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Guide to PLIER Estimation

Technical Note

This guide is a reference tool for biol-
ogists utilizing the new probe logarith-
mic intensity error (PLIER) method for
calculating signal. Additional detail
regarding the algorithm appropriate
for statisticians and bioinformaticists
is provided in the appendix.

Introduction

The probe logarithmic intensity error

(PLIER) method produces an improved

signal (a summary value for a probe set) by

accounting for experimentally observed

patterns for feature behavior and handling

error appropriately at low and high abun-

dance. Resulting benefits include:  

· Higher reproducibility of signal (lower

coefficient of variation) without loss of

accuracy

· Higher  sensitivity to changes in 

abundance for targets near background

· Dynamic weighting of the most inform-

ative probes in an experiment to 

determine signal

This method was developed by building

upon many of the concepts that have been

published recently within the field of

GeneChip® microarray data analysis,

including model-based expression analysis

and robust multichip analysis. It also

builds upon the summarization algorithm

provided in Affymetrix® Microarray Suite

5.0 (MAS 5) by taking into account the

experimentally validated value of weighting

feature intensities to determine an overall

probe set summary. 

Similar to other model-based approaches,

PLIER accounts for the systematic differ-

ences in intensity between features by

including parameters describing these 

differences. These parameters are termed

“feature responses,1” and one such parame-

ter is included in the model for each feature 

(or pair of features, when subtracting 

Mismatch (MM) intensities). Feature

responses represent the relative differences

in intensity between features hybridizing

to a common target (Figure 1). 
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Concentration of PM labeled spikes (Probe set 36311_at in Latin Square experiment)

Three features with different feature responses and backgrounds– 
(HGU95 Latin Square, spiked-in clone to 36311_at probe set)
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Typically responsive feature
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Figure 1: A probe set containing probes with varying feature response is helpful in detecting a

range of abundance, as illustrated by spiked-in concentrations. For example, strongly responsive

features are informative at the low end, but saturate at the high end. Weakly responsive features

are uninformative at the low end, but are informative at the high end of the abundance range.  



PLIER produces a more accurate probe set

signal by utilizing these feature responses

to interpret intensity data, dynamic

weighting by empirical feature perform-

ance, and handling error appropriately

across low and high target abundance. 

Feature responses are calculated using

experimental data across multiple arrays.

PLIER also uses an error model that

assumes error is proportional to the

observed intensity, rather than to the back-

ground-subtracted intensity. This ensures

that the error model can adjust appropri-

ately for relatively low and high abundance

of target nucleic acids.

1 In Irizarry et al, this term is called the "probe affinity",
by analogy to target binding. This is not physically
accurate, due to the many factors which interact to
produce measured intensity.

NOTE: Refer to Table 2 for a comparison of

PLIER to other analysis methods.

Calculation of Signal

PROBE BEHAVIOR AND WEIGHTING

The PLIER algorithm utilizes experimental

data generated across multiple arrays in

order to identify and account for observed

patterns in feature intensities. Feature

responses can be fit from experimental data,

which allows good calibration of perform-

ance in different ranges of abundance, as

well as making it easy to identify poorly per-

forming features with erratic hybridization

behavior. Feature responses are a measure of

how much the relative intensity of a feature

is due to the feature itself, as opposed to the

common target of a probe set. This relative

response is influenced by how likely a probe

is to bind to a complementary sequence

across a range of abundance, as all probes

have different thermodynamic properties and

binding efficiencies, but also is influenced by

many other factors, such as non-equilibrium

washes, labeling, and density of synthesis.

Feature response is therefore an empirical

factor local to each probe set, not a global

measure of probe binding. Note that it is not

necessary to know the sequence of the probes

within a feature to fit feature responses.

By using a scaling factor (feature response)

to account for this difference in intensities,

the intensity of all of the features within a

probe set can be easily compared (Figure 2).

For example, if one feature (or feature pair) is

consistently twice as bright as others in the

set, accounting for this enables the intensity

data of that probe to be analyzed consistent-

ly with the others for their response to the

common target. In the case of a probe set,

this enables all set members to be compared

and combined accurately. 

