Т	he	91	'n	nc	F	ïs	h	er	
S	C	1	Е	N	Т	IF	= 1	C	

Setup Guide on the BMG LABTECH PHERAstar *FSX*[®] Microplate Readers

LanthaScreen[®] Europium Assay Setup Guide on the BMG LABTECH PHERAstar[®] *FSX* Microplate Readers

The BMG LABTECH PHERAstar® *FSX* Microplate Readers were tested for compatibility with LanthaScreen[®] Eu Kinase Binding Assay, a TR-FRET assay from Thermo Fisher Scientific, using the Kinase Tracer 236 (PV5592) and Eu-anti-GST antibody (PV5594). The following document is intended to demonstrate setup of this instrument for any Eu based TR-FRET assay and provide representative data. For more detailed information and technical support of Thermo Fisher Scientific' assays please call 1-800-955-6288 ext. 40266. For more detailed information and technical support of BMG LABTECH instruments or software, please contact BMG LABTECH at 1-877-264-5227 or www.bmglabtech.com.

A. Recommended Optics

	Wavelength (nm)	BMG LABTECH Optic Module
Excitation	337	HTRF
Emission 1	665	HTRF
Emission 2	620	HTRF
Dichroic Mirror	Included	HTRF

B. Instrument Setup

1. Make certain the plate reader is turned on, and then open the PHERAstar[®] Control software on computer.

Page 2 of 18

Setup Guide on the BMG LABTECH PHERAstar *FSX*[®] Microplate Readers

2. When PHERAstar[®] Control software opens, if you do not have a pre-existing protocol for LanthaScreen[®], select "Manage Protocols" from the menu bar at the top portion of the window. If you do have a protocol, open the protocol. Use this document to review your settings.

	•				PH	IERAstar				-		×
Micropla	te LVis Plate	Settings										0
Plate Out Mea	Start Qu surement St	Test Duratio	n Stop	Barcode List	MARS	Open Last Test Run sults	Temperature	Prime	Manage Protocols Protocols		Re-Run	*
New Button									Edit or create new test protoco	lis (Ctrl+P)		
BMGLA	этесн								PHER		1.81	7

Page 3 of 18

Setup Guide on the BMG LABTECH PHERAstar FSX[®] Microplate Readers

3. At this point, a new screen will open (below). Click on the "Show all test protocols" or "Time Resolved Fluorescence" button on the left side of the screen, then select "New" from the tabs at the bottom.

	+ 🔹 🕫						PHERAstar							- 🗆 ×
M	icroplate LVis P	late Se	ttings											0
Plate Out	Start Measurement	Quick Start	Test Duration	Stop	Barcode List	MARS	Open Last Test Run sults	25. Tempera	ture Prin	ne Fing P	Manage Protocols Protocols			NEW TEST Re-Run
New Butto	n		Test Protocols	P	rotocol Name		Method	2	Mode	Optic	Mic	croplate	×	
New Butto	n		protocols Show only protocols using method: O Fluorescence Intensity () Time Resolved Fluorescence Polarization O Luminescence O Absorbance O AlphaScreen	LANCE HTRF CAM HTRF IP-C HTRF RC /	IP INE CIT SCREEN	Time Dual Dual Dual Dual Dual	Resolved Fluores Time Res. Fluores Time Res. Fluores Time Res. Fluores Time Res. Fluor	scence scence scence scence orescence	Endpoint Endpoint Endpoint Endpoint Endpoint	Top Top Top Top Top	GREINER 384 GREINER 96 H GREINER 96 H GREINER 96 H GREINER 384	SMALL VOLUME ALF AREA ALF AREA ALF AREA ALF AREA I SMALL VOLUME	~	
BMG	LABTECH				New	Edit	Сору	Export	Import	Del		ise Help	R	Aster
User: USER		Path: C	:\Program Files (x86)\BMG	PHERAstar\Us	er\Data		Ready							

Setup Guide on the BMG LABTECH PHERAstar FSX® Microplate Readers

4. A new window will pop up. Select "Time-Resolved Fluorescence" and "Endpoint" and then select "OK."

	+ 4 =		PHERAstar					- 🗆 ×
м	licroplate LVis Plate Settings							0
Plate Out	Start Quick Measurement Start Measure	Stop Barcode List	MARS Open Last Test Run Results	25.6 Incubation	Prime Priming	Manage Protocols Protocols		NEW TEST ~ ~
New Butto	n Test Protocols	Drotocol Nama	Nethod 5	llota	Ontic	Microplate	×	
	Measurement Method and Mode X	LANCE	Time Resolved Fluorescence	Endpoint	Top G	GREINER 384 SMALL VOLUME	- 1	
New Butto	Measurement Method	HTRF CAMP	Dual Time Res. Fluorescence	Endpoint	Top G	GREINER 96 HALF AREA		
- Herr Butto	Eluorescence Intensity	HTRF IP-ONE	Dual Time Res. Fluorescence	Endpoint	Top G	SREINER 96 HALF AREA	_	
	<u>Time Resolved Fluorescence</u>		Dual Time Res. Fluorescence	Endpoint	Top G	REINER 96 HALF AREA	ME	
	O Fluorescence Pglarization Luminescence Agsorbance AghnaScreen Reading Mode Endpoint O Plate mode (flash kinetics) Well mode (flash kinetics) OK Cancel						~	
		New Edi	t Copy Expor	t Import	Delete	e Close He	elp	
BMG	LABTECH					PH		Astar
User: USER	Path: C:\Program Files (x8	6)\BMG\PHERAstar\User\Data	Ready					

