Biallelic deletions of the Waardenburg II syndrome gene, SOX10, cause a recognizable arthrogryposis syndrome

Roger E. Stevenson¹ | Victoria Vincent² | Catherine J. Spellicy¹ | Michael J. Friez¹ | Alka Chaubey¹

¹ Greenwood Genetic Center, Greenwood, South Carolina
² University of South Carolina School of Medicine, Columbia, South Carolina
Assortative mating

For cultural reasons, some hereditary disorders such as deafness or short stature, lead affected individuals to interact with other affected individuals.

Waardenburg syndromes are dominant among autosomal disorders causing hearing loss

This leads to the occurrence of biallelic variants in genes that cause Waardenburg syndromes when two affected individuals mate.

Waardenburg genes

**Waardenburg I syndrome**

Associated with homozygous and compound heterozygous variants of **PAX3**

*Biallelic variants cause:*

- Musculoskeletal anomalies
- Hypopigmentation
- Hearing loss
- Dystopia canthorum

**Waardenburg II syndrome**

Associated with compound heterozygous variants in **MITF**

*Symptoms reported in two unrelated children include:*

- Colobomatous microphthalmia
- Macroencephaly
- Deafness
- Osteopetrosis
- Hypopigmentation

**Waardenburg II and IV syndromes**

Associated with biallelic deletions in **SOX10**
Researchers described biallelic deletions in SOX10 in a stillborn fetus whose parents both have Waardenburg syndrome.

**Mother**
- African American
- 24 years old
- Waardenburg II syndrome

**Father**
- African American
- 21 years old
- Waardenburg symptoms and family history of Waardenburg syndrome

**Fetus**
- Stillborn at 32 weeks
- White hair
- Dystopia canthorum
- Cleft palate
- Four-limb pterygia
- Absence of palmar and plantar creases

**Previous pregnancies from same parents**
- Male infant born with iris heterochromia, deafness and ADHD
- Female fetus stillborn at 31 weeks with Waardenburg symptoms including white hair, broad nasal root, small low set ears, micrognathia and muscle hypoplasia
Genetic sequencing

Whole exome sequencing showed no variants in PAX3, SOX10, MITF, EDN3, EDNRB and SNA12

Two deletions in SOX10 found by genomic array and quantitative PCR

Microarray analysis performed using CytoScan XON assay (6.85m probes on platform with emphasis on exonic coverage of the RefSeq genes)

FIGURE:- Location and size of maternal deletion in 22q13.1 and nested paternal deletion within the SOX10 gene [Color figure can be viewed at wileyonlinelibrary.com]
Observations

It is not known whether biallelic deletions, nonsense or frameshift variants would cause a more severe fetal phenotype as all cases of PAX3 alterations have been missense variants.

MITF is in the same pathway as PAX3 and SOX10, but biallelic sequence variants of MITF cause a very different phenotype (macrocephaly, microphthalmia, dense bones).

The microarray test commonly used as a first-line diagnostic text does not cover all protein-coding pathogenic alterations.

Whole exome sequencing showed no variants in PAX3, SOX10, MITF, EDN3, EDNRB, and SNAI2. However, two deletions in SOX10 were found by genomic microarray and quantitative PCR (qPCR).

The novel array platform with 6.85m probes across the genome is better at identifying copy number alterations in the coding regions and 5'-untranslated regions of all genes.

Hypothesis

Researchers anticipated that biallelic sequence variants of SOX10 would result in similar pathogenic symptoms and observed that double heterozygosity for two different Waardenburg genes had not been reported.

Defining reproductive risk

Researchers anticipated that biallelic sequence variants of SOX10 would result in similar pathogenic symptoms and observed that double heterozygosity for two different Waardenburg genes had not been reported.

Parents may not be aware of the risk of babies with multiple and potentially lethal anomalies.

Microarray analysis and sequencing of Waardenburg-associated genes may be required to identify couples at risk of complex birth defects.

Thermo Fisher Scientific products referenced in this document are for Research Use Only. Not for use on diagnostic procedures.