Once the systematic differences between

features have been accounted for in this

way, it becomes easier to detect non-sys-

tematic differences. Features can then be

classified as high or low performance fea-
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Same three features adjusted for responsiveness

Least responsive feature

Typically responsive feature

Most responsive feature

Concentration of PM labeled spikes (Probe set 36311_at in Latin Square experiment)

Figure 2: Once intensities are scaled using feature response, it becomes easier to detect 
non-systematic differences among features, and down-weight low performance features. Only the
rescaled Perfect Match probes intensity is plotted here, and the actual algorithm incorporates
background information. Note that background plays a large effect in the least responsive feature,
and that the most responsive feature saturates first. 
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Possible values for target response

Lack of fit for the experiment with spiked-in concentration
4 PM for the clone to probe set 36311_at plotted for three 
feature pairs (adjusted for feature response)
[least responsive feature only useful here to  
exclude strong target response]

Least responsive feature

Typically responsive feature

Most responsive feature

Overall lack of fit 
(total of three features)
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Figure 3: The information from all three feature pairs is combined to generate the signal esti-
mate. Each feature pair “votes” for a particular target response value (lines 1-3). Each possible
value for the target response (plotted along the x-axis) has a penalty (lack of fit) when compared
to the intensity of a given feature pair. The three individual penalties are added up (line 4), and
the PLIER estimate of signal is the target response value with the lowest penalty (best fit to
data). Note that the feature with the lowest feature response is only useful in this instance for
excluding high signal values (because the feature reponse is so low that at a 4 pM spiked-in 
concentration the perfect match intensity is mostly background). The remaining two features
estimate slightly different values individually due to noise. Note that the x-axis (possible target
response values) is logarithmically scaled, so that 5 is 25. 
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tures. For example, a feature that is consis-

tently twice as bright as the median feature

intensity is considered a high performance

probe (and strongly responsive). However,

a feature that is twice as bright only half

the time but is the same as the median fea-

ture intensity the other half of the time is

considered a low performance feature due

to inconsistent behavior. This type of

observation is often due to cross-hybridiza-

tion effects creating erratic patterns.

Once the scaling factor is applied, the

intensity data from each feature can be

combined to generate a “goodness of fit” curve

for possible signal values (target responses,

see glossary). In this process, the most

informative features provide the strongest

contribution to the signal. At the low end

of target abundance, where background

dominates the intensity, these are most likely

the probes with the highest feature response.

Inconsistent features are down-weighted,

using the Geman-McClure function.

Through the scaling and down-weighting

process, the features that are most informa-

tive in each experiment contribute the

most to the final signal estimate (Figure 3). 

ERROR MODEL

The challenge with error estimation is

developing a model that fits both low and

high abundance because the error is directly

proportional to the largest component of

intensity. At high abundance, error is

approximately proportional to background-

adjusted intensity, since most of the intensity

is due to the response to the specific target.

At the low end, however, error is approxi-

mately proportional to background intensi-

ty (which varies from feature to feature), as it

is the largest component of the observed

intensity (Figure 4). Due to this latter effect,

it is inaccurate to treat error in target

response as a proportion of background-

adjusted intensity in all circumstances.

Therefore, the error model must be able to

estimate error in the target response depend-

ing on the abundance. If not, the amount of

error at the low end will be underestimated.

The PLIER error model smoothly transi-

tions between the low end, where error is

dependent upon background, and the high

end, where error is dependent on the

response to the target.

Input Data

FEATURE INTENSITY

The algorithm requires feature-level intensity

data as the input. From these feature-level

data across many experiments, the algo-

rithm calculates feature response terms.

Once generated, these terms may be stored

in a file, termed a model file, for repeated

use on different data sets that are sufficiently

similar to the reference set.

MODEL FILES

As explained above, a model file can be

generated to store feature responses (scaling

factors) once the feature responses have been

generated using selected data. The most

informative model files are those that have

been generated using a large experimental

data set across multiple relevant samples.