Thermo Fisher	LanthaScreen [®] Eu Compatible Microplate Reader Documentation	Version No.: May 2016	Page 5 of 18
SCIENTIFIC	Setup Guide on the BMG LABTEC	H PHERAstar <i>FSX</i> ® Mi	croplate Readers

5. A new protocol window will open automatically. Enter a test name, select plate type. We recommend Corning or Greiner 384 well small volume plates for LanthaScreen® Europium assays. Because LanthaScreen[®] is a Time-Resolved FRET assay, set the Integration Start and Integration Time to 100 and 200 µseconds, respectively, as shown below. Check the "Simultaneous dual emission" box and select the "LanthaScreen" optic module form the "Optic Module" menu. When finished, select the "Layout" tab at the top of the Protocol window.

Iviicropiate	late Settings					
ate Start ut Measurement	Test Duration Top IIIII Quick Start Stop Barcode List Measure	MARS Open Last Test Run Results	Temperature Incubation	Prime Priming	Manage Protocols Protocols	Re-Run
	Time Resolved Fluorescence - Endpoint Basic Parameters Layout Concentrations / Volumes / Shaking					×
w Button	Protocol game: LanthaScreen Eu Microplate: GREINER 384 SMALL VOLUME ✓ Focal height (0,25.0 mm): []	Optic Tgp optic (Bottom optic		Comment	
w Button	Optic Settings No. of multichromatics / multitimings (15): 1 + Simultaneous dual emission Well multichromatics	Speed	J	Precision		
	Batio multiplier: 10 000 v Optic module: HTRF v					
	Integration start (09980 µs): 100 Integration time (109900 µs): 200 Excitation source: OLaser @Flash lamp					

NOTE:

- i) Under "Excitation Source" you may select either "Laser" or "Flash Lamp", we have obtained similar results between the flash lamp and laser (data not shown).
- ii) The HTRF optic module must be installed on the instrument. If it is not installed, there will not be the option to select it from the "Optic Module" menu.

Thermo Fisher

SCIENTIFIC

Version No.: May 2016

Page 6 of 18

Setup Guide on the BMG LABTECH PHERAstar *FSX*[®] Microplate Readers

6. Select the wells you wish to read. Note in this step you can choose to designate blanks, positive controls, etc. For this case we marked all wells "Sample" and calculations were performed manually. When finished, select "OK".

					PHERA	star													-	- 1		×
Microplate LVis Plate Setting	IS																					۲
	Test Duration		-	-					14	2	112									-		
Plate Start Quick Out Measurement Start	Stop	Barcode List	MA	RS	Open La: Test Run	t	Temper	rature	Prim	ne	Ma Pro	nage tocols								~		-
Meas	sure			Resul	ts		Incub	ation	Prim	ing	Prot	tocols								Re-	Run	
	Time Resolved Fluorescence - Er	ndpoint														×	1					
*+	Basic Parameters Layout Conce	ntrations / Vo	lumes / Sh	aking																		
	Content:	204 4		31 V.	2 4		0 10			1.251	16 17	10	10 20									
New Button	Sample Blank Standard	364 1	2 3	4 5	0 /	8	9 10	11 14	2 13 14	15	10 17	18	10 20	21 4	22 23	24						
	Control Pos.Ctrl. Neg.Ctrl.	A I B DE	2 3	4 0	5 / 20 21	8	9 10	25 20	2 13 14	0 20	40 41	18	19 20	21	ZZ Z3	40						
	Empty	C 49	50 51	52 52	54 55	56	57 59	59 60	1 61 62	0 62	40 41 64 65	42	43 44	40	40 47	72						
	Groups	D 73	74 75	76 77	78 79	80	81 82	93 8/	4 85 86	. 03	88 89	90	91 92	93	94 95	96						
New Button		E 97	98 99	100 101	102 103	104 1	105 106	107 10	8 109 110	0 111	112 113	3 114	115 116	117 1	18 119	1 120						
New Batton	Index	F 121	122 123	124 125	126 127	128 1	129 130	131 13	2 133 134	4 135	136 133	7 138	139 140	141 1	42 143	3 144						
	Start value: 385	G 145	146 147	148 149	150 151	152 1	153 154	155 15	6 157 158	8 159	160 16	1 162	163 164	165 1	66 167	168						
		H 169	170 171	172 173	174 175	176 1	177 178	179 18	0 181 182	2 183	184 18	5 186	187 188	189 1	90 191	192						
	O constant @ Indease	I 193	194 195	196 197	198 199	200 2	201 202	203 20	4 205 206	6 207	208 209	9 210 :	211 212	213 2	214 215	5 216						
	Replicates	J 217	218 219	220 221	222 223	224 2	225 226	227 22	8 229 230	0 231	232 233	3 234	235 236	237 2	38 239	3 240						
	Number: 1	K 241	242 243	244 245	246 247	248 2	249 250	251 25	2 253 254	4 255	256 257	7 258 3	259 260	261 2	262 263	3 264						
	● Horizontal ○ Vertical	L 265	266 267	268 269	270 271	272 2	273 274	275 27	6 277 278	8 279	280 28	1 282 :	283 284	285 2	286 287	288						
		M 289	290 291	292 293	294 295	296 2	297 298	299 30	0 301 302	2 303	304 305	5 306 3	307 308	309 3	310 311	312						
	Reading direction:	N 313	314 315	316 317	318 319	320 3	321 322	323 32	4 325 326	6 327	328 329	9 330 :	331 332	333 3	34 335	5 336						
		0 337	338 339	340 341	342 343	344 3	345 346	347 34	8 349 350	0 351	352 353	3 354	355 356	357 3	358 359	9 360						
	e a	P 361	362 363	364 365	366 367	368 3	369 370	371 37	2 373 374	4 375	376 373	7 378	379 380	381 3	82 383	384						
125																Annual		s. 9-		2		
BMGLABTECH	Check timing						S	tart mea	asurement		OK		Canc	:	He	lp	R			SIL	9	7

