Kiel IV 碳酸盐装置与 MAT253 同位素比质 谱仪联用测定小样品量碳酸盐的耦合同位素

Thomas W. Schmid¹, Jens Radke², Stefano M. Bernasconi¹ ¹Geologisches Institut, ETH Zurich, Switzerland, ²Thermo Fisher Scientific, Bremen, Germany

关键词

MAT 253; Kiel IV; 耦合同位素; 高精度碳酸盐 CO₂ 耦合 同位素分析; 高分辨率碳酸盐 CO₂ 耦合同位素分析; 同位素 比质谱仪

引言

耦合同位素计温学(Ghosh et al., 2006; Eiler, 2007)已经 发展成为古温度重建研究的新工具,逐渐引起了地质学不同应 用领域研究人员的广泛兴趣。该温度计完全基于热力学性质, 不依赖于碳酸盐总体碳和氧的同位素组成。不同的多元同位素 体(isotopologue, clumped-isotopes)基于统计热力学上振动 频率的计算表明,两个稀有同位素的键合会更加稳定,这是由 于它们在环境温度下具有更低的零点能量(Eiler, 2007)。这 样导致了二元同位素键合的丰度值要比完全随机分布的丰度值 略高。由于二元同位素丰度具有温度依赖性,测量的与随机预 期结合的丰度之间的差异程度可以作为一个温度计。目前耦 合同位素最适于应用在 CO₂ 研究上。Ghosh 等(2006)首先 指出碳酸盐 ¹³C 和 ¹⁸O 键合过量丰度可作为碳酸盐形成的温度 计,这里通过磷酸反应将碳酸盐转化成 CO₂。这里过量丰度定 义为:

$$\Delta_{47} = \left(\frac{R_{sample}^{47}}{R_{stochastic}^{47}} - 1\right) \times 1000$$

R47 是指测量的或者计算随机的 CO₂ 分析的 47/44 比值。 由于耦合同位素温度计仅基于热力学, ¹³C¹⁸O 键合的形成可以 认为是碳酸根离子的均匀反应。δ¹³C 和 δ¹⁸O 同时测定, 可 以解释一个样品中的三个不同同位素分子,以及计算与碳酸盐 沉淀有关的水的 δ¹⁸O。

目前应用的是 Ghosh 等(2006)的方法,样品测量前手 动制备以溶解 10~12 mg 方解石和纯化样品气体,基于 Ghosh 程序自定义自动进样器可以全自动测量,而且允许最小样品 量 5 mg (Tripati et al., 2010)。Thermo Scientific Kiel IV 终极 版碳酸盐装置的优势在于:全自动样品分析和样品重量小于 2 mg 的小样品测量(Schmid and Bernasconi, 2010)。这样能 够将耦合同位素研究应用于样品量非常有限的案例,如有孔虫, 水泥胶合剂等(见图 2)。

加热气体

为了判定质谱源的分馏度和不规则性,加热气体的测量是 不可或缺的(Dennis et al., 2011)。这样的分馏效应和不规则 性的影响是线性的,斜率和 y- 截距可通过 Δ 47~ δ 47 曲线测 定(Huntington et al., 2009; 图 1),可作为 Δ 47 值测量的 校正因子。

图 1. 加热气测量,展示了通过更换新灯丝引起了斜率和截距 的变化

通过石英管中不同 δ¹⁸O 组成的 CO₂ 与 H₂O 平衡池,可 以产生不同氧同位素组成的加热气。经过平衡并在 1000℃ 加 热 2 小时,然后立即淬火,以获得随机的同位素分配以及避免 冷却过程中引起的再平衡,最后将产生的 CO₂ 从水中分离出 来。加热气的重现性大约在 0.005~0.015‰ 以下。 (Peltier)元件,将捕集阱冷却至 -20℃。每次运行结束后, 将捕集阱 100℃ 烘干至少 1 小时。这个新增的部件是由苏黎 世联邦理工学院(ETH Zurich)自主开发的,目前还没有在 Thermo Fisher Scientific (不来梅 Bremen)使用。

图 2. 用于测量的干净的 Globigerinoides ruber foraminfer 的 扫描电子显微镜照片 (照片来自 H. Thierstein)

Kiel IV 样品制备

Kiel IV 碳酸盐装置采用独立酸浴室的工作原理。磷酸的存 储、转移和化学反应是在高温条件下操作的,是在完全温度控 制下进行的。CO₂ 在无隔膜的小瓶中产生,然后转移至一套冷 阱系统。在高真空下,通过第一液氮(LN₂)捕集阱,非冷凝 气体和磷酸酸化过程中产生的水先后被去除,获得纯化 CO₂。

