Thermo Fisher s c | e N T | F | C

Practical considerations for protein purification and sample preparation

Barbara Kaboord, PhD Sr. R&D Manager, Protein Preparation December 9, 2020

The world leader in serving science

For Research Use Only | barbara.kaboord@thermofisher.com | 09-December-2020

Outline

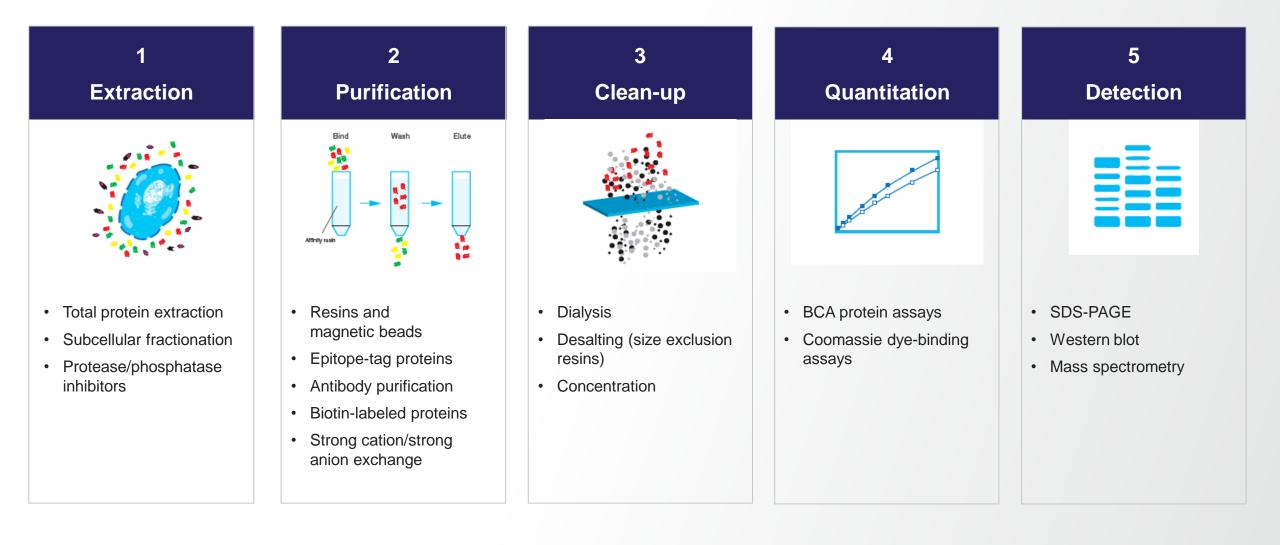
Expression systems

Cell/tissue extraction

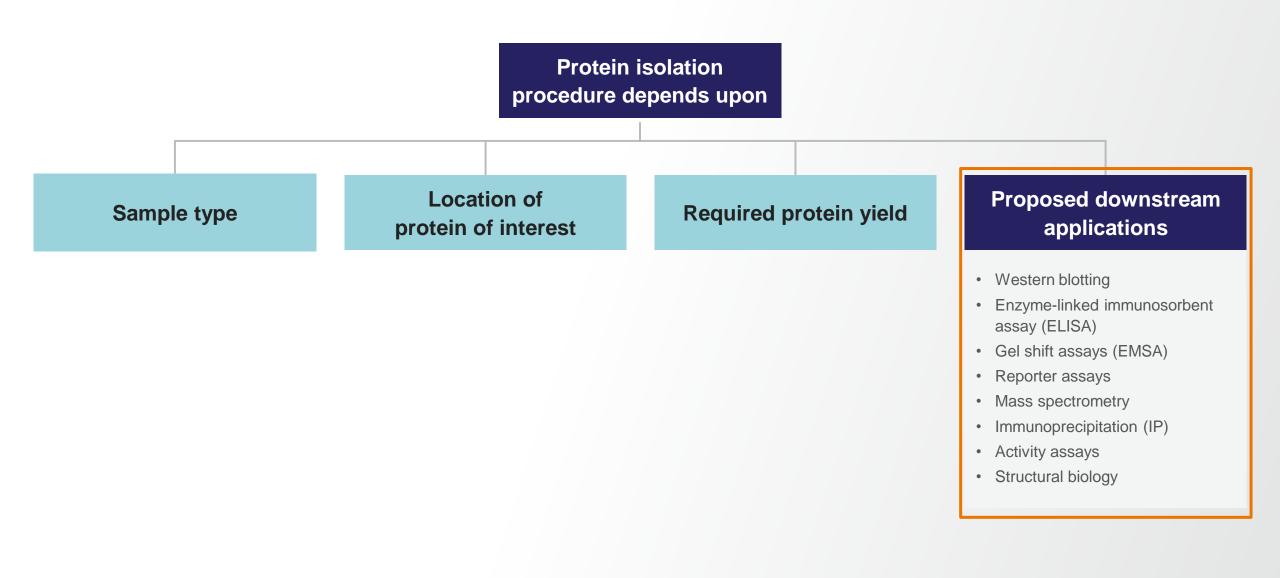
Affinity purification resins/beads

4

5


3

Automated purifications with magnetic supports


Protein clean-up

Protein sample prep workflow

What do you want to do?

How should I purify it?

- How much protein do I need?
- What is my protein source?
- What model organism should I use for overexpression?
- How stable is my protein of interest?
- What sensitivities do I need to worry about?
- What downstream applications will I be doing with it?
- How pure does the protein need to be?

Outline

2 Cell / tissue extraction

3 Affinity purification (resins/beads)

Automated purifications with magnetic supports

Expression system options

	Advantages	Challenges	System
Cell-free	 Rapid expression directly from plasmid Open system, no cultures Amenable to higher throughput 	Large-scale expression	 <i>E. coli</i> Wheat germ Rabbit reticulocyte Mammalian (HeLa)
Bacteria	 Scalable Low cost Simple culture conditions Short expression duration 	 Protein solubility Minimal post-translational modifications Some mammalian proteins may not express 	<i>E. coli</i><i>Bacillus subtilis</i>
Yeast	Low costSimple media requirementsEukaryotic protein processing	Fermentation required for very high yieldsGrowth requirements may need to be optimized	S. cerevisiaePichia pastoris
Insect	 Low cost PTMs similar to mammalian Good for proteins toxic to mammalian cells Expression of multi-protein complexes 	 More demanding culture conditions PTMs and folding not quite identical to mammalian systems 	Sf9Sf21
† Mammalian	 Highest level of correct post-translational modifications Highest probability of obtaining fully functional human proteins 	More demanding culture conditionsHigh yields best achieved with suspension cultures	HEK293CHO

Thermo Fisher

Protein expression solutions

Gibco[™] Optimized protein expression systems

Expi293[™] Expression System

Structure/function studies

Why? Human cells provide native folding and post-translational modifications

Human 293 (HEK293) cell-based system Protein yield up to 1 g/L

ExpiCHO[™] Expression System

Biopharma drug discovery

Why? 70% of biologics manufactured in CHO: screen in CHO, stay in CHO

CHO cell-based system Protein yield up to 3 g/L

ExpiSf[™] Expression System

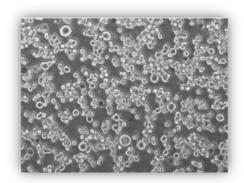
Vaccine development, academia

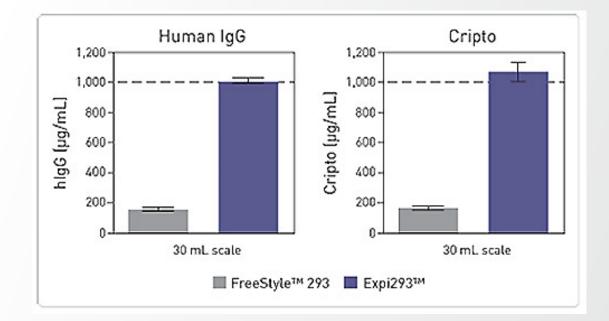
Why? Insect cells are a cost-effective, versatile emerging platform for recombinant vaccine production

Sf9 cell-based system

Protein yield 3x greater than current platforms

Host: insect


Host: mammalian


Thermo Fisher

Expi293 system

Expi293F cell line attributes

- Human cells derived from Invitrogen[™] FreeStyle[™] 293F cells
- Adapted for high-density culture (≥15M cells/mL)
- Doubling time of ~24-25 hours
- Cell diameter 18 20µm (culture expression)
- Highest transfection efficiency (80-85%)
- Stable growth and expression profiles over 30 passages
- High quality, biologically-active protein
- Express in cells or secrete expressed protein into the media

Figure 1. Expression of human IgG and Fc-tagged Cripto achieve expression levels of over 1 g/L in the Expi293 Expression System.

