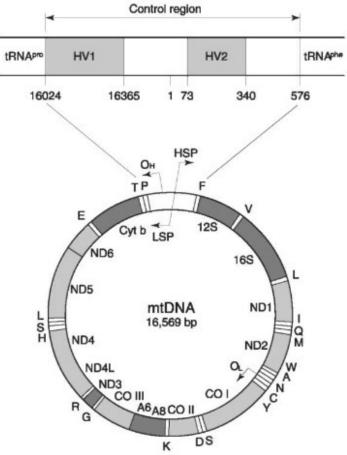
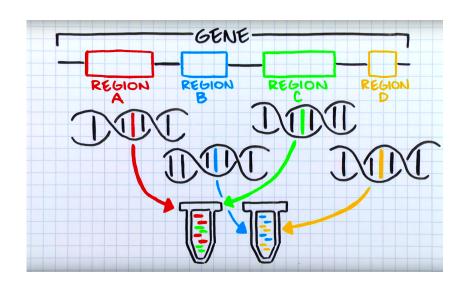
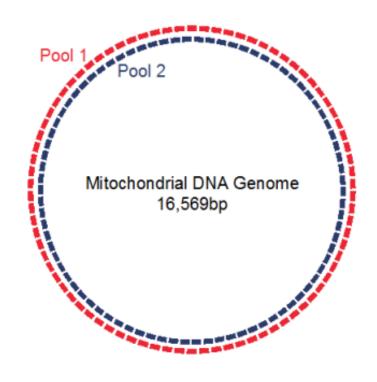

Implementing an MPS mtGenome Panel into Casework in a Missing Persons DNA Program

California Department of Justice – Jan Bashinski DNA Laboratory
Daniela Cuenca, Criminalist


California Department of Justice Bureau of Forensic Services Laboratories


Roche Mitochondrial Duplex (Sanger Sequencing)


Targets mitochondrial hypervariable region 1
 and 2 in two amplicons

 Used to establish lineage or/and when DNA is limited (e.g. hair shaft) or extremely degraded

- Thermo Fisher Scientific -Ion Torrent commercial kit
- AmpliSeq –library prep chemistry
- 162 amplicons in two PCR reactions (81 primer pairs per PCR Rxn)
- 163 bp average amplicon size
- >118 degenerate primers per PCR Rxn

Library Preparation

PCR

- DNA amplification of the mitochondrial genome in 2 PCR reactions
- 100 pg total input in 15 μL
- 8 samples per library preparation run

Digest & Repair

- Partially digest primer regions of the amplicons
- Repair the amplicon ends

Adaptor Ligation

- Ligate the clonal amplification and sequencing adaptors
- The adaptors include a unique barcode (1-32) to allow multiplexing

Pool

- Bead normalize the libraries
- Pool together at equal volumes
- Dilute the pooled library

Library Preparation

Library Preparation is Automated by the Ion Chef

Load samples to the library preparation plate

Load the Ion Chef
7 hours per library preparation run

Clonal Amplification and Sequencing

Templating and Chip Loading

Sequencing

~ 6 hours for signal processing

~ 2 hours for sequencing

- Emulsion PCR / Clonal Amplification
- Loading Sequencing Chip
- Automated on the Ion Chef
- ~ 12 hours

At a Glance

	Precision ID Assay
Library Prep Chemistry	PCR – Adaptor Ligation
Ideal DNA Input	100 pg
Samples per Run	4-32
Sequencing Chemistry	Semiconductor (ion)
Sequencer	Ion Torrent S5
Hands On Time	<2 hours
Full Time (extract to sequence)	48 hours (4 work days)
Reads Per Run	9-14 Million
Price (per sample*)-	\$ 201.79 (~€ 165)

^{*}Price per sample will vary depending on the amount of samples that are multiplexed together.

