
    - Curated MicroSEQ(R) Reference Library v2013.1 (Microbiome)
    - Curated Greengenes v13.5 (Microbiome)
- 6. (Optional) In the Parameters step, edit parameters, then click Next.

For more information about parameters, contact support (Appendix E, "Documentation and Support").

7. In the **Confirm** step, enter an analysis **Workflow Name** and **Description** (*Optional*), then click **Confirm** > **Save Workflow**.

To verify that the analysis workflow was copied, click the **Workflows** tab, then click **Overview**, and search for the analysis workflow name to confirm that the custom analysis workflow is listed in the **Workflows** table.

## Manually launch an analysis

**Note:** If you are using a planned run created from a template with **Automatically upload to Ion Reporter after run completion** under **Ion Reporter Upload Options** selected (see "Create a Planned Run template" on page 27), the analysis is performed automatically. You can manually launch an analysis to reanalyze a run.

- 1. Sign in to the Ion Reporter<sup>™</sup> Software.
- 2. In the Analyses tab, select one of the following.
  - Select the Launch sub tab.
  - Click Launch Analysis, then select Manual from the dropdown list.
- 3. In the Launch Analysis screen, in the Workflow tab, click the Research Application button, then select Microbiome Analysis from the dropdown list.
- 4. Select *AmpliSeq Microbiome Health w1.0 Single Sample* or a custom workflow, then click **Next**.
- 5. In the Launch Analysis window, in the Samples tab, click a sample to select that sample, then click Next.

Note: You can enter a term in the search box to find a sample.

6. In the Launch Analysis window, in the Plugins tab, ensure that no plugins are listed, then click Next.

The workflow for the Ion AmpliSeq<sup>™</sup> Microbiome Health Research Panel does not require any plugins.

- (Optional) In the Launch Analysis window, in the Confirm & Launch tab, enter an Analysis Name and Description.
- 8. Click Launch Analysis.

| Review the select | ed options, name your analysis and then launch it. |  |  |  |  |  |
|-------------------|----------------------------------------------------|--|--|--|--|--|
| Analysis          | Test 123                                           |  |  |  |  |  |
| Name:             | (HMN27721_DEV_RN02_BD-iruCli)                      |  |  |  |  |  |
| Description:      | Description                                        |  |  |  |  |  |
|                   | Launch Analysis                                    |  |  |  |  |  |
| ← Previous        | Cancel                                             |  |  |  |  |  |

Analysis ready to launch!

## Microbiome health research analysis results

Analyses that are performed in Ion Reporter<sup>™</sup> Software with the AmpliSeq Microbiome Health – w1.1 – Single Sample analysis workflow show analysis results from the detection of 73 bacterial species, and identification of bacterial species taxonomy for the microbial species that are present.

Microbiome health research analysis results are designed to help you study the potential impacts of the microbiome on human health, such as research on disease and chronic conditions, and the maintenance of a healthy immune system.



#### View microbiome health research analysis results—Single Sample

If you use the AmpliSeq Microbiome Health analysis workflow, you can view the analysis results in Ion Reporter<sup>™</sup> Software.

To visualize multiple analyses, see "View microbiome health research analysis results—Multiple samples" on page 41.

- 1. In the Analyses tab, click Overview.
- 2. Click **Workflow** filter, then select an AmpliSeq Microbiome Health analysis workflow to narrow the list to microbiome health research analysis results.

You can further refine the list of analyses with other filters, or click column headings to sort the list.

3. Click the analyses name link.

The Analysis Results screen opens.

The following parameters are displayed.

- Pool QC—Pool QC is determined to be either PASS, FAIL, or NO\_DATA. If the total number
  of valid mapped reads is greater than the threshold applied and the mean read length of all
  the reads from the BAM file is greater than the threshold, pool QC is determined to be PASS,
  otherwise FAIL. If pool QC is determined to be FAIL, it means that library pool failed and the
  results are not valid. If pool QC is NO\_DATA, it means that pool did not contain any data.
- Total Reads—The total number of filtered and trimmed reads independent of length reported in the output BAM file.
- Total Valid Mapped Reads—Total number of reads mapped to the reference sequences with good mapping quality (reads with alignment score greater than the min local alignment score threshold).
- Mean read length—The average length of all reads from the BAM file.
- 4. Select the Target Species tab, then click Source Data or Species Distribution.
  - The Ion AmpliSeq<sup>™</sup> Microbiome Health Research Target Species Pool detects 73 bacterial species that are associated with human disease. Click **Download Results** to download a file with a list of the 73 species.

**Note:** Some of the primer pairs designed to detect the 73 targeted species can sometimes amplify strains of other non-targeted species. As a result, an additional 16 species can be reported as well. When such species are detected the species names are reported with (\*), indicating that it is one of the non-targeted species.

6

• The **Species Distribution** view displays a bar chart of the abundance of the species that are detected.



• The **Source Data** view displays the parameters in the following table for each detected species.

| Parameter                            | Description                                                                                                                                                                        |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species name                         | Bacterial species.                                                                                                                                                                 |
| Detected Target species<br>abundance | Percentage abundance of the species in the sample.                                                                                                                                 |
| Read Count                           | Raw read count.                                                                                                                                                                    |
| Normalized read count                | Read counts are normalized by the number of amplicons per sequence and the sampling depth per sample. Normalized read counts are comparable across different microbes and samples. |

- 5. Click 16s rRNA Gene tab, then select an option to view taxonomy data.
  - To view a summary of the taxonomy data, click **Source Data**.





• To view bar charts of the abundance of detected species at the phylum, family and genus levels, click **Microbe Distribution**.



6



• To view a interactive taxonomy view of the detected species, click **Interactive Taxonomy View**.



You can adjust the taxonomy view as follows.