Expi293 expression system produces more active protein

SCIENTIFIC REPORTS

natureresearch

Thermo Fi

Membranes were pre-treated with 5 µM CP-55,940, then incubated at 42°C and aliquots withdrawn at time intervals indicated. Results of duplicate measurements determined by G protein activation test are presented.

Yeliseev, A., van den Berg, A., Zoubak, L. *et al. Sci Rep* **10**, 16805 (2020). https://doi.org/10.1038/s41598-020-73813-7

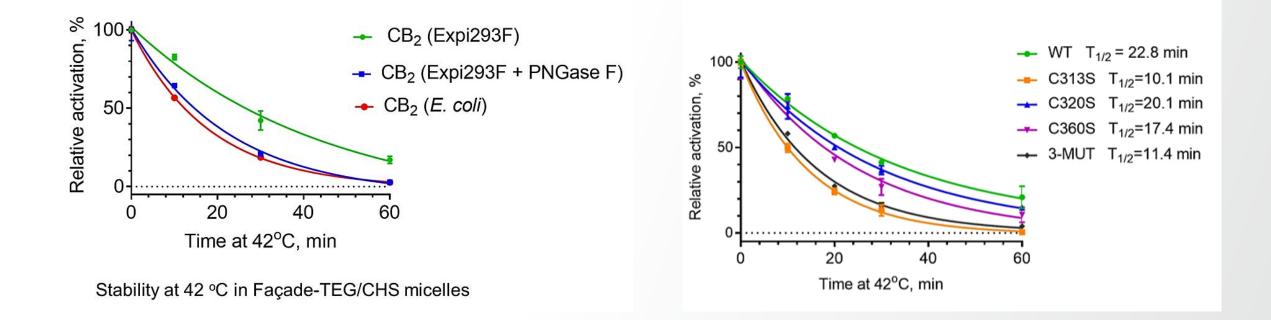
Kyle Williston², Wanhua Yan², Klaus Gawrisch¹ & Jonathan Zmuda²

Thermostability of a recombinant G

protein-coupled receptor expressed

Alexei Yeliseev^{1⊠}, Arjen van den Berg², Lioudmila Zoubak¹, Kirk Hines¹, Sam Stepnowski²,

at high level in mammalian cell


OPEN

culture

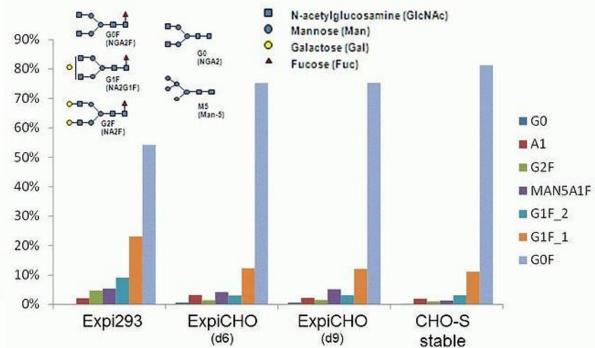
Mammalian expressed CB2 receptor has higher activity than CB2 expressed in *E. coli*

Greater CB2 thermostability with appropriate PTMs

N-glycosylation and C-term palmitoylation of CB2 receptor is critical for activity

Thermo Fisher

Yeliseev, A., et al. (2020) Nature Res. Sci. Reports 10:16805 | https://doi.org/10.1038/s41598-020-73813-7 | https://creativecommons.org/licenses/by/4.0/


ExpiCHO system

ExpiSf cell line attributes

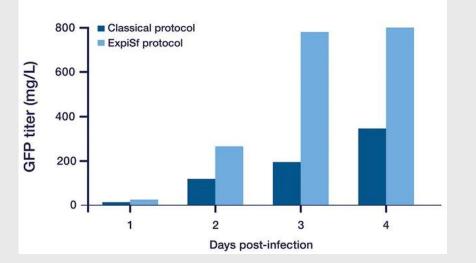
- Sub-clone derived from GMP CHO-S cells
- Adapted for high-density culture (≥20M cells/mL)
- Short doubling time (~17-18 hours)
- Cell diameter 14 20µm (culture expression)
- High transfection efficiency (75-80%)
- Stable growth and expression profiles for ~20 passages
- "CHO-like" glycosylation profiles to match stable bioproduction
- High quality, biologically-active protein

Human IgG overexpression

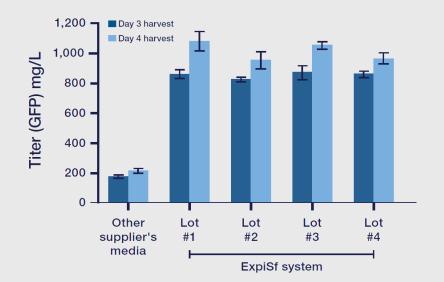
Expi293 vs ExpiCHO Systems: Expression kinetics

hlgG expression in ExpiCHO hlgG expression in Expi293 3-1.5 n Max Titer Protocol Titer (hlgG) g/L Titer (hlgG) g/L 2-1.0 0.5 Standard Protocol 0.0 12 14 10 2 6 7 n 2 0 3 5 Days in Culture Days in Culture

Thermo Fisher


*Expi293 has fast, but short, expression profile. ExpiCHO can generate similar titers in the first 7 days, however, ExpiCHO can continue to express out to 14 days.

ExpiSf system


ExpiSf expression system attributes

- Achieves 3 times more protein than current insect platforms
- First-ever, chemically defined insect growth medium
- Consistency over multiple expression runs
- Optimized, fully-integrated system
- Robust production of high-titer, high-quality P0 recombinant baculovirus in suspension culture (no virus amplification needed)
- Reduced time to protein (6-10 days) compared to classical workflows (12-20 days)

Lot-to-lot consistency of ExpiSf CD medium

2 Cell / tissue extraction

3 Affinity purification (resins/beads)

Automated purifications with magnetic supports

Protein extraction and enrichment reagents

 \checkmark

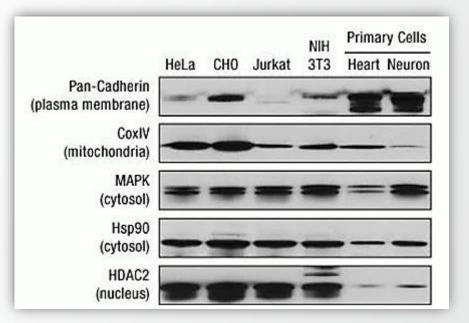
Performance—many first-to-market reagents with trusted performance

