GeneArt™ PerfectMatch TALs and GeneArt™ Precision TALs

TAL effector expression system for genome editing

Publication Number MAN0006670

Revision B.0

For Research Use Only. Not for use in diagnostic procedures.
Limited Use Label License No. 406: GeneArt™ Precision TAL Effector Products: The purchase of this product conveys to the buyer limited, non-transferable rights under certain TAL Effector technology owned by inventors from Martin-Luther-Universitat Halle-Wittenberg and licensed to Life Technologies Corporation to use this product and components of this product only to perform internal research for the sole benefit of the buyer. The buyer may also use standard molecular biology techniques to make additional copies of this product for purposes of internal research for the sole benefit of the buyer but the buyer may not modify the sequence of the TAL Effector within this product. The buyer cannot sell or otherwise transfer [a] this product, [b] its components, or [c] materials, cells, or organisms made using this product or its components (including but not limited to Plants in all cases hereunder) to a third party, or otherwise use this product, its components, or materials, cells, or organisms made using this product or its components for any Commercial Purpose or Development Purpose with the sole exception that buyer may transfer this product, its components, and/or materials, cells, or organisms made using this product or its components to [i] the buyer’s legal affiliates and/or [ii] a scientific collaborator, provided that each such legal affiliate and/or, scientific collaborator agrees in writing [1] not to transfer such product, its components, or materials, cells, or organisms made using such product or its components to any third party, and [2] to use such product, its components, and materials, cells, and organisms made using such product and/or its components solely for research as set forth in this limited use label license and not for Commercial Purposes or Development Purposes. If this product is subject to multiple limited use label licenses, the terms of the most restrictive limited use label license shall control.

Mice generated using this product may be donated to The Jackson Laboratory. Please include a copy of this limited use license label with all donations to identify the TAL Effector technology used.

“Commercial Purpose” means any activity for consideration, including but not limited to: [a] any use, directly or indirectly, in manufacturing, production, production of biomolecules or quality control; [b] any use to provide a service, information, or data for consideration; [c] any use for therapeutic, diagnostic or prophylactic purposes; or [d] any sale, resale, leasing, or licensing, whether or not for research purposes.

“Development Purpose” means any: [a] clinical activity following IND-enabling preclinical toxicological studies or equivalents thereof; [b] activity in any agricultural field trial, including any such field trial that would be subject to regulation by the United States Department of Agriculture if the plants were to constitute genetically engineered organisms under 7 C.F.R. § 340 (or any successor regulation); [c] activity directed towards the submission of data to the United States Department of Agriculture, or any equivalent regulatory agency outside of the United States, in support of an application for clearance, approval or deregulation by such agency; or [d] scale-up activities, the primary focus of which is to increase from small-scale to production-scale.

“Plant” means any eukaryotic plants, plant tissues or plant cells, including green algae, belonging to the plant kingdom defined as Viridiplantae, including any progeny (propagated through any number of generations) or unmodified derivatives of such plants, tissues or cells. For clarity, fungi or blue-green algae are specifically excluded from this definition.

For information on obtaining additional rights to TAL Effector technology for any use not permitted herein, except use in Plants, please contact Life Technologies at outlicensing@lifetech.com.

For information on obtaining additional rights to TAL Effector technology for any use in Plants not permitted herein, please contact Two Blades Foundation at info@2blades.org or Two Blades Foundation, 1630 Chicago Avenue, Suite 1907, Evanston, IL 60201 USA.

For information on donating mice to The Jackson Laboratory, please visit their website at: http://www.jax.org/grc/index.html.
Limited Use Label License No. 521: GeneArt™ Precision TALEN™ Products: The purchase of this product conveys to the buyer limited, non-transferable rights under certain TALEN™ technology owned and/or controlled by Cellectis SA (including patents owned by the University of Minnesota and Iowa State University) and licensed to Life Technologies Corporation to use this product and components of this product only to perform internal research for the sole benefit of the buyer. The buyer may also use standard molecular biology techniques to make additional copies of this product for purposes of internal research for the sole benefit of the buyer, except the buyer may not modify the sequence of the TAL effector within this TALEN™ product. The buyer cannot sell or otherwise transfer [a] this product, [b] its components, or [c] materials, cells, or organisms made using this product or its components (including but not limited to Plants in all cases hereunder) to a third party, or otherwise use this product, its components, or materials, cells, or organisms made using this product or its components for any Commercial Purpose or Development Purpose with the sole exception that buyer may transfer this product, its components, and/or materials, cells, or organisms made using this product or its components to [i] the buyer’s legal affiliates and/or [ii] a scientific collaborator, provided that each such legal affiliate and/or scientific collaborator agrees in writing [1] not to transfer such product, its components, or materials, cells, or organisms made using such product or its components to any third party, and [2] to use such product, its components, and materials, cells, and organisms made using such product and/or its components solely for research as set forth in this limited use label license and not for Commercial Purposes or Development Purposes. If this product is subject to multiple limited use label licenses, the terms of the most restrictive limited use label license shall control.

“Commercial Purpose” means any activity for consideration, including but not limited to: [a] any use, directly or indirectly, in manufacturing, production, production of biomolecules, or quality control; [b] any use to provide a service, information, or data for consideration [c] any use for therapeutic, diagnostic or prophylactic purposes; or [d] any sale, resale, leasing, or licensing, whether or not for research purposes.

“Development Purpose” means any: [a] clinical activity following IND-enabling preclinical toxicological studies or equivalents thereof; [b] activity in any agricultural field trial, including any such field trial that would be subject to regulation by the United States Department of Agriculture if the plants were to constitute genetically engineered organisms under 7 C.F.R. § 340 (or any successor regulation); [c] activity directed towards the submission of data generated using a Plant to the United States Department of Agriculture, or any equivalent regulatory agency outside of the United States, in support of an application for clearance, approval or deregulation by such agency; [d] scale-up activities, the primary focus of which is to increase from small-scale to production-scale; or [e] any use of pigs, cattle or sheep cells or pig, cattle, or sheep animals generated using this TALEN™ product for [i] agricultural food applications, or [ii] animal models and biomaterials models used for research and development of therapeutic compounds or protocols, and production of non-cellular products or proteins for therapeutic, cosmetic or nutraceutical applications.

“Plant” means any eukaryotic plants, plant tissues or plant cells, including green algae, belonging to the plant kingdom defined as Viridiplantae, including any progeny (propagated through any number of generations) or unmodified derivatives of such plants, tissues or cells. For clarity, fungi or blue-green algae are specifically excluded from this definition.

