
Professor Mark McCarthy, from the University of Oxford, UK, 
outlines how the intersection of biobank capabilities, new 
study designs, and technological advances will improve our 
understanding of complex trait genetics. 

Using UK Biobank’s genotyping array as an example, 
Professor McCarthy discusses how new genetic studies can 
now integrate the power of imputation with our knowledge 
of population, disease, and biological function to answer 
some of the remaining questions about the future role of 
genetics in precision medicine.

Introduction
Over the last few years, the genetics literature has featured  
a robust debate on the relative success or failure of genome-
wide association studies (GWAS)1,2,3,4. It is clear that, even 
with over 2,000 significant GWAS loci reported across 
hundreds of traits4, there is still much to do to dissect the 
genetic architecture of many common diseases.

The next chapter of complex genetics looks particularly exciting. 
Sequencing and genotyping technology advances are expanding  
our knowledge of genomic variation in human populations. 
Visionary initiatives, like UK Biobank, offer access to new 
phenotypes, outcomes data, and the opportunity for new  
and powerful study paradigms.

Recently, Affymetrix talked with Professor Mark McCarthy  
about the past, present, and future of complex trait genetics.  
As a key member of the team that recently designed UK Biobank’s 
genotyping array, Professor McCarthy also gave his view on how  
our knowledge of population variation, imputation-based data 
analysis, disease, and biological function should be integrated  
into the design of state-of-the-art studies and the genotyping 
arrays that enable them.

Affymetrix: Arguably, the GWAS era began in earnest with the 2007 
Wellcome Trust Case Control Consortium (WTCCC) paper5. What 
have been the key successes in complex trait genetics since then?
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isolate samples. It also requires us to expand our ability to detect 
different types of allelic variation across a broader frequency 
spectrum. We will want to look at somatic, as well as germline, 
variation. This is all about identifying as many of these human 
genetic “accidents of nature” as possible. Each allele that we  
find and link to a disease phenotype has potential to improve  
our understanding of disease mechanisms. 

“More phenotypes” means expanding GWAS into new case-
control studies, but especially into large biobanks where the  
link to health records makes a broader spectrum of phenotypes 
available. Biobanks allow us to discover how variants of interest 
from one disease contribute to risk in other diseases.

All of this is, of course, massively enabled by advances in 
genotyping and sequencing technology that allow us to 
capture the genetic variation that lies within these large  
and well-characterized biobanks.

Finally, “more analyses” means developing methods tuned to  
take advantage of these datasets that are coming on-stream.  
For example, multivariate methods will allow us to look at the 
relationship of genetic variants to many traits, not just one.  
This will improve power and reveal novel relationships.

Affymetrix: Most GWAS have been performed with arrays 
optimized to capture common European alleles. How does  
this need to change to enable studies of more alleles in  
more populations? 

McCarthy: Clearly, there is a great deal of similarity in the 
variation, and the patterns of variation, between many ethnic 
groups, but there are also important differences. At the common 
variant level, the set of tagSNPs that you might want to select 
to most efficiently cover the genome will differ from population 
to population. This will matter even more as we focus more  
on functional alleles that are more likely to be rare and 
ethnicity-specific. 

McCarthy: There were earlier GWAS successes, for example,  
in age-related macular degeneration6 and inflammatory bowel 
disease7, but in terms of scale and scope, WTCCC marked the 
point where, for many in the field, the potential of GWAS  
became clear. 

The key success has been that the GWAS approach has proved to 
be so robust. This is, in part, because you are testing a relatively 
simple hypothesis, specifically, whether or not you see a difference 
in allele frequencies between cases and controls at a given variant. 
This has been sufficient to pick up many common variant signals 
without the need for complex analytical strategies.

Another important point, particularly in retrospect, is that the  
field applied strong benchmarks, early on, for defining statistical 
significance. Few of the signals that reached these thresholds 
have subsequently proven to be false. This is very welcome 
when we remember the quite dismal era of candidate gene 
studies when almost nothing replicated. 

These genomic studies also encouraged rapid development  
of collaborations and the formation of large international 
consortia. As a result of this data aggregation, the field found  
a way to move rapidly towards robust signals, avoiding years 
wasted while individual labs published under-powered studies. 
This was a major advance in the field and has since had impact 
on other areas of biological sciences. 

All of this showed that high-throughput, large-scale genomics 
can be done and produces robust results. Out of that came 
thousands of loci for hundreds of traits.

Affymetrix: And, against these successes, what challenges 
remain that this latest era of complex trait studies will hope  
to address?

