# TRACE DNA COLLECTION METHODS FOR VIABLE DNA PROFILES

Head of DNA Laboratory, Director Hishmath Ibrahim

Forensic Services
Maldives Police Service



## **OBJECTIVES**

- 01. To compare and contrast methods of trace DNA sample collection.
- 02. To discuss humanitarian forensic applications in sample collection for Disaster Victim Identification in a dignified manner.



#### PART 1

## TRACE DNA SAMPLE COLLECTION METHODS: TAPE-LIFTING AND SWABBING



## TRACE DNA

 Trace DNA analysis has become an integral part of case work, especially when other types of biological evidence might not be available.

Acts as a powerful tool in the criminal justice system.

 Trace DNA typically refers to low copy DNA samples that are either very limited and/or invisible biological samples.

#### TRACE DNA SAMPLE COLLECTION

 Identify which areas to target. Trace samples on surfaces are complicated by the challenge of identifying where to find it.

■ The **biological material** is neither visible nor does a presumptive test exist to make it visible (except, for example, in cases in which has obvious fingerprints).

Employing a method that would concentrate the trace
 DNA as much as possible.

#### 1.0 TAPE-LIFT AND SWAB METHOD FOR TRACE DNA

#### 1.1 CHALLENGES

## Tape-lift

- Sticky
- Difficult to place in tubes
- Picks fibers & dye

## Swab

- Non-sticky
- Cut and place
- Entraps the cells in the cotton mesh

#### 1.2 METHOD VALIDATION

#### DNA Extraction

- QIAsymphony SP
- QIAsymphony DNA Investigator Kit

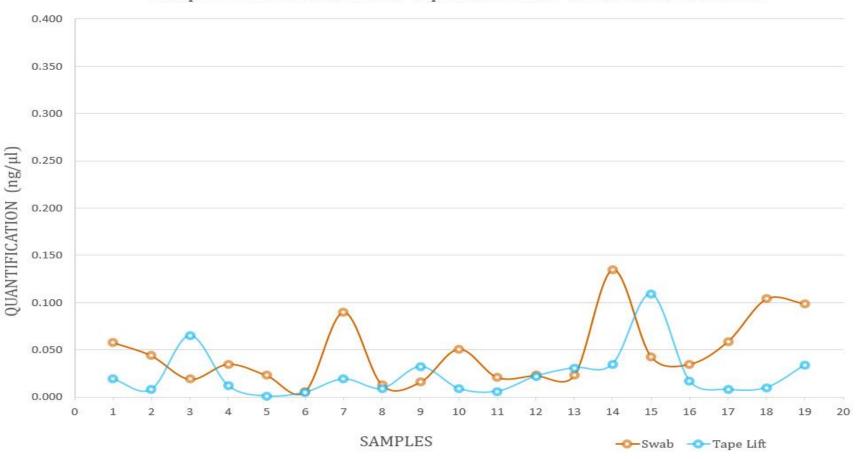


#### Quantification

- Real Time PCR 7500 System
- Quantifiler™ Trio DNA Quantification Kit



## **Capillary Electrophoresis**


- Genetic Analyzer 3500 System
- GlobalFiler™ PCR Amplification Kit

## 1.3 METHOD VALIDATION RESULTS

| Sample collection method: Tape lift & Swab from fabric material |            |                    |                        |  |
|-----------------------------------------------------------------|------------|--------------------|------------------------|--|
| #                                                               | Sample No. | Sample description | Quantification (ng/µl) |  |
| 1                                                               | MV-T-001   | Socks 1 (Left)     | 0.019                  |  |
|                                                                 | MV-S-001   | Socks 1 (Left)     | 0.058                  |  |
| 2                                                               | MV-T-002   | Socks 1 (Right)    | 0.008                  |  |
| Z                                                               | MV-S-002   | Socks 1 (Right)    | 0.044                  |  |
| 3                                                               | MV-T-003   | T shirt (Underarm) | 0.065                  |  |
| 3                                                               | MV-S-003   | T shirt (Underarm) | 0.019                  |  |
| 4                                                               | MV-T-004   | Socks 2 (Left)     | 0.012                  |  |
| 4                                                               | MV-S-004   | Socks 2 (Left)     | 0.035                  |  |
| 5                                                               | MV-T-005   | Socks 2 (Right)    | 0.001                  |  |
| 3                                                               | MV-S-005   | Socks 2 (Right)    | 0.023                  |  |
| 6                                                               | MV-T-006   | Jacket (Underarm)  | 0.005                  |  |
| О                                                               | MV-S-006   | Jacket (Underarm)  | 0.006                  |  |
| 7                                                               | MV-T-007   | Jacket (Collar)    | 0.019                  |  |