- Enter a species to highlight that species in the Search field.
- Click Max depth to adjust the number of taxonomy classes that are displayed.
- Click **Font size** to change the font size of the characters.
- Click Chart size to change the size of the plot.
- Click Collapse to toggle the number of displayed taxonomy classes between 4 and 6.
- Click Snapshot to display the plot in a new window to enable saving the plot as a graphic.
- Click Link to display a link that can be copied for sharing or bookmarking
- Click ? to open the help system for generating the interactive taxonomy view

Ion AmpliSeq™ Microbiome Health Research Kits User Guide



- To view an Alpha rarefaction plot, click **Diversity Analysis** then select an option from the **Alpha Rarefaction Metric**dropdown menu.
  - shannon



simpson



- chao1



#### 6. To download data files, click Download Results.

A ZIP file containing the following files is downloaded to your local drive.

| File                              | File extension | Description                                                                                                                                                                                  |
|-----------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target Species Panel              | XLSX           | A list of the 73 bacterial species detected by Ion AmpliSeq <sup>™</sup><br>Microbiome Health Research – Target Species Pool. Not all<br>of the species are detected in a particular sample. |
| Taxonomy plot                     | HTML           | The Krona plot for the sample.                                                                                                                                                               |
| Folders for alpha diversity tests | various        | Data for Alpha diversity tests.                                                                                                                                                              |

#### View microbiome health research analysis results-Multiple samples

If you use the AmpliSeq Microbiome Health analysis workflow, you can visualize analysis results in Ion Reporter<sup>™</sup> Software.

To view the analysis results from a single analysis, see "View microbiome health research analysis results—Single Sample" on page 36.

- 1. In the Analysis tab, click Overview tab.
- 2. Select the check box for each analysis to be used for analysis, then click Visualize.

You must select at least three analyses. A minimum of three analyses are required for statistical analysis.

| Ov         | erview |      | Launch My Variants                               |                          |         |           |           |            |                                                               |                 | IR Org • Ion Reporter 5.14.0                                                                                                 |
|------------|--------|------|--------------------------------------------------|--------------------------|---------|-----------|-----------|------------|---------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------|
| • <b>Ю</b> | An     | alys | Go Versio                                        | n: All 👻 Workflow: All 👻 | More    | Filters 🔻 | Clear All |            | Ø Re                                                          | fresh           | Preferences  Visualize Launch Analysis                                                                                       |
|            | ¥ .    | 1 🗉  | Analysis                                         | Sample                   | Version | Refere    | Stage     | Project    | Workflow                                                      | Launo           | Selected Analyses                                                                                                            |
| ۰          |        | +    | HMN16935_DEV_RN02_BD_<br>1588861261221           | HMN16935_DEV_RN02_BD     | 5.14    |           | Analysis  | Demo_Sampl | Op AmpliSeq Microbiom<br>e Health - w1.0 - Sin<br>gle Sample  | May 0'<br>07:23 | Actions -                                                                                                                    |
|            |        | +    | HMN16935_DEV_RN02_BD_<br>1586589413180           | HMN16935_DEV_RN02_BD     | 5.14    |           | Review    | Demo_Sampl | Op AmpliSeq Microbiom<br>e Health - w1.0 - Sin<br>gle Sample  | Apr 11<br>12:20 | different analysis types or incomplete analyses.<br>Please limit to 10 Exome scale analyses or less.<br>Selected analyses: 3 |
|            |        | +    | DEV_HMN27716_1_c5887_2<br>020-03-27-11-05-10-291 | DEV_HMN27716_1           | 5.14    |           | Review    | Unknown    | 000 AmpliSeq Microbiom<br>e Health - w1.0 - Sin<br>gle Sample | Mar 27<br>12:01 | Details 🛱 Actions -                                                                                                          |
|            |        | +    | DEV_HMN21426_1_c5868_2<br>020-03-27-11-05-10-291 | DEV_HMN21426_1           | 5.14    |           | Review    | Unknown    | 000 AmpliSeq Microbiom<br>e Health - w1.0 - Sin               | Mar 27<br>12:01 | (0)<br>DEV_HMN21426_1_c5868_2020-03-27-11-05-10<br>-291                                                                      |

The Analysis Results screen opens to the Summary tab.

The **Summary** tab lists data for both the target species and the 16S rRNA gene. The **Target Species Markers** lists the total number of detected species. The **16S rRNA Gene Markers** lists taxonomic data that is identified in the sample, and a value for **Alpha Diversity**. The alpha diversity

6

results describe the diversity in a single sample at the species, genus, and family levels, and show the following metrics for each analyses.

- Pool QC Pool QC is determined to be either PASS or FAIL. If the total number of valid mapped reads is greater than the threshold applied and the mean read length of all the reads from the BAM file is greater than the threshold, pool QC is determined to be PASS, otherwise FAIL. If pool QC is determined to be FAIL, it means that library pool failed and the results are not valid.
- Total Reads—The total number of filtered and trimmed reads independent of length reported in the output BAM file.
- Total Valid Mapped Reads—Total number of reads mapped to the reference sequences with good mapping quality (reads with alignment score greater than the minimum local alignment score threshold).
- Mean read length—The average length of all reads from the BAM file.
- **3.** You can view results for individual samples, or view graphical representations of the selected analyses.
  - To view data for an individual sample, click **View Results** in the **Results** column of the **Target Species Markers** or the **16S rRNA Gene Markers** sections. Click **Back to Summary** to return to the **Summary**.
- 4. To view target species data, select the **Target Species** tab, then click the **Source Data** or **Heat Map & PCoA Analysis** sub tab.
  - The Ion AmpliSeq<sup>™</sup> Microbiome Health Research Target Species Pool detects 73 bacterial species that are associated with human disease. Click **Download Results** to download a file with a list of the 73 species.
  - Click **Source Data** to view data on the abundance of each species in each of the selected samples.
  - Click **Heat Map & PCoA Analysis** for a heat map of the abundance of the identified target species for each sample and a PCoA analysis plot, which shows Beta diversity results to describe similarities and dissimilarities between samples.

6



Species distribution heat map



PCoA analysis plot

- 5. To view taxonomy data, in the 16S rRNA Gene Markers section, click View Results in row of a sample, then select one of the following sub tabs.
  - a. To view a summary of the taxonomy data, click Source Data.

**b.** To view a bar chart of the abundance of detected species at the phylum, family and genus levels and a heat map, click **Microbe Distribution**. The following figures shows example charts of the family and genus levels.







6

- c. To view the Alpha diversity values for each sample, click Alpha Diversity Analysis. Select any of the following options.
  - shannon



#### • simpson



chao1



**d.** To view Beta Diversity analyses of the selected samples, click **Beta Diversity Analysis**, then click a matrix or plot.

