User Manual

Affymetrix® GeneChip® Command Console® (AGCC) 4.0 User Manual

For Research Use Only. Not for use in diagnostic procedures.
For research use only.
Not for use in diagnostic procedures.

Trademarks
Affymetrix®, GeneChip®, NetAffx®, Command Console®, Powered by Affymetrix™, Genochip-compatible™, Genotyping Console™, DMET™, GeneTitan®, Axiom®, MyDesign™, and GeneAtlas® are trademarks or registered trademarks of Affymetrix, Inc. All other trademarks are the property of their respective owners.
All other trademarks are the property of their respective owners.

Limited License Notice
Limited License. Subject to the Affymetrix terms and conditions that govern your use of Affymetrix products, Affymetrix grants you a non-exclusive, non-transferable, non-sublicensable license to use this Affymetrix product only in accordance with the manual and written instructions provided by Affymetrix. You understand and agree that except as expressly set forth in the Affymetrix terms and conditions, that no right or license to any patent or other intellectual property owned or licensable by Affymetrix is conveyed or implied by this Affymetrix product. In particular, no right or license is conveyed or implied to use this Affymetrix product in combination with a product not provided, licensed or specifically recommended by Affymetrix for such use.

Patents
Scanner products may be covered by one or more of the following patents: U.S. Patent Nos. 5,578,832; 5,631,734; 5,834,758; 5,936,324; 5,981,956; 6,025,601; 6,141,096; 6,171,793; 6,185,030; 6,201,639; 6,207,960; 6,218,803; 6,225,625; 6,252,236; 6,335,824; 6,403,320; 6,407,858; 6,472,671; 6,490,533; 6,643,015; 6,813,567; and other U.S. or foreign patents.
Software products may be covered by one or more of the following patents: U.S. Patent Nos. 5,733,729; 5,795,716; 5,974,164; 6,066,454; 6,090,555; 6,185,561; 6,188,783; 6,223,127; 6,228,593; 6,229,911; 6,242,180; 6,308,170; 6,361,937; 6,420,108; 6,484,183; 6,505,125; 6,510,391; 6,532,462; 6,546,340; 6,687,692; 6,607,887; 7,062,092 and other U.S. or foreign patents.
Fluidics stations Products may be covered by U.S. Patent No. 6,114,122; 6,287,850; 6,391,623; 6,422,249; and other U.S. or foreign patents.
AutoLoader products may be covered by one or more of the following patents: U.S. Patent Nos. 6,511,277; 6,604,902; 6,705,754; 7,108,472; and other U.S. or foreign patents.

Copyright
© 2013 Affymetrix, Inc. All Rights Reserved.
Table of Contents

Chapter 1 Welcome to the AGCC User Manual

- Affymetrix GeneChip Command Console Software 6
- Conventions Used in This Guide .. 6
- Resources ... 7

Chapter 2 Getting Started With AGCC

- The Different Array Types .. 10
- The AGCC Software Components .. 11
- Array Processing Workflow ... 15
- File Types in AGCC ... 19
- Data Organization in AGCC .. 22

Chapter 3 AGCC Portal and Data Organization

- Starting AGCC Portal ... 26
- Viewing the Data Organization .. 28
- Searching for Files ... 45
- Managing Data Roots ... 54
- Using Projects to Organize Data ... 57
- Generating Reports and Summaries .. 63
- Copying Files ... 64
- Specifying a Default Folder ... 67
- Uploading Data to Network Data Storage 68

Chapter 4 Creating and Editing Sample (ARR) Files

- Introduction to Sample Registration .. 79
- Detailed Sample Registration .. 81
- Quick Sample Registration ... 97
- Batch Registration .. 101
- Sample Prep Plate Registration ... 108
- GeneTitan Array Plate Registration .. 111
- Adding a Barcode to a Sample file ... 117
- Batch Editing ... 120

Chapter 5 Controlling the Fluidics Station 450

- AGCC Fluidics Control Software .. 127
- Running Protocols ... 131
- Filtering the Sample File List ... 140
- Adding a Label to a Station and Modules 145
- Installing and Updating Protocols .. 147
- Editing Protocols .. 152
- Regulatory Compliance ... 154
Chapter 6 Scanning Cartridge Arrays ... 157
AGCC Scan Control Software ... 158
Applying Tough-Spots® to Prevent Leaks 162
Using GeneChip® Scanner 3000 .. 164
GCS3000 Specification ... 177
Regulatory Compliance ... 178
Using the GCS3000 with AutoLoader ... 180
GCS3000 with AutoLoader Specification 196
Regulatory Compliance ... 201

Chapter 7 Controlling the GeneTitan® Instruments 204
Introduction ... 205
Overview of the GeneTitan Workflow 216
Tracking the Array Plate Through the Workflow 219
Aborting a Run ... 224
Unload Plates .. 226
Using the Wash-Scan-Resume Workflow 228
Drop and Scan with Array Plates .. 231
Insufficient Disk Space Notice ... 231
Resetting the Lamp Life Clock (GeneTitan MC Only) 231
Computer Practices, Maintenance and Troubleshooting 232

Chapter 8 Using the AGCC Viewer ... 238
Array and Grid Types ... 239
Introduction to the Viewer ... 246
Using the Review Window ... 252
Opening Image Files ... 257
Changing the Display of the Image .. 266
Learning about the Image File .. 273
Checking the Grid Alignment .. 275
Exporting Images in Other Formats ... 286

Chapter 9 Changing The Probe Array Type 289

Chapter 10 Administration Functions .. 292
Working with Templates .. 292
Tracking the Workflow .. 299
Appendix A Network Functionality for AGCC on Windows XP or Windows 7 301
Sample Configurations for AGCC with Network Functionality 301
Setting Up Windows Networking ... 306
Configuring AGCC Services ... 307
Adding the Network Data Storage as a Data Root 313

Appendix B Windows Sharing and Security Issues .. 315
General Principles of Security in Command Console Software 315
How do Files Get Permissions That Don't Match the Folder? 315
How Does Command Console Show this Error? ... 316
How to Avoid This Issue .. 316
How to Adjust Permissions for Files in a Folder ... 317

Appendix C Cell Summary Report ... 319
Report Description .. 319
Using the Cell Summary Report .. 323
Cell Summary Report Algorithm .. 324

Appendix D Configuring E-mail for the Notification Options 325

Appendix E Log Files Generated by AGCC .. 327
AGCC Log Files .. 327
AGCC Log Files for Cartridge Systems ... 328
AGCC Log Files for GeneTitan Systems ... 328

Appendix F Using TSV Files for Batch Editing .. 329

Appendix G Compliance Guide for FDA Title 21 CFR Part 11 331
What is Title 21 CFR Part 11? ... 331
Compliance Scope .. 331
AGCC System .. 331
AGCC Title 21 CFR Part 11 Requirements Compliance Guide 332

Index .. 335
Welcome to the AGCC User Manual

This guide describes the functions of the Affymetrix GeneChip Command Console software, version 4.0.

There are several configurations for installing AGCC:

- AGCC and GeneChip (GCS3000 and FS450): Windows XP (32-bit) with SP3 and above and Windows 7 Professional (64-bit) with SP1.
- AGCC and GeneTitan® System: Windows XP (32-bit) with SP3 and above and Windows 7 Professional (64-bit) with SP1, works with:
 - GeneTitan Instrument (Single Channel)
 - GeneTitan Multi-Channel (MC) Instrument
- AGCC Only: Windows XP (32-bit) with SP3 and above and Windows 7 Professional (64-bit) with SP1.

Affymetrix GeneChip Command Console Software

The development of microarray technology means that researchers can now perform more experiments and collect more data from each experiment than ever before. Researchers need to analyze and organize this mass of data, which presents new challenges for the researchers and the software they use.

Affymetrix GeneChip Command Console (AGCC) provides flexible and powerful tools for:

- Entering and organizing information about the sample and GeneChip probe arrays.
- Controlling the instruments used to process probe arrays and collect the intensity data.
- Tracking the progress of an array through the array processing workflow.
- Working seamlessly with other tools for downstream analysis.

New Features in AGCC 4.0

- AGCC 4.0 supports the new 384 plate format (GeneTitan® Multi-Channel Instrument Control ONLY).
- AGCC 4.0 is compatible with Windows 7 Professional (64-bit) with SP1.

Conventions Used in This Guide

This guide provides a detailed outline for all tasks associated with Affymetrix® GeneChip Command Console. Various conventions are used throughout the guide to help illustrate the procedures described. Explanations of these conventions are provided below.

Steps

Instructions for procedures are written in a step format. Immediately following the step number is the action to be performed. Following the response additional information pertaining to the step may be found and is presented in paragraph format. For example:

1. Click Yes to continue.
 - The Delete task proceeds.
 - In the lower right pane the status is displayed.
 - To view more information pertaining to the delete task, right-click Delete and select View Task Log from the shortcut menu that appears.

Font Styles

Bold fonts indicate names of commands, buttons, options or titles within a dialog box. When asked to enter specific information, such input appears in italics within the procedure being outlined. For example:
1. Click the **Find** button or select **Edit → Find** from the menu bar. The Find dialog box appears.

2. Enter *AFFX-BioB-5_at* in the **Find what** box, then click **Find Next** to view the first search result.

3. Continue to click **Find Next** to view each successive search result.

Screen Captures

The steps outlining procedures are frequently supplemented with screen captures to further illustrate the instructions given. The screen captures depicted in this guide may not exactly match the windows displayed on your screen.

Additional Comments

- **TIP:** Information presented in Tips provide helpful advice or shortcuts for completing a task.

- **NOTE:** The Note format presents important information pertaining to the text or procedure being outlined.

- **IMPORTANT:** The Important format presents important information that may affect the accuracy of your results.

- **CAUTION:** Caution notes advise you that the consequence(s) of an action may be irreversible and/or result in lost data.

- **WARNING:** Warnings alert you to situations where physical harm to person or damage to hardware is possible.

Resources

Documentation

This manual is available in Adobe Acrobat format (as *.pdf files) on the CD or download package for AGCC and is readable with the Adobe® Acrobat Reader® software, available at no charge from Adobe at http://www.adobe.com.

The content of this manual is available in context-sensitive online help, accessible by clicking the Help links in the different software components.

The *AGCC Installation Instructions Manual* is also available in PDF format on the CD or download package:

Technical Support

Affymetrix provides technical support to all licensed users via phone or E-mail. To contact Affymetrix® Technical Support:
Affymetrix, Inc.
3420 Central Expressway
Santa Clara, CA 95051 USA
E-mail: support@affymetrix.com
Tel: 1-888-362-2447 (1-888-DNA-CHIP)
Fax: 1-408-731-5441

Affymetrix UK Ltd.
Voyager, Mercury Park
Wycombe Lane, Wooburn Green
High Wycombe HP10 0HH
United Kingdom
UK and Others Tel: +44 (0) 1628 552550
France Tel: 0800919505
Germany Tel: 01803001334
E-mail: supporteurope@affymetrix.com
Tel: +44 (0) 1628 552550
Fax: +44 (0) 1628 552585

Affymetrix Japan, K. K.
ORIX Hamamatsucho Bldg, 7F
1-24-8 Hamamatsucho, Minato-ku
Tokyo 105-0013 Japan
Tel: +81-3-6430-4020
Fax: +81-3-6430-4021
salesjapan@affymetrix.com
supportjapan@affymetrix.com
Getting Started With AGCC

AGCC provides tools that enable you to process arrays, extract the intensity data for use by the probe level analysis software, and organize the resulting sets of data files.

You can use AGCC 4.0 to process:
- Cartridge Arrays
- GeneTitan® Array Plates

See *The Different Array Types*, below, for more information about the differences in the arrays.

To fully use the capabilities of AGCC, you need to understand:
- The components of the software
- The array processing workflow that the AGCC components perform
- The types of files that AGCC produces and uses
- The structures and tools that AGCC uses to organize the resulting data

This chapter introduces those concepts in:
- *The AGCC Software Components on page 11*
- *Array Processing Workflow on page 15*
- *File Types in AGCC on page 19*
- *Data Organization in AGCC on page 22*

NOTE: Before running AGCC for a particular GeneChip Array, you must have the library files for that array type installed on your computer. For more information, see *Prerequisites for Running AGCC on page 12*

See the *Affymetrix® Data Exchange Console User’s Guide* for information on migrating data from Affymetrix GeneChip Operating System (GCOS) to AGCC.

NOTE: Norton Antivirus can interfere with AGCC software. The symptom is that AGCC will stop generating CEL files. If that problem occurs, then you should check the Norton Anti-Virus settings as described in Appendix B, *Settings for Norton Anti-Virus* of the *AGCC 4.0 Installation Instructions* (P/N 702567).
The Different Array Types

The AGCC software may be used to process both cartridge arrays and GeneTitan® Array Plates.

An array cartridge contains a single array, which is processed on its own through washing and staining and scanning by using the AGCC Instrument Control software with the FS-450 Fluidics Station and the GCS3000 scanner. Hybridization is performed using instruments that are not controlled by AGCC. The array cartridge is identified by a bar code that can be scanned and used to track the array workflow.

Multiple arrays can be scanned sequentially if you use the GCS 3000 AutoLoader.

A 384 or 96 array plate can be used. A 96 array plate may contain 16, 24, or 96 arrays. All the arrays on the plate are processed from hybridization to scanning using the GeneTitan® Instrument or GeneTitan Multi-Channel (MC) Instrument and the AGCC GeneTitan® Control software. This allows increased automation and consistency in processing when dealing with large numbers of samples.
The array plate has a barcode for tracking. Each individual array on the plate is identified by its row and column. For example, the circled array in the figure below is array D05.

The AGCC Software Components

The features and functions of AGCC vary depending upon which instrument or instruments it is being used with:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>GCS3000/FS450 Instrument</th>
<th>GeneTitan Family of Instruments</th>
<th>Analysis Only Workstation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows XP (32-bit)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Windows 7 (64-bit)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The AGCC User Manual describes the features and functionality of AGCC.

AGCC is comprised of the following components:

- AGCC Portal: software for sample registration, data organization, and tracking the array processing workflow. AGCC Portal uses a web interface for user access.

Other AGCC components are installed on your computer and run behind the scenes on your computer. These include the Indexer, a service that tracks the relationships of files in the AGCC data roots. The information is used to keep track of the AGCC files, for example, in the Folders and Projects views. The services typically run behind the scenes without user control, but you may need to change their configuration in some circumstances. See Affymetrix Services on page 25 for more information.

- AGCC Instrument Control software for processing cartridge arrays:
 - AGCC Fluidics Control: Software for running the Fluidics Station 450.
 - AGCC Scan Control: Software for the GeneChip Scanner 3000 (GCS 3000) and GCS 3000 with AutoLoader (AutoLoader).

- AGCC Instrument Control software for processing array plates:

IMPORTANT: A computer used as a GeneTitan workstation requires a user account with specific privilege settings. In addition, some of the other features of Windows XP or Windows 7 must be set up in particular ways or disabled to avoid causing problems when running GeneTitan IC software.

A workstation set up by Affymetrix for use with GeneTitan has a user account called AFFXUser with these privileges and features already set. If the settings have been changed, refer to the AGCC Installation Instructions for information about the correct settings.

- AGCC Viewer: Software for viewing image data and workflow status and performing manual gridding.

In addition, the following tools enable you to migrate data from GeneChip Operating Software (GCOS) to AGCC:

- Data Exchange Console (for more information, see the Affymetrix Data Exchange Console User’s Guide).
- Reconnector (for more information, see the Reconnector User’s Guide).
Other tools are used to install necessary files or manage other AGCC functions:

- Library File Importer (for more information, see the AGCC Installation Instructions).
- Fluidics Script Installer (see Installing and Updating Protocols on page 147).
- GeneTitan Library File Installer (for more information, see the AGCC Installation Instructions).
- Email Configuration Editor (see Appendix D, Configuring E-mail for the Notification Options on page 325).
- Data Uploader Scheduler (see Scheduling AutoUploads on page 73).

Launching the AGCC Components

This section explains:

- Prerequisites for Running AGCC, below
- The Command Console Launcher on page 12

Prerequisites for Running AGCC

Before using AGCC, the following prerequisites must be met:

- The necessary AGCC components are installed.
 See the AGCC Installation Instructions.
- The proper Data Root is set up and selected.
 See Adding a Data Root on page 54.
- Libraries are installed for the probe array types you wish to process.
 See the AGCC Installation Instructions for more information.
- The correct fluidics scripts are installed for the probe array types you wish to process.
 See Installing Protocols on page 147.
- If using remote network data storage or linked instrument control systems, you need to perform additional configuration.
 See Appendix A, Network Functionality for AGCC on Windows XP or Windows 7 on page 301.

NOTE: Norton Antivirus can interfere with AGCC software. The symptom is that AGCC will stop generating CEL files. If that problem occurs, then you should check the Norton Anti-Virus settings as described in Appendix B, Settings for Norton Anti-Virus of the AGCC 4.0 Installation Instructions (P/N 702567).

The Command Console Launcher

The Command Console® Launcher (Figure 2.3) provides a convenient way to open the AGCC software applications.

To start the Command Console Launcher:

- Click the Microsoft® Windows® Start button and select Programs → Affymetrix → Command Console → Affymetrix Launcher; or
- Double-click the Launcher shortcut on the desktop.

The Command Console Launcher opens (Figure 2.3).
The launcher enables you to start the following AGCC software components and tools:

- **AGCC Portal**: For more information, see *AGCC Portal Home Page* on page 27.
- **AGCC Viewer**: For more information, see Chapter 8, *Using the AGCC Viewer* on page 238.
- **AGCC Instrument Control Software**:
 - For GCS 3000/FS450 systems used with cartridges:
 - **AGCC Fluidics control**: For more information, see Chapter 5, *Controlling the Fluidics Station 450 on page 126*.
 - **Fluidics Script Installer**: For more information, see *Installing Protocols* on page 147.
 - For the GeneTitan® family of instruments: **AGCC GeneTitan Control**: for more information, see Chapter 7, *Controlling the GeneTitan® Instruments on page 204*.

In addition, the following tools provide convenient options for transferring data between AGCC and the GeneChip Operating Software (GCOS):

- **Data Exchange Console**: For more information, see *Affymetrix Data Exchange Console User’s Guide*.
- **Reconnector**: for more information, see *Affymetrix Reconnector User’s Guide*

Other tools are used to install necessary files or manage other AGCC functions:

- **Library File Importer**: For more information, see *AGCC Installation Instructions*.
- **Fluidics Script Importer**: For more information see *AGCC Installation Instructions*.
GeneTitan Library File Installer: (for more information, see the AGCC Installation Instructions)

Data Upload Scheduler: for more information, see Scheduling AutoUploads on page 73.

Email Configuration Editor: for more information, see Appendix D, Configuring E-mail for the Notification Options on page 325.

The Launcher also provides access to:

- Affymetrix Analysis Applications
- Affymetrix Web Resources:
 - These web sites provide additional information on using AGCC and Affymetrix probe arrays.
 - Affymetrix.com
 - Affymetrix.com Support
 - NetAffx

To use the Launcher:

- Click on the icon for the component or web page you wish to launch.

NOTE: You can also launch AGCC software components by using the Windows® Start Menu.
Array Processing Workflow

AGCC is used to process the arrays used in your experiment. While AGCC provides several options and alternatives for processing arrays, the recommended workflows for cartridge arrays (Figure 2.4) and for array plates (Figure 2.5) enables you to include data about the sample and experiment and to easily track the processing steps for the array or array plate.

Figure 2.4 Processing cartridge arrays with AGCC

<table>
<thead>
<tr>
<th>AGCC Cartridge Array Processing Workflow</th>
<th>Steps performed using:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register Sample(s) and Assign Arrays in Sample (ARR) files</td>
<td>AGCC Portal</td>
</tr>
<tr>
<td>Hybridize Array and Sample</td>
<td>Not performed by AGCC for Cartridge Arrays</td>
</tr>
<tr>
<td>Process Probe Array in Fluidics Station</td>
<td>AGCC Fluidics Control and Fluidics Station 450</td>
</tr>
</tbody>
</table>
| Scan Probe Array and Save Image Data in DAT files | AGCC Scan Control and:
- GeneChip® Scanner 3000 (GCS3000)
- GCS3000 With Autoloader |
| Review grid alignment and perform manual gridding if necessary | AGCC Viewer |
| Analyze Cell Intensity Data and Generate Probe Analysis Data in CHP files | Affymetrix and Third Party Probe Analysis Software |

In the recommended array processing workflow for cartridge arrays, you create a sample file as the first step, assigning sample attributes and a physical array or arrays to the sample. You then:

- Hybridize the array and sample (step not controlled using AGCC)
- Wash and stain the array
- Scan the array(s) to create Image data (DAT) files.

After that, AGCC aligns a grid on the DAT files and computes the Cell Intensity data (CEL) file.
In the recommended array processing workflow for Array Plates, you create sample files for all the arrays on the array plate as the first step. The Hybridization, Fluidics, and Imaging of the array plates are completed using the GeneTitan instrument. After that, AGCC aligns a grid on the DAT files and computes the Cell Intensity data (CEL) file.

The CEL data generated in the AGCC software from array plate data or cartridge data can be used by other software packages for probe analysis.

The workflow steps are described in more detail in the following sections:

- **Registering Samples and Arrays**, below
- **Hybridizing Arrays and Samples on page 18**
- **Washing and Staining the Array on page 18**
- **Running Scanners on page 18**
- **Tracking Gridding and CEL file Generation on page 19**

The AGCC Sample and data files that are created during the workflow are described in more detail in *File Types in AGCC on page 19*.

Registering Samples and Arrays

In AGCC, the Sample file is the beginning of the data chain for a given experiment. The sample information is stored in a Sample file with an ARR extension. The arrays used in analysis and data files produced by analysis are linked to this Sample File.
The information about the sample and experiment are collected as attributes. These attributes can then be used to locate particular Sample files in filtering and search operations.

The links between the sample and data files and the AGCC tools used to generate the sample files are described in more detail below:

- Template and User Attributes on page 17
- Sample Registration Options on page 17

Template and User Attributes

There are two types of sample attributes in AGCC:

- Template Attributes
- User Attributes

Template Attributes

A template in AGCC is a list of attributes that can be assigned to a Sample file. When you create a template, you can specify:

- the attributes included in the template
- the data type for each attribute
- whether the attribute is required
- value options for a controlled data attribute

After you have created a template you can assign the template to a new Sample file during Batch Registration. This automatically adds all the attributes in the template to the Sample file. You can then enter values for each attribute. This allows you to standardize the attributes that are assigned to samples. The template functions are described in *Working with Templates on page 292*.

User Attributes

User attributes are created dynamically during the registration of a sample and array. This allows you to create a quick note for a particular sample file.

User attributes are not listed in a template; they have usually been added to a specific sample file. They can be used in filtering and search operations, just like the template attributes.

Sample Registration Options

AGCC provides multiple ways to create Sample files. To select the best one for your operation, evaluate:

- Whether you are creating sample files for cartridge arrays or array plates.
- The number of arrays you are going to be processing.
- Whether you will want to enter sample attributes during registration.
- Whether you will want to enter attributes at a later time.
- Whether you are creating sample files for samples that were processed in a 96-well sample prep plate.

For example:

- Batch Registration enables you to create a group of Sample files for cartridge arrays; you can assign attributes to each Sample file, along with one or more arrays.
- Detailed Registration creates a single Sample file for a cartridge array; you can assign attributes and one or more arrays to the sample file.
- Quick Registration creates multiple sample files for cartridge arrays, each with a single array and no attributes (attributes can be entered later).
- Sample Prep Plate Registration creates sample files for cartridge arrays for samples in up to two 96-well plates.
- Array Plate Registration creates the sample files for the arrays on an Array Plate for GeneTitan System.
- Editing functions correct problems or add attributes to previously created sample files.
The Sample registration options are described in Chapter 4, Creating and Editing Sample (ARR) Files on page 78.

In addition, the Drop and Scan feature enables you to create a sample file for an array when the array is scanned. Drop and Scan is available for:

- Cartridge arrays (see Drop and Scan on page 186)
- Array Plates (see Drop and Scan with Array Plates on page 231)

Hybridizing Arrays and Samples

For GeneChip cartridge arrays, hybridization is not controlled using AGCC.

For Array Plates, the hybridization is controlled using the AGCC GeneTitan Control software (see Chapter 7, Controlling the GeneTitan® Instruments on page 204).

Washing and Staining the Array

Different instrumentation and instrument control software used to process Cartridge Arrays and Array Plates.

Cartridge Arrays

The Fluidics Station 450 (FS450) is used to hybridize, wash, and stain the GeneChip probe arrays (called arrays in this manual). The FS450 can independently process an array using a different fluidics protocol in each of four different modules.

The AGCC Fluidics Control software is used to control the FS450. A workstation with AGCC Fluidics Control software and a Sealevel card installed can control up to eight different fluidics stations. The software and its use are described in Chapter 5, Controlling the Fluidics Station 450 on page 126.

Array Plate

The arrays on the Array Plate are washed and stained using the GeneTitan Instrument or the GeneTitan MC Instrument, controlled using the AGCC GeneTitan Control software. The software and its use are described in Chapter 7, Controlling the GeneTitan® Instruments on page 204.

Running Scanners

Different IC software and instrumentation are used to scan:

- Cartridge Arrays
- Expression Array Plates
- Genotyping Array Plates

Cartridge Arrays

The array is scanned after hybridization, washing, and staining, using one of the following scanners:

- GeneChip Scanner 3000 (GCS3000) (scans one chip only)
- GCS3000 with Autoloader (load up to 48 chips for scanning without operator attention)

The AGCC Scan Control Software is used to control the scanner. The software and its use are described in Chapter 6, Scanning Cartridge Arrays on page 157.

Expression Array Plates

The arrays on the array plate are scanned using the GeneTitan Instrument or the GeneTitan MC Instrument, controlled by the AGCC GeneTitan Control software.

The software and its use are described in Chapter 7, Controlling the GeneTitan® Instruments on page 204.
There are some differences in how the arrays from array plates are scanned and the data is managed, described on GeneTitan® Array Plates on page 242).

Genotyping Array Plates

The arrays on the genotyping array plates are scanned using the GeneTitan MC Instrument, controlled by the AGCC GeneTitan Control software.

The software and its use are described in Chapter 7, Controlling the GeneTitan® Instruments on page 204.

There are some differences in how the arrays from array plates are scanned and the data is managed, described on GeneTitan® Array Plates on page 242).

Tracking Gridding and CEL file Generation

After the array has been scanned, AGCC:
- Aligns a grid on the Image (DAT) file to identify the probe cells.
- Computes the probe cell intensity data for the array and creates a CEL file.
- Generates JPG and RPT files.

The AGCC Viewer enables you to track the progress of this step in the workflow and manually correct gridding problems, if necessary. The Viewer and its use are described in Chapter 8, Using the AGCC Viewer on page 238.

File Types in AGCC

Different types of information are collected by AGCC in different types of files:
- Information about the sample and experiment are collected in Sample files (see Sample Files, below)
- Probe array data generated during scanning and processing are collected in Data files of various types (see Tracking Files with GUIDs on page 20).
- Audit and Log files contain information about array processing and other processes (see Other File Types on page 21)

Globally Unique Identifiers (GUIDs) are used to track the relationships between Sample files, physical arrays, and Data Files (see Tracking Files with GUIDs on page 20)

Sample Files

The Sample (.ARR) file (Figure 2.6) collects two types of information:
- Sample Attributes: information that you can use to interpret the experimental data. It can include information about the sample itself, the experimental conditions, or other information you may find useful.
 You can use the attributes to search for particular files; some attributes can be used by the probe level analysis software during analysis. You can use templates to manage the attributes used for a particular experiment (see Template and User Attributes on page 17 for more information).
- Array Information: Information about the array(s) used with the sample. More than one array can be associated with the sample. This is useful for tracking replicates; in addition, it can be used to simplify tracking data for multi-chip arrays.

Each array is assigned an array name during registration. The array name is used to identify the DAT, CEL, and CHP data files that are generated during analysis.
Tracking Files with GUIDs

A GUID, or Globally Unique Identifier, is assigned to each file for tracking (Figure 2.7). GUIDs are numbers generated to track a file that will be unique to that file.
During Sample registration the Sample file is assigned a Sample File GUID; in addition an Array GUID is provided for every array name entered. Every data file (DAT, CEL, and CHP) generated for an array will contain the Array GUID for the array, as well as the GUIDs for each of its parent data files. The GUIDs enable you to trace the lineage of any data file independent of the file name.

Data Files

A set of data files is produced for each array in the Sample file (Figure 2.6). The data files include:

- **Image (DAT) file**, below
- **Intensity (CEL) Data Files on page 21**
- **Probe Analysis (CHP) Files on page 21**

Each file is assigned a GUID, or Globally Unique Identifier, to be used in tracking the relationships between Sample files, physical arrays, and data files. See *Tracking Files with GUIDs on page 20* for more information.

Image (DAT) file

The DAT file contains pixel intensity values collected from an Affymetrix scanner, along with the gridding information used during feature extraction. When a DAT file is regrounded, the underlying data used by previously generated CEL files is changed. A new GUID is assigned to the regrounded DAT file, breaking the link to any previously generated CEL files. The CEL files will be linked with the array via array GUIDs, but not to the regrounded DAT file. CEL files generated after regrounding will be linked to the new DAT file via the DAT file GUID and to the array by the array GUID.

Intensity (CEL) Data Files

The CEL file stores the results of the intensity calculations on the pixel values of the DAT file. This includes an intensity value, standard deviation of the intensity, the number of pixels used to calculate the intensity value, a flag to indicate an outlier as calculated by the algorithm and a user defined flag indicating the feature should be excluded from future analysis. This data is used by the CHP writer software to extract the actual data of interest.

JPG Files

JPEG files are a copy of the DAT file in a standard image file format; they provide an image file with a reduced file size for QC inspection, archiving, and publication.

Probe Analysis (CHP) Files

These files, which have file extensions ending in CHP, contain the probe analysis data for the array. They are produced by the Analysis Application software and contain the actual data of interest (SNP calls, expression data, etc., depending upon the array type).

Other File Types

Audit and Log files track the tasks performed by different software components.

Audit Files

An Audit file is an XML file that tracks the processing of each physical array processed by AGCC. An Audit file is produced for each physical array and tracks all the processing steps that were performed on the array, including multiple scanings and regridding. The audit file has the same root name as the physical array. See *Viewing Audit Files on page 44*.
Log Files
Log files are produced by different AGCC components. The logs provide a record of the tasks performed by different components, such as the migration tools and the installer. These log files may provide useful information for troubleshooting problems. See Appendix E, Log Files Generated by AGCC on page 327 for more information.

Data Organization in AGCC
To use AGCC, you need to understand the structures and tools the software provides for organizing your data during and after generation.

This section describes:
- Folders on page 22
- Projects on page 24
- Data Organization Tools in AGCC on page 24
- AGCC Network Functionality on page 25

Folders
AGCC uses the Windows file folders on your hard drive to organize your data; A folder must be designated as an AGCC data root, or must be a subfolder of a designated AGCC data root, for the files in that folder to be tracked by AGCC (Figure 2.8).

Figure 2.8 Organization of files in AGCC

Windows® File Folder (not associated with AGCC)
C:\Command Console\Data Root 1 (on user’s computer)
 Sample File X
 Subfolder 1 [Project A]
 Sample File A1
 Sample File A2
 SubFolder 2 (not associated with project)
 Sample File F1
 C:\Command Console\Data Root 2 (on user’s computer)
 Subfolder 1 [Project C]
 Sample File C1
\sharename\share\Network Data Root (on network storage)
 Subfolder 1 [Project D]
 Sample File D1

Windows File Folders
These are folders that are on your hard drive, but have not been assigned to an AGCC Data Root, either directly or by a parent/child relationship.
These file folders are not searched by the Indexer and the files in them are not displayed in the AGCC Portal. You can copy AGCC files to a system folder using different AGCC Portal functions, which is useful for sharing data with other users.

Data Roots and Subfolders

A Data Root is a folder that has been specified for Command Console data. Data roots are searched by the Indexer and the files in them are listed in the AGCC Portal.

> **NOTE:** On instrument control workstations, the default data root has to be on the local drive and cannot be a USB or an external networked drive.

A default data root is created when the software is installed. You can assign other folders as data roots, too. A data root can be on the computer running AGCC, or on a network data storage computer connected with a Windows network.

A data root on a local drive is indicated as a local drive path: C:\Command Console\Data for example.

Data roots on networked computers are specified using Universal Naming Convention (UNC) paths as \server\share\filepath.

A Subfolder is a child folder created within a data root. The Subfolder and its files are also searched by the indexer and listed in the AGCC Portal.

For information about setting the data root, see *Managing Data Roots on page 54*.

For information about using a data root on a different computer on a Windows network, see *Appendix A, Network Functionality for AGCC on Windows XP or Windows 7 on page 301*.

The data roots and subfolders and their contents are displayed in the Folder view (see *Folder View on page 29*).

File and Folder Security

You can use the Windows Sharing and Security settings to control access to your data when using network functionality. AGCC supports setting permissions at the folder level, not the file level, even though the Windows settings can be set at the file level. You can change the settings for Sharing, permissions, and security for a selected file, but you need to be very careful about setting permissions when using AGCC; you could lock yourself out of your own data or deny access to other people if the permissions are set incorrectly. Work with your IT department for help in setting the permissions.

For more information, see *Appendix B, Windows Sharing and Security Issues on page 315*.

Default Folders

A Default folder is a data root or subfolder that has been set as a destination folder for files produced when certain operations are performed:

- Sample and data files produced when performing Drop and Scan.
- Data files for an array that is registered to a Sample file located on network data storage.

For more information, see:

- *Specifying a Default Folder on page 67*
- *Drop and Scan on page 186*
- *Drop and Scan with Array Plates on page 231*
- *AGCC Network Functionality on page 25*
- *Running Scans on Systems with Network Data Storage on page 160*
Projects

A project is a label assigned to a Data Root or Subfolder; the project label can be used to organize Sample and data files. If you assign a project name to a Data Root or Subfolder, all the Sample and data files in that folder will be assigned that project name. Also, any child subfolders of that project folder will be assigned the project name.

Projects have the following characteristics:

- Any Data Root or Subfolder can be a project.
- All subfolders in a project folder are automatically a part of that project.
- One folder can be a member of more than one project.
- Folders in different locations can be in the same project.

After assigning a project name to a data root or subfolder, any Sample file placed in that data root or subfolder is assigned to the project. You can then use the project label to:

- Display file lists grouped by project
- Search on data limited to a project
- Create a spreadsheet listing the Sample (.ARR) files assigned to the project with their attributes. The list can be reviewed as a summary of the project information or used to edit the Sample (.ARR) file content using Batch Edit.

You can also assign a sample file to a project during its creation. This places the Sample File and the associated data files in the folder assigned to the project name.

You can move files between projects using Windows Explorer.

For more information, see Using Projects to Organize Data on page 57.

Data Organization Tools in AGCC

The data organization tools in AGCC enable you to:

- View the files in data roots and folders
- Create and manage projects
- Search for files of interest by various attributes, including sample attributes entered during registration.
- Add and remove Data Roots
- Upload data to a data root

In this version of AGCC, you will need to use Windows Explorer for certain data management functions. See Chapter 3, *AGCC Portal and Data Organization on page 26* for more information on the data organization tools.

Affymetrix Services

The Affymetrix Services run behind the scenes on your computer:

- AGCCAuditLogger
- AGCCIndexer.
- AGCCTaskManager
- AGCCWebServer

If using network functionality, you may need to change the configuration of these services. See *Configuring AGCC Services on page 307*.

Displaying AGCCWebServer Status

For AGCC on XP, the AGCCWebServer enables the display of the AGCC Portal pages; it must be running to use AGCC Portal. By default, it starts when the computer boots up.

Normal operation is indicated by an icon in the right side of the Taskbar (Figure 2.10).

AGCC Network Functionality

When AGCC is installed on a computer running Windows XP or Windows 7 and connected to a Windows network, it provides additional functionality with options for running the array processing workflow and organizing data. These functions include:

- Consolidating the data from multiple AGCC workstations on network data storage.
- Performing different parts of the workflow for an array on different workstations while consolidating the data on a single workstation.

You may need to change the settings for some Affymetrix Services to use the network functionality. See *Appendix A, Network Functionality for AGCC on Windows XP or Windows 7 on page 301* for more information.
AGCC Portal and Data Organization

The data organization functions enable you to organize your data and copy files from place to place. The functions are described in:

- Starting AGCC Portal, below
- Viewing the Data Organization on page 28
- Searching for Files on page 45
- Managing Data Roots on page 54
- Using Projects to Organize Data on page 57
- Generating Reports and Summaries on page 63
- Copying Files on page 64
- Specifying a Default Folder on page 67
- Uploading Data to Network Data Storage on page 68

NOTE: AGCC provides limited functionality for moving files around. You can use Windows Explorer for some functions.

Disabling Fast User Switching

Fast user switching is an option in Windows that allows multiple active sessions on the console. This option must be disabled on computers with AGCC Portal installed, because it may cause a user to take actions under a different user ID and ultimately lock the first user from their data.

Refer to your Windows XP or Windows 7 documentation on how to disable Fast User Switching.

Starting AGCC Portal

1. To start AGCC Portal:
 1. Open the AGCC Launcher.
 2. Click on the AGCC Portal icon.

 The Home page appears (Figure 3.1).
AGCC Portal Home Page

The AGCC Home page (Figure 3.1) is your entry point to the AGCC Portal functions.

The Home page has the following sections:

- Search Functions (see Searching for Files on page 45)
- Menu Bar (see below)
- Page content with a frame around it.
The Menu bar at the top of the page has the following menus:

Home page

Provides links to:
- AGCC Home Page
- Affymetrix.com web site
- Affymetrix.com/Support web site
- NetAffx Analysis Center

Data

Provides links to:
- Folder View (see page 29).
- Project View (see page 42).
- Data Management functions (see Chapter 3, *AGCC Portal and Data Organization* on page 26).

Samples

Provides links to:
- Sample Registration functions (see Chapter 4, *Creating and Editing Sample (ARR) Files on page 78*).

Administration

Provides links to:
- Project functions (see *Using Projects to Organize Data on page 57*).
- Template functions (see *Working with Templates on page 292*).
- Workflow Monitor (see *Tracking the Workflow on page 299*).

Help

Provides links to the online help and other resources.

The Basic Search Function (Figure 3.2) enables you to search for files by:
- Array Name
- Attribute Value
- File Name
- Project Name

Figure 3.2 Search controls

For more information about the search options, see *Searching for Files on page 45*.

Viewing the Data Organization

You have two different options for viewing the organization of data in AGCC Portal:

- The Folder View displays a list of all the Data Roots in the AGCC system, along with a list of the Sample, Data, and other files in a selected Data Root or Subfolder (see *Folder View on page 29*).
- The Project View displays the Sample and Data files associated with a selected project, showing parent and child relationships between the Sample and Data files (see *Project View on page 42*).
See *Data Organization in AGCC on page 22* for more information about the way data is organized in AGCC.

Windows Security issues can impact your ability to view files and data. See *Appendix B, Windows Sharing and Security Issues on page 315* for more information.

Folder View

The Folder View displays a list of all the Data Roots in the AGCC system, along with a list of the content of a selected data root or subfolder.

To use the Folder View:

- From the View menu, click **Folder View**.

 The Folder View appears (Figure 3.3).

The left side of the page displays the Folders list.

The right side displays the following items:

- Path to the selected folder
- Folder controls: used to open, add, and rename subfolders
- Display controls: used to control the display of attributes and file types
- File List with Select controls: used to select files and perform operations on the selected files

The data roots and project folders are displayed in the Folders list (see below). The contents of the data roots and project folders are displayed in the File list (see *File List on page 33*).

For a description of the file hierarchy used to organize AGCC files, see *Data Organization in AGCC on page 22*.

The page links enable you to go to additional pages of data.
Folders List

The Folders list (Figure 3.5) shows the data roots, folders, and projects used to organize data.

The Folders lists displays the folder names and project names for subfolders.
Click on a folder to display its contents in the File list (see below).
The Folders controls enable you to:
- Add a folder (see Adding Folders and Projects, below).
- Rename a folder (see Renaming Folders on page 31).
- Open a selected folder in Explorer (see Opening Folders in Explorer on page 32).