Data

Known Samples,
Sensitivity and
Analytical Threshold

The Power of The Whole Genome

Mitochondrial DNA resolution can increase from 64-76% with HVI and HVII sequencing to 98-100% with whole genome sequencing

Forensic Science International: Genetics 12 (2014) 128-135

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq

Jonathan L. King ^{a,1,*}, Bobby L. LaRue ^{a,1}, Nicole M. Novroski ^a, Monika Stoljarova ^a, Seung Bum Seo ^a, Xiangpei Zeng ^a, David H. Warshauer ^a, Carey P. Davis ^a, Walther Parson ^{b,c}, Antti Sajantila ^{a,d}, Bruce Budowle ^{a,e}

* Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA

b Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria

Forensic Science International: Genetics 10 (2014) 73-79

Contents lists available at ScienceDirect

Forensic Science International: Genetics

ELSEVIER

journal homepage: www.elsevier.com/locate/fsig

Short Communication

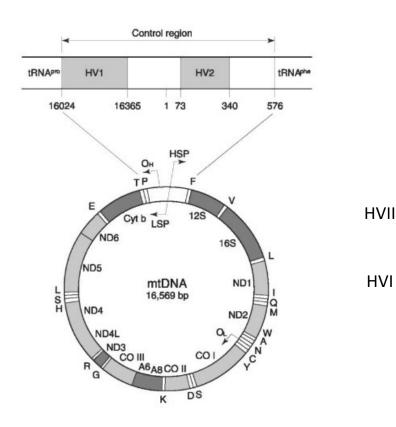
Development of forensic-quality full mtGenome haplotypes: Success rates with low template specimens

Rebecca S. Just a,b,c,*, Melissa K. Scheible a,b, Spence A. Fast a,b, Kimberly Sturk-Andreaggi a,b, Jennifer L. Higginbotham a,b, Elizabeth A. Lyons a,b,1, Jocelyn M. Bush a,b, Michelle A. Peck a,b, Joseph D. Ring a,b, Toni M. Diegoli a,b, Alexander W. Röck a, Gabriela E. Huber a, Simone Nagl a, Christina Strobl a, Bettina Zimmermann b, Walther Parson a,e, Iodi A, Irwin a,b,2

^c Penn State Eberly College of Science, University Park, PA, USA

Department of Forensic Medicine, Hjelt Institute, P.O. Box 40, 00014 University of Helsinki, Helsinki, Finland

^e Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia


^{*}Armed Forces DNA Identification Laboratory, 115 Purple Heart Dr., Dover AFB, DE 19902, United States

b American Registry of Pathology, 120A Old Camden Rd., Camden, DE 19934, United States

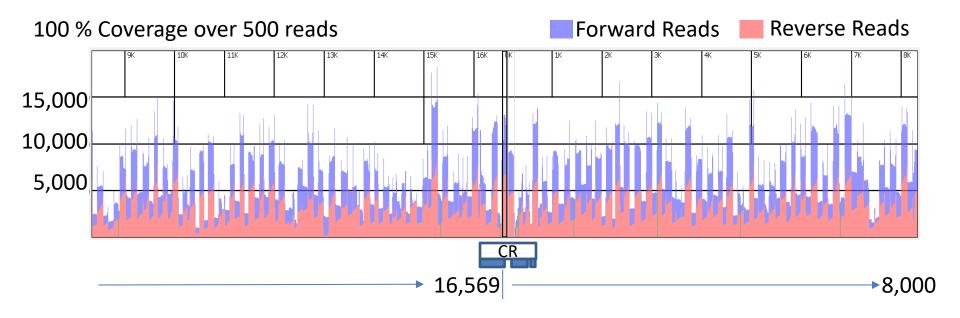
^{*}University of Maryland, College Park, 8082 Baltimore Ave., College Park, MD 20740, United States

d Institute of Legal Medicine, Innsbruck Medical University, Müllerstrasse 44, Innsbruck, Austria
e Penn State Eberly College of Science, 517 Thomas Building, University Park, PA 16802, United States

