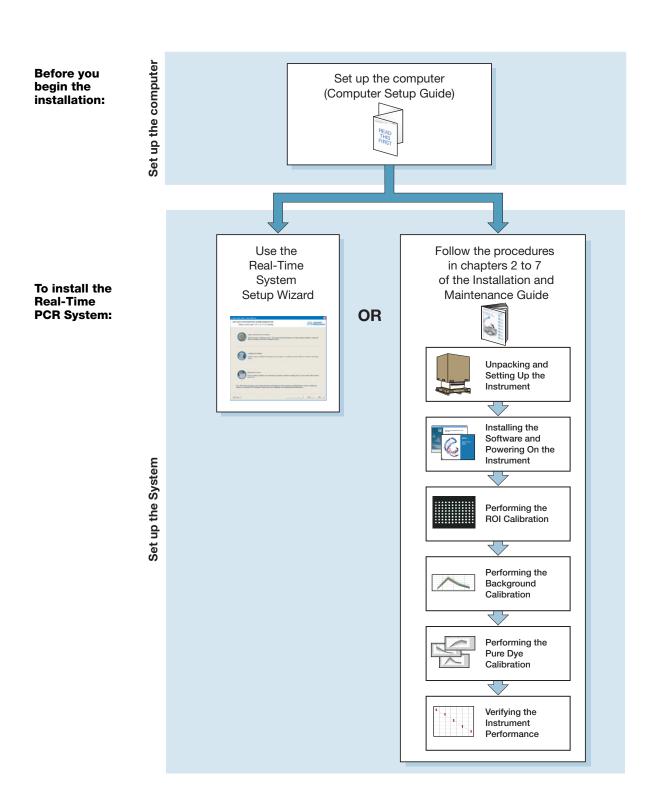


© Copyright 2006, Applied Biosystems. All rights reserved.

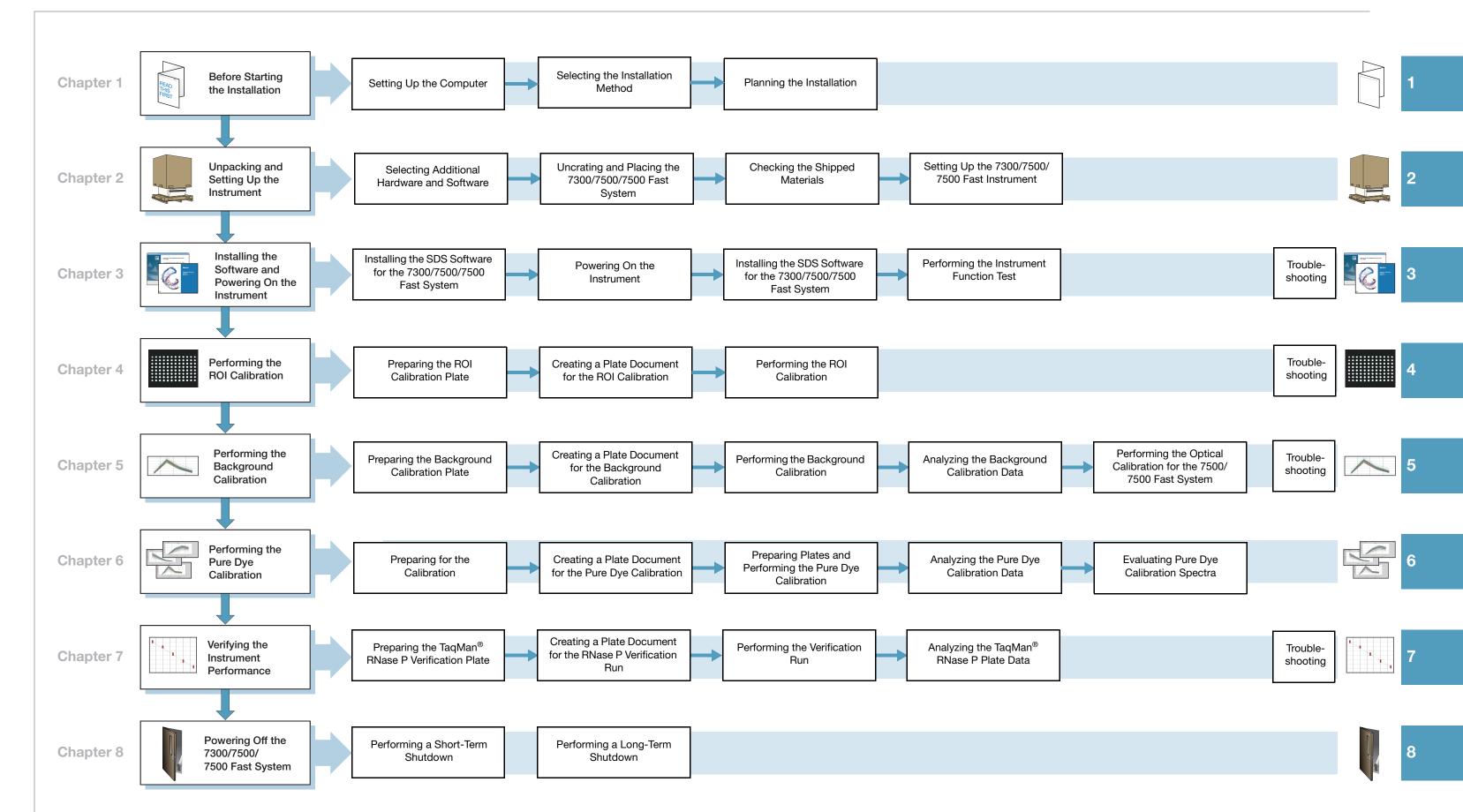
Information in this document is subject to change without notice. Applied Biosystems assumes no responsibility for any errors that may appear in this document. In no event shall Applied Biosystems be liable for incidental, special, multiple, or consequential damages in connection with or arising from the use of this document.

NOTICE TO PURCHASER:

PLEASE REFER TO THE APPLIED BIOSYSTEMS 7300/7500/7500 FAST REAL-TIME PCR SYSTEMS GETTING STARTED GUIDES (FOR ABSOLUTE QUANTIFICATION OR RELATIVE QUANTIFICATION) AND THE APPLIED BIOSYSTEMS 7300/7500/7500 FAST REAL-TIME PCR SYSTEMS GETTING STARTED GUIDES FOR ALLELIC DISCRIMINATION AND PLUS/MINUS DETECTION FOR LIMITED LABEL LICENSE OR DISCLAIMER INFORMATION.


TRADEMARKS:

Applera, Applied Biosystems, AB (Design), ABI PRISM, and VIC are registered trademarks, and FAM, JOE, NED, ROX, and TAMRA are trademarks of Applera Corporation or its subsidiaries in the U.S. and/or certain other countries.


Amperase and TaqMan are registered trademarks of Roche Molecular Systems, Inc. SYBR and Texas Red are registered trademarks of Molecular Probes, Inc. All other trademarks are the sole property of their respective owners.

Part Number 4378657 Rev. A 09/2006

Read This First

Read This First

Contents

iii

	7300/7500/7500 Fast System Installation and Maintenance Workflow	v
	Preface	xi
	How to Use This Guide	xii
	Safety and EMC Compliance Information	xv
	Safety Conventions Used in This Document	xvi
	Symbols on Instruments	xvii
	Safety Labels on Instruments	
	General Instrument Safety	
	Chemical Safety	
	Electrical Safety	
	Physical Hazard Safety	
	Biological Hazard Safety	
	Workstation Safety	xxv
	Safety and Electromagnetic Compatibility (EMC) Standards	xxv
Chapter 1	Before Starting the Installation	1
	Setting Up the Computer	2
	Selecting the Installation Method	2
	Planning the Installation	5
Chapter 2	Unpacking and Setting Up the Instrument	7
	Before You Begin	8
	Selecting Additional Hardware and Software	
	Uncrating and Placing the 7300/7500/7500 Fast System	12
	Checking the Shipped Materials	
	Setting Up the 7300/7500/7500 Fast Instrument	20

Read This First

Chapter 3	Installing the Software and Powering On the Instrum	ent 23
	Overview	24
	Installing the SDS Software for the 7300/7500/7500 Fast System	25
	Powering On the Instrument	
	Performing the Instrument Function Test	
	Troubleshooting	32
Chapter 4	Performing the	
	Regions of Interest (ROI) Calibration	35
	Overview	36
	Preparing the ROI Calibration Plate	38
	Creating a Plate Document for the ROI Calibration	41
	Performing the ROI Calibration	
	Troubleshooting	48
Chapter 5	Performing the	
	Background Calibration and Optical Calibration	49
	Overview	50
	Preparing the Background Calibration Plate	
	Creating a Plate Document for the Background Calibration	54
	Performing the Background Calibration	55
	Analyzing the Background Calibration Data	56
	Performing the Optical Calibration for the 7500/7500 Fast System	
	Troubleshooting	64
Chapter 6	Performing the Pure Dye Calibration	67
	Overview	68
	Preparing for the Calibration	
	Creating a Plate Document for the Pure Dye Calibration	72
	Preparing Plates and Performing the Pure Dye Calibration	73
	Analyzing the Pure Dye Calibration Data	77
	Evaluating Pure Dye Calibration Spectra	80
Chapter 7	Verifying the Instrument Performance	87
•	Overview	88
	Preparing the TaqMan® RNase P Verification Plate	
	Creating a Plate Document for the RNase P Verification Run	
	Performing the Verification Run	
	Analyzing the TaqMan® RNase P Plate Data	
	Troubleshooting	99

Chapter 8	Powering Off the 7300/7500/7500 Fast System	101
	Performing a Short-Term Shutdown	102
	Performing a Long-Term Shutdown	
Appendix A	Maintaining the Instrument	105
	Recommended Maintenance Schedule	105
	Archiving and Backing Up SDS Files	107
	Decontaminating the Sample Block	
	Cleaning Up and Defragmenting the Hard Drive	
	Moving the 7300/7500/7500 Fast System	
	Monitoring Lamp Status	
	Replacing the Halogen Lamp	
	Replacing the Instrument Fuses	
Appendix B	Creating a Background Plate	125
	Overview	_
	Creating a Background Plate	
Appendix C	Creating a Custom Pure Dye Plate	127
	Overview	127
	Determining Optimum Dye Concentration	
	Creating a Custom Pure Dye Plate	
	Adding the Custom Dye to the Software	131
Appendix D	Setting Up the Computer	133
	Unpacking the Computer and Setting Voltage	134
	Connecting Components and Powering Up	
	Setting the Display Settings and Power Options	
	Connecting to the Network and Downloading Adobe Acrobat	140
	Index	141

Preface

How to Use This Guide

Purpose of This Guide

This manual is written for principal investigators and laboratory staff responsible for installing and maintaining the Applied Biosystems 7300, 7500, and 7500 Fast Real-Time PCR Systems. This manual is designed to supplement the:

- Applied Biosystems 7300/7500/7500 Fast System Computer Setup Guide.
- Applied Biosystems 7300/7500/7500 Fast System Setup and Maintenance Video CD provided with the instrument.

Audience

This guide is intended for novice and experienced Applied Biosystems 7300, 7500, and 7500 Fast Real-Time PCR System users who need to install, maintain, or troubleshoot their system.

Assumptions

This manual assumes that you:

- Are familiar with the Microsoft® Windows® XP operating system.
- Understand general techniques for preparing and handling DNA samples.
- Have a general understanding of hard drives and data storage, file transfers, and copying and pasting.

Text Conventions

This guide uses the following conventions to make text easier to understand:

- Bold indicates user action. For example:
 Type 0 and press Enter for the remaining fields.
- *Italic* text denotes new or important words and is also used for emphasis. For example:
 - Before performing a run, you *must* calibrate the instrument by performing the ROI, background, and pure spectra calibrations.
- A right arrow (▶) separates successive commands you select from a drop-down or shortcut menu. For example:

Select **# start** ▶ **Programs** ▶ **mApplied Biosystems** ▶ **SDS** 1.3.

User Attention Words

Two user attention words appear in Applied Biosystems user documentation. Each word implies a particular level of observation or action as described below:

Note – Provides information that may be of interest or help but is not critical to the use of the product.

IMPORTANT! – Provides information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.

Examples of the user attention words appear below:

Note: Reset the Exposure Time to 2048 before performing the calibration for each filter.

IMPORTANT! Wear powder-free gloves when you handle the halogen lamp.

Safety Alert Words

Safety alert words also appear in user documentation. For more information, see "Safety Alert Words" on page xvi.

How to Obtain More Information

Related Documentation

For more information about using the 7300/7500/7500 Fast system, refer to the documents shown below.

Document Title	Online Help P/N	P/N
Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Plus/Minus Detection Getting Started Guide	4347821	4378652
Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Allelic Discrimination Getting Started Guide	4347822	4378653
Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Relative Quantification Getting Started Guide	4347824	4378655
Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Absolute Quantification Getting Started Guide	4347825	4378656
Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Site Preparation Guide	4347823	4378654
Real-Time PCR Systems Chemistry Guide	4348358	4378658
Applied Biosystems 7500 FAST Real-Time PCR System, QRC	4362285	4378659
Applied Biosystems Real-Time System Computer Set Up Guide, QRC	4365367	4378660

Portable document format (PDF) versions of this guide and most of the documentation listed above are available on the SDS software installation CD.

Note: For additional documentation, see "How to Obtain Support" on page xiii.

Send Us Your Comments

Applied Biosystems welcomes your comments and suggestions for improving its user documents. You can e-mail your comments to:

techpubs@appliedbiosystems.com

How to Obtain Support

For the latest services and support information for all locations, go to http://www.appliedbiosystems.com, then click the link for Support.

At the Support page, you can:

- Obtain worldwide telephone and fax numbers to contact Applied Biosystems Technical Support and Sales facilities
- Search through frequently asked questions (FAQs)
- Submit a question directly to Technical Support
- Order Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents
- Download PDF documents
- Obtain information about customer training
- Download software updates and patches

Preface

How to Obtain Support

Safety and EMC Compliance Information

This section includes the following topics:

Safety Conventions Used in This Document xvi
Symbols on Instruments xvii
Safety Labels on Instruments xviii
General Instrument Safety
Chemical Safety xxi
Chemical Waste Safety xxii
Electrical Safety xxiii
Physical Hazard Safety xxiv
Biological Hazard Safety xxiv
Workstation Safety xxv
Safety and Electromagnetic Compatibility (EMC) Standards xxy

Safety Conventions Used in This Document

Safety Alert Words

Four safety alert words appear in Applied Biosystems user documentation at points in the document where you need to be aware of relevant hazards. Each alert word—**IMPORTANT, CAUTION, WARNING, DANGER**—implies a particular level of observation or action, as defined below:

Definitions

IMPORTANT! – Indicates information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.

CAUTION – Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

WARNING – Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

DANGER – Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury. This signal word is to be limited to the most extreme situations.

Except for IMPORTANTs, each safety alert word in an Applied Biosystems document appears with an open triangle figure that contains a hazard symbol. *These hazard symbols are identical to the hazard icons that are affixed to Applied Biosystems instruments* (see "Safety Symbols" on page xvii).

Examples

The following examples show the use of safety alert words:

IMPORTANT! Wear powder-free gloves when you handle the halogen lamp.

CAUTION The lamp is extremely hot. Do not touch the lamp until it has cooled to room temperature.

WARNING CHEMICAL HAZARD. Ethanol is a flammable liquid and vapor. Exposure causes eye, skin, and respiratory tract irritation and may cause central nervous system depression and liver damage. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

DANGER ELECTRICAL HAZARD. Failure to ground the instrument properly can lead to an electrical shock. Ground the instrument according to the provided instructions.

Symbols on Instruments

Electrical Symbols on Instruments

The following table describes the electrical symbols that may be displayed on Applied Biosystems instruments.

Symbol	Description	
I	Indicates the On position of the main power switch.	
0	Indicates the Off position of the main power switch.	
Ф	Indicates a standby switch by which the instrument is switched on to the Standby condition. Hazardous voltage may be present if this switch is on standby.	
Φ	Indicates the On/Off position of a push-push main power switch.	

Symbol	Description
÷	Indicates a terminal that may be connected to the signal ground reference of another instrument. This is not a protected ground terminal.
	Indicates a protective grounding terminal that must be connected to earth ground before any other electrical connections are made to the instrument.
~	Indicates a terminal that can receive or supply alternating current or voltage.
=	Indicates a terminal that can receive or supply alternating or direct current or voltage.

Safety Symbols

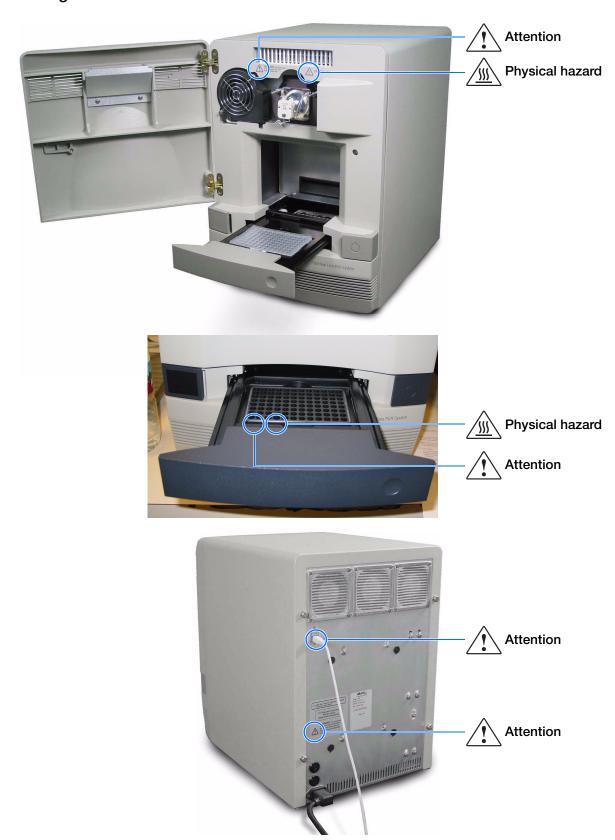
The following table describes the safety symbols that may be displayed on Applied Biosystems instruments. Each symbol may appear by itself or in combination with text that explains the relevant hazard (see "Safety Labels on Instruments" on page xviii). These safety symbols may also appear next to DANGERS, WARNINGS, and CAUTIONS that occur in the text of this and other product-support documents.

Symbol	Description		
<u></u>	Indicates that you should consult the manual for further information and to proceed with appropriate caution.		
4	Indicates the presence of an electrical shock hazard and to proceed with appropriate caution.		
<u></u>	Indicates the presence of a hot surface or other high-temperature hazard and to proceed with appropriate caution.		
*	Indicates the presence of a laser inside the instrument and to proceed with appropriate caution.		
	Indicates the presence of moving parts and to proceed with appropriate caution.		

Environmental Symbols on Instruments

The following symbol applies to all Applied Biosystems electrical and electronic products placed on the European market after August 13, 2005.

Symbol	Description		
	Do not dispose of this product as unsorted municipal waste. Follow local municipal waste ordinances for proper disposal provisions to reduce the environmental impact of waste electrical and electronic equipment (WEEE). European Union customers: Call your local Applied Biosystems Customer Service office for equipment pick-up and recycling. See http://www.appliedbiosystems.com for a list of customer service offices in the European Union.		


Safety Labels on Instruments

The following CAUTION, WARNING, and DANGER statements may be displayed on Applied Biosystems instruments in combination with the safety symbols described in the preceding section.

English	Français
CAUTION Hazardous chemicals. Read the Material Safety Data Sheets (MSDSs) before handling.	ATTENTION Produits chimiques dangeureux. Lire les fiches techniques de sûreté de matériels avant la manipulation des produits.
CAUTION Hazardous waste. Refer to MSDS(s) and local regulations for handling and disposal.	ATTENTION Déchets dangereux. Lire les fiches techniques de sûreté de matériels et la régulation locale associées à la manipulation et l'élimination des déchets.
WARNING Hot lamp.	AVERTISSEMENT Lampe brûlante.
WARNING Hot. Replace lamp with an Applied Biosystems lamp.	AVERTISSEMENT Composants brûlants. Remplacer la lampe par une lampe Applied Biosystems.
CAUTION Hot surface.	ATTENTION Surface brûlante.
DANGER High voltage.	DANGER Haute tension.
WARNING To reduce the chance of electrical shock, do not remove covers that require tool access. No user-serviceable parts are inside. Refer servicing to Applied Biosystems qualified service personnel.	AVERTISSEMENT Pour éviter les risques d'électrocution, ne pas retirer les capots dont l'ouverture nécessite l'utilisation d'outils. L'instrument ne contient aucune pièce réparable par l'utilisateur. Toute intervention doit être effectuée par le personnel de service qualifié de Applied Biosystems.
CAUTION Moving parts.	ATTENTION Parties mobiles.
WARNING This instrument is designed for 12V, 75W Halogen lamps only.	AVERTISSEMENT Cet instrument est conçu pour des lampes d'halogène de 12V et 75W seulement.

Locations of The Appl at the local

The Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System contain warnings at the locations shown below.

General Instrument Safety

WARNING PHYSICAL INJURY HAZARD. Use this product only as specified in this document. Using this instrument in a manner not specified by Applied Biosystems may result in personal injury or damage to the instrument.

Moving and Lifting the Instrument

CAUTION PHYSICAL INJURY HAZARD. The instrument is to be moved and positioned only by the personnel or vendor specified in the applicable site preparation guide. If you decide to lift or move the instrument after it has been installed, do not attempt to lift or move the instrument without the assistance of others, the use of appropriate moving equipment, and proper lifting techniques. Improper lifting can cause painful and permanent back injury. Depending on the weight, moving or lifting an instrument may require two or more persons.

Moving and Lifting Stand-Alone Computers and Monitors

WARNING Do not attempt to lift or move the computer or the monitor without the assistance of others. Depending on the weight of the computer and/or the monitor, moving them may require two or more people.

Things to consider before lifting the computer and/or the monitor:

- Make sure that you have a secure, comfortable grip on the computer or the monitor when lifting.
- Make sure that the path from where the object is to where it is being moved is clear of obstructions.
- Do not lift an object and twist your torso at the same time.
- Keep your spine in a good neutral position while lifting with your legs.
- Participants should coordinate lift and move intentions with each other before lifting and carrying.
- Instead of lifting the object from the packing box, carefully tilt the box on its side and hold it stationary while someone slides the contents out of the box.

Operating the Instrument

Ensure that anyone who operates the instrument has:

- Received instructions in both general safety practices for laboratories and specific safety practices for the instrument.
- Read and understood all applicable Material Safety Data Sheets (MSDSs). See "About MSDSs" on page xxi.

WARNING PHYSICAL INJURY HAZARD. Use this instrument as specified by Applied Biosystems. Using this instrument in a manner not specified by Applied Biosystems may result in personal injury or damage to the instrument.

Chemical Safety

Chemical Hazard Warning

WARNING CHEMICAL HAZARD. Before handling any chemicals, refer to the Material Safety Data Sheet (MSDS) provided by the manufacturer, and observe all relevant precautions.

WARNING CHEMICAL HAZARD. All chemicals in the instrument, including liquid in the lines, are potentially hazardous. Always determine what chemicals have been used in the instrument before changing reagents or instrument components. Wear appropriate eyewear, protective clothing, and gloves when working on the instrument.

WARNING CHEMICAL STORAGE HAZARD. Never collect or store waste in a glass container because of the risk of breaking or shattering. Reagent and waste bottles can crack and leak. Each waste bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

About MSDSs

Chemical manufacturers supply current Material Safety Data Sheets (MSDSs) with shipments of hazardous chemicals to *new* customers. They also provide MSDSs with the first shipment of a hazardous chemical to a customer after an MSDS has been updated. MSDSs provide the safety information you need to store, handle, transport, and dispose of the chemicals safely.

Each time you receive a new MSDS packaged with a hazardous chemical, be sure to replace the appropriate MSDS in your files.

Obtaining MSDSs

You can obtain from Applied Biosystems the MSDS for any chemical supplied by Applied Biosystems. This service is free and available 24 hours a day.