Note: You can add or rename a folder using Windows explorer in addition to the AGCC Portal functions.

Adding Folders and Projects

You can add a new subfolder in a selected data root or subfolder using the Add Folder button. You can optionally assign the folder to a project of the same name when you create the folder.
To add a new folder:

1. Select the data root in the Folders list in which you want the new folder to be created.
2. Click the **Add Subfolder** button in the Folder controls (Figure 3.6).

 ![Figure 3.6 Folder controls](image)

 The Add Subfolder page opens (Figure 3.7).

 ![Figure 3.7 Add Subfolder page with folder name entered](image)

3. Enter the new folder name in the box.
4. Select the **Make folder and create project with same name** checkbox to create a project in AGCC with the same name as the folder.
5. Click **Add Folder**.

 The Folder View page opens with the new folder and project displayed.

 ![Figure 3.8 New folder](image)

Renaming Folders

You can rename a folder using the Rename Folder link.
To rename a folder:

1. Select the folder to be renamed.
2. Click the Rename button in the Folders controls (Figure 3.6).
 The Rename Folder page opens (Figure 3.9).

3. Enter the new folder name in the box.
 Select the radio button if you want to change the project name, too.
4. Click Rename.
 The Folder View page opens with the renamed folder (Figure 3.10).

Opening Folders in Explorer

To open a folder in Explorer:

1. Select the folder to be opened.
2. Click the Open button in the Folders controls (Figure 3.6).
 An Explorer window opens displaying the contents of the folder. The AGCC Portal browser shrinks to make room for the window (Figure 3.11).
File List

The file list displays a list of the files and folders in the selected folder (Figure 3.12).

The Display controls, at the top, allow you to change the display of attributes and files. The select controls allow you to select files for various operations. The numbered links below the Select controls enable you to switch from page to page of the File list. They are displayed only if the number of files in the selected subfolder exceeds the display limit. By default the File list displays a table of files with the following columns:
Select Use the checkbox to select a file for different operations:

- Copy Selected Files (see Copying Files on page 64).
- Create Report from Sample files in List (see Copying Files on page 64).
- Change Probe Array Type (see Chapter 9, Changing The Probe Array Type on page 289).

See Selecting Files on page 35 for more information.

Placing your cursor over the Select checkbox displays the full path and file name in a popup:

<table>
<thead>
<tr>
<th>FileName</th>
<th>The name of the file or folder.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In some cases the file name is a link. Click on the link to open the following file types:</td>
</tr>
<tr>
<td></td>
<td>- Folder: displays the contents of the folder in the file list.</td>
</tr>
<tr>
<td></td>
<td>- Sample File: opens the Sample/Array Attributes page (see Detailed Sample Registration on page 81).</td>
</tr>
<tr>
<td></td>
<td>- Image file (.DAT) and Intensity File (CEL): opens the AGCC Viewer (see Chapter 8, Using the AGCC Viewer on page 238).</td>
</tr>
<tr>
<td></td>
<td>- Audit file (AUDIT): opens the Audit File Viewer (see Viewing Audit Files on page 44).</td>
</tr>
<tr>
<td></td>
<td>You cannot use the Action link to open the other file types displayed in the File list. These file types can be opened using a text editor (.AUDIT, .RPT, .GRD) or the AGCC Viewer (.CEL, .JPG).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Name</th>
<th>The name of the project that contains the file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Name</td>
<td>Name assigned to the array during registration.</td>
</tr>
<tr>
<td>Barcode</td>
<td>Barcode of probe array (may be Affymetrix or custom barcode).</td>
</tr>
<tr>
<td>Lot Number</td>
<td>Manufacturer’s lot number for the array (only displayed with Affymetrix barcodes).</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>Expiration date for the array (only displayed with Affymetrix barcodes).</td>
</tr>
<tr>
<td>Probe Array Type</td>
<td>Model number of probe array.</td>
</tr>
<tr>
<td>Date Modified</td>
<td>Last date the file was modified.</td>
</tr>
</tbody>
</table>

You can conceal some of these columns and display selected attributes in other columns. For information about displaying and concealing columns, see Selecting Attributes for the File List on page 35.

To sort the file list by any column:
- Click on the column header.

File Types
There are several different types of files in the File List:

- Sample files (.ARR)
- Image files (.DAT)
- Intensity Data Files (.CEL)
- Probe Analysis Files (.CHP)
Chapter 3 | AGCC Portal and Data Organization

- JPG files (.JPG)
- Audit Information files (.AUDIT)
- Grid Data files (.GRD)
- Project files (.Project)
- Report files (.RPT)

For more information about the different files, see *File Types in AGCC on page 19.*

See *Selecting File Types for Display on page 40* for more information about displaying different file types.

NOTE: Other file types, such as PARAM, may not be displayed in the list or the folders.

Selecting Files

You can use the checkboxes in the File list to select files for different operations:

- Copy Selected Files (see *Copying Files on page 64*).
- Create Report from Sample files in List (see *Generating Reports for Selected Sample Files on page 63*).
- Create Batch Edit file from Selected ARR Files in List (see *Creating the Batch Edit File on page 120*).
- Change Probe Array Type (see Chapter 9, *Changing The Probe Array Type on page 289*).

![Figure 3.13 Select Files controls](image)

The Select Files controls allow you to select files and operations. The number of displayed and selected files are also displayed.

To select files:

- Click the checkbox next to the file name; or
- Click the **Select All** button.
 - Click the **Unselect All** button to unselect selected files.

Selecting Attributes for the File List

You can add or delete attributes for display in the File List using the Folder View feature. The Folder view allows you to create and edit lists of attributes to be displayed, called views. You can then select a view for display to customize the attributes in the File list.

NOTE: Other file types, such as PARAM, may not be displayed in the list or the folders.

Selecting a Previously Created View

To select a previously created view:

- In the File controls, select a view from the View drop-down list (Figure 3.14).
Creating a New View

To add a new View:

1. Click the View Customize button (Figure 3.14).

 The Customize page opens (Figure 3.15).

 There are three steps in creating a new View:

 A. Entering a name for the view.
 B. Selecting the source of attributes.
 C. Selecting the attributes and saving the view.
2. Enter a name for the view in the New View Name box and click the **Add** button (Figure 3.16).

![Figure 3.16 New View Name](image)

Step 1: Create a new view (Optional)

New view name:

[Add]

The view name is displayed in the Select Existing View dropdown box (Figure 3.17).

![Figure 3.17 New view name in the Select Existing View dropdown box.](image)

Step 2: Select the view to modify

Select existing view: [New_View]

In this step, you select the sources of the attributes (Figure 3.18).

![Figure 3.18 Select Source controls](image)

Step 3: Select the source of attributes

Attributes Source

- Attributes From All Templates
- Attributes From Selected Templates
- Standard Fields
- User Attributes

You have several options for doing this:

- You can limit the display to attributes that are organized in templates.
- You can display user attributes which have been created by the user for individual sample files.
- If you want to use standard fields, you can display the fields from all templates, or display attributes from templates you select in the Attributes Source list.

3. Select the attributes options and templates

The selected attributes are displayed in the Available Attributes list (Figure 3.19).
The **Available Attributes** list displays the attributes (with template names) that are not being currently displayed.

The **Displayed Attributes** lists displays the attributes that are currently being displayed in the Folder view.

The File Name attribute is required and cannot be hidden.

4. Select and deselect the items you wish to display and conceal.
 You can double-click on an item in one of the lists to move it to the other list or click and drag it over.
 You can also use the center controls to add and remove attributes in groups.
 Select the Sorted checkbox to display the available attributes in alphabetical order.

5. After selecting the attributes, click the **Save** button.
 The Folder View is displayed with the newly created view selected in the View drop-down box (Figure 3.20).
Figure 3.20 New View added

![New View added](image1)

Figure 3.21 Selecting existing view to edit

![Selecting existing view to edit](image2)

Editing a View

To edit a created custom view:

1. Click the **View Customize** button.

 The Customize page opens.

2. Select the view you want to edit from the Select existing view dropdown box (Figure 3.21).

 You can click the **Delete** button to delete the selected view.

 Figure 3.22 Select the view to modify

 ![Select the view to modify](image3)

 The attributes in the view are displayed in the Select Attributes section (Figure 3.22).
3. Select templates and attributes as described in *Creating a New View* on page 36.

4. After you have selected and arranged the attributes, click **Save**.

 You can click **Cancel** to cancel the changes.

5. The View is displayed in the Folders list with the new attributes selected.

Selecting File Types for Display

The File Filter enables you to exclude or include particular file types in the File list. You can:

- Use a previously created filter
- Create a new file filter.
- Edit a previously created filter

To use a previously created filter:

- In the Filter controls, select the filter from the drop-down list.

To create a new file filter:

1. In the top of the File list, click the **File Filter Customize** button (Figure 3.24).
2. Enter a name for the new filter in the new Filter list.
3. Click Add.
 The new filter name appears in the Name box.
4. Enter the file types you wish to exclude or include in the Patterns box.
 Format: *.file extension, where * is a wildcard.
 Enter multiple file types separated by semicolons (;).
5. Select whether you want to exclude or include the specified file types.
6. Click Save.
 The Folder View appears with the edited filter selected.
 The displayed files are filtered.

To edit a file filter:
1. In the top of the File list, click the Customize button (Figure 3.23).
 The File Filters page appears (Figure 3.26).
2. Select the filter you wish to edit from the **Filter Name** drop-down list.

3. Enter the file types you wish to exclude or include in the Patterns box.
 - Format: *.file extension, where * is a wildcard.
 - Enter multiple file types separated by semicolons (;).

4. Select whether you want to exclude or include the specified file types.

5. Click **Save**.
 - The Folder view appears with the edited filter selected.
 - The displayed files are filtered.

Project View

The Project View displays the Sample and Data files associated with a selected project, showing parent and child relationships between the Sample and Data files:

- Array name(s)
- Image (DAT) file(s)
- Intensity Data (CEL) file(s)
- Probe Level Summarization (CHP) file(s)

The Project view also displays basic information about a selected file, and will allow you to open and view Sample, DAT, and CEL files.

To view the Sample and data files associated with a project:

1. From the View menu, select **Project View**.
 - The Project View pages opens.

2. Select a project from the Project list.
 - A list of the Sample files associated with that project is displayed (Figure 3.27).
 - You can expand the file structure by expanding and contracting nodes in the tree.
3. Click on a file to display more information about the file in the right side of the page. Different information is displayed for different files.

4. For certain files, you can click the Open button to display the file:
 - Sample files: Opens the Detailed Registration Page (see Detailed Sample Registration on page 81).
 - DAT and CEL files: Opens the AGCC Viewer (see Chapter 8, Using the AGCC Viewer on page 238).

Selecting Files
You can use the checkboxes in the Project data tree to select files for different operations:
- Copy Selected Files (see Copying Files on page 64).
- Create Report from Sample files in List (see Generating Reports for Selected Sample Files on page 63).
- Create Batch Edit file from Selected ARR Files in List (see Creating the Batch Edit File on page 120).
- Change Probe Array Type (see Chapter 9, Changing The Probe Array Type on page 289).
The Select Files controls allow you to select files and operations. The number of selected files are also displayed.

To select files:
1. Click the checkbox next to the file name; or
 - Click the **Select All** button.
 - Click the **Unselect All** button to unselect selected files.
 When you select a parent file, all its child files are also selected. If you only want to select the parent file, deselect its child files after selecting the parent file.
2. Select an operation from the Command to Run dropdown.

Viewing Audit Files

Audit files provide a record of the processing done to an array.

To open an audit file:
1. Click on the link in the File List
2. The Audit File page opens (Figure 3.30).

The Audit File displays information about the processing steps the array has gone through, including the instruments and computers used in processing.
Searching for Files

You have two options for locating files in AGCC:

- **Basic Search**, below
- **Advanced Search on page 46**

The results are displayed in the Search Results page (see *Search Results Page on page 53*).

NOTE: Windows Security issues have an impact on the search function. For more information, see Appendix B, *Windows Sharing and Security Issues on page 315*.

Basic Search

The Search Function (*Figure 3.31*) enables you to search for files by:

- Array Name
- Attribute Value

NOTE: Searching by Attribute Value returns any file with any attribute with a value that matches the search string. To search for a particular attribute, use the Advanced Search.

- File Name
- Project Name

![Figure 3.31 Search controls](Image)

To search for a file:

1. Select the search criteria from the **Search Files By** drop-down list.
2. Enter a search string in the text box.

 You can perform special searches by using the “*” symbol and “OR” operator
 - “*” Serves as a wild card function. Using `searchstring*` will return all arrays that contain an attribute that starts with the search string. Using `*searchstring` will return all arrays that contain an attribute that ends with the search string.
 - Using the “OR” operator between items (`searchstring1 OR searchstring2`) will return all arrays that contain an attribute that matches any of the search strings.

3. Click the **Search** button.

 Files or Projects that match the search string are displayed in the Search Results page (see *Search Results Page on page 53*).
Advanced Search

The Advanced search provides several ways to refine your search.

To use the Advanced Search:

1. Click **Advanced Search** in the Search controls.

 The Advanced Search page opens *(Figure 3.32)*.

![Figure 3.32 Advanced Search page](image)

You create a search in three steps:

- **Step 1**: *Specify Array Search Criteria* on page 46
- **Step 2**: *Specify Sample Attributes* on page 47
- **Step 3**: *Select Options* on page 51

Step 1: Specify Array Search Criteria

![Figure 3.33 Array Search Criteria](image)

This section enables you to search for arrays that match:

- Barcode
- Probe Array Type
- Array Names

2. Enter the criteria for the information you wish to find.
Step 2: Specify Sample Attributes

This section (Figure 3.34) enables you to specify attributes used to describe the sample and experiment. Depending upon how the search is set up, the search may return:

- Samples with any of the specified attributes.
- Samples that match all of the specified attributes.

Four things have to be selected or entered to specify an attribute:

- the attribute’s source (template name or user attribute)
- the attribute name
- the type of comparison
- the value for the attribute

When the Advanced Search page first opens, the sample attributes has three drop-down lists:

- Select Template
- Select Attribute
- Select Comparison

The Enter Value(s) box does not appear until you have selected a template and attribute.

To select an attribute:

3. Select a template or other option from the Select Template drop-down list.

NOTE: The Sample Attribute Conversion function may impact your selection of templates and attributes. For more information, see Sample Attributes Conversion on page 92.

The Select Template list displays a list of the templates used by the files in AGCC. You can also select:

- All attributes: allows you to perform a blanket search over every attribute in the Sample files, both from templates and from user attributes.

 See Performing an All Attributes Search on page 52 for more information.
- No Templates: allows you to select from user attributes, used in a Sample file but not included in a template.
4. After selecting the template, a list of attributes appears in the Select Attributes drop-down list (Figure 3.36).

5. Select the attribute you wish to search on.
 You can perform different types of comparisons for the search.
 If you select a numerical attribute, you can select from the following limits (Figure 3.37):
 - Equal to
 - Less than
 - Less than or equal to
 - Greater than
 - Between (displays two entry boxes for the range limits).
 - Any value
For date attributes, the comparisons are (Figure 3.38):

- Equal to today
- Within the last week
- On a specific date: (requires date value)
- Before date: (requires date value)
- After date: (requires date value)
- Between dates: (requires date value)
- Any value

For text string or SingleSelect attributes, the comparisons are (Figure 3.39):

- Equal to: exact match to the search string
- Contains: text string containing the search string
6. Select the appropriate comparison for the attribute.
 You can use comparisons with user attributes that have the data type specified, as well as sample attributes.

7. Enter a string for the attribute in the Enter Value(s) box.
 You can perform special searches by using the “*” symbol and “OR” operator when searching for Text attributes.
 “*” Serves as a wildcard function. Using searchstring* will return all arrays that contain an attribute that starts with the search string. Using *searchstring will return all arrays that contain an attribute that ends with the search string.
 Using the “OR” operator between items (searchstring1 OR searchstring2) will return all arrays that contain an attribute that matches any of the search strings.
 For date attributes, click on the Calendar icon and select the date from the calendar that appears (Figure 3.40).

8. Click the < and > buttons to display a different month.

9. Click the Add button to add another attribute and repeat Step 3 through Step 7.

9. Select how the searches will be combined:
 - Results must match ALL of the selected attributes.
 - Results can match ANY of the selected attributes.
 After you have finished specifying the attributes, you can select other options.
Step 3: Select Options

This section enables you to search for files that match other criteria:

Figure 3.41 Options for limiting search results

<table>
<thead>
<tr>
<th>Type of results to return</th>
<th>Limit results to the Projects</th>
<th>Only return files whose creation dates are</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARR</td>
<td>All Projects and Data Folders</td>
<td>Any value</td>
</tr>
<tr>
<td>CEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of results to return Specify one or more of the following types of files:
- ARR
- CEL
- ChP
- DAT

Limit results to the Projects Projects to be searched. Selecting none runs the search through all the files in the main data folder and in all the project folders. You can limit your search to one or more project folders using this box.

Creation Dates Date of file creation:
- Equal to today
- Within the last week
- On a specific date: (requires date value)
- Before date: (requires date value)
- After date: (requires date value)
- Between dates: (requires date value)
- Any value

Show results Limit on the number of results to be returned.

10. Select or enter the options for the information you wish to find.

You can select multiple items in the Type of Results and Projects list by holding down the Shift key and clicking on the items.

You can deselect a project by holding down the Ctrl key and clicking on the project.

For date attributes, click on the Calendar icon 🕒 and select the date from the calendar that appears (Figure 3.42).
11. Click Search.

The files that match the search criteria appear in the Search Results list. (Figure 3.43)

Performing an All Attributes Search

The All Attribute search allows you to search across all attributes of the following types:

- Date
- Number
- Text

If you use the All Attributes search, it will return any file that has any attribute with a value that matches the search string.
Search Results Page

The Search Results page lists the files that meet the criteria specified in your search (Figure 3.44).

Figure 3.44 Search Results list

You can:
- Change sort order of the list by clicking at the head of the column you wish to sort by.
- Change the attributes displayed in the list with the View controls (see Selecting Attributes for the File List on page 35).
- Use the Select controls to select files for various operations.
 Placing your cursor over the Select checkbox displays the full path and file name in a popup (Figure 3.45):

Figure 3.45 Popup showing path and name

Selecting Files

You can use the checkboxes in the Selected column to select files for different operations:
- Copying Selected Files to a different location (see Copying Files on page 64).
- Create Report from Sample files in List (see Generating Reports for Selected Sample Files on page 63).
 The Report can be used to review the file attributes.
- Create Batch Edit file from Selected ARR Files in List (see Creating the Batch Edit File on page 120)
- Change Probe Array Type (see Chapter 9, Changing The Probe Array Type on page 289).

Figure 3.46 Select Files controls

The Select Files controls allow you to select files and operations. The number of selected files are also displayed.
To select files:
1. Click the checkbox next to the file name; or
 Click the Select All button.
 Click the Unselect All button to unselect selected files.
2. Select an operation from the Command to Run dropdown.

Managing Data Roots

A data root is a folder used to contain data files for AGCC. The folder and files are displayed in the Folder View of Command Console®. A default data root at C:\Command_Console\Data is created during installation, but you can create additional data roots to help you organize data from different researchers or for other purposes.

For more information about data roots, see Folders on page 22.

You can:
- Create a data root (see Adding a Data Root, below)
- Remove a data root (see Removing a Data Root on page 56)

Adding a Data Root

To add a data root:
3. From the Data menu, select Data Roots → Add.
 The Add Data Roots page opens (Figure 3.47).
The Data Root page displays a list of the data roots currently assigned in AGCC and the folders that can be selected as data roots. Expand the tree to view and select child folders.

4. Select a folder for the new data root from the Data Root list; or

In the **Add a New Data Root** box, enter the full path name and the name of the new data root. Data roots on networked computers are specified using Universal Naming Convention (UNC) paths as `\server\share\filepath`.

IMPORTANT: To select a data root on a networked computer, you must configure the AGCC Services to permit access. See *Configuring AGCC Services* on page 307 for more information.

IMPORTANT: Please make sure that the data roots used in AGCC software on the instrument control workstations do not contain files that have non-Affymetrix file extensions (e.g., .DLL, .TMP, .CPP, .ASPX, .OUT, etc).

The folder cannot be:
- In the Windows directory
- In the Program Files directory
- In a root directory

5. Click **Add**.

The list displays the new data root (Figure 3.48).
The new data root is also visible in the Folder View (see Folder View on page 29).

Removing a Data Root

To remove a data root:

1. From the Data menu, select **Data Roots → Remove**.

 The Remove Data Root page opens (Figure 3.49).

The Remove Data Root page displays a list of the data roots available to AGCC.

NOTE: You cannot delete the default data root. You must assign default status to another data root before deleting the current default data root. See Specifying a Default Folder on page 67 for more information.

2. Select the radio button next to the data root.

3. Click **Remove**.
Using Projects to Organize Data

A project is a label assigned to a Data Root or Subfolder that can be used to organize Sample and data files. If you assign a project name to a Data Root or Subfolder, all the Sample and data files in that folder will be assigned that project name. Also, any child subfolders of that project folder will be assigned the project name. A project name can be assigned to multiple Data Roots or Subfolders, in order to group data on multiple folders together.

Project folders enable you to organize your data. After organizing data into projects you can:

- Display data grouped by project
- Search on data limited to a project
- Create a spreadsheet listing the Sample (.ARR) files assigned to the project. The list can be reviewed as a summary of the project information or used to edit the Sample (.ARR) file content using Batch Edit.

The Projects functions provide tools for:

- **Managing Projects**
- **Copying Files**

Managing Projects

To open the Manage Projects page:

- From the Administration menu, select Project → Manage.

The Manage Projects page opens (Figure 3.50).

IMPORTANT: Deleting a data root in AGCC does not delete the actual root directory or data files in Windows.

The page has a folders list on the left side, similar to the one in the Folder View page. The work area on the right has controls that allow you to:

- Create a new Subfolder.
- Assign a project name to a folder.
- Designate a primary folder for a project.
- Add or delete folders for a project.

Creating a Project

The Create New Project controls of the Manage Projects page allows you to:

- Assign a previously created Data Root or Subfolder to a Project
- Create a Subfolder and assign it to a project.

Figure 3.51 Create New Project controls

<table>
<thead>
<tr>
<th>Create New Project</th>
<th>Create new project</th>
<th>in the 'C:\Command_Console\Data' folder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Create subfolder</td>
<td>in the 'C:\Command_Console\Data' folder</td>
</tr>
</tbody>
</table>

TIP: You can also create a folder and project using the Create Folder function in Folder View (see *Adding Folders and Projects* on page 30).

To create a Subfolder and Project:

1. From the Administration menu, select **Project → Manage**.
 The Project Management page opens (Figure 3.52).
2. In the Folders tree, select the Data Root or Subfolder where you want to create the new Subfolder and Project (Figure 3.53).

3. Enter a Subfolder name in the Create Subfolder box (Figure 3.54) and click the Create Subfolder button.

NOTE: The name of the location folder will be entered automatically in the Create New Project box. Ignore this if you do not wish to use the same name for folder and project.
The new Subfolder appears in the Folders list (Figure 3.55).

4. Select the folder that you created in the previous steps in the Folder list.
 The folder name appears in the New Project box and the path to the folder appears. (Figure 3.56).

5. Enter a new project name, if desired, and click Create.
 The selected subfolder has a project label assigned to it. (Figure 3.57).
You can also assign a project label to a previously created subfolder by:

1. Selecting the subfolder in the Folders list
2. Entering a Project name in the New Project box and clicking the Create New Project button.

Managing Existing Projects

The Manage Existing Projects controls of the Manage Projects page (Figure 3.58) allows you to:

- Add an existing subfolder to a previously created project.
- Specify a Primary Subfolder for a project with multiple subfolders. A Primary subfolder functions as the default folder for the project. The Primary Subfolder cannot be deleted.
- Delete subfolders that are not Primary Subfolders.
- Delete a selected Project.

NOTE: This deletes only the Project label. The subfolders and files are not deleted.
To add an existing Subfolder to a previously created project:
1. Select the project from the Select Project dropdown list (Figure 3.58).
2. Select the Subfolder to be added in the Folders list.

NOTE: You can assign a Subfolder to more than one project.

The Add button appears with the path of the selected folder (Figure 3.59).

3. Click the **Add** button.

The selected Subfolder is added to the Projects Folder list (Figure 3.60).

Projects with multiple folders will have one folder specified as the primary folder. When files are assigned to the project during registration, they will be placed in the Primary folder for the project. The Primary folder cannot be removed from the project; you must designate another folder as the Primary or delete the entire project.

To designate a primary subfolder for a project:
1. Select the project from the Select Project Dropdown.
 The folders associated with the project are displayed in the Project Folder list (Figure 3.60).
2. For the folder you wish to designate as primary, click the Primary checkbox.
 The folder will be designated as the primary folder.
To remove Subfolders from a project:

1. Select the project from the Select Project Dropdown.
 The folders associated with the project are displayed in the Project Folder list (Figure 3.60).
2. Click the red X for the folder you wish to remove.

 NOTE: You cannot remove primary folders from the project using this method. Designate another folder as primary or delete the entire project, as described above.

 The subfolder will be removed from the project.

To delete a Project:

1. Select the project from the Select Project Dropdown.
 The folders associated with the project are displayed in the Project Folder list (Figure 3.60).
2. Click the Delete Project Name button.
 The project is deleted.

 NOTE: This deletes only the Project label. The subfolders and files are not deleted.

Generating Reports and Summaries

You can generate
- Reports for selected Sample Files, below
- A summary report file for the Sample files in a Project (see page 64)

Generating Reports for Selected Sample Files

You can generate a report file in a tab-delimited text format on selected Sample (ARR) files, which you can then view in a text editor or spreadsheet program.

You can also create a Batch Edit file for the selected sample (ARR) file. See Creating the Batch Edit File on page 120 for more information.

To generate a report for selected Sample files:

1. Select the Sample files from the:
 - Folder view page (see page 35)
 - Project view page (see page 43)
 - Search Results page (see page 53)
2. From the Command to Select dropdown (Figure 3.61), select Create Report from Selected Arr files link.
The report is created and the Summary page opens (Figure 3.62).

The page displays the location and file name of the report.
The report file can be viewed in a text editor or spreadsheet program.

Generating a Project Summary

You can create a report for the Sample (.ARR) files in a project.
The report can be used to review data.

To generate a Project Summary:
1. From the Administration menu, select **Projects → Summary**.
 The Generate Summary page opens.
2. Select the project you wish a report on from the drop-down list.
3. Click the **Create** button.
 The Summary page displays the name and location of the generated report.
The report file can be viewed in a text editor or spreadsheet program.

Copying Files

The Copy Files function enables you to select files and place a copy of those files to a new location. You can select:
- The Sample (.ARR) files in a project.
- Selected Sample (.ARR) files in:
 - Folder view page (see page 35)
 - Project view page (see page 43)
Projects are described in *Using Projects to Organize Data on page 57* of this manual.

NOTE: You do not have to copy files to a Data Root or subfolder; you can copy to any folder you have access to.

To copy files associated with a project:

1. From the Data menu, select **Copy Project**.

 The Copy files page opens *(Figure 3.63)*.

2. Select a destination folder from the Folders List, or

Enter the path to the destination folder in the Destinations box.

3. Select a project for copying from the Projects drop-down.

4. Select the file types you wish to copy:

 - Sample (ARR)
 - Audit
 - Image (DAT)
 - Intensity Data (CEL)
 - Probe level summarization (CHP)

 The file types are described in *File Types on page 34*.
5. Click Copy.
 The progress of the transfer is displayed in the Status window.

![Figure 3.64 Status window](image)

<table>
<thead>
<tr>
<th>Status from current or last attempted copy</th>
<th>Status from current or last attempted copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Complete</td>
<td>Status Complete</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>C:\Command\ConsoleData\VOOS1\Sample ARR</td>
<td>H:\Command\ConsoleData\New Project\Sample ARR</td>
</tr>
</tbody>
</table>

To copy selected files:

1. Select the Sample files from the:
 - Folder view page (see page 35)
 - Project view page (see page 43)
 - Search Results page (see page 53)

2. From the Command to Select dropdown, select Create Report from Arr files in List link.
 The Copy files page opens (Figure 3.65).

![Figure 3.65 Copy Files page](image)
3. Select a destination folder from the Folders List, or
 Enter the path to the destination folder in the Destinations box.
4. Review the Files to be copied list.
5. Click **Copy**.

 The progress of the transfer is displayed in the Status window (Figure 3.66).

Specifying a Default Folder

The Default folder is used as a destination folder for data when:
- Performing Drop and Scan.
- Scanning data for an array for a Sample (.ARR) file located on another computer, connected through a network.

See Appendix A, *Network Functionality for AGCC on Windows XP or Windows 7 on page 301* for more information on the Network functionality of AGCC.

When AGCC is installed, `C:\Command_Console\Data\Default` is used for the default folder. You can change the Default folder if you wish.

To change the Default folder:

1. From the Data menu, select **Default Folder**.

 The Set Default Folder page appears (Figure 3.67).
A Folder list is displayed on the left side of the page. The right side displays the current default folder and the selection controls.

2. Select a folder from the Folder list. You can select a data root or a subfolder.

3. Click Set.

The selected folder is used for the Default folder.

Uploading Data to Network Data Storage

You can create Sample (.ARR) files on any data root your AGCC system has access to, including network data storage. However, you cannot create DAT files over a network connection to network data storage; instead, the DAT files are created in the Default folder on the local computer. This is done to protect the DAT file from any problems related to the networks, so that an array can always be scanned successfully even when a network is unreliable.

The Upload Data function can be used to automatically transfer DAT, CEL, and other files from the Default folder to the network data storage where the Sample (.ARR) file is located. Upload Data is useful when you wish to consolidate data from different workstation computers onto one network data storage site.

The use of the Data Upload function is explained in:

- *Uploading Data Manually on page 71*
- *Scheduling AutoUploads on page 73*

The Overview section below provides information on why you may wish to use the Upload Data function.

NOTE: This option is available only when you have a network data root enabled. For more information, see Appendix A, Network Functionality for AGCC on Windows XP or Windows 7 on page 301.
Overview

You can create Sample (.ARR) files on any data root your AGCC system has access to, including network data storage (Figure 3.68).

However, you cannot create DAT files over a network connection to network data storage; instead, the DAT files are created in the Default folder on the Scanner Workstation computer (Figure 3.69). This is done to protect the DAT file from any problems related to the networks, so that an array can always be scanned successfully even when a network is unreliable.
The Upload Data function can be used to automatically transfer DAT and CEL files from the Default folder to the network data storage where the Sample (.ARR) file is located (Figure 3.70). Upload Data is useful when you wish to consolidate data from different workstation computers onto one network data storage site.
Uploading Data Manually

To upload data:

1. From the Data menu, select **Upload Data**.

 The Upload Data page is displayed (**Figure 3.71**).

Figure 3.70 transferring the DAT and CEL files using the AGCC Upload Data function

Transferring the DAT and CEL Data with AGCC Data Upload

Finally we move the DAT and CEL file to the same folder as the ARR file on the Network Data Root using the AGCC Upload Data function.

TIP: If the network connection goes down during the scan, you may end up with duplicate Sample (ARR) files for a single physical array. You can use the Affymetrix Reconnector to merge these duplicate files and restore the proper parent-child connections between files. See the *Affymetrix Reconnector User’s Guide* for more information.
A new page opens with info on the files to be uploaded (Figure 3.72).

The page displays a list of data files in the Default folder that are associated with a Sample (ARR) file on a network drive:

From Current location and file name.
To The file destination (location of the Sample (.ARR) file).
Status The current status of the move.

2. Click **Start Uploading** to upload the files to the locations.
A notice informs you that the move is in progress (Figure 3.73).
The status of the move is displayed in the lower part of the page, with a list of the files that have been transferred and their status.

When the upload is finished, the status is displayed in the page (Figure 3.73).

The uploaded files can be seen in their new location (Figure 3.74).

Scheduling AutoUploads

The Data Uploader Scheduler enables you to run the Data Upload automatically on a schedule you determine.

To schedule auto-uploads:

1. Click the Data Uploader icon in the Affymetrix Launcher.

The AGCC Data Uploader Scheduler window opens (Figure 3.75).
The dialog box has three tabs:
- Task
- Schedule
- Settings

The Task tab allows you to set the options for the task itself.

2. In the Run box, enter the path to the file to be run as a scheduled task. Use quotation marks around the task path if the path includes spaces.

3. Enter information in the Start In box on the location of the folder with the task or other necessary files.

4. Use the Comments box for notes about the task.

5. In the Run As box, enter the user account for running the scheduled task.
 Specify user account (must be the same account used for the AGCC Services, with permissions on both the computer and the remote storage location).

6. Enter the password for the user account:
 - Click Set Password.
 The Set Password dialog box opens (Figure 3.76).

 B. Enter and confirm the password for the user account and click OK in the Set Password dialog box.

7. Select other options:
- Run only if logged on.
- Enabled (scheduled task runs at specified time).

8. Click the **Schedule** tab to set up the schedule for the upload. The default setting is to run the upload function daily at 2 AM.

The Schedule tab (Figure 3.77) provides options for setting the schedule.

9. Select a period for performing the task from the Schedule Task drop-down. You can schedule the task to run:
 - Daily
 - Weekly
 - Monthly
 - Once
 - At System Startup
 - At Logon
 - When idle

The options for task schedule change with the time period (Figure 3.78).

Click **Advanced Options** (Figure 3.79) to set Start/Stop dates and to specify how often to repeat the task.

10. Enter a time for the task to start in the Start time box.
11. You can enter multiple schedules:
 A. Select the Show Multiple Schedules checkbox.
 A schedule drop-down list appears at the top of the tab screen with New and Delete buttons.
 B. Click New to create a new schedule.
 C. Set the schedule using the Schedule Task controls, as described in steps 9 and 10.
 D. Click Delete to delete a scheduled task.
12. Click the Settings tab.
The Settings tab (Figure 3.81) enables you to set options for the upload:

- **Scheduled Task Completed**: Use these to set the options for a task that is only running once.

- **Idle Time**: Use these to start the task only if the computer has been idle for a specified period of time.

- **Power Management**: Use these to set the options for power management if using a laptop.

13. Click **OK** when you have finished setting the task, schedule, and settings options.

The task is scheduled and will run at the set times.

When the scheduled time comes, the Upload Utility window (Figure 3.82) appears on your desktop and shows the progress of the upload.

You can set up the AGCC Email Configuration Editor to notify you when the Upload Utility runs or if problems arise. See **Appendix D, Configuring E-mail for the Notification Options on page 325** for more information.
Creating and Editing Sample (ARR) Files

Sample Registration is the first step in the recommended array processing workflow (Figure 4.1).

For information on scanning arrays without registering them first, see Drop and Scan on page 186.

This chapter describes the following options for creating Sample files and registering arrays:

- Detailed Sample Registration on page 81
- Quick Sample Registration on page 97
- Batch Registration on page 101
- Sample Prep Plate Registration on page 108
- GeneTitan Array Plate Registration on page 111

You can also edit previously created Sample (.ARR) files

- Editing Files and Copying Attributes on page 87
- Adding a Barcode to a Sample file on page 117
- Batch Editing on page 120

For information on selecting a Sample Registration method, see Registering Samples and Arrays on page 16.

See Introduction to Sample Registration for an introduction to the types of information that can be collected in a Sample file.
Introduction to Sample Registration

To get the most out of AGCC, you need to understand the types of information that are collected in the Sample file, as described below:

- **Information in the Sample File**, below
- **Characters Allowed in AGCC on page 80**

Information in the Sample File

In AGCC, the samples are the beginning of the data chain for a given experiment. The sample information is stored in a Sample file with an ARR extension.

The Sample (ARR) file collects two types of information:

- **Sample Attributes**: information that you can use to interpret the experimental data. It can include information about the sample itself, the experimental conditions, or other information you may find useful.
- **Array Information**: Information about the array(s) used with the sample. More than one array can be associated with the sample. This might be useful for making sure that data from products that contain more than one array remain related or to help describe experiments that use replicates.

Sample Attributes

There are two types of attributes in AGCC:

- **Template Attributes**, which have the attribute name, data type and other information specified in a template.

 For more information on creating and managing templates, see *Working with Templates on page 292*.

- **User Attributes**, which are created individually during registration.

Each attribute in a template is assigned one of the following data types:

- **Text**: Text string
- **Number**: Integer or floating point number
- **Date**: Calendar data
- **SingleSelect**: Presents a list of items for the user to choose

User Attributes may be Text, Number, or Date data types.

Beta Versions of AGCC included other deprecated data types which are no longer available, such as:

- **Integer**
- **Floating Point**
- **MultiSelect**

The data type determines the type of value that can be entered, and the types of comparisons that can be performed during an Advanced Search.

Array Information

The Sample file also contains information about the array(s) used with the sample. More than one array can be associated with the sample. This is useful for tracking replicates; in addition, it can be used to simplify tracking data for multi-chip arrays, such as 500K arrays.

Each array is assigned an array name during registration. The array name is used to identify the DAT, CEL, and CHP data files that are generated during analysis (*Figure 4.2*).
The array information includes:

- Array Name
- Probe Array Type
- Barcode (can be Affymetrix barcode or custom barcode provided by the user)

Characters Allowed in AGCC

You can only use a certain set of characters in AGCC Sample File names, Folder Names, Project Names, and Array Names:

These names can contain:

- Basic Latin letters (A-Z, a-z)
- Digits (0-9)
- Spaces
- The following set of punctuation marks: ! # $ % & ' () + , - . ; = @ [] ^ _ ` { } ~

These names cannot use the following characters: \ / : * ? " < > |

International characters are not allowed.

Sample attribute names can contain:

- Numbers
- Letters
- International characters
- The following set of punctuation marks: ! # $ % & ' () + , - ; = [] ^ _ \ / ` ~

Sample Attribute names cannot contain any of the following characters: { } : * ? " < > |

Sample attribute values of Text type can contain any characters.
Detailed Sample Registration

The Detailed Sample Registration page enables you to register a single sample and its associated cartridge arrays, along with any sample attribute you wish to include. You can use templates to determine which attributes need to be entered for registration, and you can add user attributes that are unique to that sample.

You cannot register a GeneTitan® System array plate using the Detailed Sample Registration (use GeneTitan Array Plate Registration, described on page 111). You can add a cartridge array to a previously created array plate Sample file with the editing functions of the Detailed Sample Registration. For more information see Creating a New Sample File, below.

The page can also be used for:

- Editing previously created Sample files
- Renaming a Sample file and/or the Array name
- Copying the attribute data over to a new file
- Adding physical arrays to an existing Sample (Arr) file

For more information, see Editing Files and Copying Attributes on page 87.

If you have edited or deleted templates and attributes, you may need to change the attributes in a Sample file when you try to edit it. For more information, see Sample Attributes Conversion on page 92.

Creating a New Sample File

To create a new Sample File:

1. From the Samples menu, select Register.

 The Detailed Sample Registration page opens (Figure 4.3).
The Detailed Sample Registration page has four sections:
- Project and File Name (at the top of the page)
- Sample Attributes from Templates
- Additional Sample Attributes
- Arrays list

2. Select a Project from the drop-down list (optional) (Figure 4.4).
3. Enter a name in the Sample File Name box (Figure 4.4).

The Sample Attributes from Templates section displays a list of the attributes in the Default template when the page is first opened.

TIP: See *Managing Default Templates on page 298* for more information about selecting or changing the default templates.

You can:
- Enter attribute values for the Default template (see Step 6 on page 83).
- Add and remove templates with additional attributes (optional—see Step 4, below).

4. To add Templates, use one of the following options:
 - Select the template from the drop-down list and click **Select** (Figure 4.6); or
 - Use the following steps:
 1) Click **Options**.
 The Template Select page opens (Figure 4.7).
The page displays a list of the available templates on the left side. The right side displays a list of the attributes in the selected templates.

2) Select the template(s) you wish to use.

3) Review the attributes in those templates in the Sample Attribute list.

4) Click Select to add selected templates to the Sample (.ARR) File.

The Detailed Sample Registration page returns with the attributes in the selected template(s) displayed (Figure 4.8).

Click Cancel to return to the Detailed Sample Registration page without adding templates.

5. To delete a selected template and all its attributes:
 - Click the red x at the top of the template’s attribute list (Figure 4.8).