For information on obtaining rights to TALEN™ technology for any use not permitted herein, except use in the therapeutic field and in Plants, please contact Life Technologies at outlicensing@lifetech.com.

For information on obtaining rights to TALEN™ technology for any use in the therapeutic field, please contact Cellectis SA at business.development@cellectis.com.

For information on obtaining rights to TALEN™ technology for any use in Plants not permitted herein, please contact Cellectis Plant Sciences, Inc. at businessdevelopment_cps@cellectis.com.

© 2015 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. TALEN is a trademark of Cellectis.
Contents

About this guide
- Revision history ... 1

Product information
- Product description ... 2
- Kit contents and storage 2
- Contents description ... 3

Methods
- Experimental outline .. 7
- Create a TAL sequence 8
- Create an expression clone 10
- Perform the LR recombination reaction 12
- Transform competent *E. coli* cells 14
- Analyze transformants 15
- Transfection ... 16

Appendix
- Map of N-TAL FokI Entry Vector 17
- Map of N-TAL FokI CMV Expression Vector 18
- Features of GeneArt™ PerfectMatch TAL vectors 19
- Map of TAL FokI Entry Vector 20
- Map of TAL vp16 Entry Vector 21
- Map of TAL vp64 Entry Vector 22
- Map of TAL KRAB Entry Vector 23
- Map of TAL MCS Entry Vector 24
- Multiple cloning site of TAL MCS Entry Vector 25
- Map of TAL FokI LRRK2 Entry Vector 26
- Features of GeneArt™ Precision TALs entry vectors 27
- Map of pENTR™-gus Entry Vector 29
- Accessory products .. 30

Documentation and support
- Customer and technical support 31

References ... 32
About this guide

Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.0</td>
<td>August 2015</td>
<td>Add LRRK2 TAL vector information</td>
</tr>
<tr>
<td>A.0</td>
<td>November 2014</td>
<td>New document</td>
</tr>
</tbody>
</table>
Product information

Product description

Introduction

Invitrogen™ GeneArt™ PerfectMatch TALs and GeneArt™ Precision TALs are optimized to deliver transcriptional effectors to cells in a sequence specific manner. These TALs are provided as Gateway™-adapted entry vectors. The sequence is transferred from the entry vector to a destination vector by LR recombination, resulting in high-level expression of the TAL effectors. The GeneArt™ PerfectMatch TALs are also provided as a CMV expression vector, for high-level expression in mammalian cells without an LR recombination step.

Kit contents and storage

Ordering information

<table>
<thead>
<tr>
<th>GeneArt™ PerfectMatch TALs functional domain</th>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truncated N-TAL FokI</td>
<td>816508DE</td>
</tr>
<tr>
<td>Truncated N-TAL FokI CMV</td>
<td>816509DE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GeneArt™ Precision TALs functional domain</th>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native TAL FokI</td>
<td>816510DE</td>
</tr>
<tr>
<td>Truncated TAL FokI</td>
<td>816511DE</td>
</tr>
<tr>
<td>Native TAL vp16 activator</td>
<td>816512DE</td>
</tr>
<tr>
<td>Native TAL vp64 activator</td>
<td>816514DE</td>
</tr>
<tr>
<td>Native TAL MCS</td>
<td>816516DE</td>
</tr>
<tr>
<td>Truncated TAL MCS</td>
<td>816517DE</td>
</tr>
<tr>
<td>Native TAL KRAB repressor</td>
<td>816518DE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Validated GeneArt™ Precision TAL</th>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truncated TAL FokI LRRK2 specific</td>
<td>816012DE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DNA binding domain</th>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Nucleotide Binding Domain (containing your specific TAL)</td>
<td>816010DE</td>
</tr>
<tr>
<td>24 Nucleotide Binding Domain (containing your specific TAL)</td>
<td>816011DE</td>
</tr>
</tbody>
</table>

Contents

5 μg of vector DNA, lyophilized. The TAL vector contains a functional domain and an 18 or 24 nucleotide DNA binding domain.

Shipping/storage

All GeneArt™ PerfectMatch TALs and GeneArt™ Precision TALs are shipped at room temperature. Do not store lyophilized DNA for a prolonged time. Upon receipt, resuspend the vector and store at –20°C.
Resuspend the vector DNA

Add 50 µL of distilled water or 10 mM Tris-HCl (pH 8.0) to the tube containing the vector and incubate for one hour at room temperature.

Resuspend the vector DNA by gently pipetting up and down 5–10 times.

Store the resuspended vector DNA at –20°C.

Antibiotic resistance markers are indicated on each tube label. The standard delivery amount of DNA is 5 µg.

Contents description

TAL effectors

Transcription activator-like (TAL) effector proteins are naturally occurring transcriptional activators secreted by Xanthomonas spp. into their plant hosts. They are injected into plant host cells via a Type III secretion system and travel to the nucleus where they bind to, and activate specific promoter sequences that lead to changes that are permissive for bacterial infection (Boch and Bonas, 2010). TAL effector proteins consist of constant N and C terminal domains (containing translocation and nuclear localization/activation signals respectively) flanking a central repeat domain. Each repeat is 34–35 amino acids in length, with two centrally located residues that make up a repeat variable domain (RVD) that dictates the affinity of the repeat for different nucleotide targets. Combination and order of various repeat types define the genomic target site specificity of a particular TAL effector. The deciphering of this TAL effector ‘code’ led to the engineering of designer TAL effector proteins that function as a vehicle to target functionality of essentially any open region of the chromosomes of plants, bacteria, yeast, flies and mammalian cells (Boch et al., 2009; Moscou and Bogdanove, 2009). Activities such as activators, repressors and nucleases have been demonstrated to be addressable via this powerful system (Li et al., 2011; Scholze and Boch, 2011; Mussolino and Cathomen, 2012). These tools have applications from efficient genomic editing and gene knock out for manipulating the chromosome to modulation of specific promoter activities to allow simple and complex metabolic manipulation in various species of cells.