To obtain MSDSs:

- 1. Go to https://docs.appliedbiosystems.com/msdssearch.html
- **2.** In the **Search** field, type in the chemical name, part number, or other information that appears in the MSDS of interest.
- **3.** Select the language of your choice, then click **Search**.
- **4.** Find the document of interest, right-click the document title, then select any of the following:
 - Open To view the document
 - **Print Target** To print the document
 - Save Target As To download a PDF version of the document to a destination that you choose

Chemical Safety Guidelines

To minimize the hazards of chemicals:

- Read and understand the Material Safety Data Sheets (MSDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. (See "About MSDSs" on page xxi.)
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS.
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood). For additional safety guidelines, consult the MSDS.
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer's cleanup procedures as recommended on the MSDS.
- Comply with all local, state/provincial, or national laws and regulations related to chemical storage, handling, and disposal.

Chemical Waste Safety

Chemical Waste Hazard

CAUTION HAZARDOUS WASTE. Refer to Material Safety Data Sheets and local regulations for handling and disposal.

WARNING CHEMICAL WASTE HAZARD. Wastes produced by Applied Biosystems instruments are potentially hazardous and can cause injury, illness, or death.

WARNING CHEMICAL STORAGE HAZARD. Never collect or store waste in a glass container because of the risk of breaking or shattering. Reagent and waste bottles can crack and leak. Each waste bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

Chemical Waste Safety Guidelines

To minimize the hazards of chemical waste:

- Read and understand the Material Safety Data Sheets (MSDSs) provided by the manufacturers of the chemicals in the waste container before you store, handle, or dispose of chemical waste.
- Provide primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS.

- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use
 only with adequate ventilation (for example, fume hood). For additional safety
 guidelines, consult the MSDS.
- · Handle chemical wastes in a fume hood.
- After emptying the waste container, seal it with the cap provided.
- Dispose of the contents of the waste tray and waste bottle in accordance with good laboratory practices and local, state/provincial, or national environmental and health regulations.

Waste Disposal

If potentially hazardous waste is generated when you operate the instrument, you must:

- Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure the health and safety of all personnel in your laboratory.
- Ensure that the instrument waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.

IMPORTANT! Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

Electrical Safety

DANGER ELECTRICAL SHOCK HAZARD. Severe electrical shock can result from operating the Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System without its instrument panels in place. Do not remove instrument panels. High-voltage contacts are exposed when instrument panels are removed from the instrument.

Fuses

WARNING FIRE HAZARD. Improper fuses or high-voltage supply can damage the instrument wiring system and cause a fire. Before turning on the instrument, verify that the fuses are properly installed and that the instrument voltage matches the power supply in your laboratory.

WARNING FIRE HAZARD. For continued protection against the risk of fire, replace fuses only with fuses of the type and rating specified for the instrument.

Power

DANGER ELECTRICAL HAZARD. Grounding circuit continuity is vital for the safe operation of equipment. Never operate equipment with the grounding conductor disconnected.

DANGER ELECTRICAL HAZARD. Use properly configured and approved line cords for the voltage supply in your facility.

TOANGER ELECTRICAL HAZARD. Plug the system into a properly grounded receptacle with adequate current capacity.

Overvoltage Rating

The Applied Biosystems 7300/7500/7500 Fast Real-Time PCR Systems have an installation (overvoltage) category of II, and are classified as portable equipment

Physical Hazard Safety

Moving Parts

WARNING PHYSICAL INJURY HAZARD. Moving parts can crush and cut. Keep hands clear of moving parts while operating the instrument. Disconnect power before servicing the instrument.

Biological Hazard Safety

General Biohazard

WARNING BIOHAZARD. Biological samples such as tissues, body fluids, and blood of humans and other animals have the potential to transmit infectious diseases. Follow all applicable local, state/provincial, and/or national regulations. Wear appropriate protective eyewear, clothing, and gloves. Read and follow the guidelines in these publications:

- U.S. Department of Health and Human Services guidelines published in *Biosafety in Microbiological and Biomedical Laboratories* (stock no. 017-040-00547-4; http://bmbl.od.nih.gov)
- Occupational Safety and Health Standards, Bloodborne Pathogens (29 CFR§1910.1030; http://www.access.gpo.gov/nara/cfr/waisidx 01/29cfr1910a 01.html).

Additional information about biohazard guidelines is available at: http://www.cdc.gov

Workstation Safety

Correct ergonomic configuration of your workstation can reduce or prevent effects such as fatigue, pain, and strain. Minimize or eliminate these effects by configuring your workstation to promote neutral or relaxed working positions.

CAUTION

CAUTION MUSCULOSKELETAL AND REPETITIVE MOTION

HAZARD. These hazards are caused by potential risk factors that include but are not limited to repetitive motion, awkward posture, forceful exertion, holding static unhealthy positions, contact pressure, and other workstation environmental factors.

To minimize musculoskeletal and repetitive motion risks:

- Use equipment that comfortably supports you in neutral working positions and allows adequate accessibility to the keyboard, monitor, and mouse.
- Position the keyboard, mouse, and monitor to promote relaxed body and head postures.

Safety and Electromagnetic Compatibility (EMC) Standards

This section provides information on:

- U.S. and Canadian Safety Standards
- Canadian EMC Standard
- European Safety and EMC Standards
- Australian EMC Standards

U.S. and Canadian Safety Standards

This instrument has been tested to and complies with standard UL 61010A-1, "Safety Requirements for Electrical Equipment for Laboratory Use, Part 1: General Requirements" and with standard UL 61010-2-010, "Particular Requirements for Laboratory Equipment for the Heating of Materials."

This instrument has been tested to and complies with standard CSA 1010.1, "Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use, Part 1: General Requirements."

Canadian EMC Standard This instrument has been tested to and complies with ICES-001, Issue 3: Industrial, Scientific, and Medical Radio Frequency Generators.

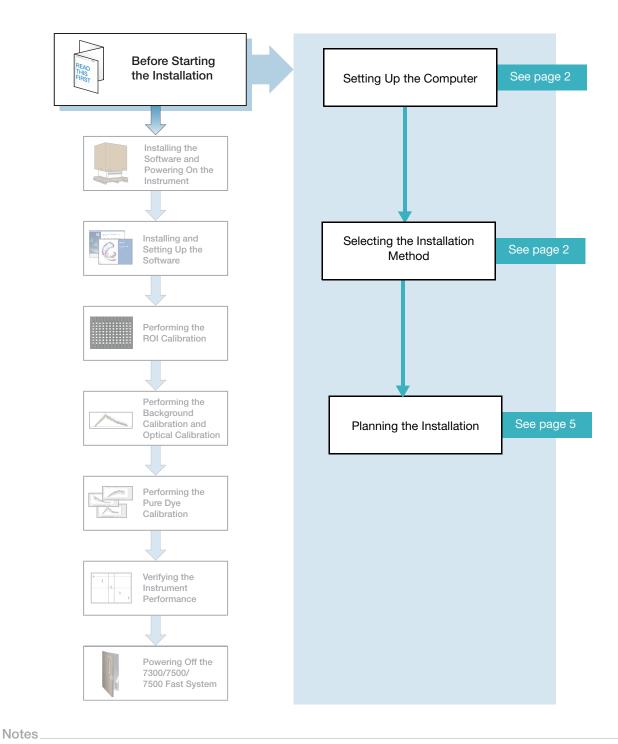
European Safety and EMC Standards

Safety

This instrument meets European requirements for safety (Low Voltage Directive 73/23/EEC). This instrument has been tested to and complies with standards EN 61010-1:2001, "Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use, Part 1: General Requirements" and EN 61010-2-010, "Particular Requirements for Laboratory Equipment for the Heating of Materials," and with standard EN 61010-2-081:2002+A1:2003 "Particular Requirements for Automatic and Semi-Automatic Laboratory Equipment for Analysis and Other Purposes."

EMC

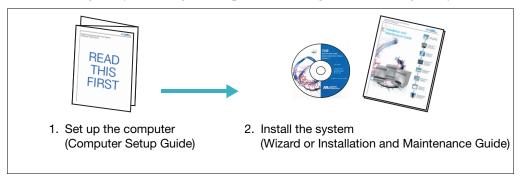
This instrument meets European requirements for emission and immunity (EMC Directive 89/336/EEC). This instrument has been tested to and complies with standard EN 61326 (Group 1, Class B), "Electrical Equipment for Measurement, Control and Laboratory Use – EMC Requirements."


Australian EMC Standards

This instrument has been tested to and complies with standard AS/NZS 2064, "Limits and Methods Measurement of Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical (ISM) Radio-frequency Equipment."

Before Starting the Installation

Setting Up the Computer


Before you install the Applied Biosystems 7300/7500 Real-Time PCR System, install your computer and log in as a Windows operating system administrator, as described in the *Applied Biosystems Real-Time PCR System Computer Setup Guide*.

Selecting the Installation Method

After the computer is set up, proceed with installing the system by selecting an installation method:

- The Real-Time System Setup wizard on the Installation CD or
- This installation and maintenance guide

Both methods guide you through all steps for installing and calibrating the system.

Using the Real-Time System Setup Wizard

Using the Wizard to Install the System

The Real-Time System Setup wizard is an online tool that you can use instead of this Installation Guide to help you install your new system.

After you set up the computer and log in as a Windows administrator as described in the *Applied Biosystems Real-Time PCR System Computer Setup Guide*, insert the Software CD in the computer CD drive. The wizard starts automatically after a short delay.

The Real-Time System Setup wizard provides step-by-step instructions for:

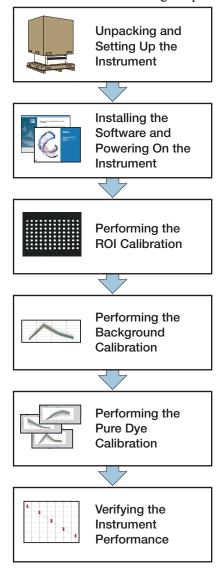
- Planning the installation
- Uncrating and placing the instrument
- Checking the shipped materials
- · Performing an ROI calibration
- · Performing a background calibration
- Performing an optical calibration (7500/7500 Fast systems only)

Notes		

- Performing pure dye calibrations
- Verifying instrument performance

Using the Wizard to Recalibrate the System

You can also use the Real-Time System Setup wizard after the system is up and running, to perform the routine recalibrations and verification runs that ensure optimum performance:


Recalibration/ Verification	Purpose	When to Perform
ROI	Defines the well positions on the sample block.	Every 6 months
		After replacing the halogen lamp
		After an ROI recalibration, you must also perform a background, optical (7500/7500 Fast systems only), pure dye calibration, and instrument verification.
Background	Measures the level of background fluorescence in the	Once a month
	instrument. During a run, the software removes the	After replacing the halogen lamp
	background fluorescence from the run data.	After a background recalibration, you must perform an optical (7500/7500 Fast systems only).
Optical	Compensates for the physical effects of the additional	Once a month
(7500/7500 Fast	filter present in 7500/7500 Fast instruments.	After performing a background calibration
systems only)		After replacing the halogen lamp
Pure Dye	Characterizes each dye. During a run, the software	Every 6 months
	uses the pure dye calibration spectra to distinguish the individual contribution of each dye in the collective fluorescence gathered by the instrument.	Before performing, you must perform a background calibration (7300 systems) or optical calibration (7500/7500 Fast systems);
RNase P	Verifies that the instrument can distinguish between 5,000 and 10,000 genome equivalents of the RNase P gene with a 99.7% confidence level.	After moving the instrument to another location or as needed to verify the function of the instrument

Access the wizard by selecting **₹** start **▶** Program Files **▶** 7300/7500/7500 Fast System **▶** Real-Time System Setup Wizard.

Notes		

Using the Installation and Maintenance Guide

Using This Guide to Install the System Instead of using the Real-Time System Setup wizard to install the system, you can install the system manually as described in the following chapters of this guide:

Using This Guide to Recalibrate the System You can recalibrate the system manually after the system is up and running by following the procedures in this guide. However, the Real-Time System Setup wizard automates the recalibrations, and eliminates the need for manual inspection of pure dye spectra (Chapter 6) and manual calculation of system verification values (Chapter 7).

Notes		

Planning the Installation

You can install, calibrate, and validate the Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System within one 8-hour work day. The installation does not require your participation at all times. However, plan to spend most of your time working with the instrument.

Recommended Workflow

The steps you perform when you use this installation and maintenance guide, and the times associated with the steps, are listed below.

Note: The Real-Time System Setup wizard performs most of the steps listed below automatically, and requires less time for several steps. See the "Planning the Installation" page in the Real-Time System Setup wizard for steps and times for the wizard.

Time Required

Task

Set up the computer (see the *Applied Biosystems Real-Time PCR System Computer Setup Guide*).

Unpack and set up the instrument (Chapter 2):

- a. Select additional hardware and software.
- b. Uncrate and place the 7300/7500/7500 Fast system.
- c. Check the shipped materials.
- d. Set Up the 7300/7500/7500 Fast System.

Install and set up the software (Chapter 3):

- a. Install the SDS Software for the 7300/7500/7500 Fast System.
- b. Power on and install drivers, update firmware if needed.
- c. Perform the Instrument Function test.

Perform the ROI calibration (Chapter 4):

- a. Prepare the ROI calibration plate.
- b. Create a plate document.
- c. Perform the ROI calibration.

continued on next page

Note: Some new instruments may require a firmware download. The download, which occurs automatically, takes approximately 45 minutes. You must be present only at the start and end of the download.

Notes

Planning the Installation

Recommended Workflow (continued)

Time Required

Task

Perform the background calibration (Chapter 5):

- a. Prepare the background calibration plate.
- b. Create a plate document.
- c. Perform the background calibration.
- d. Analyze the background data.

Perform the optical calibration (7500/7500 Fast systems only, Chapter 5):

- a. Create a plate document.
- b. Perform the optical calibration.
- c. Analyze the optical calibration data.

7300

7500/7500 Fast

Perform the pure dye calibration (Chapter 6):

- a. Prepare the pure dye plates.
- b. Create a plate document.
- c. Perform the pure dye calibration.
- d. Analyze the pure dye calibration data.
- e. Evaluate pure dye calibration spectra.

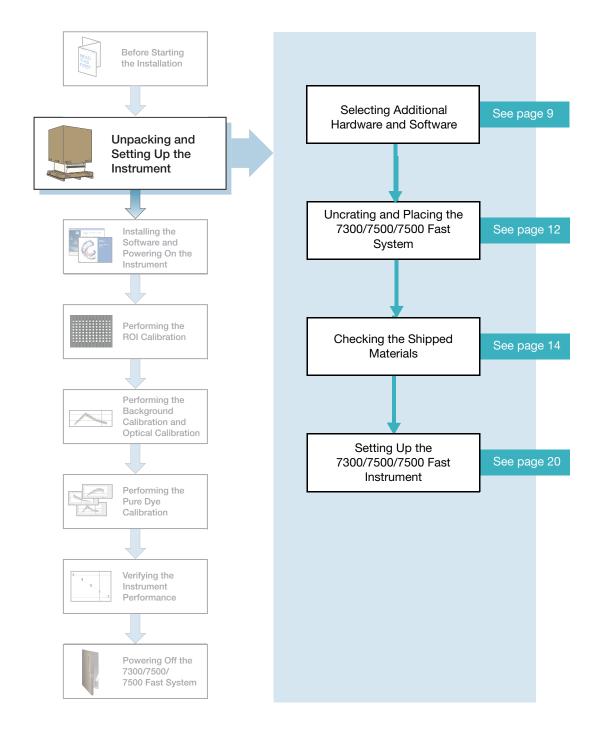
7300/7500

~02:00:00

~00:40:00

7500 Fast

See Note below

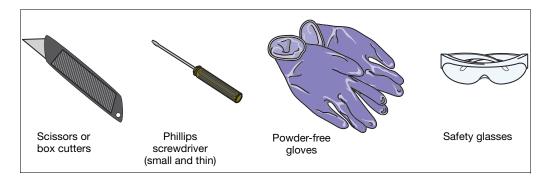

Verify instrument performance (Chapter 7):

- a. Prepare the TaqMan® RNase P verification plate.
- b. Create a plate document.
- c. Perform the verification run.
- d. Analyze the TaqMan® RNase P plate data.

Note: You must be present at the instrument for approximately 5 minutes of the total run time.

Unpacking and Setting Up the Instrument

Notes

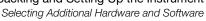

Before You Begin

Note: You can also use the Real-Time System Setup wizard to perform the procedures in this guide. To access the wizard, insert the installation CD in the CD drive of the computer. The wizard starts automatically after a short delay when you insert the CD.

Time Required

45 minutes

Materials Required



Getting Started

Before you begin installing the Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System:

- Set up the computer as described in the *Applied Biosystems Real-Time PCR System Computer Setup Guide*
- Read the *Applied Biosystems* 7300/7500/7500 Fast Real-Time PCR System Site Preparation Guide (P/N 4378654) and complete the preinstallation checklist contained in the guide.
- Obtain the materials required for installation as shown above.
- Read "Selecting Additional Hardware and Software" on page 9 and, if necessary, obtain the additional components you want to install.

N	Л	$\overline{}$	4	0
Ш	И	U	'L	C.

Selecting Additional Hardware and Software

Before beginning the installation, obtain additional software and hardware (if any) you want to install to the 7300/7500/7500 Fast system.

Choosing Electrical Protective Devices

Applied Biosystems recommends several protective devices to prevent loss of data and to protect the 7300/7500/7500 Fast system from damage resulting from electrical hazards

Power Line Regulator

Applied Biosystems recommends the use of a 1.5-kVA power line regulator in areas where the supplied power fluctuates in excess of $\pm 10\%$ of the normal voltage. Power fluctuations can adversely affect the function of the instrument and the data it produces.

Note: A power line regulator monitors the input current and adjusts the power supplied to the instrument. It does not protect against power surges or failure.

Uninterruptable **Power Supply** (UPS)

Applied Biosystems recommends the use of a 1.5-kVA uninterruptable power supply (UPS), especially in areas prone to power failure. Power failures and other events that abruptly terminate the function of the 7300/7500 Fast system can corrupt data and possibly damage the system.

IMPORTANT! UPSs have finite battery lives, and, consequently provide power for a limited time (from 30 minutes to several hours). They are meant to delay the effects of a power outage, not to serve as replacement power sources. In the event of a power loss, perform a short-term shutdown of the 7300/7500/7500 Fast system (see page 102) unless you expect to regain power within the battery life of the UPS.

Surge Protector

Applied Biosystems recommends the use of a 10-kVA surge protector (line conditioner) in areas with frequent electrical storms or near devices that are electrically noisy, such as refrigerators, air conditioners, or centrifuges. Short-duration, high-voltage power fluctuations can abruptly terminate the function of and, thereby damage the components of, the computer and the 7300/7500/7500 Fast instrument.

Note: A dedicated line and ground between the instrument and the building's main electrical service can also prevent problems caused by power fluctuations.

Notes		

Using the 7300/7500/7500 Fast System on a Network

The 7300/7500/F300 Fast system operates independently of the network functions of the Windows XP Professional operating system (the instrument does not require specific network protocol settings or an IP address for operation).

IMPORTANT! Do not use the 7300/7500/7500 Fast System on a wireless network. Use of a wireless network can interfere with data collection and may result in data loss.

Choosing a Backup Storage Device

Applied Biosystems recommends the use of one or more backup storage devices to prevent potential loss of data caused by unforeseen failures of the computer or its hard drive(s). If your 7300/7500/7500 Fast system includes a laptop or tower computer, then the CD-RW drive of the computer can serve as the backup storage device for your system. By saving your .sds and .sdt files to one or more writable CDs on a weekly basis, you can effectively back up the data generated by your 7300/7500/7500 Fast system. Before installing the 7300/7500/7500 Fast system, decide on a method for backing up your data.

Installing Software to the 7300/7500/7500 Fast System

If you want to install additional software to the 7300/7500/7500 Fast system computer, verify that each software application does not:

- Restrict communication through the universal serial bus (USB) ports or
- Interfere with the processes of the SDS software.

Note: You can verify that an application does not interfere with the processes of the SDS software by running several "dummy" plates (plates that do not contain reagents) before using the 7300/7500/7500 Fast system to run samples.

Antivirus Software

Applied Biosystems generally recommends the use of commercial antivirus software when the 7300/7500/7500 Fast system is connected to a network.

Archival or File Compression Software

Applied Biosystems recommends the use of file compression software for archiving data generated by the 7300/7500/7500 Fast system. For more information, see "Archiving and Backing Up SDS Files" on page 107.

Notes		

Security Software (Firewall and Encryption **Utilities**)

If you plan to install a firewall or encryption utility to protect your 7300/7500/7500 Fast system on a network, confirm that the security software does not interfere with USB communication between the 7300/7500/7500 Fast instrument and the SDS software. These components may not function if the security software restricts access to USB communication.

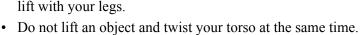
Note: The Microsoft Windows XP Professional operating system installed on the computer shipped with the 7300/7500/7500 Fast system contains a native firewall utility. Applied Biosystems does not support the use of the Windows firewall software, and cannot provide support for problems arising through its use.

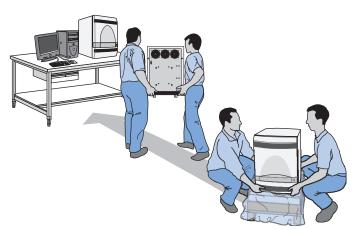
System Utilities or Performance Optimizing Software

Applied Biosystems recommends the regular use of the Windows XP Professional operating system defragmentation utility and a commercial archival utility to ensure optimal performance of the 7300/7500/7500 Fast system. (For more information, see "Cleaning Up and Defragmenting the Hard Drive" on page 114.)

Note: Before you install a different defragmentation utility or another type of performance-enhancing software, verify that the software does not interfere with the SDS software as explained in "Security Software (Firewall and Encryption Utilities)" above.

Uncrating and Placing the 7300/7500/7500 Fast System


WARNING PHYSICAL INJURY HAZARD. Do not attempt to lift the instrument or any other heavy objects unless you have received related training. Incorrect lifting can cause painful and sometimes permanent back injury. Use proper lifting techniques when lifting or moving the instrument. At least 2 people are required to lift the 7300/7500/7500 Fast instrument.


Preinstallation Checklists

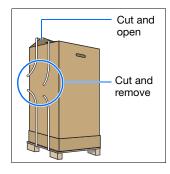
Before assembling your 7300/7500/7500 Fast system, review and complete the preinstallation checklists in the *Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Site Preparation Guide.* The guide is shipped to you before the instrument arrives and contains important environmental and electrical requirements for the 7300/7500/7500 Fast system.

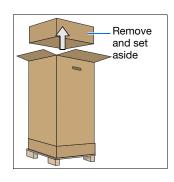
Guidelines for Lifting and Moving

- Verify that the surface you will be placing the instrument on supports at least 54.5 kg (120 lbs).
- Verify that the pathway to the final position of the instrument is clear of obstructions.
- Keep your spine in a good neutral position.
- Bend at the knees and lift with your legs.

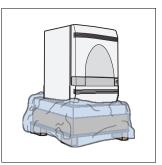
•	C	coord	ınat	e your	ınten	tions	with	your	assist	ant t	before	lifting	and	carry	ıng.

Notes		

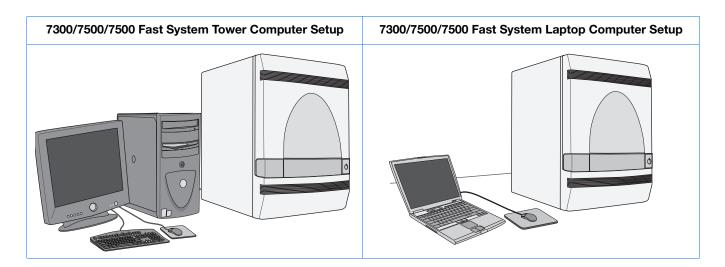



Placing the System Components

- 1. On the outside of the instrument crate, examine these indicators:
 - Tilt indicator (lower portion of crate), which indicates if the crate has been severely tilted
 - Shock indicator (upper portion of crate), which indicates if the crate has been subjected to excessive force


If either of these devices indicate tilt or shock effects, perform the remaining steps in this procedure, then visually inspect all contents of the crate:


- If any items are damaged, contact Applied Biosystems.
- If no items are damaged, continue with the installation.
- **2.** Cut the straps securing the instrument crate.
- **3.** Cut the tape securing the top flaps of the instrument crate and open them.
- **4.** Remove the Packing Kit from the instrument and set it aside.
- **5.** Lift and remove the lid from the instrument crate.
- Remove and discard
- **6.** Remove the protective cover from the 7300/7500/7500 Fast instrument
- **7.** Position yourselves on either side of the instrument and grasp it firmly at the corners.
- **8.** Keeping your back straight, lift with your legs and place the instrument onto the bench. Place the instrument on the bench next to the computer as shown below.