6. To enter values for the Template Attributes:
 A. Enter values for the text, numerical, and date attributes.
 B. Select values from the drop down lists for the SingleSelect attributes (Figure 4.9).
7. Add user-defined attributes to the Sample by using the Additional Sample Attributes list:
 A. Click **Add** under the Additional Sample Attributes list. An empty line appears in the list (Figure 4.10).

 ![Figure 4.9 Entering values for the sample attributes](image)

 ![Figure 4.10 Additional Sample Attributes list after adding new field](image)

 B. Enter the attribute name and value.
 C. Select an attribute type for the user attribute:
 - Text: text string
 - Number: Floating point or Integer
 - Date: Calendar data

 The attribute type determines the sorts of comparisons you can perform during an advanced search. For more information, see:
 - Sample Attributes on page 79
 - Advanced Search on page 46
 D. Repeat to add more attributes.

 The Arrays list (Figure 4.11) enables you to assign an array or set of arrays to the Sample (.ARR) files.

 ![Figure 4.11 Arrays list](image)
You can include the following information on the array(s):

- Barcode (optional)
- Array Type
- Array Name

To assign an array to the Sample (.ARR) file:

8. Enter the barcode (optional):
 Enter the barcode using the keyboard; or
 A. Click in the Barcode field.
 B. Use the barcode reader to scan in the barcode on the array (Figure 4.12).

![Figure 4.12 Reading the array barcode](image)

The reader reads and sends the barcode to the Barcode field.

NOTE: You can use custom barcodes to register an array in Detailed Sample Registration.

The array’s lot number and expiration date are displayed below the barcode (Affymetrix barcodes only).

Probe Array Position is an attribute for the GeneTitan® System array plates and is not applicable to cartridge arrays.

9. Select the array type.

NOTE: If you are using Affymetrix barcodes, the array type will be selected automatically after the barcode is entered. If you are using custom barcodes, you will need to select the array type manually.

The **Derive array names from sample names** checkbox is selected by default and an array name is created by linking:

- The Sample file name entered in the first set of steps
- The array type
- Incremental numbers added if necessary to distinguish arrays
10. If you wish to enter a different array name:

 A. Deselect Derive array names from sample names checkbox.

 B. Enter the name in the Array Name column.

To register additional arrays:

11. Click Add Array.

 An empty line appears in the list (Figure 4.14).

 The line enables you to enter data on an array.

12. After you have entered arrays, click Save.

 A notice that the Sample file has been successfully saved appears in a dialog box (Figure 4.15).
Editing Files and Copying Attributes

You can use the Detailed Sample Registration to:

- Edit data in the Sample (.ARR) file
- Rename the Sample (.ARR) file
- Change the Array name in the Sample file
- Copy attributes over to a new file

To open the Detailed Sample Registration page for a Sample file:

- Click the Sample file link in the Folder View or Search Results pages.
- While displaying information about a Sample file in the Project view, click the Open button.

If there are template and attribute discrepancies, the Sample Attributes Conversion page will open. See Sample Attributes Conversion on page 92 for more information about what you should do.

There are additional controls in the page when you have opened a previously created Sample file (Figure 4.16).

The Rename button allows you to change the name of the Sample file or array.

The Save As button copies the sample attribute and array type information over to a new Detailed Registration page which can be used to create a new file.

If you have made changes in a template used for the array file since creating the array file, you will see a notice and the Update button at the top of the Detailed Sample Registration page.
Click the **Update** button to review the differences between the attributes and to correct the problem. See *Sample Attributes Conversion on page 92* for more information.

Editing the Data in a Sample File

To edit the sample attributes in a Sample file:

1. Open the Sample file in the Detailed Sample Registration page.
2. Edit the attributes as desired.
3. Click the **Save** button.

 A notice that the Sample file has been successfully saved appears in a dialog box (Figure 4.18).

Renaming the Sample File

IMPORTANT: If the Derive Array Name from Sample File Name checkbox is selected, changing the Sample file name will result in changing the names of all the data files associated with the Sample file.

To rename a Sample (.ARR) file:

1. Open the file in the Detailed Sample Registration page.
2. Click the **Rename** button next to the Sample File Name at the top of the page.
3. The Sample name can now be edited, and the Save button at the bottom of the page is replaced by the Rename button (Figure 4.19).
4. Enter a new name for the Sample file.
5. Make other changes as necessary.
6. Click the **Rename** button at the bottom of the page.

 The Rename Sample File page opens with list of the DAT and CEL files that will be renamed (Figure 4.20).
7. Click **Yes** to rename the sample file.
 The page displays a list of the files with the new names *(Figure 4.21)*.

![Figure 4.21 Rename Sample File page with notice of changed data files](image)

Changing the Array Name(s) for a Sample File

Changing the array name for a sample file results in renaming all the data files associated with the array. This can be done while editing or renaming a file.

To rename the array name(s) for a Sample file:

1. Open the Sample file in the Detailed Sample Registration page.
2. Deselect the **Derive array names from sample file name** checkbox.
3. Click in the Array name column of the array you wish to rename.
 The Rename Notice appears *(Figure 4.22)*.

![Figure 4.22 Rename notice](image)

4. Click **OK** and edit the Array Name(s).
5. Click **Rename** or **Save** in the Detailed Sample Registration page.
 The Rename Arrays page opens with a list of the files that will be renamed.
6. Click **Yes** to rename the arrays and the data files.

The page displays a list of the files with the new names (**Figure 4.24**).

Copying File Data Over to New File

To copy file data over to a new Sample (.ARR) file:

1. Open file in Detailed Sample Registration page.
2. Click the **Save As** button by the Sample File Name box.

 The Sample File Name becomes editable and the Barcode information for the arrays is erased.

 The **Save As** button is not available for GeneTitan® System sample files.
3. Enter a name for the new Sample file.
4. Edit the Sample Attribute information if desired.
5. Enter new Array Type and Barcode information.
6. Click the **Save** button.

 The Sample File Saved notice appears (**Figure 4.25**).
Sample Attributes Conversion

You may see the Sample Attributes Conversion page (*Figure 4.26*) when you try to open a Sample file for editing.

![Sample Attributes Conversion page](image)

The Sample Attributes Conversion page appears when there is a discrepancy between the properties of an attribute in the Sample file and the properties of the attribute as defined in the current template. Attribute conversion may be necessary if any of the following changes have been made in a template:

- The attribute has been deleted from the template.
- The entire template has been deleted from AGCC.
- The data type for the attribute in the template is different from the data type in the Sample file.

The page displays the attributes with discrepancies and the conversion that will be applied to correct the discrepancy. Depending upon the type of discrepancy, the attribute will either:

- Be converted to a user attribute, with Text type.
- Have its attribute type changed to match the template.

To apply the conversions:

1. Review the conversions in the Original Attribute and Converted Attribute lists (*Figure 4.27*).
 The details are described in:
Deletion of Attribute or Template on page 93
Change in Attribute Type on page 94

2. Click Yes in the Sample Attributes Conversion page.
 The Detailed Sample Registration page opens with the Sample file displayed.
 The converted attributes will be displayed in the Detailed Sample Registration page, but the
 conversions will not be applied to the Sample file until you:
3. Click Save in the Detailed Sample Registration file.
 The changes will be applied to the Sample file.

The attribute conversion may affect how you search for Sample files using that particular attribute in the
Advanced search page. The sections below describe this in more detail.

For more information about templates and data types, see:
Sample Attributes on page 79
Working with Templates on page 292.

Deletion of Attribute or Template
If the attribute has been removed from the template, or if the entire template has been deleted, the attribute
in the Sample file will be converted to a user-defined Sample attribute (Figure 4.28).

This is indicated by the blank cell in the Template column for the converted attribute. The new user
attribute name will use the original attribute name with the original template name in square brackets to
indicate the source, as in the example
Disease Status [Sept_Template].
In case of a name conflict, the new user attribute will have an underscore-number (_1) added to the
attribute name:
Disease Status_1 [Sept_Template].
The user attribute will be listed in the No_Template attribute list in the Select Template dropdown list of the Advanced Search page (Figure 4.29).

If other Sample files still have the original template attribute, the template will be listed in the Select Templates list (Figure 4.30).

When doing an advanced search, if you want to find Sample files having the previous attribute type and the current attribute type, you will need to select both attributes in the Select attributes section (Figure 4.31).

For more information about performing searches, see Advanced Search on page 46.

Change in Attribute Type

Each attribute in a template is assigned to one of the following data types:

- Text: Text string
Number: Integer or floating point number
Date: Calendar data
SingleSelect: Presents a list of items for the user to choose

Beta Versions of AGCC included other data types which are no longer available, such as:

- Integer
- Floating Point
- MultiSelect

The data type determines the type of value that can be entered, and the types of comparisons that can be performed during an Advanced Search.

In this case, the results of the Attribute conversion depends upon the original attribute data type and the new attribute data type in the template.

- If the data types are compatible, the sample attribute will be converted to the new data type.
- The Sample Attributes Conversion page shows the old and new attribute data types (Figure 4.32).

If the data types are not compatible, the existing sample attribute will be added as a user attribute with the text data type.

This gives you the option of manually transferring the attribute value to the new template attribute and deleting the added user attribute.

The attributes are converted according to the rules in the table below.

Table 4.1 Conversion rules

<table>
<thead>
<tr>
<th>Old Sample File Data Type</th>
<th>New Template Attribute data type</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Number</td>
<td>The attribute is converted to user attribute.</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>The attribute is converted to user attribute.</td>
</tr>
<tr>
<td></td>
<td>SingleSelect</td>
<td>Attribute type converted if it matches to one of the items in the Selection list; otherwise the attribute is converted to user attribute.</td>
</tr>
<tr>
<td>Number</td>
<td>Text</td>
<td>Attribute type converted.</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>Attribute is converted to user attribute.</td>
</tr>
<tr>
<td></td>
<td>SingleSelect</td>
<td>Attribute is converted to user attribute.</td>
</tr>
</tbody>
</table>
Table 4.1 Conversion rules

<table>
<thead>
<tr>
<th>Old Sample File Data Type</th>
<th>New Template Attribute data type</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer and Float (no longer supported)</td>
<td>Number</td>
<td>Attribute type converted.</td>
</tr>
<tr>
<td></td>
<td>Text</td>
<td>Attribute type converted.</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>Attribute is converted to user attribute.</td>
</tr>
<tr>
<td></td>
<td>SingleSelect</td>
<td>Attribute is converted to user attribute.</td>
</tr>
<tr>
<td>Date</td>
<td>Text</td>
<td>Attribute type converted.</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>Attribute is converted to user attribute.</td>
</tr>
<tr>
<td></td>
<td>SingleSelect</td>
<td>Attribute is converted to user attribute.</td>
</tr>
<tr>
<td>SingleSelect</td>
<td>Text</td>
<td>Attribute type converted.</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>Attribute is converted to user attribute</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>Attribute is converted to user attribute</td>
</tr>
<tr>
<td>MultiSelect (no longer supported)</td>
<td>Text</td>
<td>Attribute type converted.</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>Attribute is converted to user attribute</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>Attribute is converted to user attribute</td>
</tr>
<tr>
<td></td>
<td>SingleSelect</td>
<td>Attribute is converted to user attribute</td>
</tr>
</tbody>
</table>

If the sample attribute has the data type changed, you will be able to find the attribute listed for the template in the Advanced Search screen (Figure 4.33).

If the attribute type is changed, but it remains in the template, the type of comparisons you can perform when searching for the attribute may change.

If converted to a user attribute, you will need to select the attribute from the No Template list in the Specify Sample Attributes section of the Advanced search (Figure 4.34).
If other Sample files still have the original attribute type, the attribute will be listed with both the old and new attribute types.

- The current attribute type in the template will have (current type) appended to the attribute name.
- The previous attribute type will have (previous type) appended to the attribute name.

When doing an advanced search, if you want to find Sample files with the previous attribute type and with the current attribute type, you will need to select both attributes in the Select attributes section (Figure 4.35).

For more information about performing searches, see Advanced Search on page 46.

Quick Sample Registration

The Quick Sample Registration enables you to create a set of Sample (ARR) files quickly with the following basic information for the Sample and Array:

- Probe Array Type
- Sample File Name and Array Name
- Project
- Barcode (optional)

Barcodes and sample attributes can be added later on using various editing options. For more information, see Adding a Barcode to a Sample file on page 117 and Batch Editing on page 120.

Both the Sample (.ARR) file and the array name will have the same value when using Quick Sample Registration. As an example, Sample1.ARR will have a physical array entry called Sample1.

You can create up to 48 Sample (.ARR) files (one AutoLoader carousel’s worth) at a time.
To create a set of Sample files with basic information:

1. From the Samples menu, select Quick Register.
 The Quick Sample Registration page opens (Figure 4.36).

2. Select the number of Sample (.ARR) files to create (Figure 4.37).
 You can add up to 48 arrays (an AutoLoader Carousel’s worth) during one quick registration operation.

NOTE: This function works best for registering arrays that are not part of a set. If your array set contains an A and B array then use Register or Batch Register to create sample files (ARR). You cannot use Quick Sample Registration to register GeneTitan® System Arrays.

Figure 4.36 Quick Sample Registration page

Figure 4.37 Drop-down list
Select a number from the drop-down list.
Blank array information lines appear in the Array list (Figure 4.38).

3. Set default values for all projects and/or probe array types (optional):

A. Select a project for the Project drop-down list.
B. Select a probe array type from the Probe Array Type drop-down list.
 The selected projects and probe arrays appear in the Array list (Figure 4.40).
You can change the values for any sample file later on. Selecting these options will not erase your previously entered values for probe array type and project.

4. (Optional) Enter the barcode using the keyboard; or
A. Click in the Barcode box.
B. Hold a GeneChip probe array in front of the barcode reader and squeeze the trigger for approximately four seconds until you hear a beep.

NOTE: You can use custom barcodes to register an array in Quick Sample Registration.

The array's lot number and expiration date are displayed below the barcode (Affymetrix barcodes only).

5. Enter a name for the Sample (.ARR) file and the Array name (used for the DAT, CEL, and CHP files).
6. Change the project or probe array type using the individual drop-down lists in the list.

7. To delete un-needed Sample (.ARR) files:
 A. Select the checkbox in the row.
 B. Click **Delete**.
8. Click **Next**.
 The Confirm Page opens (Figure 4.42).

 ![Figure 4.41 Sample names entered](image1)
 ![Figure 4.42 Confirm page](image2)

 The page displays the status of the sample files, indicating any errors that would prevent the registration.
 These errors can include
 - Same Sample (.ARR) file name
 - Missing file name
 - Other conflicts with previously registered arrays
 If errors appear for certain sample files, but other sample files are correct, you can click the **Corrections** link to return to the Quick Sample Registration page and correct the errors.

9. Click **Next** to register the valid sample (.ARR) files.
 The Finish page appears (Figure 4.43).
Click the **Edit** link to open the Sample file in the Detailed Sample Registration page (see *Detailed Sample Registration on page 81*).

You can use the links in the lower left corner of the screen to open the AGCC Scan Control or AGCC Fluidics Control software for further processing of the arrays.

Batch Registration

The batch registration features enable you to create multiple Sample (.ARR) files with different information, entering data using a specially formatted batch registration file.

Custom barcodes can be used in batch registration.

Batch registration involves three different sets of steps:

1. **Downloading an Empty Batch Registration File**, below.
2. Entering values for the arrays into the batch registration file.
 See *Entering Values in the Batch Registration File on page 103*.
3. Uploading the data in the batch registration file to create the Sample (.ARR) files.
 See *Uploading the Batch Registration File on page 106*.

Downloading an Empty Batch Registration File

The batch registration file is downloaded as an Excel workbook.

To download a batch registration file:

1. From the Samples menu, select **Batch Registration**.
 The Batch Sample Registration page opens ([Figure 4.44](#)).
2. Select the templates you wish to use by placing a check in the box next to their names (Figure 4.45).

You can display the attributes in the template by clicking on the template name.
3. Specify the number of samples. The maximum number of samples for which the downloaded worksheet works well is 1000.

4. Specify project and array type for the Sample files.

5. Click **Download** to download the Excel workbook.

 When using AGCC Portal, the Excel program displays the created workbook, which you can edit and save on your computer.

Entering Values in the Batch Registration File

The Batch Registration file can be used to enter data for several different Sample (.ARR) files at once. The downloaded batch registration file is an Excel workbook with three worksheets:

- Samples worksheet, where you enter the data
- General info worksheet (do not edit), where AGCC Portal stores information about Array types, projects, and file format
- Template Info worksheet (do not edit), where AGCC Portal stores information about the template attributes

NOTE: You cannot create .TSV files in AGCC 4.0, but you can use .TSV files created in previous versions of AGCC to perform batch registration. See Appendix F, *Using TSV Files for Batch Editing on page 329.*

![Figure 4.46 Batch Registration Workbook, Samples Worksheet](image)

The columns in the Samples worksheet have column headers that define the information on the Sample files, the physical array, and the attributes:

- **Sample File** The path to where the Sample file will be created. Can be used to place Sample files in project folders.
- **Project** The project that the Sample (.ARR) file will be assigned to.

NOTE: Specify either the Path or the Project for the files. Specifying both will return an error message.
Sample File Name Unique identifier for the Sample file.
Array Name Name assigned to the array during registration.
Probe Array Type Part number for the array(s).
Barcode Barcode on the array(s).
Attributes Additional information about the sample and experiment that you can use to interpret your results.

Path
The path needs to be associated with a data root. You can assign a set of sample files to a particular project if you select that project's folder in the Path field.

NOTE: Specify either the Path or the Project for the files. Specifying both will return an error message.

Project
Specifying a project for the Sample file will determine the folder the Sample file is created in. You can select the project from a drop-down list (Figure 4.47).

Sample File Name
Enter the name assigned to the Sample file that will be created.

Array Name, Array Type, and Barcode
If you are using Excel, you can select the probe array type from a drop-down list (Figure 4.48).

You can also enter multiple array information for a single sample file.
NOTE: You can use custom barcodes to register an array in Batch Registration.

To enter multiple arrays:

1. Enter the sample file information (File path, project, and file name) on a separate line of the worksheet for each array you wish to use.
2. Enter a different array name for each array for the sample.
3. Select the array type from the Probe Array Type list.
4. Enter the array barcodes in the appropriate lines.
5. Make sure that the attributes are the same for all sample entries.

Figure 4.49 Worksheet with multiple arrays entered for samples

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sample File Path</td>
<td>Project</td>
<td>X_Sample_01</td>
<td>X_Sample_01</td>
<td>Probe Array Type</td>
<td>Barcode</td>
<td>gender</td>
<td>TextA:SingleSelect</td>
</tr>
<tr>
<td>2</td>
<td>scsf</td>
<td>X_Sample_01</td>
<td>X_Sample_01</td>
<td>HG-U133A</td>
<td>A</td>
<td>M</td>
<td>34</td>
<td>Brain</td>
</tr>
<tr>
<td>3</td>
<td>scsf</td>
<td>X_Sample_01</td>
<td>X_Sample_01</td>
<td>HG-U133A</td>
<td>A</td>
<td>M</td>
<td>34</td>
<td>Brain</td>
</tr>
<tr>
<td>4</td>
<td>scsf</td>
<td>X_Sample_02</td>
<td>X_Sample_02</td>
<td>HG-U133B</td>
<td>B</td>
<td>M</td>
<td>36</td>
<td>Liver</td>
</tr>
<tr>
<td>5</td>
<td>scsf</td>
<td>X_Sample_02</td>
<td>X_Sample_02</td>
<td>HG-U133B</td>
<td>B</td>
<td>M</td>
<td>36</td>
<td>Liver</td>
</tr>
<tr>
<td>6</td>
<td>scsf</td>
<td>X_Sample_03</td>
<td>X_Sample_03</td>
<td>HG-U133A</td>
<td>A</td>
<td>F</td>
<td>44</td>
<td>Kidney</td>
</tr>
<tr>
<td>7</td>
<td>scsf</td>
<td>X_Sample_03</td>
<td>X_Sample_03</td>
<td>HG-U133A</td>
<td>A</td>
<td>F</td>
<td>44</td>
<td>Kidney</td>
</tr>
</tbody>
</table>

Attributes

Enter the values for the attributes in the appropriate columns.

You can select the value for a SingleSelect attribute from a drop-down list (Figure 4.50).

Figure 4.50 Selecting the value for a SingleSelect attribute

AGCC uses two types of attributes for Batch Registration:

- **Template Attributes**: Attributes that have been defined in a template. When you select templates for the downloaded batch registration file, the array attributes in those templates will be included as headings in the batch registration file.
- **User Attributes**: Attributes that you add in the Batch Register file. You create a user attribute by entering the attribute name and other characteristics in the column header, and then entering attribute values in the appropriate cells.
Attributes need to have the following characteristics defined:

- **AttributeName**
- **TemplateName** (if any; not used for User Attributes)
- **DataType**
- **Required status, if any**

The column headings are in the format:

- **Header format for Template Attribute:**

 AttributeName:TemplateName:AttributeType:RequiredStatus

- **Header format for User Attribute:**

 AttributeName:*:AttributeType

Uploading the Batch Registration File

To upload the Batch Registration File:

1. Enter the file path and name in the box (Figure 4.52); or

 Click **Browse** to open the Choose File dialog box (Figure 4.53).
Select the Batch Registration file and click **Open**. The file and its path is displayed in the box.

2. Select the **Allow Custom Barcodes** checkbox to use barcodes that are not provided by Affymetrix.

3. Click **Upload**.

 If there are problems with the workbook, an error notification page appears (Figure 4.54).

 The error messages indicate problems such as bad barcodes, problems with registering multiple arrays on a sample, etc.

 - Click **Cancel** to cancel the registration and fix the problems; or
 - Click **Save** to register the valid records.

 If the upload doesn’t have a problem the Folders View page appears with the newly created folders.
Sample Prep Plate Registration

Sample Prep Plate Registration provides a convenient way to register samples and cartridge arrays for up to two 96-well plates by using an Excel workbook.

To perform Sample Prep Plate Registration for a target prep plate:

1. **Download the Sample Prep Plate Registration File**, below
2. **Enter Data in the Workbook on page 108**
3. Upload the Excel file with data into AGCC.

Download the Sample Prep Plate Registration File

To download the Sample Prep Plate Registration file:

1. From the **Samples** menu, select **Sample Prep Plate Registration**.
 The Sample Prep Plate Registration page appears (**Figure 4.55**).

2. Click **Download** to create a blank Sample Prep Plate Registration file.
 The Excel program displays the created workbook, which you can edit and save on your computer.

Enter Data in the Workbook

To enter data for the Sample Prep Plate Registration file:

- Enter a sample (.ARR) file name and Affymetrix GeneChip barcode for each well position you are analyzing using Excel or text-editing software.

The blank Sample Prep Plate Registration file (**Figure 4.56**) is an Excel workbook with two tabs, to enable use with arrays that require two prep plates.

The worksheet rows are marked A through H, corresponding to the plate rows.

The worksheet columns are marked 1 through 12, corresponding to the plate columns.
For each well position, enter the Sample name for the Sample (.ARR) and the barcode for the probe array.

Upload the Data for the Files

1. From the **Samples** menu, select **Sample Prep Plate Registration**. The Sample Prep Plate Registration page appears.
2. Enter the path or click **Browse** to select the plate registration file.
3. Select a project for the Sample (.ARR) files (optional).
4. Enter plate IDs if registering samples for two plates. The Array names will be based on the Sample Name entered in the worksheet, concatenated with the plate ID, if any, and the Well position as indicated by their position in the worksheet.
5. Click **Upload**. The Confirm page appears (Figure 4.57).
Chapter 4 | Creating and Editing Sample (ARR) Files

The page displays a list of the Sample (ARR) files created for the plate, along with Sample name, barcodes, and array names.

Error messages are displayed if there is a problem. These errors must be corrected before finishing the registration.

If there are any errors:

A. Click **Cancel**

B. Check the plate worksheet.

C. Proceed with the upload again.

6. Click **Next**.

The Finish page opens (Figure 4.58).
Click **Create Summary Spreadsheet for Batch Edit** to open the Summary page and create a workbook summary of the Sample files that can be used for batch editing the Sample (ARR) files.

GeneTitan Array Plate Registration

GeneTitan Array Plate Registration provides a convenient way to register samples and plate arrays for an Array Plate by using an Excel workbook.

A 384 or 96 array plate can be used. A 96 array plate (Figure 4.59) may contain 16, 24, or 96 arrays. Allow for increased automation and processing times for large array counts.

The array plate has a barcode for tracking. Each individual array on the plate is identified by its row and column. For example, the circled array in the figure below is array D05.
There are three sets of steps:

- Downloading the GeneTitan Array Plate Workbook, below.
- Filling out the Workbook on page 113.
- Uploading the Workbook on page 115.

Downloading the GeneTitan Array Plate Workbook

To download the Excel Workbook:

1. From the Samples menu, select GeneTitan Array Plate Sample Registration.

 The GeneTitan Array Plate Sample Registration page appears (Figure 4.61).
2. Select the templates you wish to use by placing a check in the box next to their names (Figure 4.62).

You can display the attributes in the template by clicking on the template name.

3. Specify the GeneTitan Array Plate type and the project for the Sample files (required).

4. Click **Download** to download the file.

 The Excel program displays the created workbook, which you can edit and save on your computer.

Filling out the Workbook

The Batch Registration file can be used to enter data for all of the plate arrays on an array plate in one operation.

The downloaded workbook has three worksheets:

- **Samples worksheet**, where you enter the data
- **General info worksheet** (do not edit), where AGCC Portal stores information about Array types, projects, and file format
- Template Info worksheet (do not edit), where AGCC Portal stores information about the template attributes

Figure 4.63 Excel file for Batch GeneTitan Array Plate Registration

<table>
<thead>
<tr>
<th>Sample File Path</th>
<th>Project</th>
<th>Plate Type</th>
<th>Probe Array Type</th>
<th>Probe Array Position</th>
<th>Barcode</th>
<th>Sample File Name</th>
<th>Array Name</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Sample worksheet has columns with headers that define the property being entered. Some properties define the sample and data files file and the physical array:

Sample File The path to where the Sample file will be created. Can be used to place Sample files in project folders.

Project The project that the Sample (.ARR) file will be assigned to.

NOTE: Specify either the Path or the Project for the files. Specifying both will return an error message.

Plate Type Model of array plate.

Probe Array Type The array type on the plate.

Probe Array Position Column and row position for the plate array.

Barcode Plate barcode: can be entered when you upload the batch registration file.

Sample File Name Name to be used for the Sample (ARR) file.

Array Name Name to be used for the array plate and for all the data files (DAT, CEL, and CHP)

Attributes Additional information about the sample and experiment that you can use to interpret your results.
Path
The path needs to be associated with a data root. You can assign a set of sample files to a particular project if you select that project’s folder in the Path field.

NOTE: Specify either the Path or the Project for the files. Specifying both will return an error message.

Project
Specifying a project for the Sample file will determine the folder the Sample file is created in.
If you are using Excel, you can select the project from a drop-down list (Figure 4.47).

Plate Type, Probe Array Type, Probe Array Position
These items specify the array plate type, the plate array type, and the array plate position. They are automatically filled out when you create the plate batch workbook file.

File Names
Enter the name assigned to the Sample file that will be created.

Barcode
This is the array plate barcode; if you enter a barcode into the A05 probe array position barcode cell, the same barcode is copied automatically into all of the other rows.

Sample File and Array Name
Enter the names to be used for:
- The Sample (ARR) file.
- The Array plate and for all the data files (DAT, CEL, and CHP) for the array on the Array Plate.

Attributes
Enter the values for the attributes in the appropriate columns. See Attributes on page 105 for more information.

Uploading the Workbook

To upload the workbook:
1. From the Samples menu, select GeneTitan Array Plate Registration.
 The GeneTitan Array Plate Sample Registration page appears (Figure 4.61).
2. Enter the file path and name in the Registration file box (Figure 4.65); or
Click **Browse** to open the Choose File dialog box (Figure 4.66).

- Select the array plate registration file and click **Open** in the Choose File dialog box.
 The file and its path is displayed in the Registration file box.

3. Enter the plate barcode if it was not entered into the workbook.

4. Click **Upload**.
 If there are problems, the Errors page appears.

- Click **Cancel** to correct problems before trying the upload.

IF there are no problems, the Confirm Batch Sample Registration page opens (Figure 4.68).
5. Click **Save** to register the valid records.

The page displays a message that the Batch Sample Registration is complete (Figure 4.69).

![Figure 4.69 Confirmation page, upload successful](image)

Adding a Barcode to a Sample file

You may not have the barcode available when the Sample file is first created; if so, you can add it later using the Add Barcode page.

NOTE: The Add Barcode page can only be used to add one barcode at a time. The Batch Edit workbooks can be used to add barcodes to multiple sample files or multiple barcodes to one sample file in a single operation (see *Batch Editing on page 120*).

The Add Barcode page cannot be used to add a barcode for a Array Plate. Array Plate barcodes must be provided at the time of registration.

To add a barcode to a Sample file:

1. From the Samples menu, click **Add Barcode**.

The Add Barcode page opens (Figure 4.70).
2. Enter the barcode:
 Enter the barcode using the keyboard; or
 A. Click in the Barcode field.
 B. Use the barcode reader to scan in the barcode on the array.
 The reader reads and sends the barcode to the Barcode field.

3. Click **Search Arrays**.
 A list of Array names for that type of array that need a barcode appears in the Array list (Figure 4.71).
4. Select the checkbox for the array that corresponds to the array barcode.

TIP: You can use the View drop-down box and Customize button to add or delete attributes for display in the Array list. See *Selecting Attributes for the File List* on page 35 for more information.

5. Click **Assign Barcode**.

 If it is successful, the result page is displayed ([Figure 4.72](#)).

 If the assignment was unsuccessful, the Add Barcode page is displayed with an error message.
Batch Editing

Batch Edit enables you to make edits to a set of previously created Sample (.ARR) files.

NOTE: Batch edit cannot be used to create new Sample (.ARR) files. Use the various Sample Registration functions described in this chapter to create new files.

NOTE: Batch edit cannot be used to change file or array names. Use the editing functions of the Detailed Sample Registration page to do this. See Editing Files and Copying Attributes on page 87 for more information.

Using Batch Edit involves three sets of steps:

1. Create a batch edit file listing the files you wish to edit, using the Project view, Folder, Search Results view, or use a previously created batch registration Excel file.
2. Edit the batch edit file, adding and changing attributes as needed.
3. Upload the batch edit file using the Batch Edit Upload function.

Creating the Batch Edit File

You can create a batch edit file for:

- The Sample (.ARR) files in a project or folder (see Generating a Project Summary on page 64).
- Selected Sample (.ARR) files (see below)
To generate a Batch Edit File for selected Sample files:

1. Select the Sample files from the:
 - Folder view page
 - Project view page
 - Search Results page

2. From the Command to Select dropdown, select the **Create Batch Edit Files from Selected Arr files** link.
 The Summary page opens (Figure 4.73).

 ![Figure 4.73 Summary page](image)

 A list of Sample (ARR) files that will be in the summary appears.

3. Select a template to be used in editing (optional).

4. Click **Create**.
 The Excel program displays the created workbook (Figure 4.74), which you can edit and save on your computer.

You can also edit a previously created Batch Registration file, adding attributes as needed. See **Entering Values in the Batch Registration File on page 103** for more information about editing Batch Registration files.
Editing the Batch Edit File

The downloaded Excel workbook has three worksheets:

- Samples worksheet
- General info worksheet (do not edit)
- Template Info worksheet (do not edit)

The header row of the Samples worksheet includes special properties that define the file and the physical array:

- **Sample File Path** The path to where the Sample file is located.
- **Sample File Name** Unique identifier for the Sample file.
- **Array Name** Name assigned to the array during registration.
- **Probe Array Type** Part number for the array(s).
- **Barcode** Barcode on the array(s)
- **Attributes** Additional information about the sample and experiment that you can use to interpret your results.

The General Information Worksheet and the Template Info Worksheet (both marked **Do Not Edit**) contain information used by AGCC in processing the data in the workbook.

Make the changes in the summary file to edit the files. You can:

- Enter attribute values
- Add user attributes with values
- Delete attributes from the Sample (ARR) file

NOTE: You can not make changes to file names or array names using this feature. Do not make changes to file names in the downloaded file.

The following items in the workbook must not be edited.

- **Sample File Path** Path and Sample (.ARR) file name
- **Array Name** Array name assigned to the files
The first row of the workbook defines the data to be edited. Each additional row contains the information for one Sample (.ARR) file.

Multiple Arrays for a Single Sample (ARR) File

If you have multiple arrays assigned to a single sample file, each array will be on a separate line of the worksheet.

You cannot enter different attributes values for the same attributes for arrays associated with the same Sample (ARR) file.

Editing the Barcode

You can only add a barcode to a Sample (ARR) file that does not already have one. You cannot edit a barcode that is already assigned to the Sample (ARR) file.

- If you assign an Affymetrix barcode to a Sample file, you will see a warning message if the probe array type specified in the barcode doesn’t match the probe array type previously assigned to the array.
- You can assign a custom barcode to a Sample file.

Editing Attributes

Enter the values for the attributes in the appropriate columns. See *Attributes* on page 105 for more information.

Uploading the Edited File

After editing the batch edit file, you need to upload the data into AGCC.

To upload the data:

1. From the Samples menu, select *Batch Edit Upload*.
 The Batch Edit Attribute page opens (Figure 4.76).
2. Enter the file path and name in the box; or
 Click **Browse** to open the Choose File dialog box (Figure 4.77).

 ![Choose File window](image)

 - Select the Batch Registration or Batch Edit file and click **Open**.
 The file and its path is displayed in the box.

3. In the Upload Spreadsheet section, click on **Upload**.
 If there is a problem with the workbook, the Confirm Batch Edit Sample Files page (Figure 4.78) presents a warning notice.
The error messages indicate problems such as bad barcodes, problems with registering multiple arrays on a sample, etc.

If there are no problems, the Confirm Batch Edit page opens (Figure 4.79).

4. Click **Save** to edit the valid records.

 The page displays a message that the batch edit is complete.
Controlling the Fluidics Station 450

Hybridizing and processing the array is the next step after sample registration in the recommended array processing workflow (Figure 5.1).

Instrument Care

- Disconnect the power cord of Fluidics Station before replacing fuses.
- Use a surge protector on the power line to the fluidics station.
- The fluidics station should be positioned on a sturdy, level bench away from extremes in temperature and away from moving air.

NOTE: You must have the required fluidics protocols installed before using the FS450. For more information, see Installing and Updating Protocols on page 147.
The AGCC Fluidics Control software is used to control the FS450 Fluidics Station. A workstation with AGCC Fluidics Control software and a Sealevel card installed can control up to eight different fluidics stations.

NOTE: Before you use the fluidics station, check the fluidics station configuration and prime the fluidics station with appropriate buffer. For more information, read this chapter.

This chapter describes how to use the AGCC Fluidics Control software in the following sections:

- AGCC Fluidics Control Software, below
- Running Protocols on page 131
- Filtering the Sample File List on page 140
- Adding a Label to a Station and Modules on page 145
- Installing and Updating Protocols on page 147
- Editing Protocols on page 152

Refer to the GeneChip® Fluidics Station User’s Guide for a description of the instrument itself.

You can set things up to provide email notification when protocols are complete or problems develop. See Appendix D, Configuring E-mail for the Notification Options on page 325 for more information.

AGCC Fluidics Control Software

The AGCC Fluidics Control software is used to control the FS450 Fluidics Station. The software is introduced in the following sections:

- Starting, below
- Master Controls on page 128
- Station Controls on page 129
- Status Window on page 130

Starting

To start the AGCC Fluidics control software:

- In the AGCC Launcher, click the AGCC Fluidics Control Icon; or
- Click the Microsoft® Windows® Start button and select Programs → Affymetrix → Command Console → AGCC Fluidics Control...

The AGCC Fluidics Control window opens (Figure 5.2).
The AGCC Fluidics Control window has the following components:

Menu Bar
Provides access to Fluidics Control functions.

Tool Bar
Provides quick access to frequently used functions.

Master/Station controls
Click the tabs to switch between:
- **Master Controls** (see below): Use to select a single protocol to run on multiple stations and/or modules.
- **Station Controls** (see page 129): Use to select different protocols to run on different modules in a station.

Status Window
Displays list of arrays in process with information on their status. See Status Window on page 130.

Status Bar
Displays information about the status of the Fluidics station and the fluidics run in progress.

To hide or display the toolbar:
- From the View menu, select **Toolbar → Standard Toolbar**.

To add text labels to the toolbar buttons:
- From the View menu, select **Toolbar → Text Labels**.

To hide or display the Status Bar:
- From the View menu, select **Status Bar**.

Master Controls
The Master controls (Figure 5.3) enable you to select a single protocol to run on any or all stations and modules attached controlled by the workstation.
The Master controls are used for:
- Running a Priming or Maintenance Protocol on Multiple Stations and Modules on page 131.
- Running a Fluidics Protocol on Multiple Stations on page 133

Station Controls

The Station controls enable you to select arrays and protocols for each module of a selected station (Figure 5.4). The controls enable you to:
- Select a particular array for processing using the following parameters:
 - Sample File Name
 - Array Name
 - Probe Array type
- Select a specific protocol for the array.

Each module has its own set of controls (Figure 5.5).
The use of the module controls is described in *Running Fluidics on Individual Stations* on page 135.

Status Window

The Status Window (Figure 5.6) displays:

- **Station**: Fluidics station in operation.
- **Module**: Module in operation.
- **Array Name**: Name assigned to the array.
- **Probe Array Type**
- **Barcode ID**: The last five digits of the probe array barcode.
- **User**: Person who created the Sample file.
- **Protocol**: Protocol used for the fluidics run.
Running Protocols

You have several different options for selecting and running protocols with AGCC Fluidics Control, depending upon:

- The type of protocol you wish to run.
- Whether you wish to run it on multiple stations.
- Whether you wish to select different protocols for different modules in a station.

This section describes how to select and run protocols using AGCC Fluidics Control:

- Running a Priming or Maintenance Protocol on Multiple Stations and Modules on page 131
- Running a Fluidics Protocol on Multiple Stations on page 133
- Running Fluidics on Individual Stations on page 135
- Resuming a Fluidics Protocol on page 139
- Bypassing Steps in a Fluidics Protocol on page 139

Running a Priming or Maintenance Protocol on Multiple Stations and Modules

Priming fills the fluidics station lines with wash buffers and deionized water. The GeneChip® Fluidics Station must be primed before it can be used to run assay protocols. Prime the fluidics station when:

- The fluidics station is first turned on.
- A wash solution is changed.
- The fluidics station is to be used again after a shutdown has been performed.
- A module LCD window informs you that the module is not primed.

This section explains how to run priming or maintenance protocols on multiple stations and modules.

To prime the fluidics station:

1. Start the AGCC Fluidics Control Software.
 - See AGCC Fluidics Control Software on page 127.
 - The software opens with the Master controls displayed.
2. In the Select Protocols section of the Master controls, select List Maintenance Protocols Only.
3. Select *Prime_450* from the **Protocol** drop-down list; or
 Select the maintenance protocol you wish to run.
4. Select the modules to be primed (Figure 5.8).

 ![Figure 5.7 Selecting the Prime protocol](image)

 Figure 5.7 Selecting the Prime protocol

 ![Figure 5.8 Selecting the stations and modules for priming](image)

 Figure 5.8 Selecting the stations and modules for priming

5. Click **Copy to Selected Modules**.
6. The selected protocol (*Prime_450*) is applied to the selected stations and modules.
7. Fill the intake buffer reservoirs A and B with the appropriate priming buffer. (Refer to the appropriate GeneChip® probe array package insert).
8. Empty the waste bottle and fill the water reservoir with deionized water.
9. Load an empty, standard 1.5 mL microcentrifuge tube in the sample holder of each module to be primed.

10. Click the Run All button; or
 Select Start → Run All Modules Selected on Master Page.

11. Follow the prompts in the Status window (also shown in the module LCD window).
 The Status window and the module LCD window display the status of the procedure. The fluidics station is ready to use when priming is completed and Priming done, Ready appears in the module LCD window.

Running a Fluidics Protocol on Multiple Stations

You can run a selected protocol on any or all modules in the Fluidics stations attached to the workstation using the Master controls.

