
Metagenomics 16S
algorithms overview

Ion Reporter

Section 1: Files in the project	 01

Parameter files	 01
In.json	 01
AppMeta.json	 01
Out.json	 01
Params.json	 01

Section 2: Java files	 02

AppIn.java	 02
AppMeta.java	 02
AppOut.java	 02
AppParams.java	 02
BlastRunner.java	 02
MergingFunctions.java	 02
MetaGenMain.java	 03
Reports.java	 03
Result.java	 03
ResultEntry.java	 03
ResultEntryUniqueRead.java	 03
UniqueSeq.java	 03
Utils.java	 03
ZipUtil.java	 03

Section 3: Algorithms	 04

Outer flow	 04
Inner flow	 05

A. Get all reads from BAMs	 05
B. Filter reads by primer, length	 05
C. Keep unique reads	 05
D. �Multistage BLAST search

of reads against DBs	 06
E. Generate reports	 09

Section 4: Database and library files	 13

Source file format	 13
Command-line command
to generate DB	 13
Cleaning up the new MSID DB	 14
Cleaning up Greengenes	 15

Contents

Section 1

Files in the project
Several user-defined settings as well as other parameters are passed into the 16S
metagenomics application 3333 by the means of JSON files.

Parameter files

In.json
Contains the actual sample name and the corresponding file name(s). Multiple samples are supported,
as well as multiple files per sample.

AppMeta.json
Contains information about the metagenomics application itself (as run in IR). The application only
uses the number of CPU cores from this file.

Out.json
This file is produced by the application itself after a completed run, and contains the name of the
result HTML file as the “linkout”.

Params.json
Contains the user-selected settings.

Ion Reporter Metagenomics 16S algorithms overview
Files in the project 1

Section 2

Java files
The entire application is coded in Java™ 1.7 file as a standard command-line tool. The application will
read all input JSON files and start analyzing the supplied BAM input files. The following are the code files
used to create the application:

AppIn.java
Reads the input BAM file information from the input JSON file.

AppMeta.java
Reads the metadata from IR.

AppOut.java
Produces the output JSON file.

AppParams.java
Reads the submitted user settings.

BlastRunner.java
Does the actual command-line BLAST™ runs of the supplied sequences.

MergingFunctions.java
Contains all the main functionality of the application:
•	Checks the reads in the BAM file

•	Checks the reads for primers (if user option is selected)

•	Creates a hash table of the unique reads, with copy number information for each one

•	Starts the BLAST analysis for all valid reads

•	Creates a hierarchy of the finished analyzed reads

•	Generates a report for the complete result for all samples and BAM files

Ion Reporter Metagenomics 16S algorithms overview
Java files 2

Metagenmain.java
Contains the scaffolding for the entire application. Iterates over samples and generates output.

Reports.java
Holds the information generated from reports, and creates the output files needed: HTML, Krona pie chart,
FASTA, and TXT files.

Result.java
Small class for holding BLAST result information for FASTA file output of an unmapped sequence.

ResultEntry.java
The node that holds sequence information, as well as links to other connected nodes. In total, this will
build the whole hierarchy of nodes—all taxonomy levels needed to produce the result and output.

ResultEntryUniqueRead.java
Holds a unique result after blasting a sequence. Holds the sequence, copy number information, BLAST analysis
result (all taxonomy levels), and also computes for the reference.

UniqueSeq.java
Holds the information about a unique sequence before adding it to the hierarchy.

Utils.java
Code for primer trimming, converting and inverting, as well as ambiguous base conversion of a sequence.

ZipUtil.java
Code for creating a ZIP.file (used for reporting files).

Ion Reporter Metagenomics 16S algorithms overview
Java files 3

Section 3

Algorithms

Outer flow

Ion Reporter Metagenomics 16S algorithms overview
Algorithms 4

For each

Parameters

Get all reads from BAMs

Filter reads by primer, length

Keep unique reads and their
abundance where abundance
is over a set threshold

Multistage BLAST
of reads against DBs

Generate reports

A

B

C

D

E
Reports in

HTML, TXT,
and FASTA

1-N samples with
1-K BAMS each

Inner flow

A. Get all reads from BAMs
Each sample can contain one or more BAM files. All reads from BAMs within a sample will be analyzed
together as if coming from one bigger BAM file.

B. Filter reads by primer, length
Using the user set parameters, each read will be trimmed by primer and length. The user can specify
whether to require both primers to be present or just one, or no primers at all. After any primer trimming,
the resulting read must conform to a certain length.

When trimming, the primer search will use the 15 bases closest to the sequence itself. When searching,
three errors can be tolerated. If both primers are needed, the end primer will be used in the same way,
with 15 bases and up to three errors.

