FreeStyle™ MAX CHO Expression System

For large-scale transfection of suspension CHO cells in a defined, serum-free medium

Catalog number K9000-20

Revision date 19 April 2012
Publication Part number 25-0920

MAN0000566
Table of Contents

Kit Contents and Storage .. v
Accessory Products .. vi

Introduction .. 1
 Overview .. 1
 FreeStyle™ CHO-S® Cells .. 3
 FreeStyle™ CHO Expression Medium .. 4

Methods .. 5
 General Information .. 5
 Thawing and Establishing Cells ... 6
 Subculturing Cells ... 7
 Freezing Cells ... 9
 Transfecting Cells ... 10

Troubleshooting .. 14

Appendix .. 16
 pCMV SPORT-βgal ... 16
 Technical Support .. 17
 Purchaser Notification ... 18
 References ... 19
Kit Contents and Storage

Shipping/Storage

The components of the FreeStyle™ MAX CHO Expression System are shipped and should be stored as listed in the table below. For more information about the amount supplied and composition of each reagent, see below.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Shipping</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeStyle™ CHO-S® Cells</td>
<td>Dry ice</td>
<td>Liquid nitrogen</td>
</tr>
<tr>
<td>FreeStyle™ MAX Reagent</td>
<td>Blue ice</td>
<td>+4°C</td>
</tr>
<tr>
<td>FreeStyle™ CHO Expression Medium</td>
<td>Room Temp</td>
<td>+4°C, in the dark</td>
</tr>
<tr>
<td>OptiPRO™ SFM</td>
<td>Room Temp</td>
<td>+4°C, in the dark</td>
</tr>
<tr>
<td>pCMV SPORT-βgal</td>
<td>Blue ice</td>
<td>−20°C</td>
</tr>
</tbody>
</table>

FreeStyle™ CHO-S® Cells

Storage conditions: Liquid nitrogen
Amount supplied: One vial containing 1 × 10⁷ cells
Composition: 1 mL of cells in 90% FreeStyle™ CHO Expression Medium and 10% DMSO.

FreeStyle™ MAX Reagent

Storage conditions: +4°C. Do not freeze.
Amount supplied: 1 mL (sufficient for 25 transfections and one control in a volume of 30 mL using 37.5 μL of FreeStyle™ MAX Reagent per transfection)
Composition: Proprietary.

FreeStyle™ CHO Expression Medium

Storage conditions: +4°C, in the dark
Amount supplied: 1 liter
Composition: Proprietary, defined, serum-free medium.
Note: Add 8 mM L-glutamine before use

OptiPRO™ SFM

Storage conditions: +4°C, in the dark
Amount supplied: 100 mL
Composition: Proprietary, defined, serum-free medium

pCMV SPORT-βgal

Storage conditions: −20°C
Amount supplied: 25 μg
Composition: 0.5 μg/μL in 10 mM Tris-HCl, pH 7.4, 5 mM NaCl, 0.1 mM EDTA

Product Use

For Research Use Only. Not intended for any human or animal diagnostic or therapeutic uses.
Accessory Products

Introduction

The products listed in this section may be used with the FreeStyle™ MAX CHO Expression System. For more information, refer to our website (www.lifetechnologies.com) or call Technical Support (see page 17).

Accessory Products

The following reagents supplied in the FreeStyle™ MAX CHO Expression System and other reagents suitable for use with the kit are available separately from Life Technologies. Ordering information is provided below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeStyle™ CHO-S® Cells</td>
<td>1 vial (1 × 10^7 cells)</td>
<td>R800-07</td>
</tr>
<tr>
<td>FreeStyle™ CHO Expression Medium</td>
<td>1 L</td>
<td>12651-014</td>
</tr>
<tr>
<td></td>
<td>6 × 1 L</td>
<td>12651-022</td>
</tr>
<tr>
<td>FreeStyle™ MAX Reagent</td>
<td>1 mL</td>
<td>16447-100</td>
</tr>
<tr>
<td>OptiPRO™ SFM</td>
<td>100 mL</td>
<td>12309-050</td>
</tr>
<tr>
<td></td>
<td>1000 mL</td>
<td>12309-019</td>
</tr>
<tr>
<td>L-glutamine-200 mM, liquid</td>
<td>100 mL</td>
<td>25030-081</td>
</tr>
<tr>
<td>PureLink™ HiPure Plasmid Midiprep Kit</td>
<td>25 preps</td>
<td>K2100-04</td>
</tr>
<tr>
<td>PureLink™ HiPure Plasmid Maxiprep Kit</td>
<td>10 preps</td>
<td>K2100-06</td>
</tr>
<tr>
<td>PureLink™ HiPure Plasmid Filter Maxiprep Kit</td>
<td>10 preps</td>
<td>K2100-16</td>
</tr>
<tr>
<td>PureLink™ HiPure Plasmid Megaprep Kit</td>
<td>4 preps</td>
<td>K2100-08</td>
</tr>
<tr>
<td>Trypan Blue Stain</td>
<td>100 mL</td>
<td>15250-061</td>
</tr>
<tr>
<td>Fluoreporter® lacZ/Galactosidase Quantitation Kit</td>
<td>1000 assays</td>
<td>F-2905</td>
</tr>
<tr>
<td>Penicillin-Streptomycin, liquid</td>
<td>100 mL</td>
<td>15140-122</td>
</tr>
<tr>
<td>pCEP4</td>
<td>20 µg</td>
<td>V044-50</td>
</tr>
<tr>
<td>pcDNA™3.2/V5-DEST</td>
<td>6 µg</td>
<td>12489-019</td>
</tr>
<tr>
<td>pcDNA™4/HisMax A, B, & C</td>
<td>20 µg e.a.</td>
<td>V864-20</td>
</tr>
</tbody>
</table>

FreeStyle™ MAX 293 Expression System

Protein production using the FreeStyle™ MAX Expression Systems can be performed in CHO cells or 293 cells. Below the ordering information is provided for the reagents specific for the FreeStyle™ MAX 293 Expression System.