Kiel IV 碳酸盐装置进样系统的捕集阱系统由两个 LN₂ 捕 集阱,两个气动阀,一套膨胀体积组件和一个真空规组成。 第一捕集阱通过移除非冷凝气体(如 O_2 、 N_2 等),去除碳酸 盐-磷酸反应过程中产生的水,以及名义上无水正磷酸(104% of H_3PO_4 ,>1.93 g/cm³ H_3PO_4)仍然含有的痕量水,以定量 地净化 CO_2 。在酸反应过程中,生成的所有 CO_2 气体均导入 –190℃ 的第一捕集阱。然后, CO_2 转移到 –190℃ 的第二捕 集阱(微体积箱),所有的水均留在第一捕集阱中。

除了商业化的 Kiel IV 碳酸盐装置以外,使用一套最新设 计的捕集阱以去除有机污染物(例如烃类和卤代烃),在样品 制备过程中被释放出来。该捕集阱嵌入 Kiel IV 碳酸盐装置的 两个冷指之间,由一个填充多孔性聚合物微球(Porapak Type Q 50-80 Mesh)的外径 6 mm 的不锈钢管组成(图 3)。通 过附着在每次运行时包住不锈钢管的一个铜块上的两个珀尔帖

图 3. 定制多孔性聚合物微球(Porapak)捕集单元以减少烃类 污染物

测量程序设定

小样品量碳酸盐分析需要使用完全排空且无杂质的不锈钢 管。设定流程时间、H₃PO₄ 用量、密封性测试阈值以及双路进 样参数,以使水分、非冷凝气体以及其它杂质如烃类化合物的 移除达到最优化,同时优化样品气的利用率。与传统的稳定同 位素测量相比较,为了使统计学噪声(散射噪声极限)最小化, 一次采集的积分时间为最大化的 26 s 积分时间共 6 次循环, 如表 1 所示。

表 1. 方法设定

Kiel IV 碳酸盐装置设定	
酸温度	70 ℃
酸量	3 滴磷酸
捕集阱泵抽出	120 s
反应时间 1	210 s
转移时间	150 s
反应时间 2	120 s
(非冷凝气体的移除)	
膨胀平衡延迟	60 s
膨胀泵时间	60 s
VM2 密封性阈值	150 µbar
VM1 密封性阈值	1000 µbar
VM1 膨胀阈值	1300 µbar
捕集阱热输出温度	+140 °C
CO ₂ 凝固温度	−190 °C
CO ₂ 释放温度	−110 °C
CO ₂ 测量温度	+ 30 °C

双路进样与 IRMS 设定

积分时间	26 s
循环	6
空闲时间	10 s
信号增强	2 %

样品分析

在日常工作条件下,每天分析量为 6~8 个样品,其中包括 2~3 个已知耦合同位素组成的内部标准。一个样品分析通常包括 6 次重复采集,而标准品一般为 4~8 次重复。

在开始、结束以及不同样品之间进行标准品的设定与测量。 碳酸盐样品的重现性通常在 0.01~0.02‰ 范围内,很大程度地 依赖于样品的均匀性,如表 2 所示,报道的误差代表了真实的 外精度。 表 2 展示了三组案例的测试结果。MS2(Carrara Marble)、Candoglia Marble与Hunza Valley Calcite 是内部标 准,将它们插入在测试序列中以监控系统性能。三个标准品长 期重现性一般分别为 0.005‰、0.005‰ 和 0.014‰ (Schmid & Bernasconi, 2010)。

第一组测试样品是白垩纪箭石(Cretaceous belemnites), Δ47重现性在0.005~0.015‰范围内。第二、 第三组样品是有孔虫类(foraminifera)。但是它们呈现出较 大的外部误差,主要由于它们不是相同种类的有孔虫样品。 13338 Orbulina universa和13466 Orbulina universa两个样品 的结果显示了极高的标准误差,分别为0.06和0.035‰,因 此证明了同一样品至少6次重复的重要性。这两个样品结果必 须非常慎重地进行解释。

表 2 标准品(MS2, Candoglia Marble 和 Hunza Valley Calcite)、箭石(Belemnites, Roklum)与有孔虫类(Foraminifera, Orbulina, Globigerinoides ruber)的 Δ47 值。# 表示每个样品重复数,误差以标准误(S.E.)形式报道。温度计算采用 Ghosh 等(2006)校准方法。