To select and run a fluidics protocol for a set of probe arrays:

1. Start the AGCC Fluidics Control Software.
 See AGCC Fluidics Control Software on page 127.
 The software opens with the Master controls displayed (Figure 5.9).

2. Select the array type from the Probe Array Type list (Figure 5.10).
IMPORTANT: The protocol that is displayed in the Protocol drop-down box after selecting the probe array type may or may not be the correct protocol for the array, depending upon the type of analysis being performed. To make sure the correct protocol is selected, follow the steps below.

3. Limit the protocols listed by selecting from the different options (Figure 5.11).

![Figure 5.11 Selecting options to filter the list of protocols](image)

To limit the protocols listed:

A. Select one of the following buttons:
 - List All Protocols
 - List Compatible Protocols Only (displays only protocols that can be used with the selected labeling kit):
 Select the appropriate checkbox:
 - GeneChip IVT Labeling Kit
 - GeneChip HWS Labeling Kit
 - List Custom Protocols Only (displays only protocols that have been edited or provided by the user)
 - List Maintenance Protocols Only (displays only maintenance protocols)

 Only the protocols that meet the selected requirements are displayed in the Protocol dropdown list.

4. Select the protocol from the Protocol drop-down list (Figure 5.12).

![Figure 5.12 Selecting protocols from the list](image)

IMPORTANT: The protocol that is displayed in the Protocol drop-down box after selecting the probe array type may or may not be the correct protocol for the array, depending upon the type of analysis being performed. To make sure the correct protocol is selected, select the correct options for filtering the protocol list as described above.

5. Select the modules to be run by:
- Selecting individual checkboxes for each module.
- Clicking the Station ID checkbox to select all modules for a particular station.
- Clicking **Check/Uncheck all Stations and Modules** to select/deselect every station and module.

Figure 5.13 Selecting stations and Modules

6. Click **Copy to Selected Modules**.
 The selected protocol is applied to the selected stations and modules.

7. Fill the intake buffer reservoirs A and B with the appropriate solutions (Refer to the appropriate GeneChip® probe array package insert).

8. Empty the waste bottle and fill the water reservoir with deionized water.

9. Click the **Run All** button or
 Select **Start → Run All Modules Selected on Master Page**.
 The Status window and the module LCD window display the status of the procedure.

10. After the protocol is finished, remove the probe array and inspect the probe array window for air bubbles.
 If air bubbles are present, reinsert the probe array into the fluidics station to automatically drain and refill the probe array with the last wash buffer used. (Refer to the appropriate GeneChip® probe array package insert.) If no bubbles are present, the probe array is ready to be scanned.

Running Fluidics on Individual Stations

You can also select a particular fluidics protocol on an individual station and module.

To **select and run a fluidics protocol on an individual station and module:**

1. Start the AGCC Fluidics Control Software.
 See *AGCC Fluidics Control Software on page 127*.
 The software opens with the Master controls displayed.

2. Click the tab for the station you wish to use (Figure 5.14).
The Station controls displays the module controls for the selected station. Each module control has the same functions (Figure 5.15).

3. Click the **Refresh** button to refresh the list of Sample files.
4. Click in the Barcode box and enter the barcode using the keyboard; or scan the barcode with an external barcode reader.
5. Press the **Tab** key.
 The following items are selected automatically if the barcode is valid:

Sample File name
Sample File with which the barcode is associated.

Array Name
Array name with which the barcode is associated.

Probe Array Type
Probe array type with which the barcode is associated.
If you enter a valid barcode or specify the array name by other means, the fluidics protocol information is kept with the Audit file for the array.

You can also:

- Select a Sample file without entering the barcode. In this case, if the Sample file has more than one array associated with it, you will need to select the proper array from the Array Name list.
- Specify a protocol without specifying a Sample file or array. In this case, the fluidics protocol information is kept in an audit file that does not link to a particular Sample file.

TIP: You can use the Filter dialog box to limit the Sample (ARR) files displayed by various properties (see Filtering the Sample File List on page 140).

IMPORTANT: The protocol that is displayed in the Protocol drop-down box after entering a barcode or selecting a sample name or probe array type may or may not be the correct protocol for the array, depending upon the type of analysis being performed. To make sure the correct protocol is selected, follow the steps below.

6. Set the options to filter the fluidics protocol selections.
To limit the protocols listed select one of the following buttons:

- All (lists all protocols available on your computer)
- Compatible (displays only protocols that can be used with the selected labeling kit):
 - Select the appropriate checkbox:
 - GeneChip IVT Labeling Kit
 - GeneChip HWS Labeling Kit
- Custom (displays only protocols that have been edited or provided by the user)
- Maintenance (displays only maintenance protocols)

Only the protocols that meet the selected requirements are displayed.

7. Select the fluidics protocol from the Protocol list.

![Figure 5.18 Selecting the protocol](image)

Select the protocol from the list

IMPORTANT: The protocol that is displayed in the Protocol drop-down box after entering a barcode or selecting a sample name or probe array type may or may not be the correct protocol for the array, depending upon the type of analysis being performed. To make sure the correct protocol is selected, select the correct options for filtering the protocol list as described above.

8. Click Run to start the protocol on the selected module; or
 - From the Start menu, select **Run All Modules on Current Station**; or
 - Click the **Run All Modules on Current Station** button.

9. Load the probe array and sample vial holder containing the appropriate solution in each active module.

Sensors in the fluidics station detect when the probe array and sample vial holder have been loaded. The process will proceed automatically from this point, although some protocols may require removal and substitution of the sample vial and solution. The Fluidics Status window displays the status of the procedure (see *Status Window on page 130*).
10. Repeat as necessary for other modules in the fluidics station(s).

11. After the protocol is finished, remove the probe array and inspect the probe array window for air bubbles.

If air bubbles are present, reinsert the probe array into the fluidics station to automatically drain and refill the probe array with the last wash buffer used. (Refer to the appropriate GeneChip® probe array package insert.) If no bubbles are present, the probe array is ready to be scanned.

Resuming a Fluidics Protocol

AGCC tracks the progress of a fluidics protocol run. If the protocol stops before completion, it can be resumed at the point where it was interrupted.

The resume feature is only available for fluidics protocols that display multiple steps in the Step drop-down list of the Fluidics Station dialog box and that have failed.

If you exit AGCC Fluidics Control while a fluidics protocol is running, the resume feature will be unavailable upon startup of the software.

To resume a fluidics protocol:
- Click **Resume** in the Modules controls.

The selected protocol is started in modules one through four of the fluidics station.

Bypassing Steps in a Fluidics Protocol

Some multi-step fluidics protocols can be started at any step, so that part of a protocol can be bypassed.

NOTE: The bypass function is only available for fluidics protocols that display multiple steps in the Step drop-down list of the Fluidics Station dialog box.
To bypass steps:

1. Select an array and protocol as described in *Running a Fluidics Protocol on Multiple Stations on page 133.*

2. Select the desired beginning step from the Step drop-down list (Figure 5.20).

3. Click Run to start the fluidics protocol at the selected step.

Filtering the Sample File List

When first opened, the Sample file list in the module control displays all the Sample files available in AGCC (Figure 5.21).
You can use the Filter dialog box to limit the types of files displayed in the Sample File list.

NOTE: The Filter dialog box can also be used in the AGCC Scan Control in Manual mode.

To use the Filter dialog box:

1. Click the **Filters** button or From the Edit menu, select **Filters**...

The Filters dialog box opens (Figure 5.22).
The Filters dialog box enables you to filter the displayed Sample files by:

Date Files created on a date or range of dates.

Selected Project Names Files associated with a particular project.

Selected Probe Array Types Files for a specific probe array model.

Template attributes and values Files associated with a particular attribute value.

Array Scan status Files for arrays that have already been scanned.

Array Name wildcard Array names with a specified text string in their file name.

2. Select a date or range of dates for file creation:

 A. Select the *From* checkbox.

 B. Click the arrow at the date (displays the current date).

 A calendar for the current month appears (Figure 5.23).
C. Select a date for the start of the range. You can move from month to month by clicking the < and > buttons.

 If you only select one date, the filter will display only the files created on that date.

To select a range of dates:
D. Select the To checkbox.

E. Select a date for the end of the range.

3. Select projects from the Project Name drop-down list:
 A. Click the down button in the Project Name list.

 A list of the projects available in AGCC on this computer is displayed (Figure 5.24).

B. Select the checkboxes next to the projects you want displayed in the filtered list.

TIP: For more information about creating and using projects, see Projects on page 24.

4. Select Probe Array Types:
 A. Click on the down arrow in the Selected Probe Array Types list.

 A list of the available probe array types is displayed (Figure 5.25).

 In some cases there may be multiple array models under the same header. in these cases you can click the + button to display the additional probe arrays.
B. Select the checkboxes next to the probe array types you want displayed in the filtered list.

5. Select template attributes and enter values:

A. Locate the attribute you wish to filter by.

Attributes are listed in the format: [Template Name]: Attribute Name.

User attributes are listed as: [USER]: Attribute Name. See User Attributes on page 17 for more information about user attributes.

B. Click in the checkbox next to the attribute name (Figure 5.26).

C. Click in the User Value column next to the attribute and enter a value (Figure 5.27). You can use the “*” symbol as a wildcard in the User Value column.

NOTE: The Sample Attribute Conversion function may impact your selection of templates and attributes. For more information, see Sample Attributes Conversion on page 92.
6. Deselect the **Include Scanned arrays** checkbox to exclude arrays that have already been scanned; or Select the checkbox to display all arrays, including scanned arrays.

7. Enter a text string used in different array names in the Array Name Wildcard box, using the "*" symbol as a wild card.
 For example, if you have used the barcode as an array name, entering "@*" will display all array with filenames using a barcode.

8. Click **OK**.
 The filtered Sample file list is displayed in the module controls (**Figure 5.28**).
 A Filters Applied notice appears above the list.

Adding a Label to a Station and Modules

You can add a label to a station or module in the AGCC Fluidics Control software. The labels can be useful when you are using more than one Fluidics station. The labels appear in the Fluidics Control software and will be used in status e-mails and in the Audit file (see Appendix D, *Configuring E-mail for the Notification Options on page 325*).

To add a label to a station and/or modules:

1. Click the Settings button 🛠️; or
 From the Edit menu, select **Station Settings**...
 The Fluidics Options dialog box opens (**Figure 5.29**).
2. Set the number of Fluidics stations installed in the Fluidics Stations Installed box.
3. Select the number of the station you wish to label from the Station Number list.
4. Enter a label for the station in the Station ID box.
5. Enter labels for the modules in the Module ID boxes.
6. Click OK.
7. The Restart Notice appears (Figure 5.30).

8. Click OK to close the Restart Notice.
9. Shut down and restart AGCC Fluidics Control.
 The labels are used in the station controls (Figure 5.31).
Installing and Updating Protocols

The fluidics protocols are files that list the steps used to process different types of probe arrays. After installing the AGCC Fluidics Control software, you will need to install the fluidics protocols. You may also want to check the installed protocols against the latest versions on the Affymetrix.com web site.

These procedures are described in:
- *Installing Protocols*, below
- *Checking Protocol Status on page 151*

Installing Protocols

To install protocols:

1. From the Files menu, select **Install Protocols...**

 The Fluidics Scripts Installer opens (Figure 5.32).
2. Click Next.
 The Select Software screen appears (Figure 5.33).

If you have both GCOS and AGCC installed, both radio buttons will be available.

3. Select the software you wish to install scripts for and click Next.
 The Select Source screen appears (Figure 5.34).
The screen enables you to:

- Install the protocols from a directory on the file system.
- Install the protocols from the Affymetrix.com web site.

NOTE: You must be registered with the Affymetrix.com web site before using this feature.

To install from a directory:

A. Select the option.
B. Enter the path to the directory; or
 - Click **Browse** and use the Select Directory dialog box to locate the directory with the scripts.

To install from Affymetrix.com:

A. Select the option.
B. Enter user name and password.

4. Click **Next**.

The Select Package screen appears *(Figure 5.35).*
The screen displays a list of the fluidics scripts packages available from the selected source.

5. Select the package you wish to install and click **Next**.

The Select Protocols screen appears (Figure 5.36).

![Figure 5.36 Select Protocols](image)

The screen displays a list of the protocols in the selected package with the following information:

- **Protocol Name**
 - With checkbox to select protocol for installation.

- **New Version**
 - Version of protocol in selected installation package.

- **Version of installed Script**
 - Version of protocol installed on your computer.

6. Select the checkboxes for the protocols you wish to install and click **Next**.

The Summary Screen appears (Figure 5.37).

![Figure 5.37 Summary Screen](image)

The Summary screen displays information about:

- Selected fluidics scripts
- Source Path
AGCC Target Directory
AGCC Log Path: location of the log file for this installation

7. Review the information and click Next. A progress bar displays the progress of the install (Figure 5.38).

![Figure 5.38 Progress screen](image)

When the install is completed, the Finish screen appears (Figure 5.39).

![Figure 5.39 Finish screen](image)

8. Click Close to close the Installer.

Checking Protocol Status

Updated protocols are posted at Affymetrix.com. You can check to see if you have the latest protocols.

NOTE: You must be registered with the Affymetrix.com web site before using this feature.

To check the status of the protocols:

1. From the View menu, click **Protocol Information...**; or
 Click the **Info** button.
The Affymetrix.com Login credentials dialog appears (Figure 5.40).

2. Enter your email and password and click OK.
The Fluidics Script information appears (Figure 5.41).

3. Click on the + signs to open the lists of protocols.
4. Click on the protocol name to see information about the protocol’s status.

Editing Protocols

You can edit some hybridization and wash (Hybwash) protocols.

NOTE: Modifications to a Hybwash protocol must be completed before it is run. Protocol changes made during a run do not affect the run in progress.

To edit the protocol:

1. From the Edit menu, select **Edit Protocol**; or
 Click the **Edit** button.
The Fluidics Protocol Editor dialog box appears (Figure 5.42).

2. Choose the fluidics protocol you want to edit from the Protocol Name drop-down list. The listed protocols are the same ones displayed when you select *Custom in the Master and Station controls*.

 NOTE: Only the protocols in this list may be edited. All others are defined for specific applications and cannot be customized.

3. Highlight the parameter value you want to change and enter the new value (Parameters values must be within the ranges in Table 5.1 the table below). Enter a Hybridization Time of zero if only a wash is desired. To omit Wash A or B, enter zero for the Number of Wash A or Wash B cycles.
Regulatory Compliance

CE Mark Declaration of Conformity

We, Affymetrix, Inc.
3420 Central Expressway
Santa Clara, CA 95051

Declare under sole responsibility that the Affymetrix® Fluidics Station model FS450 conforms to the relevant provisions of the following standards of safety & compliance, and/or other normative documents.

Electromagnetic Compatibility (EMC) Directive 2004/108/EC:

EN 61326-1, 2006 Electrical equipment for measurement, control, and laboratory use – EMC requirements

EN 55011: 2007; Class A Radiated and Conducted
Amendment A2: 2007 Emissions

EN 61000-4-2: 1995; Electrostatic Discharge
Amendment 2: 2001

EN 61000-4-3: 2006; Radiated Immunity
Amendment 1: 2008

EN 61000-4-4: 2004 Electrical Fast Transient / Burst Immunity

EN 61000-4-5: 2006 Surge Immunity

EN 61000-4-6: 2007 Conducted Immunity

EN 61000-4-8: 1993; Magnetic Field Immunity
Amendment 1: 2001

EN 61000-4-11: 2004 Voltage Dips and Interrupts

EN 61000-3-2: 2006 Class A Harmonic Current Emissions

EN 61000-3-3: 1995, Limits; Voltage Changes, Fluctuations, and Flicker
Amendment 2: 2006

EU Low Voltage Directive 2006/95/EC:

IEC 61010-1: 2001 Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements

IEC 61010-2-101/A1: 2003 Safety requirements for electrical equipments for measurement, control and laboratory use. Particular requirements for in vitro diagnostic medical equipment

EN 61010-1: 2001 Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements

EN 61010-2-081/A1: 2003 Safety requirements for electrical equipment for measurement, control and laboratory use. Particular requirements for automatic and semi-automatic laboratory equipment for analysis and other purposes
UL 61010-1/R: 2005-07 Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements

CAN/CSA C22.2 No. 61010-1:2004 Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements

CAN/CSA C22.2 No. 61010-2-081: 2004 Safety requirements for electrical equipment for measurement, control and laboratory use. Particular requirements for automatic and semi-automatic laboratory equipment for analysis and other purposes
The FS450Dx Instrument Specifications

Fluidics Station Dimensions:
(height, depth, width)
40.2 x 41.0 x 71.1 cm or 15 13/16 x 16 1/8 x 28 inches

Product Weight:
Approximately 80 pounds or 36.3 kg

Power Input:
100 to 240 V~, 3 A
300 watts or less
Main supply voltage fluctuations not to exceed 10% of the nominal supply voltage.

Temperature:
Operating: 15° to 30° C
Storage (non-operating): -10° to 60° C

Humidity:
Operating: 10-90% RH, non-condensing
Storage (non-operating): 10% to 95% RH

Other:
Pollution degree, 2
Installation category, II

Electrical Supply
The electrical supply shall meet the input specified on the instrument label. Voltage fluctuations shall not exceed 10% nominal supply voltage.

Altitude
<2000m

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Valid Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybridization or stain time</td>
<td>0 - 86,399 seconds</td>
</tr>
<tr>
<td>Temperature</td>
<td>15 - 50° C</td>
</tr>
<tr>
<td>Number of Wash cycles</td>
<td>0 - 99</td>
</tr>
<tr>
<td>Mixes per Wash cycle</td>
<td>1 - 99</td>
</tr>
</tbody>
</table>

4. Save the edited protocol:
 - To save the parameters under the same protocol name (overwrites the old protocol), click **Save**.
 - To save the parameters under a new protocol name, enter a new name in the Protocol Name field, then click **Save**. This adds the new protocol name to the drop-down list.

5. Click **Defaults** to return the parameter settings to the default values.
Scanning Cartridge Arrays

After processing in the Fluidics Station, the arrays need to be scanned (Figure 6.1).

Scanning can be done with the following scanners:

- The GeneChip® Scanner 3000 (GCS3000) can be loaded with one chip at a time for scanning.
- The GCS3000 with AutoLoader (Autoloader) has a carousel that can be loaded with up to 48 chips. The chips can then be scanned in sequence without operator attention.

The scanners are controlled by with the AGCC Scan Control software.

This chapter contains the following sections:

- AGCC Scan Control Software, below
- Applying Tough-Spots® to Prevent Leaks on page 162
- Using GeneChip® Scanner 3000 on page 164
- Regulatory Compliance on page 178

⚠️ IMPORTANT: Read all the material in this chapter before running the scanner.

You can set things up to provide email notification when scans are complete or problems develop. See Appendix D, Configuring E-mail for the Notification Options on page 325 for more information.
AGCC Scan Control Software

The AGCC Scan Control software is introduced in the following sections:

- Starting the Software, below
- Status Window Information on page 159
- Running Scans on Systems with Network Data Storage on page 160
- Setting Up the Scanner ID on page 161

IMPORTANT: Please make sure that the data roots used in AGCC software on the instrument control workstations do not contain files that have non-Affymetrix file extensions (eg .DLL, .TMP, .CPP, .ASPX, .OUT, etc).

Starting the Software

To start the AGCC Scan control software:

- Click the AGCC Scan Control icon in the Affymetrix Launcher; or
- Click the Microsoft® Windows® Start button and select Programs → Affymetrix → Command Console → AGCC Scan Control.

The AGCC Scan Control window opens (Figure 6.2).

The AGCC Scan Control window has the following components:
To hide or display the toolbar:
- From the View menu, select **Toolbar → Standard Toolbar**.

To add text labels to the toolbar buttons:
- From the View menu, select **Toolbar → Text Labels**.

To hide or display the Status Bar:
- From the View menu, select **Status Bar**.

Status Window Information

Figure 6.3 Status window

The Status window (Figure 6.3) displays the following information:

- **Position**: Position occupied by a given cartridge in the AutoLoader carousel. Completed scans are marked with a green checkmark ☑. Interrupted or failed scans are marked with a red X ✗.
- **Array Name**: Array name assigned to the array.
- **Probe Array Type**: The probe array type for the scan associated with a given cartridge position.
Running Scans on Systems with Network Data Storage

You may wish to consolidate your data using network data storage. AGCC enables you to create a Sample (ARR) file on a remote network storage site. When you scan the array, however, the DAT and CEL files are created on the default folder of the computer running the IC software; this avoids creating DAT and CEL files over the network.

The Default folder is designated by the user as the automatic location of all files created during drop and scan operation, and for DAT and CEL files when the Sample (ARR) file is located on network data storage.

For more information on Network Data Storage option, see Appendix A, Network Functionality for AGCC on Windows XP or Windows 7 on page 301.

For more information about designating the Default folder, see Specifying a Default Folder on page 67.

For more information about transferring data to network data storage, see Uploading Data to Network Data Storage on page 68.

Reviewing Scanner Information

To review scanner information:

- From the Scanner menu, select Information; or
- Click the Info button.

The Scanner Information box opens (Figure 6.4).

<table>
<thead>
<tr>
<th>Barcode ID</th>
<th>The unique identifier in the barcode for the scan associated with a given cartridge position.</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Name of the user (array owner) for the scan associated with a given cartridge position.</td>
</tr>
<tr>
<td>Date & Time</td>
<td>Date and time of the scan.</td>
</tr>
<tr>
<td>Scan Status</td>
<td>The status of the scan. (Autofocus, scanning). This field displays all scanner status strings associated with the scan and retrieved from the scanner. The message strings that may appear in this field are listed below. Note: Not all of these messages will appear in each AutoLoader run.</td>
</tr>
<tr>
<td></td>
<td>- Autofocus</td>
</tr>
<tr>
<td></td>
<td>- Scan Status - % of lines scanned</td>
</tr>
<tr>
<td></td>
<td>- Scan Complete status</td>
</tr>
<tr>
<td></td>
<td>- Autofocus Errors</td>
</tr>
<tr>
<td></td>
<td>- The array XXX has already been scanned</td>
</tr>
<tr>
<td></td>
<td>- Chip load failures</td>
</tr>
<tr>
<td></td>
<td>- Invalid barcode errors</td>
</tr>
<tr>
<td></td>
<td>- Array does not exist errors</td>
</tr>
<tr>
<td></td>
<td>- AutoLoader door open errors</td>
</tr>
<tr>
<td>Data File</td>
<td>Location and name of data file.</td>
</tr>
</tbody>
</table>
The box displays information on:

- Scanner Type
- Scanner ID, if assigned (see Setting Up the Scanner ID on page 161)
- Serial Number
- Hardware Version
- Software Version
- Filters
- Pixel Sizes
- Scans Completed

Setting Up the Scanner ID

You can add an ID label to the scanner which enables you to identify it when email notification is activated.

To add a label to a scanner:

1. From the **Edit** menu, select **Scanner ID**...

 The Instrument Configuration dialog box opens (Figure 6.5).
2. Enter a label for the Scanner in the Scanner ID box.

3. Click **OK**.

 The label can be seen in the Scanner Information dialog box (Figure 6.6).

Applying Tough-Spots® to Prevent Leaks

Tough-Spots® are chemically inert polyvinyl labels that adhere to all plastics. Affymetrix recommends using 3/8-inch circle diameter Tough-Spots to prevent leakage from the array septa.

Before loading the probe array, follow this procedure to prevent the leaking of fluids from the array during scanning.

Even if you have already applied Tough-Spots to the array prior to hybridization or after washing, you must remove the old Tough-Spots and apply new ones before you load them into the AutoLoader.

Affymetrix recommends the use of Tough-Spots® obtained from Affymetrix P/N 64-0158 or from

USA Scientific, Inc. P.O. Box 3565 Ocala, FL 34478 (800)LAB-TIPS P/N 9185-0000
To use Tough-Spots:

1. On the back of the probe array, clean excess fluid from around septa (Figure 6.7).

![Figure 6.7 The GeneChip® probe array](image)

2. Carefully apply one Tough-Spot over each of the two septa. Press to ensure that the spots remain flat. If a Tough-Spot does not apply smoothly; that is, if you observe bumps, bubbles, tears or curled edges, do not attempt to smooth them out. Remove the spot and apply a new one (Figure 6.8).

![Figure 6.8 Applying Tough-Spots® to array septa](image)
Using GeneChip® Scanner 3000

The GeneChip® Scanner 3000 (GCS3000) is used to scan GeneChip probe arrays. It enables you to load and scan one array at a time.

WARNING: ONLY authorized personnel may service this equipment. The GCS3000 Scanner contains an incorporated Class 3B laser. Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

WARNING: The GCS3000 Scanner contains an incorporated Class 3B laser with the following specifications: Wavelength = 532nm +/- 1 nm; Beam Divergence (full angle) = <8mrad; Output Duration = Continuous Wave; Maximum Power Output = 500mW.

NOTE: Do not remove the cover of the scanner. Use the scanner only as instructed in this User Guide. Do not attempt to service the instrument.

WARNING: Laser in use during scanning.

IMPORTANT: Read all material in this section before running the GCS3000.

This section contains the following material:
- Introduction to the GCS3000, below
- Scanning a Probe Array with GeneChip® Scanner 3000 on page 168
The laser is equipped with an automatic shutter that inhibits its output beam and ensures safe operation under conditions encountered in normal operation. The instrument covers, the array access port, and protective shutters ensure that during instrument operation no directed or stray laser light leaves the instrument.

IMPORTANT: The scanner is a Class 1 laser product when the laser is enclosed in scanner case. The laser itself is a Class 3B laser product.

DANGER
Laser radiation when open. Avoid direct exposure to laser beam.
The lasers can cause serious injury if the instrument is not operated in accordance with instructions in this user guide.

CAUTION
Use laser safety glasses when servicing
DO NOT STARE INTO LASER BEAM.

The green laser is a 532nm solid-state laser. This is a Class 3B laser and has visible outputs greater than 5mw but not more than 500mw. It must never be operated in an exposed manner. Any object in the direct path of the laser beam may be damaged. Eyes and skin can be seriously damaged by direct exposure to, specular reflections from, or diffuse reflections from this laser. If improperly used, a laser of this type can cause fires. When used according to the instructions in this manual and when all covers are in place, the GeneChip® Scanner is classified as a Class 1 Laser Product per IEC 60825-1:2007. Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007. Always take note of laser safety labels; they indicate areas where exposure to laser beams may be hazardous.

Electrical Safety
The scanner will automatically handle any input voltage from 100 to 240 VAC nominal, 50 to 60 Hz
The power supply cord is used as the main disconnect device. Ensure that the socket outlet is located and installed near the equipment and is easily accessible.

CAUTION: If you use the scanner in a manner not specified in this user guide, you may impair the protection provided by the equipment.

CAUTION: Do not confuse your company’s network connections with the dedicated Ethernet port of the scanner-workstation. The proper scanner connection is located near the top of the workstation.

CAUTION: This 10/100 Base T Ethernet communications port is dedicated to the scanner-workstation interface. You cannot connect the scanner to your company’s Ethernet communications network.

IMPORTANT: The reset button is the scanner’s circuit breaker. The breaker switch will be tripped whenever the scanner experiences an electrical fault condition. Press to reset. If you cannot reset this switch, contact Affymetrix technical support.

Introduction to the GCS3000

This section contains:
- *Theory of Operation*, below
- *Starting the Scanner on page 167*
- *Shutting Down the Scanner on page 168*

Theory of Operation

The Affymetrix® GeneChip® Scanner 3000 is a wide-field, epifluorescent, near-confocal microscope. The scanner uses a 532 nm solid-state laser to excite probe array fluorophores. This in turn produces an emission wavelength appropriate for the probe array being scanned, which is automatically specified in the scan parameters for the selected probe array. As the surface of the probe array is scanned, a photomultiplier tube collects and converts the fluorescent emissions into an electrical signal. An analog-digital converter in the scanner converts this signal into corresponding numeric values representative of fluorescent intensities. These digital intensity values are collected from discrete areas on the array surface and are stored on the computer workstation as pixels that comprise the image data file (the DAT file). Affymetrix’ patented Flying Objective™ technology represents a radical departure from conventional laser scanners. The optical system comprises a scan arm that rapidly oscillates from side to side scanning the entire width of the probe array in a continuous arc while the probe array is advanced in front of the objective. The acquired image of the array is returned to the computer software as a set of arcs. The software then geometrically corrects these arcs to form a linear image of the array (Figure 6.10).
The laser source excites the hybridized fluorophores and the photomultiplier system simultaneously captures the resulting fluorescent intensities. The optical components direct the fluorescent beam back through the objective lens, through a dichroic mirror and to the PMT. An analog-digital converter transforms the PMT output into 65536 levels of intensity. Each level of intensity is stored in the software as a 16 bit number ($2^{16}=65536$).

The scanner is equipped with an IEC 320 compliant power entry module located at the rear of scanner. The scanner is equipped with an RJ-45 interface connector compatible with 10/100 Base T Ethernet for communications with the host workstation.

The AGCC application controls the scanner. After the scanner has completed a scan, AGCC displays a picture of the image in the image window. The software displays the fluorescent intensity values from each pixel within the probe array feature in a grayscale or pseudo color mode and superimposes a grid on the image to delineate the probe cells.

AGCC analyzes the image and derives a single intensity value for each probe cell on an array. This data is automatically generated and saved to the cell intensity file.

Starting the Scanner

To turn on the Scanner:

- Press the on/off (I/O) switch on the front panel.

 The scanner’s onboard computer boots up. The bootup process takes a few minutes. During this time both the yellow and green light will be on. The scanner enters the laser warm-up state. During this warm-up time, the green light will turn off and the yellow light will remain on. You must wait 10 minutes for the laser to stabilize.
Shutting Down the Scanner

To turn off the scanner:
1. Close the AGCC software. This is the best way to shut off the laser. Alternately, press the I/O (on/off) button on the front panel to turn off the instrument.

NOTE: The laser also has a sleep mode that activates after 1 hour of inactivity.

Scanning a Probe Array with GeneChip® Scanner 3000

This section shows you how to scan a GeneChip® probe array using the Affymetrix® GeneChip® Scanner 3000.

To scan a probe array:
1. Turn on the Scanner-AutoLoader (see Starting the Scanner, above).
2. Start the AGCC Scan Control Software (see AGCC Scan Control Software on page 158).
3. Click the Start button in the main tool bar; or
 Select Scanner → Start Scanner from the menu bar.
 The Scanner dialog box opens (Figure 6.11).

![Figure 6.11 Scanner Dialog box](image)

At this point, you can choose from a number of options:
- If your array has a valid barcode, you can scan the barcode on the probe array into the barcode field. The software will retrieve the sample file and array name associated with the barcode.
 If the barcode is not associated with an existing Sample file and array, a sample file will be created during scan using Drop and Scan.
- If your array does not have a valid barcode, you can manually select an array as described below:
 1) Select the Sample file name for the probe array you wish to scan from the Sample File Name drop-down list.

TIP: You can filter the files listed by various criteria by clicking the Filters button (see Filtering the Sample File List on page 140).

2) Select the array name of the probe array to be scanned from the Array Name drop-down list.
The **Probe Array Type** field automatically displays the probe array type that was entered while creating the Sample file.

4. Click **Start** in the Scanner dialog box.

The Start window appears (**Figure 6.12**).

If you want to skip the warm-up period before scanning the first probe array, keep the default check in the **Arrays at room temperature** box.

5. Click **OK** in the Start Scanner dialog box to start the run.

The GeneChip Scanner dialog box appears (**Figure 6.13**).

The scanner door opens and the chip transport mechanism raises to accept a probe array.

6. Load the probe array (**Figure 6.14**) into the scanner chip transport mechanism. Insert the probe array into the chip transport mechanism such that the front of the probe array (label side) faces to the rear of the scanner.

NOTE: The scanner will enter Park mode if it is unattended for 15 minutes and will enter standby, or sleep, mode if it is unattended for 60 minutes (45 minutes after entering Park mode). The green light will turn off and the yellow light will turn on. To reactivate the laser, click **Turn Laser On** in the scanner dialog box and wait 10 minutes.
7. Click **OK** in the GeneChip Scanner dialog box to start scanning the probe array. During the scan, the green light will flash, and the yellow light will be off. After the scan starts, the software will start with the autofocus routine. Data collection starts after successful completion of autofocus. During the pre-scan state, when autofocus is complete, but before data collection has started, the software will count downwards.

NOTE: When multiple emission filters are used during the scan process, the software will display the scan with a letter followed by the percentage of scan completed. The letter identifies the scan associated with the emission filter.

After the scan is completed, AGCC:
- Saves the image data.
Chapter 6 | Scanning Cartridge Arrays

- Aligns a grid on the image to identify the probe cells.
- Computes the probe cell intensity data.
- Ejects the probe array.

NOTE: If you leave the scanner idle for an additional 15 minutes, the scanner will also enter “Park” mode. The yellow light will be off and the green light on. The chip transport mechanism will retract and the scanner door will close. You must click the Eject Chip button to open the scanner door and raise the chip transport mechanism.

NOTE: You can track the progress of the grid alignment and cell intensity computation in the AGCC Viewer. For more information see Chapter 8, Using the AGCC Viewer on page 238.

Scan Options

This section describes various options when using the GCS3000:

- Scanning Four-Color Arrays
- Stopping a Scan on page 171

Scanning Four-Color Arrays

The four color scans are performed on GeneChip arrays that have been configured for use with four emission filters. The four emission filters are specified in the AGCC scan parameters. When performing a multi-filter scan, AGCC scans the array with different emission filters, using the order specified for the array.

A DAT file is created for each of the emission filter scans. To distinguish the different scans, AGCC appends a suffix of A, B, C, or D to the DAT files. Different file naming conventions are used in the case of a rescan of an array, depending upon whether the array was manually loaded.

When running multiple scans on an array, the scanner performs autofocus only once, prior to the first scan. This is true whether the scans are performed as part of a four-color scan or as a re-scan.

Aborting a Scan with a Manually Loaded Array

If scanning is aborted on a manually loaded array, the emission filter scan in progress continues until it is complete, and the DAT data for the completed scans are saved. When the scan is resumed, AGCC autofocuses the scanner and then re-scans and re-creates a DAT file for each emission filter scan, overwriting the previously created DAT files.

Stopping a Scan

1. Click the **STOP** button or select Run → Stop Scanner from the menu bar.
2. At the prompt, click **Yes** to stop the scanner or **No** to cancel stopping (Figure 6.16).

![Figure 6.16 Stop scanner prompt](image-url)
3. After you stop a scan, the scanner will automatically eject the array.

NOTE: The scanner dialog box has an eject array button. This is reserved for ejecting an array after the scanner goes into sleep mode or when you must manually eject the array for any other reason.

NOTE: If the probe array becomes stuck, see Troubleshooting on page 172 or call Affymetrix technical support.

Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No image when scanning</td>
<td>Power off or cable loose</td>
<td>Check all connections and power.</td>
</tr>
<tr>
<td></td>
<td>Loss of laser power</td>
<td>Contact technical support.</td>
</tr>
<tr>
<td>Intermittent problems scanning</td>
<td>Loose cable</td>
<td>Check all rear connections.</td>
</tr>
<tr>
<td>Scanner fails with probe array inside</td>
<td>Power failure</td>
<td>Manually extract probe array. Check all connections to scanner. Turn scanner on, restart software.</td>
</tr>
</tbody>
</table>

You can learn more about troubleshooting in:
- Issues Relating to the Scanner’s Operation, below
- Manually Removing a Lodged Probe Array on page 196

Issues Relating to the Scanner’s Operation

The table below lists some issues and problems that you may encounter while using the GCS3000.
Manually Removing a Lodged Probe Array

In the event that a probe array becomes lodged in the array transport mechanism, follow the procedure outlined below.

1. Turn off the scanner.
2. Insert a paper clip or small Allen wrench into the rescue hole on top of the scanner and press to partially lift the array loading door.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>If communications are interrupted during a scan (by a faulty cable connection or power being lost at the scanner, for example)</td>
<td>AGCC will properly note the failure and present a message “Cannot connect to Scanner.” However, there are two issues to note. First, AGCC will report such a failure only after a network time-out of about 30 seconds. Second, rarely, if communications have been lost, AGCC and the Scanner may not be able to automatically restore communications once the problem is rectified, and both may become unresponsive. To restore proper operation, verify that the scanner is on, that communication cables are properly connected, and close and restart Microsoft® Windows® then restart AGCC. If the system remains unresponsive, disconnect and reconnect power to the scanner, restart the scanner normally, close and restart Microsoft® Windows® and AGCC.</td>
</tr>
<tr>
<td>Repeated attempts to send commands (Start, Turn Laser On, etc.) from AGCC to the Scanner while AGCC is reporting the scanner “Offline” may result in AGCC becoming unresponsive until communications are restored</td>
<td>If communications cannot be re-established, please follow the recommendations of item 1</td>
</tr>
<tr>
<td>If the Scanner experiences multiple auto-focus failures, the system may enter an unresponsive state.</td>
<td>Follow the recommendations of item 1 to restore communications and correct operation.</td>
</tr>
<tr>
<td>Laser warm-up lasts for ten minutes, during which time the “Turn Laser On” button will remain unchanged and AGCC will display the status message “Warm-up”.</td>
<td>Simply note that this is normal operation.</td>
</tr>
<tr>
<td>If no array is inserted and a scan started.</td>
<td>The scanner will attempt go through the first parts of the auto-focus routine and then report “Failed to find chrome border”.</td>
</tr>
<tr>
<td>The scanner should be in the park mode to eject the array.</td>
<td>Use Tough-Spots® to prevent leaks in the GeneChip® probe array. See the quick reference card, p/n 08-0076.</td>
</tr>
</tbody>
</table>

CAUTION: Heavy object. Two people are required to lift the scanner.
3. Using your fingers, gently lift the front edge of the door. As you lift the front edge, lift the back edge approximately 1/4” to open the door straight up to expose the rescue screw in the front.

4. Using a standard (-) screwdriver, turn the rescue screw clockwise to raise the array transport mechanism.

5. Continue to turn the screw until the probe array ascends sufficiently to grab it.
Note that the screw is fine pitched and requires a number of turns. Stop if you encounter screw resistance. Do not over torque.

6. When the array has ascended sufficiently, remove it.
7. Rescrew the array transport mechanism until it descends completely, or until you encounter resistance. Do not over torque.

8. Close the door.
GCS3000 Specification

GCS3000 Specification Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Shipping</td>
<td>approx 74 pounds (35.4 Kg)</td>
</tr>
<tr>
<td></td>
<td>Free-standing</td>
<td>63 pounds (28.6 Kg)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Width</td>
<td>-13.25 in</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td>-27.5 in</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>-18.25 in</td>
</tr>
<tr>
<td>Power</td>
<td>Voltage</td>
<td>100 - 240 V –</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>4 - 2 A</td>
</tr>
<tr>
<td></td>
<td>Line Frequency</td>
<td>50 - 60 Hz</td>
</tr>
<tr>
<td>Working Environment</td>
<td>Temperature</td>
<td>59°F-85°F (15°C-30°C)</td>
</tr>
<tr>
<td></td>
<td>Humidity</td>
<td>10-90% Non-condensing</td>
</tr>
<tr>
<td></td>
<td>Clearance</td>
<td>2 in.(5 cm) on side, back and top</td>
</tr>
<tr>
<td></td>
<td>Pollution Degree</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Installation Category</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Altitude</td>
<td><2000m</td>
</tr>
<tr>
<td>Electrical Supply</td>
<td>Provide voltage, frequency or power rating per unit label</td>
<td></td>
</tr>
<tr>
<td>Main Supply Voltage Fluctuations</td>
<td>Are not to exceed ±10% of the nominal supply voltage</td>
<td></td>
</tr>
</tbody>
</table>
Regulatory Compliance

CE Mark Declaration of Conformity

We, Affymetrix, Inc.
3420 Central Expressway
Santa Clara, CA 95051

Declare under sole responsibility that the Affymetrix® GeneChip® Scanner model GCS3000 conforms to the relevant provisions of the following standard(s) of safety and compliance, and/or other normative documents.

