Rapid, cost-effective system for Surveillance of SARS-CoV-2 variants of concern using targeted RT-PCR SARS CoV-2 mutation panel

N.Pinkhover¹, E.Sanchez¹, K.Pontbriand¹, J.Auclair¹, M.Gandhi², S.Vishnubhotla², T.Proctor², 1 Life Science Testing Center, Northeastern University, Burlington, MA, USA, 2 Thermo Fisher Scientific, South San Francisco, CA, USA

INTRODUCTION

As COVID-19 vaccination rates remain unsatisfactory, the exponential spread of SARS-CoV-2 variants of concern continue to pose a threat to global public health. Surveillance testing is critical for tracking viral progression, vaccine breakthrough, and emerging SARS-CoV-2 variants as the pandemic continues to evolve. While whole-genome sequencing (WGS) is the primary method used for genomic surveillance, it is a costly and resource-intensive process for implementation across population scale. In this study, we describe an alternative, lower-cost guick PCR-based method for the detection and discrimination of 4 currently designated VOCs; alpha (B.1.1.7), beta (B.1.351), gamma (P.1), and delta (B.1.617).

EXPERIMENTAL METHODOLOGY

The study included 108 SARS-CoV-2 positive specimens received at the Life Science Testing Center at Northeastern University between April to August 2021. RNA was extracted using Applied Biosystems[™] MagMax[™] Viral/Pathogen II Nucleic Acid Isolation Kit automated on Agilent[™] Bravo Liquid Handlers and SARS-CoV-2 status was determined using Applied Biosystems[™] TaqPath[™] COVID-19 Combo Kit. Variant profiling was performed on extracted RNA using a panel of TaqMan SARS-CoV-2 genotyping assays. 5.0 µL of sample RNA or Thermo Scientific[™] Acrometrix[™] Coronavirus 2019 (COVID-19) RNA Control was then aliquoted into 96-well optical plates containing TaqMan[™] SARS-CoV-2 variantspecific assay mix (15µL) as shown in Table 1.

Table 1. Volumes of each component for 96-well plate Applied Biosystems[™] TaqMan[™] SARS-CoV- 2 Mutation Panel Setup.

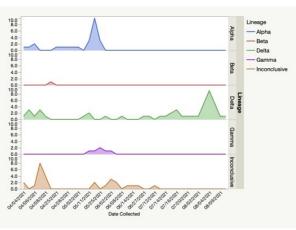
Component	Volume per assay	Volume per 96-well plate
TaqPath [™] 1-Step RT-qPCR Master Mix, CG (4X)	5 µL	528 μL
TaqMan [™] SARS-Cov-2 Mutation Panel Assay (40X)	0.5 µL	52.8 µL
Nuclease-free Water	9.5 μL	1003.2 μL
Total Reaction Mix Volume	15 µL	1584 µL

Both a 12- and 8-assay panel were tested using the following assays: N439K, K417T, D215G, delH69/V70, E484K, T20N, P681R, L452R, N501Y, E484Q, Q27STOP, A222V. The 8-assay panel excluded the N501Y, E484Q, Q27STOP, and A222V assays. 44 samples were run using the 8-assay panel and 64 using the 12-assay panel. Layout of 8 samples on the 96-well optical plate for the 12-assay panel is illustrated in Figure 1.

Figure 1. 96-well optical plate layout

	N439K	K417T	D215G	delH69V70	E484K	T20N	P681R	L452R	N501Y	E484Q	Q27Stop	A222V
А	Sample 1											
В	Sample 2											
С	Sample 3											
D	Sample 4											
Е	Sample 5											
F	Sample 6											
G	Sample 7											
Н	Sample 8											

The SARS-CoV-2 lineages were assigned using a classifier based on the MOC combination (Table 2). Initial mutant results and variant classification were verified by next-generation sequencing using Ion Torrent[™] GeneStudio[™] S5 Plus System. Linages were assigned based on the MOC data analysis that was performed using Applied Biosystems[™] Design and Analysis Software Version 2.5.1, via allelic discrimination scatter plots for variant genotyping determination. Further statistical analyses and graphical data representations were performed using JMP[®] Pro 15.0.0.


Table 2. 12 MOC-panel for VOC discrimination. Note: E484Q (B.1.617.1 and B.1.617.3) and A222V (B.1.177) were included in the panel to cover other variants.

SARS-CoV-2 Lineage	N439K	K417T	D215G	delH69/V70	E484K	T20N	P681R	L452R
Alpha (B.1.1.7)	Y			Y				
Beta (B.1.351)			Y		Y			
Gamma (P.1)		Y			Y	Y		
Delta (B.1.617.2)							Y	Y

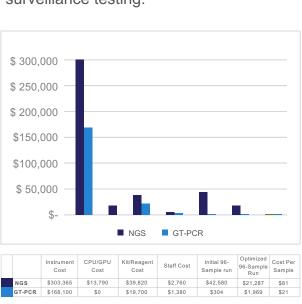

RESULTS

Figure 2. Frequency of SARS-CoV-2 lineages in screened positive patient samples at Northeastern University from April to August 2021 using PCR-based MOC panel.

surveillance testing.