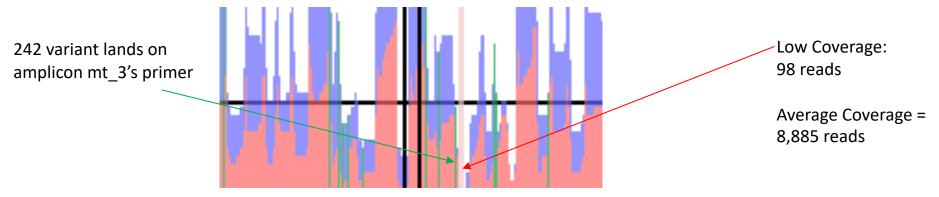
The Power of The Whole Genome

HVI/HVII Current Method

(Roche Mitochondrial Duplex Assay)


Sample 1	Sample 2	Sample 3
263G	263G	263G
315.1C	315.1C	315.1C

Samples 1-3 are indistinguishable from each other when using current methods.

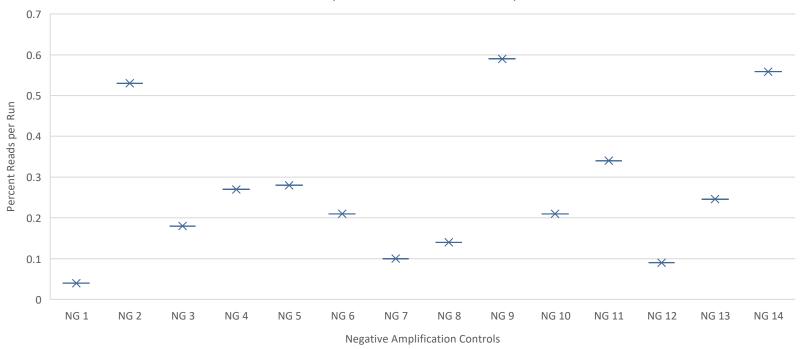

H3, H1, H4

Sample 1	Sample 2	Sample 3
263G	263G	263G
315.1	315.1	315.1
	477C	
750G	750G	750G
1018A		
1438G	1438G	1438G
	3010A	
		3992T
		4024G
4769G	4769G	4769G
		5004C
6776C		
		8269A
8860G	8860G	8860G
		9123A
		10044G
	14350T	
		14365T
		14582G
15326G	15326G	15326G
16519C	16519C	

Reference Samples

Variants positioned in a primer region will cause a mismatch that will lead to a low performing amplicon. Reason for the many degenerate primers added to improve the assay.

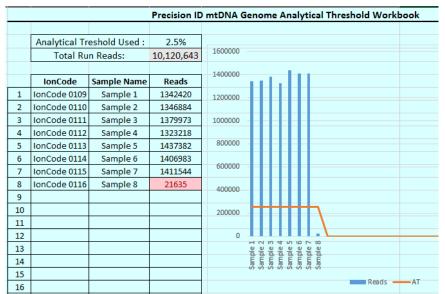
Applied Biosystems™ Precision ID Whole Genome Panel Sensitivity

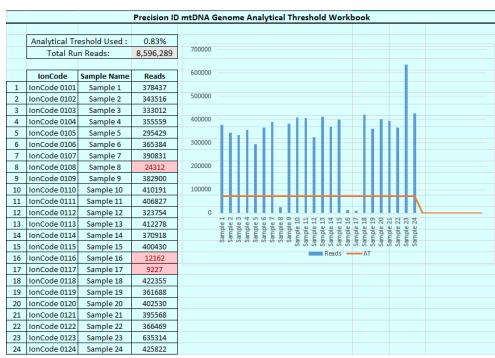

Sample Description	Mito Copies	1000 X Coverage	Noise	Noise StDEV	Avg. Noise Reads
HL60- 500 pg	227,065	100%	<1%		
HL60- 100 pg	45,413	100%	<1%		
HL60- 50 pg	22,707	100%	<1%		
HL60- 10 pg	4,541	100%	1%	1.3%	52
HL60- 5 pg	2,271	100%	2.4%	3.3%	185
HL60- 2.5 pg	1,135	94.1%	5.9%	5.8%	129
HL60- 1 pg	454	71.5%	7%	9.4%	111