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeStyle™ MAX 293 Expression System</td>
<td>25 reactions</td>
<td>K9000-10</td>
</tr>
<tr>
<td></td>
<td>(30 mL cultures)</td>
<td></td>
</tr>
<tr>
<td>FreeStyle™ 293-F Cells</td>
<td>1 vial (1 × 10^7 cells)</td>
<td>R790-07</td>
</tr>
<tr>
<td>FreeStyle™ 293 Expression Medium</td>
<td>1 L</td>
<td>12338-018</td>
</tr>
<tr>
<td></td>
<td>6 × 1 L</td>
<td>12338-026</td>
</tr>
</tbody>
</table>
Introduction

Overview

The FreeStyle™ MAX Expression Systems are designed to allow large-scale transient transfection and protein expression in defined, serum-free medium. The reagents provided are completely animal origin free. The systems are optimized to drive protein expression employing the following cell lines:

- For expression in suspension Chinese Hamster Ovary (CHO) cells, use the FreeStyle™ MAX CHO Expression System
- For expression in suspension human embryonic kidney 293 cells, use the FreeStyle™ MAX 293 Expression System

This manual supports the FreeStyle™ MAX CHO Expression System.

Note: For information on the FreeStyle™ MAX 293 Expression System, see the FreeStyle™ MAX 293 Expression System manual available from our website (www.lifetechnologies.com) or Technical Support (see page 17).

FreeStyle™ MAX CHO Expression System

The FreeStyle™ MAX CHO Expression System includes FreeStyle™ CHO-S® cells that have been adapted to serum-free, suspension culture in FreeStyle™ CHO Expression Medium. Transfection and expression experiments may be performed directly in FreeStyle™ CHO Expression Medium without the need to change media. The complete FreeStyle™ MAX CHO Expression System provides enough reagents to perform 25 transfections and one control transfection in a 30 mL volume, but larger volume transfections may be performed using simple scale-up of reagents.

Components of the FreeStyle™ MAX CHO Expression System

The FreeStyle™ MAX CHO Expression System includes the following major components:

- **FreeStyle™ MAX Reagent:** This transfection reagent provides high transfection efficiency in suspension FreeStyle™ CHO-S® cells (see below for more information).
- **FreeStyle™ CHO-S® cells:** This cell line is adapted to high density, serum-free suspension culture in FreeStyle™ CHO Expression Medium and is capable of producing high levels of recombinant protein (see page 3 for more information).
- **FreeStyle™ CHO Expression Medium:** This is a defined, serum-free medium formulated specifically to allow growth and large-scale transfection of suspension FreeStyle™ CHO-S® cells (see page 4 for more information).
- **OptiPRO™ Serum Free Medium** to facilitate optimal formation of DNA-lipid complexes (see next page for more information).

FreeStyle™ MAX Reagent

FreeStyle™ MAX Reagent is a proprietary, animal origin-free formulation for the highly efficient transfection of plasmid DNA into eukaryotic cells. FreeStyle™ MAX Reagent is specifically formulated to achieve the **highest expression levels** and **lowest cytotoxicity** in suspension FreeStyle™ CHO-S® Cells and FreeStyle™ 293-F Cells.

Continued on next page
OptiPRO™ SFM

OptiPRO™ Serum Free Medium is included with the FreeStyle™ MAX CHO Expression System to facilitate optimal formation of DNA-lipid complexes. OptiPRO™ SFM is a serum free medium which is devoid of any components of animal or human origin. OptiPRO™ SFM has an ultra-low protein concentration of 7.5 μg/mL. OptiPRO™ SFM is available separately from Life Technologies (see page vi for ordering information). For more information, see our website (www.lifetechnologies.com) or call Technical Support (see page 17).

Advantages of the FreeStyle™ MAX CHO Expression System

Using the FreeStyle™ MAX CHO Expression System for protein production in mammalian cells provides the following advantages:

- Uses Chinese Hamster Ovary cells, the most widely used cell line for expression of recombinant protein in mammalian cells. This may streamline the process for clinical applications.
- The FreeStyle™ MAX Reagent offers high recombinant protein yield with low cytotoxicity
- Provides a rapid transient transfection protocol for expression of your target protein.
- Uses suspension culture to easily scale up to large amounts of culture.
- All reagents are completely animal-origin free, including the defined, serum-free medium, which may be imperative for regulatory requirements
- CHO cells are known to provide stable and accurate glycosylation (Sheeley et al., 1997; Werner et al., 1998), and are more likely to yield accurate glycoproteins.

Suitable Expression Vectors

Suitable expression vectors for the FreeStyle™ MAX CHO Expression System generally express the recombinant protein under control of a CMV promoter. Other strong promoters may also be used. Below are suitable CMV-promoter driven expression vectors available from Life Technologies (see page vi for ordering information):

- pCEP4, which will express the recombinant protein under control of a CMV promoter without tag
- pcDNA™3.2/V5-DEST, which will express the recombinant protein under control of a CMV promoter with a C-terminal V5-tag
- pcDNA™4/HisMax A, B, & C, which will express the recombinant protein under control of a CMV promoter with an N-terminal HIS-tag
FreeStyle™ CHO-S® Cells

Introduction
The FreeStyle™ CHO-S® cell line is supplied with the FreeStyle™ MAX CHO Expression System and is derived from the CHO cell line (see below). FreeStyle™ CHO-S® cells are adapted to suspension culture in FreeStyle™ CHO Expression Medium. Frozen cells are supplied in and may be thawed directly into FreeStyle™ CHO Expression Medium (see Thawing and Establishing Cells, page 6).

