



# Using Medifuge Centrifuge for Coagulation Testing through preparation of Platelet-Poor Plasma (PPP)

## Author

Romana Hinz, Senior Global Product Manager for Small Bench and Micro Centrifuges at Thermo Fisher Scientific

# **Keywords**

Medifuge, clinical centrifuge, Platelet-Poor Plasma, PPP, swinging bucket rotor, coagulation testing, DualSpin rotor, hybrid rotor

## Introduction

Clinical laboratory testing plays an important role in the detection, diagnosis, and treatment of diseases. The use of centrifugal force for the separation of blood is a very crucial step within the process. It is important to perform this step correctly and efficiently.

Blood is typically separated to yield platelet-poor plasma (PPP), which is the preferred specimen for most coagulation testing. Ideally, PPP should have a platelet count of less than  $10,000/\mu$ L.<sup>1</sup>

The objective of this note is to illustrate the efficiency and effectiveness of the Thermo Scientific<sup>™</sup> Medifuge<sup>™</sup> Clinical Centrifuge for coagulation testing through the periodic check of plasma platelet counts post centrifugation.

The Medifuge centrifuge (see Table 1) comes with the Thermo Scientific<sup>™</sup> DualSpin<sup>™</sup> Rotor. The 2-in-1 hybrid rotor is a lightweight 8-place rotor with interchangeable fixed angle and swinging buckets. This rotor accommodates 1.4 mL to 15 mL tubes with two spacer options at maximum g-forces of 3,144 x g (fixed angle) and 3,490 x g (swinging bucket).

## **Methods**

Blood was obtained from 10 unknown donors by venipuncture collection at the same day of the testing. 2.7 mL of whole blood was collected into plastic citrate tubes (BD Vacutainer<sup>™</sup> blood collection tubes, article number 363083) and stored at room temperature. The tubes were processed using the Medifuge centrifuge. The rotors and centrifugation conditions are summarized in Table 1 and Table 2 (next page).

The platelet concentrations for each PPP preparation were determined with the aid of a hematology analyzer.

# thermo scientific

Table 1. Centrifuge, rotor, buckets and adapter

| Centrifuge                               | Rotor    | Buckets             | Adapter      |
|------------------------------------------|----------|---------------------|--------------|
| Thermo Scientific Medifuge<br>Centrifuge | DualSpin | Swinging<br>buckets | Green spacer |

Table 2. Centrifugation conditions

| Clinical testing | Rotor    | RPM   | RFC (x g) | Time (min) |
|------------------|----------|-------|-----------|------------|
| PPP              | DualSpin | 4,500 | 3,490     | 8          |

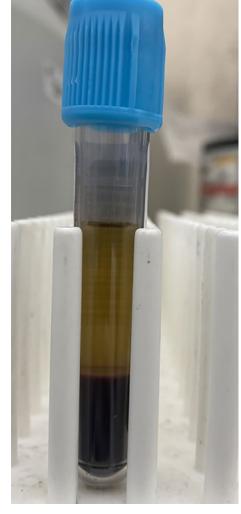
## **Results**

Clinically acceptable results were derived for all centrifugation steps performed using a Medifuge centrifuge and DualSpin rotor with swinging buckets. Acceptable results for PPP were accomplished at 3,490 x g or 4,900 rpm for 8 minutes.

Table 3. Platelet count in PPP preparation from 10 unknown donors

# Platelet count<sup>a,b</sup> [K/µL] (after spin)

# $2.5 \pm 2.2$


a Centrifugation conditions shown in Table 2 b Mean  $\pm$  SD

# Conclusion

The Medifuge centrifuge achieved a clinically acceptable PPP yield per laboratory standards with a spin of 8 minutes at 3,490 x g or 4,500 rpm using the DualSpin rotor and swinging buckets. The residual platelet counts in the final PPP sample were  $<10,000/\mu$ L<sup>1</sup>.

#### Reference:

 Editor(s): Barbara J. Bain, Imelda Bates, Michael A. Laffan, Dacie, and Lewis; Practical Haematology (12th Edition), Elsevier, 2017 p. 376, chapter centrifugation: preparation of plateletpoor plasma



Thermo Físher

Figure 1: PPP after centrifugation with DualSpin rotor and BD Vacutainer blood collection tubes.

# Learn more at thermofisher.com/centrifuges

# thermo scientific