After primer trimming, each sequence will be trimmed to the closest 20-bp point. That is, if a sequence
is 187 bases long, it will be trimmed to 180 bp. This speeds the clustering later in the process.

C. Keep unique reads
After primer trimming and length check, remaining reads will be placed in a hash table. This hash table
will contain all the unique reads and their abundance/copy number. When adding a new read to the
hash table, the read will have a copy number of 1 if it does not exist in the table already, and if it does,
the copy number will be increased by 1.

After adding all reads, the hash table will contain all the unique reads, each with a copy number.
A quick filtering will remove all unique reads with a copy number less than the user-set threshold.

Note: There is no quality checking, consensus generation, or other methods to enhance clustering
because this could lead to some valid reads being missed and not being analyzed.

Ion Reporter Metagenomics 16S algorithms overview
Algorithms 5

D. Multistage BLAST search of reads against DBS
The BLAST mapping engine was chosen for this product. All databases used must conform to a certain
format as described later in this document.

Export all unique reads to FASTA files
Each unique read without an OK analysis result will be stored in input files in FASTA format. Each read has
a unique ID to keep track of the analysis results throughout. Each file has 250 reads (this number seems to
be the most speed-efficient per BLAST process). These files are then passed to a command-line BLAST
process. The results returned from each BLAST process will be stored in result files in TXT format.

BLAST search of the FASTA files
The algorithm generates the input files and starts one BLAST process for each file—up to 8
(or the number of CPU cores in the IR VM) concurrently to increase speed.

The specified BLAST settings are:
•	E value = 0.01, meaning that any result where the E value is larger than 0.01 will be omitted;

all other settings are default or unchanged

•	Task = megablast

•	Max target seqs = 100, meaning there will be 100 lines maximum in each result for each input read

Other settings in the BLAST command line are to ensure the correct values are returned.
The following is an example of an initial BLAST run:

blastn -task megablast -evalue 0.01 -query input01.fasta -db blastDBfile -out result01.txt -max_target_seqs

100 -outfmt 6 evalue pident length qstart qend sstart send qseqid stitle

Ion Reporter Metagenomics 16S algorithms overview
Algorithms 6

Process the results
When all result files have been generated by the BLAST processes, the algorithm continues, checking all
the results and adding information such as taxonomy and percent match.

If a unique read does not get an OK result after the BLAST process, the read is still marked as LOW-
SCORING or UNMAPPED (if the read did not get a score at all when mapping against this DB). This read
will then be reanalyzed with the next stage database. The default is that the analysis starts with the
smaller database and then goes to the larger one for reads that did not get a good result in the first one.
The algorithm supports 1-N stages, not only 1-2. If a read gets a better result in stage-1 DB mapping
than in the next, the best result is used.

If a read does get an OK result, it is marked and not analyzed again in the next stage. After all reads
have been checked against stage-1 DB, the UNMAPPED and LOW-SCORING reads are checked
against stage-2 DB and so on. After the last stage, any read that did not map at all is exported to an
unmapped reads FASTA file. Reads that did map will be added to the result hierarchy. Two more export
files are generated: one export file with all the reads that have an OK analysis result (genus- or species-
level ID), and a second export file with all the reads that have a non-OK analysis result (family-level ID or
worse, including slash call result for genus level).

Ion Reporter Metagenomics 16S algorithms overview
Algorithms 7

Active result filters
There are also several “filters” along the way for each result from the BLAST mapping:
•	Each result must have good coverage, as set in the user parameters. This means that the resulting

mapped sequence must, at least, cover a set percentage of the query sequence.

•	 If all result lines for one query all have the same species name, down to a set percent range for the
percent ID score, the query read is reanalyzed with an increased number of result lines setting.
The algorithm starts with 100, then 250, 500, and finally 1,000.

•	Reads with a result with an E value greater than 0.01 are not marked as OK.

•	 If the result for one query read contains more than one species within a set percent range, a slash
result name is generated, and the valid result level for the result hierarchy is reduced by one value.
For example, if there are two species names within the result, both species names are stored, but the
valid level will be 8 instead of 9 (levels are discussed further in the next chapter). The same is repeated
if the genus name differs within the set percent range. In this case, where there is more than one
genus name, the valid result level would be decreased by two values: one value for the slash species
name, and one value for the slash genus name, resulting in a valid level of 7 = family-level ID. In the
main result table the user would then just see the family name. If another or different read/sequence
has a better differentiation between the two genus/species, this might produce a better result, with
only one genus/species in the result. This result (and its copy number) would then be displayed on
a separate line in all result tables. The condensed table will not combine the two as they really are
different results.

•	 If the percent match score is higher than a set species threshold (default is 99%), the valid taxonomy
level is species-level 9. These results will be shown with a green row background color in the results
tables. When looking at the slash calls table, the species slash calls will also be shown with a green
color, since the species slash names are in the level-9/species column.