#### Note:

- Matrix files in TSV format are downloaded to your local drive.
- · Plots are shown in a new window.
- Click Download Results to download a ZIP file that includes a list of the 73 species in the target species panel.
- 6. To download data files, click **Download Results**.

**Note:** The Alpha and Beta diversity data sets take longer to load. Click to save or open the file, depending on your browser settings.



| File                        | File extension                                   | Description                                                                                                                                                                                     |
|-----------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target Species<br>Panel     | XLSX                                             | A list of the 73 bacterial species detected by Ion<br>AmpliSeq <sup>™</sup> Microbiome Health Research – Target Species<br>Pool. Not all of the species are detected in a particular<br>sample. |
| Various files               | BIOM, QZA, TXT, SVG,<br>XLSX                     | Files for the taxonomic data, matrices, bar plots and heat maps that are available for the analysis results.                                                                                    |
| Folders for diversity tests | Includes TSV, QZA,<br>JSONP, QZV, HTML,<br>XLXS. | Files for all (alpha and beta) diversity test results.                                                                                                                                          |

#### A ZIP file containing the following files is downloaded to your local drive.



# Troubleshooting and FAQs

Visit our online Support Centers and FAQ database for tips and tricks for conducting your experiment, troubleshooting information, and FAQs. The online FAQ database is frequently updated to ensure accurate and thorough content.

- For the Next–Generation Sequencing Support Center: http://thermofisher.com/ngssupport
- For FAQs for this product: http://thermofisher.com/A46496faqs
- To browse the FAQ database and search using keywords: thermofisher.com/faqs



# Supplemental information

# Update Ion AmpliSeq<sup>™</sup> Microbiome Health Research Kit templates in Torrent Suite<sup>™</sup> Software

To install or update the Ion AmpliSeq<sup>™</sup> Microbiome Health Research templates, an off-cycle Torrent Suite<sup>™</sup> Software update may be required. Contact your local service representative to schedule a software update.

- 1. Sign in to the Torrent Suite<sup>™</sup> Software as an administrator.
- 2. In the upper right corner, click (Settings) ► Updates, then scroll to the Update Products section.
- 3. In the Name column find Ion AmpliSeq<sup>™</sup> Microbiome Health Research, then in that row click Update.

The software update starts automatically and displays as **Complete** when finished.

# Configure the IonReporterUploader plugin in Torrent Suite<sup>™</sup> Software

- 1. Sign in to the Torrent Suite<sup>™</sup> Software.
- 2. Click 🌣 (Settings) Ion Reporter Configure.
- 3. In the Ion Reporter Uploader Account Configuration screen, click + Add Account > Ion Reporter.
- 4. In the Add Ion Reporter account screen, enter the following information into the fields:

| Field        | Directions                                                                                                                                                                                                               |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Server Type  | Select a server type. <sup>[1]</sup>                                                                                                                                                                                     |
| Display Name | Enter a meaningful name of your choice. This name is used in the Planned Run template wizard and is shown to other Torrent Suite <sup>™</sup> Software users. Use only alphanumeric characters, spaces, and underscores. |
| Server       | Enter: <sup>[1]</sup>                                                                                                                                                                                                    |
| Port         | Enter: 443                                                                                                                                                                                                               |

(continued)

| Field    | Directions                                                      |
|----------|-----------------------------------------------------------------|
| Username | Enter your Ion Reporter™ Software username (your email address) |
| Password | Enter your Ion Reporter™ Software password                      |

<sup>[1]</sup> Ask your Ion Reporter<sup>™</sup> Server administrator for this value.

5. The "Default Account" is the account that is configured by default in Planned Run templates and Planned Runs. If this account is the main account to be used for file transfers, enable the **Default Account** checkbox.

**Note:** You can always change this selection in the Planned Run template workflow bar and in the Upload to IR quick link.

6. Click Get Versions, select Ion Reporter 5.14 or later, then click ✓ Add.

## Edit sample attributes in Ion Reporter<sup>™</sup> Software

Sequence results from multiple libraries prepared from the same sample or multiple sequencing results from the same library can be combined for increased analytical power.

1. In the Samples tab, in the Overview screen, click the sample with a single BAM file.

The **Define Samples** screen opens to the **Samples** tab. On the right side, the sample is displayed along with a box for creating new samples.

| on Reporter                                  |                                                                |                                                           | Hi, Ion User 2.9 TB/20 TB 🔯 Help Sign Out 🖏 -                      |
|----------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|
| Home Samples Analyse                         | es Workflows Admin                                             |                                                           |                                                                    |
| Overview Presets                             |                                                                |                                                           | IR Org • Ion Reporter 5.14.0.0                                     |
| J Define Samples                             |                                                                |                                                           |                                                                    |
| Samples                                      |                                                                | Attributes                                                | Review                                                             |
| Select the files you wish to include in your | r sample, click the Add Sample button, then provide a name. To | o add or edit attributes to your sample(s), please procee | ed to the next step. Learn more                                    |
| Upload VCF     Upload BAM                    | IR Ora                                                         |                                                           |                                                                    |
| IR Org                                       | BAM VCF                                                        | Search Go                                                 | Sample Name (Required)                                             |
|                                              |                                                                |                                                           | S Files included:                                                  |
|                                              | Name                                                           | Date Uploaded *                                           |                                                                    |
|                                              | IonHDdual_0124_rawlib.basecaller.bam                           | Feb 13 2020 03:17 PM                                      | U                                                                  |
|                                              | IonHDdual_0118_rawlib.basecaller.bam                           | Feb 13 2020 03:17 PM                                      |                                                                    |
|                                              | lonHDdual_0123_rawlib.basecaller.bam                           | Feb 13 2020 03:17 PM                                      | Add to Sample List                                                 |
|                                              | lonHDdual_0117_rawlib.basecaller.bam                           | Feb 13 2020 03:17 PM                                      | MSA1002-singlePool-16S                                             |
|                                              | IonHDdual_0120_rawlib.basecaller.bam                           | Feb 13 2020 03:17 PM                                      | MSA1002-singlePool-166 🛢                                           |
|                                              | IonHDdual_0122_rawlib.basecaller.bam                           | Feb 13 2020 03:17 PM                                      | A A A A A A A A A A A A A A A A A A A                              |
|                                              | IonHDdual_0121_rawlib.basecaller.bam                           | Feb 13 2020 03:17 PM                                      | P Files included:                                                  |
|                                              | IonHDdual_0119_rawib.basecaller.bam                            | Feb 13 2020 03:17 PM                                      | 1_lonCode_0201_rawib.M ×                                           |
|                                              | IonHDdual_0114_rawlib.basecaller.bam                           | Feb 11 2020 12:51 PM                                      | <ul> <li>skrtuz_rub_NNZ_BD.ma</li> <li>nkerType-16S.bam</li> </ul> |
|                                              | IonHDdual_0116_rawlib.basecaller.bam                           | Feb 11 2020 12:51 PM                                      |                                                                    |