Electromagnetic Compatibility (EMC) Directive 2004/108/EC:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61326-1, 2006</td>
<td>Electrical equipment for measurement, control, and laboratory use - EMC requirements</td>
</tr>
<tr>
<td>EN 55011: 2007; Amendment A2: 2007 Class A</td>
<td>Radiated and Conducted Emissions</td>
</tr>
<tr>
<td>EN 61000-4-2: 1995; Amendment 2: 2001</td>
<td>Electrostatic Discharge</td>
</tr>
<tr>
<td>EN 61000-4-3: 2006; Amendment 1: 2008</td>
<td>Radiated Immunity</td>
</tr>
<tr>
<td>EN 61000-4-4: 2004</td>
<td>Electrical Fast Transient / Burst Immunity</td>
</tr>
<tr>
<td>EN 61000-4-5: 2006</td>
<td>Surge Immunity</td>
</tr>
<tr>
<td>EN 61000-4-6: 2007</td>
<td>Conducted Immunity</td>
</tr>
<tr>
<td>EN 61000-4-8: 1993; Amendment 1: 2001</td>
<td>Magnetic Field Immunity</td>
</tr>
<tr>
<td>EN 61000-4-11: 2004</td>
<td>Voltage Dips and Interrupts</td>
</tr>
<tr>
<td>EN 61000-3-2: 2006 Class A</td>
<td>Harmonic Current Emissions</td>
</tr>
<tr>
<td>EN 61000-3-3: 1995, Amendment 2: 2006</td>
<td>Limits; Voltage Changes, Fluctuations, and Flicker</td>
</tr>
</tbody>
</table>

EU Low Voltage Directive 2006/95/EC:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 60825-2:2004</td>
<td>Safety of laser products. Safety of optical fibre communication systems (OFCS)</td>
</tr>
<tr>
<td>IEC 61010-1: 2001</td>
<td>Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements</td>
</tr>
<tr>
<td>EN 61010-1: 2001</td>
<td>Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements</td>
</tr>
<tr>
<td>EN 61010-2-081/A1: 2003</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use. Particular requirements for automatic and semi-automatic laboratory equipment for analysis and other purposes</td>
</tr>
<tr>
<td>Standard</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>UL 61010-1/R: 2005-07</td>
<td>Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements</td>
</tr>
<tr>
<td>CAN/CSA C22.2 No. 61010-1:2004</td>
<td>Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements</td>
</tr>
<tr>
<td>CAN/CSA C22.2 No.61010-2-081: 2004</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use. Particular requirements for automatic and semi-automatic laboratory equipment for analysis and other purposes</td>
</tr>
</tbody>
</table>
Using the GCS3000 with AutoLoader

The GeneChip® Scanner 3000 with AutoLoader (AutoLoader) is similar to the GCS3000 with the addition of a carousel autoloader, designed expressly for scanning multiple GeneChip® probe arrays. The AutoLoader can scan up to 48 probe arrays automatically without operator presence.

WARNING: Laser in use during scanning.

Introduction

For more information about the scanner, see Introduction to the GCS3000 on page 166.

Starting the AutoLoader

To turn on the AutoLoader:
- Turn on the Scanner-AutoLoader by pressing the on/off (I/O) switch on the front panel.

 The scanner’s onboard computer boots up. The bootup process takes a few minutes. During this time both the yellow and green light will be on. The scanner enters the laser warm-up state. During this warm-up time, the green light will turn off and the yellow light will remain on. You must wait 10 minutes for the laser to stabilize.

Shutting Down the Scanner

To shut off the scanner:
1. Close the AGCC software. This is the best way to shut off the laser.
2. Press the I/O button on the front panel to turn off the instrument.
Scanning Probe Arrays with GeneChip® Scanner 3000 with AutoLoader

This section shows you how to scan a GeneChip® probe array using the Affymetrix® GeneChip® Scanner 3000 with AutoLoader.

NOTE: For information on using the GCS3000, see *Using GeneChip® Scanner 3000 on page 164.*

To scan chips using the AutoLoader:

1. Turn on the AutoLoader by pressing the on/off (I/O) switch on the front panel.

 The scanner’s onboard computer boots up. The bootup process takes a few minutes. During this time both the yellow and green light will be on. The scanner enters the laser warm-up state. During this warm-up time, the green light will turn off and the yellow light will remain on. You must wait 10 minutes for the laser to stabilize.

2. Load your cartridges into the carousel (up to 48). Note that only one orientation is possible (Figure 6.21).

 Cartridges should be loaded into the carousel starting at position #1. Additional cartridges need not be contiguous. A run will stop after 48 cartridges OR when the same barcode is read within the same run.

![Figure 6.21](image) Loading the array into the chip carousel. Each slot is numbered, 1 through 48, and each array can fit in only one orientation
3. Load the carousel into the AutoLoader by inserting the carousel into the AutoLoader and turning the carousel until the alignment pin seats into the alignment hole (Figure 6.22).

4. Turn the carousel clockwise until the carousel mounting key flat seats gently into the AutoLoader alignment key. You may have to turn the carousel several times before it will seat into the alignment pin and alignment key. When seated properly, the carousel will be flush with the AutoLoader housing.

5. Close the AutoLoader door (Figure 6.23).
If all probe arrays have valid, associated barcodes, you can run the AutoLoader in automode.

NOTE: The seating of the key flat is confirmed by a gentle falling of the carousel into the key.

If all probe arrays have valid, associated barcodes, you can run the AutoLoader in automode.

NOTE: If there exists an identical barcode within the database from an earlier AutoLoader run, and you want to rescan the current probe array with that same barcode, check the Allow Rescans box. This will create additional DAT files. The original DAT file WILL NOT BE OVERWRITTEN. A new DAT file is created, and the file name for the new file has an underscore and incremental number added to it, beginning with _2.

NOTE: If the AutoLoader encounters the same barcode within the same run, the run will terminate.

6. Start the AGCC Scan Control software (see *Starting the Software on page 158*).
7. Set the default settings.
 A. Click **Edit → Options**.
 B. **Clear** the **Enable Manual Mode** check box.
C. Click **OK**.

8. Click the **Start** button in the main tool bar; or Select **Scanner → Start Scanner** from the menu bar. The Start window appears (Figure 6.25).

 ![Figure 6.24 Scanner Options dialog box with Enable Manual Mode checkbox cleared](image1)

If you want to skip the warm-up period before scanning the first probe array, keep the default check in the **First 4 arrays at room temperature** box.

9. Click **OK** in the Start Scanner dialog box to start the run.

 - The AutoLoader blue indicator light will light up signifying that the AutoLoader door is now locked.
 - The carousel automatically homes itself and performs inventory to determine the number and position of cartridges present.
 - The scanning run begins. During the scan, the green light will flash, and the yellow light will be off.
 - The AutoLoader completes the autofocus operation before scanning each of the probe arrays. This takes approximately two to three minutes. The scanner cannot be stopped during this period.
 - The run will stop automatically when the last array is scanned.
 - At the completion of each scan, the AGCC software will attempt grid alignment. If it is successful, the scan data will be automatically advanced to the Grid Alignment processing state. The progress of the scan data can be tracked using the Review Window of the AGCC Viewer (see Chapter 8, Using the AGCC Viewer on page 238).
 - The progress of each scan is displayed in the Scan Status window (Figure 6.26).

![Figure 6.25 The Start Scanner dialog box in automode](image2)
The window displays a list of the arrays as they are being scanned with the information displayed in the Status window (see Status Window Information on page 159).

After the scan is completed, AGCC:

A. Saves the image data to an image file (*.dat).
B. Ejects the probe array.
C. Aligns a grid on the image to identify the probe cells.
D. Automatically computes probe cell intensities and saves the data to the cell intensity file (*.cel).

NOTE: You can track the progress of the grid alignment and cell intensity computation in the AGCC Viewer. For more information see Chapter 8, Using the AGCC Viewer on page 238.

Arrays with barcodes that are not associated with a Sample file and array will have a sample file created using Drop and Scan.

The AutoLoader will skip probe arrays if the AutoLoader encounters:

- Arrays with unreadable or invalid barcodes or without barcodes.
- Arrays that have been previously scanned if the Allow Rescans checkbox is cleared.

10. Close the AGCC Scan Control software. This is the best way to shut off the laser.
11. Press the I/O button on the front panel to turn off the instrument.

Special Scan Options

The following sections describe various options for running the scan:

- *Drop and Scan on page 186*
- *Stopping an AutoLoader Run on page 186*
- *Adding Cartridges During a Run on page 186*
- *Scanning a Probe Array in Manual Mode on page 189*
- *Ejecting a Probe Array on page 191*
- *Using AGCC with the AutoLoader Disabled on page 191*
- *Scanning Four-Color Arrays on page 192*
- *Terminating a scan run on page 193*
Drop and Scan
The Drop and Scan feature lets you scan a set of GeneChip probe arrays without first creating a Sample (.ARR) file for them. A Sample file is created automatically during Drop and Scan, with the probe array barcode used as the file name.

To use Drop and Scan:
1. Start the AGCC Scan Control software.
2. Start the scanner.
3. Load the arrays in the scanner.
4. Click the Start button.
 - If the arrays have valid barcodes, they are scanned. The ARR, DAT, and CEL files are named using the barcode and placed in the designated Default folder.
 - For more information about the Default folder, see:
 - Default Folders on page 23
 - Specifying a Default Folder on page 67
 - If the scanner cannot read the barcode, or if there are no library files on the system for chips with that part number, the chip is ejected and an error notice appears.

Stopping an AutoLoader Run
The Stop button is only available after you have clicked the Start button. Click this button if you want to abort a scan or run in progress.

NOTE: If you stop the scanner while a probe array is in the process, you will lose all scan information from that probe array. If you rescan the array, it may be affected due to uneven photo-bleaching. This could potentially make the data from the array difficult to compare to other array data.

1. Click the STOP toolbar button or select Scanner → Stop Scanner from the menu bar.
2. At the prompt, click Yes to stop the scanner or No to elect not to stop the AutoLoader run.

A window displays the message “The scanner will not stop until autofocus has finished.”
3. Click OK.
 - After you stop a scan, the scanner automatically ejects the array.

Adding Cartridges During a Run
The software provides you with a button that will enable you to unlock the AutoLoader door and add additional probe array cartridges while in the middle of an AutoLoader run. You have two choices:
- To add cartridges immediately even while a scan is in progress (in which case the DAT file is discarded and replaced with a newly collected one after the AutoLoader run is resumed).
- To add cartridges after a scan has completed (in which case the DAT file is saved).
To interrupt the scan in progress:

NOTE: The Add Chips button is enabled only after the AutoLoader has started a run in automatic mode.

1. Click the **Add Chips** button, or select **Run → Add Chips** from the menu bar. The Add Chips Options dialog box opens (Figure 6.28).

2. Click **Add Now**.
 The blue AutoLoader indicator light will turn off signifying that the AutoLoader door is now unlocked.
 If a scan is in progress, the software will continue to record the scan. However, to avoid the possibility of generating a corrupt DAT file, it will discard that scan that was in progress when the door was opened.

3. Open the door and add probe array cartridges to the carousel.

4. Close the scanner door.
 The following window appears (Figure 6.29).

5. Click **OK**.

6. Click the **Resume** button; or select **Run → Resume**.
 The Notice dialog box opens (Figure 6.30).

NOTE: If you stop the scanner while a probe array is in the process, you will lose all scan information from that probe array. If you rescan the array, it may be affected due to uneven photo-bleaching. This could potentially make the data from the array difficult to compare to other array data.
7. Select the Allow Rescans option, if desired, and click **OK**.

The blue AutoLoader indicator light turns on signifying that the door is locked. The software homes the carousel and inventories the number of present probe arrays. **The carousel then moves to that last previously scanned probe array (when the door was opened) and continues the scanning run by rescanning that probe array.**

The array is rescanned and a new DAT file overwrites the previous DAT file.

IMPORTANT: Do not load an array into the same carousel position that was occupied by the array that had just been scanned, i.e., do not replace cartridges.

To add chips without interrupting a scan:

1. Click the **Add Chips** button or select Run → Add Chips from the menu bar.

The Add Chips Options dialog box opens (Figure 6.31).

2. Click **Add after scan**.

The Interrupt After Scan Complete notice appears (Figure 6.32).

3. Click **OK**.

The AutoLoader will wait until the current probe array has undergone the autofocus and scan procedures before unlocking the door.

The blue AutoLoader indicator light turns off when the AutoLoader door is unlocked.

4. Open the door and add probe array cartridges.

5. Close the scanner door.
The Resume Notice dialog box opens (Figure 6.33).

The AGCC status bar displays a “waiting to start” status.

6. Click **OK**.
7. Click the Resume button; or
 Select **Run → Resume**.
 The Run Options dialog box opens (Figure 6.34).

8. Select the Allow Rescans option, if desired, and click **OK**.
 The blue AutoLoader indicator light turns on signifying that the door is locked. The software homes the carousel and takes inventory of the probe array cartridges present. The carousel then proceeds to the next array position following the previously scanned probe array. The AutoLoader continues the run from that array position.

 NOTE: If you click the **Cancel** button in the Run Options dialog box, the AutoLoader will not resume the scan.

Scanning a Probe Array in Manual Mode

In the AutoLoader Automode, each probe array requires a valid barcode in order to be scanned. The manual mode feature enables you to scan one probe array at a time without the requirement of a barcode. This is useful if you must scan probe arrays that have invalid or absent barcodes.

To scan a probe array in manual mode:

1. Set the scanner options.
 A. From the Edit menu, click **Options**.
 The Scanner Options dialog box opens (Figure 6.35).
 B. Check **Enable Manual Mode**.
 C. Click **OK**.
2. Click the **Start** button; or
 Select **Scanner → Start Scanner** from the menu bar.
 The Scanner dialog box opens (Figure 6.36).

![Figure 6.36 Scanner Dialog box](image)

At this point, you can choose from a number of options:

- You can click **Start** without selecting an array name. If your array has a valid barcode, the software will get the barcode from the array in the AutoLoader and select the correct Sample file and Array name.
- If your array has a valid barcode, you can scan the barcode on the probe array into the barcode field. The software will retrieve the Sample Attribute File associated with the array.
- If your array does not have a valid barcode, you can manually select an array as described below:
 1) Select the Sample file name for the probe array you wish to scan from the **Sample File Name** drop-down list.

 TIP: You can filter the files listed by various criteria by clicking the Filters button (see *Filtering the Sample File List on page 140*).

 2) Select the array name of the probe array to be scanned from the **Array Name** drop-down list. The **Probe Array Type** field automatically displays the probe array type that was entered during experiment setup.
3. Click **Start** in the Scanner dialog box.
 The Start dialog box appears (Figure 6.37).

![Figure 6.37 The Start Scanner dialog box](image)

If you want to skip the warm-up period before scanning the first probe array, keep the default check in the **Arrays at room temperature** box.

NOTE: You can eject or load an array by clicking on the Load/Eject button at any time except when the scanner is engaged in the autofocus operation or the scanning run.

4. Load the probe array into slot number 1.

NOTE: The array slot at position number 1 is the only slot available in Manual Mode.

5. Click **OK** in the Start Scanner box (Figure 6.37) to start the autofocus routine. This takes approximately two to three minutes. The scanner cannot be stopped during this period. During the scan, the green light will flash, and the yellow light will be off.

After the scan is completed, AGCC:
- A. Saves the image data to an image file (DAT).
- B. Aligns a grid on the image to identify the probe cells.
- C. Automatically computes probe cell intensities and saves the data to the cell intensity (CEL) file.

TIP: You can view the status of the cell intensity computation by using the AGCC Viewer (see Chapter 8, *Using the AGCC Viewer on page 238*).

D. Ejects the probe array.

Ejecting a Probe Array

The probe array will automatically eject after a run.

Using AGCC with the AutoLoader Disabled

If you have a working scanner but the AutoLoader is not operating, you can still use the scanner, but you must check the Disable AutoLoader option in the Defaults window. This will disable the AutoLoader and enable you to use the scanner alone as you would in manual mode.

1. From the Edit menu, click **Options**.
 The Scanner Options dialog box opens (Figure 6.38).

2. Check **Disable AutoLoader**.

3. Click **OK**.
A window will appear asking that you reboot the scanner.

4. Press the scanner front panel I/O button once to turn off the scanner. Wait a few moments, the press the I/O button to turn on the scanner.
5. Open the AutoLoader door.
6. Manually load a probe array into the slot.
7. Close the AutoLoader door.
8. Scan the probe array in the same manner as the AutoLoader in manual mode. See *Scanning a Probe Array in Manual Mode on page 189*. After scanning the probe array, you must manually remove the probe array from the AutoLoader. See Steps 7 through 13 in *Manually Removing a Lodged Probe Array on page 196*.

Scanning Four-Color Arrays

Four color scans are performed on GeneChip arrays that have been configured for use with four emission filters. The four emission filters are specified in the AGCC scan parameters. When performing a multi-filter scan, AGCC scans the array with different emission filters, using the order specified for the array.

A DAT file is created for each of the emission filter scans. To distinguish the different scans, AGCC appends a suffix of A, B, C, or D to the DAT files. Different file naming conventions are used in the case of a rescan of an array, depending upon whether the array was manually loaded (see below) or loaded using the autoloader on page 193.

When running multiple scans on an array, the scanner performs autofocus only once, prior to the first scan. This is true whether the scans are performed as part of a four-color scan or as a re-scan.

Aborting a Four-Color Scan with a Manually Loaded Array

If scanning is aborted on a manually loaded array, the emission filter scan in progress continues until it is complete, and the DAT data for the completed scans are saved. When the scan is resumed, AGCC autofocuses the scanner and then re-scans and re-creates a DAT file for each emission filter scan, overwriting the previously created DAT files.
Aborting a Four-Color Scan when Using the AutoLoader

If scanning is aborted on an array loaded using the autoloader, the emission filter scan in progress continues until it is complete, and the DAT data for the completed emission scans are saved. When the scan is resumed, AGCC autofocuses the scanner and then re-scans and re-creates a DAT file for each emission filter scan. AGCC does not overwrite the previously created DAT data, but creates a new set of DAT files, adding a suffix of “_nX” to the DAT file name, where n identifies the rescan number and 'X' is the letter assigned for the emission filter. A 4-color array scanned a second time will produce DAT files with the following suffixes: _2A, _2B, _2C, _2D.

NOTE: When using the “Add Chips Now” function of the autoloader, if the door is opened in the middle of a scan acquisition, AGCC treats the scan as an abort request. After the emission filter scan in progress completes, scanning halts and the DAT and CEL files for the completed emission filter scans are saved. Upon resume, the AGCC autofocuses the scanner and rescans the array for each emission filter. To avoid the rescan of the array, it is recommended that the “Add Chips Later” function be used.

AUTOROTATION

The AutoLoader is equipped with a heater to warm up the cartridges prior to scanning in order to reduce condensation and fogging of the probe array window.

The autorotation routine is used for temperature stability but only after the AutoLoader run is complete or during a power failure as described below.

Autorotation

Autorotation occurs during a power failure only if the uninterrupted power supply (UPS) is included as an accessory. The UPS provides power to the scanner/AutoLoader during a power failure. If the power fails during the scan of an array, that scan is completed and then the system turns off the heater and enters the autorotation mode to conserve power and cool the chips in the carousel. The system will also attempt to send an e-mail to notify the user of the power failure.

During an AutoLoader run, the carousel is rotating as the chips are processed to introduce the next array to the scanner, so autorotation is not needed. After the AutoLoader run is complete the heater is turned off and the carousel is rotated to get even cooling of the chips.

Terminating a scan run

The AutoLoader run will terminate under certain normal circumstances. Table 6.2 The table below outlines under what conditions a scan run will or will not terminate.
Table 6.2 Summary of scan run termination conditions

<table>
<thead>
<tr>
<th>The scan run will terminate if:</th>
<th>The scan run will not terminate if:</th>
</tr>
</thead>
<tbody>
<tr>
<td>You press the Stop button. Caution: If you stop the scanner while a probe array is in the process, you will lose all scan information from that probe array. If you rescans the array, it may be affected due to uneven photo-bleaching. This could potentially make the data from the array difficult to compare to other array data.</td>
<td>You check Allow Rescans box. When the AutoLoader encounters a probe array that was previously scanned in an earlier run, it will rescans that probe array and will create additional DAT files (.dat1, .dat2, etc.).</td>
</tr>
<tr>
<td>The AutoLoader detects a probe array with the same barcode in the current run, i.e., in the currently loaded carousel. The probe array will not be rescanned.</td>
<td>You clear the Allow Rescans box. When the AutoLoader encounters a probe array that was previously scanned in an earlier run, it will log the probe array but will not rescans it. It will continue the run.</td>
</tr>
<tr>
<td>The AutoLoader detects 48 scanned cartridges in the same run.</td>
<td>You click the Add Now button. The AutoLoader door will unlock to accept new probe array cartridges. The scan in progress will complete. When you close the door and continue, the AutoLoader will home, take inventory and move to the same probe array that was in the process of being scanned when the door was opened. It will discard the earlier DAT file and rescans that probe array.</td>
</tr>
<tr>
<td>Note: this has nothing to do with the Allow Rescans check box.</td>
<td>You click the Add After Scan button. The AutoLoader door will wait until the scan in progress is complete then unlock the door. When you close the door and continue, the AutoLoader will home, take inventory and move to the next probe array from that which was in the process of being scanned when the door was opened.</td>
</tr>
</tbody>
</table>

Troubleshooting

Troubleshooting tips are given in the table below and in the following sections:

- **AutoLoader Error Messages on page 195**
- **Manually Removing a Lodged Probe Array on page 196**

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No image when scanning</td>
<td>• Power off or cable loose</td>
<td>Check all connections and power.</td>
</tr>
<tr>
<td></td>
<td>• Loss of laser power</td>
<td>Contact technical support.</td>
</tr>
<tr>
<td></td>
<td>• Image display disabled</td>
<td>Enable image display.</td>
</tr>
<tr>
<td>Intermittent problems scanning</td>
<td>• Loose cable</td>
<td>Check all rear connections.</td>
</tr>
<tr>
<td>Scanner fails with probe array inside</td>
<td>• Power failure</td>
<td>Manually extract probe array. Check all connections to scanner. Turn scanner on, restart software.</td>
</tr>
<tr>
<td>Carousel does not automatically home</td>
<td>• Check for stuck array</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Carousel not seated on D ring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alignment Pin not engaged in Carousel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Door is open or ajar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Door is open when blue LED is off.</td>
<td></td>
</tr>
<tr>
<td>Carousel does not rotate</td>
<td>• Door is open or ajar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• System is warming up, array in heater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Carousel not seated on D ring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alignment Pin not engaged in Carousel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Laser in Scanner is warming up. AGCC has Start grayed out in this case</td>
<td></td>
</tr>
</tbody>
</table>
AutoLoader Error Messages

The following error messages indicate a serious malfunction of the scanner with AutoLoader. Your probe arrays, or the data generated from them, may be at risk. You should shut down the AutoLoader and remove the carousel. Do not continue to use the AutoLoader in Automode. Call Affymetrix Technical Support.

However, if the AutoLoader appears to be operating normally, you can continue to use the AutoLoader in Manual Mode. See Scanning a Probe Array in Manual Mode on page 189.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carousel misses next array</td>
<td>• Array UP sensor not working, call technical support.</td>
<td></td>
</tr>
<tr>
<td>Stuck array</td>
<td></td>
<td>See Manually Removing a Lodged Probe Array on page 196</td>
</tr>
<tr>
<td>AutoLoader freezes up</td>
<td>• Door is open or ajar</td>
<td></td>
</tr>
<tr>
<td>AutoLoader overheats</td>
<td>• Heater Failure
• TE failure
• TE hot fans vent blocked</td>
<td>Call technical support.</td>
</tr>
<tr>
<td>Autofocus routine fails to conclude</td>
<td></td>
<td>• Try to rescan array.
• Check for salt on chrome border. If still error, call technical support.</td>
</tr>
<tr>
<td>The array does not descend into scanner.</td>
<td>• Carousel not seated correctly
• Door is open or ajar
• Heater is waiting until array is at temperature.</td>
<td></td>
</tr>
</tbody>
</table>

AutoLoader Error Messages

The following error messages indicate a serious malfunction of the scanner with AutoLoader. Your probe arrays, or the data generated from them, may be at risk. You should shut down the AutoLoader and remove the carousel. Do not continue to use the AutoLoader in Automode. Call Affymetrix Technical Support.

However, if the AutoLoader appears to be operating normally, you can continue to use the AutoLoader in Manual Mode. See Scanning a Probe Array in Manual Mode on page 189.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carousel misses next array</td>
<td>• Array UP sensor not working, call technical support.</td>
<td></td>
</tr>
<tr>
<td>Stuck array</td>
<td></td>
<td>See Manually Removing a Lodged Probe Array on page 196</td>
</tr>
<tr>
<td>AutoLoader freezes up</td>
<td>• Door is open or ajar</td>
<td></td>
</tr>
<tr>
<td>AutoLoader overheats</td>
<td>• Heater Failure
• TE failure
• TE hot fans vent blocked</td>
<td>Call technical support.</td>
</tr>
<tr>
<td>Autofocus routine fails to conclude</td>
<td></td>
<td>• Try to rescan array.
• Check for salt on chrome border. If still error, call technical support.</td>
</tr>
<tr>
<td>The array does not descend into scanner.</td>
<td>• Carousel not seated correctly
• Door is open or ajar
• Heater is waiting until array is at temperature.</td>
<td></td>
</tr>
</tbody>
</table>

E-mail Messages

If the e-mail system is enabled, the instrument control software sends an e-mail alert for conditions that may occur during an AutoLoader run.

NOTE: For information on enabling the email system see Appendix D, Configuring E-mail for the Notification Options on page 325.
In case of a fatal error:

1. The software sends an e-mail to the specified set of e-mail addresses or to the Outlook distribution list.
2. The software provides you with the ability to send an e-mail without your intervention.
3. The software uses extended MAPI to send an e-mail.
4. Each e-mail message contains the following information:
 A. Date and Time
 B. Scanner ID
 C. All experiment information displayed in the status window. You select error messages to be sent in the e-mail configuration.

Manually Removing a Lodged Probe Array

In the event that a probe array becomes lodged in the array transport mechanism, follow the procedure outlined below.

1. Turn the AutoLoader off and remove the power cord from the back of the unit.
2. Open the AutoLoader door on top of the unit.
3. Remove the carousel from the system. (Keep cartridges in carousel at proper temperature while recovering the array still in the scanner).
4. Remove the hole plug, which is just in front of the array slot in the base piece of insulation. In Figure 6.40, the screwdriver is inserted into this hole.
5. Using a standard, flat (-) screwdriver, (13-0257) gently slide it down through the hole making sure not to damage the shaft and spring that are protruding into the hole. When the screwdriver stops, it should be in contact with the scanner Y stage screw. Slowly turn the screwdriver until you feel it engaging the slot on the screw of the scanner Y stage.

6. Slowly turn the screw clockwise until it hits a hard stop and cannot turn further. (Do not try to turn it further or use excessive force because it will break the Y stage in the scanner). The Y stage has now ascended to its maximum position.

7. Using your fingers, slowly slide the slot pin, which is sticking through the slot in the base piece of insulation, to the right until it stops. You should see the little pinch rollers near the array slot close a little as you do this (Figure 6.41).

8. Insert a 3/16” hex driver (13-0255) into the hole that is located on the front of the AutoLoader housing on the left. You should feel it engage a coupling (Figure 6.42).
9. Turn the hex driver counter clock wise until you see the array appear through its opening. (The array should stay up if you stop turning the hex driver). If you don't see the array after turning the hex driver ten seconds go to step 11.

10. Grab and hold the array with your fingers. Using your other hand slowly slide the slot pin (Step 7) back to the left. This should open up the pinch rollers. Pull the array out.

If you do not see the array after turning the hex driver for 10 seconds, stop.

11. Using tool (13-0256) (Figure 6.43) with the hook down and toward the back, slide it vertically down against the front of the array opening, about 1.5 inches. (There is a small groove made for this tool in the middle of the front array guide).

12. Pull the top finger grip of the tool toward the front of the unit, and then pull it up while still putting pressure towards the front. The array should come up with the tool. When you see it, grab the array and pull it out of the unit.

If you cannot get the array out after doing this procedure, call for Affymetrix technical support.

13. Put the hole plug back into the hole in the base piece of insulation.
14. Plug the scanner back in and turn it on.
15. Load the carousel after the scanner boots up.

If cartridges continue to become lodged in the AutoLoader, you should call technical support.
GCS3000 with AutoLoader Specification

GCS3000 with AutoLoader Specification Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Shipping</td>
<td>approx 115 pounds (52.2 Kg)</td>
</tr>
<tr>
<td></td>
<td>Free-standing</td>
<td>approx 100 pounds (45.4 Kg)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Width</td>
<td>~13.25 in.</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td>~21.25 in.</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>~32 in.</td>
</tr>
<tr>
<td>Power</td>
<td>Voltage</td>
<td>100 - 240 V ~</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>4 - 2 A</td>
</tr>
<tr>
<td></td>
<td>Line Frequency.</td>
<td>50 - 60 Hz</td>
</tr>
<tr>
<td>Working Environment</td>
<td>Temperature</td>
<td>59°F-85°F (15°C-30°C)</td>
</tr>
<tr>
<td></td>
<td>Humidity</td>
<td>10-90% Non-condensing</td>
</tr>
<tr>
<td></td>
<td>Clearance</td>
<td>2 in. (5 cm) on side, back 12.5 in. on top</td>
</tr>
<tr>
<td></td>
<td>Pollution Degree</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Installation Category</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Altitude</td>
<td><2000m</td>
</tr>
<tr>
<td>Electrical Supply</td>
<td>Provide voltage, frequency or power rating per unit label</td>
<td></td>
</tr>
<tr>
<td>Main Supply Voltage Fluctuations</td>
<td>Are not to exceed ± 10% of the nominal supply voltage</td>
<td></td>
</tr>
</tbody>
</table>
Regulatory Compliance

CE Mark Declaration of Conformity

We, Affymetrix, Inc.
3420 Central Expressway
Santa Clara, CA 95051

Declare under sole responsibility that the Affymetrix® GeneChip® Scanner model GCS3000 and its accessory Autoloader conforms to the relevant provisions of the following standard(s) of safety and compliance, and/or other normative documents.

Electromagnetic Compatibility (EMC) Directive 2004/108/EC:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61326-1, 2006</td>
<td>Electrical equipment for measurement, control, and laboratory use - EMC requirements</td>
</tr>
<tr>
<td>EN 55011: 2007; Amendment A2: 2007</td>
<td>Radiated and Conducted Emissions, Class A</td>
</tr>
<tr>
<td>EN 61000-4-2: 1995; Amendment 2: 2001</td>
<td>Electrostatic Discharge</td>
</tr>
<tr>
<td>EN 61000-4-3: 2006; Amendment 1: 2008</td>
<td>Radiated Immunity</td>
</tr>
<tr>
<td>EN 61000-4-4: 2004</td>
<td>Electrical Fast Transient / Burst Immunity</td>
</tr>
<tr>
<td>EN 61000-4-5: 2006</td>
<td>Surge Immunity</td>
</tr>
<tr>
<td>EN 61000-4-6: 2007</td>
<td>Conducted Immunity</td>
</tr>
<tr>
<td>EN 61000-4-8: 1993; Amendment 1: 2001</td>
<td>Magnetic Field Immunity</td>
</tr>
<tr>
<td>EN 61000-4-11: 2004</td>
<td>Voltage Dips and Interrupts</td>
</tr>
<tr>
<td>EN 61000-3-2: 2006 Class A</td>
<td>Harmonic Current Emissions</td>
</tr>
<tr>
<td>EN 61000-3-3: 1995, Amendment 2: 2006</td>
<td>Limits; Voltage Changes, Fluctuations, and Flicker</td>
</tr>
</tbody>
</table>

EU Low Voltage Directive 2006/95/EC:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 60825-2:2004</td>
<td>Safety of laser products. Safety of optical fibre communication systems (OFCS)</td>
</tr>
<tr>
<td>IEC 61010-1: 2001</td>
<td>Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements</td>
</tr>
<tr>
<td>EN 61010-1: 2001</td>
<td>Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements</td>
</tr>
<tr>
<td>EN 61010-2-081/A1: 2003</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use. Particular requirements for automatic and semi-automatic laboratory equipment for analysis and other purposes</td>
</tr>
<tr>
<td>Standard</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>UL 61010-1/R: 2005-07</td>
<td>Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements</td>
</tr>
<tr>
<td>CAN/CSA C22.2 No. 61010-1:2004</td>
<td>Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements</td>
</tr>
<tr>
<td>CAN/CSA C22.2 No.61010-2-081: 2004</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use. Particular requirements for automatic and semi-automatic laboratory equipment for analysis and other purposes</td>
</tr>
</tbody>
</table>
Regulatory

This device complies with Part 15 of FCC Rules (Table 6.6). Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

This device complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulation.

Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouillier du Canada.

Table 6.6 Regulatory Certifications

<table>
<thead>
<tr>
<th>Regulatory Agency</th>
<th>Certification</th>
</tr>
</thead>
</table>
| Class 1 Laser Device | Complies with EN 60825-1:2007
Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007 |
| Hand held barcode reader is a Class 2 laser device | Complies with EN 60825-1:2007
Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007 |
| | Compliant with directive 2002/96/EC (WEEE) |
Controlling the GeneTitan® Instruments

GeneTitan Array Plates need to be run through the following steps in the array plate processing workflow (Figure 7.1):

- Hybridization
- Washing and Staining
- Imaging

GeneTitan Array Plates are processed using one of the following GeneTitan instruments:

- GeneTitan Multi-Channel (MC) instrument, for genotyping and expression array plates
- GeneTitan Instrument (Single-Channel), for expression array plates only

There are differences in the workflows for genotyping array plates and expression array plates. This chapter describes the functions of GeneTitan Instrument Control that are common to both genotyping and expression array plates:

- Introduction, below
- Overview of the GeneTitan Workflow on page 216
- Tracking the Array Plate Through the Workflow on page 219
Introduction

The introduction describes:

- **AGCC GeneTitan Instrument Control Software**, below
- **The GeneTitan Family of Instruments** on page 214

AGCC GeneTitan Instrument Control Software

The AGCC GeneTitan Instrument Control software is used to control the GeneTitan Instruments.

IMPORTANT: A computer used as a GeneTitan workstation requires a user account with specific privilege settings. In addition, some of the other features of Windows XP or Windows 7 must be set up in particular ways or disabled to avoid causing problems when running GeneTitan IC software.

A workstation set up by Affymetrix for use with GeneTitan has a user account called AFFXUser with these privileges and features already set. If the settings have been changed, refer to the **AGCC Installation Instructions** for information about the correct settings.

IMPORTANT: If the GeneTitan workstation becomes unstable during a workflow the cost of an aborted workflow and replacement plates is substantial. To avoid this, Affymetrix recommends:

- Rebooting the instrument control computer weekly. Windows XP users, see **Preventative Maintenance (Windows XP)** on page 233. Windows 7 users, see **Preventative Maintenance (Windows 7)** on page 235.
- Following the recommendations and performing the procedures described in **Computer Practices, Maintenance and Troubleshooting** on page 232.

To start the AGCC GeneTitan Instrument Control software:

- Click the AGCC GeneTitan Instrument Control icon in the Affymetrix Launcher; or
- Click the Microsoft® Windows® Start button and select Programs → Affymetrix → Command Console → AGCC GeneTitan Control.

The AGCC GeneTitan Instrument Control window opens.

See **Figure 7.2** on page 206 for 96 array plate AGCC GeneTitan Instrument Control window example.

See **Figure 7.3** on page 207 for 384 array plate AGCC GeneTitan Instrument Control window example.
Figure 7.2 AGCC GeneTitan Control software, System Status Tab

Menu Bar
Tool Bar
System Setup/ System Status tabs

Status Bar

Progress Bar
The software goes through the initialization process and starts the GeneTitan instrument. You can track the initialization process in the Hybridization Status pane (Figure 7.4); when the initialization is completed, System Ready is displayed in the log, and you can display the Setup tab.
You may see notices about:
- Lamp Life setting (see *Resetting the Lamp Life Clock (GeneTitan MC Only)* on page 231)
- Insufficient Disk Space (See *Insufficient Disk Space Notice* on page 231)

The software has the following components:

Menu bar Provides access to IC functions.

Tool bar Provides quick access to frequently used functions (see below).

System Setup/ System Status tabs
- **System Status Tab** on page 209, below: Use to track the progress of array plates through the workflow.
- **System Setup Tab** on page 209: Use to set up the GeneTitan Instrument for different workflows.

Status bar and Progress bar Displays information about the status of the GeneTitan Instrument and the workflow in progress.

Toolbar Buttons
The Stop button is used to abort the array process. The software will ask the user to select which process is to be aborted if there are two or more plates running in the instrument. See *Aborting a Run* on page 224.

The Email button opens the AGCC Email Configuration File Editor, which allows you to send email messages about the instrument status. See *Appendix D, Configuring E-mail for the Notification Options* on page 325 for more information.

The Help button opens the AGCC Online help file.
System Status Tab

The System Status tab (Figure 7.5) displays the progress of any currently loaded array plate(s).

![Figure 7.5 System Status Tab](image)

It has the following sections:
- Workflow
- Hybridization Oven Status
- Fluidics Status
- Imaging Device Status

The System Status tab is described in more detail in *Tracking the Array Plate Through the Workflow on page 219*.

System Setup Tab

The System Setup tab is used to:
- Specify the type of workflow you wish to perform
- Enter a barcode for the array plate being processed
- Unload and load trays and plates
- Select arrays on the array plate for imaging
The tab has three sections:

System Setup Use to enter essential information and track progress of the setup and loading of the array plate and trays.

System Layout Indicates the drawers where different trays and array plates should be loaded. The system layout will change based on whether Genotyping or Expression arrays are being processed.

Array Selection Allows you to select individual arrays on the array plate for imaging.
System Setup

Figure 7.7 Setup Option pane

Plate Information

Workflow Steps

Status pane

Please scan the array plate barcode.
Press the Next button to advance to the next step.
The Setup Option pane (Figure 7.7) has the following controls and displays:

Setup Options dropdown box
Select from the following workflow options:
- Hyb-Wash-Scan
- Hyb-Wash
- Wash-Scan
- Wash-Scan-Resume
- Scan
- Unload Plates

See *Running a Series of Array Plates* on page 219 for more information.

Plate Information, with

Barcode
Barcode of the array plate.

Plate Type
Array Plate type.

Protocol Name
Name of protocol used for array plate processing.

Location
Side of drawer to load consumables.

Workflow Steps
List of the sets of steps to be performed during the operation.

Status
Displays information on the specific step to be performed, with
- The plates and trays that need to be removed or placed.
- The drawer position the plates and trays should be placed in.

Cancel
Cancel the setup.

Next
Proceed to the next step (not displayed when performing a step that requires you to press the Confirmation button on the front of the instrument).

System Layout
The System Layout pane (Figure 7.8) displays:
- Schematic view of the drawers to be loaded
- Indication of plate/tray position in drawer

NOTE: Different reagent trays are loaded when processing genotyping array plates and expression array plates. The correct trays are selected for display when the array barcode is entered, as shown in the figure below.
Array Selection

Figure 7.9 Array Selection (96 and 384 Array Plate layouts shown)

The Array Selection pane (**Figure 7.9**) displays the arrays to be scanned on the array plate:

- Manual array selection checkbox
- Plate Layout indicator, where you can:
 - Review the arrays available on the array plate
 - Determine which are to be scanned

IMPORTANT: When running a series of array plates through the instrument, you must be careful to remove and load the proper array plate and trays and pay careful attention to the software prompts that tell you which side of the open drawer to remove or place a plate or tray.
Manually select arrays to be scanned on the plate

NOTE: By default, all arrays are selected for imaging.

The array selection process is described in the instructions for loading array plates in:
- Expression Assay Manuals
- *Axiom Genome Wide Human Assay User Manual, PN 702830*

The GeneTitan Family of Instruments

Affymetrix designed the GeneTitan Family of Instruments to serve medium to high throughput customers. This system supports 16, 24 and 96 well high throughput array plates and will support future array plate formats. The system integrates a hybridization oven, a fluidics station, and an imaging device.

Array Plates can be run on two different GeneTitan instruments:
- GeneTitan MultiChannel (MC) Instrument
- GeneTitan Instrument (single channel) (*Figure 7.10*)

Refer to the *GeneTitan® Instrument User's Guide* for more information.