•	 If the percent match score is lower than a set species threshold, but higher than a genus threshold,
the valid taxonomy level is genus level.

•	 If the percent match score is lower than a set genus threshold, the valid taxonomy level is family level.
All unique reads with a family-level result will be reanalyzed in the next DB stage—until the last stage
is reached, or a better family-level percent match is obtained.

Ion Reporter Metagenomics 16S algorithms overview
Algorithms 8

E. Generate reports
In order to create reports where information is listed in various ways, a hierarchy of classes is used.
Think of the hierarchy as nodes, where the top node is the top taxonomy result, and the lower nodes
are the species results. Each BLAST result has received a percent ID score, as well as a lowest level
position. The top-down node tree has 9 levels, where the bottom level is number nine, which is the
species level. Each analysis result is just added to the top, and then will trickle down to the correct level,
generating new taxonomy nodes on the way if the correct one does not exist already. Each result has
a taxonomy entry for each level after BLAST mapping. This taxonomy entry is checked when trickling
down the hierarchy.

The nine levels are: primer, domain, kingdom, phylum, class, order, family, genus, and species.
It is possible to specify what levels are to be outputted. In this case we output: phylum, class, order,
family, genus, and species—with or without primer at the top.

The following is an example of adding three results to the hierarchy
1.	Firmicutes|Bacilli|Bacillales|Bacillaceae|Bacillus|licheniformis|

2.	Firmicutes|Bacilli|Lactobacillales|Enterococcaceae|Enterococcus|hirae|

3.	Proteobacteria|Gammaproteobacteria|Enterobacteriales|Enterobacteriaceae|Eschericia|coli|

Ion Reporter Metagenomics 16S algorithms overview
Algorithms 9

Top nodePlaceholder

Phylum

Class

Order

Family

Genus

Species

1 1 and 2 1, 2, and 3

Firmicutes

Bacilli

Bacillales

Bacillaceae

Bacillus

Licheniformis

Bacillales

Bacillaceae

Bacillus

Licheniformis

Bacillales

Bacillaceae

Bacillus

Licheniformis

Lactobacillales

Entero-
coccaceae

Enterococcus

Hirae

Lactobacillales

Entero-
coccaceae

Enterococcus

Hirae

Top node

Firmicutes

Bacilli

Top node

Firmicutes

Bacilli

Proteobacteria

Gammaproteo
bacteria

Entero-
bacteriales

Entero-
bacteriaceae

Eschericia

Coli

As you see, each added result will generate the needed nodes. The lowest valid level will contain the
actual sequence, score, and abundance information.

In order to generate the reports, the recursive algorithm starts at the top node, asking for the abundance
information, score, and such. When asked, that node then again asks all nodes directly underneath
about the same information. This continues throughout the tree, until all the bottom nodes are reached.
All information is then aggregated all the way to the top.

This way the different reports can be generated, outputting information at the requested levels—
in various formats.

Counters in parameter summary
In the final report, there are several counters that should be understood:
•	Total number of reads—the total number of reads in the 1-N BAM files for the sample. If the sample

contains more than one BAM file, this number will be the total number of reads for all files.

•	Number of valid reads—the number of remaining reads after bp-length cutoff and primer trimming.

•	Number of reads ignored—any unique read with a copy number less than the set threshold will be
removed. This number will then be the total number of reads removed.

•	Mapped reads in sample—the number of reads that contained a valid result after BLAST mapping.

•	Unmapped reads in sample—the number of reads that did not contain a result after BLAST mapping,
plus the number of reads that had a result, but are not valid due to low coverage. Low coverage is
when the mapped-against-result sequence is much shorter than the query sequence. The coverage
percentage can be set in the user settings, and defaults to 90%. For example, for a query sequence
that is 300 bp long, the returned mapped-against-result sequence should be at least 270 bp.

Ion Reporter Metagenomics 16S algorithms overview
Algorithms 10

Counters in primer table
Some counters are the same as for the entire sample, but they are broken down per primer.
These are not listed below:
•	# of forward found—number of reads where the forward primer was found.

•	# of forward full coverage—number of reads where both forward and reverse primers were found.

•	# of forward short—number of reads where the forward primer (or both) was found, but the trimmed
read did not meet the bp-length requirement.

•	# of forward valid reads—number of valid reads after trimming, depending on whether just forward
primer or both were needed.

•	# of reversed found—number of reads where the reverse primer was found in the beginning of the
read (a reversed-direction read).

•	# of reversed full coverage—number of reversed reads where both reverse primer as forward primer
and the reversed inverted forward primer as reverse primer were found.