Optimized—maximize protein yield and preserve protein activity

 \checkmark

Efficient—minimal cross-contamination between subcellular fractions

Compatible—extracts can be used directly in most downstream applications

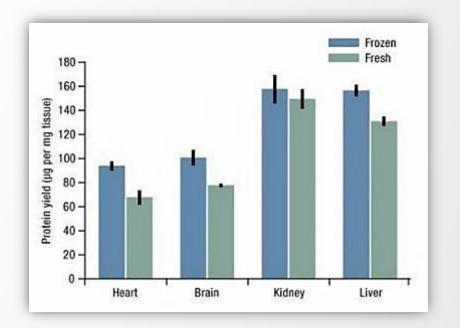


Gentle—eliminate mechanical cell disruption for most sample types

Total protein extraction reagents (PERs)		Protein fractionation kits
General lysis reagents	Cell-specific "Pop-PERs"	Subcellular, organelle, and tissue specific
 RIPA buffer IP lysis buffer Individual detergents 	 Mammalian (M-PER) Bacterial (B-PER) Tissue (T-PER) Yeast (Y-PER) Insect (I-PER) Plant (P-PER) 	 Nuclear and cytoplasmic (NE-PER) Membrane (Mem-PER) Subcellular fractionation kit (cells/tissue) Synaptosome isolation kit Mitochondrial isolation kit

M-PER: Mammalian protein extraction reagent

	M-PER		
Features	 Proprietary formulation with a dialyzable detergent Whole-cell lysate All cell compartments lysed Helps proteins maintain their native structure and preserve any protein:protein interactions 		
Sample type	Mammalian cultured cells		
Applications	 SDS-PAGE Western blots Immunoprecipitations (IP / Co-IP) Pull-downs Activity assays 		
Recommended Thermo Scientific™ Pierce™ protein assay(s)	 BCA Protein Assay Kit Rapid Gold BCA Protein Assay Kit Detergent Compatible Bradford Assay Kit 		


Thermo Fisher

Western blot of cell lines showing M-PER liberates proteins from different cellular compartments

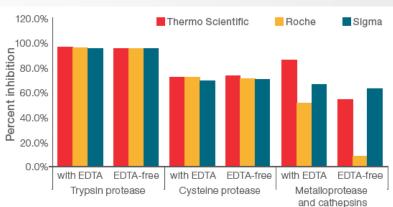
General lysis reagent that is useful for many applications, detergent is dialyzable

T-PER: Tissue protein extraction reagent

	T-PER		
Features	 Proprietary formulation with dialyzable detergent All cell compartments lysed Helps proteins maintain their native structure and preserve any protein:protein interactions Mechanical disruption required with reagent 		
Sample type	• Mammalian tissue (fresh or frozen)		
Applications	 SDS-PAGE Western blots Immunoprecipitations (IP / Co-IP) Pull-downs Activity assays 		
Recommended Pierce protein assay(s)	 Detergent Compatible Bradford Assay Kit BCA Protein Assay Kit (1:2) Rapid Gold BCA Protein Assay Kit (1:2) 		

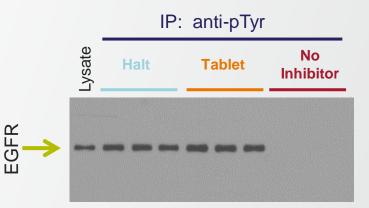
Thermo Fisher

Protein yield comparison of T-PER with four tissue types, fresh and frozen. Fresh samples typically yield more protein.


General lysis reagent for mammalian tissue samples

Protein preservation

Thermo Scientific[™] Halt[™] and Pierce[™] protease and phosphatase inhibitors


- Multiple formats liquid cocktails or fast dissolving tablets in multiple pack sizes
- Convenient ready-to-use, broad enzyme spectrum formulations for excellent protein protection
- Combined cocktail available as all-in-one formulation containing both protease and phosphatase inhibitors
- **Consistent –** liquid and tablet have the same inhibitor concentrations in final sample (except for XL capsule)

	Halt inhibitor liquid cocktails	Pierce inhibitor tablets
Flexible addition based on sample volume?	YES	NO
Requires reconstitution?	NO (100X)	YES
Pricing	Premium	Economical