GeneTitan Multi-Channel (MC) Instrument

The GeneTitan MC Instrument can process both Expression Arrays and WGA Genotyping Assay. The instrument uses an external 300W Xenon lamp and has multiple filters to provide stable, efficient, well-collimated, uniform illumination to the array, optimizing exposure time to minimize photo-bleaching effects and maximize throughput.

GeneTitan Instrument (Single-Channel)

The GeneTitan Instrument (single-channel) can only process Expression Arrays. The instrument has a single-channel emission filter with a high intensity stable LED excitation source.

Figure 7.10 GeneTitan MC Instrument
GeneTitan Instrument Controls and Indicator Lights

The figure below shows the location of the wash bottles, loading drawers, and other controls for GeneTitan instruments.

Figure 7.11 GeneTitan Instrument

1. Input/Output Drawer #1
2. Input/Output Drawer #2
3. Input/Output Drawer #3
4. Input/Output Drawer #4
5. Input/Output Drawer #5
6. Input/Output Drawer #6

7. Confirmation Button (to open/close drawers)

8. Waste Bottle
9. Wash A Bottle
10. Wash B Bottle
11. Rinse Bottle (DI Water)
12. Fluidics Station
13. Trash Bin Door for Waste Chute
14. Imaging Device

WARNING: The bottles are pressurized in normal operation. Wait until you see the prompt that the buffer bottles have been depressurized before opening and refilling or emptying the bottles.
The GeneTitan Instrument uses the indicator lights and button below (Figure 7.12).

Confirmation button: Press after completing certain steps for instrument setup, like adding fluids or adding trays and plates.

The button flashes blue when a step is pending.

Instrument Status lights:
- Solid yellow - initialing/homing system
- Solid Green - processing/available to process
- Blinking green - normal operation message box is displayed and requires user input
- Blinking yellow - abnormal event informational message box requires user response

All power to the instrument is turned on when the AGCC GeneTitan Control software is started and turned off when the software is shut down. The I/O switch on the front of the instrument is inoperative when the instrument is being controlled using the software.

IMPORTANT: Do not make use of I/O switch on instrument panel to start/stop instrument. Use the menu item in the software.

Overview of the GeneTitan Workflow

Running an array plate through the GeneTitan workflow involves the following sets of steps:

1. Set up the Instrument:
 - A. Prepare plates and trays with samples and solutions, including buffer solutions.
 - B. Select type of workflow to be performed.
 - C. Select the Protocol, if required.
 - D. Refill Bottles.
E. Remove used trays, plates and covers from the instrument.

2. Load new trays, plates and covers.
 There are different procedures for the different array and workflow types:
 - Expression Assay manuals
 - Axiom Genome Wide Human Assay User Manual, PN 702830

3. Begin Array processing and track the array plate through the workflow.

4. Empty the instrument.
 You can:
 - Select only part of the overall processing workflow to run (see Workflow Options on page 217)
 - Run a series of array plates through the workflow for high-throughput operation (see Running a Series of Array Plates on page 219)

Workflow Options

There are three sets of steps performed by the GeneTitan Instrument for array plate processing:

- Hybridization
- Wash and Stain
- Imaging (Scan)

The software allows you to perform all of these steps, or to select an option that runs only some of the steps, as described below.

You can choose from:

- **Hyb-Wash-Scan**
 This workflow performs all the steps on the array being processed.
 - Hybridization
 - Wash and Stain
 - Scan

- **Hyb-Wash**
 The Hyb-Wash workflow enables you to bypass the Scan step, performing only:
 - Hybridization
 - Wash and Stain

- **Wash-Scan**
 The Wash-Scan workflow enables you to bypass the Hybridization step, performing only:
 - Wash and Stain
 - Scan

- **Wash-Scan-Resume**
 This allows you to resume an interrupted workflow at any point in the Wash stage. See Using the Wash-Scan-Resume Workflow on page 228.

- **Scan**
 The Scan workflow performs the scan only.

You select the different workflows during instrument setup.

IMPORTANT: Once bottles are refilled, ensure that bottle caps are on tight.
Selecting the different workflows may require loading the array plate on a different tray (array plate cover, hybridization tray, or scan tray). In addition, there are differences in how the workflows are performed on genotyping arrays and expression arrays.

These differences are covered in:
- Expression Assay manuals
- Axiom Genome Wide Human Assay User Manual, PN 702830

Differences in Processing for Genotyping and Expression Arrays

There are two types of Array Plates that can be processed using the GeneTitan instruments
- Genotyping array plates
- Expression array plates

Genotyping Array Plates

Genotyping Array Plates can be processed only on GeneTitan MC instruments, since they need to be scanned at two different wavelengths.

For genotyping arrays, the reagents trays need to be loaded twenty-four hours after the array plate and hybridization tray have been loaded, after hybridization has completed.

Needed reagents trays are:
- 2 each Stain1 trays with covers
- Ligation tray with cover
- Stain 2 tray with cover
- Stabilizing tray with cover
- Scan tray with holding buffer and cover

See the Axiom Genome Wide Human Assay User Manual, PN 702830, for more information on running genotyping array plates.

Expression Array Plates

Expression Array plates can be processed on GeneTitan and GeneTitan MC instruments.

Needed trays/reagents are:
- SAPE 1 Stain tray with cover
- AB Stain Tray with cover
- SAPE 2 Stain tray with cover
- Scan tray with holding buffer and cover

See the Expression Assay manuals for more information.
Running a Series of Array Plates

The GeneTitan Instrument can run two different workflows for the same probe array type at the same time. This enables you:

- To load a series of array plates with hyb trays and consumables for the Hyb-Wash-Scan workflow to process arrays more quickly.
- To run an array plate that was processed using a different system through the scan workflow while another array plate is going through earlier stages of the Hyb-Wash-Scan workflow.

Only certain types of workflows can be run at the same time, and delays may be necessary before starting the second workflow. These restrictions exist because an array plate should be scanned immediately after the wash and stain processing is finished, and GeneTitan scans one array plate at a time. In addition, there are restrictions caused by the differences in workflows for Genotyping arrays and Expression arrays, and by differences in the number of arrays on the plates. For more information, see:

- Expression Assay manuals
- *Axiom Genome Wide Human Assay User Manual, PN 702830*

Tracking the Array Plate Through the Workflow

You can review the progress of the Workflow in the System Status tab (Figure 7.14).

![Figure 7.14 AGCC GeneTitan Control software, System Status Tab](image)

It has the following sections:

- *Workflow Status*, below
Workflow Status

The Workflow pane provides an overview of the array processing (Figure 7.15).

The Work Flow table lists the array plates and their status in the workflow, with the following information:

- Barcode of array plates being processed
- Plate Type
- Location
- Hyb. Status
- Fluidics Status
- Scan Status
- Estimated Completion Time

The Estimated Time Window information on when the next hyb-wash-scan workflow can be run:

- Array Type

NOTE: If more than three arrays are loaded at a time, a scroll bar appears at the right side of the table.

The Estimated Time Window information on when the next hyb-wash-scan workflow can be run:

- Array Type

NOTE: You cannot select a different array type for the next array to be run.

- Time when you can load the next array plate and other consumables.

NOTE: When processing genotyping Arrays, once processing begins you have a specified period of time during which you can load another Array Plate and hyb tray. You cannot load another array plate before or after this period of time.

Hybridization Status

The Hybridization Status pane displays details of the hybridization operations that have been run. The pane can display information for two array plates that are being processed at the same time.
The pane displays the following information:

- **Position 1**
 - Barcode of the array plate(s) being processed
 - Time Remaining

- **Position 2**
 - Barcode
 - Time Remaining

- **Oven Temperature**
 - Current
 - Yellow: out of range
 - Green: in range
 - Target

- **Log**: displays history of the operations performed in the Hybridization stage.
The Fluidics Status window (Figure 7.17) displays information on the wash and stain operations that have been run or are currently being run.

Figure 7.17 Fluidics Status

- Barcode of the array plate being processed
- Protocol Name
- Time Remaining
- Temperature for the protocol step
 - Current
 - Yellow: out of range
 - Green: in range
 - Target
- Protocol Tab:
 - displays list of steps in the protocol with:
 - Step
 - Task: short description of the task
 - Time
 - Status: Task pending, in process, or completed?
- Log tab: displays history of the operations performed in the Fluidics stage.
Imaging Device Status

The Imaging Device Status pane (Figure 7.18) displays the progress of the scan.

It displays:
- Barcode of the array plate currently being scanned
- Time Remaining for scan
- Lamp Life/Imaging Device Status (see Lamp Life/Imaging Device Status Notices, below, for details)
- Plate Status tab with:
 - Array Plate Layout
 - Each square represents an array with the following options:
 - (dark blue) Will be scanned.
 - (light blue) Now Imaging.
 - (white) Will Not Be Scanned.
 - (green) Scan Completed.
 - (red) Scan Failed.
- Log: displays history of the operations performed in the Fluidics stage.
Lamp Life/Imaging Device Status Notices

The Imaging Status pane displays lamp life and Imaging Device status notices for the GeneTitan MC. In normal operation, the pane displays the hours of life left in the lamp:

- It displays a red or yellow notice when the lamp life is getting short:

![Figure 7.19 Lamp Life above tolerance](image)

- It also displays a red notice when the Imaging Device is offline:

![Figure 7.21 Imaging Device Offline](image)

NOTE: The 300 Watt Xenon lamp in the GeneTitan MC instrument is warranted for 500 hours. To replace the lamp refer to the instructions in the GeneTitan instrument manual. After changing the lamp, it is necessary to reset the lamp life clock manually. See [Resetting the Lamp Life Clock (GeneTitan MC Only)](page 231) for more information about the clock.

Aborting a Run

You can abort a run if necessary.

IMPORTANT: If you wish to abort a run while loading reagents for a genotyping array plate, you must use the Cancel button in the toolbar. During reagent load the abort function will not be available for the plate for which reagent trays are being loaded.

For information on aborting a run because of facility power loss, see [Facility Power Loss on page 226](page).
The Abort DB has the following components:
- Plates Being Processed List with the following columns:
 - Select checkbox
 - Barcode
 - Plate Type
 - Location
- Current Step: explains the next step in the procedure.
- Abort and Cancel buttons.

2. Click the Select checkbox for the plate whose run you wish to abort.

3. Click Abort.
 The software asks for confirmation.

 Click Yes to continue with the Abort process.

 NOTE: The abort process may take some time to complete. Wait until it is finished before trying to perform any other operations.

When abort is completed, you can see the notice in the Status tab (Figure 7.24).
If the array plate is in the Hyb Oven, it is placed in Drawer Number 1
If the array plate is in Fluidics when the abort is ordered, it is placed in the Scan tray.
You will need to unload the loaded plates and trays in a second step, using the Unload function or the unload steps during a setup.

Facility Power Loss

If facility power is lost and the UPS backup power battery percent remaining drops below 75%, the software will automatically abort all running plates. This automatic abort is intended to protect the plates by bringing all running plates out to the drawers for removal. However, if the user is in the setup tab performing setup steps (loading the machine) the software is prevented from performing the required abort sequence.

If facility power is lost and the user is notified that the UPS power percent remaining drops below 75%, the user should cancel the loading operation to initiate the abort sequence.

To cancel the loading operation and setup:
- Select Cancel in the system setup tab.

Unload Plates

The Unload Plates function can be used to empty the GeneTitan drawers after performing an abort operation.

To unload loaded plates:
1. Select Unload Plates from the Setup Option dropdown list (Figure 7.25).

![Figure 7.25 Selecting workflow](image)

The application prompts you to empty the cover trash bin.

2. Perform the following steps:
 - A. Open the trash bin door.
 - B. Remove and empty the trash bin.
 - C. Return the trash bin and close the door.

3. Press the **Confirmation** button to proceed.
 The application prompts you to unload previously loaded plates and trays.
 For each loaded plate or tray:
 - The appropriate drawer opens (Figure 7.26).
The status box prompts you to remove the tray or plate and the system layout indicates the array or tray to remove (Figure 7.27).

IMPORTANT: When running a series of array plates through the GeneTitan Instrument, you must be careful to remove and load the proper array plate and trays and pay careful attention to the software prompts that tell you which side of the open drawer to remove or place a plate or tray.
Remove any plate, plate receptacle, or tray from the drawer (Figure 7.27), then press the Confirmation button on the front of the instrument.

When you have finished emptying the old plates and trays, the software prompts you to proceed to the next step.

Using the Wash-Scan-Resume Workflow

The Wash-Scan-Resume can be used to resume an interrupted workflow on an array plate. The Abort process places the Array Plate on the Scan Tray; you will need to manually put the array on a blue tray before resuming the workflow.

Affymetrix recommends using a new scan tray for the resumed workflow.
To resume an interrupted workflow:

1. Select **Wash-Scan-Resume** in the setup process.

![Figure 7.28 Select Option--Wash-Scan-resume](image)

2. Enter the barcode for the interrupted array. The Resume Plate dialog box appears.

![Figure 7.29 Resume Plate dialog box](image)

The Resume Plate dialog box lists:
- Plate barcode
- Protocol that had been selected to run the array.
- Step where the process needs to be resumed.

3. Click **Yes** to proceed with the resume. The ResumeStep dialog box opens.

![Figure 7.30 ResumeStep dialog box](image)

The Steps dropdown list displays the uncompleted steps.
The list of unfinished steps will be different for:
- Expression arrays versus Genotyping Arrays
- Arrays interrupted in different parts of the workflow

4. Select the step in the workflow where you wish to resume.

5. Enter the time you wish to run the first step in the Time to Process box.
 You cannot change the processing time for certain steps, and cannot set the time to longer than the protocol specifies.

6. Click OK to resume the workflow.

7. Follow the instructions in the software steps for loading the array and trays.
 You must load the array plate on a blue array base.

Affymetrix recommends using a new scan tray for the resumed workflow.
You must load all the trays for the original workflow; if you know you are going to skip a particular step, you can load an empty tray in the designated location for that step.
Drop and Scan with Array Plates

While you can register an array plate and its arrays using the AGCC Portal GeneTitan Array Plate Registration before processing, you can also process an array plate that has not been registered by using the Drop and Scan feature for array plates. When using Drop and Scan, the ARR, DAT, and CEL files for each array are named using the barcode and array position.

See GeneTitan Array Plate Registration on page 111 for more information about registering an array plate.

To use Drop and Scan:

1. Set up and load the GeneTitan Instrument as required for the workflow you are performing.
2. Process the array plate.
 - If the array plate has a valid barcode, it will be processed and scanned. The ARR, DAT, and CEL files for each array are named using the barcode and array position and placed in the designated Default folder.
 - For more information about the Default folder, see:
 - Default Folders on page 23
 - Specifying a Default Folder on page 67
 - If the instrument cannot read the barcode, or if there are no library files on the system for array plates with that part number, the array plate is ejected and an error notice appears.

Insufficient Disk Space Notice

If there is not enough memory on the computer’s drives to save the data from an array plate, a notice appears when:

- You first initialize the software and instrument
- You select arrays for imaging.

If you see this notice, you will need to free up sufficient disk space before imaging starts.

Resetting the Lamp Life Clock (GeneTitan MC Only)

The GeneTitan MC uses a xenon arc lamp system to provide illumination for imaging the array at two wavelengths. The xenon lamp has a limited lifetime and needs to be replaced at regular intervals.

The GeneTitan Instrument Control software provides a timer that indicates the remaining useful light of the bulb and notifies you when it requires replacement.

The replacement procedure is described in the GeneTitan MC Instrument User Guide. After replacing the bulb, you will need to reset the time, as described below.

If life of bulb is under a specified limit, the following notice appears when you open the software (Figure 7.34):
If you click **OK**, the confirmation notice appears:

![Figure 7.34 Lamp Life Management notice](image)

If you click **OK**, the confirmation notice appears:

![Figure 7.35 Reset dialog box](image)

Click **Yes** to reset the lamp life timer to the specified time.

Click **No** to cancel.

Computer Practices, Maintenance and Troubleshooting

If the GeneTitan workstation becomes unstable during a workflow the cost of an aborted workflow and replacement plates is substantial. To avoid this Affymetrix recommends following certain computer operation practices and preventative maintenance routines.

These are described in:

- *Computer Operation Practices*, below
- *Preventative Maintenance (Windows XP)* on page 233
- *Preventative Maintenance (Windows 7)* on page 235
- *Troubleshooting* on page 236

Computer Operation Practices

The following computer operation practices are recommended to help prevent problems.

Hard drive

For the instrument control system, it is recommended to keep all drives at a maximum of 50% full. If there is more data on the workstation, the system tends to slow down. If keeping data on the hard drives is absolutely necessary, the drives need to be defragmented regularly (i.e., depending on the amount of data, every two weeks or monthly defragmentation is recommended).

USB Memory Drives/Memory Stick

When USB drives or memory stick(s) are connected to the workstation, please properly disconnect them (safely remove hardware) before physically pulling them off.
Scanning Plates
If the GeneTitan system is scanning a plate or running fluidics, try not to run any other applications while the instrument workstation is running.

Moving data (DAT, CEL, etc.)
When archiving data or moving data off the workstation, it is highly recommended to do this process when scanning or running fluidics is not in process. The scanning process will be very slow if data is being moved at the same time.

Preventative Maintenance (Windows XP)
The following procedures should be performed on a regular basis on the GeneTitan workstation computer:

- Reboot the Computer
- Performing a Disk Defragment Procedure on page 233

Reboot the Computer
The GeneTitan Workstation computer should be rebooted on a weekly basis.

To reboot the computer:
1. Click the Start button, then select Shut Down....
 The Shut Down Windows dialog box appears (Figure 7.36).

2. Select Shut down or Restart from the drop-down list and click OK.
 NOTE: You must select Shut Down or Restart to reboot the computer. The other options (Log off and Sleep) will not work.

3. After the computer shuts down, restart it and log back in using the AFFXUser account.

Performing a Disk Defragment Procedure
The drives on the GeneTitan workstation need to be defragmented regularly (ie: depending on the amount of data, every two weeks or monthly defragmentation is recommended).

To perform disk defragmentation:
1. Click the Start button, then click Programs → Accessories → System Tools → Disk Defragmenter.
 The Disk Defragmenter window appears (Figure 7.37).
The window displays a list of drives with information about capacity and free space.

2. Select the disk you wish to defragment from the list.

3. Click **Analyze**.
 The Analyze process runs.
 When the process is finished, the Analysis Complete dialog box appears (Figure 7.38).

4. Click **Defragment**.
 The Disk Defragmenter process runs (Figure 7.39).
When the defragmentation process is finished, the notice appears (Figure 7.40).

5. Click Close in the notice.

Preventative Maintenance (Windows 7)

The following procedures should be performed on a regular basis on the GeneTitan workstation computer:

- Reboot the Computer
- Performing a Disk Defragment Procedure on page 233

Reboot the Computer

The GeneTitan Workstation computer should be rebooted on a weekly basis.

To reboot the computer:

1. Click the Start button, then click Shut down or Restart. (Figure 7.41)
2. After the computer shuts down, restart it and log back in using the AFFXUser account.

Performing a Disk Defragment Procedure

The drives on the GeneTitan workstation need to be defragmented regularly (ie: depending on the amount of data, every two weeks or monthly defragmentation is recommended).

To perform disk defragmentation:
1. Click the Start button, then click All Programs -> Accessories -> System Tools -> Disk Defragmenter.
 The Disk Defragmenter window appears.
 The window displays a list of drives with information about capacity and free space.
2. From the list, click to select the disk you wish to defragment.
3. Click Analyze disk.
 The Analyze process runs.
 When the process is finished, the Analysis Complete dialog box appears.
4. Click Defragment disk.
 The Disk Defragmenter process runs.
 When the defragmentation process is finished, the notice appears, click Close.
5. Close the Disk Defragmenter window.

Troubleshooting

If the GeneTitan IC Window and Taskbar Icon Disappear

The GeneTitan IC window may disappear from the computer screen while, at the same time, the Taskbar icon for GeneTitan IC disappears. If this happens, restore the window and icon by doing one of the following.

Solution 1
 The Windows Security dialog box appears.
2. Click Task Manager.
 The Windows Task Manager dialog box appears (Figure 7.42).
3. Click **New Task ...**
 The Create New Task dialog box appears (Figure 7.43).

4. Enter explorer.exe and click **OK**.
 The Task Bar should be displayed
5. Press the icon for GeneTitan in the taskbar to display the GeneTitan window.

NOTE: The explorer.exe application must be running properly to display the Taskbar at the bottom of the screen. The above procedure will launch explorer.exe to re-display the Taskbar.

Solution 2

1. Press and hold down Alt/Tab keys
 A list of icons for active applications will appear
2. Keep pressing the Alt key and hit/release the TAB key to select the icon with the GeneTitan icon.
3. When selected, release the Alt key.
 The GeneTitan IC window re-appears.
Using the AGCC Viewer

After the array has been scanned (Figure 8.1), AGCC:

- Aligns a grid on the Image (DAT) file to identify the probe cells.
- Computes the probe cell intensity data for the array and creates a CEL file.

The AGCC Viewer displays DAT, CEL, and JPG files and enables you to:

- Track the progress of the data through grid alignment and cell intensity generation.
- View the files for quality control purposes, such as detecting scratches and bubbles.
- Check the grid alignment and realign the grid, if necessary.

See Checking the Grid Alignment on page 275.

NOTE: Realigning the grids will update DAT headers and break the parent-child relationship between DAT files and existing CEL files until the CEL files are regenerated.

- Create a JPG version of a DAT file for archiving.

See Exporting Images in Other Formats on page 286.
This chapter describes the operation of the AGCC Viewer in the following sections:

- **Array and Grid Types**, below
- **Introduction to the Viewer** on page 246
- **Using the Review Window** on page 252
- **Opening Image Files** on page 257
- **Using the Review Window** on page 252
- **Learning about the Image File** on page 273
- **Checking the Grid Alignment** on page 275
- **Exporting Images in Other Formats** on page 286

NOTE: Norton Antivirus can interfere with AGCC software. The symptom is that AGCC will stop generating CEL files. If that problem occurs, then you should check the Norton Anti-Virus settings as described in Appendix B, *Settings for Norton Anti-Virus* of the AGCC 4.0 Installation Instructions (P/N 702567).

Array and Grid Types

The Alignment algorithm uses the checkerboard image of the control probes, located at the corners of the probe array, to superimpose a grid on the scan image. The algorithm aligns the grid so that each square in the grid delineates a probe cell.

The alignment of the grid and subgrids usually takes place automatically after imaging the array. The status of the alignment can be tracked in the Review window (see page 252). If the alignment algorithm fails, you can perform a manual alignment of the main grid and/or subgrids.

Different types of arrays use different grid types, as described in:

- **Cartridge Arrays**
- **GeneTitan® Array Plates** on page 242

Cartridge Arrays

Cartridge Arrays can use:

- **Main Grid Only** (Figure 8.2)
- **Main Grid with multiple Subgrids** (Figure 8.3)
 The position of each sub-grid can be adjusted independent of the other sub-grids.
Each subgrid is identified by its row and column in the main grid. The corners of each subgrid are marked on the array by specific alignment patterns; the anchors of the subgrid are aligned to these patterns (Figure 8.4).
The software uses the corner patterns at the 4 corners of the array to align the initial main grid. The main grid is then divided into smaller subgrids. Each subgrid is aligned on the corner grid patterns in the final steps of the gridding algorithm and in manual alignment.

GeneTitan® Array Plates

Plate Arrays use:
- Subgrids only without a main grid (Figure 8.5)

There are two different types of GeneTitan array plates:
- *GeneTitan Expression Array Plates* on page 243
- *GeneTitan Genotyping Array Plates* on page 245
GeneTitan Expression Array Plates

An array plate can have up to 96 arrays (see GeneTitan Array Plate Registration on page 111 for more information).

Each plate array on the array plate has multiple subgrids. Some arrays use a 7 x 7 grid, for a total of 49 subgrids, while other array types use a 7 x 6 grid, for a total of 42 subgrids.

These sub-grids are similar to the sub-grids used for some cartridge arrays, but on a plate array the sub-grids are not aligned to a main grid.

In addition, the data for all the mini-DAT files is consolidated into a single DAT file. This DAT file can be viewed in the Image Viewer; the file has all the image and gridding data for each subgrid and each exposure, and allows you to check the gridding independently for each exposure.
Relationship between plate arrays, Mini-DAT files, Mini-CEL files, and DAT files

Mini-DAT files

The array is scanned twice with different exposure times. Each scan produces a mini-DAT file for each subgrid, for a total of up to 98 different mini-DAT files.

Mini-CEL files

The data from each exposure is used to determine the cell intensity data for each subgrid. This data is kept in a mini-CEL file. In this example, there would be 98 mini-CEL files for an array, with two mini-CEL files for each subgrid.

DAT file

The data for all the mini-DAT files is consolidated into a single DAT file. You can use the DAT file to view the individual subgrids for each exposure and to correct problems with Gridding.

The mini-CEL files for each exposure are merged into a single merged CEL file (.mgcel) (Figure 8.7), resulting in two merged CEL files per plate array.

The data in these two merged CEL files is then consolidated in a single CEL file, which is used for further analysis and can be viewed in the Image Viewer for QC purposes.
The mini-DAT files, mini-CEL files and merged CEL files will be deleted during normal processing. If something goes wrong, you may find these file types in the target folder during a scan. Also, when importing plate array data from GCOS using DEC, you need to import the mini-DAT files.

GeneTitan Genotyping Array Plates

GeneTitan Genotyping array plates are handled similarly to the Genetitan Expression arrays, except that the arrays are scanned at two different wavelengths, instead of two different exposure times.
Introduction to the Viewer

You can learn more about the basic functions of the AGCC Viewer in:

- Opening the Viewer, below
- File Display Differences on page 247
- Moving the Components Out of the Viewer on page 249
- Moving the Component Borders in the AGCC Viewer on page 251

Opening the Viewer

To start the AGCC Viewer:

- In the AGCC Launcher, click the AGCC Viewer icon ; or
- Click the Microsoft® Windows® Start button and select Programs → Affymetrix → Command Console → AGCC Viewer.

The Command Console® Viewer opens (Figure 8.8).

The viewer has the following components when it first opens:

- Viewer menu
- Viewer tool bar
- Review window (optional) (see Using the Review Window on page 252)
- Status bar: displays cursor position and intensity of selected pixel/cell

Additional components are visible when a DAT or CEL file is displayed (Figure 8.9)
To learn about the Image window tool bar, see *Changing the Display of the Image* on page 266.

To learn about the Properties box, see *Learning about the Image File* on page 273.

To learn about the Grid box, see *Checking the Grid Alignment* on page 273.

File Display Differences

The AGCC Viewer has different types of functions and options for the different image file types that it displays:

DAT Files

DAT files are the image data files, the product of the initial scan. They are used to generate the cell intensity data file after the grid has been aligned.

The DAT file must be opened to perform manual gridding or to run the grid alignment algorithm in the AGCC Viewer.

If the cell intensity data (CEL) file has been generated, you can click the **Cell Intensity** button and view the cell intensity data in the DAT Image window.

GeneTitan Expression Array Plate DAT File Exposures

Each array is scanned twice, with different exposure times. The image data from both exposures are in the GeneTitan Array Plate DAT file. You can switch between the different exposures for checking the gridding, etc., by using the Exposure button (see *Displaying Different Exposures (GeneTitan Expression Array Plate DAT Files Only)* on page 270).
GeneTitan MC Genotyping Array Plate DAT File Exposures

In GeneTitan MC each array is scanned twice, with different colors. The image data from both exposures are in the GeneTitan MC Array Plate DAT file. You can switch between the different exposures for checking the gridding, etc., by using the Exposure button (see Displaying Different Exposures (GeneTitan Expression Array Plate DAT Files Only) on page 270).

CEL Files

CEL files are cell intensity data files, produced using the DAT file data after gridding and feature extraction.

You cannot perform grid alignment or cell generation on a CEL file.

For certain types of probe arrays, failed control features in the array will be masked when viewing the cell intensity data (see Viewing Failed Control Features, below).

JPG Files

JPG files are a copy of the DAT image in a standard image file format; they provide an image file with a reduced file size for QC inspection, archiving, and publication.

Viewing Failed Control Features

For certain types of probe arrays, the cell intensity analysis also generates a Cell Summary Report. The report has information on the control features on the array that failed certain quality checks.

The failed control features are masked when viewing the cell intensity data in these cases (Figure 8.10).

![Figure 8.10 Cell intensity data with failed control features masked](image)

See Changing the Grid and Intensity Display on page 269 for more information about controlling the grid and intensity display.

See Appendix C, Cell Summary Report on page 319 for more information about the cell summary report.
Moving the Components Out of the Viewer

You can move the following components to a different location on your screen by clicking in the title bar and dragging the box to the new location (Figure 8.11).

- Properties box
- Grid box
- Review window

You can move the Image window outside of the Viewer by clicking on the file name tab and dragging the window out of the viewer.

To dock the boxes back in the AGCC Viewer:

- Double-click on the box title bar or the file name tab in the Image window.

To choose a new location for the box:

1. Click on the title bar and drag the box back into the AGCC Viewer.

 The docking hints buttons appear in the Viewer (Figure 8.12).
2. Move the Cursor to the docking hint button. A gray box appears to show where the box will dock.
3. Release the mouse button. The box is docked in the selected location.

The Box title bar contains some controls for the Properties and Grid boxes (Figure 8.13):

To close a box:
- Click the Close button

To use the Autohide feature:
- Click the AutoHide button in the box.
 The box is closed, and a tab is displayed on the left side of the window (Figure 8.14).
To display a hidden box temporarily:
- Place your cursor on the tab.

To restore a hidden box:
- Display the box and click on the AutoHide button.

Moving the Component Borders in the AGCC Viewer
You can change the relative size of a component in the Viewer by moving the borders of that component.

To change the size of the component:
1. Move the cursor over the border until it changes to a double arrow.
2. Click and drag the cursor to change the size of the area (Figure 8.16).
Using the Review Window

The Review window, at the bottom of the viewer (Figure 8.17), displays a list of DAT files for scanned arrays. The window includes various information on the DAT files, including the grid alignment and cell generation status.

The Toolbar provides access to different functions of the window.

The Review window displays a list of the scans performed with the following information:

Status Icon
- In progress
- Finished
- Failed

Date Scanned
Date and time the array was scanned.

Barcode
Array Barcode.
To enable or disable the Review window:

- From the View menu, select **Review Window**.

The Review window displays a list of the scanned arrays with their DAT files and their grid alignment and cell generation status.
To display a listed DAT file:

- Double-click on the file in the list.

 If the workflow is associated with more than one DAT file, the Choose File to Open dialog box opens (Figure 8.18).

![Choose File to Open dialog box](image)

- Select the DAT file to open and click the **OK** button in the Choose File to Open dialog box. The image file is displayed in the viewer (Figure 8.19).

![AGCC Viewer with DAT file opened](image)

For information on aligning a misaligned grid, see *Checking the Grid Alignment on page 275*.

To update the list:

- Click the Refresh button in the Toolbar.

To sort the list for a particular parameter value:

Click in the column header for that parameter.
To select columns for display:

1. Right-click in any column header.
 A menu of the column headers appears (Figure 8.20).

2. Select or deselect the desired parameters to conceal and display them.

Changing the Filter Settings

The window enables you to filter the workflows to display only the workflows of interest.
You can filter the displayed workflows by:

- Date since workflow ran
- Error Status
- Any of the values in the columns.

It also indicates the number of displayed records in the Workflow Review window.

To filter by Date since workflow ran:

- Enter a value for the number of days for which you want to display records and click Apply (Figure 8.21).

To display errors only:

- Select the Show Errors Only checkbox (Figure 8.22)
To filter by other parameters displayed in the Review window:

1. Select the parameter type from the Filter by drop-down list (Figure 8.23).

2. Enter a value in the Filter by textbox. Only the workflows with parameters matching the entered value will be displayed.

NOTE: The Filter by function will filter on parameters that are not being displayed in the Review Window.

Changing the Other Settings of the Workflow Review Window

To change settings for the Review window:

1. From the View menu, select Options...
The Options dialog box opens (Figure 8.24).

2. Select or deselect the following feature:
- **Enable Review Window on startup**: turns the Review window on whenever the AGCC Viewer is opened.

NOTE: This change will not take effect until you have stopped and restarted the AGCC Viewer.

3. Change the value for the Refresh interval to control the frequency of the Review Window updates.
4. Click **OK** to close the dialog box and enable the changes.

Opening Image Files

You can display DAT, CEL, and JPG image files in the AGCC Viewer. The Viewer has different functions when viewing different types of files (see *File Display Differences on page 247*).

You have several options for opening files in the Viewer:
- **Using the Search and Open Dialog Box**, below
- **Using the Open Dialog Box on page 264**
- **Displaying Multiple Files on page 265**
- **Using the Review Window on page 254**

TIP: You can also open DAT and CEL files in the Viewer from the Folder View list and from Windows Explorer.

Using the Search and Open Dialog Box

The Search and Open dialog box enables you to search through the files on the AGCC system to find the ones of interest.

The Search and Open dialog box enables you to filter the displayed Sample files by:

- Projects
- File Type
- File Creation Date
- Probe Array Type
- Array Name
- Attribute Value

To use the Search and Open dialog box:

1. Click the **Search and Open** button in the Viewer tool bar; or
 From the File menu, select **Search and Open**...
 The AGCC File Open dialog box opens (Figure 8.25).
The dialog box displays a list of the files that meet the criteria in the upper right corner (Figure 8.26). You select the files to display from this list.

The upper left corner displays a list of the projects in AGCC. The lower left corner displays a set of additional filters you can apply to the file list.

The Filter Details in the lower right corner displays information about the filter criteria that have been applied to the list.

The buttons (Figure 8.27) allow you to:
2. Select the project(s) with files you wish to list in the Projects list (Figure 8.28).

3. Select File Types from the drop-down list.
 You can choose from:
 - DAT
 - CEL
 Changes made in the Projects and Files filters are reflected instantly in the Filter Details part of the dialog box.
 Changes to the Quick Filters and Attribute Value Filters have to be applied by clicking the **Apply Filters** button after selecting.
 The Quick Filters (Figure 8.29) enable you to filter by:
 - Date of file creation
 - Probe Array Types
 - Array Name
 - Attribute Value

4. Select a date or range of dates for file creation:
 A. Select the **From** checkbox.
B. Click the arrow at the date (displays the current date).
 A calendar for the current month appears (Figure 8.30).

C. Select a date for the start of the range. You can move from month to month by clicking the < and > buttons.
 If you only select one date, the filter will display only the files created on that date.

To select a range of dates:
D. Select the To checkbox.
E. Select a date for the end of the range.

5. Select Probe Array Types:
A. Click on the down arrow in the Selected Probe Array Types list.
 A list of the available probe array types is displayed (Figure 8.31).
 In some cases there may be multiple array models under the same header. in these cases you can click the + button to display the additional probe arrays.

B. Select the checkboxes next to the probe array types you want displayed in the filtered list.

6. Enter text strings for Array Name and Attribute Value (Figure 8.32).
You can use the “*” symbol as a wildcard in the Array Name and Attribute.

NOTE: Entering a string for the Attribute Value will return all files with matches to the value in any attribute. To search for a file with a specific attribute and value, use the Attribute File Filters, described below.

The Attribute Value filters (Figure 8.33) enable you to enter values for specific sample attributes.

7. To enter values for specific attributes:
 A. Click the Attribute Value Filters tab (Figure 8.33).
 B. Select a template with the attribute you wish to search on from the Select Template list (Figure 8.34).

The list displays only the templates with attributes that are being used in the data. [User] attributes are the attributes created specifically for a particular Sample (ARR) file and are not included in any template list. The attributes in that template appear in the Name list (Figure 8.35).
C. Select the attribute and enter a value for it in the Attribute box.

You can perform special searches by using the “*” and “,” symbols.

“*” Serves as a wild card function. Using `searchstring*` will return all arrays that contain an attribute that starts with the search string. Using `*searchstring` will return all arrays that contain an attribute that ends with the search string.

If you select a numerical attribute, you can select from the following limits:

- Equal to
- Less than
- Less than or equal to
- Greater than
- Between (use comma-separated values to set the ends of the range).
Whenever you change a setting in these filter boxes, you need to apply the changes. A notice appears to that effect in the Filter Details area (Figure 8.37).

8. Click **Apply Filters** after making changes.

9. The changes are displayed in the Filter Details section (Figure 8.38).

The filtered file list is displayed in the File List (Figure 8.39).

10. Select the file(s) you wish to open from the File list and click the Open Selected button. The selected file is displayed in the Viewer.
Displaying Different File Attributes

To display different file attributes in the File list:

1. Click the File Attributes button.
 The Choose Column Details dialog box appears (Figure 8.40).

 ![Figure 8.40 Choose Column Details dialog box]

 The dialog box displays a list of the different characteristics that can be selected for display, with a check box next to each characteristic.

2. Select the check box for the characteristics you wish to display.
3. Click OK.
 The selected characteristics are displayed in the File list.

Using the Open Dialog Box

The Open dialog box displays a list of all the available image files in the system.

To open a file using the Open dialog box:

1. From the File menu, select Open File; or
 Click the Open File button in the AGCC Viewer tool bar.
 The Open dialog box opens (Figure 8.41).

 ![Figure 8.41 Open dialog box]
2. If necessary, use the dialog box tool bar to navigate to the directory with the file.
3. Select the file you wish to view.
4. Click **Open**.
 The selected image file is displayed in the AGCC Viewer.

TIP: You can also open DAT and CEL files in the Viewer from the Folder View list and from Windows Explorer.

Displaying Multiple Files

You can open more than one file in the AGCC Viewer (**Figure 8.42**).

Figure 8.42 Displaying multiple image files

To display a particular image when you have more than one open:
- Click the tab at the top of the Image Window.
 Use the `<` and `>` scroll buttons in the Image title bar to scroll through the tabs if necessary (**Figure 8.43**).

Figure 8.43 Image window title bar

Different icons are used for DAT and CEL files.

To display the full path to a displayed file:
- Place your cursor on the file’s title bar tab.
 The full path is displayed below the title bar (**Figure 8.44**).
Changing the Display of the Image

This section explains how to use the Image tool bar controls (Figure 8.45) for:

- *Examining Different Parts of the Image* on page 267
- *Adjusting the Colors and Contrast* on page 268
- *Changing the Grid and Intensity Display* on page 269

Part of the tool bar may be hidden if the AGCC Viewer is too small.

To display the hidden controls:
- Click on the *Hidden Tool Bar* button at the right of the toolbar (Figure 8.46).
The hidden controls are displayed below the tool bar (Figure 8.46).

Examining Different Parts of the Image

These functions work on DAT, CEL, and JPG files. The Zoom controls are at the left end of the tool bar.

1. Click on the **Zoom Select** button.
2. Click and drag around the area you want to examine in more detail (Figure 8.48).
3. Release the mouse button.
4. The selected area is displayed in the AGCC Viewer (Figure 8.48).
To zoom in or out on the whole image:
- Click on the Zoom In button or the Zoom Out button.

To view a different area in magnified zoom:
- Click and drag the image to view the area of interest.

To zoom out:
- Click the Zoom Reset button.

NOTE: You can also use the Grid box controls to select a particular corner or subgrid for examination (see Checking the Grid Alignment on page 275).

Adjusting the Colors and Contrast

These functions work on DAT, CEL, and JPG files.

To switch between Gray Scale or Pseudo Color display:
- Click the Gray Scale or Pseudo Color buttons.

To adjust the contrast range for the image:
1. Click the Set Contrast button.
The Set Contrast dialog box opens (Figure 8.51).

2. Set the minimum and maximum contrast range.
3. Click OK to use the settings; or
 - Click Default to return to the default settings; or
 - Click Cancel to close the dialog box without changing the settings.

You can also use the slide bars in the tool bar (Figure 8.50) to set the contrast without opening the Set Contrast dialog box.

Using the Autoscale Function

The autoscale function takes the image area you are currently viewing and calculates the intensity to find a better minimum and maximum contrast.

To use the Autoscale function:
- Click the Autoscale button.

The contrast and brightness are automatically adjusted.

Changing the Grid and Intensity Display

These functions only work when DAT files are displayed (Figure 8.52).