Parental Cell Line
Chinese Hamster Ovary (CHO) cells are among the most commonly used cell lines for transfection, expression and large-scale production of recombinant proteins. The CHO-S® cell line is a stable aneuploid cell line established from the ovary of an adult Chinese hamster (Puck, 1958). The cell line has been distinguished as a separate sub-clone from the common CHO K1 cell line, and its history and stability have been extensively described (D’Anna, 1996; D’Anna et al., 1997; Deaven & Petersen, 1973).

Characteristics of FreeStyle™ CHO-S® Cells
The FreeStyle™ CHO-S® cell line exhibits the following characteristics:

- Prepared from low passage Master Cell Bank cultures derived from parental CHO-S® cells that were re-cloned by limiting dilution, and selected for their superior serum-free cell growth and transfection efficiencies. The clonally derived cultures are maintained in serum-free conditions for only 20–25 total passages.

- Adapted to serum-free suspension growth in FreeStyle™ CHO Expression Medium, a serum-free, protein-free, and chemically defined medium, formulated with no components of animal or human origin (Gorfien, 1998). Note: Cells also grow well in traditional media supplemented with serum.

- Demonstrates high transfection efficiencies with FreeStyle™ MAX Reagent.

- Suspension cultures may be transfected in FreeStyle™ CHO Expression Medium without the need to change media.

- Permits transfection of cells at large volumes, from shake flasks to bioreactors.
FreeStyle™ CHO Expression Medium

Introduction
FreeStyle™ CHO Expression Medium is a defined, serum-free medium specifically developed for the high-density, suspension culture and transfection of CHO cells. The medium contains NO human or animal origin components.

Features of the Medium
FreeStyle™ CHO Expression Medium exhibits the following features:

- Chemically defined, containing no proteins or peptide components of animal, plant or synthetic origin. There are also no undefined hydrolysates or lysates in the formulation.
- Superior growth of wild-type and recombinant CHO cells in suspension culture when compared to serum-free, undefined formulations. The medium is not recommended for adherent CHO cell culture.
- Supports the small scale growth of FreeStyle™ CHO-S® cells in shaker flasks, and the large-scale, high-density growth in bioreactors.
- Allows transfection of suspension FreeStyle™ CHO-S® cells without medium change.
- Formulated without L-glutamine to avoid problems associated with L-glutamine degradation, including ammonia accumulation. The FreeStyle™ CHO Expression Medium should be supplemented with L-glutamine to a final concentration of 8 mM before use.
- Formulated without Phenol red to minimize potential for estrogen-like effects of phenol red.

Growth Characteristics of FreeStyle™ CHO-S® Cells in the Medium
Typically, FreeStyle™ CHO-S® cells cultured in FreeStyle™ CHO Expression Medium demonstrate the following:

- Doubling time in the range of 16–22 hours (doubling time can exceed 22 hours during the first few passages after the cells have been thawed.)
- Cell densities of up to 7×10^6 cells/mL in shaker or spinner culture
- Cell densities of up to 4×10^6 cells/mL in bioreactor culture

For general cell culture, keep FreeStyle™ CHO-S® cells in between 5×10^4 and 1.5×10^6 cells/mL before transfection (or in between 5×10^5 and 2.0×10^6 cells/mL if passaging daily). A cell density that is too high will result in a decrease of transfection efficiency.

If large numbers of cells are needed, you can seed cultures at 0.5×10^6 cells/mL and use cells as soon as they reach a density of 5×10^6 cells/mL (3–4 days). Do not let cultures that have reached a cell density of 5×10^6 cells/mL grow any further, as this will result in a decrease of transfection efficiency.

Note: Individual culturing and passaging techniques coupled with cellular heterogeneity inherent within the FreeStyle™ CHO-S® cell population may result in experimental variability.
Methods

General Information

Follow the guidelines below to grow and maintain FreeStyle™ CHO-S® cells.

- **All solutions and equipment that come in contact with the cells must be sterile.** Always use proper sterile technique and work in a laminar flow hood.

- Before starting experiments, be sure to have cells established (at least 5 passages) and also have some frozen stocks on hand. We recommend using early-passage cells for your experiments. Upon receipt of the cells from Life Technologies, grow and freeze multiple vials of the FreeStyle™ CHO-S® cell line to ensure that you have an adequate supply of early-passage cells.

- For general maintenance of cells, pass FreeStyle™ CHO-S® cells when they reach a density of approximately 1–1.5 × 10⁶ viable cells/mL (generally every 48–72 hours).

- Alternatively, cells can be passed every day. If passing cells every day, pass FreeStyle™ CHO-S® cells when they reach a density of 2 × 10⁶ viable cells/mL.

- If large numbers of cells are needed, you can seed cultures at 0.5 × 10⁶ cells/mL and use cells as soon as they reach a density of 5 × 10⁶ cells/mL (3–4 days). Do not let cultures that have reached a cell density of 5 × 10⁶ cells/mL grow any further, as this will result in a decrease of transfection efficiency.

- Use trypan blue exclusion to determine cell viability (see below). Log phase cultures should be >95% viable.

- When thawing or subculturing cells, transfer cells into pre-warmed medium.

As with other human cell lines, when working with FreeStyle™ CHO-S® cells, handle as potentially biohazardous material under at least Biosafety Level 2 containment.