GeneArt™ PerfectMatch TALs and GeneArt™ Precision TALs

The two versions of TALs available are: GeneArt™ PerfectMatch TALs and GeneArt™ Precision TALs. With GeneArt™ PerfectMatch TALs and GeneArt™ Precision TALs the researcher can determine the exact DNA loci they would like to have their functionality delivered to and have specific TAL genes built to perform the function. The researcher will receive a Gateway™-adapted entry vector containing the coding sequence for a TAL nuclease or activator designed to bind a specific 18 or 24 base DNA sequence of choice. The GeneArt™ PerfectMatch TALs are also available in a CMV expression vector.
GeneArt™ PerfectMatch TALs

GeneArt™ PerfectMatch TALs can be designed to target any locus in the genome since there are no restrictions for the 5’ base. Previously, target sites for customized TAL effectors required a 5’ T in the target sequences for maximal binding activities. The 5’ T constraint limited the flexibility of TAL effector target sites in the genome and prevented some specific sites in the genome from being targeted. Structure studies suggested the N-terminal domain (NTD) of the TAL effectors, not the central repeat domain, is responsible for the interaction with the 5’ T of the target. We developed our second generation TALs, GeneArt™ PerfectMatch TALs, by mutating the N-terminal domain to reduce its specificity for 5’ T. GeneArt™ PerfectMatch TALs can target DNA sequences with any 5’ base (T, G, C or A) with performance comparable to that of GeneArt™ Precision TALs.

N-TAL FokI and N-TAL FokI CMV

GeneArt™ PerfectMatch TALs contain a truncated TAL engineered with FokI nuclease. The FokI TAL nuclease pair binds to duplex DNA at the target sites designated by the DNA binding domains to cleave the DNA.

There are two versions of GeneArt™ PerfectMatch TALs:

- **N-TAL FokI**: a Gateway™-adapted entry vector which allows easy transfer through a LR recombination reaction to destination vectors designed to facilitate high-level expression of the TAL effectors in your cells of choice.

- **N-TAL FokI CMV**: a CMV expression vector which contains a CMV promoter to drive high-level expression of the TAL in mammalian systems. It can be directly used without extra subcloning.
GeneArt™ Precision TALs

Unlike GeneArt™ PerfectMatch TALs, Precision TALs have a conserved T binding motif at the N-terminus of the TAL effector protein and so require a 5’ T for maximal binding activity. GeneArt™ Precision TALs are available as the following Gateway™-adapted entry vectors: TAL FokI, TAL FokI LRRK2 (validated), TAL VP16, TAL VP64, TAL KRAB, and TAL MCS.

TAL FokI and Validated TAL FokI

GeneArt™ Precision TALs engineered with the FokI nuclease can be used for targeting specific genes for silencing. GeneArt™ Precision TAL LRRK2 vectors have been designed and validated for silencing the LRRK2 gene by FokI nuclease.

Note: see References for validation details.

FokI is a type IIS restriction endonuclease from *Flavobacterium okeanokoites*, consisting of an N-terminal DNA-binding domain and a non-specific DNA cleavage domain at the C-terminal. A FokI nuclease pair binds to duplex DNA at the target sites designated by the DNA binding domains to cleave the DNA.

TAL VP16 and TAL VP64

GeneArt™ Precision TALs engineered with the VP16 or VP64 activators can be used to increase the expression level of endogenous or recombinant genes. VP16 is a trans-acting protein originating from the herpes simplex virus that forms a complex with host transcription factors to induce immediate early gene transcription. VP64 is a tetrameric form of the VP16 minimal activation domain.

TAL KRAB

GeneArt™ Precision TALs engineered with the KRAB repressor can be used to down-regulate the expression level of endogenous or recombinant genes.
GeneArt™ Precision TALs that include a multiple cloning site (MCS) allow the user to clone any desired effector domain, and target the protein to any locus within the genome.

Gateway™ Technology

The Gateway™ Technology is a cloning method based on the bacteriophage lambda site-specific recombination system which facilitates the integration of lambda into the *E. coli* chromosome and the switch between the lytic and lysogenic pathways (Ptashne, 1992). In Gateway™ Technology, the components of the lambda recombination system are modified to improve the specificity and efficiency of the system (Bushman *et al.*, 1985).

LR recombination reaction

An LR recombination reaction is performed between the entry clone and the destination vector of choice to generate an expression clone. The LR recombination reaction is mediated by LR Clonase™ II Enzyme Mix, a mixture of the bacteriophage λ Integrase (Int) and Excisionase (Xis) proteins, and the *E. coli* Integration Host Factor (IHF) protein.
Experimental outline steps

The table below outlines the steps required to express your GeneArt™ PerfectMatch TALs and GeneArt™ Precision TALs in cells.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Determine the sequence of the binding site for your TAL effector protein.</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Synthesize TAL sequence and clone into a Gateway™-adapted entry vector of choice to generate an entry clone. Or, clone TAL sequence into the CMV expression vector.</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Perform an LR recombination reaction by mixing the entry clone and the appropriate destination vector with Gateway™ LR Clonase™ II Enzyme Mix. Note: This step is not required with the CMV vector.</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Transform the recombination reaction into competent E. coli cells and select for expression clones.</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Analyze transformants for the presence of insert by restriction enzyme digestion or colony PCR.</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Prepare purified plasmid DNA and transfet the cell line of choice.</td>
<td>16</td>
</tr>
</tbody>
</table>
Create a TAL sequence

The following are guidelines and rules for generating the PerfectMatch TAL sequence:

- The GeneArt™ PerfectMatch TALs offering allows the construction of TAL effector functional proteins directed to either 18 or 24 base DNA target sites.
- GeneArt™ PerfectMatch TALs are provided in two types of vectors:
 1) Gateway™-adapted entry vector:
 Gateway™-adapted entry vectors allow easy transfer of target specific TAL domain through a LR recombination reaction into destination vectors designed to facilitate high-level expression of the TAL effectors in your cell line of choice. A Gateway™-adapted destination vector is needed for expression plasmid generation. Choose a destination vector from our Gateway™-adapted vector portfolio.
 2) CMV expression vector (mammalian expression vector):
 The mammalian expression vector contains CMV promoter which drives high-level expression of the TAL in mammalian systems. PerfectMatch TALs provided in this vector can be directly used for expression in mammalian systems without the need for any intermediate sub-cloning steps.

Optional: PerfectMatch TAL cassette can be transferred directly into your expression vector of choice with the restriction enzymes Not I and Hind III.

- Each target site sequence is preceded by a 5’ N. PerfectMatch TAL protein allows binding to a DNA sequence preceded by any DNA base. The letter N represents any base of A, G, C or T. The 5’ N does not count as one of the 18 or 24 bases to be selected for targeting your specific site.
- Design nuclease pairs with a spacing of 13–18 bp between the target sites on opposite strands of the DNA. However, we recommend a spacing of 15–16 bp between the target sites in order to achieve maximal nuclease activity. The target sites can be either 18 or 24 bp in length. Use the following image as a reference for the orientation of the binding domains.