Displaying Cell Intensity Data

If you have a DAT file open with the associated cell intensity data (CEL) file available, you can view the intensity data in the DAT file Image window.

To display or hide the cell intensity data:
- Click the Cell Intensity button.

The cell intensity data for the array is displayed.
NOTE: When displaying cell intensity data for certain types of probe arrays, control feature cells that failed the cell summary analysis may be masked (see Viewing Failed Control Features on page 248.

Displaying Different Exposures (GeneTitan Expression Array Plate DAT Files Only)
Each GeneTitan array is scanned twice, with different exposure times. The image data from both exposures are in the GeneTitan DAT file. You can switch between the different exposures for checking the gridding, etc., by using the Exposure button.

The Exposure button displays the currently displayed exposure time.

To switch between views of the different exposures:
- Click the Exposure button.

![Exposure button](image)
The other DAT Exposure is displayed.

Displaying Different Wavelengths (GeneTitan MC Genotyping Array Plate DAT Files Only)
Each GeneTitan genotyping array is scanned twice, at different wavelengths. The image data from both exposures are in the GeneTitan genotyping DAT file. You can switch between the different exposures for checking the gridding, etc., by using the Wavelength button.

The Exposure button displays the currently displayed exposure time.

To switch between views of the different exposures:
- Click the Color button.

![Wavelength button](image)
The other genotyping DAT Exposure is displayed.

Displaying Cell Centers
The center of each cell on the array can be displayed for certain array types. The centers are visible only when viewing DAT files for probe arrays with subgrids at a sufficiently zoomed-in level. The cell center display can be used in evaluating gridding problems.

To display cell centers:
- Click the Cell Centers button.

The cell centers are displayed (Figure 8.55).
Displaying the Grid Corners

The grid can be displayed to evaluate gridding problems and perform manual gridding.

To display the grid:

- Click the **Grid Corners** button.

 The outline of the grid is displayed on the image.

The grid cells are not displayed until you have magnified the DAT file so that they are visible (Figure 8.57).
See *Checking the Grid Alignment on page 275* of this manual for more information about manual gridding.

Changing Settings for the Grid Display

To change settings for the grid display:

1. From the **View** menu, select **Options**...
 The Options dialog box opens (Figure 8.58).

2. Select a new color for the grids from the Grid line color drop-down box.
3. Click **OK** to close the dialog box and enable the changes.
Saving Image Display Options

You can change the save options for the image display settings. These allow you to apply the same contrast and other settings to different image files.

To change the Save Options for the image display options:

1. From the View menu, select Options...
 The Options dialog box opens (Figure 8.58).

2. Select an option from the Saving Image Display options drop-down box:
 - Do Not Save
 - Save: Save settings from one program session to the next.
 - During the program session: Save settings only until the Viewer is shut down.
3. Click OK to close the dialog box and enable the changes.

Learning about the Image File

The Properties box displays information about the image file displayed in the window. The information can be displayed in alphabetical order, or ordered by different categories, depending upon the type of file displayed:

For a DAT file:
- Array Information
- Fluidics
- Grid Alignment
- Image
- Scanner

For a CEL file:
- Array Information
- Cel
- CEL Summary Report (only for files with CEL Summary Reports)
 - You can click on the Report row first, and then click on the button that appears to open a text display of the CEL Summary report (Figure 8.60).

- Fluidics
- Scanner

Grid Information

The Grid information category displays information about the main grid and subgrids:

- Global Grid: Displays the pixel coordinates for the corners of the main grid.
- Subgrids (when available): Displays the pixel coordinates for the corners of each subgrid (*Figure 8.62*).
Checking the Grid Alignment

This chapter describes the use of the AGCC Viewer for aligning failed grids:

- **Aligning the Main Grid on page 275**
- **Aligning Subgrids on page 279**
- **Aligning Subgrids on GeneTitan Arrays on page 284**
- **Regenerating Intensity Values on page 286**

For general information about grid alignment, see *Array and Grid Types on page 239*.

Aligning the Main Grid

If the array has subgrids, the main grid has to be aligned before aligning the subgrids.

If the main grid is misaligned, you will see a notice in the Review list (Figure 8.63).

To view the main grid:

- Click the **Full Image** button in the Grids toolbar (Figure 8.64).

 The main grid is displayed for single-grid and multi-grid files.
You have two options for fixing an alignment problem:
- You can run the gridding algorithm again (see below).
- You can align the grid manually (see page 277).

NOTE: Realigning the grids will update DAT headers and break the parent-child relationship between DAT files and existing CEL files until the CEL files are regenerated.

Running the Gridding Algorithm
In some cases you can realign the grid by running the alignment algorithm again.

Figure 8.64 Grid box tool bar

1. In the Grids tool bar, click on the **Image Processing** button and select **Realign All Grids** from the shortcut menu (Figure 8.64).

 A notice informs you that a new cell intensity data file (CEL) will be generated.

2. Click **Yes** to proceed with the alignment.

 Progress bars display the progress of the alignment and cell generation.

When the process is finished, a notice appears (Figure 8.67).
New gridding information and a new CEL file are generated.

Aligning the Grid Manually

If the algorithm alignment fails, an error message appears (Figure 8.68).

If you see the error message, you can manually adjust the main grid by using the following procedure:

1. Click on the failed DAT file in the Review window.

 The main grid is displayed in the Image window (Figure 8.69).
2. Align the grid at each corner of the image:

A. Click a Corner button in the Grid box toolbar (Figure 8.70) to choose a corner. The selected corner is displayed in the Image window (Figure 8.71). The software will display a box around each feature of the corner grid.

B. Place the mouse arrow over the grid perimeter (the arrow becomes a double arrow, \(\uparrow \downarrow \leftarrow \rightarrow \)). The diagonal orientation of the double arrow along the perimeter of a corner probe cell indicates horizontal and vertical adjustments can be made simultaneously using the click-and-drag method or by using the keyboard arrow keys.

C. Use the click-and-drag method or the keyboard arrow keys to adjust the horizontal or vertical position of the grid so that it is aligned over the corner of the outermost corner checkerboard.

D. Repeat the above steps for the other corners of the main grid.

3. After you align the grid, click the **Save** button or select **File → Save** from the menu bar. A notice opens, informing you that a new cell intensity data file will be generated automatically (Figure 8.72).
4. Click **Yes** to save the DAT file and generate a new CEL file. The cell intensity data file will be generated automatically.

For arrays with a single grid, you can now proceed to generate the CEL file (see *Regenerating Intensity Values* on page 286).

For arrays with subgrids, you can now check the alignment of the subgrids (see *Regenerating Intensity Values*, below).

Aligning Subgrids

Sometimes one or more subgrids may require alignment. The failed subgrids are marked with an X in the Grids box (Figure 8.73).

If the subgrid alignment fails you can:

- Run the subgrid alignment algorithm (see below).
- Perform a manual alignment on the failed subgrids (see page 281).

NOTE: Realigning the grids will update DAT headers and break the parent-child relationship between DAT files and existing CEL files until the CEL files are regenerated.

Running the Subgrid Alignment Algorithm

You can run the subgrid alignment algorithm if some of the subgrids are misaligned or if you have manually aligned the main grid.

To run the alignment algorithm again on an array that uses sub-grids:

1. In the Grids toolbar, click on the **Image Processing** button and select **Realign All Grids** from the shortcut menu (Figure 8.74).
A notice informs you that a new cell intensity data file (CEL) will be generated (Figure 8.75).

2. Click Yes to proceed with the alignment.
 Progress bars display the progress of the alignment and cell generation (Figure 8.76).

 When the process is finished, new gridding information and a new CEL file are generated.

 NOTE: This will align the main grid and all the subgrids.

To run the subgrid alignment algorithm only:

1. In the Grids toolbar, click on the **Image Processing** button and select **Realign Subgrids Only** from the menu (Figure 8.74).
 A notice informs you that a new cell intensity data file (CEL) will be generated (Figure 8.77).

 2. Click Yes to proceed with the alignment.
 Progress bars display the progress of the alignment and cell generation (Figure 8.78).
When the process is finished, new gridding information and a new CEL file are generated.

Manually Aligning the Subgrids

The boundaries of a subgrid are indicated by the alignment patterns at the four corners of the subgrid. A small checkerboard may mark the corner of two or more subgrids, depending upon its position in the main grid (Figure 8.79).

If the sub-grids are not aligned correctly, the following error message appears after imaging an array or opening a DAT file (Figure 8.80):

Navigating from Subgrid to Subgrid

The failed subgrids are marked with an X in the Grids box (Figure 8.81).
Highlighting

- Selected subgrids are highlighted in blue
- Selected misaligned subgrids are highlighted in yellow
- Modified subgrids are highlighted in green.

You can step through subgrids using the right and left buttons (Figure 8.82).

To step through all subgrids:
1. Toggle the Step button to the all position
2. Click the left and right buttons to step through the subgrids.

To step only through the misaligned grids
1. Toggle the Step button to the misaligned position.
2. Click the left and right buttons to step through the subgrids

To manually align a failed subgrid:
1. Click OK in the Subgrid Alignment Failure dialog box (Figure 8.80).
2. Click on the subgrid you wish to align in the Grid box.
3. A zoomed-in view of the subgrid appears in the Image window (Figure 8.83).
4. Align the subgrid at each corner:
 A. Click the Go To Corner button for the corner you wish to align.
 A zoomed-in view of the corner of the subgrid appears (Figure 8.84).
 B. Place the mouse arrow over the grid perimeter (the arrow becomes a double arrow, $\uparrow \downarrow \leftarrow \rightarrow$).
 The diagonal orientation of the double arrow along the perimeter of a corner probe cell indicates horizontal and vertical adjustments can be made simultaneously using the click-and-drag method or by using the keyboard arrow keys.
 C. Use the click-and-drag method or the keyboard arrow keys to adjust the horizontal or vertical position of the subgrid so that it is aligned over the outside corner of the small checkerboard pattern (Figure 8.85).
D. Repeat steps A through C for the other corners of the subgrid.

5. Continue manually aligning all misaligned subgrids.

6. After you align the grid, click the Save button or select File → Save from the menu bar. The Notice appears (Figure 8.86).

7. Click Yes to save the file.

 The file is saved and CEL file generation is done.

Aligning Subgrids on GeneTitan Arrays

You use the same controls and steps to align subgrids for GeneTitan arrays as you do for cartridge arrays, with the following exceptions:

- You do not need to perform a main grid alignment
- You may have to check the grid alignment for both exposures (see Displaying Different Exposures (GeneTitan Expression Array Plate DAT Files Only) on page 270) or both wavelengths (see Displaying Different Wavelengths (GeneTitan MC Genotyping Array Plate DAT Files Only) on page 270).
- You can select an option to apply adjusted coordinates to all channels and exposures (see Changing the Manual Grid Adjustment Setting on page 285)
Changing the Manual Grid Adjustment Setting

You can apply the coordinate adjustments made to one exposure time or channel to the other exposure time or channel.

To change settings for the manual grid adjustment:

1. From the View menu, select Options...
 The Options dialog box opens (Figure 8.88).

2. Select or deselect the Manual Grid Adjustment checkbox.
3. Click **OK** to close the dialog box and enable the changes.

Regenerating Intensity Values

Cell intensity values are generated automatically after:

- Running any grid alignment algorithm.
- Saving a DAT file after manual gridding.

You can also regenerate the intensity values without performing one of these other steps.

To regenerate the intensity values:
1. In the Grids toolbar, click the **Image Processing** button.
2. Select **Regenerate CEL Intensity** from the list.

A new CEL intensity data file will be generated. It will automatically have an underscore and number appended to the name to distinguish it from a previously generated file.

Exporting Images in Other Formats

You have two options for exporting a copy of the image:

- **Copying Images to the Computer Clipboard**
- **Creating a JPG File** on page 286

Copying Images to the Computer Clipboard

To copy an image to the computer clipboard:
1. Display the image you wish to copy in the Image window.
2. Click the Copy button in the image window toolbar (**Figure 8.89**); or Press CTRL-C.

 TIP: You can zoom in on a specific region of the image if you desire before copying.

2. Click the Copy button in the image window toolbar (**Figure 8.89**); or Press CTRL-C.

 The image in the Image window is copied to the clipboard.
 You can then paste the image into a graphics program such as Paint and save it as a graphics file.

Creating a JPG File

You can create a JPG copy of a DAT file for archive purposes.

To create a JPG copy of a DAT file:
1. From the File menu, select **Create JPG from DAT**.

 The Open dialog box opens (**Figure 8.90**).
2. Select the DAT file you wish to copy.
3. Click Open.
 The JPG file is created.

Viewing the JPG File

To open the JPG file in the AGCC Viewer:

1. Click File → Open File from the main menu; or
2. Click the Open File button in the AGCC Viewer tool bar.
 The Open dialog box opens (Figure 8.91).

![Open dialog box](image)

2. If necessary, use the dialog box tool bar to navigate to the directory with the file.
3. Select the file you wish to view.
4. Click Open.
 The selected image file is displayed in the AGCC Viewer.
To open the JPG in the Windows Picture and Fax Viewer:
- In the Folder View, click the Explore link next to the JPG file.
 The selected JPG file is displayed in the Windows Picture and Fax Viewer.

Changing Settings for the JPG Conversion

To change settings for the JPG conversion:
1. From the View menu, select Options...
 The Options dialog box opens (Figure 8.92).

 ![Figure 8.92 Options dialog box.]

2. Change the values for Compression Ratio and Sampling Ratio.
 Increasing either of these values increases the resolution of the JPG image, but also increases the size of the JPG file.
3. Click OK to close the dialog box and enable the changes.
Changing The Probe Array Type

AGCC enables you to change the probe array type for any or all of a group of files. The Change Probe Array Type function enables you to:

- Change the probe array type for the selected Sample and data files, regrid the associated DAT files, and regenerate the associated CEL files
- Change the probe array type field for selected CEL files

You might wish to use this function:

- If you are working with probe arrays that can be used for more than one type of analysis.
- If you have analyzed a set of prototype arrays using a preliminary set of library files, and you now have the correct library file set.

NOTE: The Change Probe Array Type function cannot be used for GeneTitan® Array Plates.

To change the probe array type for a group of files:

1. Select the files for which you wish to change the probe array type.
 You can select files to change from:
 - The Folder View (see Selecting Files on page 35).
 - The Project View (see Selecting Files on page 43).
 - The Search Results page (see Selecting Files on page 53).

2. Select **Change Probe Array Type** from the Command to Run drop-down list. The Change Probe Array Type page opens (Figure 9.1).

3. Select the option you wish to use:
 - Realign the grids of DAT files and regenerate CEL files, overwriting existing files. This option will:
 - Change the probe array type for the selected Sample and data files
 - regrid the associated DAT files
 - regenerate the associated CEL files and the cell summary report file

![Figure 9.1 Change Probe Array Type page](image-url)
Change only the probe array type of a selected CEL file.

This option will only change the probe array type information in the selected CEL file(s). It does not modify the Sample probe array type information in the Sample file or the DAT file.

This option is for use when using a CEL file that belongs to a multi-use array. These arrays that can be analyzed in multiple ways, as an Expression array or a Genotyping array.

4. Click Next.

The page displays the data files (Figure 9.2).

5. Select the files to be changed by selecting the checkboxes in the left-hand column.

You can use the Select All and Deselect All buttons to select all or deselect all files.

6. Select the probe array type you want to change the selected files to from the drop-down list (Figure 9.3).

IMPORTANT: Realigning the grids will break the parent-child relationships between DAT files and CEL files and between CEL files and CHP files until the CEL files are regenerated (Any CHP files are not automatically regenerated; you must regenerate them manually). Choosing this action will not delete any vital information because you can change the probe array type back to its original value if you change your mind.
7. Click **Next**.

The page displays the progress of the transformations (Figure 9.4).

Figure 9.4 Progress of probe array type changes

<table>
<thead>
<tr>
<th>DAT file</th>
<th>CEL file</th>
<th>Probe Array Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolults.DAT</td>
<td>Missing CEL file</td>
<td>HS-U319A_2</td>
<td></td>
</tr>
<tr>
<td>Resolults.DAT</td>
<td>Resolults.CEL</td>
<td>HS-U319B</td>
<td>Successfully changed the probe array type.</td>
</tr>
</tbody>
</table>

Change the probe array type for the selected files to: HG-U133B

[Image of the page showing the progress of the transformations]
Administration Functions

The Administration functions provide additional options for organizing and tracking your data:

- Working with Templates on page 292
- Tracking the Workflow on page 299

NOTE: The Project functions are described in Using Projects to Organize Data on page 57.

Working with Templates

Templates are used to organize a set of attributes that you can use to create a new Sample file. Attributes are properties used to describe a sample and its associated array(s). Attributes include items like:

- Sample Name
- Gender
- Date
- Array Type
- Array Barcode

When you create a template, you specify:

- the attributes included in the template
- the data type for each attribute:
 - Text: text string
 - Number: Floating point or Integer
 - Date: Calendar data
 - SingleSelect: enables the user to select a single item from a controlled vocabulary list
- whether the attribute is required
- value options for SingleSelect attributes

Templates allow you to organize attributes and collect consistent data for your experiments and samples. The following templates are included in the AGCC install:

- MIAME sample information
- Pedigree template

This section describes the following functions:

- Creating a Template, below
- Editing a Template on page 295
- Deleting Templates on page 296
- Managing Default Templates on page 298
Creating a Template

To create an attribute template:

1. From the Templates menu, select New Template. The Create Template File page appears (Figure 10.1).

2. Enter a name for the template and click Next. The Add Attributes page opens (Figure 10.2).

The page displays a list of the attributes for the template.
To add a field to the list:

3. Click **Add**.

 A new row appears in the list, with the following boxes for entering information or links:

 Sample Attribute Enter a name for the attribute.

 Name

 Required Click if the attribute is required.

 Type Select from drop-down list:

 - **Text**: Text string
 - **Number**: Integer or floating point number
 - **Date**: Calendar data
 - **SingleSelect**: Presents a list of items for the user to choose

 Control Vocabulary Enter values for the controlled vocabulary, placing multiple values on separate lines.

 Default Value Enter a default value to be displayed for the field in a new Sample file.

4. Enter or select values for the field characteristics.

5. Repeat **Step 3** and **Step 4** for the other attribute fields you wish to add.

When you have finished creating the attribute fields:

6. Click **Save** to save the template.

 The Results Page displays the name of the created template (**Figure 10.3**).
Editing a Template

You can edit an existing template.

NOTE: Deleting an attribute from a template or changing data type will cause attribute discrepancies if you have already used the template to create Sample files. See *Sample Attributes Conversion* on page 92 for more information.

To edit a template:

1. From the Templates menu, select **Edit**.
 The Edit Template File page appears (Figure 10.4).

2. Select the template you wish to edit and click **Next**.
 The Add Attributes page opens (Figure 10.5).
You can add, edit, or delete fields with the same functions used to create a new template. For more information see Creating a Template on page 293.

When you have finished editing the attribute fields:

3. Click **Save** to save the template.

The Results Page displays the name of the created template.

Deleting Templates

You can delete a template from the list.
To delete a template:

1. From the Administration menu, select **Templates → Delete**. The Delete Template File page appears (Figure 10.7).

2. Select the template to be deleted from the drop-down list.

3. Click **Delete**. The template is deleted (Figure 10.8).

NOTE: Deleting a template will cause attribute discrepancies if you have already used the template to create Sample files. See **Sample Attributes Conversion** on page 92 for more information.
Managing Default Templates

The default template attributes are displayed when the Detailed Sample Registration function is used and are displayed in the Default view in Folder view.

To change the default templates:

1. From the Administration menu, select **Templates → Default**. The Default Template File page appears (Figure 10.9).

![Figure 10.9 Manage Default Templates page](image)

Click on a template name to see a list of the attributes in that template (Figure 10.10).

![Figure 10.10 Template Details](image)

2. Select the template(s) to be defined as default templates from the Available Templates list.
3. Click **Add**.

The template is moved to the Default Templates list.

You can also use the Remove button to remove templates in the Default Templates list.

The template attributes will be available in the Detailed Sample Registration page (Figure 10.11).
Tracking the Workflow

The Workflow Monitor page enables users to view a list of the arrays in the workflow and see what their status is.

To view the Workflow Monitor page:

- Click Administration → Workflow.
- The Workflow Monitor page opens (Figure 10.12).
The Workflow Monitor page displays a list of the files waiting to finish workflow steps. It displays an item for each file and each unfinished step in the workflow; a file may have multiple entries, depending upon what step in the workflow has been completed.

For each file, the following information is given:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcode</td>
<td>Barcode of array.</td>
</tr>
<tr>
<td>Array Name</td>
<td>Name assigned to the array by the user.</td>
</tr>
<tr>
<td>Probe Array Type</td>
<td>Model of probe array.</td>
</tr>
<tr>
<td>Sample file</td>
<td>Name of Sample file.</td>
</tr>
<tr>
<td>Workflow Step</td>
<td>The uncompleted step in the workflow.</td>
</tr>
<tr>
<td>Project</td>
<td>Project folder the Sample file is assigned to.</td>
</tr>
<tr>
<td>Status</td>
<td>• Running.</td>
</tr>
<tr>
<td></td>
<td>• Not Ready.</td>
</tr>
<tr>
<td></td>
<td>• Error.</td>
</tr>
</tbody>
</table>

To sort the file list by any column:
- Click on the column header.
A computer running Windows XP or Windows 7 and AGCC can be connected to a Windows network to provide the following functions:

- **Using network data storage**
 If the Windows network has a network data root, you can consolidate data from multiple computers running AGCC Instrument Control in a single location. AGCC Portal provides convenient ways to keep Sample (.ARR) files and data files (DAT and CEL) in the same folder on the network data storage.

- **Running different parts of the workflow on different IC workstations**
 In some cases the Fluidics Station and Scanner used to process an array are controlled by different workstations. AGCC software allows you to perform different workflow tasks on different workstations while consolidating the Sample (.ARR), Data (DAT and CEL) and Audit files at a single storage location (during processing the files may be on different machines).

Examples of different configurations for AGCC with Windows network are given in *Sample Configurations for AGCC with Network Functionality on page 301*.

NOTE: Contact your IT/CIS support for help with configuring network functionality.

After installing the AGCC components, to use the network functionality you need to:

1. Connect the computer to a Windows network with necessary permissions and have permissions set for using network data storage.
 See *Setting Up Windows Networking on page 306* for more information.
2. Configure AGCC Services with the proper domain and user account with password to access the network assets.
 See *Configuring AGCC Services on page 307* for more information.
3. Add network data storage as a data root in AGCC Portal
 Adding the Network Data Storage as a Data Root on page 313.

NOTE: You cannot create DAT files on network data storage. AGCC Portal provides tools for consolidating the data files with the Sample files on network data storage (see *Uploading Data to Network Data Storage on page 68* of the AGCC User Manual).

Sample Configurations for AGCC with Network Functionality

This section describes some sample configurations using AGCC network functionality:

- **Linked Instrument Control Systems**, below
- **Network Storage on page 303**

The sample configurations show some of the ways you can connect computers with different roles in order to consolidate data, perform different parts of the workflow, and provide data access to other users.
Linked Instrument Control Systems

This configuration (Figure A.1) enables you to perform different instrument control tasks on different workstations while consolidating the data files on the Scanner workstation.

![Figure A.1 Linked instrument control system](image)

In the linked IC Workstation configuration, the Scanner Workstation and the AGCC Fluidics Workstation are linked with Windows Network.

Computer Roles in Linked Control Systems

Scanner System

The scanner workstation can be considered the ‘main’ system, in that the Sample files will be generated and stored there and all related DAT, CEL, and CHP files can be consolidated at the same location.

The dataroot of the scanner workstation is shared so that the fluidics workstation can access the Sample files and log AUDIT information for the arrays that are run through the fluidics station, without needing to copy the files locally.

Requirements for the scanner system:

- Has the following software installed
 - Windows XP SP3 and above or Windows 7 with SP1
 - AGCC Portal with AGCC Portal Web Server
 - AGCC Viewer
 - AGCC Scanner Control

Tasks that can be performed using the IC Scanner Workstation:

- Create and edit Sample (.ARR) file and Register Array
- Run Scan on array to create DAT file
- Grid and get CEL Data (and perform manual grid alignment check if necessary)
- Index and search the workstation data.

Fluidics System

In the linked system, the fluidics workstation does not store any Sample files, or generate DAT, CEL or CHP files. It uses the Sample files on the scanner system, and writes back AUDIT information about the fluidics processing. If necessary, the fluidics workstation can also register arrays/samples that will be stored on the scanner workstation.
The IC workstation has AGCC Portal and AGCC Instrument Control installed. A Fluidics workstation can control up to eight fluidics stations.

Requirements:
- Has the following software installed
 - Windows XP SP3 and above or Windows 7 with SP1
 - AGCC Portal with AGCC Portal Web Server.
 - AGCC Fluidics Control
- Connected through Windows Network to the Scanner System.
- Have necessary Domain and User Permissions settings to enable Read/write to the Scanner System.
- AGCC Services configured to work with Scanner System.
- Have Scanner System set up as a data root for AGCC Portal

Tasks that can be performed using the IC Fluidics Workstation:
- Run Fluidics station and update the Audit file for the array.
- Index and search the Fluidics workstation data and the Scanner workstation data.
- Edit Sample (.ARR) files on the Scanner and Fluidics workstation data.

The Fluidics system can also move data to and from Scanner System using Windows Explorer.

Network Storage

This configuration (Figure A.2) provides storage and tools to consolidate the data produced by a set of IC workstations. It also enables other users linked through the Windows Network system to access the data.
Computer Roles for Network Storage

The network data storage configuration supports the following computer roles:

- **Network Data Storage**
- **AGCC IC Workstations**
- **Local Analysis Workstation**
- **Local Lab Computer**

Network Data Storage

Network data storage serves as the central data repository for the networked computers. Sample (.ARR) files are created on it and the DAT and CEL data are pushed out to it from the IC workstations. The network data storage computer does not need to have any AGCC software installed.

AGCC IC Workstations

The IC workstation has AGCC Portal and AGCC Instrument Control installed. An IC workstation can control one scanner and up to eight fluidics stations.

AGCC IC Workstations have the following requirements:

- Has the following software installed
 - Windows XP SP3 and above or Windows 7 with SP1
 - AGCC Portal with AGCC Portal Web Server
Appendix A | Network Functionality for AGCC on Windows XP or Windows 7

AGCC Viewer
AGCC Instrument Control
- Connected through Windows Network to the network data storage.
- Have necessary Domain and User Permissions settings to enable Read/Write access to the network data storage.
- AGCC Services configured to work with network data storage.
- Have network data storage set up as a data root for AGCC Portal.

Tasks that can be performed using the IC Workstation:
- Create Sample (.ARR) file and Register Array on network data storage and the workstation.
- Run Fluidics and Scan array to create DAT file.
- Grid DAT files, perform manual grid alignment check if necessary, and generate CEL file data.
- Use AGCC Portal data management functions to upload DAT and CEL files to network data storage in same folder as Sample (.ARR) file.
- Index and search the network data storage and the workstation data.
- Edit Sample (.ARR) files on the network data storage and the workstation.

The local IC workstation can also move data to and from network data storage using Windows Explorer.

Local Analysis Workstation

The IC workstation has AGCC Portal and AGCC Viewer installed.

A local Analysis Workstation has the following requirements:
- Windows XP SP3 and above or Windows 7 with SP1
- AGCC Portal with AGCC Portal Web Server.
- AGCC Viewer
- Connected through Windows Network to the network data storage
- Have necessary Domain and User Permissions settings to enable Read/Write access to the network data storage.
- AGCC Services configured to work with network data storage.
- Have network data storage set up as a data root for the AGCC Portal

It can perform the following tasks:
- Create and edit Sample (.ARR) files on the network data storage and the workstation.
- Index and search the network data storage and the workstation data.
- Manual Gridding of DAT files on the workstation.
- Re-calculating CEL file data after gridding.

The local Analysis Workstation can also move data to and from network data storage using Windows Explorer.

Local Lab Computer

Lab Computers do not have any AGCC software installed. Lab Computers are commonly used to perform higher-level analysis on the data.

Requirements:
- Connected through Windows Network
- Have necessary Domain and User Permissions settings to enable Read/Write access to the network data storage.

The local Lab computer can move data to and from network data storage using Windows Explorer.
Setting Up Windows Networking

A computer running AGCC on Windows XP SP3 and above or Windows 7 with SP1 can be connected to a Windows network to provide different options for data consolidation and sharing.

Computers connected to the network are organized into domains. A domain is a group of computers that share common security and user account information.

Each user is assigned to a domain and given a user account with a name and password.

Any computer on the proper domain with necessary user permissions can get on the system using Windows Explorer and move data files on and off the network data storage.

If on a Windows domain these need to be domain accounts. If not on a Windows domain the share and the machine need matching account names and passwords.

Work with your IT department for help in setting up the necessary domain and user accounts.

For more information about Windows sharing and permission issues, see Appendix B, Windows Sharing and Security Issues of the AGCC User Manual.

If the domain, user account, and permissions are correct, when the computer running AGCC on Windows XP or Windows 7 is connected to the network you should be able to see the network data storage using Windows Explorer. You will not be able to add network data storage as an AGCC data root or use AGCC Portal to search the network data storage until you have configured the AGCC Services with the proper domain and account information.

Sharing and Security

You can use the Windows Sharing and Security settings to control access to your data when using network functionality. AGCC supports setting permissions at the folder level, not the file level, even though the Windows settings can be set at the file level. You can change the settings for Sharing, permissions, and security for a selected file, but you need to be very careful about setting permissions when using AGCC; you could lock yourself out of your own data or deny access to other people if the permissions are set incorrectly.

Work with your IT department for help in setting the permissions.

For more information about Windows sharing and permission issues, see Appendix B, Windows Sharing and Security Issues of the AGCC User Manual.

Examples

Let's take two different examples of how you might configure your file permissions for a network folder.

In the first example, you have a folder that is shared by your department. This folder allows read and write access to a Windows domain group called “Liver Cancer Group”, and grants no other permissions to anyone else. In order for AGCC to be able to access this network folder, you must change your AGCC Services to run as one of the users who is a member of the Liver Cancer Group.

In the second example, you have a folder on a computer in a lab that you want access to, but you don't want anyone else to access that folder. If you create a local user account on that computer called LocalUser, with the password “LocalPassword”, then, you can share that folder on the network, but grant access only to LocalUser. If you have a computer outside of that lab that has AGCC installed, then you can also create LocalUser as a local user on this second computer, with the same password, and then change the AGCC services on that second computer to run as LocalUser. Now, if you add your network folder as a Data Root, then you should be able to have complete access to that network folder in AGCC.
Configuring AGCC Services

AGCC services are tools that perform the functions of the software. To add a network data share as a data root, these services need to be configured as a domain user account, instead of a local system account. The AGCC services that need configuring include:
- AGCCAuditLogger
- AGCCIndexer
- AGCCTaskManager
- AGCCWebServer
- AGCC96FS_WorkflowSvc

If on a Windows domain these need to be domain accounts. If not on a Windows domain the share and the machine need matching account names and passwords.

You can also use matching local accounts on a domain.

NOTE: You need to be logged in using an account with Administrator privileges to perform this configuration.

Configuring the AGCC Portal Services for Windows XP

1. From the Windows Start menu, select Settings → Control Panel.
 The Control panel opens (Figure A.3).

2. Double-click on Administrative Tools.
 The Administrative Tools window opens. (Figure A.4 on page 308)
3. Double-click the Services icon.
 The Services window opens (Figure A.5).

There are 5 Affymetrix services:
- AGCCAuditLogger
- AGCCIndexer
- AGCCTaskManager
- AGCCWebServer
- AGCC96FS_WorkflowSvc

You will need to perform steps 4 through 7 for all services.

4. Right click AGCCAuditLogger (or another service you are configuring) and select Properties.
 The Properties dialog box opens. (Figure A.6 on page 309)
5. Click the **Log On** tab (Figure A.7).

6. Change the log on information for the service.

 A. Change the service to Log on as "This account".

 - Supply a domain user and password if on a domain.

 - Supply a local account with matching username and password as the network storage device if not.

 B. Click **OK**.

7. Stop and start the service from the services dialog. (Figure A.8 on page 310)
8. Repeat steps 4 through 7 for the other AGCC services.

Configuring the AGCC Portal Services for Windows 7

1. From the Windows Start menu, select Control Panel. The Control panel opens. (Figure A.9)

2. Make sure the View by (upper right) is set to Small icons, then click on Administrative Tools. The Administrative Tools window opens. (Figure A.10 on page 311)
 The Services window opens (Figure A.11).

There are 5 Affymetrix services:
- AGCCAuditLogger
- AGCCIndexer
AGCCTaskManager
AGCCWebServer
AGCC96FS_WorkflowSvc

You will need to perform steps 4 through 7 for all services.

4. Right click **AGCCAuditLogger** (or another service you are configuring) and select **Properties**. The Properties dialog box opens (Figure A.12).

5. Click the **Log On** tab (Figure A.13).

6. Change the log on information for the service.
 A. Change the service to Log on as "This account".
 B. Supply a domain user and password if on a domain.
 C. Supply a local account with matching username and password as the network storage device if not.

7. Click **OK**.
 A message window appears stating you have been granted Log On As privileges.

8. Click **OK**.
A message window appears stating you must stop and restart the service to initiate your new login appears.

9. Click **OK**.
The Services window appears.

10. Click to highlight the service you just modified. then stop and start the service from the services dialog. (Figure A.14)

11. Repeat steps 4 through 7 for the other AGCC services.

Adding the Network Data Storage as a Data Root

NOTE: You cannot create DAT files on network data storage. AGCC Portal provides tools for consolidating the data files with the Sample files on network data storage (see Uploading Data to Network Data Storage on page 68 of the AGCC User Manual).

To add the network data storage as a data root in AGCC Portal:

1. Start AGCC Portal.
2. Navigate to **Data → Data Roots → Add**.
3. Paste the UNC path to the share into the dialog box. UNC paths follow this format: \servername\share. Mapped network drives should not be used (mapped network drives are network folders that a user has mapped to a drive letter, for example, “H:”).

4. Click **Add**.
If you configured this correctly you should be able to view the share in the Folder Viewer.

NOTE: If you have not configured the AGCC Services correctly, you will see a warning message in the Add Data Root window. For more information on what to do, see Configuring AGCC Services on page 307.
Windows Sharing and Security Issues

You can use the Windows Sharing and Security settings to control access to your data when using network functionality. AGCC supports setting permissions at the folder level, not the file level, even though the Windows settings can be set at the file level. You can change the settings for Sharing, permissions, and security for a selected file, but you need to be very careful about setting permissions when using AGCC; you could lock yourself out of your own data or deny access to other people if the permissions are set incorrectly.

NOTE: Contact your IT/CIS support for help in setting the permissions for folders and files.

The Windows file sharing and security issues are described in further detail in:

- *General Principles of Security in Command Console Software*, below
- *How do Files Get Permissions That Don't Match the Folder?* on page 315
- *How Does Command Console Show this Error?* on page 316
- *How to Avoid This Issue* on page 316
- *How to Adjust Permissions for Files in a Folder* on page 317

General Principles of Security in Command Console Software

Security within Command Console® can be separated into 2 different functional areas:

- Viewing file lists in the web UI, either from folders or from search results.
- File operations, such as editing or creating.

Security for viewing file lists is implemented at the folder level. If a user has read permissions on a particular folder, Command Console will not display files within that folder if the user does not have read permissions for those files. In addition, if the user tries to perform various operations on those files, the operating system will not allow it. Conversely, if the user has read permissions to several files in a folder, but does not have read permissions on the parent folder, the files will not be displayed in the Command Console software. In order to maintain consistent permissions on files within the system, individual files should not have permissions set differently from their parent folder. If this occurs due to other applications or operating system functions, the permissions on all the files in a folder can be reset by an administrator.

When performing file operations, including editing the Sample (ARR) file, re-gridding the Image (DAT) file, or regenerating an Intensity (CEL) file, a user may be prohibited by the operating system if the user does not have appropriate permissions for that file. The Command Console UI attempts to indicate when an operation fails due to permissions, but there are times when the operating system does not indicate why an operation failed. If the user expects to be able to modify a file but cannot, and can modify other files within the same folder, it is possible that individual files have permissions that limit access. If this occurs, the file permissions should be checked by an administrator and reset as necessary.

How do Files Get Permissions That Don't Match the Folder?

Under most operating conditions, the files in a folder will have the same permissions as the folder in which they reside. However, there are particular cases when a file is moved that may cause the file to retain certain permissions that were applied to the file in its previous location. In this case, the file will not have the same permissions as the new folder or the other files in the folder.

This happens to files that are moved to a new folder on the same NTFS partition on a local hard disk. It is important to note - this is a function of the Operating System, not Command Console.
As an example, a data folder has two subfolders, Project1 and Project2, and the Project1 and Project2 folders have different permissions. If a user with appropriate permissions moves a file from Project1 to Project2, the files moved to the Project2 folder may retain some of the permissions applied in the Project1 folder. If another user who has permissions to the Project2 folder but not to the Project1 folder tries to perform operations on these moved files, the operations may fail.

There are many conditions where this does not occur:

- Moving a file from a local hard disk to network storage (C:\data to \storage\data)
- Moving a file from one folder to another on network storage (\storage\data to \storage\backup)
- Moving a file from one local hard disk to another local hard disk (C:\data to D:\data)
- Copying files from one location to another

How Does Command Console Show this Error?

The files or folders to which the user does not have access are not visible in the AGCC Portal pages. For example, if the user has read permission for a folder, but is denied access to specific files in the folder, the files are not displayed in the following pages:

- Folder View
- Search Results
- Project View

In the Copy Project page, only files in the project to which the user has access can be copied.

How to Avoid This Issue

There are ways to avoid this issue that will not impact normal operations. These include:

- Not setting overly restrictive permissions on shared systems, especially Instrument Control Workstations
- Using network storage for the bulk of data, and applying permissions on the network folders
- Only applying permissions on the network folders that are truly necessary
- Access data through UNC paths whenever possible

Some simple security recommendations:

- Set permissions for groups, as opposed to individuals, for greater simplicity.
- Only restrict permissions to the degree needed, again for greater simplicity.
- Set permissions at the folder level when creating data roots and projects.
- Don’t use Deny permissions unless absolutely necessary, as these are more likely to cause a situation with conflicting entries.
- Don’t restrict (deny) the “Read permissions” permission. This is needed in order for the software to properly determine the rights the user has for a given object.
- Take care when moving files that the consistency is not broken. If possible, move files by using the WebUI Copy Project and Upload Data functions.
- When permissions do get out of sync, they can be easily restored by an admin, who can remove the conflicting ACL entries and allow the file to get its permissions by pure inheritance.
How to Adjust Permissions for Files in a Folder

To reset the permissions for all files and subfolders in a folder:

1. Right-click on the folder in question and select **Sharing and Security** from the context menu. The Data Properties dialog box for the folder appears (Figure B.1)
2. Select the Security tab of the dialog.

3. Click the **Advanced** button. The Advanced Security Settings dialog box opens (Figure B.2).
4. Verify that the security settings are appropriate.
5. Select the Replace permission entries on all child objects… checkbox.
6. Click the **Apply** button.
 The following prompt will be displayed (Figure B.3).

![Security notice box](image)

7. To replace the permissions, click **Yes** to continue.
 This will reset the permissions for all files and subfolders of the selected folder.
Cell Summary Report

The Cell Summary Report is a tool for monitoring the performance of the hybridization and grid alignment of arrays. The report enables you to detect problems in these steps and compare the performance of different chips.

The Cell Summary Report uses the control features on the array. Control features are cells with special probes; the corresponding targets are spiked into the sample cocktail. The resulting patterns of bright and dark cells are used in grid alignment and other processes.

In AGCC the Cell Summary Report is automatically generated when CEL files are generated for certain types of arrays. These arrays require a .GRC file in the library file set. If you generate a CEL file for one of these arrays and the .GRC file is not available, you will see an error notice.

You can learn more about the Cell Summary reports in the following sections:

- Report Description
- Using the Cell Summary Report on page 323
- Cell Summary Report Algorithm on page 324

Report Description

The cells that failed the analysis can be seen in the AGCC Viewer when looking at the DAT or CEL file (see File Display Differences on page 247).

The reports are placed in the data root and subfolder with the CEL file.