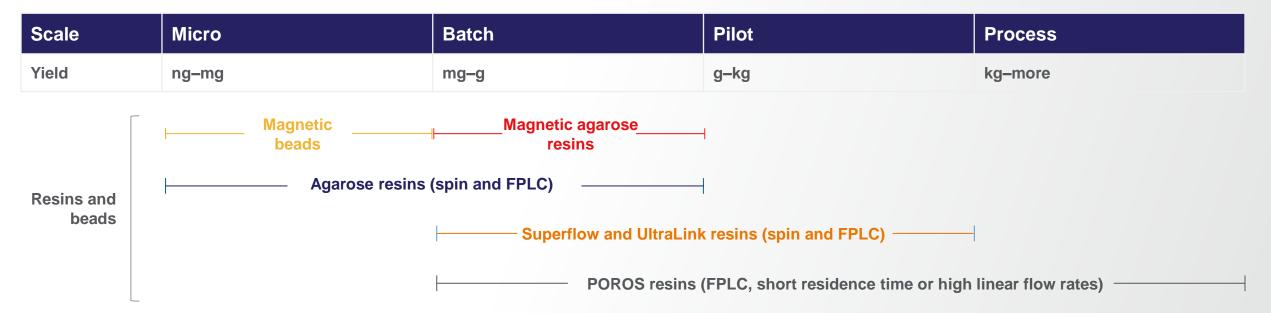
Protease inhibitors

Protease tablets

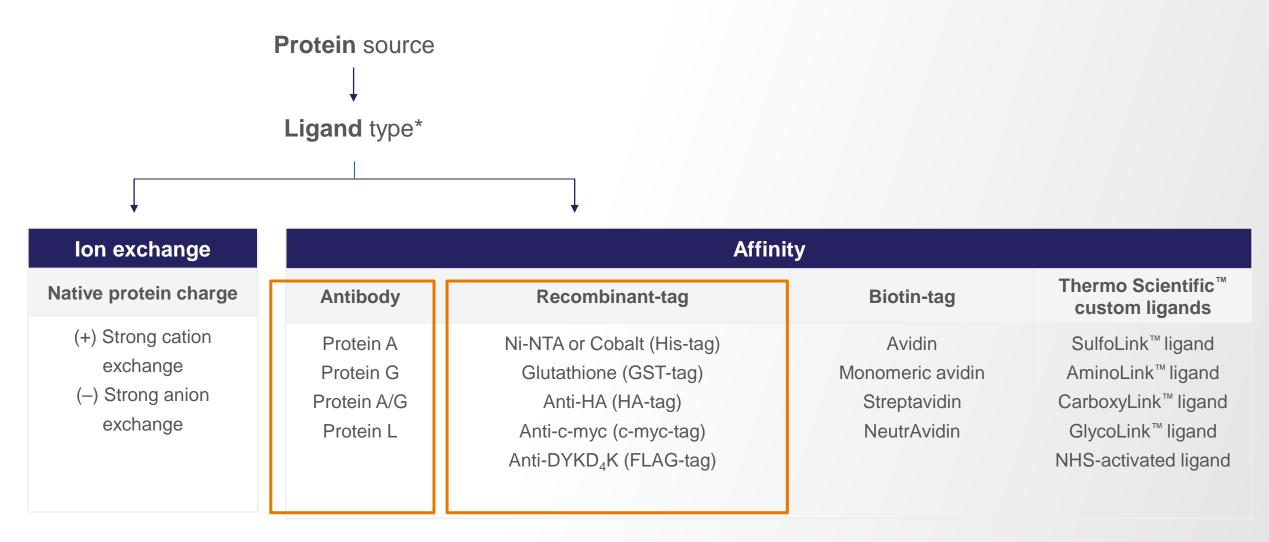
Importance of phosphatase inhibitors

2 Cell / tissue extraction

3 Affinity purification (resins/beads)


Automated purifications with magnetic supports

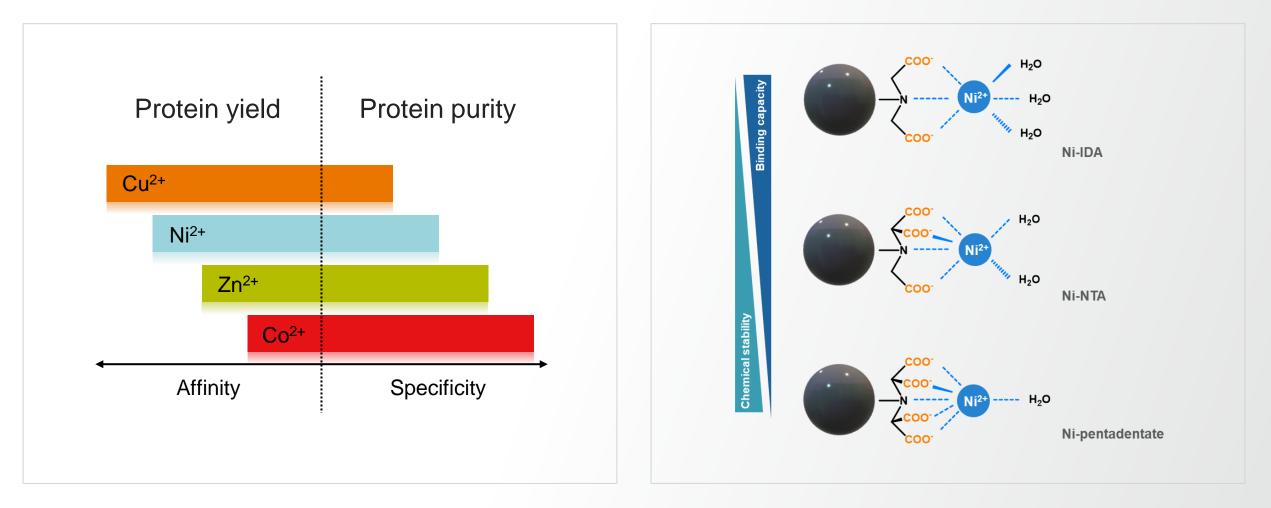
Scale of protein purification


Scale of purification Protein yield: µg, mg, g, kg

Thermo Scientific[™] **Resin** types Agarose, Superflow[™] agarose, Pierce[™] magnetic agarose, Pierce[™] magnetic beads, Pierce[™] UltraLink[™] resin, and POROS[™] resin

Thermo Fisher s c | E N T | F | C

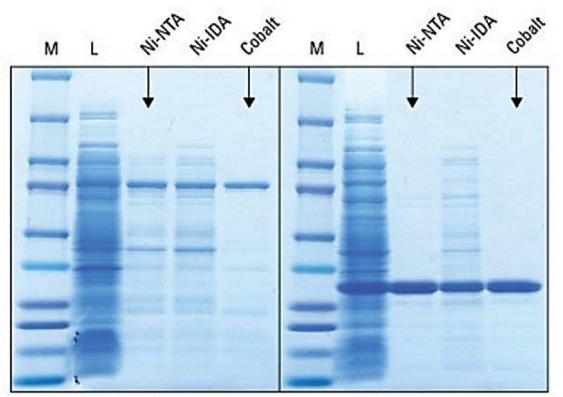
Ligand-based protein purification

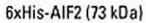

* Not all ligands are available in all support types.

What epitope tag should I use?

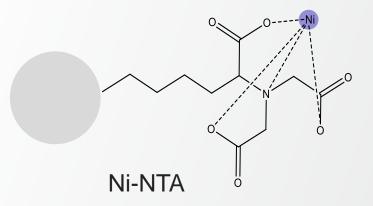
	Epitope tag	Size / identity	Ligand	Affinity (K _D)	Elution	Advantages	Challenges
-	IMAC	6xHis (can vary from 4–16 histidines)	Metal-chelate (Ni or Co)	~1 mM	Imidazole	 Small tag minimizes impact on structure/function Can purify under denaturing conditions Easy to use Low cost Can regenerate 	Concerns with Ni leachPurity is variable
	GST	224 amino acids (26 kDa)	Glutathione (reduced)	~110 nM	• GSH	 Can improve solubility Important for high level expression in prokaryotes Low cost 	 Larger tag may interfere with structure or function
-	Small peptide	HA (YPYDVPDYA) c-Myc (EQKLISEEDL) FLAG (DYKDDDDK) (1x and 3x variants)	Anti-HA Anti-c-myc Anti-FLAG	pM to low nM	 Acidic buffer Competing peptide 	 Achieves higher purity, minimize 2° cleanup Good for IPs Small tag minimizes impact on structure/function FLAG has built-in enterokinase cleavage site 	 More expensive antibody supports Re-use is limited

Choices of metal ions for His-tag purifications


Many IMAC versions to choose from...



Thermo Fisher

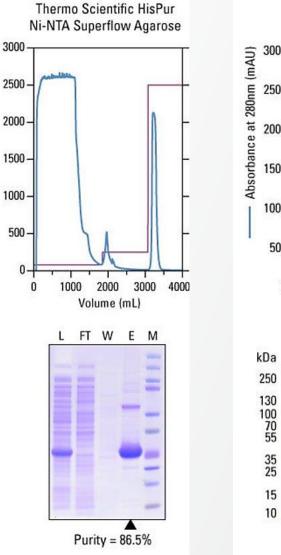

6XHis-protein purity dependencies

Expression level, chelator, metal used

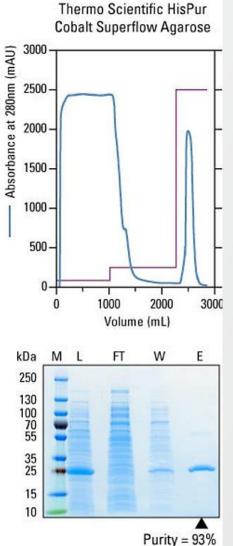
6xHis-GFP (28 kDa)

Thermo Fisher

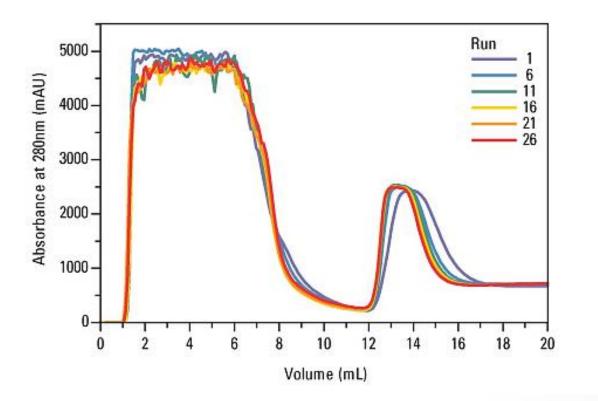
	6xHis AIF2 (73kDa)		6xHis GFP (28kDa)		
Resin	Yield	Purity	Yield	Purity	
HisPur Ni-NTA	0.5mg	32%	0.8mg	90%	
Ni-IDA	0.5mg	25%	0.6mg	52%	
HisPur Cobalt	0.4mg	49%	0.7mg	91%	


Ni-NTA most popular, has higher capacity. Cobalt-IMAC gives higher purity, best for low expressers.