Even though a model file can technically be

generated from as few as two arrays, the

minimum recommended number of arrays

is five, although this is dependent upon the

specific experiment. Additional recom-

mendations include having:

· A broad range of abundance across 

experiments for each target of interest

· Comprehensive coverage across genes 

of interest

These criteria provide the algorithm with

a reasonable amount of data to estimate both

feature and target response. The higher the

number of reliable input data points, the

higher the accuracy of the resulting signal

calculations. For example, informative

model files can be generated using data from

a control tissue panel that contains a wide

variety of data points that represent genes of

interest. If genes of interest are not well rep-

resented within the model file data set, the

algorithm cannot model feature response

accurately for these genes. If an experiment

uses highly different tissues, these can be

added to the tissue panel and a new model

file can be generated.

If a model file is being generated from a

small number of arrays or set of arrays with

poor or uncertain abundance or gene cover-

age, the addition of a Bayesian probe penal-

ty is recommended. This term informs the

algorithm how heavily to weight the input

experimental data. For example, a maxi-

mum value for this term will instruct the

algorithm to ignore empirical data and treat

all probes as though they were equally

responsive. Use of this penalty helps miti-

gate the risk of treating anomalies, such as

scratches or cross-hybridizations, as accurate

data. The challenge with a small data set is

not having enough data to recognize these

types of problems as outliers. 

2000

PM-MM
1800

1600

1400

1200

1000

800

600

400

200

0
1 2In

te
n

s
it

y
 (

s
c
a

le
d

 b
y

 f
e

a
tu

re
 r

e
s
p

o
n

s
e

)

Feature pairs

MM (Background) 
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Figure 4: The amount of uncertainty (or potential error in estimation) present is dependent
upon the total intensity, not just the background-adjusted intensity. The proportion of intensity
represented by background is dependent upon the abundance of the complementary target as
well as the feature response. Thus, the small PM-MM difference in the first feature pair has an
error bar comparable to that of the large PM-MM difference in the second feature pair, and so
is much less informative than might be expected. Small differences between relatively large
numbers contain very little information, and therefore are effectively down-weighted by PLIER.
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Step-by-Step Selection of
Options

NOTE: In the PLIER SDK, model file

input/output, normalization, and background

calculation are left for implementation wihtin

the hosted application.

DATA PRE-PROCESSING

A normalization procedure should be

applied either to intensity data before run-

ning the PLIER algorithm or a normaliza-

tion procedure can be applied to the signal

after the signal is generated. One common,

powerful normalization procedure that oper-

ates on the raw intensity data is quantile

normalization. Quantile normalization assumes

a common distribution of intensities across

arrays. Because of this assumption, it is

designed for use across reasonably homoge-

nous samples. As this is most often the case,

quantile normalization is the preferred

option. If samples are derived from signifi-

cantly different tissues, quantile normaliza-

tion should not be applied at this stage and

normalization should be performed on the

summary values after running PLIER.

PROBES AND BACKGROUND

Input probe types and background are the

next primary consideration. By adjusting

the input probe options and type of back-

ground calculated, the algorithm can be

tuned to target sensitivity to low expressors

or identification of small differential change.

However, this selection should be guided by

the expected sample-to-sample variability.

MM probes as background, a global uniform

background, or a GC-content-based back-

ground can be provided as the user requires.

Recommended options are discussed in

detail below.

PM-MM

As the most conservative approach, the

default option is the perfect match probe

feature intensity minus a corresponding

mismatch probe (PM-MM) feature intensity.

Since perfect match features and mismatch

features are similar in both location and

sequence, the difference between the inten-

sities of a matched pair isolates target

response from many background effects.

This option is designed to handle high 

sample-to-sample variability and maximize

sensitivity to low expressors by minimizing

bias. For example, a neurogenesis study 

utilizing samples from different locations

investigating low-level early responses

would utilize the PM-MM option. 