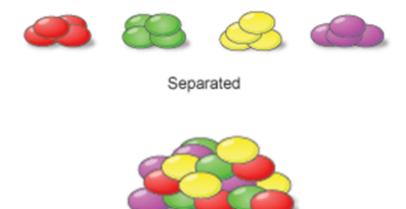
The first sign of low level template effects is observed at 10 pg Signal Noise starts to appear above 10% at 2.5 pg

The 1 pg sample is not interpretable with a 10% threshold

Noise Evaluation and Analytical Threshold

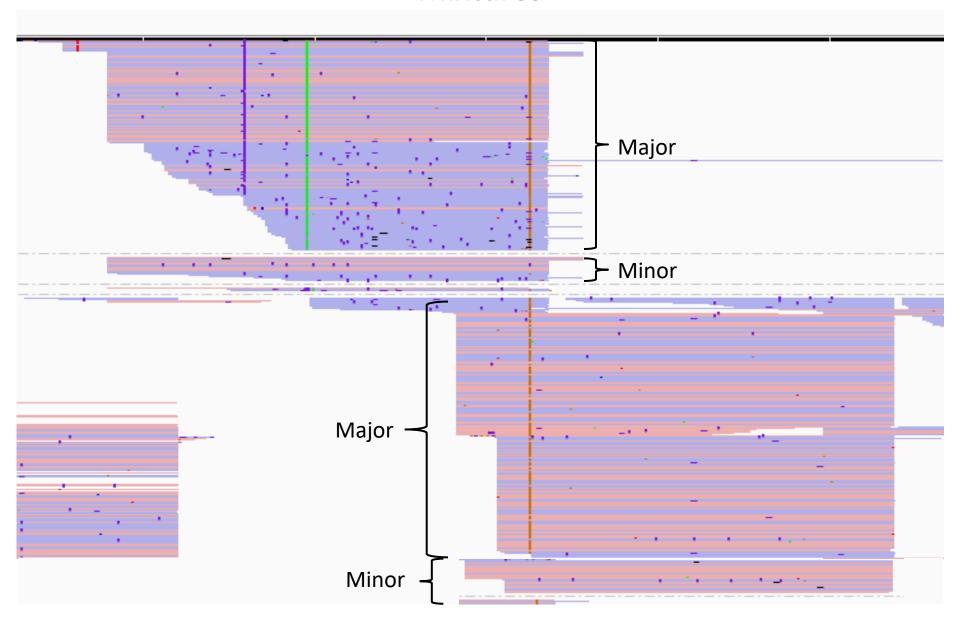

Baseline Study for the Precision ID mtDNA System




Avg.	SD	Avg. + (SD X 3)	Avg. + (SD X 10)	MIN	MAX	MAX + (SD X 10)
		LOD	LOQ			
0.27 %	0.17%	0.78%	1.97%	0.04%	0.59%	2.23%

Analytical Threshold for 8 samples	2.5 %
Analytical Threshold for 16 samples	1.25 %
Analytical Threshold for 24 samples	0.83%
Analytical Threshold for 32 samples	0.63%

Applied Biosystems™ Precision ID Whole Genome Panel Analytical Threshold



Mixture

Mixtures

Uncharted Territory

Mixtures

2 person 1:1

Position	P 1	P 2	P1%	P 2 %	Coverage
73	G		100		15227
150	Т	С	46.52	53.48	15598
152	С	Т	46.62	53.38	15598
249	del	Α	46.64	53.36	11242

2 person 9:1

Position	P 1	P 2	P1%	P 2 %	Coverage
73	G		100		10865
150	Т	С	86.97	13.03	16019
152	С	Т	87.15	12.85	16019
249	del	Α	87.17	12.83	11696

3 person 1:1:1

Position	Reference	Variant	Frequency	Coverage
249	Α	del	34.57	12048
250	Т	С	35.4	5263
263	Α	G	100	5333
452	del	Т	31.2	8680
709	G	Α	37.3	47580