Ni for higher capacity; Co for higher purity


Dynamic binding, FPLC format, SuperFlow resins

High-yield, high-purity, medium-scale purification of 6xHisTagged protein


More than 4 grams of over-expressed 6xHis-GFP were purified in 3 hours using 200mL columns containing HisPur Ni-NTA Superflow Agarose or Qiagen[™] Ni-NTA Superflow. One liter of lysate was loaded at a flow rate of 20mL/min, then washed until baseline with wash buffer containing 30mM imidazole. Bound protein was eluted with buffer containing 300mM imidazole. Fractions containing purified 6xHis-GFP were pooled and quantitated using Pierce 660nm Protein Assay (Part No. 22662). Load, flow-through, wash, and eluate fractions were separated by SDS-PAGE, stained with Imperial Protein Stain (Part No. 24615) and evaluated using myImageAnalysis Software (Part No. 62237) to determine purity.

Absorbance at 280nm (mAU)

Re-use of Ni-NTA Superflow agarose

Column: 1mL HisPur Ni-NTA Superflow agarose Sample: 6XHis-GFP in *E. coli* lysate

Thermo Fisher

Regeneration / Clean-in-Place protocol:

- 10 vol 0.5M NaOH
- 10 vol dH₂O
- 10 vol binding buffer

Optional regeneration protocol:

EDTA strip, re-charge with Ni₂SO₄

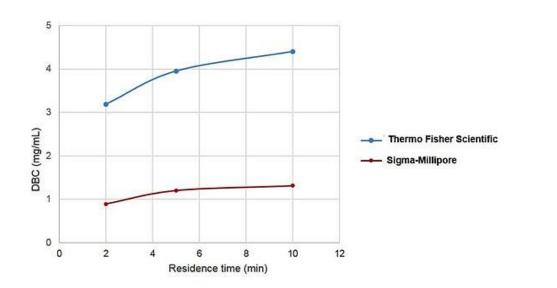
Ni-NTA resin can be CIP'ed and reused at least 25X with no loss of performance

Immobilized anti-epitope tag purification supports

• High affinity Mab identified that binds to c-myc gene product

FLAG[™]-tag (DYKDDDDK)

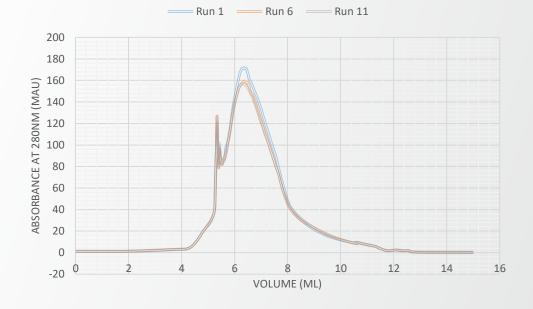
2


Completely artificial design

3

- Hydrophilic, minimize chance of inactivating fusion protein
- MAb raised against sequence
- N-term tag sequence cleaved by enterokinase

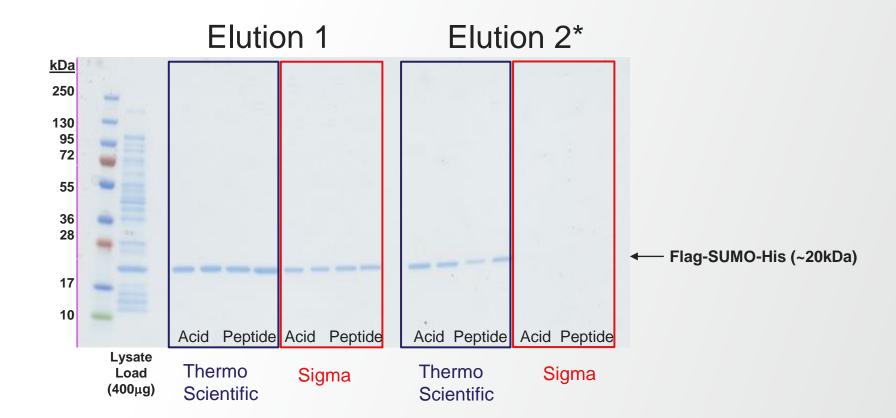
Anti-DYKDDDDK Affinity Resin


- High dynamic binding capacity
- Regeneration (10X) of the resin is possible w/o loss of function

Item	Details	
Column	0.5 cmD x 5cmL (1mL)	
Loading Buffer	100mM phosphate, 150mM NaCl, pH 7.2 (PBS)	
Detection	UV at 280 nm	
Sample	DYKDDDDK-GFP-His (1mg/mL)	
DBC	10% breakthrough	
Linear Flow Rates	150cm/hr, 60 cm/hr, and 30 cm/hr	

Anti-DYKDDDDK Ultralink resin regeneration

Thermo Fisher



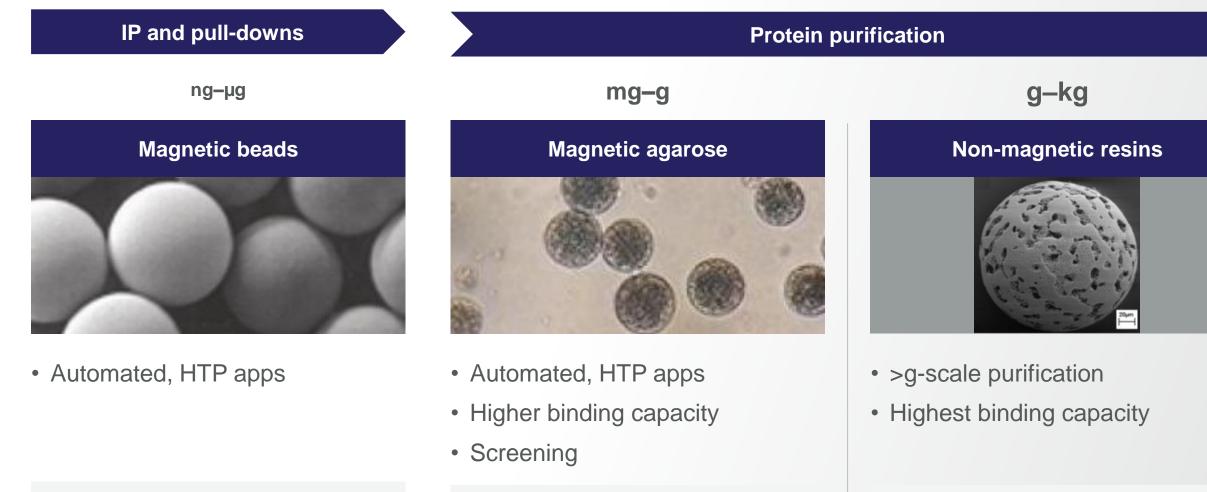
1mL of settled Thermo Scientific[™] Pierce[™] Anti-DYKDDDDK Affinity Resin was packed into a 1mL column. It was then loaded with 4mL purified DYKDDDDK-TurboGFP-His at a concentration of 1mg/mL at a rate of 0.2mL/min. The column was subsequently washed (PBS), stripped (0.1M glycine, pH 2.8), and regenerated up to 10 times with minimal loss in binding.