PM-B

The perfect match minus background

option (PM-B) is useful for moderate sam-

ple-to-sample variability, and moderate sen-

sitivity to low expressors. For example, an

experiment utilizing different tissues from

the same lab assessing low to medium

expressors would leverage this option. For

this option, the background subtraction can

be calculated using any standard host pack-
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Figure 5: Probe and background comparison

Method Assumptions Benefits Drawbacks

PM-MM

PM-B

PM Only

MM treated

as additional

PM

Background effects are large and 
potentially variable between features 
across experiments relative to  
effects of interest

Features have approximately the same 
background

Background variation is insignificant

Background variation is insignificant
Abundances moderate to large

Background effects minimized
due to low bias
Sensitivity to low expressors

Low noise

Low noise
Approximately constant CV

Added statistical power
Low noise
Constant CV

Slightly noisier when signal is higher 
than background

May not represent all probe sets 
accurately, typically leading to 
underestimated differential change

All probe sets biased
Compression of differential
change at the low end

All probe sets biased
Compression of differential change 
at the low end

Table 1: Summary Table
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age method, such as a uniform percentage or

spatially smoothed percentage method. 

PM ONLY

The Perfect Match only option (PM Only) is

most often utilized for experiments where

the background is assumed to be minimally

variable across experiments. Identical tis-

sues, organisms, or cell lines are all examples

of experimental designs that would benefit

from this analysis option. 

MM TREATED AS ADDITIONAL PM

The Perfect Match added to the Mismatch

option (PM+MM) can be applied in cases

where background can be assumed to be

irrelevant to target response. In these cases,

the mismatch probe can be utilized to

increase statistical power by doubling the

number of data points. The use of feature

response terms in the algorithm enables the

use of the mismatch probe features as either

a measurement of background or a measure-

ment of signal, as applied here. When used

as a measurement of signal, the mismatch is

simply treated as a less responsive feature.

An example of this type of input sample set

would be tissues from the same organisms

from the same lab, such as inbred mice. This

option is suitable for detecting small differ-

ential changes in expression value. 

Figure 5 summarizes the way in which

these options can be tuned. Table 1 summa-

rizes the benefits and drawbacks of each

option. The description of assumptions

helps define the appropriate context for

application.

The last option is quick or full optimiza-

tion. Full optimization provides better sen-

sitivity for low expressors but requires a

slightly longer computational time. The

quick version provides an output similar to

RMA, and so is quite robust and requires

less computational time. 

Post-Processing

Once the PLIER algorithm has been run,

the appropriate scaling and normalization

options can be applied. 

INTERPRETING OUTPUT

The signal value provided by PLIER is an

estimate of the common response of the fea-

tures in a probe set to a given target. Some

transcripts are absent, and by design, PLIER

provides near-zero values for targets corre-

sponding to such transcripts. One of the

most common ways to analyze these values

is by using ratios. Ratios with denominators

near zero are inherently unstable. By design,

the raw PLIER signal values are not variance

stabilized. To calculate ratios, a variance sta-

bilizing transformation, such as log of signal

plus a constant, should be applied to avoid

unstable values. For example, a small con-

stant value, such as 16, can be added to all

values before taking the logarithm.
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PLIER

dCHIP

RMA

MAS 5

Multiple array analysis
Mixed error model
PM-MM, PM only etc.
Multiple background options
Smoothly handles intensities 
below background

Multiple array analysis
Arithmetic error model
PM only (stanardly)
Multiple background options
(no background typical)

Multiple array analysis
Multiplicative error
PM only
Attenuated global background
(single global background used to 
adjust for each intensity)

Single array analysis
Multiplicative error
PM-MM
Background imputed to handle
negative differences

Higher reproducibility of signal
(lower coefficient of variation)
without loss of accuracy relative to 
single array analysis
Higher differential sensitivity for low 
expressors
Lack of bias

Higher reproducibility of signal over 
single array analysis
Good differential change detection
Variance stable on log scale with no 
background

Higher reproducibility of signal over 
single array analysis
Good differential change detection
Variance stable on log scale

Conservative
Smooth down-weighting of outliers
Positive output values
Minimal bias

Computationally intensive
In cases where feature intensities 
disagree, may have more than one 
solution
Performance relative to amount of 
model data provided
Variance not stable on log scale

In cases where feature intensities 
disagree, may have more than one 
solution
Performance relative to amount of 
model data provided
Positive bias at low end 
(compression of Fold Change)

In cases where feature intensities 
disagree, may have more than one 
solution (mitigated by  median polish)
Performance relative to amount of 
model data provided
Positive bias at low end 
(compression of Fold Change)

Limited by single array analysis
Variance not stable on log scale
Some positive bias

Method Assumptions Benefits Drawbacks

Table 2: Other analysis methods
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M-Estimator – An estimator obtained by minimizing a function. Similar to maximum-like-
lihood estimates.