IMPORTANT! Do not connect the computer to the instrument at this time.

Checking the Shipped Materials

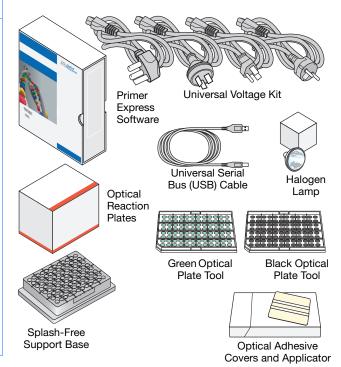
Before you begin the installation, verify that you have received the components shipped with the purchase of a 7300/7500/7500 Fast system.

Checking the Materials

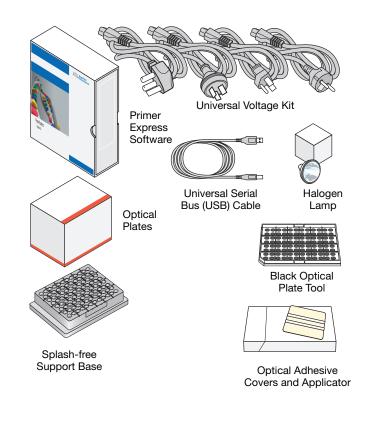
1. Verify that you received one of the following.

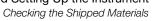
~	Instrument and Computer
	• 7300/7500/7500 Fast instrument
	Dell [®] Tower Computer
	Dell Flat Screen Monitor
	 7300/7500/7500 Fast instrument
	Dell® Laptop Computer

7300/7500/7500 Fast instrument with Dell® tower computer and flat-screen monitor



7300/7500/7500 Fast instrument with Dell® laptop computer


2. Open the Packing kit and verify that it contains the following, depending on your instrument:

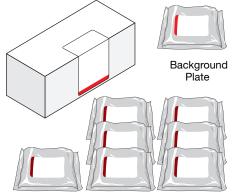

~	Packing Kit	P/N
	7300/7500 Packing kit	4349804
	 Primer Express[®] Software Kit 	4361938
	 Universal Voltage Kit (Australian, British, European, North American, and Japanese Power Cords) 	603615
	Optical Reaction Plates, 96-well, with bar codes (100 plates)	4306737
	Universal Serial Bus (USB) Cable	4328260
	Halogen Lamp (12V, 75W)	4345287
	Green Optical Plate Tool	4306819
	Black Optical Plate Tool	4305872
	Splash-Free Support Base	4312063
	 Optical Adhesive Covers and Applicator 	4311971 4348209
	Miscellaneous items (business card holder, reply card for installation quality, warranty card, release notes)	_

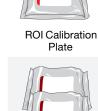
~	Packing Kit	P/N
	7500 Fast Packing kit	4361854
	 Primer Express[®] Software Kit Version 3.0 	4361938
	 Universal Voltage Kit (Australian, British, European, North American, and Japanese Power Cords) 	603615
	Universal Serial Bus (USB) Cable	4328260
	 Halogen Lamp (12V 75W) 	4345287
	 Optical 96-Well Fast Thermal Cycling Plate with Barcode (code 128) (20 plates) 	4346906
	Black Optical Plate Tool	4305872
	 Splash-free Support Base 	4312603
	 Optical Adhesive Covers and Applicator 	4311971 4348209
	Paper, Fluorescent Green (not shown)	4323077
	Miscellaneous items (business card holder, Reply card for installation quality, warranty card, release notes)	_

3. Verify that you received the following kits:

~	Chemistry/Calibration Kits	P/N
	TaqMan [®] RNase P Chemistry Verification Plate (7300/7500 systems)	4350584
	TaqMan [®] RNase P Chemistry Fast Verification Plate (7500 Fast systems)	4351979
	The kit(s) appropriate for your system:	
	 Applied Biosystems 7300 Real-Time PCR System Spectral Calibration Kit, containing: Background Plate 	4349182
	 Pure Dye Plates (FAM™, JOE™, NED™, ROX™, SYBR® Green, TAMRA™, and VIC® dyes) 	
	 ROI Calibration Plate 	
	 Applied Biosystems 7500 Real-Time PCR System Spectral Calibration Kits I and II, containing: 	4349180 (Kit I) 4351151 (Kit II)
	 Background Plate 	(1 (1 11)
	 Pure Dye Plates (CY3, CY5, FAM, JOE, NED, ROX, SYBR Green, TAMRA, TEXAS RED[®], and VIC dyes) 	
	 ROI Calibration Plate 	
	 Applied Biosystems 7500 Fast Real-Time PCR System Spectral Calibration Kits I and II, containing: 	4360788 (Kit I) 4362201 (Kit II)
	 Background Plate 	
	 Pure Dye Plates (CY3, CY5, FAM, JOE, NED, ROX, SYBR Green, TAMRA, TEXAS RED, and VIC dyes) 	
	 ROI Calibration Plate 	

continued on next page



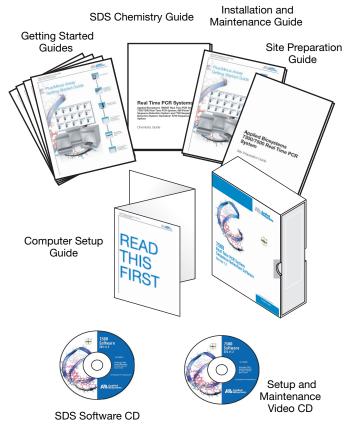


TaqMan® RNase P Instrument Verification Plate

Applied Biosystems 7300 or 7500/7500 Fast Real-Time PCR System Spectral Calibration Kit

7300/7500/7500 Fast Pure Dye Plates (FAM™, JOE™, NED™, ROX™, SYBR® Green, TAMRA,™ and VIC® dyes)

7500/7500 Fast Systems Only (CY3, CY5, and TEXAS RED® dyes)


Chapter 2 Unpacking and Setting Up the Instrument Checking the Shipped Materials

~	Chemistry/Calibration Kits	P/N
	TaqMan [®] Reagent Starter Kit (7300/7500 systems, not shown):	4352405
	 TaqMan[®] Universal PCR Master Mix (2×), No Amperase[®] UNG (1 mL) 	
	 TaqMan[®] Gene Expression Assay, Eukaryotic 18S rRNA (0.3 mL) 	
	 Human Raji cDNA, (25 ng/μL) 	
	TaqMan® Fast Reagent Starter Kit (7500 Fast systems, not shown):	4352407
	 TaqMan[®] Fast Universal PCR Master Mix(2X), No Amperase[®] UNG (1.25 mL) 	
	 TaqMan[®] Gene Expression Assay, Eukaryotic 18S rRNA (0.3 mL) 	
	 Human Raji cDNA, (25 ng/μL) 	
	Genomic Assays Catalog CD (not shown)	4362363

4. Unpack the software and documentation kit and verify that you received the following:

~	Software and Documentation	P/N
	Applied Biosystems Real-Time PCR System Computer Setup Guide	4378660
	Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Installation and Maintenance Guide (this document)	4378657
	Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Getting Started Guides:	
	Absolute Quantification	4378656
	Relative Quantification	4378655
	Allelic Discrimination	4378653
	Plus/Minus	4378652
	Applied Biosystems Real-Time PCR Systems Chemistry Guide	4378658
	Applied Biosystems 7500 Fast Real-Time PCR System Quick Reference Card (not shown)	4378659
	Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Site Preparation Guide	4378654
	CD, SDS Software, v1.3.1:	
	• 7300 System	4350809
	7300 System RT PCR RQ Study	4350814
	• 7500 System	4350819
	7500 Fast System	4363619
	Miscellaneous items (Setup and Maintenance Video CD, Mouse Pad, Customer Letter, Registration Card)	-

Setting Up the 7300/7500/7500 Fast Instrument

CAUTION

CAUTION Do not connect the USB cable to the 7300/7500/7500 Fast instrument

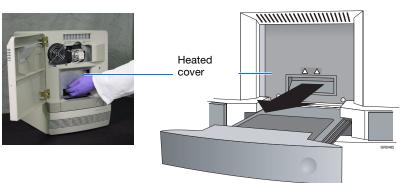
at this time.

This section describes how to connect the 7300/7500/7500 Fast system.

Materials Required

- Phillips screwdriver (small and thin)
- Power cord (from packing kit)

Preparing the Site


Prepare the installation site as described in the *Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Site Preparation Guide*. Refer to this guide for weights, dimensions, and electrical requirements.

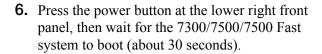
Setting Up the System

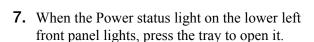
- **1.** Open the access door to the 7300/7500/7500 Fast system.
 - **a.** Insert a thin screwdriver into the keyhole on the edge of the access door, then push to unlatch the door.
 - **b.** Open the access door.

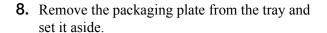
2. Verify that the heated cover assembly is pulled fully toward the front of the instrument.

3. Check the instrument for damage caused by the transportation of the 7300/7500/7500 Fast system.

If the instrument is damaged, note the location and appearance of the damage, then contact Applied Biosystems technical support or your service representative for assistance (see "How to Obtain Support" on page xiii).




4. Close the access door of the instrument.



5. Connect the power cord to the 7300/7500/7500 Fast instrument, then to the receptacle wall circuit.

Note: Power cords for different voltages are provided in the packing kit. Connect the cord with the receptacle appropriate for your voltage, then discard remaining cables.

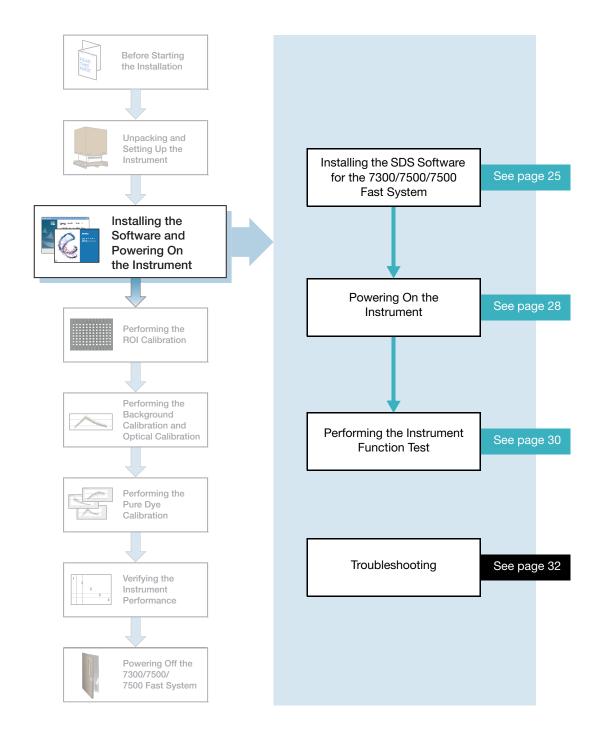
Note: Do not discard the packaging plate. Use it for long-term shutdown of the system (see page 104).

Remove

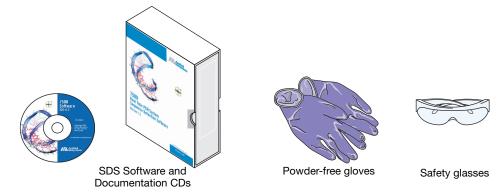
9. Close the tray door, then press the power button again to power off the instrument.

Note: When closing the instrument tray door, apply pressure to the right side of the tray and at an angle.

If you have additional hardware that you want to install (see page 9), do so now.


CAUTION Do *not* connect the USB cable to the 7300/7500/7500 Fast instrument or computer at this time.

Installing the Software and Powering On the Instrument


Overview

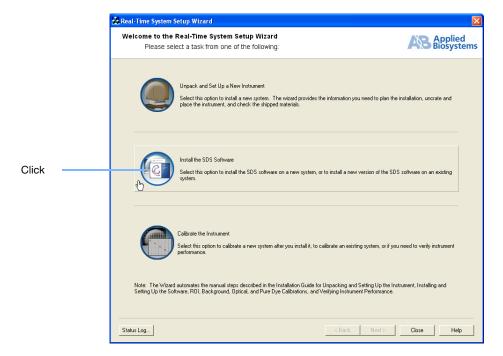
Note: You can also use the Real-Time System Setup wizard to perform the procedures in this guide. To access the wizard, insert the installation CD in the CD drive of the computer. The Real-Time System Setup wizard starts automatically after a slight delay when you insert the CD.

Time Required

45 minutes

Materials Required

IMPORTANT! If you plan to configure the 7300/7500 Fast system computer with additional software (see page 10), complete the installation of the 7300/7500/7500 Fast system as described in this guide before installing other software. Installing third-party software to the 7300/7500/7500 Fast system computer before completing the procedures in this manual can complicate the installation.



Installing the SDS Software for the 7300/7500/7500 Fast System

IMPORTANT! You must be logged in with Windows administrator privileges to install the SDS Software.

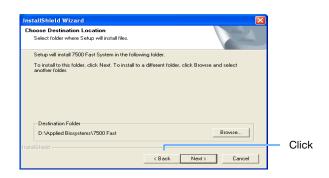
- **1.** Obtain the Software CD and Documentation CD from the Software and Documentation kit.
- **2.** Power on the computer, then log in as a Windows operating system administrator, as described in the *Applied Biosystems Real-Time PCR System Computer Setup Guide*.
- 3. Insert the SDS Software CD into the CD drive of the computer. The Real-Time System Setup wizard starts automatically after a short delay.

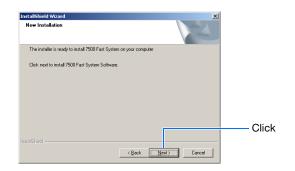
 If the wizard does not automatically start, double-click (My Computer), navigate to the CD drive, then double-click SystemSetupWizard.exe.
- 4. Click Install the SDS Software.

5. In the Software Installation Materials Required page, select the I have obtained the materials listed above check box, then click Next.

Notes			

- **6.** In the Software Installation Materials Install the Software page, click Install / Upgrade SDS Software.

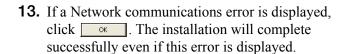

 The InstallShield® Wizard opens.
- 7. In the Welcome page, click Next ...


8. In the End User License Agreement page, click ves to accept the agreement.

9. In the Choose Destination Location page, click Next to accept the default location.

10. In the New Installation page, click Next to start installing the software.

Installing the SDS Software for the 7300/7500/7500 Fast System

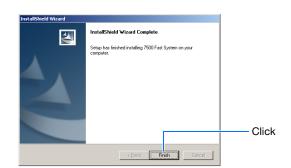


11. When the software completes the installation, click Finish.

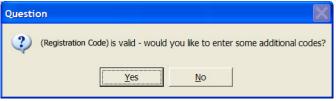
7300 systems without RQ software: Skip to step 13.

7300 with RQ, 7500/7500 Fast systems:

- After a short delay, the Product Registration dialog box is displayed.
- Continue with step 12.
- **12.** Register the product (the Registration dialog box is displayed only for the 7300 system RQ Study and 7500/7500 Fast systems):
 - **a.** In the Your Name field, enter your name.
 - **b.** In the Organization field, enter the name of your business or organization.
 - **c.** In the Registration Code field, enter the registration code located on the CD case.
 - d. Click OK.


Note: This message is displayed if your computer is not connected to a network. If you do not plan to connect this computer to a network, select **Do not show me this message again**, then select **Never again on this machine**.

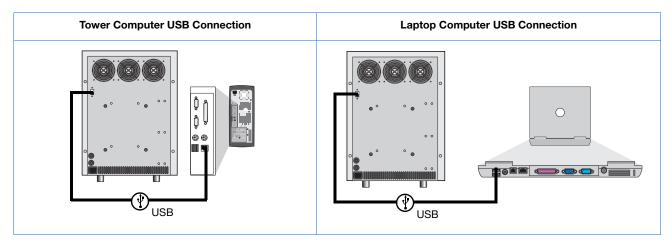
A message is displayed prompting you to enter additional registration codes.


- 14. If you have additional registration codes, click

 Yes , then repeat step 12. Otherwise, click
 to continue.
- **15.** In the Real-Time System Setup wizard Software Installation page, click Close.
- **16.** In the Real-Time System Setup wizard Welcome page, click Close.

Continue with "Powering On the Instrument" on page 28.


Powering On the Instrument

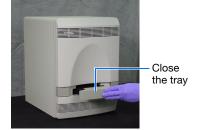

IMPORTANT! Do not power on the instrument unless you have installed the SDS software. If you power on the instrument before you install the SDS software, the Windows operating system installs a generic driver for the instrument, which does not allow the instrument to communicate with the SDS software.

IMPORTANT! Make sure that the computer Hibernate power setting is disabled. If the Hibernate setting is enabled, data collection stops when the computer goes into Hibernate mode. For more information, see "Setting the Display Settings and Power Options" on page 137.

Powering On

- **1.** Connect the Universal Serial Bus (USB) cable between the:
 - USB connector on the back left of the instrument and
 - Either USB port on the computer

- **2.** Press the power button on the 7300/7500/7500 Fast instrument. The following occur:
 - The indicator lights on the lower left of the front panel cycle through a power on sequence.
 - If the green Power On indicator is flashing, make sure the tray is closed.
 - If the red Error indicator is lit, see "Troubleshooting – Front Panel Indicators" on page 32.



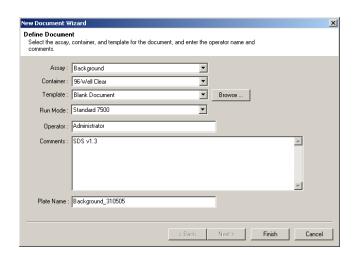
Power button

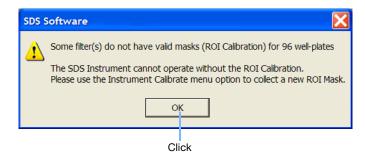
Indicator lights

Power On (flashing)

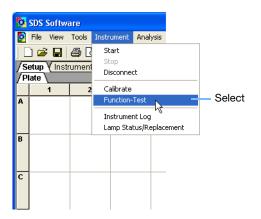
- When the green Power indicator is lit (not flashing):
 - Communication is established between the computer and the instrument.
 - The Windows XP operating system recognizes the instrument as new hardware.
 - The Windows XP operating system automatically installs the drivers needed to control the instrument.
- When the installation is complete, the Found New Hardware message box indicates that the hardware is ready to use.

Performing the Instrument Function Test

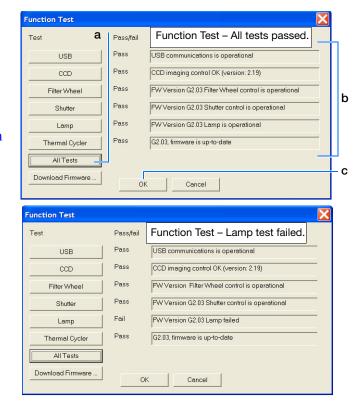

1. If the SDS software is not running, in the desktop, double-click the icon for the SDS software (5).


2. In the SDS software, click (or select File ▶ New).

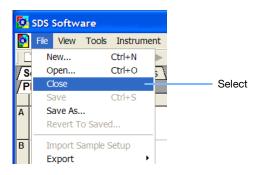
3. In the New Document wizard, click Finish to accept the default parameters.



4. If an ROI error is displayed, click _____. You perform the ROI calibration after you perform the Function test.



5. Select Instrument > Function Test.



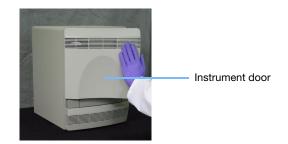
- **6.** In the Function Test dialog box:
 - a. Click All Tests .
 - **b.** Examine the Pass/Fail column:
 - If all the function tests Pass, go to step 7.
 - If any of the function tests Fail, see "Troubleshooting Function Tests" on page 33.
 - c. Click OK.

- 7. Select File > Close to close the plate document.
- **8.** When the software prompts you to save the plate document, click No.
- **9.** In the SDS software, select **File** ▶ **Exit**.

Continue with "Performing the Regions of Interest (ROI) Calibration" on page 35.

Troubleshooting

This section contains:

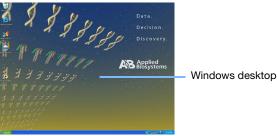

- Troubleshooting Front Panel Indicators page 32
- Troubleshooting Function Tests page 33

Troubleshooting - Front Panel Indicators

Troubleshooting - Front Panel Indicators

Condition: The red Error indicator is lit.

 Press on the instrument door to ensure that it is closed.
 If the green Power On indicator lights up, the open instrument door caused the error, and installation continues.


- 2. If the red Error indicator remains lit:
 - a. Open the instrument door.
 - b. Pull the heated cover door to verify that it is closed.
 - c. Close the instrument door.

If the green Power On indicator lights up, the open heated cover door caused the error, and installation continues.

- 3. If the red Error indicator remains lit, verify that the Windows desktop is displayed on the computer. If the Windows desktop is not displayed:
 - a. Power off the 7300/7500/7500 Fast instrument.
 - b. Restart the computer.
 - c. Wait until the Windows desktop appears.
 - d. Power on the 7300/7500/7500 Fast instrument.

If the green Power On indicator lights up, installation continues.

Troubleshooting - Front Panel Indicators (continued)

- 4. If the red Error indicator remains lit:
 - a. Verify that the USB cable is connected to the back of the
 - b. Verify that the other end of the USB cable is connected to the computer.

If the green Power On indicator lights up, it indicates that the USB cable was not connected, and installation continues.

- 5. If the red Error indicator remains lit:
 - a. Power off the 7300/7500/7500 Fast instrument.
 - b. Wait for 30 seconds.
 - c. Power on the 7300/7500/7500 Fast instrument.
- 6. If the red Error indicator remains lit, contact Applied Biosystems technical support (see page xiii) or your service representative.

Troubleshooting – Function Tests

Troubleshooting - Function Tests

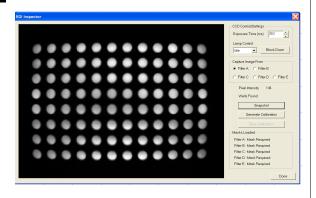
Condition: USB Test Failure

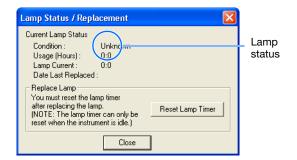
- 1. Power off the instrument, wait 30 seconds, then power on the instrument.
- 2. Perform the Instrument Function Test (see page 30).
- 3. If the test fails again, check that the USB connections to the instrument and computer are secure.
- 4. Perform the Instrument Function Test (see page 30).
- 5. If the test fails again, contact Applied Biosystems technical support (see page xiii) or your service representative.

(continued on next page)

Troubleshooting - Function Tests (continued)

Condition: CCD, Filter Wheel, or Shutter Test Failures

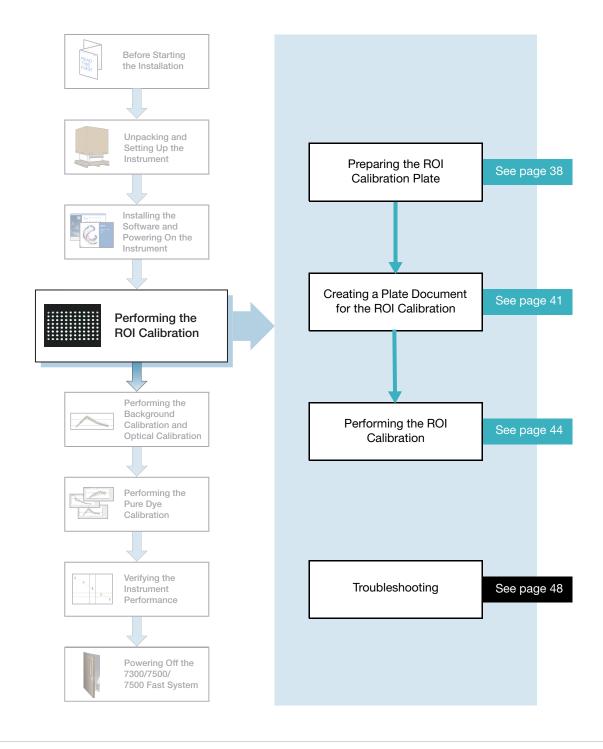

- Power off the instrument, wait 30 seconds, then power on the instrument.
- 2. Perform the Instrument Function Test (see page 30).
- If the test fails again, perform the ROI calibration as explained in "Performing the Regions of Interest (ROI) Calibration" on page 35.
- 4. Determine if the ROI image appears in the ROI Inspector.Yes Continue with the installation.
 - **No** Contact Applied Biosystems technical support (see page xiii) or your service representative.