| ,                                                               | MV-S-007   | Jacket (Collar)    | 0.090                  |  |
| 8                                                               | MV-T-008   | Socks 3 (Left)     | 0.009                  |  |
| 0                                                               | MV-S-008   | Socks 3 (Left)     | 0.013                  |  |
| 9                                                               | MV-T-009   | Socks 3 (Right)    | 0.032                  |  |
| 9                                                               | MV-S-009   | Socks 3 (Right)    | 0.016                  |  |
| 10                                                              | MV-T-010   | Jeans (Waist area) | 0.009                  |  |
| 10                                                              | MV-S-010   | Jeans (Waist area) | 0.051                  |  |

| Sample collection method: Tape lift & Swab from fabric material |            |                      |                        |  |
|-----------------------------------------------------------------|------------|----------------------|------------------------|--|
| #                                                               | Sample No. | Sample description   | Quantification (ng/µl) |  |
| 11                                                              | MV-T-011   | Blouse 1 (Collar)    | 0.006                  |  |
| 11                                                              | MV-S-011   | Blouse 1 (Collar)    | 0.021                  |  |
| 12                                                              | MV-T-012   | Pants 1 (Waist area) | 0.022                  |  |
| 12                                                              | MV-S-012   | Pants 1 (Waist area) | 0.023                  |  |
| 13                                                              | MV-T-013   | Pants 2 (Waist area) | 0.031                  |  |
| 13                                                              | MV-S-013   | Pants 2 (Waist area) | 0.023                  |  |
| 14                                                              | MV-T-014   | Police summer cap    | 0.035                  |  |
| 14                                                              | MV-S-014   | Police summer cap    | 0.135                  |  |
| 15                                                              | MV-T-015   | Pants 3 (Waist area) | 0.109                  |  |
| 13                                                              | MV-S-015   | Pants 3 (Waist area) | 0.043                  |  |
| 16                                                              | MV-T-016   | Socks 4 (Left)       | 0.017                  |  |
| 16                                                              | MV-S-016   | Socks 4 (Left)       | 0.035                  |  |
| 17                                                              | MV-T-017   | Blouse 2 (Collar)    | 0.008                  |  |
| 17                                                              | MV-S-017   | Blouse 2 (Collar)    | 0.059                  |  |
| 18                                                              | MV-T-019   | P-cap (1)            | 0.010                  |  |
| 10                                                              | MV-S-019   | P-cap (1)            | 0.104                  |  |
| 19                                                              | MV-T-020   | P-cap (2)            | 0.034                  |  |
| 19                                                              | MV-S-020   | P-cap (2)            | 0.099                  |  |
| 20                                                              | MV-T-018   | Socks 4 (Right)      | 0.555                  |  |
| 20                                                              | MV-S-018   | Socks 4 (Right)      | 0.011                  |  |