- (1) Add sample screen This box is used only if the BAM files were not uploaded to Ion Reporter<sup>™</sup> Software. For additional information, see the help system for your version of Ion Reporter<sup>™</sup> Software.
- (2) Current sample box—The number of BAM files associated with the sample are indicated in the dotted box.
- 2. Click the checkbox of the barcode from the list to be paired with the sample that was selected in step 1, then click the **Add to Sample** tab of the current sample box (callout 2 Figure 2).

#### 3. Click Next.

4. In the **Attributes** step, ensure that the correct **Bacterial Marker Type** (16S rRNA or Target Species) has been selected for each barcode.

A sample can have 1 or 2 barcodes. Only one bacterial marker type can be associated with a barcode.

| Samples                       |                               | Attributes                   |                  | Review                                            |                         |  |
|-------------------------------|-------------------------------|------------------------------|------------------|---------------------------------------------------|-------------------------|--|
| elect which attributes you wa | nt to associate with your sam | ple and provide the input va | lues. Learn more |                                                   | Add Attribute           |  |
| Name                          | # Files                       | Projects                     | Gender           | Bacterial                                         | Marker Type 🗂           |  |
| VER_HMN27721_2                | 2                             | Unknown                      |                  | 1_lonCo                                           | 1_lonCode_0232_rawlib • |  |
| ← Previous Cancel             |                               |                              |                  | 16S rRNA Gene<br>1_lonCode_0232<br>1_lonCode_0264 | 2_rawlib.bam ✓          |  |
|                               |                               |                              |                  | Target Species<br>1_lonCode_0232                  | _rawlib.bam             |  |

5. (Optional) In the Attributes step, add or edit an attribute.

| Choice            | Action                                                                |
|-------------------|-----------------------------------------------------------------------|
| Add an attribute  | Click Add Attribute, then select an attribute from the dropdown list. |
| Edit an attribute | Click the displayed attribute, then edit.                             |

- 6. (Optional) In the Attributes step, to add or edit another attribute, repeat step 5.
- 7. Click Next.
- 8. To save the sample, click Save.
- Reanalyse the sample. Proceed to "Manually launch an analysis" on page 35.

## Sample analysis and visualization

The AmpliSeq Microbiome Health - w1.0 - Single Sample workflow performs the following analyses.

| Analysis                        | Visualization     | Sample type            | Notes |
|---------------------------------|-------------------|------------------------|-------|
| Full taxonomic profiling        | Krona plot        | Single sample          | -     |
| Microbiome composition analysis | Stacked bar plots | Single and multisample | _     |

#### (continued)

| Analysis                                        | Visualization            | Sample type            | Notes                                                                                                                                                                                                         |
|-------------------------------------------------|--------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microbiome diversity<br>analysis <sup>[1]</sup> | Alpha diversity analysis | Single and multisample | <ul><li>The following metrics are available.</li><li>Shannon</li><li>Simpson</li><li>Chao1</li></ul>                                                                                                          |
|                                                 | Beta diversity analysis  | Multisample            | <ul> <li>In addition to Beta rarefaction plots,<br/>the following matrices are available.</li> <li>Bray-Curtis distance matrix</li> <li>Euclidean distance matrix</li> <li>Jaccard distance matrix</li> </ul> |
| Comparative analysis                            | Heat Map                 | Multisample            | _                                                                                                                                                                                                             |
|                                                 | PCoA                     | Multisample            | _                                                                                                                                                                                                             |

<sup>[1]</sup> For additional details, see the Qiime 2 website (https://qiime2.org/).



## AmpliSeq\_Microbiome\_Health\_ Analysis plugin for Torrent Suite<sup>™</sup> Software

**IMPORTANT!** If you are using Ion Reporter<sup>™</sup> Software version 5.14 or later, follow the procedure in Chapter 6, "Data Analysis using Ion Reporter<sup>™</sup> Software".

If you are unable to use Ion Reporter<sup>™</sup> Software version 5.14 or later, you can use the AmpliSeq\_Microbiome\_Health\_Analysis plugin to analyze sequencing runs and view the analysis results in Torrent Suite<sup>™</sup> Software.

**Note:** The AmpliSeq\_Microbiome\_Health\_Analysis plugin does not have some of the advanced capabilities of Ion Reporter<sup>™</sup> Software version 5.14 or later, including analysis and visualization of data using the Qiime 2<sup>™</sup> Software platform.

# Review AmpliSeq\_Microbiome\_Health\_Analysis plugin results in Torrent Suite<sup>™</sup> Software

- 1. Sign in to the Torrent Suite<sup>™</sup> Software.
- 2. In the Data tab, click Completed Runs & Reports.
- 3. In the list of runs, find the run of interest, then click the link in the **Report Name** column.
- 4. In the left navigation menu, click **AmpliSeq\_Microbiome\_Health\_Analysis** to view the plugin summary.
- In the plugin summary, click the name of the run.
   The AmpliSeq Microbiome Health Analysis Report opens in a new screen.
   The Overview section lists the 16S Reference and Targeted Species Reference files.