- The contribution of individual binding motifs within the DNA binding domain to TAL effector binding efficiency is thought to differ, since strong and weak binding motifs exist. The A and T binding motifs are thought to fall within the “weak binder” category, while the C and G binding motifs are thought to be “strong binders”. Stretches of more than 5 weak binders should be avoided at the extreme 5’ end of the binding domain (not counting the 5’ N), or if they are not flanked by Cs. It is recommended to select a TAL effector with a DNA binding domain composed of mixed binding motifs for best results.
• In the context of the living cell, DNA accessibility also determines TAL effector efficiency. Chromatin structure, DNA methylation, and/or proteins bound to the DNA may interfere with TAL binding.

GeneArt™ Precision TALs binding site rules

The following are guidelines and rules for generating the Precision TAL sequence:

- The GeneArt™ Precision TALs offering allows the construction of TAL effector functional proteins directed to either 18 or 24 base DNA target sites.

- **Each target site must be preceded by a 5’ T** because the N-terminus of the TAL effector protein contains a conserved T binding motif. The 5’ T does not count as one of the 18 or 24 bases to be selected for targeting your specific site.

- Nuclease pairs need to be designed with a spacing of 13–18 bp between the target sites on opposite strands of the DNA. Both target sites must be preceded by a 5’ T. The target sites can be either 18 or 24 bp in length. The following image should be used as a reference for the orientation of the binding domains.

 ![Diagram](image)

- The contribution of individual binding motifs within the DNA binding domain to TAL effector binding efficiency is thought to differ, since strong and weak binding motifs exist. The A and T binding motifs are thought to fall within the “weak binder” category, while the C and G binding motifs are thought to be “strong binders”. **Stretches of more than 5 weak binders should be avoided at the extreme 5’ end of the binding domain (not counting the 5’ T), or if they are not flanked by Cs.** It is recommended to select a TAL effector with a DNA binding domain composed of mixed binding motifs for best results.

- In the context of the living cell, DNA accessibility also determines TAL effector efficiency. It is possible that chromatin, DNA methylation, and/or proteins bound to the DNA may interfere with TAL binding.

- Although promoter structure varies, and specific rules regarding design are currently lacking, it is recommended that TAL transcription factors used for transcriptional activation of natural promoters be positioned upstream of the TATA box, or in some cases downstream of the transcriptional start site. Selecting a target site directly over the TATA box, or other known transcription factor binding site is not recommended. Be sure that the natural ATG is present, and that no premature ATG which may interfere with the natural translational start is transcribed.
Create an expression clone

Introduction

To create an expression clone, perform the LR recombination reaction to transfer the gene of interest from the Gateway™-adapted entry vector into your destination vector of choice. We recommend that you review this section and the next section entitled **Perform the LR recombination reaction** (pages 12–13) before proceeding.

Note: This step is not required when using the GeneArt™ PerfectMatch TAL-N-TAL FokI CMV.

Resuspend the vectors

Each destination vector is supplied as 6 µg of lyophilized plasmid. To use, resuspend the destination plasmid in 40 µL of TE Buffer, pH 8.0 to a final concentration of 150 ng/µL.

Note: Destination vectors are supplied as supercoiled plasmids. The linearization of the destination vector is **NOT** required to obtain optimal results for any downstream application.

Propagate the vectors

Entry clone

Propagate and maintain your entry clone using a *recA, endA* *E. coli* strains like TOP10, TOP10F', DH5α, JM109, or equivalent for transformation. Select transformants on LB plates containing 50–100 µg/mL kanamycin. Prepare a glycerol stock of each plasmid for long-term storage.

Destination vector

If you wish to propagate and maintain your destination vectors prior to recombination, we recommend using One Shot™ *ccdB* Survival T1R Chemically Competent *E. coli* (Cat. no. C7510-03) for transformation. The One Shot™ *ccdB* Survival T1R *E. coli* strain is resistant to the toxic effects of the *ccdB* gene and can support the propagation of plasmids containing the *ccdB* gene. To maintain the integrity of the vector, select for transformants in media containing 50–100 µg/mL ampicillin and 15–30 µg/mL chloramphenicol.

IMPORTANT! Do **NOT** use general *E. coli* cloning strains including TOP10 or DH5α for propagation and maintenance of destination vectors as these strains are sensitive to the toxic effects of the *ccdB* gene.
Create an expression clone, continued

Gateway™ recombination reactions

The LR reaction facilitates recombination of an attL substrate (entry clone) with an attR substrate (destination vector) to create an attB-containing expression clone (see diagram below). This reaction is catalyzed by LR Clonase™ II Enzyme Mix.

Recombination region of the expression clone

In the following example, the recombination region of the expression clone resulting from the LR reaction between a TAL entry clone and the Gateway™ pcDNA™-DEST40 destination vector sequence is shown.

Features of the recombination region:
- Shaded regions correspond to those DNA sequences transferred from the entry clone into the destination vector by recombination.
- Non-shaded regions are derived from the destination vector.
- The underlined nucleotides flanking the shaded region correspond to bases 918 and 2601, respectively, of the Gateway™ pcDNA™-DEST40 destination vector sequence.
Perform the LR recombination reaction

Introduction

Perform an LR recombination reaction between the entry clone and the appropriate destination vector. We recommend that you include a positive control (see below) and a negative control (no LR Clonase™ II Enzyme Mix) in your experiment.

Note: This step is not required when using the GeneArt™ PerfectMatch TAL-N-TAL FokI CMV.

Positive control

The pENTR™-gus plasmid is used as a positive control for LR recombination and expression. Using the pENTR™-gus entry clone in an LR recombination reaction with a destination vector will allow you to generate an expression clone containing the gene encoding β-glucuronidase (gus). The pENTR™-gus positive control is supplied with the LR Clonase™ II Enzyme Mix.

LR Clonase™ II Enzyme Mix

The LR Clonase™ II Enzyme Mix is available separately. The LR Clonase™ II Enzyme Mix combines the proprietary enzyme formulation and 5X LR Clonase™ Reaction Buffer (previously supplied as separate components in LR Clonase™ Enzyme Mix) into a single-tube format. Use the protocol provided on page 12 to perform the LR recombination reaction using LR Clonase™ II Enzyme Mix.