7. You will return to the main window. Then press the "Start Measurement" button. A new window will appear allowing you to select which test protocol(s) you wish to run. Select the protocol you created for LanthaScreen[®], and then press "OK."

LanthaScreen[®] Eu Compatible Microplate Reader Documentation

Version No.: May 2016

Page 7 of 18

Setup Guide on the BMG LABTECH PHERAstar *FSX*[®] Microplate Readers

	Tect F	Juration				4		
V 🕨		STOP						100
ate Start	Ouick	Stop	Barcode MARS Open L	ast Tempera	ture	Prime Manage		
ut Measuremen	nt Start	(and)	List Test Ru	in		Protocol		÷
	Measure		Results	Incubat	on	Priming Protocols		Re-Run
and a second								
	Select Test Proto	col					×	
		Deste and Name	88-44-1 F		0.4	Mississiets		
Button	O Show all test	Protocol Name		Mode	Opuc	micropiate	^	
		HUMOGENEOUS TIME RES	Dual Time Res. Fluorescence	Endpoint	Тор	SPE STANDARD 284		
	Show only protocols	HTPE CONTROL KTT	Dual Time Res. Fluorescence	Endpoint	Top	SBS STANDARD 384		
And an inclusion	using method:	HTRE protocole	Dual Time Res. Eluorescence	Endpoint	Top	GREINER 384 SMALL VC	UME	
	O Fluorescence	LANCE	Dual Time Res. Fluorescence	Endpoint	Top	GREINER 384 SMALL VO	LUME	
Button	Time Resolved	LanthaScreen Eu	Dual Time Res. Fluorescence	Endpoint	Тор	GREINER 384 SMALL	VOLUME	
	Fluorescence	QC 96 HTRF	Dual Time Res. Fluorescence	Endpoint	Тор	COSTAR 96 HALF AREA		
	Fluorescence	TRANSCREENER TRF	Dual Time Res. Fluorescence	Endpoint	Тор	CORNING 384 LOW VOI	ROUND B	
	Polarization							
	OLuminescence							
	Abrorhance							
	Absolibance							
	O AlphaScreen							
							•	
					0	K Cancel	Help	
	-							

Thermo Fisher	LanthaScreen [®] Eu Compatible Microplate Reader Documentation	Version No.: May 2016	Page 8 of 18
SCIENTIFIC	Setup Guide on the BMG LABTEC	H PHERAstar <i>FSX</i> [®] Mi	croplate Readers

8. A new window will appear. Before beginning the measurement of your samples, the focal height should be set to ensure the most optimal signal measurement of the samples. Ensure the plate is in the reader. The europium signal is read through channel B. Select "Focus Adjustment" and "Channel B", then select a well containing a sample with europium labeled antibody to use for adjusting focal height. Calibrate the height by clicking the "Start Adjustment" button.