Condition: Lamp Test Failure

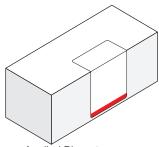
- Power off the instrument, wait 30 seconds, then power on the instrument.
- 2. Perform the Instrument Function Test (see page 30).
- If the test fails again, select Instrument > Lamp Status/Replacement.
- 4. If the Lamp Status/Replacement dialog box reports the lamp status as Failed, replace the halogen lamp (see "Replacing the Halogen Lamp" on page 118).
- 5. Perform the Instrument Function Test (see page 30).
- 6. If the test fails again, contact Applied Biosystems technical support (see page xiii) or your service representative.


Condition: Thermal Cycler Test Failure

- 1. Power off the instrument, wait 30 seconds, then power on the instrument.
- 2. Perform the Instrument Function Test (see page 30).
- 3. If the test fails again, contact Applied Biosystems technical support (see page xiii) or your service representative.



Performing the Regions of Interest (ROI) Calibration


Overview

Note: You can also use the Real-Time System Setup wizard to perform the procedure in this chapter. To access the wizard, select **#start** Program Files 7300/7500/7500 Fast System ▶ Real-Time System Setup Wizard.

Time Required

30 minutes

Materials Required

Applied Biosystems Real-Time PCR System Spectral Calibration Kit

ROI Calibration Plate

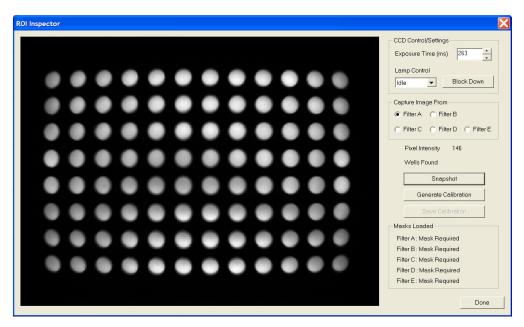
Powder-free Gloves

Centrifuge with plate adapter

When to Perform the ROI Calibration

Perform a regions of interest (ROI) calibration:

• When installing the system (you must perform all calibrations in this order: ROI • background ▶ optical (7500/7500 Fast systems only) ▶ pure dye ▶ instrument verification).

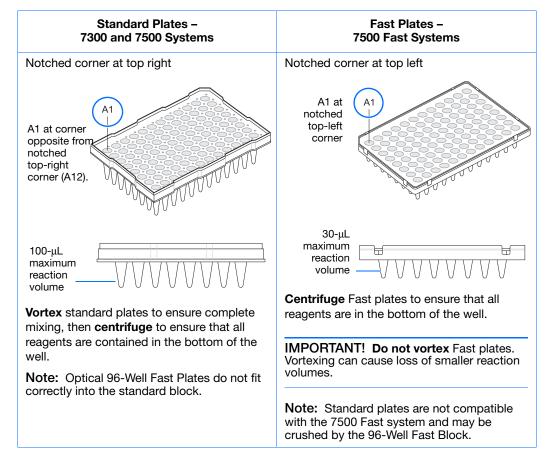

Safety Goggles

- Every 6 months, or as often as necessary, depending on instrument use.
- After replacing the lamp.

IMPORTANT! After every ROI calibration, you must perform a background calibration, optical calibration (7500/7500 Fast systems only), pure dye calibration, and instrument verification.

Purpose of the ROI Calibration

A regions of interest (ROI) calibration maps the positions of the wells on the sample block so that the software can associate increases in fluorescence during a run with specific wells of the plate. Because the instrument uses a set of optic filters to distinguish the fluorescence emissions gathered during runs, you must generate a calibration image for each individual filter to account for minor differences in the optical path.


ROI calibration image

Preparing the ROI Calibration Plate

Standard Plates versus Fast Plates

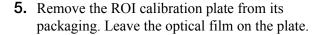
Use the plate appropriate for your system.

Preparing the Plate

IMPORTANT! Wear powder-free gloves when you handle the ROI calibration plate.

1. In the desktop, double-click the icon for the SDS software () to start the software.

- **2.** Retrieve the spectral calibration kit from the freezer, then remove the prepared ROI calibration plate.
- **3.** Return the spectral calibration kit to the freezer.

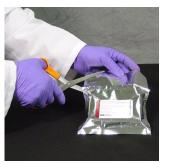


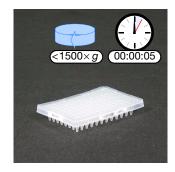
Spectral calibration kit

ROI calibration plate

4. Allow the ROI calibration plate to warm to room temperature (approximately 5 minutes).

IMPORTANT! Do not remove an ROI calibration plate from its packaging until you are ready to run it. The fluorescent dye in the wells of the plate is photosensitive. Prolonged exposure to light can diminish the fluorescence signal strength of the plate.



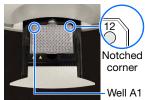

Do not discard the packaging for the ROI calibration plate. The plate can be used up to three times if it is stored in its original packaging sleeve.

- 1. Standard plates only: Vortex the plate for 5 seconds. Do not vortex Fast plates. (Remaining steps apply to both standard and Fast plates.)
- **2.** Briefly centrifuge the ROI calibration plate in a centrifuge with a plate adapter (<1500 xg).

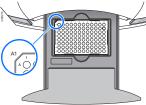
IMPORTANT! The plate must be well mixed and centrifuged.

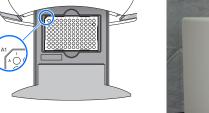
3. Verify that the liquid in each well of the ROI plate is at the bottom of the well. If not, centrifuge the plate again at a higher rpm and for a longer period of time.

Correct	Incorrect
(60,110)	
Liquid is at bottom of well.	 Not centrifuged with enough force, or Not centrifuged for enough time


Loading the Plate

1. Press the tray door to open it.




2. Load the ROI calibration plate into the plate holder in the instrument. Ensure that the plate is properly aligned in the holder.

Load standard plates (7300/7500 system) with the notched A12 position at the top-right of the tray.

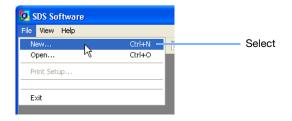
Load Fast plates (7500 Fast system) with the notched A1 position at the top-left of the tray.

3. Close the tray. Apply pressure to the right side of the tray and at an angle.

Continue with "Creating a Plate Document for the ROI Calibration" on page 41.

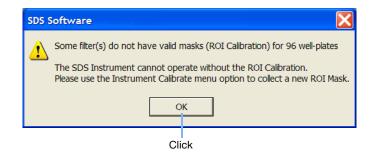
Creating a Plate Document for the ROI Calibration

1. Click □ (or select File > New).

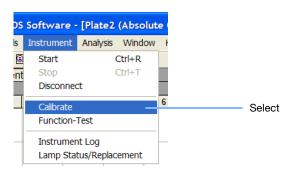

2. In the New Document wizard, click Finish accept the default parameters.


Note: It is not necessary to name or save the plate document. The SDS software automatically saves the ROI data to a set of calibration files on the computer hard drive.

If a Network communications error is displayed, click OK . You can perform the ROI calibration even if this error is displayed.


Note: This message is displayed if your computer is not connected to a network. If you do not plan to connect this computer to a network, select Do not show me this message again, then select Never again on this machine.

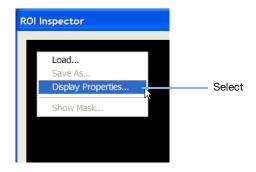
If an ROI error is displayed, click ok to proceed with ROI calibration.



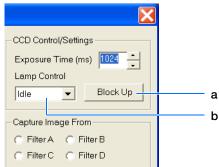
3. In the SDS software, select **Instrument ▶ Calibrate**.

4. In the warning dialog box, click ves to lower the sample block.

The ROI Inspector dialog box opens.

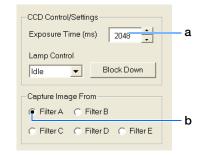


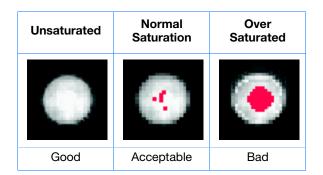
ROI Inspector


5. In the ROI Inspector dialog box, right-click the black area of the window, then select **Display Properties**.

- **6.** In the Image Viewer Control Properties dialog box:
 - a. Select Show Saturation.
 - b. In the Sat Threshold field, enter 4000.
 - c. Click OK.
- **7.** In the ROI Inspector dialog box, set the lamp control:
 - a. Click Block Up .
 - b. Select **Idle** from the Lamp Control drop-down list (sets the lamp to lower voltage for ROI calibration).

Continue with "Performing the ROI Calibration" on page 44.

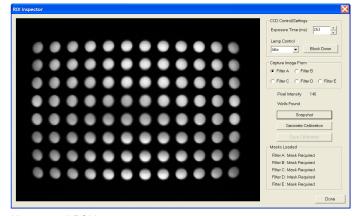




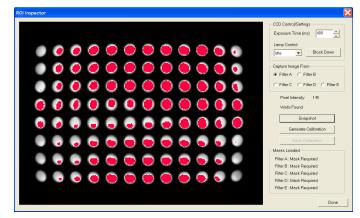
Performing the ROI Calibration

- **1.** In the ROI Inspector dialog box:
 - a. In the Exposure Time field, enter 2048.
 - b. Select Filter A.

- **2.** Click Snapshot to generate an ROI image.
- **3.** Determine if your ROI image is acceptable (the figures to the right show an unsaturated image and an oversaturated image). Wells in an acceptable image:
 - Must be as bright as possible without oversaturating. (When you generate the ROI calibration on page 45, a warning is displayed if wells are oversaturated).
 - Can contain some, but do not have to contain any, red pixels, which represent saturation.


4. If your ROI image is acceptable, skip to step 5.

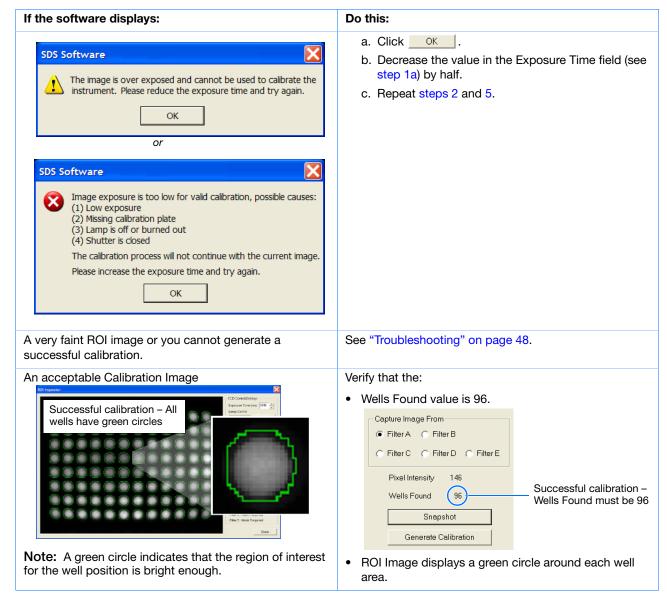
If your ROI image is oversaturated, decrease the Exposure Time by half, then click

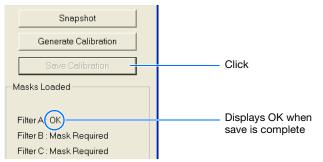

Snapshot

Repeat until you obtain an acceptable ROI image.

If you cannot obtain an acceptable image, see "Troubleshooting" on page 48.

Unsaturated ROI image


Over-saturated ROI image


5. Click Generate Calibration

The software takes a snapshot, then displays a message dialog box or an ROI image:

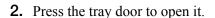
6. Click Save Calibration

The software saves the newly generated ROI calibration for Filter A. "OK" appears next to Filter A in the Masks Loaded section of the ROI Inspector window.

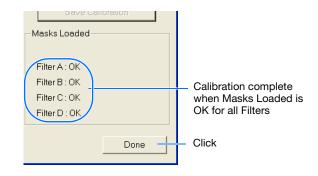
7. Repeat steps 1 through 5 for the remaining filters: Filter B, Filter C, and Filter D (and Filter E for 7500 and 7500 Fast instruments).

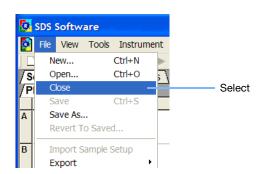
Reset the Exposure Time to **2048** before performing the calibration for each filter.

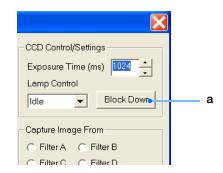
The ROI calibration is complete when Masks Loaded for all the Filters displays OK.


- **8.** Click Done to close the ROI Inspector.
- **9.** In the SDS software, select **File ▶ Close**.

Unloading the Plate




HAZARD. During instrument operation, the sample block can be heated to 100 °C. Before performing the following procedure, be sure to wait until the sample block reaches room temperature.


1. In the ROI Inspector dialog box, click Block Down .

Note: If you cannot open the tray door, the sample block may be in its raised position, locking the tray position. To lower the block, click Block Down.

3. Press the tray door to move the tray into the instrument.

- **4.** Place the calibration plate inside its packaging sleeve.
- **5. 7300 systems:** Return the packaged plate to the spectral calibration kit in the freezer.

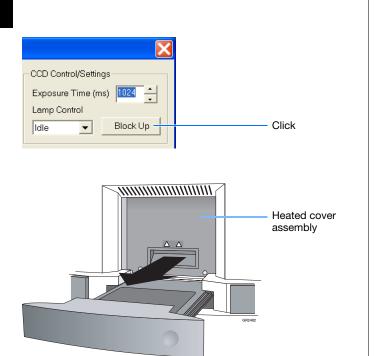
7500/7500 Fast systems:

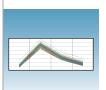
- If you will perform background and optical calibrations (described in the next chapter) within the next 8 hours, keep the ROI calibration plate at room temperature in the packaging. The optical calibration you perform after background calibration uses the ROI calibration plate.
- If you be perform background and optical calibrations on another day, return the packaged plate to the spectral calibration kit in the freezer.

Note: Do not discard the ROI calibration plate. If you store the plate in its packaging sleeve at -20 to -25 °C, you can use the plate up to three times after you open it.

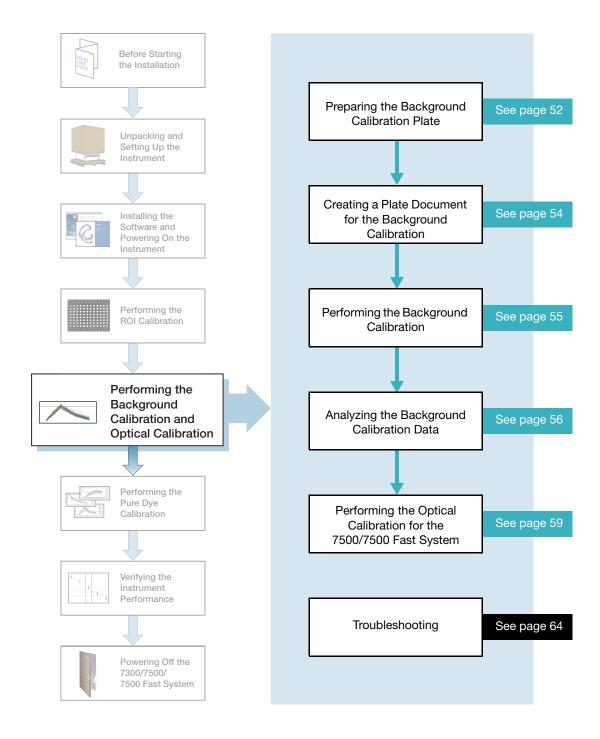
Continue with "Performing the Background Calibration and Optical Calibration" on page 49.

IMPORTANT! After you perform an ROI calibration, you must also perform a background calibration (see page 49), an optical calibration (7500 systems only, see page 59), and pure dye calibrations (see page 67), and instrument verification (see page 87).


Troubleshooting


Troubleshooting - ROI Image

Condition: The ROI image is faint or you cannot generate a successful calibration.

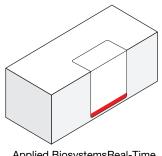

The sample block may be in its lowered position.

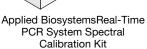
- If the CCD Control Settings in the ROI Inspector displays Block Up , click Block Up to raise the sample block.
- Check that the heated cover assembly is pulled all the way forward to ensure that the tray can be pushed in properly.

Performing the Background Calibration and Optical Calibration

Overview

Note: You can also use the Real-Time System Setup wizard to perform the procedure in this chapter. To access the wizard, select


■ start


Program Files
7300/7500/7500 Fast System
Real-Time System Setup Wizard.

Time Required

- 7300 systems: Background calibration: 30 minutes
- 7500 systems:
 - Background calibration: 30 minutes
 - Optical calibration: 10 minutes

Materials Required

Background Plate

Powder-free Gloves

Safety Goggles

Centrifuge with plate adapter

When to Perform a Background Calibration

Perform a background calibration:

- When installing the system (you must perform all calibrations in this order: ROI ▶ background ▶ optical (7500/7500 Fast systems only) ▶ pure dye ▶ instrument verification).
- Monthly or as often as necessary, depending on instrument use.
- After replacing the lamp.

IMPORTANT! 7500/7500 Fast systems only: You must perform an optical calibration after every background calibration.

Purpose of the Background Calibration

A background calibration measures the level of background fluorescence in the instrument. During a background calibration run, the system:

- Performs continuous reads of a background plate containing PCR buffer for 10 minutes at 60 °C.
- Averages the spectra recorded during the run and extracts the resulting spectral component to a calibration file.

The software then uses the calibration file during subsequent runs to remove the background fluorescence from the run data.

Background Fluorescence

Fluorescence data collected by the Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System includes a fluorescent signal inherent to the system, commonly referred to as background fluorescence. Background fluorescence is a composite signal found in all spectral data. This signal consists of fluorescence from several sources, including:

- Background electronic signal
- Contaminants in the sample block
- The plastic consumable (plates and caps)

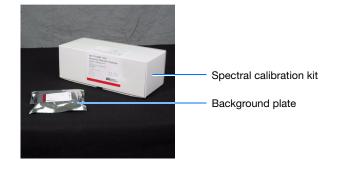
Guidelines for Calibration

For a new instrument:

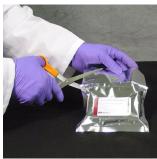
- Always start with a new calibration kit.
- Make sure the centrifuge you use is clean. Before centrifuging, wipe down the bucket using a tissue.
- Handle the calibration plates with care to prevent contamination. Do not place plates on a lab bench, which may contaminate the plate. Always put calibration plates back into their original bags.

Preparing the Background Calibration Plate

IMPORTANT! Wear powder-free gloves when you handle the background plate.

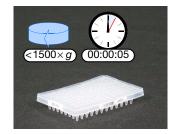


1. Retrieve the spectral calibration kit from the freezer, then remove the prepared background plate.


Alternatively, create a background calibration plate as described in Appendix B, "Creating a Background Plate."

- **2.** Return the spectral calibration kit to the freezer.
- **3.** Allow the background plate to warm to room temperature (at least 5 minutes).
- **4.** Remove the background plate from its packaging.

IMPORTANT! Do not discard the packaging for the background plate. The background plate can be used up to three times if it is stored in its original packaging sleeve.



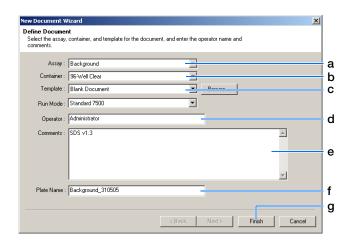
- 5. Standard plates only: Vortex the plate for 5 seconds. Do not vortex Fast plates.(Remaining steps apply to both standard and Fast plates.)
- **6.** Briefly centrifuge the background plate in a centrifuge with a plate adapter (<1500 xg).

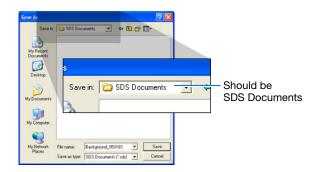
IMPORTANT! The plate must be well mixed and centrifuged.

7. Verify that the liquid in each well of the background plate is at the bottom of the well. If not, centrifuge the plate again at a higher rpm and for a longer period of time.

IMPORTANT! Do not allow the bottom of the background plate to become dirty. Fluids and other contaminants that adhere to the bottom of the plate can contaminate the sample block and cause an abnormally high background signal.

Continue with "Creating a Plate Document for the Background Calibration" on page 54.

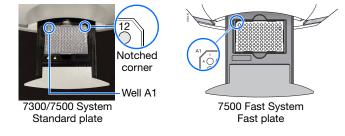

Correct	Incorrect		
OSLID.			
Liquid is at bottom of well.	 Not centrifuged with enough force, or Not centrifuged for enough time 		



Creating a Plate Document for the Background Calibration

- 1. In the SDS software, click ☐ (or select File ➤ New).
- **2.** Configure the New Document dialog box:
 - a. Select Assay > Background.
 - b. Select Container > 96-Well Clear.
 - c. Select Template > Blank Document.
 - **d.** In the Operator field, enter your name.
 - e. In the Comments field, enter any additional information that you want to save to the file (such as the plate bar code).
 - f. In the Plate Name field, enter:
 Background_<date in DDMMYY format>
 For example, the name for a plate run on May 31, 2005 would be:
 Background 310505.
 - g. Click Finish.
- 3. In the SDS software, select File > Save As.
- **4.** In the Save As dialog box:
 - a. If the Save in field does not display SDS
 Documents, navigate to D: drive ▶ Applied
 Biosystems ▶ SDS Documents.
 - b. Click Save .

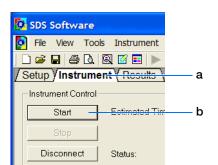
Continue with "Performing the Background Calibration" on page 55.



Performing the Background Calibration

1. Load the plate in the instrument as described in "Loading the Plate" on page 40.

Note: If you cannot open the tray, the sample block may be in its raised position, locking the tray position. To lower the block, select Instrument > Calibrate, then exit the ROI Inspector.

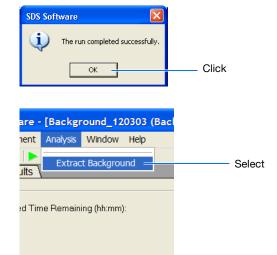


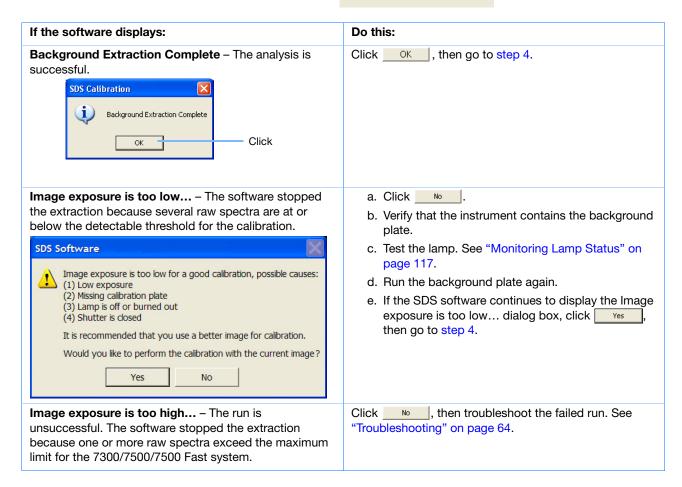
- **2.** In the SDS software:
 - a. Select the **Instrument** tab.
 - b. Click Start

The instrument begins the background calibration run.

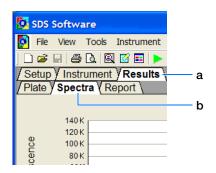
Note: Before starting the run, the instrument may pause (up to 10 minutes) to allow the heated cover to reach the correct temperature.