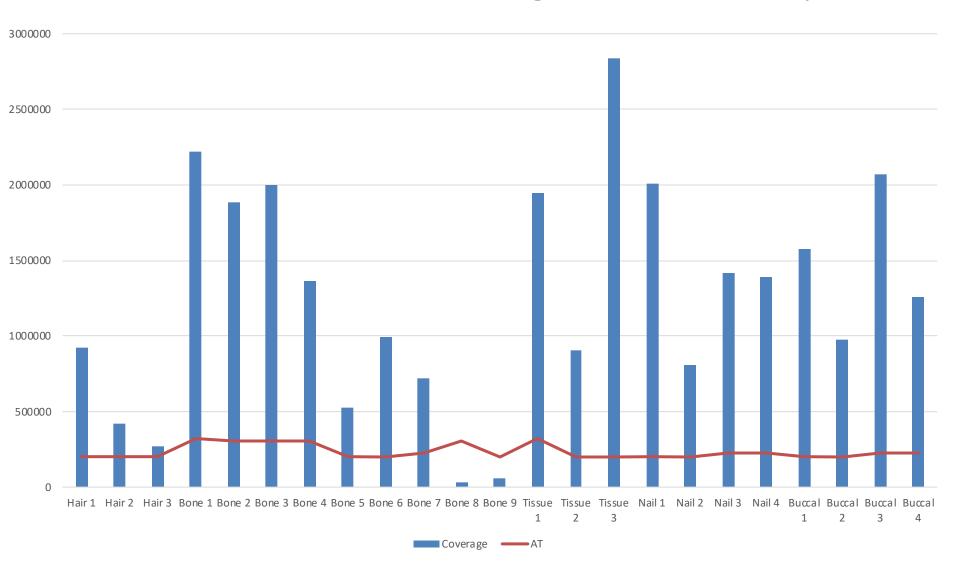
2 person 2:1

Position	P 1	P 2	P1%	P 2 %	Coverage
73	C	â	10	0	11745
150	Т	С	65.73	34.27	17185
152	С	Т	65.95	34.05	17185
249	del	Α	64.54	35.46	12231

2 person 19:1

Position	P 1	P 2	P1%	P 2 %	Coverage
73	G		10	0	8789
150	Т	С	93.56	6.44	27848
152	С	Т	93.7	6.3	27848
249	del	Α	93.48	6.52	20285

3 person 1:3:5

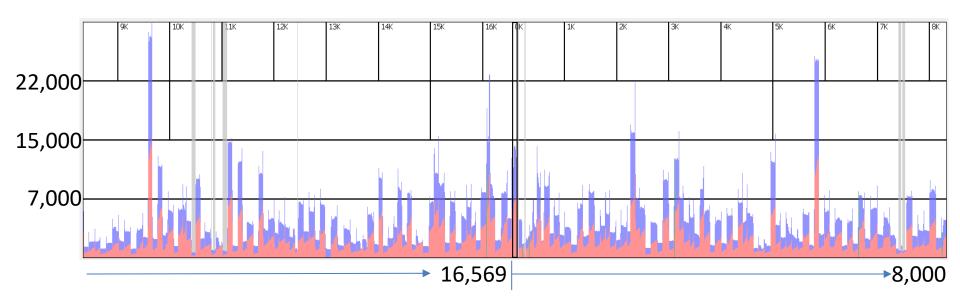

Position	Reference	Variant	Frequency	Coverage
249	Α	del	10.55	16441
250	Т	С	33.7	6810
263	Α	G	100	6953
452	del	Т	32.8	11008
709	G	Α	56.1	61392

Degraded, Limited or Both!