	Start	Meacur	ement	l ant	haScr	een Fr	2	- 13				-		-	-			-	-		4		3					×
St. F.	ocurr	li shured	/ plata	TD-																								
Measu	ocus ac	ijustment	/ Plate	IUS S	Sample	IDs /	Dilution	n Facto	ors.																			
	Chang	e layout	1																		Œ	Q	Focus Ad	ljustm	ent			
	004				_	-	-		-														Optic M	lodule				
	384	1 2	2 3	4	5	6	7	8	9 .	10 11	12	13	14	15	16	17	18	9 2	0 2	1 22	2 23	3 24	1 HTRF 3	37 665	620			
5	A	X1 X	(2 X3	×4	X5	×6	X7	×8 :	X9 >	(10 X1	1 X12	X13	×14	X15	X16 3	X17 3	×18 >	19 X	20 X2	21 X2	2 X2	3 X24						
20	B	X25 X	26 X27	×28	×29	X30	X31	X32 >	<33 ≻	<34 X3	5 X36	X37	×38	×39	×40 :	X41 2	×42 >	43 X	44 ×4	45 X4	6 X4	7 X48	- Focus	Adjustr	nent			-1
ton	С	X49 X	50 X51	×52	×53	×54	X55	×56 >	<57 >	<58 ×5	9 X60	X61	×62	X63	X64 3	X65 2	×66 >	67 X	58 XE	59 X71	0 X7	1 X72	Channe	A le	() Cł	nannel B		
	D	X73 X	74 X75	×76	×77	×78	X79	×80 >	<81 >	<82 X8	3 ×84	×85	×86	×87	×88 :	×89 2	×90 >	.91 ×	32 XS	33 X9	14 ×9	5 ×96	Eocal heig	ht ((025.0 mm): []		
-	E	X97 X	98 X99	XIUL	JX101	X102	×1032	×104×	105 X	106 X10	17 X108	×109	×110	X111	X112>	(113)	<114×	115X	16 X1	17X11	18×1.	19×120	1.000 CA	9 10				-1
:	F	X121 X1	22 X12	3×124	1×125	X126	×1272	K128 X	129 X	130 X13	1 X132	X133	×134	X135	×136>	(137)	(138×	139 X	40 X1	41 ×14	12×14	13×144						
	и Ц	A145 A1	46 414	10170	5×143	×150.	A1312	5192 A	193 A	170 \/13	0 1 1 00	×107	×198	×193.	×1602	21053	1627	107.2	64 A II	00 210		07 / 168						
.011		V102 V1	04 210	V100	V107	×174	V100	2000	201 \	202 22	3 ~ 100	V101	~102 V200	∧103 ∨207	V200	2000	2010	07 A	12/22	10 10		5 2010						
	÷	×217×2	18 221	3×220	12221	×222	2223	2007	225 X	202 720	7 × 228	×229	×230	X231	×2325	(233)	234 8	235 %	36 22	37 823	38 22	9 2 240						
	ĸ	X241 X2	42 ×24	3×244	1×245	×246	×247	×248×	249×	250 X25	1 X252	×253	×254	×255	×256>	(257)	(258×	259 X	60 X2	61 X26	2 X 2F	3×264						
	L	X265 X2	66×26	7×268	X269	X270	×271>	×272×	273 X	274 X27	5×276	X277	×278	X279	×280>	(281)	<282×	283 X	84 X2	85×28	36×28	37×288						
	м	X289 X2	290 ×29	1 ×292	2X293	×294	×295>	×296×	297 X	298 X29	9×300	X301	×302	X303	×304>	(305)>	<306×	307 X.	08 X 3	09 X31	10×3	1 X312	Raw result:					
	N	X313 X3	314×31	5×316	X317	X318	×319>	×320×	321 X	322 X32	3 X324	X325	×326	X327	×328>	<329>	<330×	331 X.	32 X3	33 X33	34 X3:	35×336	i and					- 1
	0	X337 X3	338×33	9×340	X341	X342	×343>	<344×	345 X	346 X34	7×348	×349	×350	X351	×352>	<353>	<354×	355 X.	56 X3	57 X35	58×35	59×360	Start	Adjustm	ent	Stop Ad	ljustment	-
	Р	X361 X3	362×36	3×364	4×365	×366	X367>	×368×	369×	370 X37	1 X372	X373	×374	X375	×376>	<377>	<378×	379 X.	80 X 3	81 X38	32×38	33×384	Status: Rea	ady				
	Plate	Identif	ication	7																								_
I	D1:									~	I <u>D</u> 2:										~	ID3:	2					~
L F	Auto	omatically	enter t	he plat	te IDs	previo	usly us	sed wit	h this i	protocol															C	lear IDs	Get last II	Ds
Y															-													Reading of the

9. In a moment, the instrument will have calculated the optimal focal height. When finished, click on the "Start Measurement" tab to read.