Mean – The familiar arithmetic mean of several numbers. Minimizes the sum of squares.

Median – The middle rank value (or average of the two such values, if there are an even
number of data points). Minimizes the sum of absolute values.

Robustness – Ability to produce reasonably accurate results in the presence of outliers.

Sensitivity – The ability to detect an entity when it is present. Two types of sensitivity
are often discussed for microarrays. The first is the ability to detect a (specified) transcript
as being present in a sample. The second is the ability to detect a (specified) differential
change between two experiments when there is a change.

False positive – When an entity is detected and it is not present. For microarrays, there
are two types often discussed. First, when an absent transcript is reflected as a signifi-
cantly present output. Second, when a differential change is falsely indicated when there
is no change in an expression level.

False negative – When an entity is not detected, and it is present. For microarrays, there
are two types of false negative rates. First, when a transcript is indicated as being absent
when it is expressed in the sample. Second, when a (specified) differential change is
falsely indicated as unchanged.  

Specificity – The ability to exclude an entity when it is not there. For microarrays, there
are two types of specificity. First, when an absent transcript is correctly indicated as absent.
Second, when an unchanged expression level is correctly indicated as unchanged.

Background – Unwanted intensity observed on an array. Sources of background include
fluorescence of the glass, stray DNA, and many other sources. Varies with sequence of
DNA in the probe.

Residuals – Real experiments have noise, and therefore any estimates of true values will
differ slightly from those observed in each data point. The difference between the
observed values and the predicted values for a particular estimate.

Error model – A means of interpreting how well a model explains the observed data.

Signal – A summary value for the observed intensities in a probe set reflecting a com-
mon transcript. In PLIER, estimated as the target response that best fits the data given
the feature responses.

Total response – The intensity due solely to the target of interest interacting with a given
feature. Assumed in the PLIER model to consist of two components: feature response
and target response, multiplied together.

Feature response – A relative measure within a probe set of the (multiplicative) difference in
intensity due to a given feature being different (in location, probe sequence, etc.) than another.
Assumed to be invariant across experiments for a given feature. Example: one PM-MM
difference is reliably twice as bright as another PM-MM difference across experiments.
The pairs differ in feature response. Feature responses cannot be compared across probe
sets due to their relative nature. Feature response is a dimensionless scaling factor.

Target response – A measure within an experiment of the (multiplicative) difference in
intensity due to a given experiment having a different target abundance. Assumed to be
common to all features (background adjusted) within a probe set. Example: one PM-MM
difference is twice as bright in one experiment as another experiment.  The experiments
differ in target response for this feature. Target responses cannot be compared across
probe sets due to the relative nature of feature responses.

Comparison to Affymetrix®

Microarray Suite 5.0

While Affymetrix® Microarray Suite 5.0

(MAS 5) treats all features equally, PLIER

utilizes experimental evidence to 1) weight

features based on consistency, and then 2)

utilize the features that are most consistent

for that experiment to estimate signal.

Arrays analyzed using the MAS 5 algorithm

can be re-analyzed using the PLIER algo-

rithm. 

Other Popular Methods

PLIER is designed to maximize sensitivity

for low expressors. As explained above, 

it builds upon concepts used in dChip 

and RMA. Table 2 summarizes how these

methods compare to one another. For more

detailed information, please visit: 

affycomp.biostat.jhsph.edu.

Versions of PLIER are also provided that

generate outputs similar to dChip and RMA

for experiments that would benefit from

either of those approaches. Table 3 summa-

rizes the options for either output.