Note: You may perform the LR recombination reaction using LR Clonase™ Enzyme Mix, if desired. To use LR Clonase™ Enzyme Mix, follow the protocol provided with the product. Do not use the protocol for LR Clonase™ II Enzyme Mix provided in this manual as reaction conditions differ.

Materials needed

You should have the following materials on hand before beginning:

- Purified plasmid DNA of your entry clone (50–150 ng/µL in TE, pH 8.0)
- Destination vector (150 ng/µL in TE, pH 8.0)
- LR Clonase™ II Enzyme Mix (Cat. no. 11791-020, 11791-100)
- TE Buffer, pH 8.0 (10 mM Tris-HCl, pH 8.0, 1 mM EDTA)
- Proteinase K solution (supplied with the LR Clonase™ II Enzyme Mix)
- pENTR™-gus positive control (supplied with the LR Clonase™ II Enzyme Mix)
Perform the LR recombination reaction, continued

Follow this procedure to perform the LR reaction between your entry clone and the destination vector. If you want to include a negative control, set up a separate reaction but omit the LR Clonase™ II Enzyme Mix.

1. Add the following components to 1.5 mL microcentrifuge tubes at room temperature and mix. Set up an additional set of reactions for your negative control. You will not add LR Clonase™ II Enzyme Mix to these reactions.

<table>
<thead>
<tr>
<th>Component</th>
<th>Sample</th>
<th>Positive control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry clone (50–150 ng/reaction)</td>
<td>1–7 µL</td>
<td>—</td>
</tr>
<tr>
<td>Destination vector (150 ng/µL)</td>
<td>1 µL</td>
<td>1 µL</td>
</tr>
<tr>
<td>pENTR™-gus (50 ng/µL)</td>
<td>—</td>
<td>2 µL</td>
</tr>
<tr>
<td>TE Buffer, pH 8.0</td>
<td>to 8 µL</td>
<td>5 µL</td>
</tr>
</tbody>
</table>

2. Remove the LR Clonase™ II Enzyme Mix from –20°C and thaw on ice (~ 2 minutes).
3. Vortex the LR Clonase™ II Enzyme Mix briefly twice (2 seconds each time).
4. Add 2 µL of LR Clonase™ II Enzyme Mix to each sample or positive control reaction listed above. Mix well by pipetting up and down. Do not add LR Clonase™ II Enzyme Mix to negative control reactions.
 Reminder: Return LR Clonase™ II Enzyme Mix to –20°C immediately after use.
5. Incubate reactions at 25°C for 1 hour.
 Note: For most applications, 1 hour will yield a sufficient number of colonies for analysis. Depending on your needs, the length of the recombination reaction can be extended up to 18 hours. For large plasmids (≥10 kb), longer incubation times will yield more colonies.
6. Add 1 µL of Proteinase K solution to each reaction. Incubate for 10 minutes at 37°C.
7. Proceed to **Transform competent E. coli cells**, next page.
 Note: You may store the LR reaction at –20°C for up to 1 week before transformation, if desired.
Transform competent *E. coli* cells

Introduction

Once you have performed the LR recombination reaction, transform chemically competent *E. coli* with the resulting expression clone.

Materials needed

You should have the following materials on hand before beginning:

- LR recombination reaction (from Step 7, previous page)
- Chemically competent *E. coli* cells
- S.O.C. Medium (warm to room temperature)
- pUC19 control (use as a control for transformation if desired)
- LB plates containing 100 µg/mL ampicillin (two for each transformation; warm at 37°C for 30 minutes)
- 42°C water bath
- 37°C shaking and non-shaking incubator

Transformation procedure

1. For each transformation, aliquot 50 µL of chemically competent *E. coli* cells into a sterile microcentrifuge tube.
2. Add 1 µL of the LR recombination reaction (from Set up the LR recombination reaction, Step 7, previous page) into the tube containing 50 µL of competent cells and mix gently. **Do not mix by pipetting up and down.**
3. Incubate on ice for 30 minutes.
4. Heat-shock the cells for 30 seconds at 42°C without shaking.
5. Immediately transfer the tubes to ice.
6. Add 450 µL of room temperature S.O.C. Medium.
7. Cap the tube tightly and shake the tube horizontally (200 rpm) at 37°C for 1 hour.
8. Spread 20 µL and 100 µL from each transformation on a prewarmed selective plate and incubate overnight at 37°C. We generally plate 2 different volumes to ensure that at least 1 plate has well-spaced colonies.
9. An efficient LR recombination reaction should produce >5000 colonies if the entire LR reaction is transformed and plated.
Analyze transformants

Analyze positive clones

1. Pick 5 colonies and culture them overnight in LB or SOB medium containing 100 µg/mL ampicillin.
2. Isolate plasmid DNA using your method of choice. We recommend using the PureLink™HiPure Plasmid MiniPrep Kit (Cat. no. K2100-02) or the PureLink™HQ Mini Plasmid Purification Kit (Cat. no. K2100-01). See Additional products (p30).
3. Analyze the plasmids by restriction analysis to confirm the presence of the insert.

Analyze transformants by PCR

You can also analyze positive transformants using PCR. For PCR primers, use a primer that hybridizes within the vector (e.g. T7 Promoter Primer; Catalog no. N560-02) and one that hybridizes within your insert. You will have to determine the amplification conditions. If you are using this technique for the first time, you may want to perform restriction analysis in parallel. Artifacts may be obtained because of mispriming or contaminating template. The protocol below is provided for your convenience. Other protocols are suitable.

Materials needed:
- PCR SuperMix High Fidelity (Cat. no. 10790-020)
- Appropriate forward and reverse PCR primers (20 µM each)

Note: To avoid PCR errors due to highly repetitive sequences, we recommend designing primers that hybridize to the N-terminal domain of the TAL sequence.

Procedure:
1. For each sample, aliquot 48 µL of PCR SuperMix High Fidelity into a 0.5 mL microcentrifuge tube. Add 1 µL each of the forward and reverse PCR primer.
2. Pick 5 colonies and resuspend them individually in 48 µL of the PCR SuperMix (remember to make a patch plate to preserve the colonies for further analysis).
3. Incubate reaction for 10 minutes at 94°C to lyse cells and inactivate nucleases.
4. Amplify for 20 to 30 cycles.
5. For the final extension, incubate at 72°C for 10 minutes. Store at +4°C.
6. Visualize by agarose gel electrophoresis.