Continue with "Analyzing the Background Calibration Data" on page 56.

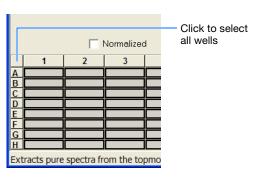




Analyzing the Background Calibration Data

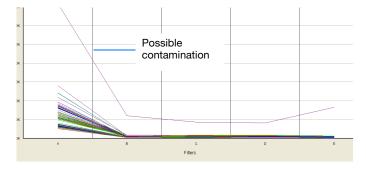

- **1.** When the run is complete, click OK.
- 2. Click ► (or select Analysis ► Extract Background).

The software extracts the background signal, then displays one of the following messages:



4. In the plate document, select the **Results** tab, then select the Spectra tab.

5. Select all wells of the plate document.



6. Inspect the raw data for irregular spectral peaks that exceed the following fluorescent standard units (FSU):

Filter	FSU		
A, B, C, D (7300/7500)	>72,000		
E (7500)	>90,000		

If one or more wells produce raw spectra that exceed the specified FSU, the background plate or the sample block could contain a fluorescent contaminant. Determine the source of the contamination. See "Troubleshooting" on page 64.

Unloading the Plate

WARNING PHYSICAL INJURY HAZARD. During instrument operation, the sample block can be heated to 100 °C. Before performing the following procedure, be sure to wait until the sample block reaches room temperature.

- **1.** When the run is complete, remove the background plate:
 - **a.** Press the tray to open it.
 - **b.** Remove the background plate.
 - **c.** Press the tray to move it into the instrument.
- **2.** Place the background plate inside its packaging sleeve, then return it to the spectral calibration kit in the freezer.

IMPORTANT! Do not discard the background plate. If you store the background plate in its original packaging sleeve, you can use the plate up to three times after you open it.

Continue with:

- 7300 system "Performing the Pure Dye Calibration" on page 67.
- **7500/7500 Fast system** "Performing the Optical Calibration for the 7500/7500 Fast System" on page 59.

Performing the Optical Calibration for the 7500/7500 Fast System

Time Required 10 minutes

Materials Required

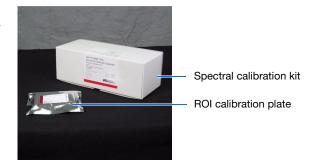
ROI calibration plate

Purpose of the 7500/7500 Fast System Optical Calibration The optical calibration compensates for the physical effects of the additional filter present in 7500/7500 Fast instruments that is not present in the 7300 instrument.

When to Perform the Optical Calibration

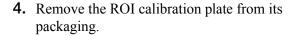
Perform an optical calibration:

- When installing the system (you must perform all calibrations in this order: ROI ▶ background ▶ optical (7500/7500 Fast systems only) ▶ pure dye ▶ instrument verification).
- After every 7500/7500 Fast system background calibration.


Preparing the ROI Calibration Plate

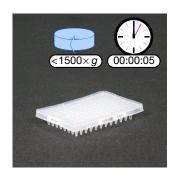
If you kept your ROI calibration plate at room temperature after performing an ROI calibration (described in Chapter 4, "Performing the Regions of Interest (ROI) Calibration") skip to step 6 below to spin down any condensation that may have formed when the plate was at room temperature.

IMPORTANT! Wear powder-free gloves when you handle the ROI calibration plate.


- 1. Retrieve the spectral calibration kit from the freezer and remove the prepared ROI calibration plate.
- **2.** Return the spectral calibration kit to the freezer.

3. Allow the ROI calibration plate to warm to room temperature (approximately 5 minutes).

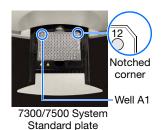
IMPORTANT! Do not remove an ROI calibration plate from its packaging until you are ready to run it. The fluorescent dye in the wells of the plate is photosensitive. Prolonged exposure to light can diminish the fluorescence signal strength of the plate.

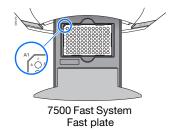


IMPORTANT! Do not discard the packaging for the ROI calibration plate. The plate can be used up to three times if it is stored in its original packaging sleeve.

- 5. Standard plates only: Vortex the plate for 5 seconds. Do not vortex Fast plates.
 (Remaining steps apply to both standard and Fast plates.)
- **6.** Briefly centrifuge the ROI calibration plate in a centrifuge with a plate adapter (<1500 xg).

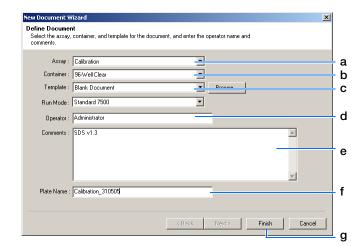
7. Verify that the liquid in each well of the background plate is positioned at the bottom of the well. If not, centrifuge the plate again at a higher rpm and for a longer period of time.




Correct	Incorrect		
SOCIAL D			
Liquid is positioned at bottom of well.	Not centrifuged with enough force, orNot centrifuged for enough time		

8. Load the plate in the instrument as described in "Loading the Plate" on page 40.

IMPORTANT! Wear powder-free gloves when you handle the ROI calibration plate.



Creating a Plate Document for the Optical Calibration Run

- **1.** Click □ (or select **File** ▶ **New**).
- **2.** Configure the New Document dialog box:
 - a. Select Assay > Calibration.
 - b. Select Container > 96-Well Clear.
 - c. Select Template > Blank Document.
 - **d.** In the Operator field, enter your name.
 - e. In the Comments field, enter any additional information that you want to save to the file (such as the plate bar code).
 - f. In the Plate Name field, enter: **Calibration** *<date in DDMMYY format>* For example, the name for a calibration performed on May 31, 2005 would be: Calibration 310505.
 - g. Click Finish .
- 3. In the SDS software, select File ➤ Save As.

- **4.** In the Save As dialog box:
 - a. If the Save in field does not display SDS Documents, navigate to **D**: drive > Applied **Biosystems** > SDS Documents.
 - b. Click Save .

Continue with "Performing the Optical Calibration" on page 62.

Performing the Optical Calibration

- **1.** In the SDS software:
 - a. Select the **Instrument** tab.
 - b. Click Start

The instrument begins the calibration.

Note: Before starting the calibration, the instrument may pause (up to 10 minutes) to allow the heated cover to reach the correct temperature.

2. When the run is complete, click OK.

Analyzing the Optical Calibration Data

- 1. In the SDS software, click ▶ (or select Analysis ▶ Extract). The software extracts the optical calibration, then displays a message indicating the extraction is complete.
- 2. Click OK .
- **3.** In the SDS software, select File ▶ Close.

Unloading the **Plate**

WARNING PHYSICAL INJURY HAZARD. During instrument operation, the sample block can be heated to 100 °C. Before performing the following procedure, be sure to wait until the sample block reaches room temperature.

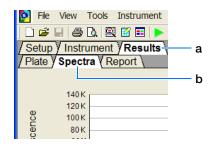
- **1.** Remove the ROI calibration plate:
 - **a.** Press the tray to open it.
 - **b.** Remove the ROI calibration plate.
 - **c.** Press the tray to move it into the instrument.
- **2.** Place the ROI calibration plate inside its packaging sleeve, then return it to the spectral calibration kit in the freezer.

IMPORTANT! Do not discard the ROI calibration plate. If you store the plate in its original packaging sleeve, you can use the plate up to three times after you open it.

Continue with "Performing the Pure Dye Calibration" on page 67.

Troubleshooting

Troubleshooting – Background Calibration


Condition: Cannot extract the data (background calibration failed)

Signals that exceed 72,000 fluorescent standard units (FSU) are considered beyond the limit of normal background fluorescence for a 7300/7500/7500 Fast instrument. Such signals may indicate that either the background or the sample block contains fluorescent contaminants. Common contaminants include: ink residue from permanent pens, powder from disposable gloves, and dust.

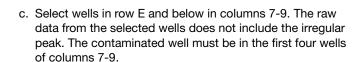
To determine the source and location of the contamination:

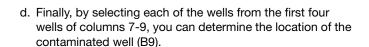

- 1. In the plate document for the calibration:
 - a. Select the Results tab.
 - b. Select the **Spectra** tab.

2. Select all wells of the plate document.

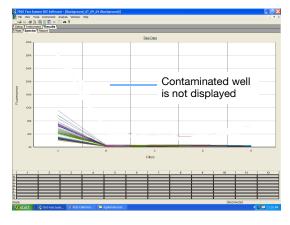
3. Inspect the raw background data for an irregular spectral peak or peaks.

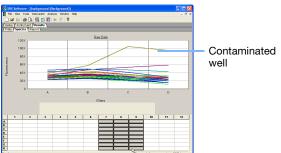
Wells producing raw spectra that exceed 72,000 FSU are considered irregular and could be contaminated.

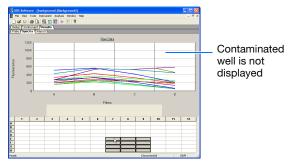

Troubleshooting – Background Calibration

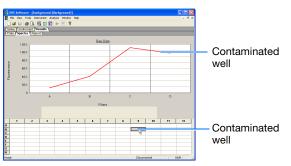

4. Locate the contaminated well position(s) by selecting successively fewer wells in the plate document.

The items that follow show an example of how to determine the location of a contaminated well.


 a. In the Spectra tab, select columns 1-6. The raw data from the selected wells does not include the irregular peak.
 Therefore, the contaminated well must be in columns 7-12.


b. Select columns 7-9. The raw data from the selected wells includes the irregular peak. The contaminated well must be in columns 7-9.





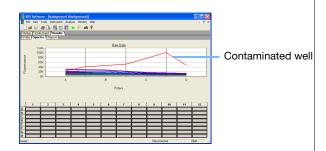
Repeat step 4 until you identify the location of each contaminated well.

Troubleshooting - Background Calibration

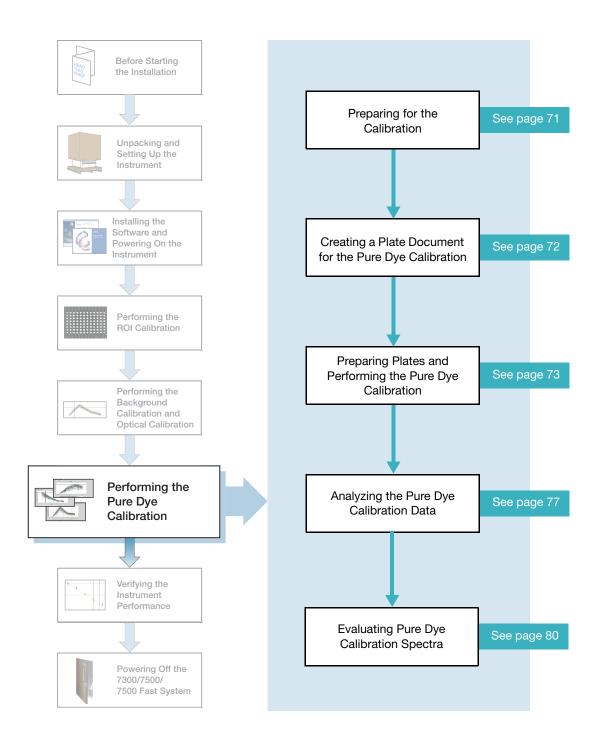
- Create a new background plate (see Appendix B, "Creating a Background Plate" on page 125.)
- 7. Perform a background calibration (see "Performing the Background Calibration" on page 55).
- 8. Click (or select Analysis) Extract Background).
- Repeat step 4 on page 65 to examine the contaminated well position(s).

If the contaminated well positions with the new background plate are:

- In the same location as you saw in step 4, then the sample block is contaminated. Decontaminate the sample block (see "Decontaminating the Sample Block" on page 108).
- No longer present, the original background plate was contaminated. You can inspect the original background plate Make sure there is no particulate matter on the bottom of the plate or on the cover.
- 10.If the calibration fails after you use a new background plate or decontaminate the sample block, perform the following test:
 - a. Press the tray to open it.
 - Load the black plate tool from the packing kit (or a plate containing a piece of black paper) into the plate holder.
 - c. Push the tray back into the instrument.
- 11.Perform a background calibration (see "Performing the Background Calibration" on page 55).
 - a. Click (or select Analysis > Extract Background).
 - b. Select the **Results** tab, then select the **Spectra** tab.
 - c. Select all wells of the plate document.
- 12. View the Spectral plot for the peak(s) and choose from the following:


If the contaminated well is:

- Present, then the optics of your 7300/7500/7500
 Fast system may be contaminated. Contact
 Applied Biosystems technical support or your service representative for further assistance.
- Absent, then the sample block is contaminated.
 Decontaminate the sample block (see "Decontaminating the Sample Block" on page 108).



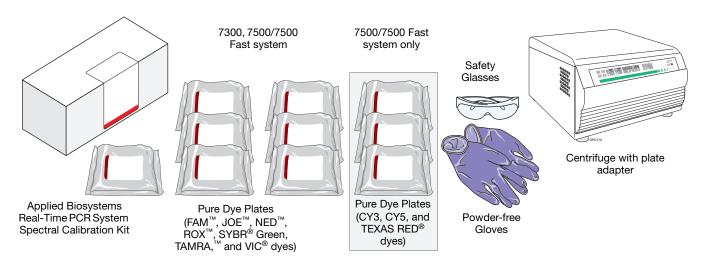
Black plate

Performing the Pure Dye Calibration

Overview

Note: You can also use the Real-Time System Setup wizard to perform the procedure in this chapter. To access the wizard, select

■ start


Program Files
7300/7500/7500 Fast System
Real-Time System Setup Wizard.

Time Required

• **7300 systems:** 45 minutes

• **7500/7500 Fast systems:** 1 hour

Materials Required

When to Perform Pure Dye Calibrations

Perform a pure dye calibration:

- When installing the system (you must perform all calibrations in this order: ROI ▶ background ▶ optical (7500/7500 Fast systems only) ▶ pure dye ▶ instrument verification).
- Every 6 months, depending on instrument use.

IMPORTANT! You must perform a background run before every pure dye calibration. Because the age and use of instrument components can affect pure spectra readings, Applied Biosystems recommends performing a pure dye calibration at least every six months.

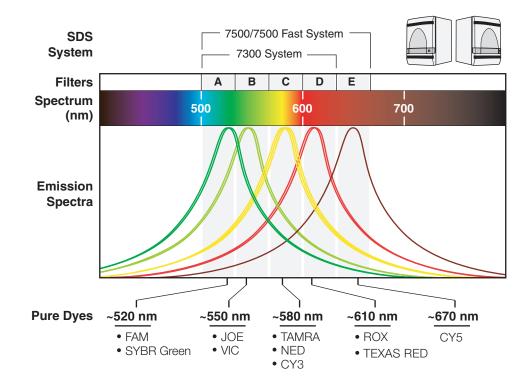
Notes		

Purpose of Pure Dye Calibration

During a pure dye calibration run, the system:

- Collects spectral data from a series of pure dye standards.
- Stores the spectral information for the pure dye standards in the pure spectra run file, a calibration file in the SDS directory.

The software then uses the pure spectra data during subsequent runs to characterize pure dyes and distinguish the individual contribution of each dye in the collective fluorescence collected by the instrument during a run.


After each run, the SDS software receives run data in the form of a raw spectra signal for each reading. It determines the contribution of each fluorescent dye used in the sample by comparing the raw spectra to the pure spectra file. When you save a plate document after analysis, the software stores the pure spectra file with the collected fluorescence data for that experiment.

Dye Sets

The Applied Biosystems Real-Time PCR Systems use the following dye sets for calibration:

- **7300 system** FAM[™], JOE[™], NED[™], ROX[™], TAMRA[™], VIC[®], and the SYBR[®] Green I dsDNA binding dye, inside preloaded 96-well pure dye plates.
- **7500 and 7500 Fast systems** All of the dyes listed above, plus CY3, CY5, and TEXAS RED[®] dyes (because of the additional filter).

The following figure shows the emission spectrum for each dye, and the filters and wavelengths at which each dye is read.

Custom Dyes

The 7300/7500/7500 Fast instrument supports the detection of custom pure dyes (dyes other than those provided by Applied Biosystems).

Custom dyes must fluoresce within the spectral range measured by the instrument:

- 500 to 650 nm for 7300 systems
- 500 to 700 nm for the 7500/7500 Fast systems

To add custom pure dyes to the Pure Dye set for your instrument, see "Creating a Custom Pure Dye Plate" on page 127.

Notes		

Preparing for the Calibration

IMPORTANT! Before performing a pure dye calibration, you must perform an ROI calibration (see page 35), a background calibration (see page 49), and an optical calibration (7500 systems only, see page 59).

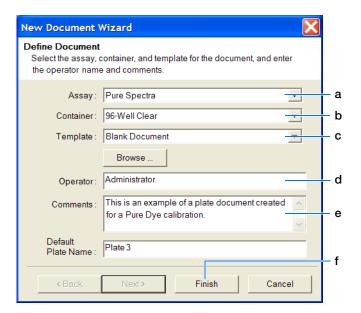
IMPORTANT! Wear powder-free gloves when you handle the pure dye plates.

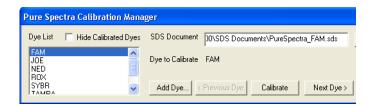
- **1.** Retrieve the spectral calibration kit from the freezer, then remove all of the pure dye plates.
- **2.** Return the spectral calibration kit to the freezer.

3. Allow the pure dye plates to warm to room temperature (approximately 5 minutes).

IMPORTANT! Do not remove a pure dye plate from its packaging until you are ready to run it. The fluorescent dye in the wells of each pure dye plate is photosensitive. Prolonged exposure to light can diminish the fluorescence signal strength of the plate.

Continue with "Creating a Plate Document for the Pure Dye Calibration" on page 72.

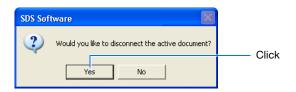

Creating a Plate Document for the Pure Dye Calibration


- 1. In the SDS software, click ☐ (or select File ▶ New).
- **2.** Configure the New Document dialog box:
 - a. Select Assay ▶ Pure Spectra.
 - b. Select Container ▶ 96-Well Clear.
 - c. Select Template > Blank Document.
 - d. In the Operator field, enter your name.
 - e. In the Comments field, enter any information that you want to attach to the file (such as the plate bar code).
 - f. Click Finish.

Note: It is not necessary to name or save the pure dye plate document. The SDS software automatically saves the pure dye data to a calibration file on the computer hard drive.

The Pure Spectra Calibration Manager is displayed.

Continue with "Preparing Plates and Performing the Pure Dye Calibration" on page 73.



Preparing Plates and Performing the Pure Dye Calibration

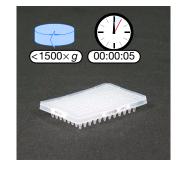
Selecting the Dye

- **1.** In the Pure Spectra Calibration Manager:
 - **a.** In the Dye List field, select a pure dye to calibrate.
 - b. Click Calibrate .
 - **c.** If you are prompted to disconnect the plate document, click Yes.
 - **d.** A message prompts you to load the plate. Do not click Yes or No at this time.

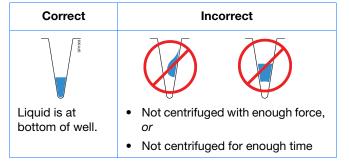

Preparing and Loading a Pure Dye Plate

1. Remove the appropriate pure dye plate from its packaging.

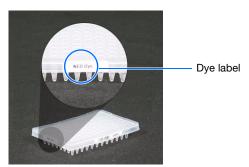
IMPORTANT! Do not discard the packaging for the pure dye plate. The pure dye plate can be used up to three times if it is stored in its original packaging sleeve.


2. Standard plates only: Vortex the plate for 5 seconds. Do not vortex Fast plates.

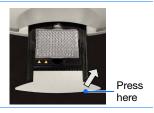
(Remaining steps apply to both standard and Fast plates.)

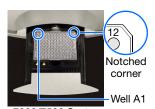


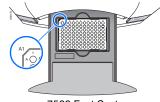
3. Briefly centrifuge the pure dye plate in a centrifuge with a plate adapter (<1500 xg).



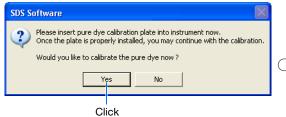
4. Verify that the dye standard in each well of the pure dye plate is at the bottom of the well.
If not, centrifuge the plate again at a higher speed and for a longer period.




5. Verify that the pure dye plate that you are about to load matches the dye selected in the Pure Spectra Calibration Manager.


6. Load the plate in the instrument as described in "Loading the Plate" on page 40.

Note: When closing the instrument tray, apply pressure to the right side of the tray and at an angle.


7300/7500 System Standard plate

7500 Fast System Fast plate

Performing the Pure Dye Calibration

In the dialog box that prompts you to load the plate (see step 1d on page 73, click ves), then wait for the run to complete (~5 minutes).

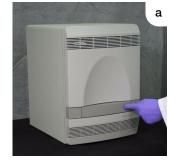
Cli	ck	

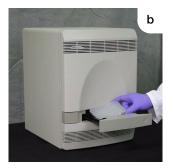
While the SDS Software performs the pure dye calibration, it locks the controls of the Pure Spectra Calibration Manager.

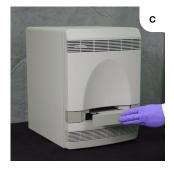
Unloading the Plate

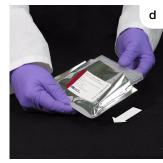
WARNING PHYSICAL INJURY

HAZARD. During instrument operation, the sample block can be heated to 100 °C. Before performing the following procedure, be sure to wait until the sample block reaches room temperature.


- **1.** When the SDS software completes the run:
 - **a.** Press the tray to open it.
 - **b.** Remove the pure dye plate from the tray.
 - **c.** Press the tray to move it into the instrument.
 - **d.** Place the pure dye plate inside its packaging sleeve, and return it to the spectral calibration kit in the freezer.


Note: Do not discard the pure dye plates. If you store the plates in their packaging sleeves at -20 to -25 °C, you can use the pure dye plates up to three times after you open them.


Calibrating Remaining Dyes

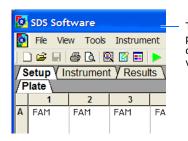

- 1. Click Next Dye > .
- 2. Repeat the procedures in "Preparing and Loading" a Pure Dye Plate" on page 73 through "Calibrating Remaining Dyes" on page 75 to run the remaining pure dye plates (JOE, NED, ROX, SYBR Green, TAMRA, VIC).

Note: If you are using a 7500 or 7500 Fast instrument, also perform calibrations for the CY3, CY5, and TEXAS RED pure dyes.

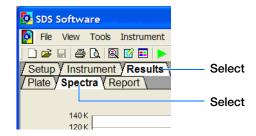
3. After you calibrate the instrument with all pure dyes provided in your spectral calibration kit, click Finish.

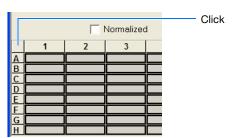
Continue with "Analyzing the Pure Dye Calibration Data" on page 77.

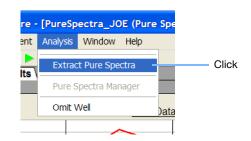
Notes_____

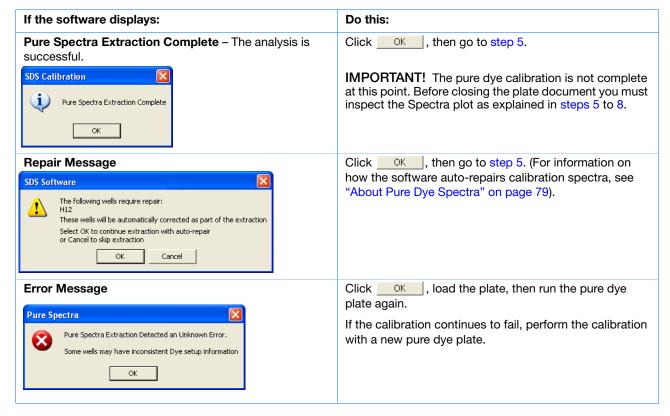

Analyzing the Pure Dye Calibration Data

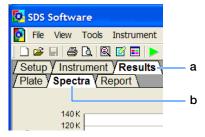
When you run each pure dye plate, the SDS Software automatically creates and saves a plate document for each dye. After you calibrate all of the pure dye plates, the plate documents remain open behind the plate document displayed by the software. To complete the calibration, analyze all open pure dye documents as explained below.