McCarthy: The biggest challenge lies in translating these  
robust GWAS loci into biological insights about disease 
pathogenesis. This is slower than some people expected or 
hoped, and the translational impact of GWAS has been 
relatively modest to date. 

This is principally because most variants, identified by GWAS, 
map to regulatory sequence, and most have quite modest 
effects on risk. Clearly, there’s all sorts of activity to address this 
challenge, not least the Encode Project8, 9, but it will take time 
to pull it all together.

Affymetrix: So, how should genomic strategies evolve to build 
on these achievements and address the challenges?

McCarthy: Actually, the answer is the same as it ever was: we 
need more alleles, more phenotypes, more samples, and more 
analyses. This has been the case in genetics and other fields of 
science for some time. If you dissect this further, “more alleles” 
means exploring more populations, including multi-ethnic and 
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With a finite amount of money available and limited real estate on 
a given array, the ideal scenario is to redesign your array every time 
so that it is optimized for your particular population and research 
needs. And if you want, as many will do, to combine GWAS and 
functional content—which, with our current level of understanding, 
most likely means variation in coding regions—you should design 
the most efficient set of SNPs that addresses both of those questions. 
That’s what we did in relation to UK Biobank. People working on 
other populations would ideally want to do something analogous, if 
cost and technology permitted.

Affymetrix: Can you explain a little more how you applied this 
approach in the context of UK Biobank?

McCarthy: Yes, of course. The design group, led by Peter Donnelly 
in Oxford, used UK sequence data from 1000 Genomes10,11  
and elsewhere to optimize the array content for the most efficient 
imputation of haplotypes seen in UK samples. This included 
extending the genome-wide scaffold beyond common variants 
and adding content that allowed the array to improve imputation  
in the low-frequency range. Such alleles have not previously been 
targeted with imputation-ready marker scaffolds. 

We also filtered the functional content to select alleles that we 
knew to be present in the UK population. We wanted to avoid 
wasting time and money on alleles likely to be monomorphic or 
present at extremely low frequency in UK Biobank participants. 

Overall, having the ability to specify content on a SNP by SNP 
basis is obviously a huge advantage when it comes to efficient 
coverage of the swath of variants that you’re trying to capture, 
either directly or by imputation. This is something that some 
manufacturers are better able to do than others. When arrays 
are made using predefined pools of SNPs, it is much less easy  
to be so flexible. 

Affymetrix: Would this approach of designing population-
focused arrays cause difficulties later if different array datasets  
are combined in meta-analyses?

McCarthy: No. For common variants, it’s clear that imputation 
works extraordinarily well and continues to improve as reference 
data panels improve. There’s not much of a penalty when 
combining data from studies that used different common variant 
array content. We rarely found ourselves troubled by that, and  
it becomes even less of an issue as imputation improves.

Of course, lower frequency variants are more population- 
specific anyway. This requires a focused approach to array  
design, otherwise your array will include variants that may be 
useful in other populations but are monomorphic or too rare  

to be informative in your population. This just wastes money  
and space on the array.

Affymetrix: So, what does a good GWAS imputation scaffold 
look like, and how is it different from the older pairwise tagSNP 
array designs?

McCarthy: A good scaffold is a set of markers that demonstrates, 
for the population of interest, the most efficient ability to impute 
genomic coverage across a broad allele frequency range.

There’s no doubt that designing a scaffold using an imputation- 
aware, multi-marker tagging approach is a much more efficient 
way to achieve coverage than using pairwise tagging. It 
requires fewer markers, and this is particularly important if  
you are designing cosmopolitan arrays for multiethnic studies  
or need coverage of low-frequency alleles. These types of 
designs will inevitably need more markers and more space  
on the array, so selection efficiency, during design, acquires 
even greater importance.

With the UK Biobank array, we didn’t want to ignore common 
variation, of course, because many new findings will come 
from studies in the 500,000 biobank participants. However, 
common variants have been well covered in European populations, 
so there was the desire to push imputation down into the 
low-frequency space. This has proved to be feasible, to some 
extent because UK Biobank provided a relatively constrained 
focus to the study.

Affymetrix: As you noted, advances in sequencing and 
genotyping technology are providing access to millions of  
new variants. How should investigators prioritize what goes 
onto their genotyping array design?

McCarthy: Well, clearly, there’s a set of things that should  
be on every array: the known GWAS signals because you 
wouldn’t want to miss out on those; ancestry informative 
markers (AIMs); fingerprinting markers; X/Y markers; HLA,  
and so on. They don’t take up a lot of real estate and they  
are tremendously useful for sanity checking, but also because 
they invite testing of specific hypotheses. Beyond that, it 
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depends on your objective and on the hypotheses you have about 
where the strongest biological effects lie. 