Conclusion

PLIER provides an advanced, flexible frame-

work for primary analysis of GeneChip

microarray data incorporating recent

advances in expression analysis. These

advances include the use of feature response

terms to improve the interpretation of

intensities, a robust M-estimator to reject

outliers, and an improved model for intensity

level errors. The PLIER error model is the

recommended option, as it simultaneously

incorporates a smooth transition between

analysis of low and high expressors, rescaling

by feature responses, and resistance to out-

liers. However, options within the PLIER

framework allow simpler models to be used

that can replicate the features of other popu-

lar low-level analysis techniques, including

the analysis of perfect-match only arrays. 
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Options RMA Like Methods dChip Like Methods

Data Pre-Processing Quantile normalization Quantile normalization

Probe Type Perfect match only Perfect match only

Background % Background (Uniform) None

Optimization Quick Full

Table 3: Options

Glossary
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At a high level, the output of the PLIER algorithm is an improved estimate of target variation across experiments (signal) for each probe

set. This signal improvement comes about in two ways:  

1. By incorporating information about the individual feature(s) or feature-pairs, in particular, exploiting the fact that different features 

have different feature responses.  

2. By incorporating an improved error model that smoothly transitions between the “arithmetic” regime in which feature intensities 

are near background, to the "multiplicative" regime in which feature intensities are far from background.

The algorithm can be run on a group of experiments. The feature response may be provided in a model file, in which case the program

will simply generate signal estimates for each experiment, or the feature response may be calculated for the current group of experiments

and saved for future use in a model file.

PLIER drafts an initial estimate of signal (target response) and feature response for each experiment and feature using the data provided,

and then attempts to find estimates that more closely fit the data given an approximate likelihood. The algorithm stops when it finds an

estimate that cannot be made to fit the data more closely. 

Justification of the PLIER M-estimator

Estimators obtained by finding estimates that minimize (or maximize, depending on sign) some function are known as M-estimators.

Familiar examples of estimators falling into this class are means (minimize the sum of squares) and medians (minimize the sum of absolute

values). The function that an estimator minimizes can be chosen to have desirable properties, such as computational convenience and

resistance to outliers, while still usefully approximating the fit of a chosen error model. 

PLIER is based on the following simple assumptions about the behavior of probes and targets. First, the abundance of a target is never

negative, but can be zero, therefore the target response is always non-negative (t ≥ 0). Second, there is a linear link between intensity

(total response) and target response (T~f*t), with the feature response term (f) as the slope of this relationship. That is, the true underlying

intensity is the product of the feature response (common across experiments for a given feature) and the target reponse (t) (common

across intensities in a probe set).

Third, the multiplicative intensity error is the most significant source of variation, that is, the error in repeated experiments for a feature

intensity is approximately log-normal (log(I) ~ normal). It is presumed that background adds to the total response to make the total inten-

sity (I ~ T+B), but the background value can vary from feature to feature, experiment to experiment. 

Further, the optimistic assumption that background is sequence and location dependent is made, so that mismatched probe sequences

have backgrounds closely related to their corresponding perfect match probe (when they are sufficiently close), and the pessimistic

assumption is made that the background varies across different samples and locations.

Thus, the reduced model (PM-MM = f*t) is considered, due to the variability of background between experiments and between features

containing probes of very different sequence. Improving the behavior of estimates of signal for low expressors is of greatest interest, and

therefore concentrating on background driven effects, such as the amount of positive bias in an estimate, and the uncertainty of values

near background, is important. The mismatch features do have some positive feature response for the target, and will increase the vari-

ability of estimates far from background, but are still the most useful way of removing bias from intensity data found so far.

Considering multiplicative error on intensities, the third assumption, leads to assigning error terms to the observed intensities of both the

Perfect Match and the Mismatch probe features, that is, errors e1 and e2 should be found that satisfy e1*PM - e2*MM = f*t. In general,

good estimates for feature response and signal (target response) are expected to lead to estimates for e1 and e2 near 1 (that is, the data

fit the observations with minimal errors).