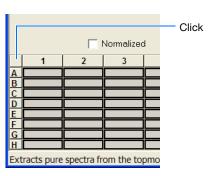

- **1.** From the Windows menu, select the plate document to analyze.
- **2.** Select the **Results** tab, then select the **Spectra** tab.
- **3.** Select all wells of the plate document by clicking the upper-left corner of the plate grid.


4. Click ▶ (or select Analysis ▶ Extract Pure Spectra).


The SDS software completes the extraction, then displays a message (see next page).

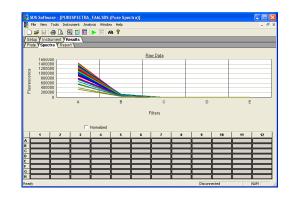

The SDS Software creates a plate document for each calibrated dye (behind the visible plate document)

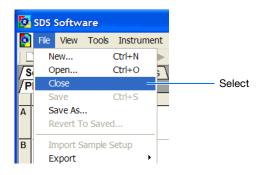




- **5.** In the pure dye plate document:
 - a. Select the Results tab.
 - **b.** Select the **Spectra** tab.
- **6.** Select all wells of the plate document by clicking the upper-left corner of the plate grid.

- 7. Using the tables in "Evaluating Pure Dye" Calibration Spectra" on page 80 as a reference, verify that the peak for the spectrum of the pure dye occurs at the correct filter:
 - 7300 system see page 80
 - 7500 system see page 82
 - 7500 Fast system see page 84


If the peak for the spectra of a dye occurs in the wrong filter, you may have run the wrong dye plate during the calibration. Repeat the procedure using the correct dye.

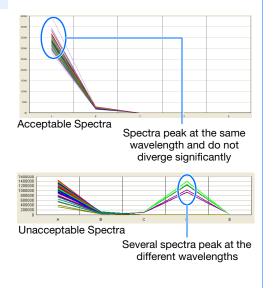

8. Select File ▶ Close.

The SDS Software displays the plate document for the next pure dye plate.

IMPORTANT! Do not close a plate document until vou have extracted it. During the calibration, the software creates plate documents for each pure dye plate as it was run. You must extract each one individually before closing it.

9. Repeat steps 1 through 8 to extract the calibration data for the remaining pure dyes.

When you complete the pure dye spectra calibrations for the remaining dyes, close the remaining plate document, then continue with "Verifying the Instrument Performance" on page 87.


About Pure Dye Spectra

The product of a pure dye calibration is a collection of spectral profiles that represent the fluorescence signature of each pure dye standard. Each profile consists of a set of 96 lines that correspond to the fluorescence gathered from the 96 wells of the pure dye plate. The SDS software plots the resulting data for each spectral profile in a graph of fluorescence versus filter.

When the software extracts the calibration data from a pure dye run, it evaluates the fluorescence signal generated by each well in terms of the collective spectra for the entire plate. Dye spectra are generally acceptable if they peak within the same filter as their group but diverge slightly at other wavelengths (divergence is not shown in the figure at the right).

The SDS software can compensate for some differences in a spectral profile by replacing (auto-repairing) the spectra of unacceptable wells with the spectra of neighboring wells. However, the software allows only a few replacements and may reject the calibration if the spectra between neighboring wells vary significantly.

Note: Because the wells in a pure dye plate contain the pure dye at the identical concentration, the resulting signals for all wells should be similar. The variations in spectral position and peak position are caused by minor differences in the optical and excitation energy between individual wells.

Evaluating Pure Dye Calibration Spectra

Use the tables in this section to verify that the peak for the spectra of the pure dye occurs at the correct filter for your system:

- **7300 system** see page 80
- **7500 system** see page 82
- **7500 Fast system** see page 84

If the peak for the spectra of the dye occurs in the wrong filter, you may have run the wrong dye plate during the calibration. Repeat the procedures for only that dye.

Table 1 Spectra for pure dyes supported by the 7300 system

Instrument	Pure Dye	Filter	Peak (nm)	
7300 System	FAM	А	~520 nm	160% Been Dela 100% 100% 100% 100% 100% 100% 100% 100
	JOE	В	~550 nm	1700 NO
	NED	С	~550 nm	1000 1000 1000 1000 1000 1000 1000 100

Notes			

Table 1 Spectra for pure dyes supported by the 7300 system (continued)

Notes____

Table 2 Spectra for pure dyes supported by the 7500 system

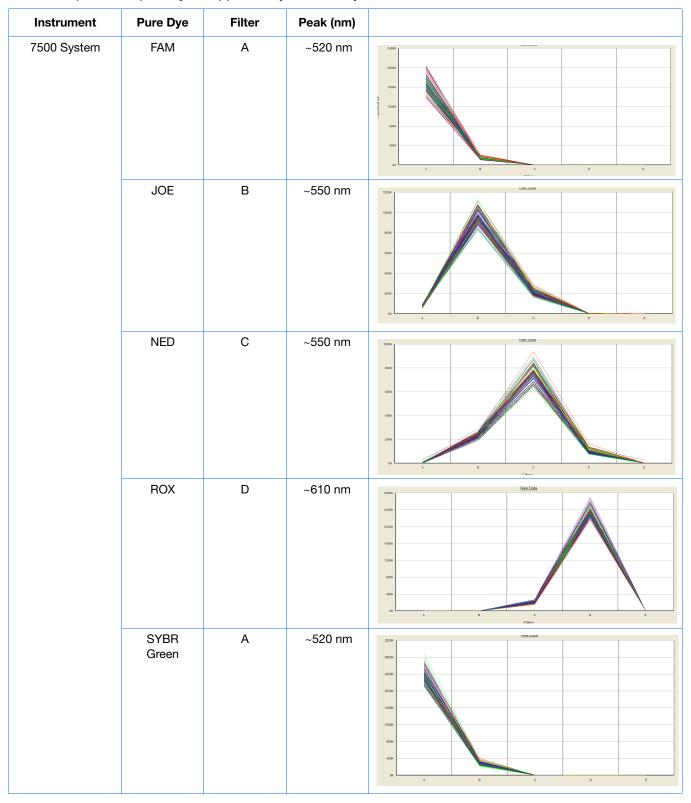


Table 2 Spectra for pure dyes supported by the 7500 system (continued)

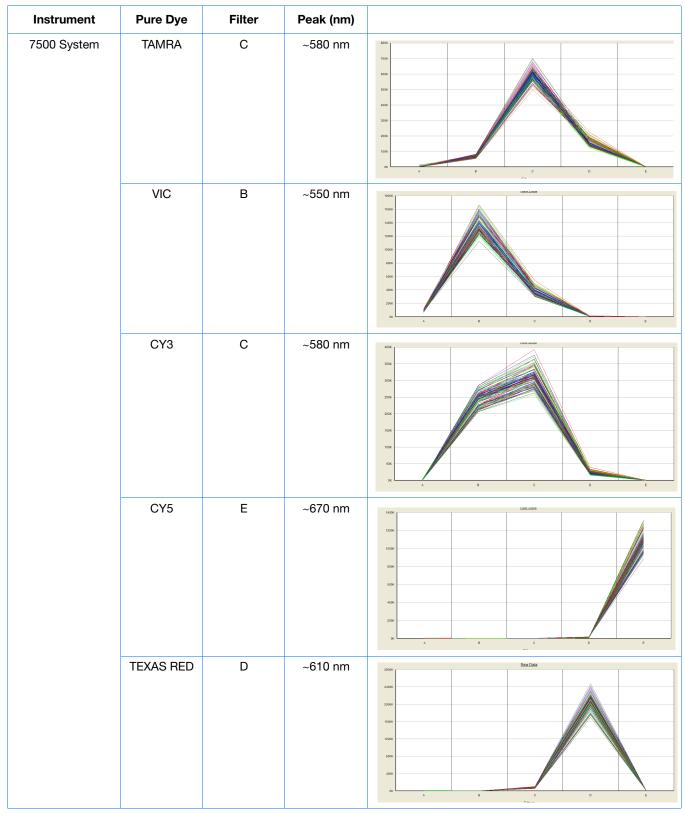


 Table 3
 Spectra for pure dyes supported by the 7500 Fast system

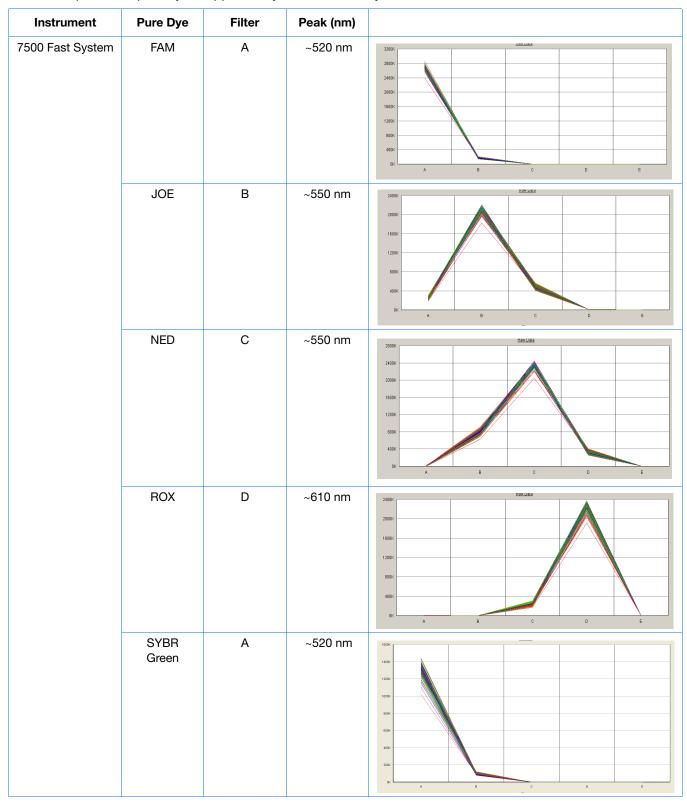
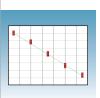
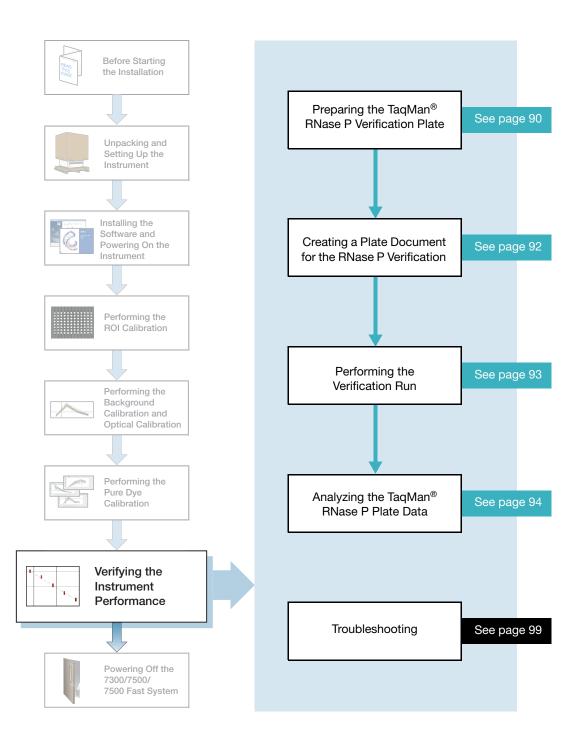


 Table 3
 Spectra for pure dyes supported by the 7500 Fast system (continued)


Instrument	Pure Dye	Filter	Peak (nm)	
7500 Fast System	TAMRA	С	~580 nm	700K 600K 400K 200K 200K 100K A B C D E
	VIC	В	~550 nm	1600K 1400K 1200K 1000K 600K 400K 200K 0K A B C D E
	CY3	С	~580 nm	350K 300K 250K 150K 100K 0K A B C D E
	CY5	Е	~670 nm	2000K 1400C 1200C 600C
	TEXAS RED	D	~610 nm	2000K 1600K 1209K 800K 400K A B C D E

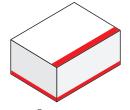
Notes____



Notes

Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Installation and Maintenance Guide

Verifying the Instrument Performance



Overview

Time Required

- 7300/7500 systems ~ 2 hours
- 7500 Fast systems ~ 40 minutes

Materials Required

TaqMan® RNase P Instrument Verification Plate Kit

TaqMan® RNase P Instrument Verification Plate

Powder-free Gloves

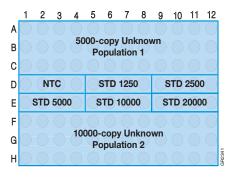
Safety Goggles

Centrifuge with plate adapter

When to Verify Instrument Performance

Applied Biosystems recommends running a TaqMan® RNase P Instrument Verification plate:

- When installing the system (you must perform all calibrations in this order: ROI ▶ background ▶ optical (7500/7500 Fast systems only) ▶ pure dye ▶ instrument verification).
- After moving the instrument to another location.
- As needed to verify the function of the 7300/7500/7500 Fast instrument.


Purpose of RNase P Runs

The TaqMan RNase P Instrument Verification Plate run verifies the performance of an Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System. The RNase P plate is pre-loaded with the reagents necessary for the detection and quantification of genomic copies of the human RNase P gene (a single-copy gene encoding the RNase moiety of the RNase P enzyme). Each well contains:

- Reaction mix:
 - **7300/7500 systems:** 1× TaqMan[®] Universal PCR Master Mix
 - **7500 Fast systems:** 1× TaqMan[®] Fast Universal PCR Master Mix
- RNase P primers
- FAM[™] dye-labeled probe)
- Known concentration of human genomic DNA template

010	

The figures below illustrate the arrangement of the standard and unknown populations on the RNase P plate. The RNase P plate contains five replicate groups of standards (1250, 2500, 5000, 10,000, and 20,000 copies), two unknown populations (5000 and 10,000 copies), and four no template control (NTC) wells.

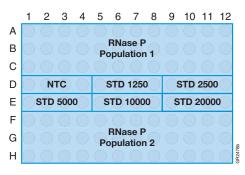


Plate for 7300/7500 system

Plate for 7500 Fast system

After the run, the SDS software:

- Generates a standard curve from the averaged threshold cycle (C_T) values of the replicate groups of standards.
- Calculates the concentration of the two unknown populations using the standard curve
- Calculates the following using the mean quantity and standard deviation for the 5,000- and 10,000-copy unknown populations to assess the instrument performance:

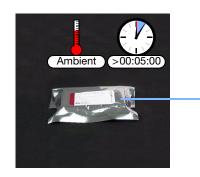
$$[(CopyUnk_2) - 3(\sigma_{CopyUnk_2})] > [(CopyUnk_1) + 3(\sigma_{CopyUnk_1})]$$

where:

- CopyUnk₁ = Average copy number of unknown #1 (5,000-copy population)
- $\sigma_{CopyUnk1}$ = Standard deviation of unknown #1 (5,000-copy population)
- CopyUnk₂ = Average copy number of unknown #2 (10,000-copy population)
- σ_{CopyUnk2} = Standard deviation of unknown #2 (10,000-copy population)

The instrument passes the verification if the analyzed data demonstrates that the instrument distinguishes between 5,000 and 10,000 genome equivalents with a 99.7% confidence level.

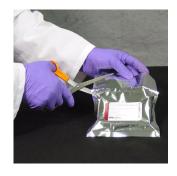
IMPORTANT! Up to six outlier wells from each unknown replicate group in a 96-well TaqMan RNase P Instrument Verification Plate can be omitted from the analysis to meet specifications.

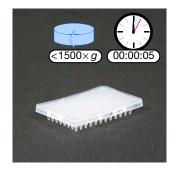

Preparing the TaqMan® RNase P Verification Plate

IMPORTANT! You must perform an ROI calibration (see page 35), a background calibration (see page 49) and a pure dye calibration (see page 67) before running an RNase P plate.

IMPORTANT! Wear powder-free gloves when you handle the RNase P Verification plate.

1. Retrieve the TaqMan RNase P Verification Plate Kit from the freezer, remove the RNase P plate, then allow the plate to warm to room temperature (approximately 5 minutes).


RNase P Verification Plate


2. Remove the RNase P plate from its packaging.

Note: If the RNase P plate contains a compression pad, remove it from the plate. Applied Biosystems does not recommend the use of compression pads with the 7300/7500/7500 Fast system.

- Standard plates only: Vortex the plate for 5 seconds. Do not vortex Fast plates.
 (Remaining steps apply to both standard and Fast plates.)
- **4.** Centrifuge the plate for 2 minutes in a centrifuge with a plate adapter (<1500 kg).

IMPORTANT! The plate must be well mixed and centrifuged.

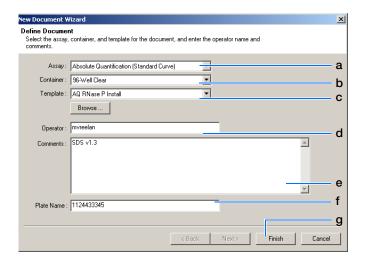
5. Verify that the liquid in each well of the plate is at the bottom of the well. If not, centrifuge the plate again at a higher speed and for a longer period of time.

Continue with "Creating a Plate Document for the RNase P Verification Run" on page 92.

Correct	Incorrect		
Liquid is at bottom of well.	Not centrifuged with enough force, or		
	Not centrifuged for enough time		

Creating a Plate Document for the RNase P Verification Run

- 1. In the SDS software, click ☐ (or select File ▶ New).
- **2.** In the New Document dialog box:
 - a. Select Assay > Absolute Quantification (Standard Curve).
 - b. Select Container > 96-Well Clear.
 - c. Select Template > AQ RNase P Install.
 - **d.** In the Operator field, enter your name.
 - e. In the Comments field, enter any information that you want to attach to the file (such as the plate bar code).
 - f. In the Default Plate Name field, enter the bar code of the RNase P plate.
 - g. Click Finish .
- 3. In the SDS software, select File ▶ Save As.

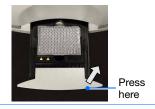

IMPORTANT! Do not modify the plate document. The sample, detector, and method for the run are coded into the software.

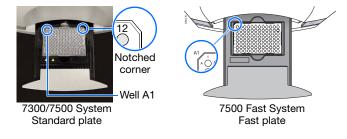

4. Save the document. In the Save As dialog box, select the folder:

If the Save in field does not display SDS Documents, navigate to **D**: drive > Applied Biosystems > SDS Documents.

After selecting the folder, Click Save .

Prepare and run the RNase P plate as explained on page 93.





Performing the Verification Run

1. Load the plate in the instrument as described in "Loading the Plate" on page 40.

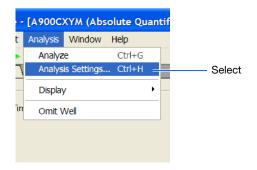
Note: When closing the instrument tray, apply pressure to the right side of the tray and at an angle.

- **2.** In the plate document:
 - a. Select the **Instrument** tab.
 - b. Click Start

The instrument begins the run, which lasts 1.5 to 2 hours using a 7300/7500 Real-Time PCR system or <40 minutes using a 7500 Fast Real-Time PCR system.

Note: Before starting the run, the instrument may pause (up to 10 minutes) to allow the heated cover to reach the correct temperature.

3. When the run is complete, click OK.


Continue with "Analyzing the TaqMan® RNase P Plate Data" on page 94.

Analyzing the TaqMan® RNase P Plate Data

1. In the SDS software, select Analysis Analysis Settings.

Ct Analysis

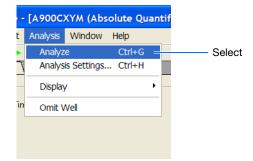
Threshold: 0.728583

Use System Calibration

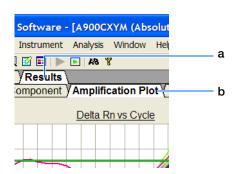
Detector: All

а

b


Auto Ct

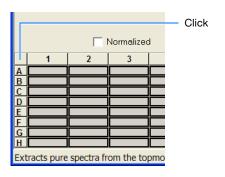
Manual Ct

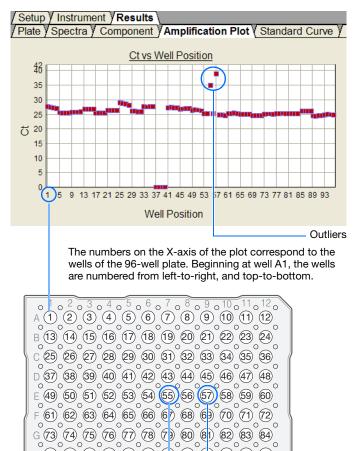

- **2.** In the Analysis Settings dialog box:
 - a. Select Auto Ct.
 - **b.** Click OK.

3. In the SDS software, click (or select Analysis ▶ Analyze).

The SDS software analyzes the run data and displays the results in the Results tab.

- **4.** Access the results. In the plate document:
 - a. Select the **Results** tab.
 - b. Select the **Amplification Plot** tab.





- **5.** Display the data. In the Amplification Plot tab:
 - a. Click the upper-left corner of the plate grid to select all wells.
 - b. Select Data > Ct vs. Well Position to display the Ct vs. Well Position plot.
- **6.** Verify the uniformity of each replicate population by comparing the groupings of C_T values.

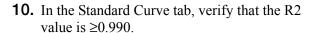
Note: Experimental error may cause some wells to be amplified insufficiently or not at all. These wells typically produce C_T values that differ significantly from the average for the associated replicate wells. If included in the calculations, these outlying data (outliers) can result in erroneous measurements.

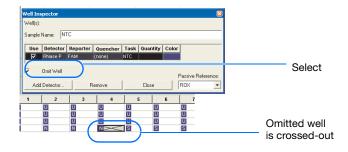
- **7.** If outliers are present, reanalyze the run:
 - a. In the plate grid, select the wells that produced the outlying data.
 - b. Select View > Well Inspector.

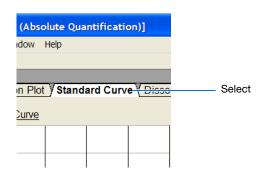
(88) (88) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96)

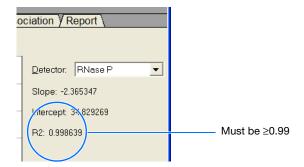
7300/7500 system plate

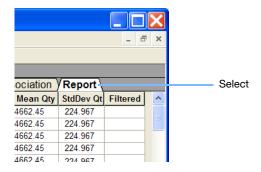
Notes


Outliers

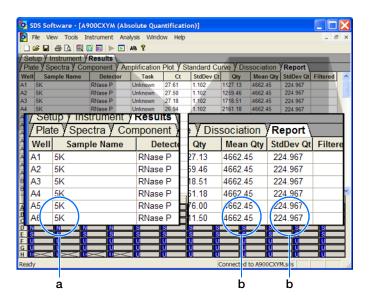

- **c.** In the Well Inspector, select **Omit Well**.
- d. Click (or select **Analysis** ▶ **Analyze**) to reanalyze the run without the outlying data.
- **8.** Repeat step 7 on the previous page for other wells with outlying data.

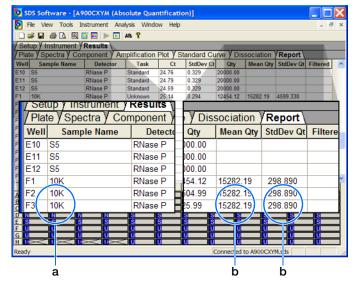

IMPORTANT! Up to six wells from each replicate group in a RNase P plate can be omitted to meet specifications. If the analysis contains more than six outliers, troubleshoot the RNase P verification run. See "Troubleshooting" on page 99.


9. In the Results tab, select the **Standard Curve** tab



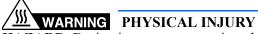
11. In the Results tab, select the **Report** tab.