Anti-DYKDDDDK Affinity Resin

Efficient peptide and acid elution

- Higher affinity interaction
- Higher purity
- Multiple elution options:
 - 0.1M Glycine, pH 2.8
 - 3X DYKDDDK peptide

Sample: bacterial overexpression lysate


2 Cell / tissue extraction

3 Affinity purification (resins/beads)

Magnetic beads for protein purification

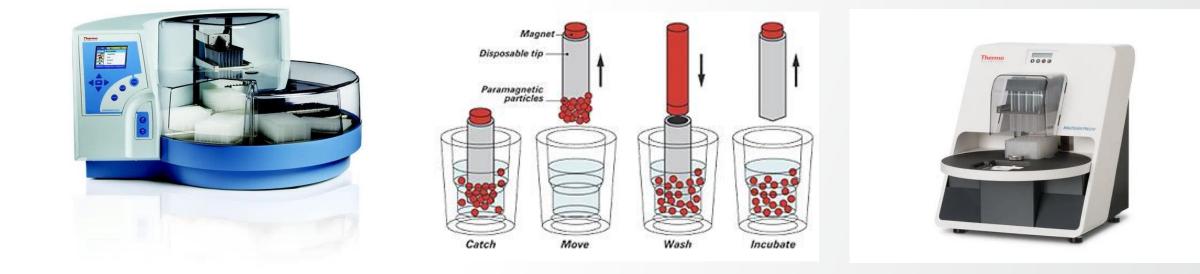
Pierce and Dynabeads magnetic beads

Thermo Scientific™ Pierce™ magnetic agarose

Agarose, UltraLink, and POROS resins

Advantage of high-capacity screens

- Need for optimized and connected workflows (expression → purification → analysis)
- Automated, mg-scale protein purification solution for screening and characterization
 - · Purification of overexpressed proteins from cell culture media
 - Need for efficient, inexpensive and high purity affinity solutions
 - Need to balance investment of time with workflow optimization and other delivery goals


Purification with high capacity MagBeads enables proceeding directly into characterization Time Savings: 2-4 weeks

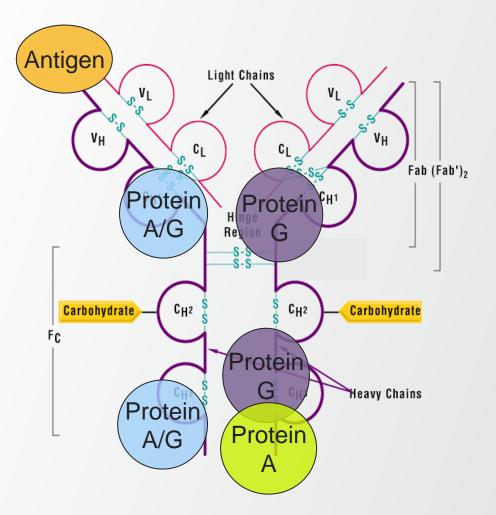
Automating purification

Thermo Scientific[™] KingFisher Flex Purification System

Protocol:

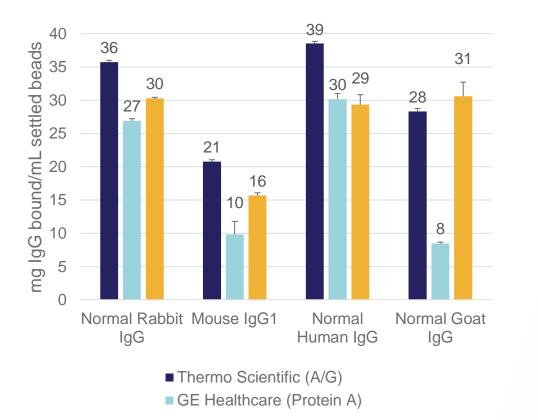
- 1. Bind 0.5mL ExpiCHO Sup + Protein AG magnetic agarose (50mL settled beads)
- 2. Wash 2 x 30 sec with 500mL PBS
- 3. Wash 30 sec with 500mL Water
- 4. Elute 5 min with 200mL 0.1M Glycine, pH 2.8

Selecting an IgG binding support


Protein A and Protein G have different affinities for antibody species and subtypes

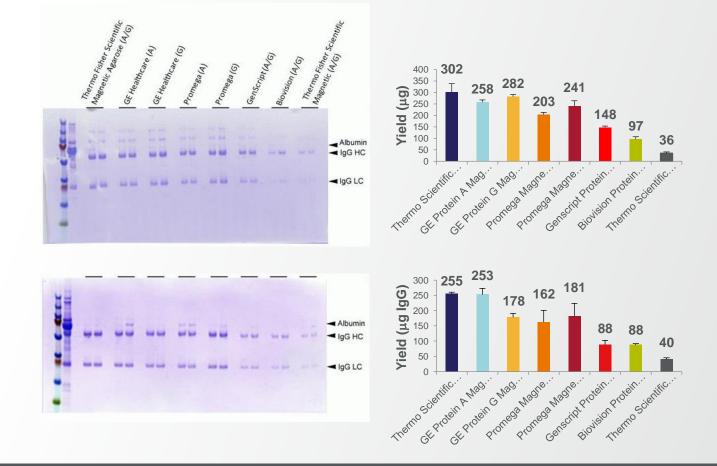
• Protein A

- 85% of market chemical tolerance, easier elution
- Binds Fc region at $C_H 2$ - $C_H 3$ sites primarily and weakly to $V_H 3$ (some FAbs)
- Poor binding to IgG₃ and rat, goat antibodies

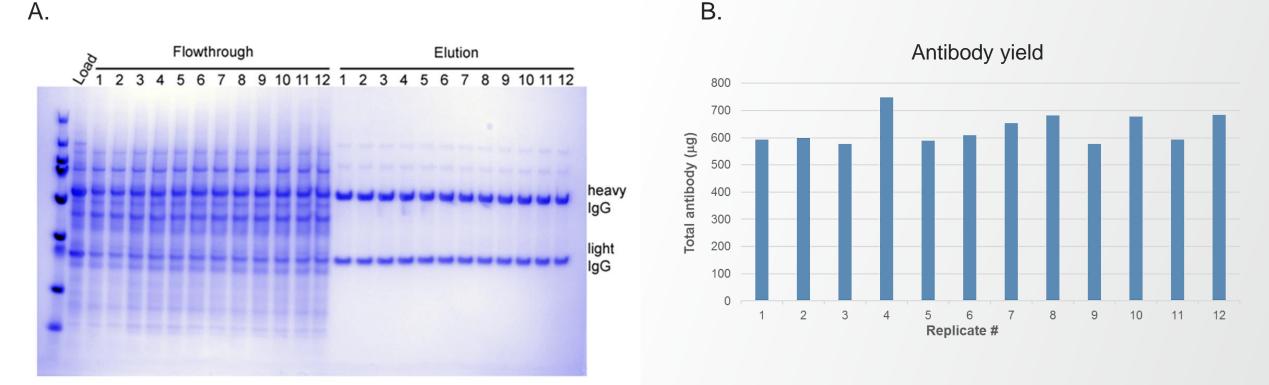

• Protein G

- Binds Fc region and $C_H 1$ region of light chains (purifies all FAbs)
- Good for purifying mouse monoclonals (binds all subtypes)
- Poor binding to Ig subtypes (e.g., IgA, IgM, IgE, etc.)
- Protein A/G
 - Engineered protein combining four Protein A and two Protein G antibody binding sites; removal of albumin binding site
 - Binds all species and subtypes that Protein A and G bind individually
 - A one-resin-fits-all solution