		#	δ ¹³ C VPDB (‰)		δ ¹⁸ O VPDB (‰)		δ 47 (‰)		∆ ₄₇ (‰)		(°C)
MS2	Standard	8	2.160	±0.06	-1.760	±0.11	14.203	±0.060	0.365	±0.016	119.3
Candoglia Marble	Standard	4	1.267	±0.06	-12.141	±0.08	2.561	±0.080	0.369	±0.020	117.3
Hunza Valley Calcite	Standard	4	4.761	±0.04	-4.814	±0.08	13.639	±0.085	0.439	±0.023	86.3
Roklum 560 II	Belemnite	5	0.651	±0.06	-1.568	±0.09	13.172	±0.064	0.615	±0.012	32.3
Roklum 590 I	Belemnite	6	0.674	±0.06	-2.009	±0.11	12.768	±0.067	0.647	±0.005	24.8
Roklum 590 II	Belemnite	6	0.214	±0.06	-1.757	±0.10	12.583	±0.058	0.650	±0.015	24.3
Roklum 650	Belemnite	6	1.428	± 0.05	-1.268	±0.07	14.314	±0.055	0.687	±0.010	16.3
MS2	Standard	7	2.160	±0.06	-1.760	±0.11	14.308	±0.066	0.363	±0.019	120.1
Candoglia Marble	Standard	4	1.270	±0.06	-12.135	±0.13	2.629	±0.095	0.385	±0.032	109.5
Hunza Valley Calcite	Standard	4	4.770	± 0.05	-4.755	±0.08	13.801	±0.082	0.431	±0.016	89.1
13345 Orb	Foraminifer	6	2.689	±0.19	0.521	±0.25	17.485	±0.083	0.654	±0.010	23.3
13351 Orb	Foraminifer	6	1.928	±0.23	0.466	±0.11	16.726	±0.097	0.707	±0.016	12.4
13436 Orb	Foraminifer	6	1.667	±0.06	0.099	±0.13	16.079	±0.079	0.700	±0.005	13.8
13338 Orb	Foraminifer	З	1.149	±0.29	1.016	±0.33	16.533	±0.110	0.707	±0.060	12.4
13466 Orb	Foraminifer	3	1.409	±0.09	1.182	±0.04	16.920	±0.013	0.662	±0.035	21.5
MS2	Standard	8	2.160	± 0.05	-1.760	±0.11	14.318	±0.059	0.363	±0.017	120.3
Candoglia Marble	Standard	4	1.299	± 0.04	-12.084	±0.04	2.697	±0.045	0.359	±0.015	122.3
Hunza Valley Calcite	Standard	4	4.721	± 0.05	-4.858	±0.09	13.671	±0.084	0.449	±0.022	82.2
13380 Rub	Foraminifer	6	1.361	±0.12	0.332	±0.20	16.014	±0.050	0.682	±0.014	17.3
13414 Rub	Foraminifer	6	1.254	± 0.07	0.397	±0.10	15.988	±0.066	0.694	±0.015	15.0
13420 Rub	Foraminifer	6	0.972	± 0.07	0.017	±0.14	15.309	±0.066	0.690	±0.023	15.8

结论

Kiel IV 碳酸盐装置与 Thermo Scientific MAT 253 稳定同位 素比质谱仪联用系统,能够全自动测量碳酸盐的耦合同位素, 常规精度可达 0.01 ~ 0.02‰,还能同时测量 δ¹³C 和 δ¹⁸O。 大数量的样品可以全自动地测量,为大样本集的测量(例如高 分辨率剖面图)提供了一个非常容易使用的方法。而且,它对 解决地质学问题开辟了新的可能性,毕竟在地质学分析中可用 的样品量是极有限的,Ghosh 等(2006)的方法恐怕是行不 通的。

Thomas W. Schmid Geologisches Institut, ETH Zurich, Switzerland

Stefano M. Bernasconi Geologisches Institut, ETH Zurich, Switzerland

参考文献

Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P. and Eiler, J. M., 2011. Defining an absolute reference frame for 'clumped' isotope studies of CO₂. Geochimica et Cosmochimica Acta 75, 7117-7131.

Eiler, J. M., 2007. "Clumped-isotope" geochemistry - The study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters 262, 309-327.

Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., and Eiler, J. M., 2006. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta 70, 1439-1456.

Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y., Thiagarajan, N., Passey, B., Tripati, A., Daëron, M., and Came, R., 2009. Methods and limitations of 'clumped' CO_2 isotope ($\Delta 47$) analysis by gas-source isotope ratio mass spectrometry. Journal of Mass Spectrometry 44, 1318-1329.

Schmid, T. W. and Bernasconi, S. M., 2010. An automated method for "clumped-isotope" measurements on small carbonate samples. Rapid Communication in Mass Spectrometry 24, 1955-1963.

Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., and Eiler, J. M., 2010. 13C-18O isotope signatures and 'clumped isotope' thermometry in foraminifera and coccoliths. Geochimica et Cosmochimica Acta 74, 5697-5717.