- **12.** Calculate the verification value for the 5000-copy population:
 - a. In the Report tab, scroll to a sample in the 5K population.
 - **b.** Apply the values in the Mean Qty and StdDev Qty columns to the following equation:


5K value = Mean Qty + 3(StdDev Qty)

- **13.** Calculate the verification value for the 10000-copy population:
 - a. In the Report tab, scroll to a sample in the 10K population.
 - **b.** Apply the values in the Mean Qty and StdDev Qty columns to the following equation:

10K value = Mean Qty - 3(StdDev Qty)


- **14.** Compare the verification values for the 10000and 5000-copy populations:
 - If the 10K value (step 13) is greater than the 5K value (step 12), the 7300/7500/7500 Fast system has passed the installation verification.
 - If the 10K value is not greater than the 5K, the 7300/7500/7500 Fast system has failed the installation verification. Troubleshoot the RNase P verification run. See "Troubleshooting" on page 99.

Chapter 7 Verifying the Instrument Performance Analyzing the TaqMan® RNase P Plate Data

Unloading the Plate

HAZARD. During instrument operation, the sample block can be heated to 100 °C. Before performing the following procedure, be sure to wait until the sample block reaches room temperature.

- **1.** Remove the RNase P plate:
 - **a.** Press the tray to open it.
 - **b.** Remove the RNase P plate.
 - **c.** Press the tray to move it into the instrument.
- **2.** Discard the plate.

Troubleshooting

Troubleshooting - RNase P Plate Run

Condition: More than six outliers present in RNase P plate data

Contact your Applied Biosystems service and sales representative to order a replacement TaqMan RNase P Instrument Verification Plate. If the replacement RNase P plate fails, contact Applied Biosystems technical support or your service representative for further assistance.

Condition: RNase P plate verification run failed

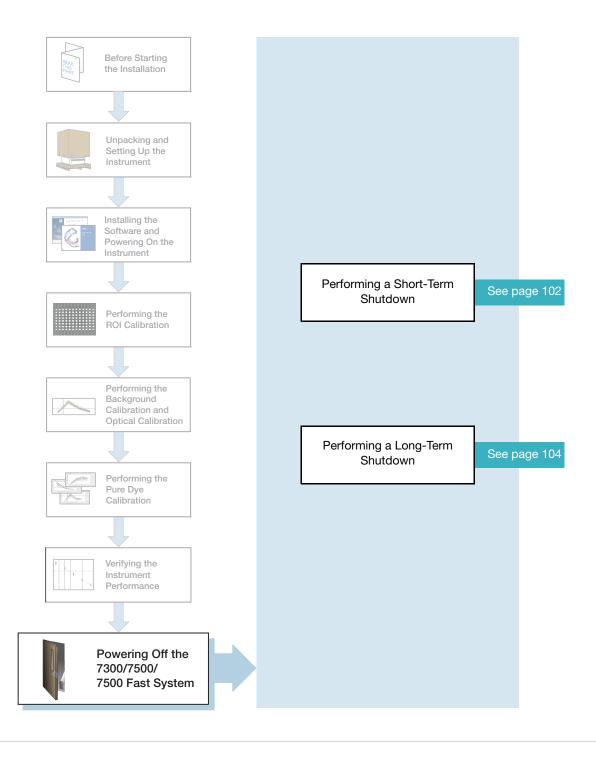
- 1. Remove the RNase P plate:
 - a. Press the tray to open it.
 - b. Remove the RNase P plate from the tray.
 - c. Push the tray back into the instrument.
- 2. Hold the plate up to a light source and verify that all wells contain the same volume of fluid.

If there are differences in fluid volumes, check the heat seal of the wells with lower volumes for signs of damage or evaporation.

Also, compare the position of the wells that have lower volumes with the outliers that you have removed from the plate. If the well positions coincide, the heat seal on the plate may be defective and resulted in the evaporation of the associated samples.

3. Contact your Applied Biosystems service and sales representative to order a replacement TagMan RNase P Instrument Verification Plate. If the replacement RNase P plate fails, contact Applied Biosystems technical support or your service representative for further assistance.

WARNING PHYSICAL INJURY HAZARD.


During instrument operation, the sample block can be heated to 100 °C. Before performing the following procedure, be sure to wait until the sample block reaches room temperature.

B. I	

Chapter 7 Verifying the Instrument Performance Troubleshooting

Powering Off the 7300/7500/7500 Fast System

Performing a Short-Term Shutdown

Perform the short-term shutdown procedure if you will use the instrument within 7 days.

Time Required

5 minutes

Performing a Short-term Shutdown

1. Press the tray to open it.

2. If the tray contains a plate, remove it, then press the tray to move it into the instrument.

3. Press the instrument power button.

8

- **4.** Power off the computer and monitor:
 - a. Select # start ▶ OShut Down.
 - **b.** In the Shut Down Windows dialog box (not shown), select **O Shut Down**.
 - **c.** Power off the monitor.

Performing a Long-Term Shutdown

Perform the long-term shutdown procedure if the instrument will be inactive for more than 7 days.

Time Required

5 minutes

Materials Required

Plate, packaging (from step 8 on page 21)

Performing a Long-term Shutdown

- **1.** Press the tray to open it.
- **2.** If the tray contains a plate, remove it.
- **3.** Load the packaging plate into the tray.

Note: If the shipping plate is not available, substitute an unused reaction plate. During storage, the instrument optics block rests on the plate to protect the optics block.

- **4.** Press the tray to move it into the instrument.
- **5.** Press the instrument power button.

- **6.** Power off the computer and monitor:
 - a. Select start > OShut Down.
 - **b.** In the Shut Down Windows dialog box (not shown), select **O Shut Down**.
 - c. Power off the monitor.

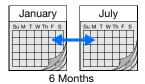
Maintaining the Instrument

Recommended Maintenance Schedule	107
Archiving and Backing Up SDS Files	109
Decontaminating the Sample Block	110
Defragmenting the Hard Drive	116
Moving the 7300/7500/7500 Fast System	117
Monitoring Lamp Status	119
Replacing the Halogen Lamp	120
Replacing the Instrument Fuses	124
Updating the Operating System Software and Service Packs	126

Recommended Maintenance Schedule

Weekly Maintenance Tasks

- · Check disk space
- Archive or back up SDS plate document files (see page 107)
- Cycle the computer and instrument power (power off, then power on the computer and instrument)
- Wipe instrument surfaces with a lint-free cloth


IMPORTANT! Never use organic solvents to clean the 7300/7500/7500 Fast system.

Monthly Maintenance Tasks

- Perform a background calibration (see page 49)
- Perform an optical calibration on 7500/7500 Fast systems (see page 59)
- Clean up and defragment the computer hard drive (see page 114)

Semi-Annual Maintenance Tasks

- Perform a background calibration (see page 49)
- Perform an optical calibration on 7500/7500 Fast systems (see page 59)
- Perform a region of interest (ROI) calibration (see page 35)
- Perform a pure dye calibration (see page 67)

Note: You can run a background calibration to check for contamination. If any parts of the optics are replaced or moved, you must run a background calibration, an ROI calibration, an optical calibration (7500/7500 Fast only), and a pure dye calibration.

Miscellaneous Maintenance Tasks

Perform the following tasks as needed to resolve problems as they arise:

- Decontaminate the sample block (see page 108)
- Move the 7300/7500/7500 Fast system (see page 115)
- Replace the halogen bulb (see page 117)
- Replace the instrument fuses (see page 122)
- Update the Microsoft Windows operating system (see page 124)

Archiving and Backing Up SDS Files

Archiving SDS Files

To conserve space on the computer hard drive, SDS plate document files can be archived using a data compression utility. Several commercially available compression utilities are available. PKZIP and *.arc are archive formats common to the Microsoft® Windows® operating system.

Backing Up SDS Files

Applied Biosystems strongly recommends that you back up the plate documents generated by your 7300/7500/7500 Fast system because backing up:

- Protects against potential data loss of data caused by an unforeseen failure of the computer or its hard drive(s).
- Conserves space on the hard drive and optimizes performance, if you remove old data after backing up.

See "Choosing a Backup Storage Device" on page 10 for more information about backup storage devices.

Developing a Data Management Strategy

Applied Biosystems recommends developing a strategy for dealing with the files produced by the SDS software. During a single day of real-time operation, the Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System can generate over 0.5 MB of data. Data management is a concern only if you perform absolute or relative quantification experiments on your 7300/7500/7500 Fast system. These real-time runs generate significantly more data than allelic discrimination or plus/minus experiments.

Checking disk space

If you perform real-time experiments on your 7300/7500/7500 Fast system, check the amount of available space on your hard drive weekly. When the hard drive is within 20% of maximum capacity, transfer the older data to a backup storage device.

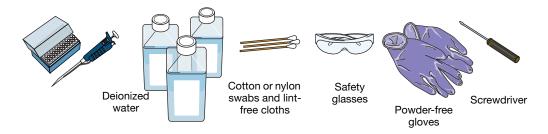
Notes		

Decontaminating the Sample Block

WARNING PHYSICAL INJURY HAZARD. Do not remove the instrument cover. There are no components inside the 7300/7500/7500 Fast system that you can safely service yourself. If you suspect a problem, contact an Applied Biosystems Service Representative.

WARNING PHYSICAL INJURY HAZARD. During instrument operation, the sample block can be heated to 100 °C. Before performing the following procedure, be sure to wait until the sample block reaches room temperature.

The following procedure explains how to eliminate fluorescent contaminants from the sample block of the 7300/7500/7500 Fast instrument. Perform the procedure to resolve problematic background runs where one or more wells consistently exhibit abnormally high signals, indicating the presence of a fluorescent contaminant.


Time Required 30 minutes

Materials Required

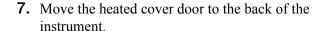
Pipette (100-μL) with pipette tips

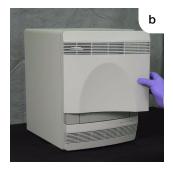
95% ethanol solution

10% bleach solution

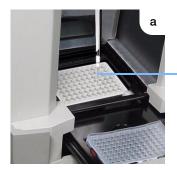
Cleaning the Sample Wells

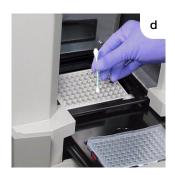
IMPORTANT! Wear powder-free gloves when you perform this procedure.


- **1.** Identify the contaminated wells of the sample block (see "Troubleshooting" on page 64).
- **2.** Remove the plate and the tray holder.
- **3.** Close the tray. Apply pressure to the right side of the tray and at an angle.
- **4.** Manually raise the block from the ROI Inspector window:
 - a. Click □ (or select File ▶ New).
 - **b.** In the New Document wizard, click Finish.
 - c. In the SDS software, select **Instrument** ▶ **Calibrate**.
 - d. In the warning dialog box, click to lower the sample block.
 The ROI Inspector dialog box opens.
 - e. In the ROI Inspector dialog box, click Block Up .
- **5.** Power off, then unplug the 7300/7500/7500 Fast system. Allow it to cool for 15 min.



- **6.** Open the access door to the 7300/7500/7500 Fast system.
 - **a.** Insert a thin screwdriver into the keyhole on the edge of the access door, then push to unlatch the door.
 - **b.** Open the access door.

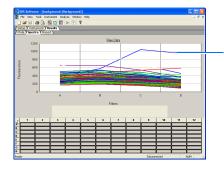




- **8.** Clean the contaminated wells of the sample block using a small volume of deionized water:
 - **a.** Pipette a small volume of deionized water into each contaminated well.
 - **b.** Pipette the water up and down several times to rinse the well.
 - **c.** Pipette the water to a waste beaker.
 - **d.** Using a cotton swab, scrub inside of each contaminated well.
 - **e.** Using a lint-free cloth, absorb the excess deionized water.

Deionized water

9. Pull the heated cover door to the front of the instrument, then close the access door.


10. Plug in, then power on the 7300/7500/7500 Fast system.

Contamination

- **11.** Create a new background plate (see Appendix B, "Creating a Background Plate" on page 125.)
- **12.** To confirm that you have eliminated the contamination, perform a background calibration run (see "Performing the Background Calibration and Optical Calibration" on page 49).
- **13.** If the contamination is still present, repeat steps 1 through 7, then go to step 14.

WARNING CHEMICAL HAZARD. Ethanol is a flammable liquid and vapor.
Exposure causes eye, skin, and respiratory tract irritation and may cause central nervous system depression and liver damage. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

- **14.** Clean the contaminated wells of the sample block using a small volume of 95% ethanol solution:
 - **a.** Pipette a small volume of 95% ethanol solution into each contaminated well.
 - **b.** In each contaminated well, pipette the solution up and down several times to rinse the well.
 - **c.** Pipette the ethanol solution to a waste beaker
- **15.** Repeat steps 8 through 11 to rinse the wells of the sample block and to verify that you have eliminated the contamination.

If the contamination is still present, repeat steps 1 through 7, then go to step 16.

IMPORTANT! Always use deionized water to rinse wells after cleaning with bleach or ethanol solution.

Sodium hypochlorite (bleach) is a liquid disinfectant that can be corrosive to the skin and can cause skin depigmentation. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and powder-free gloves.

- **16.** Clean the contaminated wells of the sample block using a small volume of 10% bleach solution:
 - **a.** Pipette a small volume of 10% bleach solution into each contaminated well.
 - **b.** In each contaminated well, pipette the solution up and down several times to rinse the well.
 - **c.** Pipette the bleach solution to a waste beaker.

-95% ethanol solution

17. Repeat steps 8 through 11, to rinse the wells of the sample block, and to verify that you have eliminated the contamination.

IMPORTANT! Always use deionized water to rinse wells after cleaning with bleach or EtOH solution.

If contamination is present, contact Applied Biosystems technical support (see page xiii).

18. Ensure that the heated cover assembly door is completely closed. If it is not, an error message is displayed.

10% bleach solution

Cleaning Up and Defragmenting the Hard Drive

When to Clean Up and Defragment the Hard Drive

- At least once every month
- When a message is displayed by the Windows operating system instructing you to defragment

Cleaning Up the Disk

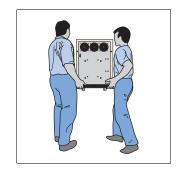
- 1. In the Windows desktop, select

 start ► All Programs.
- 2. Select Accessories ▶ System Tools ▶ Disk Cleanup.
- 3. Select the drive to clean up, then click OK at any additional prompts.
- **4.** Repeat for remaining drives.

Defragmenting

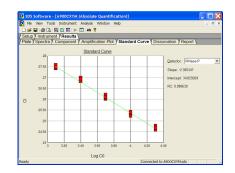
- 1. In the Windows desktop, select start > All Programs.
- 2. Select Accessories ▶ System Tools ▶ Disk Defragmenter.
- **3.** At the top of the dialog box, select the Volume (hard drive) to defragment.
- 4. Click Defragment
- **5.** When the Defragmentation Complete dialog box displays, click **Close**.
- **6.** Repeat steps 3 through 5 for the remaining drives on the computer.

Moving the 7300/7500/7500 Fast System



HAZARD. Do not attempt to lift the instrument or any other heavy objects unless you have received related training. Incorrect lifting can cause painful and sometimes permanent back injury. Use proper lifting techniques when lifting or moving the instrument. At least 2 people are required to lift the 7300/7500/7500 Fast instrument.

IMPORTANT! Moving your Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System can create subtle changes in the alignment of the instrument optics.


- **1.** Load the packing plate or empty 96-well plate in the instrument.
- **2.** Manually raise the block: from the ROI Inspector window:
 - a. Click □ (or select File ▶ New).
 - b. In the New Document wizard, click Finish.
 - c. In the SDS software, select Instrument ▶ Calibrate.
 - d. In the warning dialog box, click ves to lower the sample block.

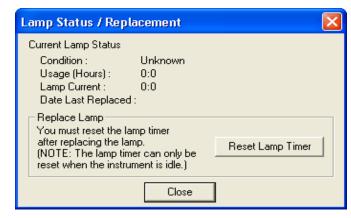
 The POL Inspector dialog box opens
 - The ROI Inspector dialog box opens.
 - e. In the ROI Inspector dialog box, click Block Up .
- **3.** Move your 7300/7500/7500 Fast system according to the guidelines on page 12.
- **4.** Connect the components of the system (see "Setting Up the 7300/7500/7500 Fast Instrument" on page 20).

- N	л.	$\overline{}$	4.	$\overline{}$	è
1	V	U	U	U	S

- **5.** Run a TaqMan[®] RNase P Instrument Verification plate (see page 87).
 - If the run passes, recalibrations are not necessary.
 - If the run fails, perform steps steps 6 through 9 to recalibrate the instrument.

- **6.** Perform an ROI calibration (see page 35).
- **7.** Perform a Background calibration (see page 49). Perform an optical calibration if you are using a 7500 or 7500 Fast system (see page 59).
- **8.** Perform a pure dye calibration (see page 67).
- **9.** Perform an instrument verification run (see page 87).

Monitoring Lamp Status


Checking Status

To determine whether the halogen lamp has enough electrical current, select **Instrument** > **Lamp Status/Replacement**.

In the Lamp Status/Replacement dialog box, the Lamp Current: field indicates a percentage figure for the electrical current. The Condition: field indicates one of the following:

• Good – The lamp is functioning well. There is no need to replace the lamp bulb at this time.

Click Close

- **Failed** The lamp bulb must be replaced. Click Close, then replace the lamp as explained below.
- Change Soon The lamp bulb usage is above 2000 hours. It is recommended to replace the lamp soon. Click Close, then decide whether to replace the lamp.

If the bulb needs replacement, see "Replacing the Halogen Lamp" on page 118.

Warning Messages

Three warning messages can be displayed before or during a run that indicate low lamp current:

Message	Description		
Warning – Cannot detect sufficient current from lamp.	Displayed at the start of a run if the lamp current has fallen below the acceptable percentage.		
Either lamp is not installed properly or needs to be replaced.	You cannot proceed with the run. You must replace the halogen bulb.		
Warning – Cannot detect sufficient current from lamp.	Displayed if the lamp current falls below the acceptable percentage during a run. The run is terminated.		
Either lamp is not installed properly or needs to be replaced.	Click OK in the message box, inspect the Instrument Log, then replace the lamp bulb.		
	You cannot proceed with the run. You must replace the halogen bulb.		
Warning - The lamp usage has exceeded 2000 hours. We	Displayed at the start of a run if the lamp usage exceeds 2000 hours.		
recommend replacing the lamp soon to ensure optimal assay performance.	Click Cancel Run , then replace the lamp, or click Continue Run .		

Replacing the Halogen Lamp

WARNING PHYSICAL INJURY HAZARD. The 7300/7500/7500 Fast system and lamp are hot! The lamp can become very hot while in use. Allow sufficient time for the lamp to cool, and put on protective, powder-free gloves before handling it.

CAUTION PHYSICAL INJURY HAZARD. Wear disposable, powder-free gloves when handling the lamp to prevent burns and to prevent shortening the life of the replacement lamp.

CAUTION WARNING. This instrument is designed for 12V, 75W halogen

Replace the halogen lamp after approximately 2000 hours of life.

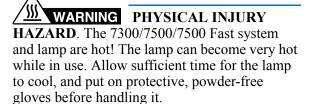
Time Required

30 minutes

Materials Required

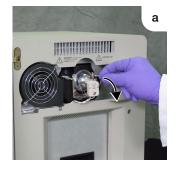
Replacing the Lamp

IMPORTANT! Wear powder-free gloves when you handle the lamp.



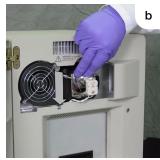
1. Power off, then unplug the 7300/7500/7500 Fast system. Allow the instrument to cool for 15 minutes.

- **2.** Open the access door to the 7300/7500/7500 Fast system.
 - **a.** Insert a thin screwdriver into the keyhole on the edge of the access door, then push to unlatch the door.
 - **b.** Open the access door.


- **3.** Remove the lamp from the instrument:
 - **a.** Slide the lamp release lever downward.
 - **b.** Firmly grasp the lamp and lift it up and out of the slotted mount.

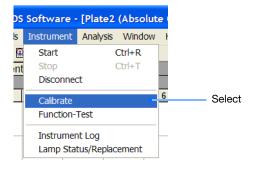
without powder-free gloves. Finger prints shorten the lamp life.

4. Inspect the lamp for signs of failure (carbon typically coats the inside of failed lamps).

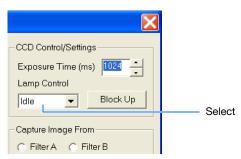


- **5.** Place the new lamp into the instrument:
 - **a.** Slide the lamp release lever upward.
 - **b.** Firmly grasp the lamp, place it into the slotted mount, then carefully slide the lamp downward into place.

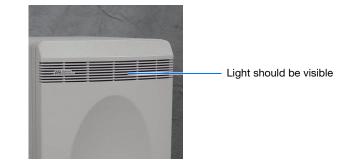
6. Close the access door.



7. Plug in and power on the 7300/7500/7500 Fast system.



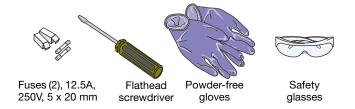
8. In the SDS software, select **Instrument** • Calibrate.


9. In the ROI Inspector dialog box, select **Lamp Control** ▶ **Idle**.

10. While the instrument is running, look through grating of the access door and verify that the lamp is illuminated, then click Done .

If the lamp is not illuminated, the replacement halogen lamp may be defective. Replace the lamp again. If the second lamp does not illuminate, check the instrument fuses for failure (see page 122).

- **11.** Perform the calibrations listed below after replacing the lamp. See:
 - Chapter 4, Performing the Regions of Interest (ROI) Calibration
 - Chapter 5, Performing the Background Calibration and Optical Calibration
 - Chapter 6, Performing the Pure Dye Calibration
 - Chapter 7, Verifying the Instrument Performance


Replacing the Instrument Fuses

CAUTION FIRE HAZARD. For continued protection against the risk of fire, replace fuses only with listed and certified fuses of the same type and rating as those currently in the instrument.

Time Required

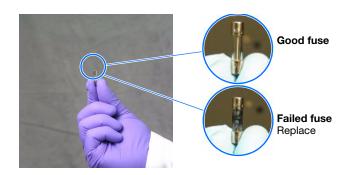
30 minutes

Materials Required

Replacing the Fuses

1. Turn off the instrument, then unplug it.

2. Using a flat-head screwdriver, unscrew and remove the fuse holders from the instrument.



inside of failed fuses.

4. Replace failed fuses with a 12.5A, 250V, 5 x 20-mm fuse.

Note: The voltage and amperage ratings are on the fuse holder.

5. Replace the fuse holder into the instrument.

6. Plug in, then power on the instrument. The installation is successful if the instrument powers on.

Note: Fuse failure can result from fluctuations in the supplied power to the instrument. To prevent further failures, consider installing an electrical protective device (see page 9).

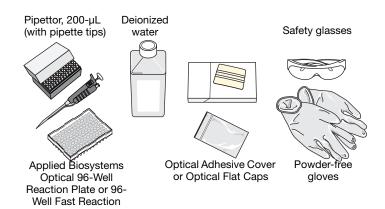
Updating the Operating System Software and Service Packs

Do not upgrade the operating system of the computer connected to the 7300/7500/7500 Fast system unless instructed to do so by an Applied Biosystems representative. New versions of the Microsoft Windows operating system can conflict with the SDS software and make the instrument inoperable.

Service Pack Updates

To install a service pack to update the operating system, review the release notes provided with the SDS software installation for compatibility issues.

Note: Applied Biosystems service engineers maintain the operating system software as part of planned maintenance visits. During a visit, an engineer updates the computer operating system as upgrades become available and are validated by Applied Biosystems.


Notes		

Creating a Background Plate

Overview

Whenever possible, use a background plate included with the spectral calibration kit. The plates supplied in the kit contain a buffer that accurately models the reagents used for PCR, and, therefore, produces high-quality calibration data. However, if a background plate from a spectral calibration kit is not available, you can create one by following the procedure below.

Materials Required

Creating a Background Plate

IMPORTANT! Wear powder-free gloves while creating the background plate.

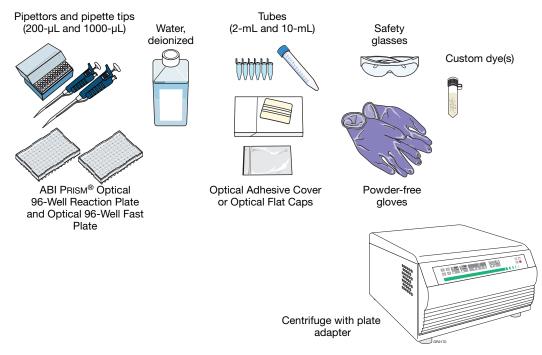
- **1.** Remove an Applied Biosystems 96-Well Optical Reaction Plate or 96-Well Fast Reaction Plate from its box and place it on a clean, dry surface.
- **2.** Aliquot 50 μ L (7300/7500 system) or 20 μ L (7500 Fast system) of deionized water to each well of the reaction plate.
- **3.** Seal the plate using an optical adhesive cover or optical flat caps.