Microplate	LVis	Plate	S	etting	s																										
- Di		11544			Test D	1				-			11	9			-				_	1	1400		1				_		
1	Star	Meas	surem	nent -	Lant	haScr	een l	Ēu																						2	×
e St	Focus Ad	ljustm	ent / F	late I	Ds s	Sample	e IDs	/ Diluti	on Fa	ctors																					
wieasu	C1																							0	0	Focus A	tiustmen	1			-1
	Chang	e layo	ut																					9	A	rocus ru	Justinen				. 1
	384	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16 1	17	18 1	9	20 2	1 2	22 :	23	24	Optic N	Adule				
+	A	X1	X2	X3	×4	×5	X6	X7	X8	X9	×10	×11	×12	(13)	×14 :	K15	×16 ×	(17 >	<18 ×	19 >	<20 ×	21 X	22 ×	(23 >	×24	1 MIKE	557 665 620				
112	в	×25	X26	X27	X28	X29	X30	X31	X32	X33	X34	X35	×36	(37	×38 :	×39	×40 ×	(41 >	(42 ×	43 >	<44 ×	45 X	46 >	(47 >	<48	- Foas	Advistment				- 1
utton	С	×49	×50	X51	×52	X53	×54	×55	X56	×57	×58	×59	×60 3	(61)	×62 :	×63	X64 X	65 >	<66 ×	67 >	<68 ×	69 X	70 ×	(71 >	×72	Ochanna		Chang	alB	\wedge	
	D	×73	×74	X75	X76	X77	×78	X79	X80	×81	×82	X83	×84	(85)	×86 :	×87	×88 ×	89 >	<90 ×	91 >	<92 ×	93 X	34 ×	(95 >	×96	Conditione	-	Charlin	eo		
100	E	×97	×98	×99	×100	X101	×10	2×103	3×104	X105	×106	<107	×108>	109>	(110>	(111)	<112×	113X	114×	115×	116X1	17X	118×	119×	(120	Eocal heigh	nt (02	25.0 mm):	11.6		
	F	×121	X122	×123	×124	×125	5×12	5×12	7×128	X12	×130	<131	×132>	133>	(134>	(135)	<136×	137 X	138×	139×	140×1	41×	142×	143X	(144						-
	6	×145	×146	×147	×148	X149	3X15	0×151	×152	X153	×154	<155	×156>	(157)	(158>	(159)	<160 X	161 X	162×	163 X	164 X1	165 X	166 X	167 X	(168						
utton	н	×169	×170	×171	×172	X173	3×17	4×175	5×176	X177	×178	<179	×180>	181 >	(182>	(183)	<184×	185×	186×	187×	188×1	189×	190×	191 X	(192						
	1	×193	×194	×195	×196	X197	7×19	8×199	3×200	X201	×202	<203	×204>	205>	<206>	(207)	<208 X	209×	210×	211 X	212×3	213X	214×	215×	(216						
	J	X217	X218	X219	X220	X221	X22	2 X 22	3×224	X225	×226	×227	×228>	229>	(230)	(231)	<232 X	233 X	234×	235×	236 X2	237×	238×	239×	(240						
	ĸ	×241	X242	X243	×244	×245	5X24	6X247	7×248	X249	×250	<251	×252>	253>	(254)>	(255)	<256 X	257 X	258×	259×	260 X	261 ×	262×	263×	(264						
	L	X265	×266	X267	×268	X269	3X27	0X271	X272	X273	X274	×275	×276>	277>	(278)	(279)	<280 X	281 X	282×	283×	284 X	285×	286×	287 X	(288	Raw result:				8221	
	M	×289	×290	×291	X292	2×293	3×29	4 × 295	5×296	×297	×298	<2992	×300>	301 >	(302>	(303)	<304 ×	305×	306×	307×	308 X.	309×	310×	311 X	312						
	N	×313	X314	×315	×316	X31	×31	8×319	3×320	X321	×322	<323	×324p	325>	(326)	(327)	<328 ×	329 X	330×	331 ×	332 X.	333×	334 X	335×	(336	Start	Adjustment		Stop Ad	diustment	
	B	X.33/	×338	×339	X.340	1234	×34	2 X.34.	5X344	17345	2346	×347 /	×3482	3497	(350.2	(3517	5352 A	353 X	354 X	355 A	306 X.	X 102	358 X	303 X	(360						
		A301	A362	A363	A304	1/365	0,030	57.364	A360	1/1303	17370	Saria	n srzp	3137	\$3747	(3/5/	576 A	SILA	3/0/1	2/3/	.30U A.	N100	302 /	303 /	.304	Status: Re	ady				
	Plate	Iden	tifica	ation	8																										
	ID1:											-	<u>D</u> 2:										8	~	ID3:					~]
+	Aut	omatic	ally er	nter th	e plat	te IDs	prev	ously	used v	vith th	is prot	col																Clear	IDs	Get last IDs	
GILAB.	No. of e	xecub	ed run	is sino	e prog	gram :	start:	0		Tota	no. of	exec	uted ru	ns: 0															Ryn	statistics:	
									- 252																						- 1

Page 10 of 18

Setup Guide on the BMG LABTECH PHERAstar FSX[®] Microplate Readers

10. When PHERAstar[®] has finished reading, you can view your data from the completed test by clicking "Open Last Test Run" on the toolbar at the top of the window. This will automatically redirect you to a MARS file which collects run data. Alternatively you can open MARS and select your run of interest from the list to open, and view data in a plate layout format.

	2+1)	Ŧ						PHERAstar					-22		×
0	Microplate	LVis PI	ate	Settings											0
				Test Duration	5100		+	0		the state	E				
Plat Out	e Star Measure	nent	Quick Start		Stop	Barcode List	MARS	Open Last Test Run	Temperature	Prime	Manage Protocols				
				Measure			Res	ults	Incubation	Priming	Protocols		F	le-Run	
New I	tutton						Data analysi:	s software (Ctrl-	+D)						

11. Depending on the test protocol and plate layout selections some calculations may have been performed. Raw data values are displayed below.