AmpliSeq Microbiome Health Analysis Report

| Overview                   | Vverview                                 |                          |                                       |                               |                  |               |  |  |  |  |
|----------------------------|------------------------------------------|--------------------------|---------------------------------------|-------------------------------|------------------|---------------|--|--|--|--|
| 16S Reference              |                                          | Curated_GreenGenes_v13.5 |                                       |                               |                  |               |  |  |  |  |
| Targeted Species Reference |                                          | AmpliSeq_Micro           | bbiome_Targeted_Species_Reference.fas | ita                           |                  |               |  |  |  |  |
|                            |                                          |                          |                                       |                               |                  |               |  |  |  |  |
| High Level Su              | immary                                   |                          |                                       |                               |                  |               |  |  |  |  |
| Click here to downlo       | ad the table below in Excel format       |                          |                                       |                               |                  |               |  |  |  |  |
| Barcode Name               | Sample Name                              | Total Reads              | Reads mapped to Targeted Species      | Reads mapped to 16s Reference | Mean Read Length | Invalid Reads |  |  |  |  |
| IonCode_0201               | 16SpHV2V05_MSA1002_RD_1NG_RN01_WL_IC201  | 788240                   | 111                                   | 744474                        | 141.55           | 23540         |  |  |  |  |
| IonCode_0202               | 16SpHV2V05_MSA1006_RD_1NG_RN01_WL_IC202  | 730240                   | 155                                   | 671802                        | 138.06           | 30819         |  |  |  |  |
| IonCode_0203               | 16SpHV2V05_MIX11_RD_1NG_RN01_WL_IC203    | 776645                   | 107                                   | 731458                        | 140.14           | 24891         |  |  |  |  |
| IonCode_0204               | 16SpHV2V05_MIX12_RD_1NG_RN01_WL_IC204    | 714061                   | 64                                    | 655176                        | 139.59           | 30645         |  |  |  |  |
| IonCode_0205               | 16SpHV2V05_MIX13_RD_1NG_RN01_WL_IC205    | 883870                   | 71                                    | 824815                        | 142.11           | 30297         |  |  |  |  |
| IonCode_0206               | 16SpHV2V05_MIX14_RD_1NG_RN01_WL_IC206    | 970763                   | 170                                   | 894383                        | 142.56           | 35998         |  |  |  |  |
| IonCode_0207               | 16SpHV2V05_MIX15_RD_1NG_RN01_WL_IC207    | 702418                   | 85                                    | 653863                        | 143.59           | 22265         |  |  |  |  |
| IonCode_0208               | 16SpHV2V05_NTC_RD_0NG_RN01_WL_IC208      | 6651                     | 1554                                  | 4610                          | 134.33           | 531           |  |  |  |  |
| IonCode_0209               | 16SpHV2V05_HMN16935_RD_1NG_RN01_WL_IC209 | 1046666                  | 138                                   | 965170                        | 149.74           | 45753         |  |  |  |  |

### View the High level summary table

The High level summary section provides summary information for each barcoded sample.

| High level summary     |                                                       |             |                    |                               |                |               |  |  |  |  |
|------------------------|-------------------------------------------------------|-------------|--------------------|-------------------------------|----------------|---------------|--|--|--|--|
| Click here to download | Jick here to download the table below in Excel format |             |                    |                               |                |               |  |  |  |  |
| Barcode Name           | Sample Name                                           | Total Reads | Reads mapped to ID | Reads mapped to 16s Reference | Unmapped Reads | Invalid Reads |  |  |  |  |
| IonCode_0301           | 16SpHV2V05_MSA1002_1NG_20CYC_RP01_RN01_IC301          | 1267615     | 66                 | 1225502                       | 5320           | 36727         |  |  |  |  |
| IonCode_0302           | 16SpHV2V05_MSA1006_1NG_20CYC_RP01_RN01_IC302          | 1301359     | 33                 | 1252954                       | 181            | 48191         |  |  |  |  |
| IonCode_0303           | 16SpHV2V05_Mx05_1NG_20CYC_RP01_RN01_IC303             | 1419802     | 72                 | 1306457                       | 1358           | 51915         |  |  |  |  |
| IonCode_0304           | 16SpHV2V05_Mix06_1NG_20CYC_RP01_RN01_IC304            | 1159830     | 24                 | 1108898                       | 257            | 50651         |  |  |  |  |
| IonCode_0305           | 16SpHV2V05_Mx07_1NG_20CYC_RP01_RN01_JC305             | 1289005     | 19                 | 1240846                       | 496            | 47644         |  |  |  |  |
| IonCode_0306           | 16SpHV2V05_Mx09_1NG_20CYC_RP01_RN01_JC306             | 1158781     | 44                 | 1127069                       | 103            | 31565         |  |  |  |  |
| IonCode_0307           | 16SpHV2V05_Mix10_1NG_20CYC_RP01_RN01_IC307            | 1119264     | 41                 | 1070995                       | 167            | 48061         |  |  |  |  |
| IonCode_0307           | 16SpHV2V05_Mix10_1NG_20CYC_RP01_RN01_IC307            | 1119264     | 41                 | 1070995                       | 167            | 48061         |  |  |  |  |

| Parameter                                        | Description                                                                                                                                                                      |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Barcode Name                                     | The individual barcode in the barcode set.                                                                                                                                       |
|                                                  | The row labeled <b>No barcode</b> reports on unclassified barcodes, which are reads that could not be classified as a match for one of the expected barcodes in the barcode set. |
| Sample Name                                      | Name of the sample that was sequenced.                                                                                                                                           |
| Total Reads                                      | Total number of filtered and trimmed library reads (independent of length). This number is reported in the barcode BAM file.                                                     |
| Reads mapped to<br>Targeted Species<br>Reference | The total number of reads mapped to the Target Species reference.                                                                                                                |
| Reads mapped to 16S<br>Reference                 | The total number of reads mapped to the 16S reference.                                                                                                                           |

(continued)

| Parameter        | Description                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Mean Read Length | The average read length, in base pairs (bp), of all filtered and trimmed library reads reported in the BAM file for the barcoded run.      |
| Invalid Reads    | The total number of reads with lengths outside of the selected range. For details, see "Microbiome Analysis plugin parameters" on page 57. |

- 1. In the AmpliSeq Microbiome Health Analysis Report screen, scroll to the High level summary section.
- 2. (Optional) To download the table, click Click here to download the table below in Excel format.
- 3. (Optional) To see the details for a barcode, click a barcode name in the Barcode Name column. The barcode details report opens in a new screen.