Preparing Media

For suspension growth and transfection applications, use:

- FreeStyle™ CHO Expression Medium. This medium should be supplemented with L-glutamine to a final concentration of 8 mM before use (e.g. 40 mL of 200 mM stock to one liter of medium).

- 5 mL/L of Penicillin/Streptomycin (0.5X Pen-Strep) may be used when required (see page vi for ordering information).

Important

FreeStyle™ CHO Expression Medium is extremely sensitive to light. For optimal results, use and store media protected from light.

Determining Cell Density and Viability

Follow the procedure below to determine viable and total cell counts.

1. Transfer a small aliquot of the cell suspension to a microcentrifuge tube.
2. Determine viability and the amount of cell clumping using the trypan blue dye exclusion method (see page vi for ordering information).
3. If cells are clumping, vortex vigorously for 10–30 seconds.
4. Determine cell density electronically using a Coulter Counter or manually using a hemacytometer.
Thawing and Establishing Cells

Introduction

Follow the protocol below to thaw FreeStyle™ CHO-S® cells to initiate cell culture. The FreeStyle™ CHO-S® cell line is supplied in a vial containing 1 mL of cells at 1 × 10⁷ viable cells/mL in 90% FreeStyle™ CHO Expression Medium and 10% DMSO. Thaw FreeStyle™ CHO-S® cells directly into the FreeStyle™ CHO Expression Medium supplied with the kit.

Materials Needed

You will need to have the following reagents on hand before beginning:

- FreeStyle™ CHO-S® cells (supplied with the kit; store frozen cells in liquid nitrogen until ready to use)
- FreeStyle™ CHO Expression Medium (supplied with the kit; pre-warm at 37°C before use). Make sure that 8 mM L-glutamine has been added.

 Note: We do not recommend adding antibiotics to media at this point as this may negatively impact cell growth.
- 125-mL polycarbonate, disposable, sterile Erlenmeyer flask with vented cap (available from VWR, West Chester PA, cat. no. 30180-036)
- Orbital shaker in 37°C incubator with a humidified atmosphere of 8% CO₂
- Reagents to determine viable and total cell counts (see Determining Cell Density and Viability, page 5)

Thawing Procedure

Store frozen cells in liquid nitrogen until ready to use. To thaw and establish cells:

1. Remove the cryovial of cells from the liquid nitrogen and thaw quickly in a 37°C water bath.

2. Just before the cells are completely thawed, decontaminate the outside of the vial with 70% ethanol. Gently break up clumps and cell pellet if present and transfer the entire contents of the cryovial into a 125-mL polycarbonate, disposable, sterile Erlenmeyer shaker flask containing 30 mL of pre-warmed FreeStyle™ CHO Expression Medium supplemented with 8 mM L-glutamine.

3. Incubate cells in a 37°C incubator containing a humidified atmosphere of 8% CO₂ in air on an orbital shaker platform rotating at 125 rpm.

4. Next day, determine viable and total cell counts (see protocol on page 5). Generally, viability is >70%; a bit lower is no reason for concern, but if viability is less than 60% thaw a new batch of cells.

5. Subculture the FreeStyle™ CHO-S® cells 24–48 hours after thawing by seeding shaker flasks at 0.3 × 10⁷ viable cells/mL in pre-warmed FreeStyle™ CHO Expression Medium supplemented with 8 mM L-glutamine. We generally use 125- or 250-mL polycarbonate, disposable, sterile, Erlenmeyer flasks containing 40 or 80 mL total working volume of cell suspension, respectively.

Important Note: Subculture cells a minimum 5 passages before use in transfection experiments to allow opportunity for recovery from thawing. To subculture cells, see the procedure on the next page.
Subculturing Cells

Passaging Cells
Every 48–72 hours

Subculture cells when the density is approximately $1–1.5 \times 10^6$ viable cells/mL, typically every 48–72 hours. When maintaining FreeStyle™ CHO-S® cells, we generally use a 125- or 250-mL polycarbonate, disposable, sterile Erlenmeyer flask with vented cap containing 25–40 mL or 50–80 mL total working volume of cell suspension, respectively.

Note: Glass flasks without baffles may be used, but thorough cleaning after each use is essential to avoid potential toxicity which is more problematic in serum-free cultures.

1. Determine viable and total cell counts (see protocol on page 5).
2. Using the cell density determined in Step 1, calculate the split ratio needed to seed the new shaker flask at $0.5–2 \times 10^5$ viable cells/mL.
3. Dilute the cells in fresh, pre-warmed FreeStyle™ CHO Expression Medium supplemented with 8 mM L-glutamine to give a final cell density of $0.5–2 \times 10^5$ viable cells/mL in the desired final volume.
4. Incubate flasks in a 37°C incubator containing a humidified atmosphere of 8% CO2 in air on an orbital shaker platform rotating at 120–135 rpm.
5. Repeat Steps 1–5 as necessary to maintain or expand cells.

Note: If you are passaging cells every 2–3 days, do not let cells grow above a density of 1.5×10^6 viable cells/mL, or you may experience reduced transfection efficiency.

Alternative:
Passaging Cells
Every 24 hours

Alternatively, cells may be passaged every 24 hours; split cells to approximately 0.5×10^6 viable cells/mL as described above. The next day, cell density should be $1.3–1.4 \times 10^6$ viable cells/mL. Split cells every 24 hours.

If expansion is needed, cells can be split at $0.8–1.0 \times 10^6$ viable cells/mL. Next day, cell density should be 2.0×10^6 viable cells/mL. Split cells every 24 hours.