+ 🗄 🔊 🧶 🎉 🗢		_	1.5.11			LANTHAS	CREEN - PHERAstar F	SX MARS		
Here Home View Calculations T Image: Construction of the second se	emplates Layout	Formats and Wizard Cal	culations	← → Ranges E	Export Tab to Excel Data Reducti	ole Export Ta to ASCI	ble Manage I Wavelengths	Layout Display	Templates Predefined	Add Button Template
Navigation / Data Selection 7 Available Data 1 LANTHASCREEN (539) Layout 1 Standard Concentrations 1 Data 1 Raw Data	Microplate Vie Test Name: LAN ID1: 472-0012; IC Time resolved fluc Display Mode: (Table Table The Table The Screen	View 🛃 S o emission)	Standaro	d Curve] Protocol Info	rmation 🧔 21 CFI	R part 11		
337/665 A	E Lege	end in first colu	mn					Ra	w Data	
337/620 B Blank corrected 337/620 B 337/620 B C Statistics Average 337/655 A 337/656 A 337/620 B TR-FRET Calculations Ratio Ratio ■ Recalculated concentrations Linear regression fit	1 A 32263 2 261669 31 2 264089 29 2 C 33617 1 275085 27 2 D 30551 2 243843 31 2 251305 41 7 F 38790 2 288778 32 3 G 43975 1 317740 27 H 38182 292928 33 I 30011 1 261280 28 3 907 2 2000 34 4483 447591 36 477591 36 1 73	2 3 2 33 2 33 3 3231 4 573 3 22562 3 22562 3 0952 1 1678 8 006 3 04944 1 3815 3 7364 3 26159 2 360 1 6127 3 294 3 25178 4 26159 3 254733 3 854 1 3734 8 026 3 27872 8 407 1 2676 8 407 1 2676 1 2776 1 2776 1 2776 1 2776 1 2776 1 2776 1 2776 1 2776 1 2776 1 2777 1 27777 1 27777 1 2777 1 2777 1 27777 1 27777 1 2777 1 27	4 10456 385644 385644 492271 368574 36378 363478 363478 363478 37010 373134 10247 373180 376319 4 9572 347241 122622 327582 347314 364376 4 3662 327532 34711 354376 4 50	5 6228 93404 5782 81271 5819 91491 5598 78333 6631 6642 5842 74253 6649 27623 5822 81528 6389 24700 5544 4021 40111 4011	6 36 33 38 69 44 62 42 59 48 36 36	7 8	9 10			14
Data: 337/620 (B) Raw Data	00 N 0 1. Raw Data (:	337/665 A)	43	24					egend	

Setup Guide on the BMG LABTECH PHERAstar FSX® Microplate Readers

12. Plots of these values are shown here.

A. Ratio Data

B. Normalized Data

13. These test values were obtained using the following procedure.

Setup Guide on the BMG LABTECH PHERAstar FSX[®] Microplate Readers

Test Your Plate Reader Set-up Before Using LanthaScreen[®] Eu Assays

Purpose

This LanthaScreen[®] Eu Microplate Reader Test provides a method to verify the ability of your fluorescent plate reader to detect a change in time-resolved fluorescence energy transfer (TR-FRET) signal, confirming proper instrument set-up and a suitable response. The method is independent of any biological reaction or equilibrium and uses reagents that are on-hand for the LanthaScreen[®] assay.

At a Glance

Step 1: This document can be found at <u>www.thermofishernologies.com/instrumentsetup</u>.

Step 2: Prepare individual dilutions of the TR-FRET acceptor (tracer, e.g. PV5592). 2X = 1,600 nM, 800 nM, 400 nM, 200 nM and 50 nM.

Note: To avoid propagating dilution errors, we do NOT recommend using serial dilutions. See page 17.

Step 3: Prepare a dilution of the TR-FRET donor (Eu-Antibody, e.g. PV5594). 2X = 125 nM Eu-chelate.

Note: Concentration is based on the molarity of Eu chelate (found on the Certificate of Analysis), NOT the molarity of antibody, to account for normal variation in antibody labeling. See page 17 for calculations and method.

Step 4: Prepare plate and read.

Step 5: Contact Technical Support with your results. E-mail us directly at <u>drugdiscoverytech@thermofisher.com</u> or in the US call1-800-955-6288 ext. 40266.

Introduction

This LanthaScreen[®] Eu Microplate Reader Test uses diffusion-enhanced TR-FRET to generate a detectable TR-FRET signal. At high donor or acceptor concentrations, donor and acceptor diffuse to a suitable distance from one another to allow TR-FRET to occur, resulting in a signal. The response in diffusion-enhanced TR-FRET is easy to control because it is directly proportional to the concentrations of donor and acceptor in solution and is not related to a binding event.