|    | AmpliSeq Microbiome Health Analysis Report      |  |                                     |          |                                                  |  |  |
|----|-------------------------------------------------|--|-------------------------------------|----------|--------------------------------------------------|--|--|
|    |                                                 |  | Barco                               | ode De   | etails                                           |  |  |
|    | Overview                                        |  |                                     |          |                                                  |  |  |
|    | 16S Reference                                   |  | Curated_GreenGenes_v13.5            |          |                                                  |  |  |
|    | Targeted Reference                              |  | AmpliSeq_Microbiome_Targeted_Specie | s_Refere | ence.fasta                                       |  |  |
|    | Sample Name                                     |  | 16SpHV2V05_MSA1002_RD_1NG_RN0       | 1_WL_I   | C201                                             |  |  |
|    |                                                 |  |                                     |          |                                                  |  |  |
| Та | rgeted Species Results                          |  |                                     |          |                                                  |  |  |
| C  | lownload Targeted Species Detection results     |  |                                     | Downlo   | oad Targeted Species Results Detection Results   |  |  |
|    |                                                 |  |                                     |          |                                                  |  |  |
| 16 | S rRNA Gene Results                             |  |                                     |          |                                                  |  |  |
| C  | ownload Family level results for 16S Analysis   |  |                                     |          | Download Family level results for 16S Analysis   |  |  |
| C  | ownload Genus level results for 16S Analysis    |  |                                     |          | Download Genus level results for 16S Analysis    |  |  |
| C  | lownload Species level results for 16S Analysis |  |                                     |          | Download Species level results for 16\$ Analysis |  |  |
| C  | ownload Full Taxonomy results for 16S Analysis  |  |                                     |          | Download Full Taxonomy results for 16S Analysis  |  |  |

- Click Download Targeted Species Detection Results to download results for the Targeted Species report.
- Click any of the buttons in the **16S rRNA Gene Results** section to view taxonomy results.

## View the species detected by the assay

The Targeted Species Pool provides a list of the species that are detected for each barcoded library.

| Targeted Species Pool           |              |              |                   |              |              |                         |              |              |     |  |  |
|---------------------------------|--------------|--------------|-------------------|--------------|--------------|-------------------------|--------------|--------------|-----|--|--|
| Targeted Species Detection      |              |              | Read Counts Table |              |              | Normalized Counts Table |              |              |     |  |  |
| Target                          | lonCode_0201 | lonCode_0202 | lonCode_0203      | lonCode_0204 | lonCode_0205 | lonCode_0206            | lonCode_0207 | lonCode_0208 | Ion |  |  |
| Akkermansia<br>muciniphila      | 0            | 0            | 0                 | 0            | 0            | 0                       | 0            | 0            | 0   |  |  |
| Anaerococcus<br>vaginalis       | 0            | 0            | 0                 | 0            | 0            | 0                       | 0            | 0            | 0   |  |  |
| Atopobium parvulum              | 0            | 0            | 0                 | 0            | 0            | 0                       | 0            | 0            | 0   |  |  |
| Bacteroides fragilis            | 0            | 0            | 0                 | 0            | 0            | 0                       | 0            | 0            | 0   |  |  |
| Bacteroides<br>thetaiotaomicron | 0            | 0            | 0                 | 0            | 0            | 0                       | 0            | 0            | 0   |  |  |

- 1. In AmpliSeq Microbiome Health Analysis Report screen, scroll to the Targeted Species Pool section.
- 2. To download the results, select one of the following actions.
  - To download a table of raw read counts per species, click **Read Counts Table**. This table lists the absolute read counts that map to individual annotations of microbes.
  - To download a table of normalized read counts per species, click **Normalized Counts Table**. This table lists absolute read counts that map to individual annotations of microbes, normalized by barcode read depth and the number of amplicons.

### View taxonomy results

165 Gene Pool

The 16S Gene Pool section provides taxonomy information for each barcoded library.

| 16S Based Species Level Detection |              | : [   | Read Counts Table                         |                                           | ormalized Counts Tat |              |                    |              |              |
|-----------------------------------|--------------|-------|-------------------------------------------|-------------------------------------------|----------------------|--------------|--------------------|--------------|--------------|
| 16S Based Genera Level Detection  |              |       | : [                                       | Read Counts Table Normalized Counts Table |                      | ble          | Clustering Heatmap |              |              |
| 16S Based Family Level Detection  |              | : [   | Read Counts Table Normalized Counts Table |                                           |                      |              |                    |              |              |
|                                   |              |       |                                           |                                           |                      |              |                    |              |              |
| Genus                             | IonCode_0201 | IonCo | de_0202                                   | lonCode_0203                              | lonCode_0204         | lonCode_0205 | IonCode_0206       | IonCode_0207 | lonCode_0208 |
| Acidaminococcus                   | 0            | 0     |                                           | 0                                         | 0                    | 0            | 0                  | 0            | 0            |
| Acinetobacter                     | 59346        | 0     |                                           | 0                                         | 0                    | 0            | 0                  | 0            | 0            |
| Actinomyces                       | 11999        | 0     |                                           | 0                                         | 0                    | 0            | 0                  | 0            | 0            |
| Afipia                            | 0            | 0     |                                           | 0                                         | 0                    | 0            | 0                  | 0            | 0            |
| Akkermansia                       | 0            | 0     |                                           | 12476                                     | 9461                 | 0            | 15608              | 10383        | 0            |
| Alistines                         | 0            | n     |                                           | n                                         | 0                    | n            | n                  | 0            | 0            |

Ion AmpliSeq™ Microbiome Health Research Kits User Guide

- 1. In AmpliSeq Microbiome Analysis Report screen, scroll to the 16S Gene Pool section.
- 2. To download the table, select one of the following actions.
  - To download the raw read counts table for a taxonomy level (family, genus, or species), click Read Counts Table button for that taxonomy level. This table lists the absolute read counts that map to individual annotations of microbes.
  - To download the normalized counts table for a taxonomy level (family, genus, or species), click **Normalized Counts Table** button for a taxonomy level. This table lists absolute read counts that map to individual annotations of microbes, normalized by barcode read depth and the number of amplicons.
  - To download the clustering heatmap for the genus taxonomy level, click **Clustering Heatmap**. The clustering heat map provides a chip level view of relative abundance, clustered by both barcodes and genus level annotation of microbes.