Use the plate for background calibration in the same way you use a background plate from the spectral calibration kit. See Chapter 5, "Performing the Background Calibration and Optical Calibration."

Appendix B Creating a Background Plate	
Notes	

Creating a Custom Pure Dye Plate

Overview


The Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System can be used to run assays designed with custom dyes (dyes not manufactured by Applied Biosystems). Custom dyes must fluoresce within the spectral range measured by the instrument:

- 500 to 650 nm for 7300 systems
- 500 to 700 nm for the 7500/7500 Fast systems

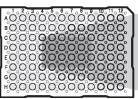
Before using custom dyes with the 7300/7500/7500 Fast instrument, you must:

- Determine optimum dye concentration
- Create a custom pure dye plate
- Add the custom dye to the software
- Perform a pure dye calibration (see Chapter 6, "Performing the Pure Dye Calibration."

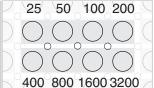
Materials Required

Determining Optimum Dye Concentration

IMPORTANT! Wear powder-free gloves while creating a custom pure dye plate.

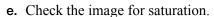


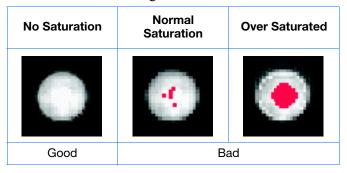
- 1. In the center wells of a 96-well plate, prepare a dilution series of the custom dye (for example, 25, 50, 100, 200, 400, 800, 1600, and 3200 nM concentrations) using 50-μL volumes for the 7300/7500 system or 20-μL volumes for the 7500 Fast system.
- **2.** Seal the wells of the reaction plate using an optical adhesive cover.
- **3.** In the SDS software, click ☐ (or select **File** ▶ **New**).
- 4. In the New Document dialog box, click


Note: It is not necessary to configure detector, sample, and method information for the plate document. The purpose of the run is to establish the correct working concentration for the dye by viewing the intensity of the raw spectra produced by the wells in the dilution series.

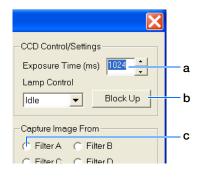
- **5.** Load the prepared plate:
 - a. Press the tray door to open it.
 - **b.** Load the pure dye plate into the plate holder.
 - **c.** Press the tray door to move the drawer into the instrument.




Select


6. In the SDS software, select **Instrument ▶ Calibrate**.

7. In the warning dialog box, click ves to move the block.



- **8.** In the ROI Inspector, create the ROI image for each filter, beginning with Filter A:
 - a. In the Exposure Time field, enter 1024.
 - b. Click Block Up .
 - c. Select Filter A.
 - d. Click Snapshot .

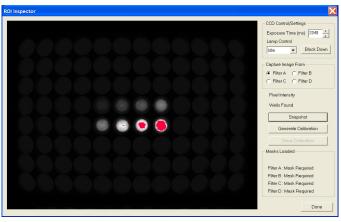
f. Record the coordinate of the well that displays the brightest possible signal without saturation. This well contains the best concentration of the custom pure dye for Filter A.

DS Software - [Plate2 (Absolute

Ctrl+R

Ctrl+T

s Instrument Analysis Window


Start

Stop

Disconnect

Function-Test
Instrument Log
Lamp Status/Replacement

nt

- **9.** Repeat step 8 (steps c through f) for the remaining filters.
- **10.** After you determine the optimum concentration for each filter, determine the optimum concentration for the custom dye:
 - Compare the results from all filters.
 - Select the concentration that yields the highest possible signal in all filters, but does not saturate.

Unloading the Plate

WARNING PHYSICAL INJURY HAZARD. During instrument operation, the sample block can be heated to 100 °C. Before performing the following procedure, be sure to wait until the sample block reaches room temperature.

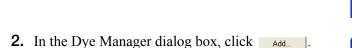
- 1. In the ROI Inspector, click Block Down
- **2.** Remove the plate from the instrument:
 - **a.** Press the tray to open it.
 - **b.** Remove the plate.
 - **c.** Press the tray to move it into the instrument.

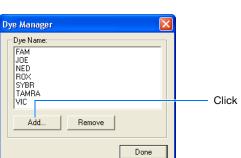
Note: If you cannot open the tray, the sample block may be in its raised position, locking the tray position. To lower the block, select **Instrument** • Calibrate, then exit the ROI Inspector.

3. Click Done .

Creating a Custom Pure Dye Plate

- 1. Prepare 5 mL (7300/7500 system) or 2 mL (7500 Fast system) of the custom pure dye at the concentration determined in step 10 on page 130.
- **2.** Pipette 50 μ L (7300/7500 system) or 20 μ L (7500 Fast system) of the diluted custom dye to all wells of an optical reaction plate.
- **3.** Seal the wells of the reaction plate using an optical adhesive cover.





Select

Adding the Custom Dye to the Software

1. In the SDS software, select **Tools** ▶ **Dye** Manager.

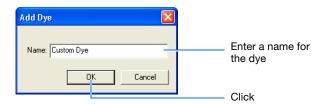
🔯 SDS Software

🗋 😅 🖫 l

/Setup V Inst

/Plate \

File View Tools Instrument Analysis Detector Manager...


Marker Manager...

Dye Manager...

Report Settings... Graph Settings. Document Information.

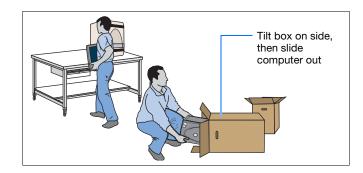
- **3.** In the Add Dye dialog box, enter a name for the custom dye, then click OK .
- 4. Click Done .

Run the custom pure dye plate (see Chapter 6, "Performing the Pure Dye Calibration.")

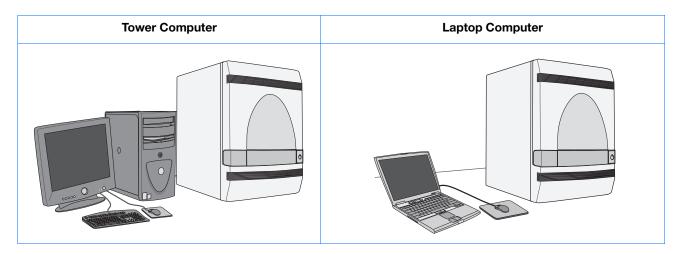
Appendix C Adding the Custom Dye to the Software	
Notes	

Setting Up the Computer

Note: This appendix duplicates the information in the *Applied Biosystems Real-Time System Computer Setup Guide*.


Unpacking the Computer and Setting Voltage	136
Connecting Components and Powering Up	138
Setting the Display Settings and Power Options	139
Connecting to the Network and Downloading Adobe Acrobat	141

Notes____


Unpacking the Computer and Setting Voltage

Note: The photos and graphic depictions in this appendix are general and are intended to guide you through the setup process. The photos and graphics might vary slightly from your system. The instrument shown below is to illustrate placement of instrument and computer.

1. Unpack the computer boxes.

2. Place the monitor, computer, keyboard, and mouse on the bench as shown. Do not connect components or the USB cable to the instrument or computer at this time. Doing so may result in installation of incorrect drivers.

- **3.** Tower computers: Set voltage and connect the power cord:
 - **a.** Examine the back of the computer tower.
 - **b.** If your computer has a voltage selection switch, set the voltage:

Country	Voltage
US/Japan	115
Europe/Australia	230

Voltage selector switch

CAUTION Always check the voltage configuration at the rear of the computer to ensure that it matches the site

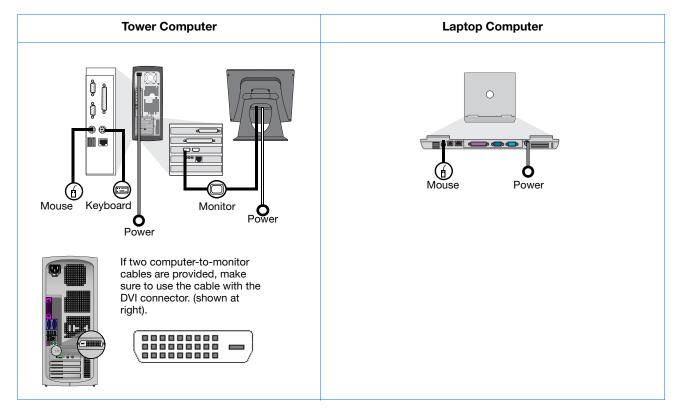
voltage. Failure to properly set the voltage switch can damage the computer.

If your computer does not contain a voltage selection switch, it contains an auto-sensing voltage selector and automatically detects the correct operating voltage.

c. Inside the US: Use the power cord shipped with the computer.

Outside the US: Locate the international voltage kit (PN603615) provided in the instrument packing kit. Select the appropriate power cord (you can discard remaining power cords).

IMPORTANT! Outside the US, use the power cord from the international voltage kit, not the power cord provided in the computer carton.


- **4.** Laptop computers: Connect the power cord (laptop computer AC adaptors contain an auto-sensing voltage detector and automatically detect the correct operating voltage):
 - **a. Inside the US**: Use the power cord shipped with the computer.

Outside the US: Locate the international voltage kit (PN4346883) provided in the instrument packing kit. Select the appropriate power cord, then connect the power cord between the AC adaptor and the laptop computer (you can discard remaining power cords).

IMPORTANT! Outside the US, use the power cord from the international voltage kit, not the power cord provided in the computer carton.

Connecting Components and Powering Up

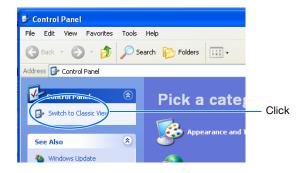
1. Connect the mouse, the keyboard, and the monitor as instructed by the quick start guide that accompanied the computer. Refer to the diagram below to verify connections.

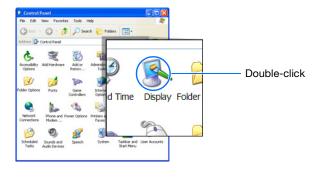
2. Power on the computer and monitor (tower computer shown at right).

The power switch on a laptop is at the top-center of the keyboard.

Wait for the computer to boot.

3. Log on using an account with windows administrator privileges (see your system administrator for more information).


The Windows operating system desktop is displayed.

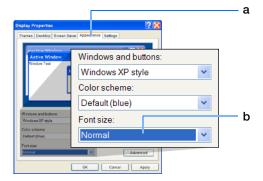

Setting the Display Settings and Power Options

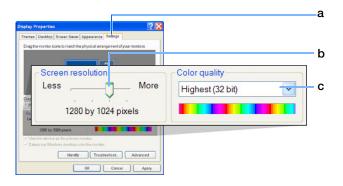
IMPORTANT! You must have administrator rights to set the display and power options for the computer.

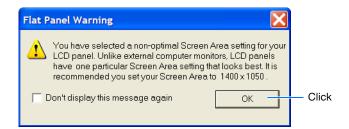
- 1. Select **#start** → **Control Panel**.
- 2. In the top left of the Control Panel, click Switch to Classic View.

3. In the Control Panel window, double-click **Display**.

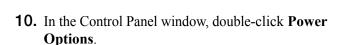

- **4.** In the Display Properties dialog box, select the screen saver:
 - a. Click the Screen Saver tab.
 - b. Select Screen Saver ▶ (None).


- **5.** In the Display Properties dialog box, select the font:
 - a. Click the Appearance tab.
 - b. Select Font size ▶ Normal.

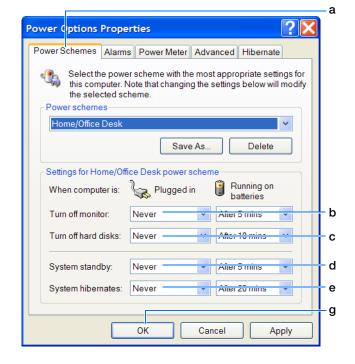

- **6.** In the Display Properties dialog box, select color quality:
 - a. Click the **Settings** tab.
 - b. In the Screen resolution box, select 1280 by 1024 pixels using the slider.


Note: Some laptop models have a maximum resolution setting of 1024 by 768 pixels.

- c. Select Color quality > Highest (32 bit).
- 7. Click OK .
- 8. If you are using a laptop computer and the computer displays a Flat Panel Warning dialog box, click OK .



9. In the Monitor Settings dialog box, click Yes.



- **11.** Set the Power Options. In the Power Options Properties dialog box:
 - a. Select the Power Schemes tab.
 - **b.** For Turn off monitor, select **Never**.
 - **c.** For Turn off hard disks, select **Never**.
 - d. For System standby, select Never.
 - e. For System Hibernates, select **Never** (this selection on the Power Schemes tab is not displayed on laptop computers).
 - f. Select the Hibernate tab (not shown), then ensure that the **Enable Hibernation** checkbox is not checked.
 - g. Click OK.

IMPORTANT! Make sure that the computer Hibernate power setting is disabled. If the Hibernate setting is enabled, data collection will stop when the computer goes into Hibernate mode.

12. Close the Control Panel window.

Connecting to the Network and Downloading Adobe Acrobat

1. Connect your computer to the network. For help in connecting your computer to the network, see your system administrator.

IMPORTANT! Do not use the 7300/7500/7500 Fast System on a wireless network. Use of a wireless network can interfere with data collection and may result in data loss.

- **2.** Download Adobe[®] Acrobat[®] Reader (free shareware) from www.adobe.com. Note that you must download Adobe[®] Acrobat[®] Reader to view document links referenced in the Real-Time System Setup wizard and the Sequence Detection Systems Online Help.
- **3.** After the computer is set up, proceed with the installation by using either:
 - The Real-Time System Setup wizard provided on the Installation CD (which starts automatically after a slight delay when you insert the CD in to the CD drive of the computer, *or*
 - This installation and maintenance guide.

Notes		

Index

Numerics	C
7500/7500 Fast system optical calibration about 59 creating the plate document 61 materials required 59 performing 59, 62 preparing the plate 59 time required 59 when to perform 59	calibration background 50 optical (7500/7500 Fast systems only) 59 pure dye 67 ROI 37 CAUTION, description xvi checking, shipped materials 14 chemical safety xxi, xxii
Α	chemical waste safety xxii
analyzing background data 56 optical calibration data (7500/7500 Fast systems only) 63 pure dye calibration data 77 RNase P plate data 94 ROI data 44 antivirus software 10 Applied Biosystems contacting xiii customer feedback on documentation xii Information Development department xii Technical Support xiii archiving SDS files 107	chemistry kits, shipped with the instrument cleaning the sample block 108 computer checking 14 cleaning up the disk 114 connecting to a network 10 defragmenting the hard drive 114 setting up 2, 20 computer, wireless network, do not use 10 contamination decontaminating the sample block 108 locating on the sample block 64 conventions IMPORTANTS! xii
assumptions for using this guide xi	in this guide xi Notes xi safety xvi
background calibration analyzing the data 56 creating the plate document 54 materials required 50 performing 55 purpose 50 time required 50 when to perform 50 background component, about 51 background plate	user attention words xi creating background plate document 54 pure dye plate document 72 RNase P plate document 92 custom pure dyes, adding to the pure dye set customer feedback, on Applied Biosystems documents xii CY3 pure dye 69, 83, 85 CY5 pure dye 69, 83, 85
background plate number of reuses 52 preparing 52 running 55 backing up SDS files 107 backup storage devices 10 biohazardous waste, handling xxiii biological hazard guidelines xxiv	D damage, checking and reporting 20 DANGER, description xvi data management 107 decontaminating the sample block 108

defragmenting the hard drive 114	hazard icons. See safety symbols, on instruments
diagram, installation workflow v	hazard symbols. See safety symbols, on instruments
disk cleanup 114	hazards. See safety
disk space, checking 107	heated cover assembly 20
display settings, setting 137	•
documentation, related xii	1
documentation, shipped with the instrument 19	IMPORTANT, description xvi
drivers, automatically installed 29	indicator lights
	location 29
E	troubleshooting 29
electrical protective devices 9	Information Development department, contacting xi
electrical safety xxiii	Installation and Maintenance Guide overview v
-	installation category xxiv
electromagnetic compatibility standards. See EMC standards	installation kit, TaqMan® RNase P Chemistry 17
EMC standards xxv	installing
encryption software 11	before starting 1 materials shipped 14
ergonomics, safety xxv	planning 5
error status light, troubleshooting 32	preparing the site 20
	SDS software 25
F	SDS software, administrator rights required 25 selecting the method 2
FAM [™] pure dye 69, 80, 82, 84	selecting the method 2 third-party software 10
Fast plate	times required 5
description 38	using the Installation and Maintenance Guide 4
do not vortex 38	using the wizard 2 Windows service pack updates 124
location of notched corner 40	instrument
Fast system, spectra data for pure dyes 84	indicator lights 29
Fast versus standard plates 38	layout 14
file compression software 10	moving 115
firewall software 11	opening door 20
flow diagram, installation v	powering on 28 preparing the site 20
front panel indicators	setting up 7
location 29	shutting down 101
troubleshooting 32	uncrating 12
Function test	unpacking 7, 12
performing 30 troubleshooting 33	instrument function test, performing 30
fuses, changing 122	instrument operation, safety xx
C	J
G	JOE^{TM} pure dye 69, 80, 82, 84
guidelines	
chemical safety xxii chemical waste disposal xxii	K
chemical waste disposal xxII chemical waste safety xxii	kits provided
	packing 15, 16
H	software and documentation 15, 19
halogen bulb	Spectral Calibration 17
replacing 117	TaqMan Reagent Starter 18 TaqMan® Reagent Starter 18
warning, hot 118, 119	TaqMan® RNase P Chemistry 17
hardware, selecting additional 9	

L	ROI calibration 38
lamp	physical hazard safety xxiv
failure 34	planning the installation 5
replacing 117	plate document
status, checking 117	7500/7500 Fast optical calibration 61
warning messages displayed when running 117	background 54 pure dye calibration 72
layout, instrument and computer 14	RNase P plate 92
lifting guidelines 12	plates
line conditioner, requirements 9	Fast, description 38
loading a plate 40	Fast, do not vortex 38
long-term shutdown 104	location of notched corner 40
N.A.	number of reuses 52
M	standard, description 38
maintenance	unloading 46
miscellaneous 106 monthly 105	power button, location 21
schedule 105	power cords, discarding those that do not apply for your
semi-annual 106	voltage 21
weekly 105	Power Line Regulator 9
materials, checking 14	power options, setting 137
moving and lifting, safety xx	powering off the instrument 102
moving guidelines 12	powering on the instrument 28
moving parts, safety xxiv	preparing
moving the 7300/7500 system 115	background plate 52 pure dye plate, custom 127
moving the system 12	pure dye plates 71
MSDSs	RNase P plate 90
description xxi	ROI calibration plate 38
obtaining xiii, xxi	protective devices, electrical 9
N	pure dye calibration
	about 69 analyzing data 77
NED [™] pure dye 69, 80, 82, 84	creating the plate document 72
network, wireless, do not use 10	custom 127
networking the 7300/7500 system 10	materials required 68 performing 73
0	preparing pure dye plates 71
omitting wells from use 95	spectra, 7300 80 spectra, 7500 82
optical calibration. See 7500/7500 Fast system optical	spectra, 7500 Fast 84
calibration	spectra, evaluating 80
outliers 95	time required 68
overvoltage category (rating) xxiv	when to perform 68 pure dye plate
	creating custom 127
P	running 73
packing kit, contents 15, 16	pure dye spectra 79
performing	pure dyes 69, 80, 82, 84
background calibration 52	
instrument function test 30	R
optical calibration (7500/7500 Fast systems only) 59	R2 value 96
pure dye run 71	radioactive waste, handling xxiii
RNase P run 90	,

Real-Time System Setup wizard	chemical xxi
accessing 3	chemical waste xxii
automates manual steps 4	conventions xvi
calibrating using 3	electrical xxiii
installing using 2	ergonomic xxv
overview 2	guidelines xxii, xxiii
red status light, troubleshooting 32	instrument operation xx moving and lifting instrument xx
registering the software 27	moving parts xxiv
Regulator, Power Line 9	moving/lifting xx
removing outliers from RNase P runs 95	physical hazard xxiv
repetitive motion, safety xxv	repetitive motion xxv
	standards xxv
replacing	workstation xxv
halogen bulb 117 instrument fuses 122	safety labels, on instruments xviii
	safety standards xxv
RNAse P plate	safety symbols, on instruments xvii
preparing 90 running 93	sample block, decontaminating 108
_	
RNase P verification run	saturation, ROI calibration 44
analyzing the data 94 calculations 97	screen saver, settings 137
creating the plate document 92	SDS software
materials required 88	administrator rights required 25
performing 93	installing 25
preparing the plate 90	registering 27
purpose 88	starting 38
time required 88	security software 11
when to run 88	semi-annual maintenance tasks 106
ROI calibration	setting
about 37	display settings 137
creating the plate document 41, 109, 115	power options 137
materials required 36	shipped materials 14
performing 44	short-term shutdown 102
preparing the plate 38	
saturation examples 44	shutting down the instrument 101
successful 45 time required 36	software
troubleshooting 48	antivirus 10
when to perform 37	encryption 11
ROI calibration plate	file compression 10
number of reuses 39	firewall 11 installing (third-party) 10
preparing 38	installing (third-party) 10
protect from light 39	installing, administrator rights required 25
running 44	selecting additional 9
ROI Inspector 42, 109, 115	shipped with the instrument 19
ROX [™] pure dye 69, 81, 82, 84	starting 38
	software and documentation kit 15, 19
running	Spectral Calibration kits 17
background plate 55	spectrum, pure dyes 80, 82, 84
pure dye plate 73	
RNase P plate 93	standard plate
ROI plate 44	description 38 location of notched corner 40
S	standards
safety	EMC xxv
before operating the instrument xx	safety xxv
hiological hazards xxiv	status lights, front panel

powering up 29 troubleshooting 32 storage devices, backup 10 surge protector, requirements 9 SYBR® Green I dsDNA Binding dye 69, 81, 82, 84 symbols, safety xvii system layout 14 networking 10 unpacking 12	unpacking the instrument 7, 12 updating Windows operating system 124 UPS, requirements 9 USB cable, connecting 28 USB failure 33 user attention words, described xi V verification run. See RNase P verification run VIC® pure dye 69, 81, 83, 85
T TAMRA pure dye 69, 81, 83, 85 TaqMan® Reagent Starter Kit 18 TaqMan® RNase P Instrument Verification plates 7300/7500 system 89 7500 Fast system 89 about 88 analyzing 94 provided 17 running 93 Technical Support, contacting xiii TEXAS RED pure dye 69, 83, 85	WARNING, description xvi waste disposal, guidelines xxiii weekly maintenance tasks 105 Windows service pack updates, installing 124 wireless network, do not use 10 wizard. See Real-Time System Setup wizard workflow v workstation safety xxv
text conventions xi third-party software 10 training, information on xiii tray closing 22 opening 21 troubleshooting background calibration 64 cannot extract 7500 optical calibration data 64 cCD failure 34 Filter Wheel failure 34 function test 33 indicator lights 29 lamp failure 34 lamp status 117 more than 6 outliers in RNase P data 99 optical calibration 64 powering on 32 red Error indicator is lit 32 RNase P run failed 99 ROI image is faint 48 Shutter failure 34 Thermal Cycler failure 34 USB failure 33	
U uncrating the instrument 12 uninterruptable power supply, requirements 9 unloading a plate 46	

Index

Worldwide Sales and Support

Applied Biosystems vast distribution and service network, composed of highly trained support and applications personnel, reaches 150 countries on six continents. For sales office locations and technical support, please call our local office or refer to our Web site at www.appliedbiosystems.com.

Applera is committed to providing the world's leading technology and information for life scientists. Applera Corporation consists of the Applied Biosystems and Celera Genomics businesses.

Headquarters

850 Lincoln Centre Drive Foster City, CA 94404 USA Phone: +1 650.638.5800 Toll Free (In North America): +1 800.345.5224 Fax: +1 650.638.5884

09/2006