We had exactly these discussions in the context of the UK Biobank 
array. For example, you have to make a decision on how much  
real estate you give to your GWAS scaffold and how much  
you give to functional or coding SNPs. This depends on your 
expectation of what you will discover with each.

It also depends on the extent to which you up-weight coding 
variants over non-coding variants on the basis of their biological 
importance. Coding variants, for now at least, are that much 
easier to take forward into biological and physiological studies. 
That doesn’t mean that I have any prior belief about their relative 
contributions to genetic architecture. There’s still little empirical 
data on this, particularly for low-frequency variants. But, all  
else being equal, and given the pressure to show that these 
approaches produce biological insights, I’d generally favor 
discovering a coding variant over a non-coding variant. 

The architecture of most common diseases looks very similar at the 
common variant level, but this may not be true at lower frequency. 
As empirical data appears over the next couple of years, how you 
might more carefully weight these design decisions may become 
clearer. Some diseases may be more dominated by coding variants, 

for example, and this information will help to make the decision 
on how best to use the real estate on the array.

Affymetrix: You mentioned non-coding variants are harder to 
take forward. What role can eQTLs play?

McCarthy: Expression quantitative trait locus, or eQTL, analysis12  
is one tool we have that allows us to link regulatory variants to  
the transcripts whose expression they may influence. It’s extremely 
valuable when you find a strong eQTL that’s coincident with a 
GWAS signal. 

It’s best if that eQTL is detected in a pathologically relevant tissue, 
but that’s not always possible, and many eQTLs act across 
multiple tissues. Our current strategy is that a combined eQTL 
discovery approach is best. First, you can use eQTL data from 
whole blood or lymphoblastoid cell lines. These data, available 
from many thousands of samples, allow you to create an inventory 
of cis, and possibly trans, eQTLs. It won’t necessarily be very 
specific for the eQTLs in a different tissue, but it will be very 
sensitive for a subset of disease-relevant eQTLs because of the 
very large sample sizes.

Second, you can explore your tissue of interest, usually involving 
much smaller samples. One of our interests is diabetes so, with 
colleagues, we have completed expression studies in subcutaneous 
fat, muscle, and pancreatic islets, for example. The smaller sample 
size means you will only pick up large eQTL effects specific to the 
tissue, but you can at least filter the larger lymphocyte and blood- 
based datasets for their relevance to your disease. I would argue  
you probably want to combine both approaches to get the optimal 
balance of sensitivity and specificity. 

Affymetrix: Large prospective biobanks are being created in  
many countries. Some, like UK Biobank, are making data freely 
accessible to the global research community. How will these 
resources be used by the global community?

McCarthy: In several ways! The prospective component of UK 
Biobank is particularly important because you have biosamples, 
data, and exposures at baseline. By linking these to electronic 
medical records, you have the potential to track what happens  
to those people over time. This is a powerful design for 
biomarker identification and validation. The long periods of 
prospective follow-up enable you to identify nested case- 
control groups based on incident disease. That, in turn, means 
you can hopefully identify genetic and non-genetic biomarkers 
that are prospectively and causally related to onset of disease. 
With the exposure data available, you can also do much more 
comprehensive studies of gene-environment interactions than  
has been possible before.

The scale, harmonization, and standardization of phenotype and 
genotype that we will see in large biobanks will almost certainly 
pay dividends even for traits where we already have studies 
involving several hundreds of thousands of people. The combination 
of harmonized genotyping and phenotyping, and the availability 
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of individual level data on all participants, will provide a boost in 
power above and beyond that which is possible from the sample 
size alone.

When you compare a biobank such as this to conventional 
case-control samples, one real advantage is the ability to  
perform these analyses across a wide range of phenotypes. 
Understanding pleiotropy may enable us to pick up signals that 
were not quite detectable before and to better understand the 
relationships between traits. A good existing example of this is  
the alleles in the HNF1B gene that increase risk of T2D but which  
are also protective for prostate cancer13,14. These two diseases 
don’t occupy the same chapter of a medical textbook, but the 
shared genetics point to unexpected mechanistic connections. 