Note: If you are passaging cells every day, do not let cells grow above a density of 2.0×10^6 viable cells/mL, or you may experience reduced transfection efficiency.

Passaging Large Numbers of Cells

If large numbers of cells are needed, you can seed cultures at 0.5×10^6 cells/mL and use cells as soon as they reach a density of 5×10^6 cells/mL (3–4 days). Do not let cultures that have reached a cell density of 5×10^6 cells/mL grow any further, as this will result in a decrease of transfection efficiency.

Keep monitoring the degree of cell clumping. Occasionally FreeStyle™ CHO-S® suspension cultures may grow as 2–10 cell clusters. Vigorous vortexing for 10–30 seconds may be required at each subculture for a number of passages until the cultures grow predominantly as single cells.

Continued on next page
Subculturing Cells, continued

Shake Flasks

The cells can be grown in many different culture volumes. We generally use the following polycarbonate, disposable, sterile Erlenmeyer flask with vented cap (other flasks with the same characteristics may be used):

<table>
<thead>
<tr>
<th>Flask Volume</th>
<th>Culture Volume</th>
<th>Manufacturer</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 mL</td>
<td>25–40 mL</td>
<td>VWR, West Chester, PA</td>
<td>30180-036</td>
</tr>
<tr>
<td>250 mL</td>
<td>50–80 mL</td>
<td>VWR, West Chester, PA</td>
<td>30180-044</td>
</tr>
<tr>
<td>500 mL</td>
<td>100–150 mL</td>
<td>VWR, West Chester, PA</td>
<td>30180-052</td>
</tr>
<tr>
<td>1 liter</td>
<td>200–300 mL</td>
<td>VWR, West Chester, PA</td>
<td>82013-164</td>
</tr>
<tr>
<td>3 liter</td>
<td>600–1000 mL</td>
<td>Corning, Acton, MA</td>
<td>431252</td>
</tr>
</tbody>
</table>

Other Cell Culture Systems

It is possible to scale up the FreeStyle™ CHO-S® cultures in spinner flasks or bioreactors. The appropriate spinner or impeller speed and seeding density should be determined and optimized for each system. We recommend seeding cells at \(0.2 \times 10^6\) viable cells/mL.

Note: Monitor cell viability and the degree of cell clumping. Note that extensive cell clumping may reduce transfection efficiency.
Freezing Cells

Introduction
You may freeze FreeStyle™ CHO-S® cells directly in FreeStyle™ CHO Expression Medium with 10% DMSO. When freezing the FreeStyle™ CHO-S® cell line, we recommend the following:

- Freeze cells at a density of ≥1 × 10^7 viable cells/mL.
- Use a freezing medium composed of 90% fresh growth medium and 10% DMSO.

Guidelines to prepare freezing medium and to freeze cells are provided in this section.

Preparing Freezing Medium

Prepare freezing medium immediately before use.

1. In a sterile, conical centrifuge tube, mix together the following reagents for every 1 mL of freezing medium needed:
 - FreeStyle™ CHO Expression Medium (supplemented with 8 mM L-glutamine) 0.9 mL
 - DMSO 0.1 mL
2. Filter-sterilize the freezing medium and place the tube on ice until use. Discard any remaining freezing medium after use.

Freezing Cells

Before starting, label cryovials and prepare freezing medium. Keep the freezing medium on ice.

1. Grow the desired quantity of FreeStyle™ CHO-S® cells in shaker flasks, harvesting when the cell density reaches 1 × 10^6 viable cells/mL. Transfer cells to a sterile, conical centrifuge tube.
2. Determine the viable and total cell counts (see protocol on page 5) and calculate the volume of freezing medium required to yield a final cell density of 1 × 10^7 viable cells/mL.
3. Centrifuge cells at 100 × g for 5 minutes at room temperature and carefully aspirate the medium.
4. Resuspend the cells in the pre-determined volume of chilled freezing medium.
5. Place cryovials in a microcentrifuge rack and aliquot 1 mL of the cell suspension into each cryovial.
6. Freeze cells in an automated or manual, controlled-rate freezing apparatus following standard procedures. For ideal cryopreservation, the freezing rate should be a decrease of 1°C per minute.
7. Transfer frozen vials to liquid nitrogen for long-term storage.

Note: You may check the viability and recovery of frozen cells 24 hours after storing cryovials in liquid nitrogen by following the procedure outlined in Thawing and Establishing Cells, page 6.
Transfecting Cells

Introduction

To transfect suspension FreeStyle™ CHO-S® cells, you will use the cationic lipid-based transfection reagent, FreeStyle™ MAX Reagent, included with the kit. Unlike some other serum-free media formulations, FreeStyle™ CHO Expression Medium does not inhibit cationic lipid-mediated transfection. FreeStyle™ CHO Expression Medium is specifically formulated to allow high transfection efficiency of suspension FreeStyle™ CHO-S® cells without the need to change or add media. Transient transfection experiments may be performed in a large volume, allowing large-scale protein production.

FreeStyle™ MAX Reagent

FreeStyle™ MAX Reagent is a proprietary formulation suitable for transfection of DNA into eukaryotic cells. In the FreeStyle™ MAX CHO Expression System, use of FreeStyle™ MAX Reagent to transfect FreeStyle™ CHO-S® cells provides the following advantages:

- FreeStyle™ MAX Reagent demonstrates high transfection efficiency in suspension FreeStyle™ CHO-S® cells (cultured in FreeStyle™ CHO Expression Medium)
- DNA-FreeStyle™ MAX Reagent complexes can be added directly to cells in culture medium
- It is not necessary to remove complexes or change or add medium following transfection

FreeStyle™ MAX Reagent is available separately from Life Technologies (see page vi for ordering information). For more information, see our website (www.lifetechnologies.com) or call Technical Support (see page 17).