•	# of reversed short—number of reversed direction reads where the reverse primer as forward primer
was found (or both), but the trimmed read did not meet the BLAST length requirement.

•	# of reversed valid reads—number of valid reversed reads after trimming, depending on whether
the forward primer or both were needed.

Ion Reporter Metagenomics 16S algorithms overview
Algorithms 11

Numerical values in result tables
In addition to the taxonomy information, the tables also contain the following information:
•	% ID—the range of percent ID match of the reads that gave the result.

•	Count—the number of reads for this result line. This number is aggregated into the count number for
the above taxonomy level.

•	DB counters—number of reads for this result matched in the DBs used. If the result has 1,000 reads
per count, and 900 of these were matched in DB #1 and 100 in #2, the information listed would be
900:100. If more DBs are used for multistage lookup, the additional number will be listed, separated by
a colon (:).

•	F:R %—ratio of forward and reversed reads for this result.

•	% of total reads—the percentage of the total number of reads that this result makes up.

•	% of valid reads—the percentage of the number of valid reads that this result makes up.

•	% of mapped reads—the percentage of the number of mapped reads that this result makes up.

Ion Reporter Metagenomics 16S algorithms overview
Algorithms 12

Section 4

Database and library files

Source file format
Any FASTA file can be used as source for a database generation. What matters most is that the header
contains correct information.

In case of this algorithm, the correct format is:
Base/minimum header info:
>mg|Genus|Species|
(sequence)

Extra if available:
>mg|Genus|Species|Subspecies/
Strain|Accession#|Kingdom|Phylum|Class|Order|Family|PubMed#|LibraryID#|
(sequence)

Command-line command to generate DB
BLAST command line requires the database or library to be in a compatible format. The user can
convert any FASTA file into this format by running the following command:

 makeblastdb -in <source.fasta> -dbtype nucl -out <libraryfilename>

The resulting files needs to be placed into an accessible folder or directory by the BLAST
command-line tool.

Ion Reporter Metagenomics 16S algorithms overview
Database and library files 13

Ion Reporter Metagenomics 16S algorithms overview
Database and library files 14

Cleaning up the new MSID DB

A custom utility was created that did the following:
1.	 Downloaded updated node information from National Technology for Biotechnology Information

(NCBI)’s main FTP servers. This node information contains the complete hierarchy of all NCBI-registered
references. Finding the node of a species makes it possible to traverse the tree up to the top node—via
all taxonomy levels.

2.	 Downloaded updated naming information from NCBI’s main FTP servers.

3.	 Extracted all scientific names or correct taxonomy names and matched those to the correct nodes.

4.	 Queried NCBI live to convert all Accession IDs in the library to Tax IDs.

5.	 Updated all taxonomy names for all levels above genus, where existing taxonomy name was different
from updated NCBI information. This is done by traversing from bottom up (as described in step 1).

6.	Generated new library source files ready for conversion into BLAST-compatible format.

Ion Reporter Metagenomics 16S algorithms overview
Database and library files 15

Cleaning up Greengenes in Ion Repoter 5.0 workflow

The publicly available Greengenes library is a relatively large library containing more than 1.2
million references. As Greengenes is mostly aimed towards taxonomy information for family
level and above, taxonomy information for genus and species levels were missing for almost
1 million references. A custom utility was used to curate Greengenes for genus- and species-level
information by querying NCBI.

A custom utility was created that queried NCBI live to get the latest genus and species
information:

1.	 Read Greengenes accession number information.

2.	 Read Greengenes taxonomy information.

3.	 Saved the references with valid genus and species information.

4.	 Queried NCBI live with batches of Greengenes accession numbers to find updated information on
nearly 1 million references in Greengenes that did not contain any information on genus and
species. (This process has been modified to run against local taxonomy files, which may be
downloaded from NCBI).

5.	 The result was then filtered, and the references with new and updated genus and species names
were added to the library created in step 3. This filtering step has been modified to remove
entries where GenBank™ ID was missing for the corresponding Greengenes entry. However, if a
Greengene entry contains all names for kingdom to species, it is retained.

6.	 References missing genus and species names that received an uncultured or unidentified flag
instead of updated information were completely omitted.

7.	 The final library contained 215,967 references directly from Greengenes, and 146,822 references
with updated genus and species names from NCBI, totaling 362,789 references.

8.	 This library was then converted into a BLAST-compatible format.

Find out more at thermofisher.com/ion16S

For Research Use Only. Not for use in diagnostic procedures. © 2016 Thermo Fisher Scientific Inc. All rights reserved. All trademarks
are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. BLAST is a trademark of the National Library
of Medicine. Java is a trademark of Sun Microsystems, Inc. GenBank is a trademark of the U.S. Department of Health and Human Services.
CO020707 0116