hermo


High-throughput antibody purifications and screens

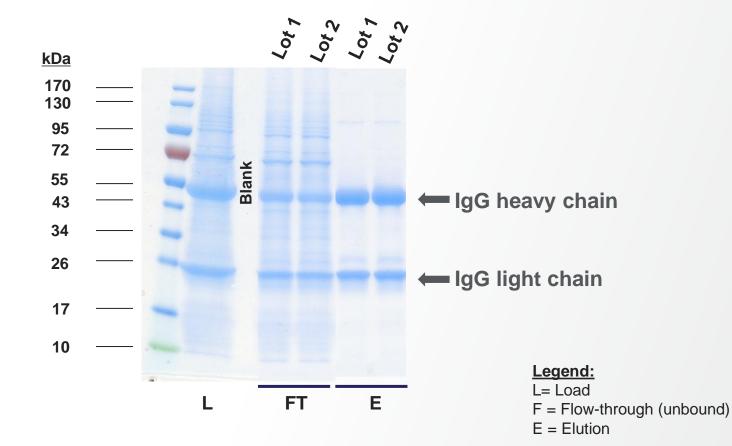
High capacity across IgG isotypes


Thermo Fisher

Versatility of using Pierce Protein AG Magnetic Agarose

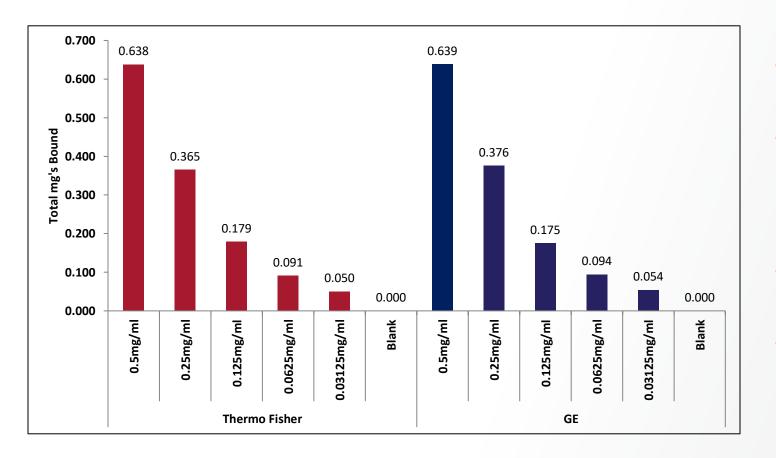
Automated antibody purification from ExpiCHO media

Thermo Scientific[™] Pierce[™] Protein A/G Magnetic Agarose Beads



Thermo Fi

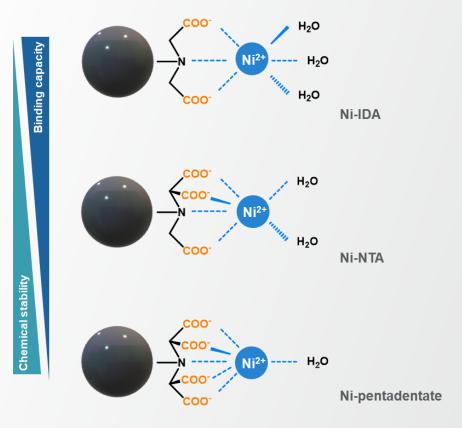
ExpiCHO media expressing humanized IgG (0.5 mL) was purified with Protein AG Magnetic Agarose Beads (0.1 mL slurry) using an automated KingFisher Duo protocol. Load, flow-through and elution fractions were evaluated by reducing SDS-PAGE (panel A) to assess purity and binding efficiency. Total yield was estimated using the Detergent Compatible Bradford Assay and bovine gamma globulin as a standard (panel B). Average yield was 632 ± 55 µg per 0.5mL sample (8.8% CV).


Purification of Humira[®] Ab from Expi293 culture media

Protein A/G Magnetic Agarose Beads

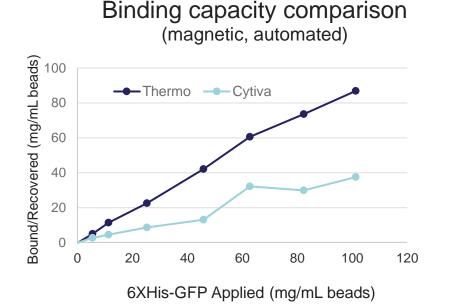
Antibody expressed in ExpiCHO system

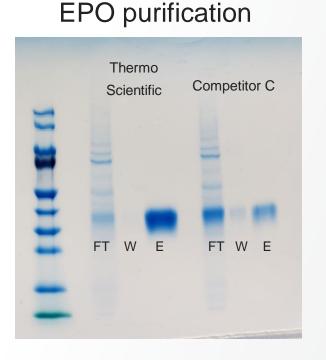
Mimic lower expression conditions



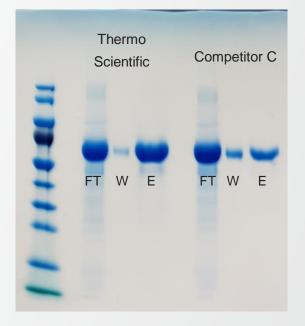
- Ab expressed in ExpiCHO media was serially diluted with blank or spent media
- 300µL of each dilution was incubated with Thermo Scientific Protein AG magnetic agarose or GE Protein A HP Spin Plate per manufacturers' protocols
- Bound antibody was washed then eluted with IgG Elution Buffer pH 2.0
- Elution fractions were collected, and protein concentration determined by BCA

EDTA-compatible IMAC supports


For purification of His-tagged proteins from cell culture media

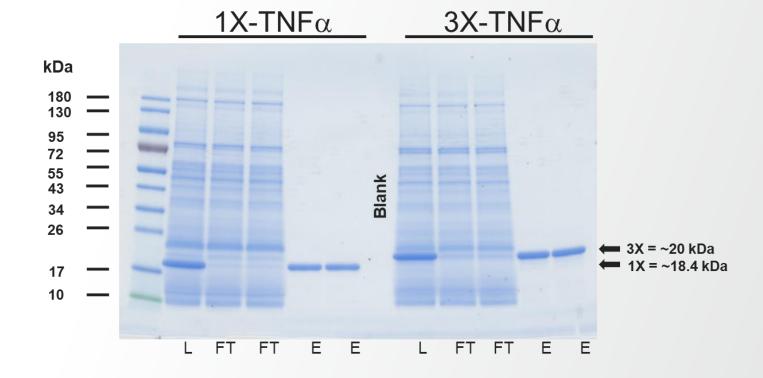

- Pentadentate chelators or multi-chelate clusters
- Retain coordination with M²⁺ ions in presence of:
 - EDTA (often used as metalloprotease inhibitor)
 - Reducing agents (e.g. DTT)
 - Cell culture media / metabolites
- Critical for purifying overexpressed His-tagged proteins:
 - · Secreted into the culture media
 - Sensitive proteins in lysates containing DTT and EDTA

His-tagged purifications from Expi293 media


ThermoFisher™ Pierce™ High Capacity EDTA Compatible Ni-IMAC MagBeads

HSA purification

Thermo Fisher

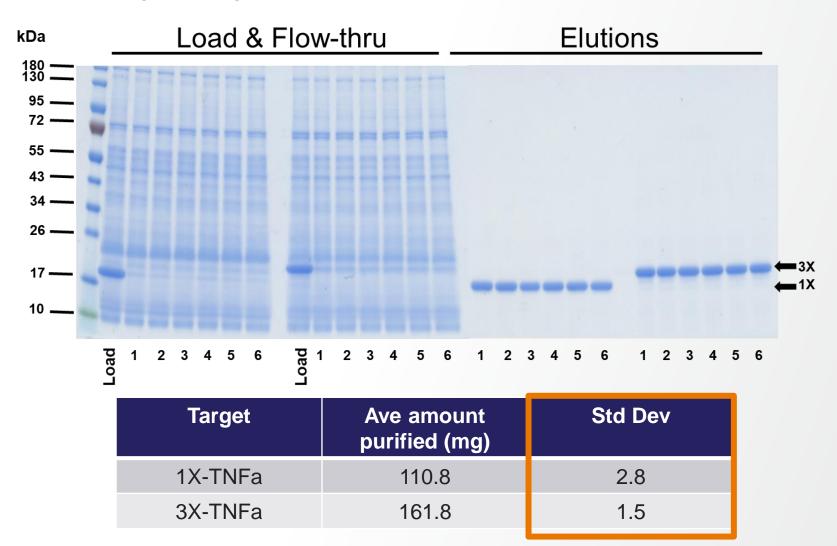


EDTA-compatible Ni-IMAC magnetic beads and resin coming soon in Q1 2021

Magnetic purification of DYKDDDDK-tagged TNF α

Both single- and triple-tagged constructs bind and elute efficiently

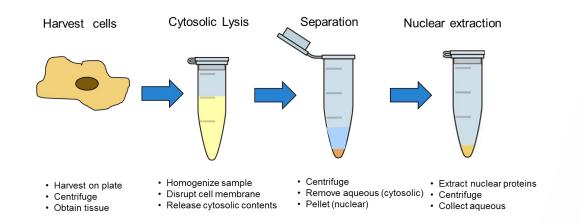
- 0.4 mL of ExpiCHO supernatant containing Flag-tagged TNFα constructs
- Anti-DYKDDDDK Magnetic Agarose (50µl settled beads)