# Manually run the AmpliSeq\_Microbiome\_Health\_Analysis plugin

The following procedure is used to rerun the AmpliSeq\_Microbiome\_Health\_Analysis plugin. Rerunning the plugin enables you to redo the analysis of a run using different parameters for the plugin.

- 1. Sign in to the Torrent Suite<sup>™</sup> Software.
- 2. In the Data tab, click Completed Runs & Reports.
- 3. In the list of runs, find the run of interest, then click the link in the **Report Name** column.
- 4. Click Plugins > Select Plugins to Run > AmpliSeq\_Microbiome\_Health\_Analysis.

## 5. In the next dialog, configure the AmpliSeq\_Microbiome\_Health\_Analysis plugin, then click Submit.

The following figure lists the default settings, which have been optimized for 64 barcodes (samples) per chip. Optimization may be required if you are running a different number of barcodes per chip.

| Minimum Local Alignment Score for Targeted<br>Species:             | 25     | (Alignments with alignment scores less than this threshold are filtered away)                                              |
|--------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------|
| Minimum Read Count for Targeted Species:                           | 100    | (If the value is greater than this threshold, that species is called as $\ensuremath{\textit{PRESENT}}$ in the sample)     |
| Minimum Normalized Read Count Percentage for<br>Targeted Species : | 0.25   | (If the value is greater than this threshold, that species is called as PRESENT in the sample)                             |
| Minimum Local Alignment Score for 16S:                             | 35     | (Alignments with alignment scores less than this threshold are filtered away)                                              |
| Minimum Normalized count percentage for 16S<br>Family :            | 0.5    | (If the value is greater than this threshold, the Genus/Species from that family are reported as PRESENT in the sample)    |
| Minimum Normalized count percentage for 16S<br>Genus :             | 0.5    | (If the value is greater than this threshold, the Genus is reported as $\ensuremath{\textit{PRESENT}}$ in the sample)      |
| Minimum Normalized count percentage for 16S<br>Species :           | 0.25   | (If the value is greater than this threshold, the Species is reported as $\ensuremath{\textit{PRESENT}}$ in the sample)    |
| Minimum read count for 16S Family :                                | 500    | (If the value is greater than this threshold, the Genus/Species from that family are<br>reported as PRESENT in the sample) |
| Minimum read count for 16S Genus :                                 | 500    | (If the value is greater than this threshold, the Genus is reported as $\ensuremath{\textit{PRESENT}}$ in the sample)      |
| Minimum read count for 16S Species :                               | 100    | (If the value is greater than this threshold, the Species is reported as $\ensuremath{\textit{PRESENT}}$ in the sample)    |
| Minimum Read Length :                                              | 60     | (Reads with length less than this threshold are filtered away as short invalid reads)                                      |
| Maximum Read Length :                                              | 350    | (Reads with length more than this threshold are filtered away as long invalid reads)                                       |
| Advanced Parameters                                                |        |                                                                                                                            |
| Minimum value per species per signature for 16s<br>Analysis :      | 10     | (Minimum value per species per signature for 16s Analysis, Advanced setting.)                                              |
| Minimum count per signature for 16s Analysis :                     | 10000  | (Minimum total counts per signature for 16s Analysis. Advanced setting.)                                                   |
| Minimum fraction of signature match for 16s<br>Analysis :          | 0.7499 | (Minimum fraction of match between observed and expected signatures in 16s Analysis. Advanced setting.)                    |
| Minimum total count per sequence for 16s Analysis :                | 500    | (Minimum total counts per sequence for 16s Analysis. Advanced setting.)                                                    |

#### AmpliSeq Microbiome Health Analysis Plugin

Submit

#### Microbiome Analysis plugin parameters

| Parameter Default value                                             |      | Range     | Value type | Description                                                                                   |  |
|---------------------------------------------------------------------|------|-----------|------------|-----------------------------------------------------------------------------------------------|--|
| Main Parameters                                                     |      |           |            |                                                                                               |  |
| Minimum Local Alignment<br>Score for Targeted Species               | 25   | >0        | Integer    | Alignments with alignment scores less than this threshold are filtered away.                  |  |
| Minimum Read Count for<br>Targeted Species                          | 100  | ≥0        | Integer    | If the value is greater than this threshold, that species is called as PRESENT in the sample. |  |
| Minimum Normalized Read<br>Count Percentage for<br>Targeted Species | 0.25 | 1≥value≥0 | Decimal    | If the value is greater than this threshold, that species is called as PRESENT in the sample. |  |
| Minimum Local Alignment 33<br>Score for 16S                         |      | >0        | Integer    | Alignments with alignment scores less than this threshold are filtered away.                  |  |

C



#### (continued)

| Parameter                                                         | Default<br>value | Range     | Value type | Description                                                                                                                  |  |
|-------------------------------------------------------------------|------------------|-----------|------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Minimum Normalized count 0.5 percentage for 16S Family            |                  | 1≥value≥0 | Decimal    | If the value is greater than this threshold, the<br>Genus/Species from that family are reported as<br>PRESENT in the sample. |  |
| Minimum Normalized count 0.5 percentage for 16S Genus             |                  | 1≥value≥0 | Decimal    | If the value is greater than this threshold, the Genus is reported as PRESENT in the sample.                                 |  |
| Minimum Normalized count0.25percentage for 16S Species            |                  | 1≥value≥0 | Decimal    | If the value is greater than this threshold, the Species is reported as PRESENT in the sample                                |  |
| Minimum read count for 500<br>16S Family                          |                  | >0        | Integer    | If the value is greater than this threshold, the<br>Genus/Species from that family are reported as<br>PRESENT in the sample. |  |
| Minimum read count for 500<br>16S Genus                           |                  | >0        | Integer    | If the value is greater than this threshold, the Genus is reported as PRESENT in the sample                                  |  |
| Minimum read count for 100<br>16S Species                         |                  | >0        | Integer    | If the value is greater than this threshold, the Species is reported as PRESENT in the sample                                |  |
| Minimum Read Length 60                                            |                  | >0        | Integer    | Reads with length less than this threshold are filtered away as short invalid reads.                                         |  |
| Maximum Read Length                                               | 350              | >0        | Integer    | Reads with length more than this threshold are filtered away as long invalid reads.                                          |  |
| Advanced parameters                                               |                  |           |            |                                                                                                                              |  |
| Minimum value per species<br>per signature for 16S<br>Analysis    | 10               | >0        | Integer    | Minimum value per species per signature for 16S Analysis.                                                                    |  |
| Minimum count per 10,000 signature for 16S Analysis               |                  | >0        | Integer    | Minimum total counts per signature for 16S<br>Analysis.                                                                      |  |
| Minimum fraction of 0.7499<br>signature match for 16S<br>Analysis |                  | 1≥value≥0 | Decimal    | Minimum fraction of match between observed and expected signatures in 16S Analysis.                                          |  |
| Minimum total count per500sequence for 16S Analysis               |                  | >0        | Integer    | Minimum total counts per sequence for 16S Analysis.                                                                          |  |