Sample collection method: Tape lift & Swab from fabric material



#### 1.4 TRACE DNA EVIDENCE

#### **DNA Extraction**

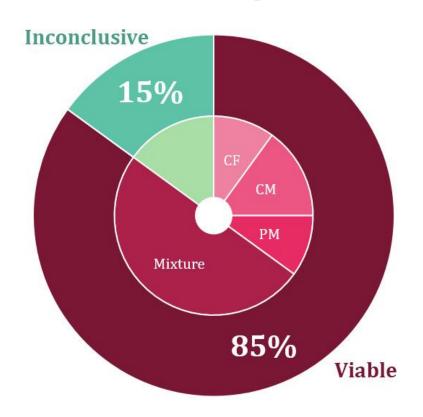
- QIAsymphony SP
- QIAsymphony DNA Investigator Kit; HE for low copy DNA



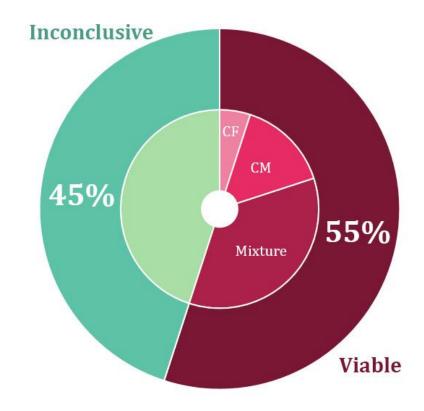
#### Quantification

- Real Time PCR 7500 System
- Quantifiler™
   Human DNA
   Quantification
   Kit




#### Capillary Electrophoresis

- Genetic Analyzer 3500
- Identifiler™
   Plus PCR
   Amplification
   Kit


| Sample collection method: Swabbing technique |            |                                  |                |             |
|----------------------------------------------|------------|----------------------------------|----------------|-------------|
| #                                            | Sample No. | Sample description               | Quantification | CE          |
| 1                                            | SQE001     | Padding and chin strap of helmet | 0.130          | CM          |
| 2                                            | SQE002     | Headband                         | 0.117          | CF          |
| 3                                            | SQE003     | Jeans                            | 0.069          | CM          |
| 4                                            | SQE004     | Summer cap                       | 0.046          | CM          |
| 5                                            | SQE005     | Bra                              | 0.050          | CF          |
| 6                                            | SQE006     | Summer cap                       | 0.023          | PM          |
| 7                                            | SQE007     | Summer cap                       | 0.042          | PM          |
| 8                                            | SQE008     | Piece of cloth (used as a noose) | 0.046          | Mixture (2) |
| 9                                            | SQE009     | Padding of Helmet                | 0.263          | Mixture (2) |
| 10                                           | SQE010     | Padding and chin strap of helmet | 0.061          | Mixture (2) |
| 11                                           | SQE011     | Padding and chin strap of helmet | 0.491          | Mixture (2) |
| 12                                           | SQE012     | Pair of shorts (trace)           | 0.022          | Mixture (2) |
| 13                                           | SQE013     | T-shirt                          | 0.190          | Mixture (2) |
| 14                                           | SQE014     | Camisole                         | 0.091          | Mixture (2) |
| 15                                           | SQE015     | Black cardigan                   | 0.130          | Mixture (2) |
| 16                                           | SQE016     | Bra                              | 0.049          | Mixture (2) |
| 17                                           | SQE017     | Boxer                            | 0.422          | Mixture (2) |
| 18                                           | SQE018     | Piece of cloth (used as a noose) | 0.004          | _           |
| 19                                           | SQE019     | T-shirt (faint stain)            | 0.001          | _           |
| 20                                           | SQE020     | T-shirt (faint stain)            | Undetected     | _           |