In this method, acceptor concentration varies while the donor concentration remains fixed. As the concentration of acceptor increases, the diffusion-enhanced TR-FRET signal increases. The signal from the acceptor concentrations are compared to the signal from the lowest acceptor concentration to

Thermo Fisher	LanthaScreen [®] Eu Compatible Microplate Reader Documentation	Version No.: May 2016	Page 14 of 18
SCIENTIFIC	Setup Guide on the BMG LABTEC	H PHERAstar <i>F</i> SX [®] Mi	croplate Readers

simulate assay windows from high to low allowing you to assess if your instrument is properly set-up and capable of detecting TR-FRET signals in the LanthaScreen[®] Assays.

We designed the LanthaScreen[®] Eu technical note to use components and reagents that are generally used in the LanthaScreen[®] Eu Kinase Binding Assays. If you are using a Eu-based LanthaScreen[®] Activity or AdaptaTM assay, call Technical Support for additional information.

Materials Required

Component	Storage	Part Number	Example Reagents
LanthaScreen [®] Eu-Labeled Antibody (donor)	-20°C	Various	PV5594
LanthaScreen [®] Tracer (acceptor)	-20°C	Various	PV5592
5X Kinase Buffer	Room temperature	PV3179	PV3179

*If you are using a Eu-based LanthaScreen[®] Activity or Adapta[™] assay, call Technical Support for additional information.

96-well plate polypropylene microplate or 1.5 mL microcentrifuge tubes

384-well plate (typically a white, low-volume Corning 4513 or black, low-volume Corning 4514)

Plate seals Suitable single and multichannel pipettors

Plate reader capable of reading TR-FRET

<u>Handling</u>

To reread the plate on another day, seal and store the plate at room temperature for up to 5 days. To reread the plate, centrifuge the plate at 300 xg for 1 minute, remove seal and read.

Important: Prior to use, centrifuge the antibody at approximately 10,000 xg for 10 minutes, and carefully pipette the volume needed for the assay from the supernatant. This centrifugation pellets aggregates present that can interfere with the signal.

Procedure

Step 1: Set up your instrument using the information in this document.

Step 2: Prepare Acceptor (such as LanthaScreen[®] Kinase Tracer 236)

Acceptor concentrations (2X) are individually prepared from the Kinase Tracer stock (either 25 μ M or 50 μ M) to prevent propagation of error that can occur with serial dilutions. We suggest preparing 10 replicates for calculation of a Z'-factor.

Page 15 of 18

Setup Guide on the BMG LABTECH PHERAstar FSX® Microplate Readers

To accommodate replicates that use 10 μ L per well, prepare 120 μ L of each concentration. Prepare each concentration in micro-centrifuge tubes or a 96-well polypropylene plate and then transfer it to a 384-well plate.

First prepare **1X Kinase Buffer A** by adding 4 mL of 5X Kinase Buffer A to 16 mL of highly purified water. Diluted 1X Kinase Buffer A can be stored at room temperature.

1. Prepare 2,500 nM acceptor stock solution:

LanthaScreen [®] Kinase Tracer	Cat #	Concentration as Sold	Dilution to prepare a 2,500 nM solution
Tracer 178	PV5593	25 μΜ	Add 17 μ L of tracer to 153 μ L of 1X Kinase Buffer A
Tracer 199	PV5830	25 μΜ	Add 17 μ L of tracer to 153 μ L of 1X Kinase Buffer A
Tracer 236	PV5592	50 µM	Add 8.5 μ L of tracer to 161.5 μ L of 1X Kinase Buffer A
Tracer 314	PV6087	25 μΜ	Add 17 μ L of tracer to 153 μ L of 1X Kinase Buffer A
Tracer 1710	PV6088	25 μΜ	Add 17 μ L of tracer to 153 μ L of 1X Kinase Buffer A

2. Prepare 120 µL of each 2X acceptor concentration from the 2,500 nM solution:

96-well plate or tubes	A1	B1	C1	D1	E1
2X Acceptor Concentration	1,600 nM	800 nM	400 nM	200 nM	50 nM
Final 1X Acceptor Concentration	800 nM	400 nM	200 nM	100 nM	25 nM
Volume 1X Kinase Buffer A	43 µL	81.6 μL	100.8 μL	110.4 μL	117.6 μL
Volume 2,500 nM Acceptor (prepared above)	77 μL	38.4 μL	19.2 μL	9.6 µL	2.4 μL

Step 3: Prepare Donor (Eu-Chelate Labeled Antibody)

Prepare a 2X stock of Eu-chelate at 125 nM that will result in a final assay concentration of 62.5 nM. This method relies on the concentration of Eu-chelate, NOT on the concentration of antibody. The lot-to-lot variation in the number of Eu-chelates covalently bound to antibody can be accounted for by referring to the Eu-chelate-to-antibody ratio listed on the lot-specific Certificate of Analysis for your antibody. Multiply this ratio by the antibody concentration to calculate the Eu-chelate concentration.