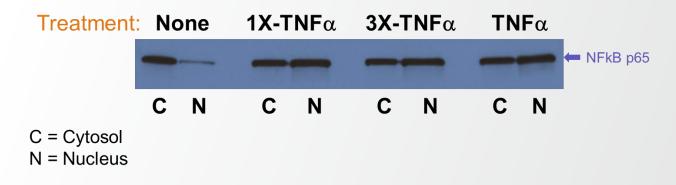


Thermo Fisher

Protein	Purified protein (μg per 0.4mL sup)	Purified protein (μg per 1mL sup)
1X-TNFα	85.6	214
3X-TNFα	142.4	356

Reproducible automated purifications

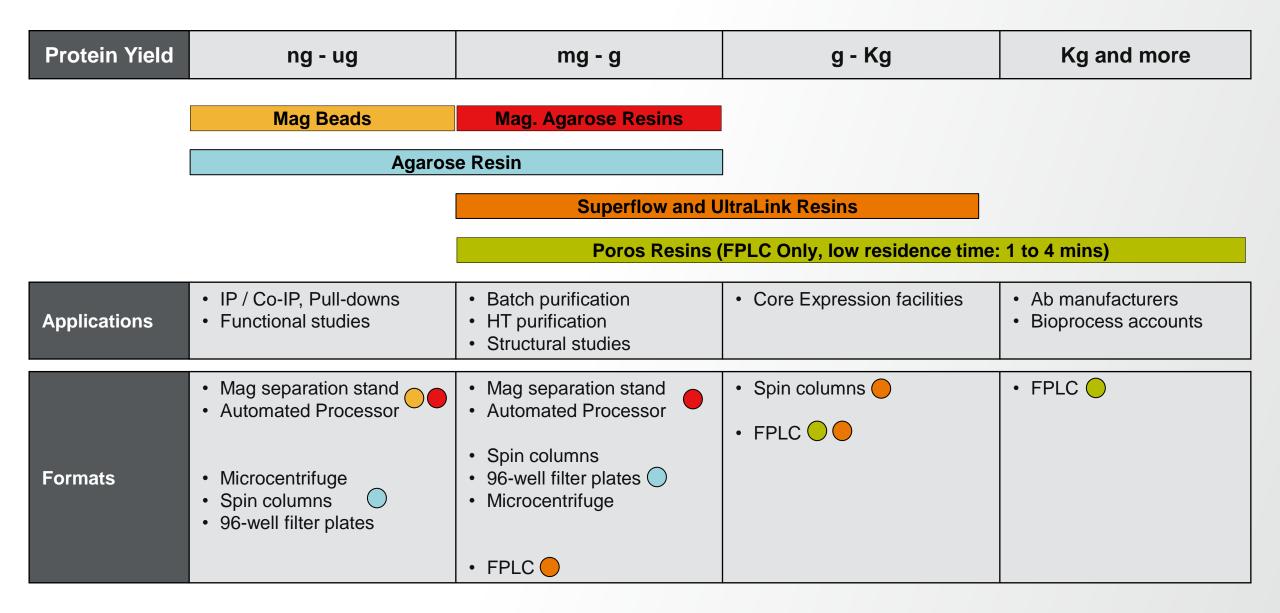

With anti-DYKDDDDK magnetic agarose



Cytosol to nuclear translocation of $\text{TNF}\alpha$

FLAG-tagged TNF α activity is preserved throughout purification

NE-PER protocol:



Thermo Fisher

SCIEN

NF κ B translocates into the nucleus with TNF α treatment, with and without FLAG tag

Positioning of protein purification supports

2 Cell / tissue extraction

3 Affinity purification (resins/beads)

Automated purifications with magnetic supports

Thermo Fisher

Protein clean-up solutions

Learn more at thermofisher.com/proteinprep

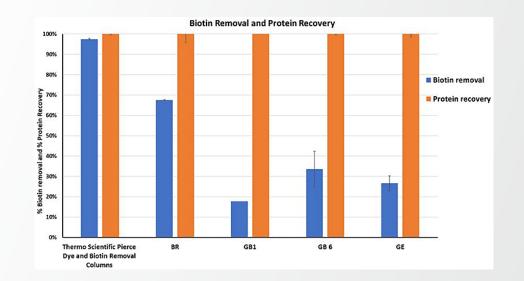
Thermo Scientific[™] Zeba[™] Desalting Columns

- Single-use spin columns & filter spin plates
- Re-usable chromatography cartridges
- 7K & 40K molecular weight cut-offs
- Proprietary resin results in excellent protein recovery
- Efficient salt retention (removal) >95%

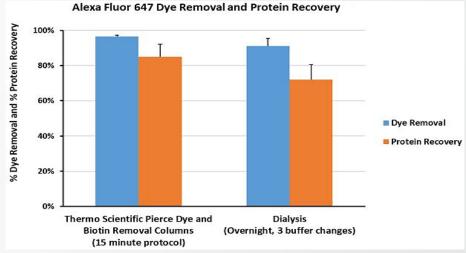
Thermo Scientific[™] Pierce[™] Slide-a-Lyzer[™] Dialysis Cassettes, MINI devices, and 96-well Microdialysis Plates

- Low-binding plastic and membrane
- Protein recovery >90%
- 2, 3.5, 10 & 20K MWCO
- Sample sizes: 10µl to 250mL
- Secure, validated no leaks or lost samples




Thermo Scientific[™] Pierce[™] Concentrators

- Concentrate up to 10- to 30-fold in 5-30 min
- Protein recovery >90%
- MWCO's: 3, 5, 10, 30, 50 and 100K
- 0.5, 6, 20, and 100mL sizes
- Use in standard fixed-angle or swingingbucket centrifuge rotors
- Polyethersulfone (PES) membrane


Protein clean-up

- Removes unreacted fluorescent dyes, biotinylation reagents, crosslinkers & reducing agents from proteins
- Low-binding resin maximizes protein recovery
- No column prep or equilibration required
- Fast less than 15 minutes
- 0.5, 2, 5, & 10mL spin columns
- Sample sizes range from 50µl to 4mL

Thermo Fis

Acknowledgments

- Protein Prep Team
 - Betsy Benton
 - Joanna Geddes
 - Chris Wojewodski
 - Suzanne Smith
 - Navid Haghdoost

- Cell Biology Expression Team
 - Jon Zmuda
 - Chao Yan Liu
 - Wanhua Yan
 - Jian Liu
 - Katy Irvin
 - Kyle Williston

- National Institutes of Health, NIAAA
 - Alexei Yeliseev
 - Klaus Gawrisch

© 2020 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. FLAG[™] is a registered trademark of Sigma-Aldrich Co. LLC . Superflow is a trademark of Sterogene Bioseparations, Inc. Humira[®] is a registered trademark of AbbVie, Inc.

Thank you

The line has been unmuted for questions.

50 For Research Use Only | barbara.kaboord@thermofisher.com | 09-December-2020