Of the 108 samples, 25 samples were classified as Alpha variant. 1 as Beta. 7 as Gamma, and 48 as Delta. SARS-CoV-2 linages could not be assigned for 27 samples (Figure 2).

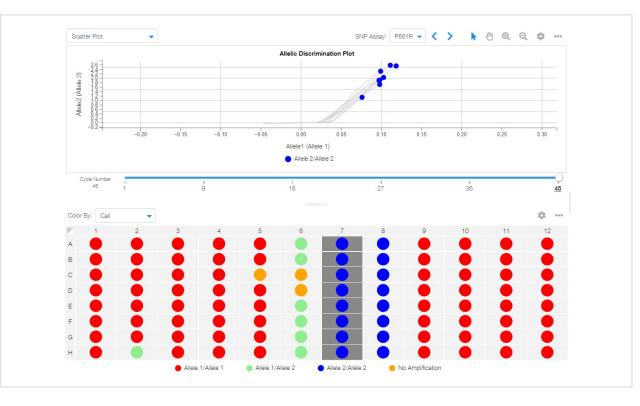

The MOC-panel is nearly 4X cheaper than sequencing with a per sample cost of \$20.50 for 96 samples (MOC panel) as compared to \$81.39 (NGS) (Figure 4).

Figure 3. Cost benefit analysis between NGS and MOC panel for VOC

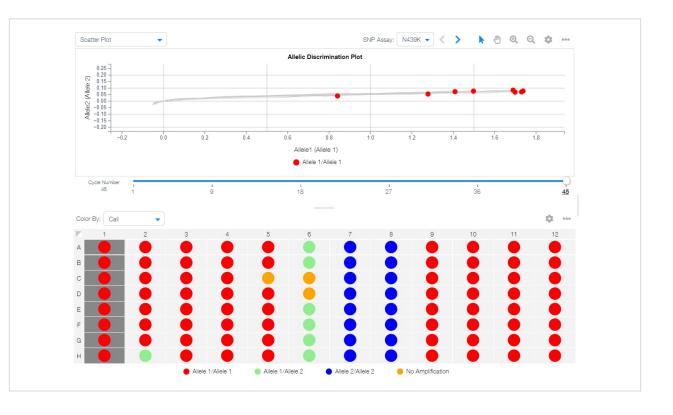

12-Assay MOC Panel confirmation of B.1.617.2 (Delta- specific) P681R SARS-CoV-2 mutation in 8 samples collected from NU population is shown in Figure 3.

Figure 4. Eight (8) confirmed Delta variants displaying full amplification of the Proline681Arginine (P681R) spike glycoprotein mutation using the 12-assay mutant panel. Samples expressing VIC-labeled mutant alleles (blue) amplify linearly in the y-axis.

12-assay MOC panel confirming absence of B.1.258 (multi-variant) N439K SARS-CoV-2 mutation in 8 samples Collected from NU Population. Column-4 and Column-11 displaying WT/reference amplification for 2 B.1.1.7 (Alpha-specific) del.H69V70 and Q27STOP SNPs across the same 8 NU samples seen in Figure 4.

Figure 5. The same eight (8) samples from figure 2 displaying reference allele (WT) amplification of the Asparigine439Lysine (N439K) of the spike glycoprotein. Samples expressing WT alleles (FAM-labeled) clustered linearly along the x-axis.

- (n = 20/44, p = 0.05).
- (61/64, p = 0.05).
- analytical performance.
- performance by a factor >2.

CONCLUSIONS/DISCUSSION

SNP-PCR panels offer an easily implemented, cost- effective and robust method for at-scale surveillance of SARS-CoV-2 Variants of Concern. Optimizing 96-well MOC panels is critical for achieving high VOC classification and cost-benefit for largescale surveillance. MOC panels afford efficient workflows and fast turn-around-times, which is crucial in monitoring the evolution of COVID-19 pandemic.

• The 8-assay panel identified variant class with a mean of 45.50%

• The 12-assay panel layout identified variant class with a mean of 95.31%

 Used in combination, the 8-assay and 12-assay MOC panels conclusively identified four (4) current VOCs (Alpha, Beta, Delta, Gamma) with a mean of 75.0% (n = 81/104, p = 0.05) of previously confirmed positive COVID-19 samples.

 Despite a negligible cost difference between layouts (the slight cost advantage for the 8-assay panel), the 12-assay layout showed a substantial increase in mean

Comparison of the two plate layouts revealed the 12- assay layout was superior in

• These data indicate our optimized 12-assay layout using the TagMan[™] SARS-CoV-2 Mutation Panel provides a significantly reliable, robust, and highly scalable method for surveillance of SARS-CoV-2 Variants of Concern.