| Sample collection method: Tape-lift technique |            |                    |                |             |
|-----------------------------------------------|------------|--------------------|----------------|-------------|
| #                                             | Sample No. | Sample description | Quantification | CE          |
| 1                                             | TQE001     | Bra                | 0.245          | CF          |
| 2                                             | TQE002     | Pair of shorts     | 0.047          | CM          |
| 3                                             | TQE003     | Jeans              | 0.02           | CM          |
| 4                                             | TQE004     | Shorts             | 0.041          | CM          |
| 5                                             | TQE005     | T-shirt            | 0.02           | Mixture (2) |
| 6                                             | TQE006     | T-shirt            | 0.045          | Mixture (2) |
| 7                                             | TQE007     | Bra                | 0.834          | Mixture (2) |
| 8                                             | TQE008     | Shirt              | 0.105          | Mixture (2) |
| 9                                             | TQE009     | Bra                | 0.035          | Mixture (2) |
| 10                                            | TQE010     | Shirt              | 0.038          | Mixture (2) |
| 11                                            | TQE011     | Gloves             | 0.03           | Mixture (2) |
| 12                                            | TQE012     | T-shirt            | 0.033          | Inc         |
| 13                                            | TQE013     | Pair of shorts     | 0.013          | Inc         |
| 14                                            | TQE014     | Shirt              | 0.011          | No profile  |
| 15                                            | TQE015     | Bra                | 0.013          | No profile  |
| 16                                            | TQE016     | T-shirt            | 0.004          | No profile  |
| 17                                            | TQE017     | Piece of cloth     | 0.007          | No profile  |
| 18                                            | TQE018     | Shirt              | 0.004          | No profile  |
| 19                                            | TQE019     | Shirt              | Undetected     | No profile  |
| 20                                            | TQE020     | Hood               | Undetected     | No profile  |

#### Swab technique



#### **Tape-lift technique**



#### PART 2

## SAMPLE COLLECTION METHODS: HUMAN REMAINS



## 2.0 HUMANITARIAN FORENSIC APPLICATION

- DNA profiling has become the gold standard for the identification of victims in both mass disasters and forensic cases with decomposed human remains.
- High degree of discrimination.
- DNA profiling also offers the ability to re-associate body parts in mass disaster events.

#### 2.1 WHY HUMANITARIAN FORENSIC?

Often the primary sample type

- Bone typically provides a good yield of quality DNA due to its hard structure protecting the DNA from degradation.
- However,
  - An invasive method (requires surgical procedure),
  - Occupational health and safety risks to staff.

In addition to this,

 Longer time to prepare and sample the bone.

 Relatively complex handling procedures (requires refrigeration for storage and transportation of the sample).

- Affect individuals and families. Also, has adverse effects on communities and societies.
- Alleviating suffering of the victims, families, societies while also maintaining the human dignity.

(Hofmeister and Navarro, 2017; Puerto and Tuller, 2017)

# 2.2 OUR SAMPLE TYPE AND SUCCESS RATE

Sample preparation

Extraction method

Sensitivity

Sample itself

| 1  | D13C17-23<br>D13E08-30 | F              |       |                 |  |
|----|------------------------|----------------|-------|-----------------|--|
|    | D12E00 20              | Femur bone     | Undt  | No profile      |  |
| 2  | D13E08-30              | Teeth          | Undt  | No profile      |  |
| 3  | D14B14-61              | Teeth          | Undt  | No profile      |  |
| 4  | D14L16-81              | Teeth          | Undt  | No profile      |  |
| 5  | D14L16-82              | Skull (pieces) | Undt  | No profile      |  |
|    | D18A7-001              |                | 0.015 |                 |  |
| 6  | D18A7-002              | Femur bone     | 0.013 | Doutial profile |  |
|    | D18A7-003              | remui bone     | 0.008 | Partial profile |  |
|    | D18A7-004              |                | 0.010 |                 |  |
|    | D18B18-001             |                | 0.020 | Complete Male   |  |
|    | D18B18-002             |                | 0.063 |                 |  |
| 7  | D18B18-003             | Femur bone     | 0.018 |                 |  |
|    | D18B18-004             |                | 0.043 |                 |  |
|    | D18B18-005             |                | 0.003 |                 |  |
|    | D18C23-001             |                | 0.016 |                 |  |
|    | D18C23-002             |                | 0.022 | Partial profile |  |
| 8  | D18C23-003             | Femur bone     | 0.019 |                 |  |
|    | D18C23-004             |                | 0.006 |                 |  |
|    | D18C23-005             |                | 0.007 |                 |  |
|    | D18H13-001             |                | Undt  | No profile      |  |
|    | D18H13-002             |                | Undt  |                 |  |
| 9  | D18H13-003             | Femur bone     | Undt  |                 |  |
|    | D18H13-004             | remur bone     | Undt  |                 |  |
|    | D18H13-005             |                | Undt  |                 |  |
|    | D18H13-006             |                | Undt  |                 |  |
| 10 | D19C38                 | Tissue sample  | 0.030 | Complete Male   |  |