If it were possible to have exactly log-normal errors for all the intensities on a microarray, optimizing the function log(e1)
2 + log(e2)

2 (by

analogy to typical least-squares fitting) could be attempted. However, it is known that there are outliers on the array, and that the distri-

bution is not precisely log-normal. Also, it is computationally inconvenient to find e1 and e2 given this constraint. It is stressed that e1 and

e2 are not the actual errors on the array (since these are unknown) but simply values giving an estimate of “goodness of fit.” Therefore, a

simplified model of the error terms for computational convenience is sought, and the tails of the distribution are discounted to insulate

estimates from outliers.

One natural simplification is to assume log(e1)
2 = log(e2)

2. There are two ways this relationship can hold, either log(e1) = log(e2), or

log(e1) = -log(e2). In the first case (which corresponds to log-transformation), no solutions exist when MM>PM. Even in the case where

MM<PM, it can be shown that the total squared error log(e1)
2+log(e2)

2 is larger under the first constraint than when errors are fit under the

second constraint. Therefore, the second constraint log(e1) = -log(e2) is placed on the errors, which results in solutions for all positive PM
and MM values and all non-negative target responses (t) and feature responses(f). Recall that the approximate likelihood is being simplified for

computational convenience, and these terms should not be interpreted as the actual physical errors on each observed feature intensity.

The reduced model equation with errors under this constraint is e*PM-MM/e = f*t, which is easily solved to produce e= 
[y+  y2+4*PM*MM ]

,

where y = f*t. This is a very simple formula for an approximating the error in fitting estimates to the observed values. Thus, if there were

no outliers, the natural estimate for signal would minimize the sum of squared residuals r2, where r = log(e) is obtained from the formula.

[Aside: Note that r=glog(f*t, 4*PM*MM) - glog(PM-MM, 4*PM*MM), where glog denotes the generalized logrithm. This shows that the

effective variance of the target response (t) is arithmetic when measured near background.]
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This approximation is likely to be best when errors are small, and there will be outliers that do not fit this model on arrays. Therefore,

outliers and areas where the model is problematic are discounted by using a function which looks like r 2 near r = 0, but downweights

the tails. The off-the-shelf function of Geman and McClure, 

h(r) =      
r 2

, satisfies the requirements.

Thus, a simple formula for goodness of fit has been derived which can be used to estimate signal and feature response by finding those

non-negative values of signal and feature response that best fit the observed data. This is the M-estimator called PLIER. Some performance

metrics for PLIER (PLIER+16 - with simple variance stabilization applied) can be found at the AffyComp web site run by Rafael Irizarry.

Other presentations on PLIER can be found at the Affymetrix web site, including the presentation at the Low-Level Analysis workshop,

discussing bias and variance issues (www.affymetrix.com/corporate/events/seminar/microarray_workshop.affx).

Calculation of Signal 

PLIER drafts an initial estimate of signal (target response) and feature response for each experiment and background-adjusted feature using the

data provided. Please note that a reference table to variables used in the subsequent equations (Table 4) is provided at the end of this section.

PLIER operates by finding target responses (t(i)) for each experiment i and feature responses f(j) for each feature (pair) j that minimize the

function LL(t,f) = sum H(PM,MM, BKG, f(j),t(i)) over all i,j.

Define the following component functions:

y(i,j) = f(j)*t(i)

q =   (y*y) + 4*PM*MM

e =  (y + q)

or (if not using mismatch)

e =  (y + BKG)

r = log(e)

h =    r*r
[z a tuning constant for robustness]

H(PM,MM,BKG, f(j),t(i)) =h(r)

The algorithm will find a minimum of such a function by a high-dimensional search – starting at some assignment of values for target

response and feature response, the algorithm proceeds to find better and better assignment of values.