Confirm the expression clone

The ccdB gene mutates at a very low frequency, resulting in a very low number of false positives. True expression clones will be ampicillin-resistant and chloramphenicol-sensitive. Transformants containing a plasmid with a mutated ccdB gene will be ampicillin- and chloramphenicol-resistant. To check your putative expression clone, test for growth on LB plates containing 30 µg/mL chloramphenicol. A true expression clone will not grow in the presence of chloramphenicol.
Transfection

Introduction

Once you have generated your expression clone, you are ready to transfec the plasmid into the mammalian cell line of choice. You may perform transient transfection experiments or use Geneticin™ selection to generate stable cell lines. The neomycin resistance gene in pcDNA dest 40 Gateway™ vector allows for the selection of stable cell lines using Geneticin™ antibiotic. We recommend that you include a positive control (see below) and a negative control (mock transfection) in your experiment to evaluate your results.

Plasmid preparation

Plasmid DNA for transfection in eukaryotic cells must be very clean and free from contamination with phenol and sodium chloride. Contaminants will kill the cells, and salt may interfere with lipid complexing, decreasing transfection efficiency. We recommend isolating plasmid DNA using the S.N.A.P.™ MidiPrep Kit (Cat. no. K1910-01), PureLink™ HQ Mini Plasmid Purification Kit (Cat. no. K2100-01), or CsCl gradient centrifugation.

Positive control

If you used the pENTR™-gus control vector in an LR recombination reaction with a destination vector, you can use the resultant expression clone as a positive control for mammalian cell transfection and expression. A successful transfection will result in β-glucuronidase expression that can be detected by western blot or functional assay.

Methods of transfection

We recommend using Lipofectamine™ 3000 Reagent (Catalog no. L3000015) or the transfection method recommended by the supplier of the cell type being used. For more information, refer to www.thermofisher.com transfection or contact Technical Support (see page 31).
Map of N-TAL FokI Entry Vector

The map below shows the elements of the N-TAL FokI Entry Vector. The region of the entry clone corresponding to the TAL is variable, depending upon the length of the sequence you ordered. The complete sequence for your clone in .gb format is available on the disk provided with your clone.
Map of N-TAL FokI CMV Expression Vector

The map below shows the elements of the N-TAL FokI CMV Expression Vector. The region of the entry clone corresponding to the TAL is variable, depending upon the length of the sequence you ordered. The complete sequence for your clone in .gb format is available on the disk provided with your clone.
Features of GeneArt™ PerfectMatch TAL vectors

Common N-TAL FokI/ FokI CMV vector features

The following elements are found in the GeneArt™ PerfectMatch TALs: N-TAL FokI, and N-TAL FokI CMV.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5 epitope (Gly-Lys-Pro-Ile-Pro-Asn-Pro-Leu-Leu-Gly-Leu-Asp-Ser-Thr)</td>
<td>Allows detection of the recombinant fusion protein by the Anti-V5 antibodies (Southern et al., 1991).</td>
</tr>
<tr>
<td>pUC origin</td>
<td>Allows high-copy number replication and growth in E. coli.</td>
</tr>
<tr>
<td>DNA binding domain</td>
<td>Allows targeting of the TAL effector to specific DNA sequences. DNA repeat variable domain</td>
</tr>
<tr>
<td>TAL N-term</td>
<td>N-terminus domain of the TAL containing translocation and nuclear localization signal tag. It contains 3 amino acids mutated from T-TALs.</td>
</tr>
<tr>
<td>NLS</td>
<td>Truncated versions of the vector contain the SV40 nuclear localization signal (NLS).</td>
</tr>
<tr>
<td>TAL C-term</td>
<td>C-terminus domain of the TAL containing activation domain.</td>
</tr>
<tr>
<td>FokI</td>
<td>FokI nuclease domain of the TAL</td>
</tr>
</tbody>
</table>

Specific N-TAL FokI/ FokI CMV vector features

The following features are found in the specific GeneArt™ PerfectMatch TAL vector noted.

<table>
<thead>
<tr>
<th>Vector</th>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-TAL FokI</td>
<td>rrnB T1 and T2 transcription terminators</td>
<td>Protects the cloned gene from expression by vector-encoded promoters, thereby reducing possible toxicity (Orosz et al., 1991).</td>
</tr>
<tr>
<td>N-TAL FokI</td>
<td>M13 Forward (–20) priming site</td>
<td>Allows sequencing in the sense orientation.</td>
</tr>
<tr>
<td>N-TAL FokI</td>
<td>attL1 and attL2 sites</td>
<td>Allows recombinational cloning of the gene of interest from an entry clone (Landy, 1989).</td>
</tr>
<tr>
<td>N-TAL FokI</td>
<td>Kanamycin resistance gene</td>
<td>Allows selection of the plasmid in E. coli.</td>
</tr>
<tr>
<td>N-TAL FokI CMV</td>
<td>P<sub>CMV</sub>, Human cytomegalovirus [CMV] immediate-early promoter/enhancer</td>
<td>Allows efficient, high-level expression of TAL-FokI protein.</td>
</tr>
<tr>
<td>N-TAL FokI CMV</td>
<td>BGHpA, Bovine growth hormone (BGH) polyadenylation signal</td>
<td>Allows efficient transcription termination and polyadenylation of mRNA.</td>
</tr>
<tr>
<td>N-TAL FokI CMV</td>
<td>Ampicillin resistance gene (C)</td>
<td>Allows selection of the plasmid in E. coli.</td>
</tr>
<tr>
<td>N-TAL FokI CMV</td>
<td>T7 promoter/priming site</td>
<td>Allows in vitro transcription in the sense orientation and sequencing through the insert.</td>
</tr>
</tbody>
</table>

C= complementary strand
Map of TAL FokI Entry Vector

The map below shows the elements of the TAL FokI Entry Vector. The region of the entry clone corresponding to the TAL is variable, depending upon the length of the sequence you ordered. The complete sequence for your clone in .gb format is available on the disk provided with your clone.
Map of TAL vp16 Entry Vector

The map below shows the elements of the TAL vp16 Entry Vector. The region of the entry clone corresponding to the TAL is variable, depending upon the length of the sequence you ordered. The complete sequence for your clone in .gb format is available on the disk provided with your clone.
The map below shows the elements of the TAL vp64 Entry Vector. The region of the entry clone corresponding to the TAL is variable, depending upon the length of the sequence you ordered. The complete sequence for your clone in .gb format is available on the disk provided with your clone.
Map of TAL KRAB Entry Vector

The map below shows the elements of the TAL KRAB Entry Vector. The region of the entry clone corresponding to the TAL is variable, depending upon the length of the sequence you ordered. The complete sequence for your clone in .gb format is available on the disk provided with your clone.
The map below shows the elements of the TAL MCS Entry Vector. The region of the entry clone corresponding to the TAL is variable, depending upon the length of the sequence you ordered. The complete sequence for your clone in .gb format is available on the disk provided with your clone.
Multiple cloning site of TAL MCS Entry Vector

Native TAL MCS

The multiple cloning site for the Native TAL MCS entry clone is shown below. The sequence of the TAL C-terminus is in bold. The MCS is underlined. Restriction sites are labeled to indicate the cleavage site.