## 2.3 OTHER TYPES OF SAMPLES

- Nail samples (clippings and whole)
- Deep-seated red muscle tissue

- In mass fatality events, nails have the benefit of being able to be collected by persons with minimal training in sample collection.
- Minimal storage space and no requirement for refrigeration.

Schlenker et al 2016; Watherston et al. 2018

## **FUTURE PROSPECTS:**

1. Study the efficiency of various swabs for trace DNA collection.

2. Study the efficiency of various types of tape for trace DNA collection.

## REFERENCE MATERIAL

- 1. Alketbi, S.K. 2018. The Affecting Factors of Touch DNA. *Journal of Forensic Research*. 9(424), 1-4.
- 2. Bhoelai, B., Beemster, F., Sijen, T. 2013. Revision of the tape used in a tape-lift protocol for DNA recovery. *Forensic Science International: Genetics Supplement Series* 4(1), e270-e271.
- 3. Burgei K. S. 2015. Evaluation of collection methods for extraction of trace amounts of DNA from cloth substrates. [Online]. *University of Findlay*. [Accessed 11<sup>th</sup> June 2019]. Available from: <a href="https://shareok.org/bitstream/handle/11244/45238/Burgei\_okstate\_0664M\_14100.pdf?sequence=1">https://shareok.org/bitstream/handle/11244/45238/Burgei\_okstate\_0664M\_14100.pdf?sequence=1>
- 4. Forsberg, C., Jansson, L. Ansell, R., and Hedman, J. 2016. High-throughput DNA extraction of forensic adhesive tapes. *Forensic Science International: Genetics* 24, 158-163.
- 5. Hofmeister, U. and Navarro, S. 2017. A psychological approach in humanitarian forensic action: The Latin American perspective. *Forensic Science International* 280, 35-43.
- 6. Lempan, A., Riproumsup, K., Panvisavas, N. and Kusamran, T. 2007. DNA recovery from forensic clothing samples by tape-lift. [Online]. *Mahidol University*. [Accessed 11<sup>th</sup> June 2019]. Available from: <a href="http://forensic.sc.mahidol.ac.th/proceeding/49\_Aree.pdf">http://forensic.sc.mahidol.ac.th/proceeding/49\_Aree.pdf</a>>
- 7. Puerto, M.S. and Tuller, H. 2017. Large-scale forensic investigations into the missing: Challenges and considerations. *Forensic Science International* 279, 219-228.
- 8. Schlenker, A., Grimble, K., Azim, A., Owen, R. and Hartman, D. 2016. Toenails as an alternative source material for the extraction of DNA from decomposed human remains. *Forensic Science International* 258, 1-10.
- 9. Van Oorschot, R.A.H., Ballantyne, K.N. and Mitchell, R.J. 2010. Forensic trace DNA: a review. *Investigative Genetics.* 1(14), 1-17.
- 10. Watherston, J., McNevin, D., Gahan, M.E., Bruce, D. and Ward, J. Current and emerging tools for the recovery of genetic information from post mortem samples: New directions for disaster victim identification. *Forensic Science International: Genetics* 37, 270-282.

## **THANK YOU**

## **LET'S DISCUSS**

Speaker was provided travel and hotel support by Thermo Fisher Scientific for this presentation, but no remuneration. When used for purposes other than Human Identification or Paternity Testing the instruments and software modules cited are for Research Use Only. Not for use in diagnostic procedures. Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar. Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text and material represent they have the rights.