A reference table of symbols utilized in the equations described in this and subsequent sections is provided below:

Table 4. Symbols used in the equations

Symbol Description

t(i) Target response at each experiment i (current signal estimate)

f(j) Feature response for each feature (or feature pair) j

q Intermediate value in likelihood computation

r Residual on log-scale

PM(i,j) Intensity of the j-th perfect match feature in the i-th experiment

MM(i,j) Intensity of the j-th mismatch feature, in the i-th experiment

y Total response estimate with no background

BKG Background value (if not using MM)

h German-McClure function for discounting residuals as applied to one probe pair

GT Extra penalty term added to log likelihood for differences in target response

GF Extra penalty term added to log likelihood for differences in feature response

LL Log-Likelihood – approximation used by PLIER

Appendix: Additional Statistical Details for PLIER (continued)
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Data Augmentation

Because it is possible for a zero value to be reported as a probe intensity, and it is assumed that there are multiplicative errors on

probes, the first step is to add a small positive value to all the input intensity values to avoid problems.

Drafting an Initial Estimate

It is best to start the iterative procedure from a reasonably good initial estimate. For producing this estimate, the software uses Simplified

Expression Analysis (SEA). One way of coming up with reasonable estimates of target response and feature response is to look at trans-

formed data µ(i,j) and fit a simple model µ(i,j)=log(t(i))+log(f(j))+e by use of median polish (this is similar to how RMA operates). 

One particularly simple transformation is 

µ(i,j) = log ((PM – B) +  (PM – B)2 + 4*L*PM*B)

where B is either BKG or MM, depending on which option has been selected by the user. L is an attenuation parameter ranging from 0.0

to 1.0 that controls how the data approach zero as PM approaches B (or becomes less than B). 

Median polish is a procedure for fitting a simple additive model robustly by alternately taking the median of each column (µ(i,j)-log(f(j)) as

the estimate of log(t(i)), and then taking the median of each row (µ(i,j)-log(t(i)) as the estimate of log(f(j)), until stable estimates of each

value are reached.

This initial estimate of target response (t(i)) is output as signal if the user selects the “quick” option for PLIER. Note that these estimates

do not minimize the PLIER goodness of fit, and are simply provided for completeness.

Finding a Minimum

One way of finding (a) minimum of such a function is to use Newton’s method. Starting with an assignment of values to target respons-

es (t) and feature responses (f), given the rate at which the function is varying, find a good step size to take to find the next assignment

of values to target responses and feature responses. Newton’s method turns out to be computationally intensive and requires inversion

of large matrices, and therefore an approximation to the method is used instead.

Identifiability Constraint

Since the method deals with two variables multiplied by each other, it is always the case that feature responses can be multiplied by

some constant and target responses can be divided by some constant and wind up with the same fit to the data. To resolve this ambigu-

ity, it is required that sum(f(j)) = n, the number of features (not counting any used for bias removal). Note that feature responses are rela-

tive to the other features in a probe set and cannot be directly compared between probe sets.

Avoiding Local Minima

If good values for target and feature response have been found, so that there are no local improvements possible, it may be that the

method is trapped in a local minimum, and possible improvements to the estimates should be checked for. The natural method for find-

ing an improved estimate is to examine the values a variable can plausibly take on to see if any of them improve the estimate. 

In particular, in this case, each feature pair in each experiment provides a natural estimate for alternative values for target and feature

response that might be near to better minima. The reasoning is that a minimum should be near to the value that is “perfect” for some

feature in some experiment. These two estimates are: 

t ’(i) = 
PM(i,j) – MM(i,j)

f ’(j) = 
PM(i,j) – MM(i,j)

These values (if non-negative) are checked systematically to find if there is a possible improvement. If there is possible improvement, the

search is continued from the new value using the Newton-like method. While it is possible to check all possible values, or do a line search,

it is unlikely that a "good" minimum will be far from one of these estimates.

Penalties

It is often useful to modify the likelihood function by putting constraints on the variables, based on the prior knowledge that they are unlikely

to be extremely different from each other. Therefore, a “roughness” penalty can be incorporated in the likelihood function that penalizes

extremely unusual variable values. This is an advanced option, but included for completeness. The actual functions are the obvious:

GT = differential_target_response_penalty*(sum(log(t(i))-average(log(t))2)
GF= differential_feature_response_penalty*(sum(log(f(j)-average(log(f)))2)
LL = sum(H)+sum(GT)+sum(GF)

This reduces to the standard LL when the penalties are zero [no penalty for roughness].

Appendix: Additional Statistical Details for PLIER (continued)
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