Example Chelate Concentrations:

Antibody Concentration	Antibody Molarity	Chelate: Antibody Ratio	Chelate Concentration
0.5 mg/mL	3.3 µM	11	$36.3 \ \mu M = 36,300 \ nM$
0.25 mg/mL	1.7 μM	8	$13.6 \ \mu M = 13,600 \ nM$

Example Calculation: Prepare 1,000 µL of Eu-chelate:

Eu-antibody = $0.5 \text{ mg/mL} (3.3 \mu\text{M})$ with a chelate:antibody ratio of 11

Chelate: Stock = $3.3 \ \mu M \ x \ 11 = 36.3 \ \mu M = 36,300 \ nM.$

 $1X = 62.5 \text{ nM}; \quad 2X = 125 \text{ nM}$

Thermo Fisher	LanthaScreen [®] Eu Compatible Microplate Reader Documentation	Version No.: May 2016	Page 16 of 18	
SCIENTIFIC				

Setup Guide on the BMG LABTECH PHERAstar FSX® Microplate Readers

	V	7 ₁	X	C ₁	=	\mathbf{V}_2	X	C ₂	
				[Stock]				[2X]	
Eu-Chelate	\mathbf{V}_1		х	36,300 nM	=	1,000 µL	X	125 nM	
	V _{1 =}	3.4 µ	L						

Add 3.4 µL of antibody to 996.6 µL 1X Kinase Buffer A.

Step 4: Add Reagents to the 384-well Plate and Read

1. Donor

Transfer 10 μ L of 2X Eu-chelate to rows A through J and columns 1 through 5 of the 384-well assay plate. Since you need only a single concentration, you can transfer this solution with a multichannel pipettor from a basin to all 50 wells. We recommend preparing the 1 mL solution in a 1.5 micro-centrifuge tube before transferring into the basin.

2. Acceptor

Note: To eliminate carryover, we recommend changing pipette tips for each concentration of acceptor. *Note:* After adding, 2X acceptor, mix the reagents by pipetting up and down.

Transfer 10 μ L of the indicated concentration of 2X acceptor to the rows A-J of the corresponding column of the 384-well plate. Refer to the chart below:

2X Acceptor	Column
1,600 nM	1
800 nM	2
400 nM	3
200 nM	4
50 nM	5

3. Read plate

This step does not require any equilibration time.

Step 5: Contact Technical Support

Send us your results by e-mailing us directly at <u>drugdiscoverytech@thermofisher.com</u> or in the US call 1-800-955-6288 ext. 40266.

We will help you evaluate your results by performing the following data analysis:

- 1. Obtain the emission ratios by dividing the acceptor signal (665 nm) by the donor signal (620 nm) for each well.
- Calculate the average ratio for each column (1 through 5). Values can be plotted against the final 1X concentrations (800 nM, 400 nM, 200 nM, 100 nM, and 25 nM) of acceptor (see graph A). Dilution curves from diffusionenhanced TR-FRET do not plateau and, therefore, do not fit the normal sigmoidal shape produced by binding curves.

- 3. Using the data from column 5 (25 nM acceptor) as the bottom of the "assay window", divide the average rations from the other columns by the average ration from column 5 to obtain a range of simulated "assay window" sizes. See the example data below. This "normalized" data can be plotted against the acceptor concentration as show below in graph B.
- 4. Calculate the Z'-factor for each "assay window." Very general guidance is that you should observe a satisfactory Z'-factor (>0.5) for at least the "small window" that compares columns 3 to 5 (200 nM to 25 nM). In our hands the data in columns 4 and 5 produces suitable Z'-factors (>0.5) with a simulated assay window of less than 2.

A. Ratio Data

B. Normalized Data

Columns Compared	Description
1 to 5	Largest window
2 to 5	Intermediate window
3 to 5	Small window
4 to 5	Smallest window

LanthaScreen[®] Eu Compatible Microplate Reader Documentation

Version No.: May 2016

Page 18 of 18

Setup Guide on the BMG LABTECH PHERAstar FSX® Microplate Readers

[Eu-chelate]	800 nM	400 nM	200 nM	100 nM	25 nM
Row A	0.123	0.070	0.041	0.027	0.016
Row B	0.126	0.070	0.038	0.033*	0.015
Row C	0.122	0.067	0.042	0.027	0.015
Row D	0.125	0.071	0.046	0.027	0.015
Row E	0.122	0.076	0.040	0.027	0.015
Row F	0.134	0.073	0.042	0.028	0.016
Row G	0.138	0.067	0.041	0.029	0.016
Row H	0.130	0.076	0.046	0.028	0.015
Row I	0.126	0.068	0.042	0.030	0.016

Example Data: Ratiometric data obtained on a BMG LABTECH PHERAstar[®] *FSX* microplate reader.

*outlier, not used for data analysis

Data Analysis:

[Acceptor]	800 nM	400 nM	200 nM	100 nM	25 nM
Average Ratio	0.128	0.071	0.042	0.028	0.015
St dev	0.0057	0.0034	0.0024	0.0019	0.0003
Assay Window	8.5	4.7	2.8	1.9	Reference
Z'-factor	0.84	0.79	0.71	0.67	

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.