Non-Probative
Missing Persons
DNA Samples

Hair and Non-Probative Missing Persons DNA Samples

Total of 22 Samples


Hair Shaft

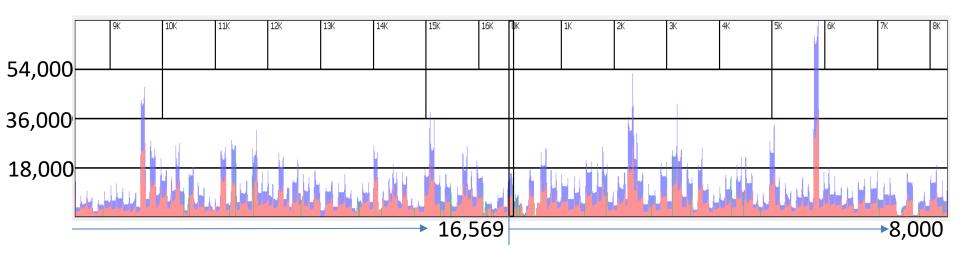
Hair Sample-

No STR

Sanger results showed mixture

MPS results showed mixed bases at 5% (below threshold).

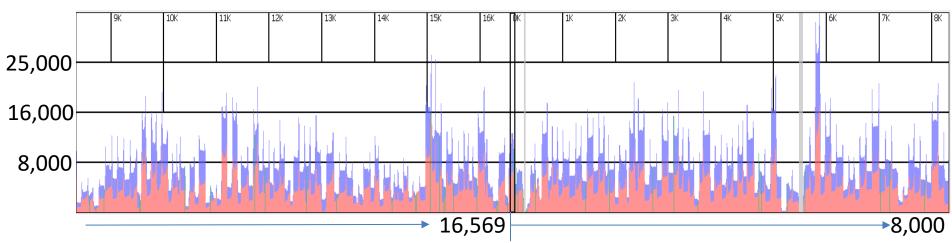
97.5% of Mitochondrial Genome


Degraded Samples

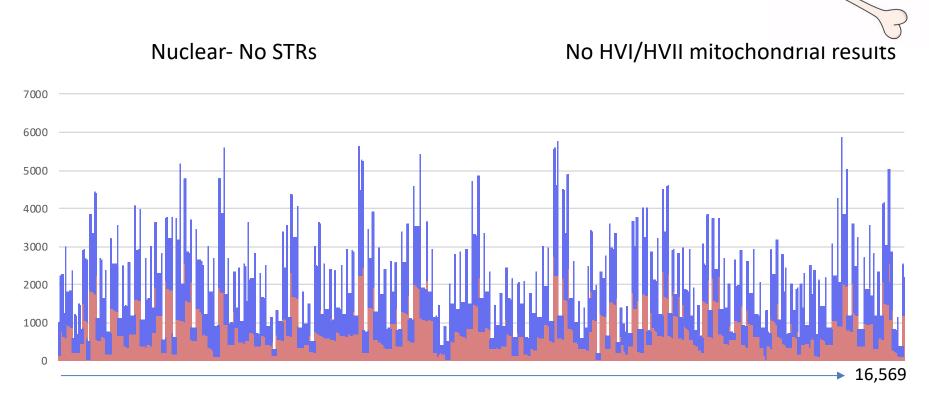
Nuclear- Full With Minifiler

mtDNA- HVI and HVII (outsourced for small amplicons)

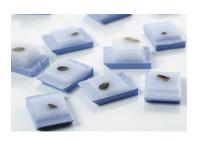
Trio Quant- 0.5 pg/μL nu large 10.6 pg/μL small DI: 21.2 Mito Quant- 6,550 mt copies/μL



Limited Samples

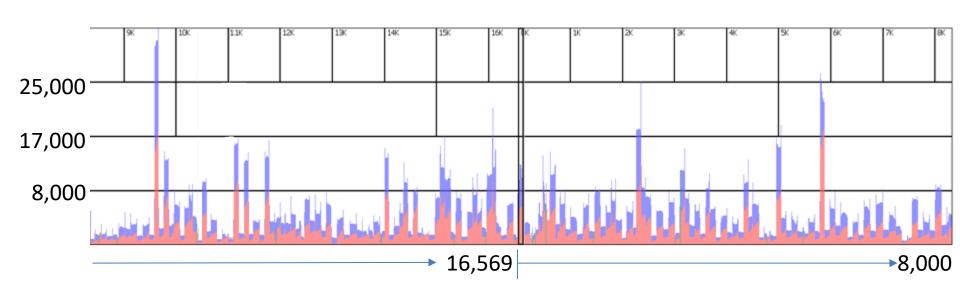

Nuclear- No STR

mtDNA- HVI and HVII (outsourced for small amplicons)