Plasmid Preparation

Plasmid DNA for transfection into eukaryotic cells must be clean, sterile and free from phenol and sodium chloride. Contaminants may kill the cells, and salt will interfere with complexing, decreasing transfection efficiency. We recommend isolating plasmid DNA using one of the Purelink™ HiPure Plasmid Kits, which have been validated for use with the FreeStyle™ MAX CHO Expression System (see page vi for ordering information).

Note: Make sure your DNA preparation is sterile, for instance by performing filtration through a 0.22 μm filter before use.

Positive Control

pCMV SPORT-βgal is provided as a positive control vector for transfection and expression in FreeStyle™ CHO-S® cells. The gene encoding β-galactosidase is expressed in FreeStyle™ CHO-S® cells under the control of the human cytomegalovirus (CMV) promoter. Successful transfection will result in β-galactosidase expression that is easily assayed (see the next page). For a map of pCMV SPORT-βgal, see page 16.

Continued on next page
Transfecting Cells, continued

Assay for β-galactosidase Activity

You may evaluate β-galactosidase expression by activity assay using cell-free lysates (Miller, 1972). Life Technologies offers the FluoReporter® lacZ/Galactosidase Quantitation Kit (Cat. no. F-2905) for fast and easy detection of β-galactosidase expression.

Materials to Have on Hand

You will need to have the following reagents on hand before beginning:

- Suspension FreeStyle™ CHO-S® cells cultured in FreeStyle™ CHO Expression Medium

Recommendation: Calculate the number of cells that you will need for your transfection experiment and expand cells accordingly. Make sure that the cells are healthy and greater than 95% viable before proceeding to transfection.

- Purified plasmid DNA of interest (1 mg/mL)
- FreeStyle™ MAX Reagent (supplied with the kit; store at +4°C until use)
- OptiPRO™ SFM (supplied with the kit; pre-warmed to room temperature)
- FreeStyle™ CHO Expression Medium, supplemented with L-glutamine to a final concentration of 8 mM (supplied with the kit; pre-warmed to 37°C)

Note: Do not add more than 5 mL/L of Penicillin/Streptomycin (0.5X Pen-Strep) to media during transfection as this may decrease transfection activity.

- 125-mL polycarbonate, disposable, sterile Erlenmeyer flasks
- Orbital shaker in 37°C incubator with a humidified atmosphere of 8% CO₂
- Reagents to determine viable and total cell counts
- Vortex mixer

Optimal Conditions for 30 mL Transfection

To transflect suspension FreeStyle™ CHO-S® cells in a 30 mL volume, we recommend using the following optimized conditions:

- **Final transfection volume:** 30 mL
- **Number of cells to transflect:** 3 × 10⁷ cells (cell density at time of transfection 1 × 10⁶ cells/mL)
- **Amount of plasmid DNA:** 37.5 μg (starting point; can vary from 30–45 μg)
- **FreeStyle™ MAX Reagent:** 37.5 μL (starting point; can vary from 30–45 μL)

Note

If you are using other CHO cells, you may want to test varying amounts of FreeStyle™ MAX Reagent and plasmid DNA (e.g., 30, 35, 40, 45, 50 μL with 30, 35, 40, 45, 50 μg) to determine the optimal conditions for transfection.

Continued on next page
Transfecting Cells, continued

Transfection Procedure

Follow the procedure below to transfect suspension FreeStyle™ CHO-S® cells in a 30 mL volume. Remember that you may keep the cells in FreeStyle™ CHO Expression Medium during transfection. We recommend including a positive control (pCMV SPORT-βgal) and a negative control (no DNA, no FreeStyle™ MAX Reagent) in your experiment to help you evaluate your results.

1. Approximately 24 hrs before transfection, pass FreeStyle™ CHO-S® cells at 5–6 × 10⁵ cells/mL. Place the flask(s) on an orbital shaker platform rotating at 120–135 rpm at 37°C, in a humidified atmosphere of 8% CO₂ in air.

2. On the day of transfection, the cell density should be about 1.2–1.5 × 10⁶/mL. Dilute the cells to 1 × 10⁶ /mL. To ensure high transfection results, viability of cells must be over 95%. Add 30 mL of cells into each 125 mL shake flask.

3. Gently invert the tube of FreeStyle™ MAX Transfection Reagent several times to mix. Do not vortex.

4. Dilute 37.5 μg of plasmid DNA into OptiPRO™ SFM to a total volume of 0.6 mL and mix. In a separate tube, dilute 37.5 μL of FreeStyle™ MAX Transfection Reagent in Opti-Pro™ SFM to a total volume of 0.6 mL and mix gently by inverting the tube (do not vortex). Immediately add diluted FreeStyle™ MAX Transfection Reagent to diluted DNA solution to obtain a total volume of 1.2 mL and mix gently.

5. Incubate the DNA-FreeStyle™ MAX mix for 10 minutes at room temperature to allow complexes to form. Do not incubate for longer than 20 minutes.

6. Slowly add 1.2 mL of DNA-FreeStyle™ MAX Reagent complex into the 125-mL flask containing cells while slowly swirling the flask.

7. Incubate transfected cell cultures at 37°C, in a humidified atmosphere of 8% CO₂ in air on an orbital shaker platform rotating at 135 rpm. There is no need to change or supplement the culture medium during the first 6 to 7 days.

8. Protein expression may be detectable within 4–8 hours of transfection, with maximal protein yield usually between 1 and 7 days post-transfection.