Prospective biobanks are also going to be very valuable for  
the evaluation of human therapeutic targets. Imagine that you 
have already found an interesting association between a coding 
variant and your disease of interest. The variant is in a gene that 
looks eminently druggable. By looking across diverse phenotypes,  
you can test whether the same genetic variant has other trait 
associations. You can then assess the effect of perturbation  
of the protein, in the direction appropriate for the disease of 
interest, on those secondary traits. Your promising drug target 
becomes a lot less attractive if it’s likely that any drug, developed  
to mimic the beneficial effect on the disease of interest, will be 
likely to cause undesirable effects on those secondary traits.

Affymetrix: Recently there has been some debate on using 
controls from prospective biobanks for studies of cases from  
other countries. What are your thoughts?

McCarthy: I would recommend caution. We’ve seen several 
examples where researchers have over-interpreted the differences 
they found between cases and controls when the two have 
different origins or have been typed on different arrays. There  
are some major technical challenges to such analyses, and it’s  
not trivial to overcome them. I’m not a great fan of doing  
formal analyses of this type.

However, access to large biobank datasets can be useful for 
evaluating apparent case associations, particularly for rare 
variants. For example, you may have a rare variant that looks 
interesting and which you have seen in only three out of 10,000 
individuals, all of them cases. Going to any single source of 
controls and seeing the same variant in zero out of 10,000 
individuals won’t tell you very much. But, if you look across many 
different biobanks, the representation of that allele, or of other 
alleles in the same gene, becomes meaningful. Has that variant 
ever been seen in those biobanks? If so, what is its relationship 
to your trait of interest? This can be really helpful as you try to 
evaluate the significance of those three instances where disease 
cases carry the rare allele. 

Large datasets allow these kinds of “informal” analyses. That’s 
why the Exome Variant Server (EVS) database15 arising out of the 
Exome Sequencing Project (ESP) has been so useful. Researchers 
generally don’t do an association study comparing their cases 
against ESP controls. Instead, when they see a variant of interest  
in their own case-control analyses, they go and look in EVS and 
get a sense of how frequently others have seen that variant. They 
also look at associated phenotypes because that allows them to 
prioritize particular variants for further study. 

Affymetrix: This all suggests that exciting times are ahead for 
complex trait genetics. Looking ahead, what will we learn in the 
next five years, and what clinical impact would you hope to see 
beyond that?

McCarthy: Well, over the next four to five years we’ll have 
sequenced and genotyped enough people to have a pretty good 
idea of the genetic architecture of complex traits. We’ll have  
a better understanding of the contribution of rare alleles and  
low-frequency alleles for many traits, and we’ll know if all 
diseases behave fairly similarly or whether they have rather 
different architectures. For example, maybe we’ll find more rare 
coding variants in one disease than another. There’s a lot of 
opinion in this area; we really need empirical data to establish 
which hypotheses are sustainable. This will have a major impact  
on how we plan our strategies for further discoveries.

These answers will also help to define how we might be able to 
use genetic data to drive prediction and stratification of disease. 
From what we know today, DNA sequence alone will provide 
rather imprecise estimates of individual risk for most common 
complex traits. However, by gathering ‘omics data at intervals 
during a person’s lifetime, we could derive “molecular signatures” 
of disease. In combination with sequence and exposure data, we 
can hope to refine and update an individual’s disease risk profile  

Harmonized phenotyping in biobanks will 
provide a boost in study power. 
Wellcome Images
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in real-time. It would, of course, be transformative if we can use 
genetics to stratify disease subtype, make mechanistic inferences, 
and suggest specific treatment options for individual patients. It 
remains to be seen to what extent this is possible: this is another area 
characterized by a lot of opinion and very little data. We’re already 
seeing the potential of this approach in various types of cancers, but  
I suspect the power of this approach will vary between diseases. 

As I’ve noted already, when we get deeper into this through 
sequencing backed up with custom arrays, we will learn more 
about functional variants in drug targets. Where we have good 
human validation data, we will be able to parse those targets for 
their potential adverse effects, and that will clearly benefit pharma. 
The industry is increasingly disappointed by targets that have been 
validated in pre-clinical models but perform poorly as soon as they 
hit first-in-man trials. I would hope, as we have seen with PCSK916,17, 

that human genetics will be a very powerful tool for putting better 
quality targets forward for drug development.

Affymetrix: Thank you very much.

Further reading:
Axiom® UK Biobank Genotyping Array
The array designed by the UK Biobank team is now available  
to all investigators.

To learn more about this design and options to modify it for other 
populations, please visit: www.affymetrix.com/ukbb_array 

UK Biobank 
To learn more about UK Biobank and how you can access data for 
your own research, please visit: www.ukbiobank.ac.uk
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