2849 CAT CCT TTT GCC GCA ACR ACC GAT GAT TGC GCC TTT AAA GAG GAA GAC
Asp Pro Phe Ala Gly Thr Ala Asp Phe Pro Ala Phe Asn Glu Glu Glu

2900 CTC GCC TGC TCG AGG GAA TCA TCG CTC CAG GGT TCC GCT TTA AAC AAG CTT
Leu Ala Trp Leu Met Glu Leu Leu Pro Glu Gly Ser Arg Leu Asn Lys Leu

2951 GTC GAC GGT ACC GAA TTC AGC GAT ARG ACT CTC GAG GAA TCC GAG CTC AAG
Val Asp Gly Thr Glu Phe Leu Ile Asp Ser Thr Leu Glu Gly Ser Glu Leu

3002 ATC TAG CTA AGT AGA CCC AGC TTT CTT GTA CAA AGT TGG CAT TAT AAG
Lys

Truncated TAL MCS

The multiple cloning site for the Truncated TAL MCS entry clone is shown below. The sequence of the TAL C-terminus is in bold. The MCS is underlined. Restriction sites are labeled to indicate the cleavage site.

1981 TTT TTT CAC TCT TAC CTC CTT GCC CAC GCT GAT GAT GCC GCA ACR
Phe Phe Gln Cys His Ser His Pro Ala Gln Ala Phe Asp Ala Met Thr

1952 CAC TTT GGC AGG AGC AGA CAC GCA CTA CTC AGC CTA TTT AGA AGA GCA
Gln Phe Gly Met Ser Arg His Gly Leu Leu Gln Leu Phe Arg Arg Val Gly

2003 GGC ACA GAA CTA GAG GCC AGA TCC GCA ACC CTC GCT GCC TCT TCA AGA
Val Thr Glu Leu Glu Ala Arg Ser Gly Thr Leu Pro Pro Ala Ser Gin Arg

2054 TGG CAT ACG ATT CTC CAG CTC GGC TCC GCT TTA AAC AAG CTT GTC GAC GCT ACG
Trp Asp Arg Ile Leu Gln Gly Ser Arg Leu Asn Lys Leu Val Asp Gly Thr

2105 GAA TTC ATC GAT AGT ACT CTC GAG GCA TGC GAG GCC TGG AAG ATC TTA GGT AAG
Glu Phe Leu Ile Asp Ser Thr Leu Glu Gly Ser Gin Leu Lys

2156 TAG ACC CAG CTT TCT TGT ACA AAG TGG GCA TTA TAA GAA
Map of TAL FokI LRRK2 Entry Vector

TAL FokI LRRK2 Entry Vector map

The map below shows the elements of the TAL FokI LRRK2 Entry Vector. The region of the entry clone corresponding to the TAL is variable, depending upon the length of the sequence you ordered. The complete sequence for your clone in .gb format is available on the disk provided with your clone.
Features of GeneArt™ Precision TALs entry vectors

Common TAL entry vector features

The following elements are found in the GeneArt™ Precision TALs entry vectors: TAL FolkI, TAL vp16/vp64, TAL MCS. All features have been functionally tested. These features do not apply to the TAL FolkI LRRK2 entry vector.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rrnB T1 and T2 transcription terminators</td>
<td>Protects the cloned gene from expression by vector-encoded promoters, thereby reducing possible toxicity (Orosz et al., 1991).</td>
</tr>
<tr>
<td>M13 Forward (−20) priming site</td>
<td>Allows sequencing in the sense orientation.</td>
</tr>
<tr>
<td>M13 Reverse (C) priming site</td>
<td>Allows sequencing in the antisense orientation.</td>
</tr>
<tr>
<td>attL1 and attL2 sites</td>
<td>Allows recombinational cloning of the gene of interest from an entry clone (Landy, 1989).</td>
</tr>
<tr>
<td>Kanamycin resistance gene</td>
<td>Allows selection of the plasmid in E. coli.</td>
</tr>
<tr>
<td>V5 epitope</td>
<td>Allows detection of the recombinant fusion protein by the Anti-V5 antibodies (Southern et al., 1991).</td>
</tr>
<tr>
<td>pUC origin</td>
<td>Allows high-copy number replication and growth in E. coli.</td>
</tr>
<tr>
<td>DNA binding domain</td>
<td>Allows targeting of the TAL effector to specific DNA sequences. DNA repeat variable domain.</td>
</tr>
<tr>
<td>TAL N-term</td>
<td>N-terminus domain of the TAL containing translocation and nuclear localization signal tag.</td>
</tr>
<tr>
<td>NLS</td>
<td>Truncated versions of the vector contain the SV40 nuclear localization signal (NLS), while native vectors contain the two endogenous NLS of the TAL.</td>
</tr>
<tr>
<td>TAL C-term</td>
<td>C-terminus domain of the TAL containing activation domain.</td>
</tr>
</tbody>
</table>

C= complementary strand

Specific TAL entry vector features

The following features are found in the specific GeneArt™ Precision TALs entry vector noted.