## Download and install the AmpliSeq\_Microbiome\_Health\_ Analysis plugin in Torrent Suite<sup>™</sup> Software

**IMPORTANT!** You must install this plugin only if you have Ion Reporter<sup>™</sup> Software version 5.12.1 or earlier.

The AmpliSeq\_Microbiome\_Health\_Analysis plugin is available on Connect at https:// apps.thermofisher.com/apps/publiclib/#/plugins. This plugin is not preinstalled in the Torrent Suite<sup>™</sup> Software.

On Connect, an administrator can install or upgrade the following:

- 1. Sign in to https://apps.thermofisher.com/apps/publiclib/#/plugins.
- Select the AmpliSeq\_Microbiome\_Health\_Analysis plugin, select the checkbox to indicate that you agree to the terms and conditions, then click **Download Plugin**.
   Either a compressed directory or a debian file that contains the plugin is downloaded to your local machine.
- 3. In Torrent Suite<sup>™</sup> Software, click 🏟 (Settings) > Plugins > Install or Upgrade Plugin.
- 4. Click **Select File**, browse to the location where you downloaded the plugin file, select the file, then click **Open**.
- 5. In the Install or Upgrade Plugin dialog box, click Upload and Install.

The plugin is now visible in Torrent Suite™ Software.







**WARNING! GENERAL SAFETY.** Using this product in a manner not specified in the user documentation may result in personal injury or damage to the instrument or device. Ensure that anyone using this product has received instructions in general safety practices for laboratories and the safety information provided in this document.

- Before using an instrument or device, read and understand the safety information provided in the user documentation provided by the manufacturer of the instrument or device.
- Before handling chemicals, read and understand all applicable Safety Data Sheets (SDSs) and use appropriate personal protective equipment (gloves, gowns, eye protection, and so on). To obtain SDSs, visit thermofisher.com/support.

## **Chemical safety**



**WARNING! GENERAL CHEMICAL HANDLING.** To minimize hazards, ensure laboratory personnel read and practice the general safety guidelines for chemical usage, storage, and waste provided below. Consult the relevant SDS for specific precautions and instructions:

- Read and understand the Safety Data Sheets (SDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. To obtain SDSs, see the "Documentation and Support" section in this document.
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing).
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with sufficient ventilation (for example, fume hood).
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer cleanup procedures as recommended in the SDS.
- Handle chemical wastes in a fume hood.
- Ensure use of primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- After emptying a waste container, seal it with the cap provided.
- Characterize (by analysis if needed) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure that the waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.
- **IMPORTANT!** Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

## **Biological hazard safety**

**WARNING!** Potential Biohazard. Depending on the samples used on this instrument, the surface may be considered a biohazard. Use appropriate decontamination methods when working with biohazards.



**WARNING! BIOHAZARD.** Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Conduct all work in properly equipped facilities with the appropriate safety equipment (for example, physical containment devices). Safety equipment can also include items for personal protection, such as gloves, coats, gowns, shoe covers, boots, respirators, face shields, safety glasses, or goggles. Individuals should be trained according to applicable regulatory and company/ institution requirements before working with potentially biohazardous materials. Follow all applicable local, state/provincial, and/or national regulations. The following references provide general guidelines when handling biological samples in laboratory environment.

- U.S. Department of Health and Human Services, *Biosafety in Microbiological and Biomedical Laboratories (BMBL)*, 6th Edition, HHS Publication No. (CDC) 300859, Revised June 2020
   www.cdc.gov/labs/pdf/CDC-BiosafetymicrobiologicalBiomedicalLaboratories-2020-P.pdf
- Laboratory biosafety manual, fourth edition. Geneva: World Health Organization; 2020 (Laboratory biosafety manual, fourth edition and associated monographs)
   www.who.int/publications/i/item/9789240011311



# **Documentation and Support**

## **Related documentation**

| Document                                                                  | Description                                                                                                                                                                                             |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Ion AmpliSeq™ Library Kit Plus User Guide</i><br>(Pub. No. MAN0017003) | Comprehensive instruction for the preparation of Ion<br>AmpliSeq <sup>™</sup> libraries and provides detailed instruction and<br>troubleshooting for use of the Ion Library Equalizer <sup>™</sup> Kit. |
| Ion Library TaqMan™ Quantitation Kit User<br>Guide (Pub. No. MAN0015802)  | Provides detailed instruction and troubleshooting for use of the Ion Library TaqMan <sup>™</sup> Quantitation Kit                                                                                       |

Note: For additional documentation, see "Customer and technical support".

## **Customer and technical support**

Visit thermofisher.com/support for the latest service and support information.

- Worldwide contact telephone numbers
- Product support information
  - Product FAQs
  - Software, patches, and updates
  - Training for many applications and instruments
- Order and web support
- Product documentation
  - User guides, manuals, and protocols
  - Certificates of Analysis
  - Safety Data Sheets (SDSs; also known as MSDSs)

**Note:** For SDSs for reagents and chemicals from other manufacturers, contact the manufacturer.



## Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies' General Terms and Conditions of Sale at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have any questions, please contact Life Technologies at www.thermofisher.com/support.



thermofisher.com