Degraded Samples

96.7% of Mitochondrial Genome Above 500 Reads

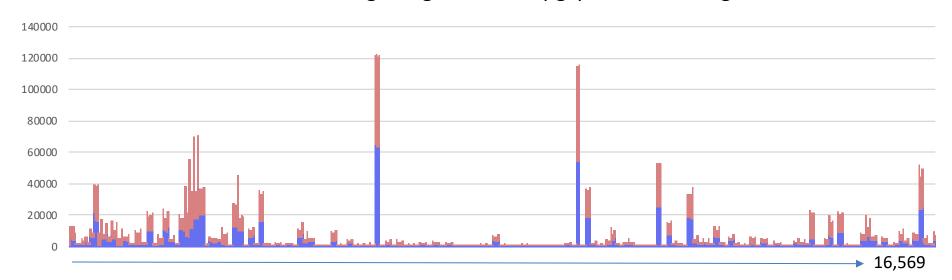

Degraded Samples

Trio Quant- 0.1 pg/μL nu large 685 pg/μL small

DI: 6850

Nothing Above 180 bp

100% of Mitochondrial Genome Over 500 reads


Degraded Samples

Nuclear- No STRs

mtDNA- (200bp) partial HVI

Trio Quant- 0 large target and 231 pg/μL nu small target

91.3% of Mitochondrial Genome Over 500 reads

Sample Name	Coverage % Above	Sanger (CR)	MPS (Full Genome)	
	500	Results	Results	
Hair 1	100			
Hair 2	93			
Hair 3	75			
Bone 1	99.5	\boxtimes		
Bone 2	99.4	\boxtimes	\boxtimes	
Bone 3	100	\boxtimes		
Bone 4	98.8	\boxtimes	\boxtimes	
Bone 5	52*			
Bone 6	96.7		\boxtimes	
Bone 7	84		\boxtimes	
Bone 8	N/A			
Bone 9	N/A			
Tissue 1	91.3			
Tissue 2	100		\boxtimes	
Tissue 3	100		\boxtimes	
Nail 1	57*	\boxtimes		
Nail 2	100	\boxtimes		
Nail 3	100		\boxtimes	
Nail 4	100	\boxtimes		
Buccal 1	56*	\boxtimes		
Buccal 2	100	\boxtimes		
Buccal 3	85	\boxtimes		
Buccal 4	99.2	\boxtimes		
		9/20= 45%	17/20= 85%	

Implementation Plan

- Finalize Analysis Software Validation
- Missing Persons DNA Program Staff will start training later this year
- NDIS package preparation and submission

Thank you! Questions?

Speaker was provided travel and hotel support by Thermo Fisher Scientific for this presentation, but no remuneration

When used for purposes other than Human Identification or Paternity Testing the instruments and software modules cited are for Research Use Only. Not for use in diagnostic procedures.

Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar.

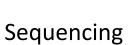
Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results.

Parties presenting images, text and material represent they have the rights

Acknowledgments:

- Jessica Battaglia
- Martin Buoncristiani
- Mavis Date-Chong
- Bill Hudlow
- Mark Timken

Contact information:


Daniela Cuenca

Daniela.Cuenca@doj.ca.gov

At a Glance

Library
Preparation
and Clonal
Amplification/
Chip Loading

	Precision ID Assay
Library Prep Chemistry	PCR – Adaptor Ligation
Ideal DNA Input	100 pg
Samples per Run	4-32
Sequencer	Ion Torrent S5
Sequencing Chemistry	Semiconductor (ion)
Hands On Time	<2 hours
Full Time (extract to sequence)	48 hours (4 work days)
Reads Per Run	9-14 Million
Price (per sample*)-	\$ 201.79 (~€ 165)

^{*}Price per sample will vary depending on the amount of samples that are multiplexed together.