<table>
<thead>
<tr>
<th>Vector</th>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAL FolkI</td>
<td>FolkI</td>
<td>FolkI nuclease domain of the TAL</td>
</tr>
<tr>
<td>TAL vp16/vp64</td>
<td>vp16 or vp64 activator</td>
<td>Effector domain of the TAL</td>
</tr>
<tr>
<td>TAL KRAB</td>
<td>KRAB repressor</td>
<td>Effector domain of the TAL</td>
</tr>
<tr>
<td>TAL MCS</td>
<td>MCS</td>
<td>Multiple cloning site for insertion of custom effector domains into the TAL</td>
</tr>
<tr>
<td>TAL MCS</td>
<td>Gly-Ser linker</td>
<td>Flexible peptide linker to prevent steric hindrance between domains</td>
</tr>
</tbody>
</table>
Specific TAL FokI LRRK2 entry

vector features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF1alpha promoter</td>
<td>Allows efficient, high-level expression of TAL-FokI protein.</td>
</tr>
<tr>
<td>V5 epitope tag</td>
<td>Allows detection of the recombinant fusion protein by the Anti-V5 antibodies [Southern et al., 1991].</td>
</tr>
<tr>
<td>SV40 nuclear localization signal [NLS]</td>
<td>For nuclear localization</td>
</tr>
<tr>
<td>Hax3 N-terminus</td>
<td>N-terminus domain of the TAL</td>
</tr>
<tr>
<td>DNA binding domain</td>
<td>Allows targeting of the TAL effector to LRRK2 DNA sequences.</td>
</tr>
<tr>
<td>Hax3 C-terminus</td>
<td>C-terminus domain of the TAL containing activation domain</td>
</tr>
<tr>
<td>FokI</td>
<td>FokI nuclease domain of the TAL</td>
</tr>
<tr>
<td>TK polyA</td>
<td>Herpes Simplex Virus Thymidine Kinase [TK] polyadenylation signal allows efficient transcription termination and polyadenylation of mRNA [Cole and Stacy, 1985].</td>
</tr>
<tr>
<td>Ampicillin resistance gene</td>
<td>Allows selection of the plasmid in E. coli.</td>
</tr>
<tr>
<td>attB1 and attB2</td>
<td>Sites for gateway adaption</td>
</tr>
<tr>
<td>pUC origin</td>
<td>Allows high-copy number replication and growth in E. coli.</td>
</tr>
</tbody>
</table>
Map of pENTR™-gus Entry Vector

Description

pENTR™-gus is a 3841 bp entry vector containing the *Arabidopsis thaliana* gene for β-glucuronidase (gus) (Kertbundit *et al.*, 1991), and is included as a positive control with Gateway™ LR Clonase™ II Enzyme Mix (Cat. nos. 11791-020 and 11791-100). The gus gene was amplified using PCR primers containing attB recombination sites. The amplified PCR product was then used in a BP recombination reaction with pDONR™ 201 to generate the entry clone. For more information about the BP recombination reaction, refer to the Gateway™ Technology with Clonase™ II manual.

Map of control vector

The figure below summarizes the features of the pENTR™-gus vector. The complete sequence for pENTR™-gus is available from our web site (www.thermofisher.com/lifescience) or by contacting Technical Support (see page 31).

- **attL1**: bases 228-2039
- **attL2**: bases 2014-2140
- **pUC origin**: bases 2200–2873 (C)
- **Kanamycin resistance gene**: bases 2990–3804 (C)
- **gus**: 3841 bp (C)

3841 nucleotides
Accessory products

Introduction

The products listed in this section may be used with GeneArt™ PerfectMatch TALs and GeneArt™ Precision TALs. For more information, refer to our website www.thermofisher.com or contact Technical Support (see page 31).

Additional products

Many of the reagents suitable for use with the vectors are available separately. Ordering information for these reagents is provided below. For more information, refer to our website www.thermofisher.com.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway™ LR Clonase™ II Enzyme Mix</td>
<td>20 reactions</td>
<td>11791-020</td>
</tr>
<tr>
<td></td>
<td>100 reactions</td>
<td>11791-100</td>
</tr>
<tr>
<td>Library Efficiency™ DHS™α Competent Cells</td>
<td>5 x 0.2 mL</td>
<td>18263-012</td>
</tr>
<tr>
<td>One Shot™ TOP10 Chemically Competent E. coli</td>
<td>20 reactions</td>
<td>C4040-03</td>
</tr>
<tr>
<td>One Shot™ TOP10 Electrocompetent E. coli</td>
<td>20 reactions</td>
<td>C4040-52</td>
</tr>
<tr>
<td>One Shot™ MAX Efficiency™DH10B™-T1 Phage-Resistant E. coli</td>
<td>20 reactions</td>
<td>12331-013</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>200 mg</td>
<td>11593-027</td>
</tr>
<tr>
<td>Lipofectamine™ 3000 Transfection Reagent</td>
<td>1.5 mL</td>
<td>L3000015</td>
</tr>
<tr>
<td>Kanamycin Sulfate</td>
<td>5 g</td>
<td>11815-024</td>
</tr>
<tr>
<td></td>
<td>25 g</td>
<td>11815-032</td>
</tr>
<tr>
<td>Kanamycin Sulfate (100X), liquid</td>
<td>100 mL</td>
<td>15160-054</td>
</tr>
<tr>
<td>Geneticin™ Selective Antibiotic</td>
<td>1 g</td>
<td>11811-023</td>
</tr>
<tr>
<td></td>
<td>5 g</td>
<td>11811-031</td>
</tr>
<tr>
<td></td>
<td>20 mL (50 mg/mL)</td>
<td>10131-035</td>
</tr>
<tr>
<td></td>
<td>100 mL (50 mg/mL)</td>
<td>10131-027</td>
</tr>
<tr>
<td>PureLink™ HiPure Plasmid MiniPrep Kit</td>
<td>25 preps</td>
<td>K2100-02</td>
</tr>
<tr>
<td>PureLink™ HiPure Plasmid MidiPrep Kit</td>
<td>25 preps</td>
<td>K2100-04</td>
</tr>
</tbody>
</table>

Gateway™ destination vectors

A large selection of Gateway™ destination vectors are available to facilitate the expression of your gene of interest in virtually any protein expression system. For more information about the vectors available, refer to our website www.thermofisher.com or contact Technical Support (page 31).
Documentation and support

Customer and technical support

Visit www.thermofisher.com/support for the latest in services and support, including:
- Worldwide contact telephone numbers
- Product support, including:
 - Product FAQs
 - Software, patches, and updates
- Order and web support
- Product documentation, including:
 - User guides, manuals, and protocols
 - Certificates of Analysis
 - Safety Data Sheets (SDSs; also known as MSDSs)

 Note: For SDSs for reagents and chemicals from other manufacturers, contact the manufacturer.

Quality Assurance Document

The Quality Assurance Document (QAD) is a certificate of analysis that provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on the disk provided with your clone.

Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies' General Terms and Conditions of Sale found on the Life Technologies’ website at www.lifetechnologies.com/termsandconditions. If you have any questions, please contact Life Technologies at www.lifetechnologies.com/support.
References

Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335,716-719.