The cell summary report components are described in Cell Summary Report Components for Non-Resequencing Chips, below.

Cell Summary Report Components for Non-Resequencing Chips

The Cell Summary Reports for all types of chips except Resequencing (Expression, Mapping, and others) provides information on the following features:

- Non-synthesized features
- OligoB1 features
- OligoB2 features

Refer to the relevant manual for the GeneChip array for more information about these features.

To open the Cell Summary Report:

1. Open the CEL file in the AGCC Viewer.
2. In the Properties box, click on the Report row. A button appears in the Report Row (Figure C.1).
3. Click on the button to open a text display of the CELL Summary report.
The Text Editor opens with the Cell Summary Report displayed (Figure C.2)

Figure C.2 Cell Summary report for Non-resequencing array

<table>
<thead>
<tr>
<th>Report Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Type: Cell Summary Report</td>
</tr>
<tr>
<td>Date: Sep 22 2017</td>
</tr>
<tr>
<td>File: 001.CEL</td>
</tr>
<tr>
<td>Metrics: Non-synthesized features: 3, Total: 5588, Failure Rate: 0.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity threshold: 7156</td>
</tr>
<tr>
<td>Median intensity of the non-synthesized features: 7156</td>
</tr>
<tr>
<td>Median intensity of the total array: 0.1750</td>
</tr>
<tr>
<td>Median intensity of the Cy5 channel: 8.85</td>
</tr>
<tr>
<td>Number of non-synthesized features that were expected to be blank but were not: 3</td>
</tr>
<tr>
<td>Number of probes that were expected to be blank but were not: 0</td>
</tr>
<tr>
<td>Total number of available targets on the array: 5588</td>
</tr>
<tr>
<td>Percentage of available targets on the array: 23.032</td>
</tr>
<tr>
<td>Average intensity of the blank probes: 7156</td>
</tr>
<tr>
<td>Average intensity of the total probes: 7156</td>
</tr>
<tr>
<td>Total number of failures: 0</td>
</tr>
</tbody>
</table>
The report contains the following sections:

- **Report Header**
- **Summary on page 321**
- **Metrics on page 322**

Report Header

<table>
<thead>
<tr>
<th>Report Type</th>
<th>Cell Summary Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Wed Jul 25 03:23:17 2007</td>
</tr>
<tr>
<td>Filename</td>
<td>@S20044000536140110301756075991.CEL</td>
</tr>
<tr>
<td>GRC Filename</td>
<td>Mapping50K_Hind240.gro</td>
</tr>
<tr>
<td>Probe Array Type</td>
<td>Mapping50K_Hind240</td>
</tr>
</tbody>
</table>

![Figure C.3](expression_cell_summary_report_header.png)

The report header (Figure C.3) lists basic information about the Cell Summary report:

- **Report Type**: Used to distinguish types of reports (Cell Summary Report, Algorithm Report, etc.).
- **Date**: Time and date report was generated.
- **Filename**: Input .CEL data file name that was used to generate the report.
- **GRC Filename**: Name of the .GRC file used to generate the report.
- **Probe Array Type**: Array type used for the CEL file.

Summary

<table>
<thead>
<tr>
<th>Summary</th>
<th>Failures</th>
<th>Total</th>
<th>Failure Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-synthesized features</td>
<td>3</td>
<td>5566</td>
<td>0.1%</td>
</tr>
<tr>
<td>Bright control probes</td>
<td>0</td>
<td>9641</td>
<td>0.0%</td>
</tr>
<tr>
<td>Dim control probes</td>
<td>5</td>
<td>8803</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total control features</td>
<td>8</td>
<td>23032</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

![Figure C.4](expression_cell_summary_report_summary.png)

The Summary (Figure C.4) displays information:

For the following types of features:

- **Non-synthesized features**
- **Bright control probes**
- **Dim control probes**
Total control features

The summary lists the following values:

Failures The number of features in the category that failed.

Total The total number of features in the category.

Failure Rate The percentage of features in the category that failed.

Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity threshold</td>
<td>7159.6</td>
</tr>
<tr>
<td>Median intensity of the non-synthesized features:</td>
<td>71.4</td>
</tr>
<tr>
<td>Median intensity of oligoB2:</td>
<td>61775.0</td>
</tr>
<tr>
<td>Median intensity of oligoB1:</td>
<td>825.0</td>
</tr>
<tr>
<td>Number of non-synthesized features that were expected to be dim but were not:</td>
<td>3</td>
</tr>
<tr>
<td>Number of probes that were expected to be bright but were not:</td>
<td>0</td>
</tr>
<tr>
<td>Total number of probes failing the threshold test:</td>
<td>8</td>
</tr>
<tr>
<td>Total number of non-synthesized features on the array:</td>
<td>5588</td>
</tr>
<tr>
<td>Total number of available bright probes on the array:</td>
<td>8641</td>
</tr>
<tr>
<td>Total number of available dim probes on the array:</td>
<td>8803</td>
</tr>
<tr>
<td>Total number of available probes on the array for the threshold test:</td>
<td>23032</td>
</tr>
<tr>
<td>Average intensity of the bright probes:</td>
<td>59544.2</td>
</tr>
<tr>
<td>Average intensity of the dim probes:</td>
<td>965.1</td>
</tr>
</tbody>
</table>

The metrics section (Figure C.5) displays additional data about the B1 and B2 oligos.
Failed Cell Locations

Using the Cell Summary Report

The Cell Summary report provides clues to problems in the fluidics, grid alignment, and other issues with the cell file.

It can be used to establish a baseline for performance, which can then be used for quality control for subsequent experiments.

Features can fail the evaluation due to sample and system issues such as:

1. Incorrect gridding
2. Incorrect concentration of control oligo in sample (too high or too low)
3. Incorrect scanner arc correction
4. Incorrect recording of the scanner pixel size

NOTE: To view these probes on a DAT file, view the cell intensity display. For more information about this option, see Viewing Failed Control Features on page 248.
5. Incorrect parameters for cell file generation
6. Debris in the sample or on the array glass
7. Array defects

Rules of Thumb

When processing a group of samples, identify the cell files that have the largest number of evaluation failures. This would be about ten percent of the cell files in the group. Use the graphic display described below to examine those cell files to identify any sample or system issues.

When processing one or two samples use the graphic display to examine those cell files with evaluation failures greater than ten.

In the event of substantial (greater than one hundred) evaluation failures the following guidelines may be helpful:

- Failures limited to mostly bright or mostly dim control probes usually indicate debris or array defects.
- Failures limited to mostly non-synthesized features often indicate non-specific binding and usually do not compromise any biological measurements.
- Failures spanning both bright and dim probes often indicate gridding, scanning or other systematic issues.

The relationship between Cell Summary Report results and biological results varies depending on the application. It is best to track these and determine trends for your laboratory and application.

Cell Summary Report Algorithm

The algorithm’s goal is to use the probe design information to identify all probes that should have high intensities and make sure they in fact have high intensities. Similarly with the probes that should be dim. The features that fail the evaluation are totaled and flagged to enable their graphic display.

Depending on the array/assay type, it is the target for the B1 probes that is spiked in and in others the target for the B2 probes is used.

Thus, the first step of the algorithm is to determine which of the two probe types is brighter overall. The median for each of the B1 and the B2 probes is determined and if there is sufficient contrast (difference in median intensities) the probe type with the larger median is taken to be the bright probe type.

If the contrast is insufficient an algorithm failure is reported. This kind of failure is typically only seen in the case of gross errors—such as use of the wrong library file, improper use of control reagents (spiking in both or neither of B1 and B2 control reagents) or rotation of the DAT image. The threshold is the calculated midpoint (or log midpoint) of the B1 and B2 medians.

The algorithm examines each feature. If the feature is either B1, B2, or non-synthesized, then the intensity is compared against the threshold; otherwise, the feature is ignored. If the feature fails the threshold, then the feature is added to the total and the feature flagged to enable graphic display.
Configuring E-mail for the Notification Options

AGCC provides e-mail notification of problems when:

- Running the GCS 3000 with AutoLoader
- Running the FS-450 Fluidics Station
- Running the GeneTitan® Instrument
- Running the Data Uploader

You will need to get information on the SMTPPort and SMTPServer from your IT department.

To configure the email notification for AGCC Fluidics control or AGCC Scan control:

1. In the appropriate instrument control software, click the Email button; or
 From the Edit menu, select Email Messages...
 The AGCC Email Configuration Editor opens (Figure D.1).

2. Enter the email account the messages will be sent from in the From box.
3. Enter the email account(s) to receive the message in the To... Box
4. Enter the SMTP Server and Port information in the appropriate boxes.
5. You can click the Test button to send a test e-mail.
6. Select the Scanner or Fluidics tab, depending upon which instrument you wish to select messages for (Scanner or Fluidics).
 The message list displays the messages you can select from--they correspond to different types of failures or other conditions in the instrument.
7. Select and edit messages:

 A. Select the checkbox next to the message ID.

 B. Click in the subject or body column for the message and edit the text.

 You can click the Default button to return to the original configuration.

8. Click **Save** to save the configuration changes.

Figure D.2 Message List for Scanners

<table>
<thead>
<tr>
<th>ID</th>
<th>Subject</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>32805</td>
<td>Scanner not available</td>
<td>The scanner is locked and is unavailable</td>
</tr>
<tr>
<td>32806</td>
<td>Scanner not ready</td>
<td>The scanner is not ready to scan</td>
</tr>
<tr>
<td>32807</td>
<td>Laser error</td>
<td>Unable to turn the laser on</td>
</tr>
<tr>
<td>32809</td>
<td>Start scan error</td>
<td>Unable to start the scan</td>
</tr>
<tr>
<td>32810</td>
<td>Scan error</td>
<td>Error while scanning</td>
</tr>
<tr>
<td>32812</td>
<td>Barcodes error</td>
<td>Cannot read an array file with barcode</td>
</tr>
<tr>
<td>32813</td>
<td>Scan error</td>
<td>Cannot get a job order for this array</td>
</tr>
<tr>
<td>32814</td>
<td>Scan error</td>
<td>This array has already been scanned</td>
</tr>
<tr>
<td>32817</td>
<td>Scan error - Low disk space</td>
<td>Error while scanning. Not enough disk space is...</td>
</tr>
<tr>
<td>32822</td>
<td>Scan error</td>
<td>Could not read the array file. A DRT file will not...</td>
</tr>
<tr>
<td>33003</td>
<td>Autobacs was stopped</td>
<td>The autobacs process was interrupted. The sc...</td>
</tr>
<tr>
<td>33008</td>
<td>Door opened</td>
<td>The door was opened during a scan</td>
</tr>
<tr>
<td>33009</td>
<td>Scanner network interruption</td>
<td>The scanner network connection was interrupted</td>
</tr>
<tr>
<td>33040</td>
<td>Autoloader run started</td>
<td>The user listed in the email started an autoloader...</td>
</tr>
<tr>
<td>33041</td>
<td>Autoloader run complete</td>
<td>The autoloader ran is complete</td>
</tr>
<tr>
<td>33042</td>
<td>Chip loaded</td>
<td>A cartridge was loaded in the autoloader</td>
</tr>
<tr>
<td>33043</td>
<td>Scan started</td>
<td>A scan was started in the autoloader</td>
</tr>
<tr>
<td>33044</td>
<td>Scan complete</td>
<td>The scan was completed</td>
</tr>
<tr>
<td>33045</td>
<td>Scan aborted</td>
<td>A user started a scan in progress</td>
</tr>
</tbody>
</table>
Log Files Generated by AGCC

The log files are produced by different AGCC components. The logs provide a record of the tasks performed by different components, such as the migration tools and installer. These log files provide useful information for troubleshooting problems. These files may be requested by your Field Application Specialist (FAS), Field Service Engineer (FSE), or the Affymetrix call center.

AGCC Log Files

The following files apply to both Cartridge Systems and GeneTitan Instruments. All the AGCC log files from C:\Command_Console\Logs

The different log files include:

- **Systemlog.XML** XML file with system information.
- **Workflow.log** Text file with information on workflow status and history.
- **DEC.log** Text file with information on the use of the Data Exchange Console.
- **DECError.log** Text file with information on errors created while using DEC.
- **AGCC_LibFileImporter.log** Text file with info on use of the Library File Importer. (with date and time code)

Other AGCC Files

Your FAS and/or FSE may request you to send the following files for troubleshooting:

1. Library files (*.PARAMS, *.MASTER, *.WORKFLOW, *.SMD, *.MEDIA) located in C:\Command_Console\Library, excluding the large analysis library files (CDF, PSI, GRC).
2. Provide a list of all sub folders and their contents under the library files folder located in C:\Command_Console\Library. Please ensure there are no duplicate library files, as these can cause problems.
3. AGCC system configuration file located at C:\Command_Console\Configuration\Calvin.System.config
4. Pending job order files located in C:\Command_Console\Jobs
5. Other AGCC related information, such as:
 A. The number of files under C:\Command_Console\Data, including sub directory.
 B. If the system is a networked system or a standalone system.
 C. Other applications installed on the system, such as antivirus application, MS Office, Internet Explorer versions.
AGCC Log Files for Cartridge Systems

The following files are instrument-specific log files that apply to GCS 3000/FS 450 Instruments.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluidics.log</td>
<td>Text file with info on Fluidics Station use</td>
</tr>
<tr>
<td>scanner.log</td>
<td>Text file with info on Scan Control use</td>
</tr>
<tr>
<td>FS.log (with date and time code)</td>
<td>Text file with information on the Fluidics Script installation.</td>
</tr>
</tbody>
</table>

AGCC Log Files for GeneTitan Systems

Log files for the GeneTitan Instrument control processes are placed in subdirectories of the Command Console\Logs\ folder. Affymetrix may need the following files for troubleshooting:

GeneTitan Fluidics

1. C:\Command_Console\Logs\96F\
 A. subdirectories named by date (e.g. Log7-29-2009)
 1) Collect all dated directories and contents since the GeneTitan app was started, not just the date of the event
 (some logging goes into files from the date the app started so this can be critical for us).
 2) Absolutely required are all the log directories from the date the run was started to the date of the event.
2. C:\Command_Console\Logs\96F\FluidicErrorLog - all files in this directory
3. C:\Command_Console\RAP2
 The main user interface to this logging structure is file is C:\Command_Console\RAP2\RAP.html.
 - RAP.html contains historical information (since AGCC 4.0 was installed) about what has been run on the system
 - RAP.html contains links to locations within the RAP2 folder and to some locations the standard logs found in C:\Command_Console\Logs\96F
 - The logging structure supplements the standard logs found in C:\Command_Console\Logs\96F. It does not replace it.
 - The RAP2 folder is not on the 30 day log file cleaner path.

GeneTitan MC Imaging Device

1. C:\Affymetrix\GeneChipHTScanControlMC\Log - collect all dated directories and contents since the GeneTitan app was started
2. C:\Affymetrix\GeneChipHTScanControlMC\RunLog - collect all dated directories and contents since the GeneTitan app was started

GeneTitan Single Channel Imaging device

1. C:\Affymetrix\GeneChipHTScanControl\Log - collect all dated directories and contents since the GeneTitan app was started
2. C:\Affymetrix\GeneChipHTScanControl\RunLog - collect all dated directories and contents since the GeneTitan app was started
Using TSV Files for Batch Editing

You can no longer download batch registration or batch editing files in TSV (Tab-Separated-Values) format in AGCC 4.0, but you can use previously created TSV files. The format of TSV files is discussed here.

The header row in a TSV file includes special properties that define the file and the physical array:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>The path to where the Sample file will be created. Can be used to place Sample files in project folders.</td>
</tr>
<tr>
<td>Project</td>
<td>The project that the Sample (.ARR) file will be assigned to.</td>
</tr>
</tbody>
</table>

NOTE: Specify either the Path or the Project for the files. Specifying both will return an error message.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Name</td>
<td>Unique identifier for the Sample file.</td>
</tr>
<tr>
<td>Array Name</td>
<td>Name assigned to the array during registration.</td>
</tr>
<tr>
<td>Probe Array Type</td>
<td>Part number for the array (s).</td>
</tr>
<tr>
<td>Barcode</td>
<td>Barcode on the array (s).</td>
</tr>
<tr>
<td>Attributes</td>
<td>Additional information about the sample and experiment that you can use to interpret your results.</td>
</tr>
</tbody>
</table>

Path

The path needs to be associated with a data root. You can assign a set of sample files to a particular project if you select that project's folder in the Path field.

NOTE: Specify either the Path or the Project for the files. Specifying both will return an error message.

Project

Specifying a project for the Sample file will determine the folder the Sample file is created in.

File Name

Enter the name assigned to the Sample file that will be created.
Barcode, Array Name and Array Type

If you are using Excel, you can select the probe array type from a drop-down list (Figure F.1). The drop-down list can be disabled in Excel if you wish to enter multiple arrays for each sample (see below).

![Figure F.1 List of probe arrays in Excel spreadsheet](image)

You can also enter multiple array information into the file.

NOTE: You can use custom barcodes to register an array in Batch Registration.

To enter multiple arrays:

1. Enter a comma-delimited list in the barcode column: FirstArrayBarcode, SecondArrayBarcode
2. Enter a comma-delimited list in the array name column: FirstArrayName, SecondArrayName
3. Enter a comma-delimited list in the Array Type column: FirstArrayType, SecondArrayType

Attributes

Enter the values for the attributes in the appropriate columns.

AGCC uses two types of attributes for Batch Registration:

- **Template Attributes:** Attributes that have been defined in a template. When you select templates for the downloaded batch registration file, the array attributes in those templates will be included as headings in the batch registration file.
- **User Attributes:** Attributes that you add in the Batch Register file. You create a user attribute by entering the attribute name and other characteristics in the column header, and then entering attribute values in the appropriate cells.

Attributes need to have the following characteristics defined:

- AttributeName
- TemplateName (if any; not used for User Attributes)
- DataType

Different methods are used for defining attribute characteristics in TSV and Excel format, as described below.

TSV Format

In TSV format, all of the attribute characteristics are defined in the column header, as shown in the template below.

- Header format for Template Attribute: AttributeName:TemplateName:DataType
- Header format for User Attribute: AttributeName:*:DataType
Compliance Guide for FDA Title 21 CFR Part 11

What is Title 21 CFR Part 11?

Title 21 Code of Federal Regulation (CFR) Part 11 final rule provide criteria for acceptance by the FDA, under certain circumstances, of electronic records, electronic signatures, and handwritten signatures executed to electronic records as equivalent to paper records and handwritten signatures executed on paper. These regulations, which apply to all FDA program areas, are intended to permit the widest possible use of electronic technology.

The complete copy of the Title 21 CFR Part 11 requirements document can be found at the FDA web site www.fda.gov.

Compliance Scope

This section is intended to provide guidance on the use of the Affymetrix GeneChip Command Console® Software (AGCC) in relative to compliance with the Electronic Records / Electronic Signature rule (21 CFR Part 11), hereafter referred to as “the rule”, promulgated by the United States Food and Drug Administration (FDA). To fully meet the intent of the rule, both the product design and the operational practices of the FDA-regulated firm must be properly addressed. This guidance describes the elements of the product’s design that promote compliance, as well as outlines the recommended practices to be incorporated within standard operating procedures by the firm. The main intent of this version of the section is to define the basic statement of work required to fully comply with the rule without imposing undue manual procedures on the regulated customer.

This guidance section provides useful information to:

- Persons subject to Part 11
- Persons responsible for creating, modifying, maintaining, archiving, retrieving, or transmitting electronic records or electronic signatures
- Persons who develop products or services to enable implementation of Part 11 requirements

AGCC System

AGCC system is an Open System since it is an environment in which system access is not controlled by persons who are responsible for the content of electronic records. The customer may choose to implement it as a Closed System by putting appropriate system controls.
AGCC Title 21 CFR Part 11 Requirements Compliance Guide

AGCC System may be used in a Title 21 CFR Part 11 environment if the customer implements the requirements as noted in the guidance table in the customer section. Implementation can be done in the form of tools, application, and standard operating procedure or polices that are not built in the AGCC software.

<table>
<thead>
<tr>
<th>FDA Title 21 Part 11 Guidance Section</th>
<th>Affymetrix:GeneChip Command Console Software (AGCC) Requirement Implementation and Customer: Recommended Practice to be implemented by the customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subpart B - ELECTRONIC RECORDS</td>
<td>Affymetrix:GeneChip Command Console Software (AGCC) Requirement Implementation and Customer: Recommended Practice to be implemented by the customer</td>
</tr>
<tr>
<td>§ 11.10 Controls for Closed Systems</td>
<td>Affymetrix:GeneChip Command Console Software (AGCC) Requirement Implementation and Customer: Recommended Practice to be implemented by the customer</td>
</tr>
<tr>
<td>a) Validation of systems to ensure accuracy, reliability, consistent intended performance, and the ability to discern invalid or altered records.</td>
<td>Affymetrix:GeneChip Command Console Software (AGCC) Requirement Implementation and Customer: Recommended Practice to be implemented by the customer</td>
</tr>
<tr>
<td>(b) The ability to generate accurate and complete copies of records in both human readable and electronic form suitable for inspection, review, and copying by the agency. Persons should contact the agency if there are any questions regarding the ability of the agency to review and copy of the electronic records.</td>
<td>Affymetrix:GeneChip Command Console Software (AGCC) Requirement Implementation and Customer: Recommended Practice to be implemented by the customer</td>
</tr>
<tr>
<td>(c) Protection of records to enable their accurate and ready retrieval throughout the records retention period.</td>
<td>Affymetrix:GeneChip Command Console Software (AGCC) Requirement Implementation and Customer: Recommended Practice to be implemented by the customer</td>
</tr>
</tbody>
</table>
Appendix G | Compliance Guide for FDA Title 21 CFR Part 11

(d) Limiting system access to authorized individuals.

Customer:
AGCC software utilizes MS Windows and IIS security to limit system access: Customers should implement MS Windows and IIS account policies to enforce password uniqueness, aging, and account lockout following a number of unsuccessful attempts.

Login attempts: Although not required by the rule, minimum length and legal construction (i.e. must contain one numeric character) should be considered. In addition, password-protected screen savers can be used to ensure that workstations are not left unattended for longer than a specified period of time.

(AGCC relies upon Windows to demonstrate compliance to Part 11)
Customer should consider following configurable settings.

Settings/Options:
(Controlled by Windows System Administrator)
Setup User, Access privileges, Permissions, User Type, Delete User, Password Expiry, Temporary Logins, Intrusion Email: On/Off
Security Audit Report Email: On/Off

(e) Use of secure, computer-generated, time-stamped audit trails to independently record the date and time of operator entries and actions that create, modify, or delete electronic records. Record changes shall not obscure previously recorded information. Such audit trail documentation shall be retained for a period at least as long as that required for the subject electronic records and shall be available for agency review and copying.

Affymetrix:
AGCC maintains audit, installation, and system logs.

Customer:
Customer shall implement appropriate procedures for Audit Trails and Retention Period. Affymetrix recommends utilizing a clock synchronization utility to ensure that all date and time stamps are accurate.

(f) Use of operational system checks to enforce permitted sequencing of steps and events, as appropriate.

Affymetrix:
AGCC has diagnostic tools to check for instrumentation and software. The sequencing of steps/workflow is based on customer configurations.

Customer:
Customer shall configure system based on their workflow needs and performs validation of the configuration.

(g) Use of authority checks to ensure that only authorized individuals can use the system, electronically sign a record, access the operation or computer system input or output device, alter a record, or perform the operation at hand.

Same as item (d)

(h) Use of device (e.g., terminal) checks to determine, as appropriate, the validity of the source of data input or operational instruction.

Affymetrix:
AGCC captures the fluidics and scanner id.

Customer:
The MS operating system captures the Process ID, Terminal ID, network ID, and workstation device ID for every user logged onto the system.

Customer should consider following configurable settings

Settings/Options:
(Controlled by Windows System Administrator)
Setup User, Access privileges, Permissions, User Type, Delete User, Password Expiry, Temporary Logins, Intrusion Email: On/Off
Security Audit Report Email: On/Off
<table>
<thead>
<tr>
<th>(i) Determination that persons who develop, maintain, or use electronic record/electronic signature systems have the education, training, and experience to perform their assigned tasks.</th>
<th>Affymetrix: Affymetrix personnel developing, maintaining and supporting the AGCC software were trained and have the proper education and training. Customer: Ensure that all persons involved with regulated system have the necessary levels of education, training, and experience to perform their assigned tasks. Customers should develop Training procedures and documentation practices that will support the proper qualification of the affected individuals. Customers must develop policies and procedures to support the application’s use in a regulated environment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j) The establishment of, and adherence to, written policies that hold individuals accountable and responsible for actions initiated under their electronic signatures, in order to deter record and signature falsification.</td>
<td>Customer: Customers must develop policies and procedures to support the application use in a regulated environment.</td>
</tr>
<tr>
<td>(k) Use of appropriate controls over systems documentation including: (1) Adequate controls over the distribution of, access to, and use of documentation for system operation and maintenance. (2) Revision and change control procedures to maintain an audit trail that documents time-sequenced development and modification of systems documentation.</td>
<td>Customer: Customers must develop policies and procedures to support the application use in a regulated environment.</td>
</tr>
</tbody>
</table>

§ 11.30 Controls for Open Systems

Persons who use open systems to create, modify, maintain, or transmit electronic records shall employ procedures and controls designed to ensure the authenticity, integrity, and, as appropriate, the confidentiality of electronic records from the point of their creation to the point of their receipt. Such procedures and controls shall include those identified in Sec. 11.10, as appropriate and additional measures such as document encryption and use of appropriate digital signature standards to ensure, as necessary under the circumstances, record authenticity, integrity, and confidentiality. **Customer:** Customers must develop policies and procedures to support the application use in a regulated environment.

§ 11.50 Signature Manifestations – Not Applicable: AGCC Software does not use Electronic Signature to store, import, export and archive the records.

§ 11.70 Signature/Record Linking – Not Applicable: AGCC Software does not use Electronic Signature to store, import, export and archive the records.

Subpart C - ELECTRONIC SIGNATURES

§ 11.100 General Requirements – Not Applicable: AGCC Software does not use Electronic Signature to store, import, export and archive the records.

§ 11.200 Electronic Signatures components and controls – Not Applicable: AGCC Software does not use Electronic Signature to store, import, export and archive the records.

§ 11.300 Controls for Identification codes/passwords – Not Applicable: AGCC Software does not use Electronic Signature to store, import, export and archive the records.
Index

Symbols
.AUDIT file 35
.CEL files see CEL files
.CHP files see CHP files
.DAT files see DAT files
.GRD 35
.JPG files see JPG files
.PARAM file 35
.RPT files 35
|User| attributes 261

A
account names 306
Add Data Root 54
adding
data root 54
folders 54
adding subfolder to Project 62
adjusting colors 268
adjusting contrast 268
Administration functions 292
see also
Create Template File
Manage Projects
Advanced Search 46
Affymetrix Analysis Applications 14
Affymetrix Services 25
Affymetrix Technical Support 7
Affymetrix Web Resources 14
AGCC
data organization 22
AGCC file types 34
AGCC Fluidics Control see Fluidics Control
AGCC GeneTitan Control Software 205
AGCC Network functionality
introduction 25
AGCC Portal see Portal
AGCC Scan Control see Scan control
AGCC services 307
configuring for network functionality 307
see also
AGCCAuditLogger
AGCCIndexer
AGCCTaskManager
AGCCWebServer
AGCC Viewer see Viewer
AGCC Workgroup
uploading
Batch Edit files 123
AGCC_LibFileImporter. log 327
AGCCAuditLogger
configuring for network functionality 308, 311
AGCCIndexer 308, 311
AGCCTaskManager 308, 312
AGCCWebServer 308, 312
changing settings 25
Aligning Subgrids on Arrays on Array Plates 284
alignment, main grid 275
alignment, subgrid 279
All attributes search 47, 52
Analysis Applications 14
ARR files
see Sample (ARR) files
array information 19
array name 19, 79
changing 90
Array Plate registration 111
array processing workflow 15
registering samples 78
registering samples and arrays 16
running fluidics 18, 126
running scanners 18
scanning arrays 157
tracking gridding and CEL file generation 19, 238
Array s on Array Plates
align subgrids 284
attribute template
see templates
attribute type
see data type
attributes
converting 92
sample 17
see also
template attributes
user attributes
selecting for Folder view 35
template 17, 79
user 17
Audit File page 44
Audit files 35
introduction 21
viewing 44
AutoLoader
adding cartridges during a run 186
disabled 191
error messages 195
indicator lights 181
manual mode 189
manually removing lodged probe array 196
scanning probe arrays 181
starting 180
stopping a scan 191
troubleshooting 194
AutoLoaderDx
declaration of conformity 178, 201
dimensions 200
electrical safety 165
electrical supply 200
laser safety 165
regulatory 203
setting up 166
weight 200
working environment 200
autorotation 193
Autoscale function 269

B
barcodes
 adding to Sample (ARR) file 117
 custom
 in Batch Registration 105, 107, 330
 in Detailed Sample Registration 85
 in Quick Sample Registration 100

Basic Search 45
Batch Edit 120
Batch Edit files
 uploading 123
Batch Registration 101
 creating new Sample file 101
 custom barcodes 105, 107, 330
Batch Registration file
 downloading 103, 113
 uploading 106, 115
Batch Sample Registration
 see Batch Registration
bypassing steps in fluidics protocols 139

C
CEL files 34
 breaking links with DAT files 290
 generation 19
 in Viewer 248
cell centers, displaying 270
cell generation status 252
Cell Summary Report 319
 for Expression arrays 319
 for Mapping arrays 319
 generating 319
Change Probe Array Type 289
changing array name in Sample file
 Detailed Sample Registration 90
changing colors for grid display 272
CHP files 21
clipboard
 copying an image to 286
colors
 adjusting 268
 changing for grid display 272
Command Console Launcher 12
 see Launcher
configuring e-mail messages 325
contrast
 adjusting 268
converting attributes 92
Copy Files 64
copying an image to the computer clipboard 286
copying data to new Sample file 91
creating new Sample file
 Batch Registration 101
 Detailed Sample Registration 81
 Plate Registration 108
 Quick Sample Registration 97
custom barcodes
 in Batch Registration 105, 107, 330
 in Detailed Sample Registration 85
 in Quick Sample Registration 100

D
DAT file
 JPG conversion 286
DAT files 21, 34
 aligning grid
 during array processing workflow 19
 manually in viewer 275
 in Viewer 247
 saving image data in 185, 191
Data Exchange Console 11, 13
data files 21
 see also
 CEL files
 CHP files
 DAT files
 parent-child file relationships
Data functions 26
 see also
 Audit File
 Copy Files
 Data Roots
 Folder View
 Manage Projects
 Project view
 Set Default Folder
 Upload Data
data organization 22
 see also
 Data functions 26
Data Roots
 Add Data Root 54
 Remove Data Root 56
data roots
 adding 54
 adding network data storage 313
 introduction 23
 managing 54
 removing 56
data types 79
 changing in Sample Attribute Conversion 94
 deprecated 79
 selecting during template creation 294
Date data type 79
DEC
 see Data Exchange Console
expression report
parameters 319

F
FDA Title 21 CFR Part 11 331
File Filter 40
File list 33
going to other pages 33
page numbers 33
selecting files 35
file permissions 23, 306
resetting 317
file security 23, 306
file types 21, 34
selecting for Folder View 40
files
copying 64
data 21
log 22, 327
searching for 45
advanced search 46
basic search 45
see also
CEL files
CHP files
DAT files
Sample (ARR) files
selecting
see selecting files
filtering
Sample file list in AGCC Control 140
Sample file list in Scan Control 168
Filters dialog box 141, 257
Floating Point
see deprecated data type
Fluidics Control 18
components 128
e-mail notification 127
filtering Sample file list 140
Master controls 128
starting 127
Station controls 129
Status window 130
Fluidics Options dialog box 145
fluidics protocol 133
bypassing steps 139
checking status 151
editing 152
installing 147
resuming 139
running on individual stations 135
updating 151
Fluidics Script Importer 13
Fluidics Script information 152
Fluidics Scripts Installer 147
Fluidics station
dimensions 156
installation category 156
operating altitude 156
operating humidity 156

DEC.log 327
DECError.log 327
Declaration of conformity
AutoLoaderDx
178, 201
Default folder 23
and network data storage 160
in Upload Data operation 68, 70
running scans 160
specifying 67
used in Drop and Scan 186, 231
default templates
attributes displayed
in Default view (Folders View) 298
in Detailed Sample Registration 82
designating 298
deleting a Project 63
deprecated data types 79
Detailed Sample Registration 81
changing array name in Sample file 90
copying data to new Sample file 91
creating new Sample file 81, 108
editing data in Sample file 88
renaming sample file 88
displaying cell centers 270
displaying different file attributes
Search and Open dialog box 264
displaying grid 271
documentation
conventions used 6
online 7
domain 306
domain accounts 306
downloading
Batch Registration file 103, 113
Sample Prep Plate Registration file 108
Drop and Scan 186
E
editing
Batch Edit files 122
data in Sample file
Batch Edit 120
Detailed Sample Registration 88
fluidics protocols 152
template 295
e-mail messages
AutoLoader 195
configuring 325
Fluidics Control 127
error messages
AutoLoader 195
Excel files
Batch Registration 103, 113
Sample Prep Plate Registration file 108
expiration date 34
in Detailed Register 85
in Quick Register 100
exporting images 286
operating temperature 156
pollution degree 156
power input 156
power requirements 156
regulatory 155
weight 156
fluidics station
see FS450
Fluidics Station 450
see FS450
fluidics.log 328
fluorophore bleaching 172
Folder view 29
 selecting attributes for display 35
 selecting file types 40
 selecting files 35
folders
 adding 31
 data roots 23
 Default 23
 opening 32
 permissions 23, 306, 315
 primary 62
 renaming 31
 renaming with Windows Explorer 30
 security settings 23, 306, 315
 see also subfolders
 sharing 23, 306, 315
 Windows file 22
four-color arrays 171, 192
FS.log 328
FS450 126
 labelling station and modules 145
 priming 131
 running protocols 131
G
GCS3000 Scanner
 scanning a probe array 168
 shutdown 168
 shutting down 172
 starting 167
 stopping a scan 171
 theory of operation 166
 troubleshooting 172
GCS3000 with AutoLoader
 see Autoloader
GeneTitan Array Plate registration 111
 grid
 aligning 275
 aligning main grid 275
 aligning subgrid 279
 displaying 271
 grid alignment
 manual 277
 tracking progress 252
Grid Data files 35
 grid display
 changing colors for 272
 gridding algorithm
for main grid 276
 for subgrids 279
Grids box 281
GUIDs 22
H
highlighting subgrids 282
Home page 27
I
Image (DAT) files
 see DAT files
images
 exporting 286
Indexer 11
Integer data type
 see deprecated data type
Intensity (CEL) data files
 see CEL files
J
JPG conversion
 changing settings 286
JPG files 248
 creating 286
 in Viewer 248
L
labelling station and modules in FS450 145
Laser safety 165
Launcher 12
Library File Importer 12, 13
linked instrument control systems 302
local drive path 23
log files 22, 327
lot number 34
 in Detailed Registration 85
 in Quick Registration 100
M
main grid
 aligning 275
maintenance protocols 131
manual grid alignment 277
mapped network drives 313
Master controls 128
Menu bar
 Portal 28
multiple emission filters 170
MultiSelect
 see deprecated data type
multi-use array 290
N
network data root
Index 339

see network data storage

network data storage 25, 68, 301, 303
 adding as data root 313
 configuring AGCC services for 307
 running scans on 160
 scanning arrays 160
network functionality 301
 configuring AGCC services 307
 introduction 25
network storage 303
Number data type 79

O
online documentation 7
opening
 Portal 26
 Scan Control 158
 Viewer 246
opening folders 32

P
parent-child file relationships
 broken during Change Probe Array Type 290
 broken during DAT regridding 21, 276, 279
 tracked with GUIDs 21
Park mode 169
passwords 306
permissions 23, 306, 315
Portal
 Home page 27
 Menu bar 28
 see also
 Administration functions
 Advanced Search
 Basic Search
 Data functions
 Sample Registration
 see also Add Data Root
 see also Remove Data Root
 starting 26
primary folder 62
priming fluidics station 131
Priming protocol 131
Probe Analysis (CHP) files
 see CHP files
probe array
 manually removing array 196
Project view 42
 selecting files 43
Projects 24
 adding existing subfolder to 62
 assigning folder to 58
 characteristics 24
 creating 58
 deleting 63
 introduction 24
 primary folder
 designating 62
protocols

see fluidics protocol

Q
Quick Sample Registration 97
 creating new Sample file 97

R
Reconnector 13
registering array names 16
registering samples 16
 Array Plate 111
 Batch Sample Registration 101
 Detailed Sample Registration 81
 Plate Registration 108
 Quick Sample Registration 97
removing data root 56
renaming folders
 in Folder View 31
renaming Sample (ARR) file 88
Report files 35
resuming fluidics protocols 139
Review window 252
 changing settings 256
running fluidics 133, 135
running on multiple stations 133

S
Sample (ARR) files
 adding barcode 117
 creating 78
 editing 78, 87, 117, 120
 introduction 19
 renaming 88
 see also
 array name
 attributes
 Sample Registration
Sample Attribute Conversion
 user attributes 92
sample attributes 17, 19, 79
Sample Attributes Conversion 92
Sample file list
 filtering in Fluidics Control 140
 filtering in Scan Control 168
Sample files
 see Sample (ARR) files
Sample Prep Plate Registration 108
Sample Prep Plate Registration file 108
 entering values in 108
 uploading 109
Sample Registration 78
 Add Barcode 117
 Batch Editing 120
 Batch Registration 101
 Detailed Sample Registration 81
 Quick Sample Registration 97
 Sample Prep Plate Registration 108
Scan Control 18
components 158

e-mail messages 157, 195
filtering Sample file list 168
starting 158
Status window 159
scanner
see GCS3000 Autoloader
see GCS3000 Scanner

Scanner ID 162
Scanner Information 160
scanner.log 328
scanning a probe array
GCS3000 Scanner 168
scanning four-color arrays 171
scanning probe arrays
with GCS3000 with AutoLoader 181
Search and Open dialog box 257
displaying different file attributes 264
Search function 45
Search Results 53
selecting files 53
searching for files 45
advanced search 46
basic search 45
see also filtering
security 23
security settings 23, 306, 315
selecting files
in Folder view 35
in Project view 43
in Search Results 53
selecting subgrids 281
sharing folders 23, 306, 315
SingleSelect data type 79
sleep mode 169
sorting file list 34
Specifications
FS450Dx 156
specifying Default folder 67
standby mode 169
starting
Fluidics Control 127
Launcher 12
Portal 26
Scan Control 158
Viewer 246
Station controls 129
Status window
Fluidics Control 130
Scan Control 159
subfolder
creating
in Folders View 30
with Windows Explorer 30
creating in Manage Projects 58
introduction 23
renaming
with Windows Explorer 30

subgrid alignment 279
manual 281
subgrid alignment algorithm 279
subgrids
selecting 281
Systemlog.XML 327

T

technical support 7
template attributes 17, 79
templates 292
create 293
deleting 296
designating default templates 298
edit 295

Text data type 79
Title 21 CFR Part 11 331
TOUGH-SPOTS™ 162
troubleshooting
AutoLoader 194
GCS3000 Scanner 172

U

UNC path 23, 55
Universal Naming Convention
see UNC
see UNC path
Upload Data 68, 70
uploading
Batch Edit Files 123
Batch Registration file 106, 115
data files to network data root 68, 69
Sample Prep Plate Registration file 109
user attributes 17, 79
in Advanced Search 47
in Detailed Sample Registration 84
in Sample Attribute Conversion 92
in Sample Attributes File Filter 144
in Search and Open 261
user-defined attributes
see user attributes

V

Viewer 19, 238
adjusting colors and contrast 268
Autoscale function 269
changing display of image 266
displaying cell centers 270
displaying grid 271
hiding components 250
moving components 249
opening 246
Review window 252
Search and Open dialog box 257
zoom functions 267

W

Web Resources 14
Windows Explorer
adding folders 30
opening folders 32
renaming folders 30
Windows file folders 22
Windows Sharing and Security 23, 306, 315
workflow
 see array processing workflow
Workflow Monitor 299

Z
zoom functions 267