Continued on next page
Optimizing Protein Expression

- When expressing a protein for the first time, perform a time course experiment between days 1 and 7 post-transfection to identify the peak of protein production, and to monitor cell viability.
- We have observed peak yields for IgG protein production at 5–7 days post-transfection.
- Test varying amounts of plasmid DNA and FreeStyle™ MAX Reagent. For 30-mL cultures, try between 30–45 μg DNA and 30–45 μL FreeStyle™ MAX Reagent.
- To assess transfection efficiency via expression of a GFP–type fluorescent protein, we recommend monitoring the cultures starting at 24 hours post-transfection.
- In some cases, transfection efficiency may go down during the course of the experiment, although protein production is still going up. Never evaluate results by transfection efficiency only; always measure the protein production.

For optimizing protein expression while scaling up culture volumes, see Scaling up Transfections (below).

Scaling Up Transfections

If you wish to transfect suspension FreeStyle™ CHO-S® cells in a larger volume, scale up the volume of each reagent in proportion to the culture volume. The table below lists suggested conditions to use when transfecting FreeStyle™ CHO-S® cells in a 30 mL, 250 mL or 1 liter volume. The transfection conditions may vary depending on the type of culture vessel used and the growth conditions of your cells; therefore, you may want to perform pilot studies to optimize your transfection conditions. A suitable range for optimization is given; vary the amounts of FreeStyle™ MAX Reagent and plasmid DNA.

Note: Often, the conditions for transfection of large culture volumes need to be adjusted to the higher side of the range, while those for small culture volumes may tend towards the lower side of the range.

<table>
<thead>
<tr>
<th>Cell Culture Volume</th>
<th>Culture Flask</th>
<th>Total Number Cells*</th>
<th>DNA Starting Point</th>
<th>Range for Optimizing</th>
<th>Dilution Volume</th>
<th>FreeStyle™ MAX Reagent Starting Point</th>
<th>Range for Optimizing</th>
<th>Dilution Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mL</td>
<td>125 mL</td>
<td>3 × 10^7</td>
<td>37.5 μg</td>
<td>30–45 μg</td>
<td>to 0.6 mL</td>
<td>37.5 μL</td>
<td>30–45 μL</td>
<td>to 0.6 mL</td>
</tr>
<tr>
<td>250 mL</td>
<td>1 liter</td>
<td>2.5 × 10^8</td>
<td>312.5 μg</td>
<td>250–375 μg</td>
<td>to 5 mL</td>
<td>312.5 μL</td>
<td>250–375 μL</td>
<td>to 5 mL</td>
</tr>
<tr>
<td>1 liter</td>
<td>3 liter</td>
<td>1 × 10^9</td>
<td>1.25 mg</td>
<td>1.0–1.5 mg</td>
<td>to 20 mL</td>
<td>1.25 mL</td>
<td>1.0–1.5 mg</td>
<td>to 20 mL</td>
</tr>
</tbody>
</table>

*Cell density of 1 × 10^6 cells/mL on day of transfection

Adjustments for Large Culture Volumes

For culture volumes above 30 mL, lower the speed of the orbital shaker if foam is generated. In 1 L cultures, we recommend 70–80 rpm.
Troubleshooting

Culturing Cells

The table below lists some potential problems and possible solutions that may help you troubleshoot your cell culture problems.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No viable cells after thawing stock</td>
<td>Stock not stored correctly</td>
<td>Order new stock and store in liquid nitrogen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keep in liquid nitrogen until thawing.</td>
</tr>
<tr>
<td></td>
<td>Home-made stock not viable</td>
<td>Freeze cells at a density of 1×10^7 viable cells/mL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use a freezing medium composed of 90% fresh FreeStyle™ CHO Expression Medium and 10% DMSO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use low-passage cells to make your own stocks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Follow procedures in Freezing Cells (page 9) exactly.</td>
</tr>
<tr>
<td>Thawing medium not correct</td>
<td>Use FreeStyle™ CHO Expression Medium</td>
<td>Use FreeStyle™ CHO Expression Medium supplemented with 8 mM L-glutamine (pre-warm before use).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not add antibiotics to media as this may negatively impact cell growth.</td>
</tr>
<tr>
<td>Shaker not set up properly</td>
<td>Shake on an orbital shaker at 125 rpm in 37°C</td>
<td>Shake on an orbital shaker at 125 rpm in 37°C incubator with a humidified atmosphere of 8% CO₂ in air.</td>
</tr>
<tr>
<td>Cells to diluted</td>
<td>Spin down culture and grow cells in a smaller culture volume.</td>
<td></td>
</tr>
<tr>
<td>Cells grow slowly</td>
<td>Growth medium not correct</td>
<td>Use FreeStyle™ CHO Expression Medium supplemented with 8 mM L-glutamine (pre-warm before use).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not add more than 5 mL/L of Penicillin/Streptomycin (0.5X Pen-Strep) to media as this may impact cell growth.</td>
</tr>
<tr>
<td></td>
<td>Shaker not set up properly</td>
<td>Shake on an orbital shaker at 125 rpm in 37°C incubator with a humidified atmosphere of 8% CO₂ in air.</td>
</tr>
<tr>
<td></td>
<td>Medium foamy</td>
<td>Lower the shaker speed slightly till no foam forms.</td>
</tr>
<tr>
<td></td>
<td>Flasks too small</td>
<td>Use flasks that are at least 2.5 times bigger than the culture volume.</td>
</tr>
<tr>
<td></td>
<td>Cells too old</td>
<td>Use healthy FreeStyle™ MAX CHO-S® cells under passage 25; do not overgrow.</td>
</tr>
<tr>
<td></td>
<td>Cell culture clumpy</td>
<td>Prevent this by sufficient agitation of the culture, a regular and frequent cell passage schedule, and maintenance of cells at recommended densities.</td>
</tr>
</tbody>
</table>

Continued on next page
Troubleshooting, continued

Transfection and Protein Production

The table below lists some potential problems and possible solutions that may help you troubleshoot your transfection and protein production experiments.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Transfection Efficiency and/or Low Protein Yield</td>
<td>Cells cultured for too many passages (over 25 passages)</td>
<td>Thaw a new batch of early-passage cells</td>
</tr>
<tr>
<td></td>
<td>Cells not passed 24 hours before transfection</td>
<td>Approximately 24 hours before transfection, pass cells at 5–6 × 10^5 cells/mL.</td>
</tr>
<tr>
<td></td>
<td>Improperly cultured FreeStyle™ CHO-S® cells</td>
<td>Exactly follow procedures as outlined in Subculturing Cells section (page 7).</td>
</tr>
<tr>
<td></td>
<td>Cells transfected in media containing too much antibiotics</td>
<td>Do not add more than 5 mL/L of Penicillin/Streptomycin (0.5X Pen-Strep) to media.</td>
</tr>
<tr>
<td></td>
<td>FreeStyle ™ Max Reagent handled incorrectly</td>
<td>Store at +4°C. Do not freeze. Mix gently by inversion. Do not vortex.</td>
</tr>
<tr>
<td></td>
<td>Used poor quality expression construct plasmid DNA (i.e. plasmid DNA from a mini-prep)</td>
<td>Do not use mini-prep plasmid DNA for transfection. Use a PureLink™ HiPure Plasmid Kit to prepare plasmid DNA with low endotoxin contamination.</td>
</tr>
<tr>
<td></td>
<td>Suboptimal transfection conditions</td>
<td>Perform transfections with positive control plasmid pCMV SPORT-βgal to assess your transfection conditions (see page 10) Assess transfection efficiency via expression of a GFP–type fluorescent protein (we recommend monitoring the cultures starting at 24 hours post-transfection.) Vary the amounts of DNA and FreeStyle ™ MAX Reagent used (see page 13).</td>
</tr>
<tr>
<td></td>
<td>DNA not sterile</td>
<td>Sterilize DNA (see page 10)</td>
</tr>
<tr>
<td></td>
<td>Gene of interest is toxic to cells</td>
<td>Do not generate constructs containing activated oncogenes or harmful genes. Try FreeStyle™ MAX 293 Expression System</td>
</tr>
<tr>
<td></td>
<td>Protein harvested too early or too late</td>
<td>When expressing a protein for the first time, perform a time course experiment between days 1 and 7 post-transfection to identify the peak of protein production, and to monitor cell viability.</td>
</tr>
</tbody>
</table>
Appendix

pCMV SPORT-\(\beta\)gal

Description

pCMV SPORT-\(\beta\)gal is included in the FreeStyle™ MAX CHO Expression System for use as a transfection and expression control, and contains the \(lacZ\) gene cloned into pCMV SPORT1. The plasmid uses the human cytomegalovirus (CMV) promoter to control expression of \(\beta\)-galactosidase. The complete sequence of pCMV SPORT-\(\beta\)gal is available for downloading from our website (www.lifetechnologies.com) or by calling Technical Support (see page 17).

Comments for pCMV SPORT-\(\beta\)gal:
7854 nucleotides

SV40 small T intron and polyA signal: bases 193-555 (complementary strand)
T7 promoter: bases 645-664
\(lacZ\) ORF: bases 1009-4149 (complementary strand)
SP6 promoter: bases 4259-4278 (complementary strand)
CMV promoter: bases 4308-4901 (complementary strand)
pUC origin: bases 5390-6063 (complementary strand)
\(loxP\): bases 6115-6148
Ampicillin (\(bla\)) resistance gene: bases 6250-7110 (complementary strand)
\(incA\): bases 7134-7306
f1 intergenic region: bases 7579-7854 (complementary strand)
Technical Support

Obtaining Support
For the latest services and support information for all locations, go to www.lifetechnologies.com.

At the website, you can:

- Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities
- Search through frequently asked questions (FAQs)
- Submit a question directly to Technical Support (techsupport@lifetech.com)
- Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents
- Obtain information about customer training
- Download software updates and patches

Safety Data Sheets (SDS)
Safety Data Sheets (SDSs) are available at www.lifetechnologies.com/support.

Certificate of Analysis
The Certificate of Analysis provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on our website. Go to www.lifetechnologies.com/support and search for the Certificate of Analysis by product lot number, which is printed on the box.

Limited Product Warranty
Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies’ General Terms and Conditions of Sale found on Life Technologies’ website at www.lifetechnologies.com/termsandconditions. If you have any questions, please contact Life Technologies at www.lifetechnologies.com/support.
Purchaser Notification

Introduction

Use of the FreeStyle™ MAX CHO Expression System is covered under a number of different licenses including those detailed below.

Limited Use Label License No. 358: Research Use Only

The purchase of this product conveys to the purchaser the limited, non-transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial applications of any kind, including, without limitation, quality control and commercial services such as reporting the results of purchaser’s activities for a fee or other form of consideration. For information on obtaining additional rights, please contact outlicensing@lifetech.com or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.
References

©2012 Life Technologies Corporation. All rights reserved.
The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.

LIFE TECHNOLOGIES CORPORATION AND/OR ITS AFFILIATE(S) DISCLAIM ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. TO THE EXTENT ALLOWED BY LAW, IN NO EVENT SHALL LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF.