Ion 540™ Kit – Chef

USER GUIDE

Instructions for automated template preparation, chip loading, and sequencing

for use with:
Ion Chef™ System
Ion S5™ System
Ion S5™ XL System
Ion GeneStudio™ S5 System
Ion GeneStudio™ S5 Plus System
Ion GeneStudio™ S5 Prime System

Catalog Number A30011
Publication Number MAN0010851
Revision F.0
The information in this guide is subject to change without notice.

DISCLAIMER: TO THE EXTENT ALLOWED BY LAW, THERMO FISHER SCIENTIFIC INC. AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Revision history: Pub. No. MAN0010851

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
- Separated “Prepare the libraries and consumables” into two topics: “Prepare the consumables” and “Add the diluted libraries to the Ion Chef™ Library Sample Tube”.
- Updated “Start the Ion Chef™ run” to include the Run Options screen for step-by-step Ion Chef™ run setup.
- Updated the guidance for storing loaded chips before sequencing in “Unload the chips for sequencing”.
- Added a note in “Start the Ion Chef™ run” and “Unload the chips for sequencing” to NOT remove any residual liquid from chip wells after the Ion Chef™ run.
- Added a note regarding templated ISP range specification in “Ion Sphere™ Assay troubleshooting table”.
- Removed Ion Chef™ System maintenance procedures from “Maintain the Ion Chef™ System”.
- Updated “Maintain the Ion Chef™ System” to add references to the Ion Chef™ System maintenance procedures in Ion Chef™ Instrument User Guide.
- Updated “Related documentation” to include the Ion Chef™ Instrument User Guide. |
| E.0 | 05 December 2018 | - Updated for Ion GeneStudio™ S5 Systems.
- Clarification made to dilute barcoded library pools, if used.
- Updated for the Qubit™ 4 Fluorometer.
- References to ISP quality control user guides updated to the Ion Sphere™ Quality Control Kit User Guide [Pub. No. MAN0017531].
- Added a new troubleshooting topic: “Planned Run status does not advance to “Planned””.
- Updated for Torrent Suite™ Software 5.10; Planned Run creation topics reorganized for ease of use.
- Ion S5™ Controls Kit replaced with Ion S5™ Controls Kit Plus.
- Removed the information for the discontinued Ion 540™ Kit – Chef (Cat. No. A27759).
- Updated reference to quality control of ISPs using the Attune™ NsX Acoustic Focusing Cytometer. |
| D.0 | 23 January 2017 | “Perform an instrument reset run with an initialized sequencer that is loaded with an unused Reagents cartridge” topic added to Supplemental procedures.
- Designation of Chip-loading centrifuge positions changed from “A” and “B” to “1” and “2”
- ISP quality control sections updated and moved to new user guides:
 - Ion Sphere™ Assay on the Qubit™ 2.0 Fluorometer User Guide [Pub. No. MAN0016387]
- Web links updated |
| C.0 | 31 July 2016 | Updated to support new Ion S5™ instrument user interface in Torrent Suite™ Software v5.2
- Graphics enhanced and workflows reorganized for ease of use. |
| B.0 | 13 November 2015 | Update to user guide for 2 sequencing runs per initialization that accompany new SKU [A300111] |
| A.0 | 26 August 2015 | New user guide, which includes instructions for using the Ion 540™ Kit – Chef to set up and operate Ion Chef™ Instrument for use with the Ion S5™ and Ion S5™ XL Systems |

Important Licensing Information: This product may be covered by one or more Limited Use Label Licenses. By use of this product, you accept the terms and conditions of all applicable Limited Use Label Licenses.

Trademarks: All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Guava is a trademark of Merck KGaA. Agencourt and AMPure are trademarks of Beckman Coulter, Inc. Agilent and Bioanalyzer are trademarks of Agilent Technologies, Inc. Kimwipes is a trademark of Kimberly-Clark Corporation.

©2019 Thermo Fisher Scientific Inc. All rights reserved.
<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>Product information</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product description</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Library compatibility</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sequencer compatibility</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Software compatibility</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Kit contents and storage</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Kit summary</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Ion Chef™ reagents and materials</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Ion S5™ sequencing reagents and materials</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Related products</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Compatible Ion Chip™ kits</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Ion S5™ Controls Kit Plus</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Required materials not supplied</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>About the Ion Chef™ System</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ion Chef™ Instrument components</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Interior hardware and consumables</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>About the Ion Chef™ System touchscreen interface</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Workflow</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
<th>Before you begin</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precautions</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Avoid nucleic acid contamination</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Avoid chip damage</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Protection by equipment</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Guidelines for using Ion Chef™ reagents and consumables</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Prepare the Ion Chef™ Instrument for use</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>Create a Planned Run</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>About Planned Runs</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Create a Planned Run</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Planned Run workflow key fields</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 4 Start the Ion Chef™ run 23

Materials required ... 23
Dilute the libraries ... 23
Guidelines for library dilution ... 24
Dilute the libraries ... 24
Prepare the consumables ... 25
Add the diluted libraries to the Ion Chef™ Library Sample Tube 25
Load the Ion Chef™ System ... 26
Load the pipette tip racks and PCR Plate 27
Load the Reagents and Solutions cartridges 29
Load the Recovery Tubes and Enrichment Cartridge v2 31
Load the Chip-loading centrifuge 32
Confirm that consumables are correctly installed 34
Single chip workflow ... 34
Ion Chef™ pre-run checklist .. 36
Start the Ion Chef™ run ... 37
Unload the chips for sequencing ... 42

CHAPTER 5 Initialize the sequencer 45

Ion S5™/Ion GeneStudio™ S5 Systems component positions 45
Before you begin .. 46
When a manual cleaning of the sequencer is required 46
Initialize the sequencer ... 47

CHAPTER 6 Start the sequencing run 49

Chip handling guidelines ... 49
Start the sequencing run ... 50
Maintain the sequencer .. 52
Materials required ... 52
Clean or decontaminate the sequencer 52
Reagent consumables disposal .. 52
CO2 scrubber removal and disposal ... 52
Recycle Ion S5™ Wash Solution and Ion S5™ Cleaning Solution bottles 53

CHAPTER 7 Clean the Ion Chef™ System 54

About the cleaning protocol .. 54
Materials required ... 54
Clean the Ion Chef™ Instrument .. 54
Remove and dispose of used consumables 55
Inspect and clean the Recovery centrifuges and buckets 56
Start the cleaning ... 58
APPENDIX A Troubleshooting .. 60
Ion Chef™ System setup and operation .. 60
Ion S5™/Ion GeneStudio™ S5 Systems setup and operation 63
 Instrument alarms and events .. 63
 Initialization—General errors .. 64
Ion Sphere™ Assay troubleshooting table 65

APPENDIX B Supplemental procedures .. 66
Perform a manual cleaning of the sequencer 66
Perform an instrument reset run with an initialized sequencer that is loaded with
an unused Reagents cartridge ... 67
Quality control of Ion 540™ ISPs .. 68
 Quality control using the Ion Sphere™ Assay on the Qubit™ Fluorometer 68
 Acceptance criteria for unenriched Ion 540™ ISPs 68
 Quality control using the Guava™ easyCyte 5 Benchtop Flow Cytometer 68
Maintain the Ion Chef™ System ... 69

APPENDIX C Safety ... 70
Symbols on this instrument ... 70
 Conformity symbols ... 72
Location of safety labels on this instrument 72
Safety information for instruments not manufactured by Thermo Fisher Scientific 72
Instrument safety .. 72
 General .. 72
 Physical injury .. 73
 Electrical safety .. 73
 Cleaning and decontamination .. 74
 Ultraviolet (UV) Safety .. 74
Safety and electromagnetic compatibility (EMC) standards 74
 Safety compliance ... 74
 EMC ... 75
 Environmental design .. 75
Instrument safety — Ion S5™/Ion GeneStudio™ S5 Systems 75
Chemical safety ... 76
Biological hazard safety .. 77

Documentation and support ... 78
Related documentation ... 78
Customer and technical support .. 79
Limited product warranty .. 79
Product information

Product description

The Ion 540™ Kit – Chef (Cat. No. A30011) contains the reagents and materials that are required to perform the following steps in the sequencing workflow.

- Prepare enriched, template-positive Ion Sphere™ Particles (ISPs) and load them onto an Ion 540™ Chip using the Ion Chef™ Instrument.
- Sequence the loaded chips on an Ion S5™ Sequencer, Ion S5™ XL Sequencer, or Ion GeneStudio™ S5 Series Sequencer.

Each kit contains all the supplies that are required to load and sequence 8 chips and is compatible for use with up to 200-base-read libraries. The kit supports 4 Ion Chef™ runs (2 chips/Ion Chef™ run) and 4 sequencer initializations (2 sequencing runs/sequencer initialization).

Library compatibility

The Ion 540™ Kit – Chef can be used with up to 200-base-read libraries of any type prepared using any available Ion Torrent™-branded library kit.

Sequencer compatibility

Ion GeneStudio™ S5 Series Sequencer or Ion GeneStudio™ S5 Series System refers generically to following systems, unless otherwise specified.

- Ion GeneStudio™ S5 System (Cat. No. A38194)
- Ion GeneStudio™ S5 Plus System (Cat. No. A38195)
- Ion GeneStudio™ S5 Prime System (Cat. No. A38196)

Software compatibility

The Ion 540™ Kit – Chef is compatible with Torrent Suite™ Software v5.2 and later. Be sure to update your Torrent Suite™ Software to the latest available version before using this kit. For more information, see the Torrent Suite™ Software User Guide for your version of the software.
Kit contents and storage

IMPORTANT!
- Do not substitute components from any other sequencing kits. We have verified this protocol using these specific materials. Substitution can adversely affect system performance.
- Store all consumables and cartridges under the recommended conditions and in an upright position. Do NOT store the Ion S5™ Sequencing Reagents (Part No. A27768) on dry ice or in a closed environment where dry ice is present.

Each Ion 540™ Kit – Chef contains all the supplies that are required to prepare and sequence 8 Ion 540™ Chips. Catalog No. A30011 supports 4 Ion Chef™ runs (2 chips/Ion Chef™ run) and 4 sequencer initializations (2 sequencing runs/sequencer initialization) for up to 200-base-read libraries.

On arrival, inspect all consumables and contact Technical Support if any of the products have been damaged during shipping.

Kit summary

<table>
<thead>
<tr>
<th>Component</th>
<th>Part No.</th>
<th>Quantity per kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion S5™ Chef Supplies</td>
<td>A27755</td>
<td>4 boxes</td>
</tr>
<tr>
<td>Ion S5™ Chef Solutions</td>
<td>A27754</td>
<td>1 box</td>
</tr>
<tr>
<td>Ion 540™ Chef Reagents</td>
<td>A27758</td>
<td>1 box</td>
</tr>
<tr>
<td>Ion S5™ Sequencing Solutions</td>
<td>A27767</td>
<td>1 box</td>
</tr>
<tr>
<td>Ion S5™ Sequencing Reagents</td>
<td>A27768</td>
<td>1 box</td>
</tr>
</tbody>
</table>

Ion Chef™ reagents and materials

<table>
<thead>
<tr>
<th>Contents</th>
<th>Amount / box</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion S5™ Chef Supplies (Part No. A27755)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip Adapter</td>
<td>2</td>
<td>15°C to 30°C</td>
</tr>
<tr>
<td>Enrichment Cartridge v2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tip Cartridge v2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PCR Plate</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Frame Seal v2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Recovery Station Disposable Lid v2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Recovery Tube v2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Ion S5™ Chef Solutions (Part No. A27754)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion S5™ Chef Solutions</td>
<td>4 cartridges</td>
<td>15°C to 30°C</td>
</tr>
<tr>
<td>Ion 540™ Chef Reagents (Part No. A27758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion 540™ Chef Reagents</td>
<td>4 cartridges</td>
<td>-30°C to -10°C</td>
</tr>
</tbody>
</table>
Ion S5™
sequencing
reagents and
materials

<table>
<thead>
<tr>
<th>Contents</th>
<th>Amount / box</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2 Solution</td>
<td>4 × 1.5 L</td>
<td>15°C to 30°C</td>
</tr>
<tr>
<td>Ion S5™ Cleaning Solution</td>
<td>250 mL</td>
<td></td>
</tr>
</tbody>
</table>

Ion S5™ Sequencing Solutions (Part No. A27767)

Ion S5™ Sequencing Reagents (Part No. A27768)

<table>
<thead>
<tr>
<th>Contents</th>
<th>Amount</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2 Solution</td>
<td>4 × 1.5 L</td>
<td>15°C to 30°C</td>
</tr>
<tr>
<td>Ion S5™ Cleaning Solution</td>
<td>250 mL</td>
<td></td>
</tr>
</tbody>
</table>

Ion S5™ Sequencing Reagents

4 cartridges

−30°C to −10°C

[1] Cartridges ship at 2°C to 8°C. Store as indicated, do not store on dry ice.

IMPORTANT! Do not store the Ion S5™ Sequencing Reagents (Part No. A27768) on dry ice or in a closed environment containing dry ice.

Related products

Compatible Ion Chip™ kits

<table>
<thead>
<tr>
<th>Description</th>
<th>Catalog No.</th>
<th>Quantity</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion 540™ Chip Kit (2 × 4-pack)</td>
<td>A27766</td>
<td>8 chips</td>
<td>15°C to 30°C</td>
</tr>
</tbody>
</table>

Ion S5™ Controls Kit Plus

The Ion S5™ Controls Kit Plus (Cat. No. A30729) is ordered separately. See the Ion S5™ Controls Kit Plus Product Information Sheet (Pub. No. MAN0016206) for details.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Amount</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human CEPH Genomic DNA Control (red cap)</td>
<td>30 µL</td>
<td>−30°C to −10°C</td>
</tr>
<tr>
<td>Human CEPH Control 200 Library (yellow cap)</td>
<td>12 µL</td>
<td></td>
</tr>
<tr>
<td>E. coli DH10B Control 400 Library (orange cap)</td>
<td>16 µL</td>
<td></td>
</tr>
</tbody>
</table>
Required materials not supplied

Unless otherwise indicated, all materials are available through thermofisher.com. MLS: Fisher Scientific (fisherscientific.com) or other major laboratory supplier.

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Chef™ System</td>
<td>4484177</td>
</tr>
<tr>
<td>Microcentrifuge(^1)</td>
<td>MLS</td>
</tr>
<tr>
<td>2-, 20-, 200-, and 1,000-µL pipettes and appropriate filtered tips</td>
<td>MLS</td>
</tr>
<tr>
<td>Microcentrifuge tubes, 1.5-mL or 1.7-mL</td>
<td>MLS</td>
</tr>
<tr>
<td>Vortex mixer with a rubber platform</td>
<td>MLS</td>
</tr>
<tr>
<td>Gloves, powder-free nitrile</td>
<td>MLS</td>
</tr>
<tr>
<td>Ice buckets and ice</td>
<td>—</td>
</tr>
<tr>
<td>Nuclease-free water, molecular biology grade</td>
<td>MLS</td>
</tr>
<tr>
<td>Isopropyl alcohol, 70% solution</td>
<td>MLS</td>
</tr>
<tr>
<td>Wipes, disposable lint-free</td>
<td>MLS</td>
</tr>
<tr>
<td>(Optional) Uninterruptible Power Supply (UPS)(^2)</td>
<td>MLS</td>
</tr>
</tbody>
</table>

\(^1\) Must fit standard 0.2- and 1.5-mL microcentrifuge tubes and generate 15,500 × g. To convert the RPMs of your centrifuge to RCF in units of gravity, see tools.thermofisher.com/content/sfs/brochures/TR0040-Centrifuge-speed.pdf.

\(^2\) For laboratories that experience frequent power outages or line voltage fluctuations, we recommend that you use an uninterruptible power supply that is compatible with 2500 W output or higher.
About the Ion Chef™ System

The Ion Chef™ System (Cat. No. 4484177) provides automated, high-throughput template preparation and chip loading for use with the Ion S5™ Sequencer, Ion S5™ XL Sequencer, or Ion GeneStudio™ S5 Series Sequencer. The system includes a set of cartridge-based consumables and reagents that enable a user to load two Ion 540™ Chips in approximately 13 hours with less than 15 minutes of hands-on time. The Ion Chef™ System features network integration with the Torrent Suite™ Software to enable sample and reagent traceability throughout the chip preparation workflow.

The following figure illustrates the major external and internal features of the Ion Chef™ Instrument.

Ion Chef™ Instrument components

1. **Door** – Provides access to the interior of the instrument. The door is locked in the closed position during operation.
2. **Micropipettor** – A mechanical positive-displacement pipettor that performs all fluid transfers during sample and chip preparation.
3. **Robotic arm** – Enables fluid transfer by the Micropipettor. The arm also contains an optical sensor that reads the barcodes of instrument reagents and consumables.
4. **Touchscreen** – Provides access to all instrument functions for operation, maintenance, and troubleshooting.
5. **Power button** – Power switch for the Ion Chef™ Instrument, where the states are on (illuminated) and off.
6. **Power port** – A 100–240 VAC port that provides power to the Ion Chef™ Instrument.
7. **Ethernet port** – An RJ45 port that provides Ethernet [100 Mbit] communication with the Ion Chef™ Instrument.
8. **USB port** – Provides USB communication with the Ion Chef™ Instrument. Used to update the instrument firmware and to transfer data during service or maintenance.
The following figure illustrates the interior of the Ion Chef™ Instrument and describes the stations involved in the preparation of chips for sequencing on an Ion S5™ Sequencer, Ion S5™ XL Sequencer, or Ion GeneStudio™ S5 Series Sequencer.

1. **Waste pipette tip rack** – The position of the rack containing waste (used) pipette tips.
2. **Automated heated cover** – Transfers the plate cover to the PCR reaction plate within the sample block. During thermal cycling, the heated cover applies compression to seal the reaction plate and heats the cover to prevent condensation.
3. **New pipette tips** – The position of the rack containing unused pipette tips.
4. **Thermal cycler sample block** – Performs thermal cycling of the sequencing reactions on a 96-well PCR reaction plate.
6. **Solutions station** – The position on the instrument deck of the Ion S5™ Chef Solutions cartridge, which is maintained at room temperature.
7. **Recovery centrifuges** – Twin stations that perform centrifugation of the ISPs during the recovery phase of template preparation.
8. **Enrichment station** – The position of the rack containing consumables for enrichment of the template-positive ISPs.
9. **Chip-loading centrifuge** – Performs centrifugation of sequencing chips that have been mounted to chip-loading adapters and loaded with template-positive ISPs.
About the Ion Chef™ System touchscreen interface

The Ion Chef™ System features a simple interface for loading chips, cleaning the instrument, and performing system maintenance and configuration tasks.

1. **Set up run** button – Set up the Ion Chef™ template preparation and chip-loading routine. Choose **Step by Step** to have the instrument lead you stepwise through installation of reagents and consumables, or choose **Quick Start** to proceed if you have already installed the consumables.

2. **Open Door** button.

3. **Notifications** button – View notifications about instrument status during and between runs.

4. **Quick Start** button – Proceed directly to the Quick Start instrument setup mode. User verifies the loading of a new pipette tip cartridge and an empty pipette tip rack to hold waste tips generated during the run, before proceeding to Deck Scan.

5. **Settings** button – Advance to a screen providing the following options:
 - **Notifications**: view notifications about instrument status during and between runs
 - **Instrument Settings**: view current settings and network configuration, set instrument name, adjust time zone
 - **Service tools**: access screens for service-related maintenance and instrument diagnostics
 - **Torrent Server**: add and manage Ion Torrent™ Server connections
 - **Clean Ion Chef**: proceed directly to the instrument cleaning routine
 - **Check for updates**: check availability of system software updates
Workflow

The following workflow illustrates how to prepare and load samples using the Ion 540™ Kit – Chef and Ion Chef™ System for sequencing on an Ion S5™ Sequencer, Ion S5™ XL Sequencer, or Ion GeneStudio™ S5 Series Sequencer.

Create a Planned Run in Torrent Suite™ Software.

▼

Dilute the library samples, and thaw the reagents.

▼

Load the Ion Chef™ Instrument.

▼

Start the Ion Chef™ Instrument.

▼

Unload the Ion Chef™ Instrument.

▼

Load the prepared chip into the sequencer, then begin the sequencing run.
Before you begin

Precautions

- Precautions .. 14
- Guidelines for using Ion Chef™ reagents and consumables 14
- Prepare the Ion Chef™ Instrument for use 15

Precautions

Avoid nucleic acid contamination

IMPORTANT! A primary source of contamination is spurious DNA fragments from previous sample processing steps. Do not introduce amplified DNA into the library preparation laboratory or work area.

Avoid chip damage

IMPORTANT! To avoid possible damage to the chip due to electrostatic discharge, ground yourself before picking up a chip or placing a chip on a surface such as a lab bench. For example, touch the metal trim on the chip compartment before inserting or removing a chip from the chip clamp.

Protection by equipment

WARNING! The protection that is provided by the equipment can be impaired if the instrument is operated outside the environment and use specifications, the user provides inadequate maintenance, or the equipment is used in a manner that is not specified by the manufacturer (Thermo Fisher Scientific).

Guidelines for using Ion Chef™ reagents and consumables

- Store all consumables and cartridges under the recommended conditions and in an upright position.
- Inspect all consumables and cartridges for damage on arrival and again before use.
- Hold sequencing chips by gently gripping them by their edges.
- When the instrument is not in use, remove all consumables and reagents from the deck and close the instrument door.
- Except for the new Tip Cartridge v2, do not reuse any of the consumables or reagents. After each run, the empty Tip Cartridge v2 is transferred to the waste tip station.

IMPORTANT! All components are single-use only.
• Use only Ion Torrent™ kits and supplies with the Ion Chef™ Instrument. The use of third-party reagents and supplies can adversely affect the performance of the instrument and chips.

• Remove and sequence chips within 1 hour after the instrument finishes loading them. If you cannot sequence a loaded chip immediately, store it in a chip storage container at 4°C until you are ready to run it (up to 6–8 hours maximum).

IMPORTANT! If you choose to store a loaded chip, remove the chip from 4°C storage (but keep it in the chip storage container) at least 20 minutes before running it, allowing the chip to warm to room temperature.

Prepare the Ion Chef™ Instrument for use

• Ensure that the Ion Chef™ Instrument has been cleaned following the previous run. If not, clean the instrument before loading it with consumables.

 Note: For more information on the cleaning procedure, see Chapter 7, “Clean the Ion Chef™ System”.

• Inspect the empty compartments of the Reagents and Solutions stations for condensation. Condensate can collect in these compartments, depending on temperature and humidity conditions. Before loading consumables into the instrument, wipe the compartments dry with a laboratory wipe or absorbent cloth, if needed.

• Thaw the Ion 540™ Chef Reagents cartridge at room temperature for 45 minutes before use.

• Ensure that the Ion Chef™ Instrument has a connection to the Ion Torrent™ Server. On the instrument home touchscreen, tap **Settings > Ion Torrent™ Server** to view the connection status.

 Note: If the instrument is not connected, see the *Ion Chef™ Instrument Network Connection User Guide* (Pub. No. MAN0013444) for instructions on how to configure a direct or indirect network connection.
Create a Planned Run

About Planned Runs

Planned Runs are digital instructions that are created in Torrent Suite™ Software for controlling the template preparation and sequencing instruments. Planned Runs contain settings such as number of flows, kit types, barcodes, sample information, and reference files (if any). Planned Runs are also used to track samples, chips, and reagents throughout the workflow, from template preparation on the Ion Chef™ Instrument through sequencing on an Ion S5™ Sequencer, Ion S5™ XL Sequencer, or Ion GeneStudio™ S5 Series Sequencer and subsequent data analysis. Each chip that is prepared in an Ion Chef™ run requires its own Planned Run.

IMPORTANT! For more information on creating a Planned Run in Torrent Suite™ Software, including a complete description of each field in the Create Plan workflow bar, see the Torrent Suite™ Software Help, available by clicking the Help button in the software.
Create a Planned Run

IMPORTANT! If you are using the Ion 540™ Kit – Chef with libraries that were prepared using Oncomine™ panels, see the corresponding Oncomine™ Assay User Guide for assay-specific instructions on creating a Planned Run in Torrent Suite™ Software.

1. Sign in to the Torrent Suite™ Software.

2. In the Plan tab, in the Templates screen, select the application that you want to run (such as AmpliSeq DNA) from the left navigation menu, then click one of the following options:
 - Plan New Run — to plan a new run using the Generic Sequencing template for the selected application.
 - (Actions) Plan Run in the row of the template — to plan a new run using a specific Planned Run template.

3. In the Create Plan workflow bar, review the IonReporter and Research Application steps, then make selections appropriate to your run. Click Next.

4. In the Kits step, make the following selections:
 a. Select Ion GeneStudio™ S5 System from the Instrument dropdown list.
 b. Select the Ion 540™ Chip from the Chip Type dropdown list.
 c. Select the library kit used to prepare your libraries from the Library Kit Type dropdown list.
 d. (Optional) For barcoded libraries, select the barcode set used during library preparation from the Barcode Set dropdown list.
e. Select IonChef for Template Kit, then select Ion 540 Kit-Chef from the Template Kit dropdown list.

f. Select Ion S5 Sequencing Kit from the Sequencing Kit dropdown list.

g. Enter the appropriate number of flows in the Flows field.

<table>
<thead>
<tr>
<th>Sequencing type</th>
<th>Number of flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-base-read</td>
<td>500</td>
</tr>
<tr>
<td>150-base-read</td>
<td>400</td>
</tr>
<tr>
<td>100-base-read</td>
<td>260</td>
</tr>
</tbody>
</table>

IMPORTANT! Do not exceed 1,200 total flows for one Ion S5™ Sequencing Reagents cartridge.

h. Select or edit the remaining optional information fields appropriately for your run.

i. Click Next.

5. Review the Plugins and Projects steps, then make selections appropriate to your run. Click Next.
6. In the Plan step, enter or make the following selections:
 a. Enter a Run Plan Name, then select Reference and BED files appropriate to your run.

 b. Enter the number of barcodes you are using in your combined library in the Number of barcodes field, then click ✔️ to the right of this field. Edit the auto-populated list of barcodes that appears, if needed.

 Note: If you did not use barcode adapters in library preparation and did not select a Barcode Set in the Kits step, fields appear in the Plan step where you enter the number of chips that are used, then enter the sample name and chip barcode for each sample.

 c. Scan or enter the barcode of the Ion Chef™ Library Sample Tube into the Sample Tube Label field.

 d. Scan or enter the chip barcode into the Chip Barcode field.
e. Enter a sample name for each barcode in the appropriate **Sample Name (required)** fields.

7. After you have completed your selections, click **Plan Run** at the bottom right of the Plan step screen to save the run.

The run is listed in the **Planned Runs** screen under the name that you specified and is automatically used by the Ion Chef™ System when the associated sample is loaded.

If you are performing a dual-chip run, repeat step 2–step 7 to create a Planned Run for the second chip. You can copy the first Planned Run in the Planned Runs screen, then edit appropriately.
Planned Run workflow key fields

<table>
<thead>
<tr>
<th>Step/field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Reporter</td>
<td>If Ion Reporter™ Software is installed and enabled, and you want to analyze the run data using the software, select the account and workflow.</td>
</tr>
<tr>
<td>Research Application</td>
<td>Select the sequencing application you are performing.</td>
</tr>
<tr>
<td>Instrument</td>
<td>Select Ion S5™/Ion GeneStudio™ S5 Systems.</td>
</tr>
<tr>
<td>Chip Type</td>
<td>Select Ion 540™ Chip.</td>
</tr>
<tr>
<td>Library Kit Type</td>
<td>Select the kit used to prepare the library.</td>
</tr>
<tr>
<td>Template Kit</td>
<td>Select Ion 540 Kit-Chef.</td>
</tr>
<tr>
<td>Sequencing Kit</td>
<td>Select Ion S5 Sequencing Kit.</td>
</tr>
<tr>
<td>Barcode Set (optional)</td>
<td>If you are using barcodes with:</td>
</tr>
<tr>
<td></td>
<td>• DNA libraries: Select, for example:</td>
</tr>
<tr>
<td></td>
<td>– IonXpress for barcodes in the Ion Xpress™ Barcode Adapters Kits,</td>
</tr>
<tr>
<td></td>
<td>– IonCode for barcodes in the IonCode™ Barcode Adapters 1–384 Kit, or</td>
</tr>
<tr>
<td></td>
<td>– Ion Dual Barcode Kit 1–96 for barcodes in the Ion Torrent™ Dual Barcode Kit 1–96.</td>
</tr>
<tr>
<td></td>
<td>• RNA libraries prepared using the Ion Total RNA-Seq Kit v2: Select the IonXpressRNA barcode set, which contains all 16 barcodes in the Ion Xpress™ RNA-Seq Barcode 1–16 Kit.</td>
</tr>
<tr>
<td></td>
<td>If you are not using barcodes with:</td>
</tr>
<tr>
<td></td>
<td>• DNA libraries: Leave the Barcode field blank.</td>
</tr>
<tr>
<td></td>
<td>• RNA libraries prepared using the Ion Total RNA-Seq Kit v2: Select RNA_Barcode_None from the dropdown list. This will ensure that the proper</td>
</tr>
<tr>
<td></td>
<td>trimming is performed on the resulting sequence when the RNA library does not have a barcode.</td>
</tr>
<tr>
<td>Flows</td>
<td>Enter the appropriate number of flows for the read length (for example, 500 flows for 200-base-read sequencing).</td>
</tr>
<tr>
<td>Plugins</td>
<td>Select the appropriate plugins for your application.</td>
</tr>
<tr>
<td>Projects</td>
<td>Select or add a project to group your run data. You can include runs in multiple projects, and remove runs from a project at any time.</td>
</tr>
<tr>
<td>Planned Run Name</td>
<td>Enter a name for the run.</td>
</tr>
<tr>
<td>Reference Library</td>
<td>Select a reference library uploaded to the Ion Torrent™ Server, if any.</td>
</tr>
<tr>
<td>BED files</td>
<td>Select the Target Regions or HotSpot Regions BED file on the Ion Torrent™ Server, if any.</td>
</tr>
</tbody>
</table>
Step/field name | Description
--- | ---
Sample Tube Label (Required) | Enter or scan the barcode located on the Ion Chef™ Library Sample Tube that you will use to load the sample into the Ion Chef™ Instrument.
IMPORTANT! Each chip that is prepared in an Ion Chef™ run requires its own Planned Run. You must scan or enter the barcode of the appropriate Ion Chef™ Library Sample Tube for each Planned Run that is created for each individual chip.

Chip Barcode | Enter or scan the chip barcode.

Sample Name (Required) | Is Ion Reporter™ Uploader enabled?
- **Yes** – Enter each sample name and select the appropriate values for workflow, relation, relation role, and set ID.
- **No** – Scan the barcode of the Ion Chef™ Library Sample Tube into the “Sample Name” and “Sample Tube Label” fields for the specific sample.

Monitoring Thresholds | Set thresholds for Bead Loading, Usable Sequence, and Key Signal. In the Torrent Browser **Monitor • Runs in Progress** tab, an alert is displayed if the values for a run fall below the selected thresholds.
Start the Ion Chef™ run

- Materials required .. 23
- Dilute the libraries .. 23
- Prepare the consumables .. 25
- Add the diluted libraries to the Ion Chef™ Library Sample Tube 25
- Load the Ion Chef™ System .. 26
- Start the Ion Chef™ run ... 37
- Unload the chips for sequencing 42

This chapter describes how to perform the following procedures:
- Set up the Ion Chef™ Instrument for use by diluting the libraries, and loading the instrument with all of the required reagents and consumables
- Start an Ion Chef™ run
- Unload the chips for sequencing

Materials required

- Ion 540™ Kit – Chef (Cat. No. A30011)
- Ion 540™ Chip (1 or 2)
- Library or combined library stock solution (1 or 2)
- Molecular-biology grade nuclease-free water
- P200 pipettor and filtered tips

Dilute the libraries

Sample libraries are quantified at the end of the library preparation workflow and are typically diluted to a concentration of 100 pM. The Ion Library Equalizer™ Kit procedure also normalizes library concentration to 100 pM. Barcoded libraries are typically mixed in an equimolar ratio to create a combined library. Libraries or combined libraries can require further dilution before use in Ion Chef™ template runs.
Guidelines for library dilution

- The optimal input concentration for a given library preparation depends on the library and chip type, and often needs to be empirically determined starting from the recommended concentration.
- The recommendations for diluting your sample libraries represent optimal input concentrations for control libraries.
- Recommendations are based on qPCR quantification. If libraries are quantified with an Agilent™ 2100 Bioanalyzer™ instrument, a higher calculated concentration may need to be used for equivalent input.
- Prepare a fresh dilution of each library or combined library before use with the Ion Chef™ System, and use the library dilutions within 48 hours.
- Barcoded libraries are typically combined (or pooled) before templating to allow multiple libraries to be sequenced on a single chip. We recommend that you combine equal volumes of individual barcoded libraries at the same concentration (for example, 100 pM), then dilute the combined library to the final concentration recommended in the following table.
- Follow the recommendations of your library preparation user guide if it recommends a specific final library concentration for an Ion Chef™ run.

IMPORTANT! Before proceeding, dilute the two libraries, or the two combined libraries, to the optimal input concentration. The quality of your sequencing data relies greatly on achieving the correct concentration of starting library.

Dilute the individual or combined libraries with nuclease-free water according to the following table.

<table>
<thead>
<tr>
<th>Library</th>
<th>Recommended concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Total RNA-Seq</td>
<td>50–100 pM</td>
</tr>
<tr>
<td>Ion TargetSeq™ Exome</td>
<td>50 pM</td>
</tr>
<tr>
<td>Ion AmpliSeq™ Exome</td>
<td>50 pM</td>
</tr>
<tr>
<td>Ion AmpliSeq™ Exome RDY</td>
<td>50–100 pM</td>
</tr>
<tr>
<td>Ion AmpliSeq™ Transcriptome Human Gene Expression</td>
<td>50–100 pM</td>
</tr>
<tr>
<td>Ion AmpliSeq™ Transcriptome Mouse Gene Expression</td>
<td>70 pM</td>
</tr>
<tr>
<td>Ion AmpliSeq™ Comprehensive Cancer Panel</td>
<td>50 pM</td>
</tr>
<tr>
<td>Oncomine™ cfDNA Assays</td>
<td>50 pM</td>
</tr>
<tr>
<td>Human CEPH Control 200 Library[1]</td>
<td>Dilute 1 µL into 24 µL nuclease-free water</td>
</tr>
</tbody>
</table>

Prepare the consumables

1. Unbox the Ion 540™ Chef Reagents cartridge 45 minutes before use and allow it to warm to room temperature.

 IMPORTANT! The Reagents cartridge must sit at room temperature for 45 minutes before use.

2. Remove all cartridges and consumables from their packaging, then place them on the bench next to the Ion Chef™ Instrument.

 Prepare the following cartridges and consumables:
 - Chip Adapter (2)
 - Enrichment Cartridge v2
 - Tip Cartridge v2
 - PCR Plate and Frame Seal v2
 - Recovery Station Disposable Lid v2 (2)
 - Recovery Tube v2 (12)
 - Ion 540™ Chef Reagents cartridge (from step 1)
 - Ion S5™ Chef Solutions

 IMPORTANT!
 - Before use, gently tap the Reagents and Solutions cartridges on the bench to force the reagents to the bottoms of the tubes.
 - Briefly centrifuge the tube of NaOH (Reagents cartridge, position C) to collect the contents.

Note: When stored under normal conditions, a precipitate can form in some tubes of the Ion 540™ Chef Reagents cartridge. If present, load the cartridge as directed. The precipitate dissolves when the reagents are mixed during instrument operation.

Add the diluted libraries to the Ion Chef™ Library Sample Tube

1. Pipet 25 µL of each diluted library or combined library (see “Dilute the libraries” on page 24) to the bottom of the appropriate Ion Chef™ Library Sample Tube (barcoded tubes). Load one individual library or combined library per tube.

 Note: If running the Human CEPH Control 200 Library from the Ion S5™ Controls Kit Plus (Cat. No. A30729), prepare the control library for use by diluting 1 µL of stock library into 24 µL nuclease-free water, then add 25 µL of diluted control library to the appropriate Ion Chef™ Library Sample Tube.

2. Cap, then store the two Library Sample Tubes on ice, or at 4°C, until you are ready to load them onto the Ion Chef™ Instrument.
Load the Ion Chef™ System

IMPORTANT!

- Rated centrifuge speeds are intended only for operation with the provided buckets and approved consumable chips, tubes, and sample preparation reagents.
- The Chip-loading centrifuge is rated to operate at the listed rotational frequencies with the chip buckets, chips, and adapters. The centrifuge must be load-balanced. Proper care must be taken to load the buckets properly. If excessive vibrations arise, check that items are installed properly and rotors are load-balanced.
- Use only the materials supplied in the Ion 540™ Kit – Chef to run the centrifuges at the rated speeds. Do not remove or change the rotors. Inspect the buckets before each use to assure normal operation.
- Confirm that the instrument is powered on and was cleaned following the last use.
- Ensure that all components are clean and dry before loading them onto the Ion Chef™ Instrument.
- Ensure that the Reagents and Solutions station compartments are free of condensate before loading components.

Follow the procedure described in the following sections to load the Ion Chef™ Instrument.
Figure 1 A schematic of a loaded Ion Chef™ Instrument

1. Tap (Open Door) in the instrument touchscreen to open the instrument door, then wait for the latch to open.

2. Lift the instrument door to the top of the travel until the latch mechanism engages.

Load the pipette tip racks and PCR Plate

1. Hold here, then lift
3. Load an empty pipette tip rack in the Used (Waste) Pipette Tip Position, then change gloves.

IMPORTANT!
- Ensure that the pipette tip rack in the Used (Waste) Pipette Tip Position does not contain any tips. The instrument aborts the run if tips are present in the used position.
- To prevent contamination, change gloves immediately after moving the empty pipette tip rack to the Used (Waste) Pipette Tip Position.

Note: A small amount of dried residue can be present in the tub of the empty pipette tip rack after a run. This residue does not affect the next run.

4. Unwrap a new Tip Cartridge v2 and remove the cover to expose the pipette tips, then load it in the New Pipette Tip Position. See the figure in step 5.

5. Slide the catch forward to allow the locking bracket to pivot upward. Load the Tip Cartridge v2 into the New Pipette Tip Position, pull the bracket downward, then push the catch backward to lock the bracket and cartridge in place.

6. Load a new PCR plate into the thermal cycler sample block, then slide a new Frame Seal v2 under the automated heated cover.

IMPORTANT! When the Frame Seal v2 is positioned correctly, its tabs project upward and contact the heated cover.
Load the Reagents and Solutions cartridges

IMPORTANT! Thaw the Reagents cartridge at room temperature for 45 minutes before use.

1. Gently tap the Ion 540™ Chef Reagents cartridge on the bench to force the reagents to the bottoms of the tubes.

2. If bubbles are present below the surface of the liquid, repeat step 1.

3. Load the cartridge into the Reagents station so that it snaps into place and is level on the deck.

IMPORTANT! Do not force the Ion Chef™ cartridges into place. Each cartridge fits only one location on the deck and in one orientation. If a cartridge does not fit, confirm that you are loading the correct cartridge in the correct orientation.
4. Uncap, then load the two Library Sample Tubes, each containing 25 µL of diluted library, into Positions A and B on the Reagents cartridge.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Position A (Library) Position B (Library)

IMPORTANT!
- Orient the sample tubes so that the barcodes are visible and oriented to the right.
- Remove the caps from each Library Sample Tube before proceeding.

5. Uncap both the tube of NaOH in Position C and the empty tube in Position D on the Reagents cartridge.

IMPORTANT! When the Reagents cartridge is loaded:
- Press down on each Library Sample Tube to ensure that they are firmly seated in the cartridge.
- Ensure that all tubes are uncapped, including the tube at Position D.

6. Gently tap the Ion S5™ Chef Solutions cartridge on the bench to force the reagents to the bottoms of the tubes.

7. Load the Solutions cartridge into the Solutions station until it snaps into place and is level on the deck.
1. Load six Recovery Tubes into each Recovery centrifuge.

Before sealing each centrifuge, confirm that:

- The centrifuge is load-balanced with all required consumables.

IMPORTANT! The centrifuge must be load-balanced.

- The buckets are securely seated in the centrifuge rotors.
- The buckets are oriented correctly in the centrifuge so that they pivot outwards.

2. Place a Recovery Station Disposable Lid v2 over each centrifuge by lining up the tab with the depression on the deck, then snap into place. Ensure that the lids snap completely into place by applying firm downward pressure along the lid perimeter.

3. Close the hinged cover of the Recovery centrifuges. Confirm that the port of each disposable lid is positioned toward the rear of the instrument.
IMPORTANT!

- Do not obstruct or place any object on top of the Recovery centrifuge cover.
- Use only the supplied materials, including buckets and disposables, to run the centrifuges at the rated speeds. Do not remove or change the rotors. To ensure normal operation, inspect the buckets before each use.

4. Load the Enrichment Cartridge v2, then press down on the cartridge to ensure that it is level with the instrument deck.

IMPORTANT! Confirm that the Enrichment Cartridge v2 is loaded so that the lettering on the cartridge is right-side-up.

Load the Chip-loading centrifuge

1. Load each chip that you will use for templating and sequencing into a centrifuge bucket, then attach a Chip Adapter to the assembly.

 a. Place the chip in the chip-loading bucket with the keyed corners of the chip and bucket aligned, then align the wells of the Chip Adapter to the wells of the chip, orienting the adapter onto the chip so that the chip barcode is visible.

 b. Place the adapter onto the chip, then insert the stationary tabs at the reservoir end of the adapter into the slots of the bucket.

 c. Gently squeeze the flexible tabs at the other end of the adapter into the bucket slots until the adapter locks into place.

 d. Confirm that the tabs at all four corners of the adapter are fitted into the slots in the centrifuge bucket. Loading can fail if the adapter is not attached securely.
Note: If desired, you can label the tops of chips to distinguish them. Do not obstruct or overwrite the chip barcode with your label.

2. Load the adapter/chip/bucket assemblies into the Chip-loading centrifuge.

![Diagram of Chip-loading centrifuge]

1. Chip-loading centrifuge
2. Mounting grooves

IMPORTANT! When the Chip-loading centrifuge is loaded, confirm that each Chip Adapter is firmly attached to a bucket, and that the buckets are securely seated in the centrifuge rotors.

![Diagram of Chip-loading centrifuge with markers]

1. Chip barcode
2. Chip position 1
3. Position 1 marker hole
4. Chip position 2
5. Position 2 marker hole

Note: Position 1 of the Chip-loading centrifuge is the position 90° clockwise from the single hole in the rotor bucket cover at rest. The chip that is loaded in Position 1 will be loaded with ISPs prepared from the DNA library in the Ion Chef™ Library Sample Tube loaded in Position A of the Reagents cartridge. The chip that is loaded in Position 2 of the centrifuge will be loaded with ISPs.
3. Ensure that the centrifuge is load-balanced, and the chip buckets are securely seated and oriented correctly in the centrifuge so that they pivot 90° outwards when touched. Then close the lid of the Chip-loading centrifuge.

IMPORTANT! Do not obstruct or place any object on top of the lid.

Confirm that consumables are correctly installed

- Confirm that each cartridge is at the correct location and in the correct orientation.
- Press down on all cartridges to confirm that they are firmly pressed into place.
- Confirm that all tubes in the Ion 540™ Chef Reagents cartridge, including the tube of NaOH in Position C, are uncapped and firmly pressed into place.
- Confirm that the centrifuge lids are installed correctly so that the port is oriented toward the rear of the instrument.
- Confirm that the tube and chip buckets are seated securely in the rotor arms of the Chip-loading and Recovery centrifuges, and that the consumables they contain are correctly installed.

CAUTION! To ensure correct and safe instrument operation, you must confirm that all consumables are installed correctly to the deck before you start a run. The Ion Chef™ Instrument does not verify all aspects of the consumable setup before beginning each run.

Single chip workflow

You can set up an Ion Chef™ run to load a single chip instead of two, using the Ion Chef™ S5 Series Chip Balance loaded opposite to the sequencing chip in the Chip-loading centrifuge. The Ion Chef™ S5 Series Chip Balance is provided in the Ion S5™ Installation Kit.

Load the Ion Chef™ Instrument as you would normally load the system. For single chip loading, perform the following steps:

1. Add the single diluted DNA library, or barcoded library pool, to a Ion Chef™ Library Sample Tube, then load the tube into Position A of the Reagents cartridge.

2. Load an empty Ion Chef™ Library Sample Tube into Position B of the Reagents cartridge. Uncap both tubes.

IMPORTANT! Do not use Ion Chef™ 314, 316/318, or P-Series versions of the chip balance with the Ion 540™ Chip. Each chip balance is weight-matched to the chip (and corresponding chip adapter) specified on the chip balance label.

Note: Position 1 of the Chip-loading centrifuge is the position 90° clockwise from the single hole in the rotor bucket cover at rest.

4. Resume the normal workflow in “Load the Chip-loading centrifuge” at step 3. The Ion Chef™ Instrument detects the presence of the single chip during Deck Scan before the run starts.
Ion Chef™ pre-run checklist

☐ 1) A new Ion Chef™ Tip Cartridge v2 is loaded in the New Pipette Tip position.
☐ 2) Bracket is pulled downward to lock the tip cartridge in place.

☐ 1) A new PCR Plate is loaded in the thermal cycler sample block.
☐ 2) A Frame Seal v2 is in place and oriented under the heated cover.

☐ 1) The tip rack from previous run is transferred from the New Pipette Tip position to the Used Pipette Tip position.

☐ 1) Reagents cartridge contents are thawed (leave at room temperature for 45 minutes).
☐ 2) Reagents cartridge tubes are uncapped and pressed into place at the Reagents station so that the tubes are firmly seated and level with the deck.
☐ 3) Library sample tubes are firmly seated and in the correct orientation with barcodes facing the PCR Plate and caps removed.

☐ 1) Solutions cartridge is pressed into place at the Solutions station so that the cartridge is firmly seated and level with the deck.

☐ 1) Enrichment Cartridge v2 is pressed into place at the Enrichment station so that the cartridge is firmly seated and level with the deck.
☐ 2) Lettering on the cartridge is right-side up and positioned to the right of the enrichment tubes.

☐ 1) Recovery Tubes (v2) are securely seated in the Recovery centrifuge buckets.
☐ 2) Recovery centrifuges are load-balanced.
☐ 3) Recovery Station Disposable Lids (v2) are positioned so that the port is oriented toward the rear of the instrument.

☐ 1) Adapter/chip assembly is correctly seated in the Chip-loading centrifuge buckets, with the adaptor clips inserted into the bucket slots.
☐ 2) Centrifuge buckets containing an adapter/chip assembly or chip balance are securely seated in the centrifuge rotor, and freely pivot 90º outwards.
☐ 3) Chip-loading centrifuge is load-balanced.
Start the Ion Chef™ run

1. Ensure that you have loaded the instrument with all kits and consumables.

2. On the Ion Chef™ Instrument home touchscreen, tap Set up run.

3. Tap Step by Step to have the instrument lead you through the instrument setup, or tap Quick Start to skip the instrument setup screens and proceed to Deck Scan.

If you selected Quick Start, proceed to step 5, otherwise proceed to step 4.

4. (Step by step setup only) In the Run Options screen, tap Prepare Chip to select the templating run option.
5. Follow the on-screen instructions. When prompted, close the instrument door by first lifting it slightly to disengage the locking mechanism, then push down on the door until the locks engage.

IMPORTANT! Do not close the door by pulling it straight down from the open position. You must lift the door slightly before you can close it. Ensure that both sides of the door are locked after closing it.

![Diagram of door closing process]

1. Lift door first
2. Lower
3. Press down to lock

After the door closes, the instrument vision system activates.

6. When prompted, tap **Start check** to start Deck Scan. Wait while the instrument scans the barcodes of all consumables and reagents to confirm their presence and compatibility.

During Deck Scan, the touchscreen displays warnings if the Ion Chef™ Instrument detects missing or incompatible consumables. You must address all warnings before the run can start. After you address each condition, tap **Yes** to continue.

IMPORTANT! The Deck Scan function is not a substitute for manual inspection of the reagents and consumables on the Ion Chef™ Instrument before starting a run. To ensure proper and safe instrument operation, confirm that all consumables are installed correctly before you continue.

7. When Deck Scan is complete, tap **Next** to display the **Data Destination** screen.
8. Ensure that the instrument displays the correct kit type(s), chip type, chip barcodes, and Planned Run. If the correct Planned Runs do not display, tap the dropdown list to select the Planned Run for each chip, then tap Next.

![Data Destination](image)

IMPORTANT! If the kit and chip type are not correct, confirm that you are using the correct kit and chip. If you are using the correct kit and chip, and an incorrect kit or chip type is displayed on the screen, contact Technical Support.

9. On the **Run Options** screen, tap the appropriate option to complete the run, then enter the desired time of run completion if needed.

![Run Options](image)

The Ion Chef™ Instrument provides two options for obtaining quality control (QC) samples that can be used to evaluate templating efficiency. Depending on your selection, the QC samples are made available either during (before chip loading) or after the run. In either case, you can obtain unenriched samples from the corresponding Library Sample Tubes at Positions A and B on the Reagents cartridge, or enriched samples from Positions A and E on the Enrichment Cartridge v2.

<table>
<thead>
<tr>
<th>By selecting</th>
<th>You can obtain the QC samples</th>
<th>Approximate time after run start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>immediately after the run ends, at the time you specify: 12 hours, 45 minutes</td>
<td></td>
</tr>
<tr>
<td>Pause</td>
<td>when the instrument pauses operation before the chip loading step: 11 hours</td>
<td></td>
</tr>
</tbody>
</table>
Note:

- The library in the Ion Chef™ Library Sample Tube loaded in Position A of the Reagents cartridge is templated onto ISPs that can be sampled in Position E of the Enrichment Cartridge v2 after a run. The library in the Ion Chef™ Library Sample Tube loaded in Position B of the Reagents cartridge is templated onto ISPs that can be sampled in Position A of the Enrichment Cartridge v2.
- Select Pause if you are uncertain of library quality and want to evaluate templating efficiency before chips are loaded. If you do not pause the run, you can collect QC samples after the run. Save the samples until sequence analysis is complete to have them available for troubleshooting.

10. On the Run Options screen, tap Start run to start the run.

Note: If you need to stop the run for any reason, tap Cancel, then tap Yes to confirm the cancellation.

If the Ion Chef™ Instrument encounters a problem during the run, it aborts the run and displays the error on the instrument touchscreen. If a run fails, perform the following tasks.

a. Remove the consumables from the deck, then clean the instrument. If possible, retain the consumables for troubleshooting.

b. Reset, then attempt to start the run again. If the run fails again, contact Technical Support to troubleshoot the problem. Record the error message for reference.

11. Initialize the sequencer at least 50 minutes before the Ion Chef™ Instrument finishes chip loading. See “Initialize the sequencer” on page 47.

Initialization of the instrument can be performed up to 24 hours before starting a sequencing run. If the intent is to perform two sequencing runs per initialization, the first run must be completed and the second run started within the 24-hour period. By initializing the sequencer before completion of chip loading, you ensure that the chips can be sequenced as soon as possible after loading is complete.
12. If you chose to pause the run to analyze the templating efficiency, remove the samples for testing when prompted to do so by the Ion Chef™ Instrument (approximately 11 hours after the start of the run).

a. When prompted to remove the QC sample, open the instrument door.

![Process Paused](image)

IMPORTANT! If you unintentionally close the instrument door before you obtain the QC samples, you must wait until the end of the run before you can collect them. You cannot pause the run or open the door after it has been closed.

b. Transfer the entire volume of each QC sample from Positions A and B of the Ion 540™ Chef Reagents cartridge on the instrument deck to two new labeled microcentrifuge tubes.

IMPORTANT! Do not remove the Library Sample Tubes from the Ion 540™ Chef Reagents cartridge.

c. If you are performing quality assessment of enriched samples, transfer QC samples from positions A and E of the Enrichment Cartridge v2 to two new labeled microcentrifuge tubes.

d. Analyze the QC samples. For more information, see “Quality control of Ion 540™ ISPs” on page 68.

e. Close the instrument door, then tap Continue to complete the run.
13. When the run is complete, unload the Ion Chef™ Instrument and sequence the chips immediately. You can collect QC samples from the Reagents and/or Enrichment cartridges if you have not done so already.

IMPORTANT! Liquid may be present in the chip wells after the Ion Chef™ run. Do NOT remove any residual liquid from the wells.

Note: If you cannot sequence a loaded chip immediately or plan to sequence two chips per initialization, place the chip into a separate chip storage container and store at 4°C until you are ready to sequence it (up to 6–8 hours maximum).

Unload the chips for sequencing

1. Open the instrument door.
 a. In the instrument touchscreen, tap (Open Door), then wait for the latch to open.
 b. Lift the instrument door to the top of the travel until the latch mechanism engages.

2. Open the lid of the Chip-loading centrifuge, then unload both adapter/chip/bucket assemblies from the instrument.

Ion 540™ Kit – Chef User Guide
3. Unload each chip from the adapter/chip/bucket assembly.
 a. Apply pressure to both ends of the Chip Adapter, then remove and discard the Chip Adapter.
 b. Grasp the chip by its edges, carefully lift the chip out of the bucket, then set it aside on a clean, static-free surface. Return the bucket to the Chip-loading centrifuge.

4. Close the instrument door by first lifting it slightly to disengage the locking mechanism, then push down on the door until the locks engage.

 IMPORTANT! Do not close the door by pulling it straight down from the open position. You must lift the door slightly before you can close it. Ensure that both sides of the door are locked after closing it.
5. Load one or both chips into a sequencer, then promptly start the sequencing run or runs.

If you cannot sequence a loaded chip immediately or plan to sequence two chips per initialization, place the chip into a separate chip storage container and store at 4°C until you are ready to sequence it (up to 6–8 hours maximum).

IMPORTANT!
- Liquid may be present in chip wells after the Ion Chef™ run. Do NOT remove any residual liquid from the wells.
- If you choose to store a loaded chip, remove the chip from 4°C storage (but keep it in the storage container) at least 20 minutes before running it, allowing the chip to warm to room temperature.
Initialize the sequencer

- Ion S5™/Ion GeneStudio™ S5 Systems component positions 45
- Before you begin ... 46
- When a manual cleaning of the sequencer is required 46
- Initialize the sequencer ... 47

Initialization takes ~50 minutes.

Ion S5™/Ion GeneStudio™ S5 Systems component positions

1. Touchscreen
2. Power button
3. Ion S5™ Sequencing Reagents cartridge
4. Chip clamp
5. Ion S5™ Wash Solution bottle. Waste reservoir located behind the Ion S5™ Wash Solution bottle (shown on the right).
6. Ion S5™ Cleaning Solution bottle
7. Waste reservoir

Note:
- The system uses RFID technology to verify that the proper reagents are loaded in positions 3, 5, and 6. Reagents that exceed their expiration date or usage count generate an error message prompting the user to replace the reagent before performing the run.
- RFID regulatory information can be found on the main screen under Options ➔ Regulatory info.
Before you begin

The Ion S5™ Sequencer, Ion S5™ XL Sequencer, and Ion GeneStudio™ S5 Series Sequencer are equipped to verify the compatibility of each chip and consumable that is loaded during initialization and sequencing, and that these components do not exceed their expiration date. To avoid exceptions during initialization, inspect this information for each consumable before installing onto the instrument.

- Unbox the Ion S5™ Sequencing Reagents cartridge 45 minutes before use, then allow it to equilibrate to room temperature.
 Do not remove the Ion S5™ Sequencing Reagents cartridge from its packaging until immediately before loading, so that you can return the unused cartridge to storage if your sequencing run is delayed.

- Unbox the W2 Solution bottle. Invert the bottle 5 times within its vacuum-sealed bag, then swirl at an angle to mix thoroughly.

- Remove the W2 Solution bottle from its vacuum-sealed bag, then remove the red cap from the W2 Solution and Ion S5™ Cleaning Solution bottles immediately before installing on the instrument.

When a manual cleaning of the sequencer is required

The Ion S5™ Sequencer, Ion S5™ XL Sequencer, and Ion GeneStudio™ S5 Series Sequencer require that a cleaning be performed before initialization. Cleaning is normally performed automatically at the completion of the previous sequencing run. When two sequencing runs are performed on a single initialization, the post-run cleaning is performed after the second sequencing run. However, if the "Enable post-run clean" checkbox (see “Start the sequencing run”) is deselected to allow a second run, and a second run is not performed, the instrument will not allow the subsequent initialization to proceed until a manual cleaning has been performed. For more information on how to perform a manual cleaning, see “Perform a manual cleaning of the sequencer” on page 66.

If the sequencer is initialized and a sequencing run is not started within 24 hours, or a run is not started or completed due to a power failure or an abort, do not perform a manual cleaning. An instrument reset run is required before reinitialization. For more information, see “Perform an instrument reset run with an initialized sequencer that is loaded with an unused Reagents cartridge” on page 67.
Chapter 5 Initialize the sequencer

Initialize the sequencer

1. In the instrument touchscreen main menu, tap Initialize.

The door, chip, and Reagent cartridge clamps unlock.

2. When prompted, remove the W2 Solution bottle to access the waste reservoir, then remove and empty the waste reservoir.

3. Reinstall the empty waste reservoir.

4. Replace the expended Ion S5™ Sequencing Reagents cartridge with a new cartridge equilibrated to room temperature.

5. Ensure the new W2 Solution bottle is thoroughly mixed. Then remove the red cap and install.

6. Ensure that the used sequencing chip from the previous run is properly seated in the chip clamp and the chip clamp is pushed in all the way.
7. If necessary, install a new Ion S5™ Cleaning Solution bottle.

 Note: The Ion S5™ Cleaning Solution bottle contains sufficient reagent to complete 4 cleanings.

8. Close the door, then tap **Next**.

 The instrument confirms that the consumables and chip are properly installed and that the Ion S5™ Cleaning Solution contains sufficient reagent to perform the post-run clean. Follow all on-screen recommendations to ensure proper installation of required consumables.

 IMPORTANT! If the allowed number of post-run cleans has been met, the instrument prompts the user to replace the Ion S5™ Cleaning Solution bottle.

 Note: If a **Checking Reagent: Failed** warning appears, see “Bottle leak check fails” on page 64.

9. When initialization is complete (~50 minutes), tap **Home**.

 The instrument is now ready for a sequencing run.

 For information on recycling and disposal of used components, see “Reagent consumables disposal” on page 52.
Chip handling guidelines

To place a chip in the chip clamp, perform the steps that are described in the following figure:

1. Slide the chip clamp out.
2. Remove the chip currently in the clamp.
3. Place the appropriate loaded chip in the chip clamp with the chip notch in the bottom-front corner.

Note: Do not force the chip into the clamp. If the chip does not fit easily in the clamp, confirm that the notch is oriented as shown in the drawing.

4. Slide the metal tab in fully to engage the clamp, then close the instrument door.
Start the sequencing run

We recommend that you start a sequencing run as soon as possible after chip loading and instrument initialization are complete. However, successful sequencing runs can be started up to 24 hours after instrument initialization.

IMPORTANT!
- Do not press the power button during a run. Interrupting power to the instrument during a run can result in sequencing run failure and loss of sample.
- We recommend that you verify the status of the Planned Run you will use as "Planned" before inserting the loaded chip. If your Planned Run does not advance to the Planned status in Torrent Suite™ Software after successful completion of an Ion Chef™ run, see “Planned Run status does not advance to "Planned"” on page 62.

1. After completion of initialization, tap Run in the instrument touchscreen. The door and chip clamp unlock.

2. Remove the used sequencing chip, then secure a chip loaded with template-positive Ion Sphere™ Particles in the chip clamp.

3. Push the chip clamp all the way in to engage, close the instrument door, then tap Next.
 Note: Do not remove the chip from the chip clamp until completion of the run. Removing and reinserting the chip risks introducing air bubbles in the chip.

4. Confirm that the correct Planned Run has auto-populated. If this run is the first of two sequencing runs on this initialization, deselect the Enable post-run clean checkbox, then tap Review.

IMPORTANT!
- Failure to deselect the checkbox results in a cleaning performed automatically after the first run. A second run is not available.
- When starting the second sequencing run on a single initialization, ensure that the Enable post-run clean checkbox is selected so that the post-run cleaning is performed automatically.
5. Confirm that the remaining pre-populated settings are correct, or tap Edit to make changes if needed.

6. Confirm that the instrument door is closed, then tap Start run to begin the sequencing run.

IMPORTANT! During a run, do not open the instrument door, and avoid touching the instrument. Touching the instrument during the sequencing run can reduce the quality of the measurements.

When the sequencing run is complete, the instrument automatically performs the cleaning procedure unless the Enable post-run clean checkbox was deselected. After cleaning, the touchscreen returns to the main menu. Use Torrent Suite™ Software to review the results.

If you are sequencing a second chip on a single initialization, start the second run within 24 hours of start of initialization.
Maintain the sequencer

Materials required
- Lint-free wipes
- 70% isopropanol
- (Optional) 10% bleach solution

Clean or decontaminate the sequencer

In the event of a spill or leak on or inside the instrument, perform the following steps.

Note: Dispose of all waste in appropriate liquid or solid waste containers.

1. Remove the W2 Solution bottle, then remove and empty the waste reservoir.
2. Remove the Ion S5™ Sequencing Reagents cartridge.
3. Inspect the waste and nucleotide reagent bays for liquid.
4. Using absorbent paper soak up as much liquid as possible, then wash the affected area with 10% bleach solution.
5. Wipe the affected surfaces with 70% isopropanol, then allow to air-dry.

Reagent consumables disposal

IMPORTANT! Follow all applicable local, state/provincial, and/or national regulations when recycling or disposing of Ion S5™ reagent consumables.

CO₂ scrubber removal and disposal

To properly dispose of the CO₂ scrubber, you must first remove it from the Ion S5™ Sequencing Reagents cartridge.

1. Invert the Ion S5™ Sequencing Reagents cartridge over an appropriate receptacle to drain all residual liquid.
2. Wearing gloves, insert the Ion S5™ Cartridge Tool firmly into the CO₂ scrubber until the flange stops on the top of the cartridge.

Ion S5™ Cartridge Tool
3. Pull straight up on the tool while holding the nucleotide reagent cartridge down.

4. Remove the scrubber from the cartridge tool, then dispose of the scrubber according to applicable hazardous waste regulations.

The remaining nucleotide reagent cartridge should be disposed of appropriately.

The Ion S5™ Wash Solution and Ion S5™ Cleaning Solution bottles are made of recyclable plastic.

1. Open the expended bottle by unscrewing the cap.

2. Remove the cap, sipper, and filter, then pour any residual liquid into an appropriate receptacle.

3. Rinse the empty bottle with water. Pour out the rinse water into the same liquid waste receptacle.

4. Recycle or dispose of the clean bottle, cap, sipper, and filter according to applicable regulations.
About the cleaning protocol

The Ion Chef™ System includes an automated cleaning function that must be performed following every run. The cleaning routine is initiated from the Ion Chef™ Instrument touchscreen and is designed to minimize potential contamination. During the routine, the instrument irradiates the deck with ultraviolet light for 1 minute after all consumables have been removed from the instrument.

IMPORTANT! Although the Ion Chef™ Instrument cleaning routine provides some protection against contamination, it is not a substitute for good laboratory technique or precautions. When preparing DNA libraries for use or when preparing the Ion Chef™ Instrument, make certain to observe sterile laboratory procedures at all times to ensure minimal contamination.

Materials required

- Gloves, powder-free nitrile
- Isopropanol, 70% solution
- Wipes, lint-free

Clean the Ion Chef™ Instrument

IMPORTANT! Clean the Ion Chef™ Instrument as described in the following pages after every run. To prevent contamination, do not operate the instrument unless it has been recently cleaned.
Remove and dispose of used consumables

IMPORTANT!
- Do not discard the empty Tip Cartridge v2.
- Make sure to transfer the QC samples before you remove and discard the Reagents cartridge.

1. Tap **(Open Door)** in the instrument touchscreen, then wait for the latch to open.

2. Lift the instrument door to the top of the travel until the latch mechanism engages.

3. Remove, then discard the PCR Plate from the thermal cycler sample block.
4. Remove, then discard the box of used pipette tips from the waste tip position.

IMPORTANT! Handle the disposable reservoir in the waste tip position with care. During the run, liquid waste collects in the reservoir. Dispose of the liquid waste by tipping the reservoir on one corner and pouring the waste into an appropriate waste container.

5. Move the empty Tip Cartridge v2 to the waste tip position.

6. Remove, then discard the
 - Ion 540™ Chef Reagents cartridge
 - Ion S5™ Chef Solutions cartridge
 - Enrichment Cartridge v2

7. Remove, then discard the consumables from the Recovery centrifuges, including the:
 - Recovery Station Disposable Lid v2
 - Recovery Tubes v2

8. Close the Chip-loading centrifuge cover.

Inspect and clean the Recovery centrifuges and buckets

1. Inspect the Recovery centrifuges, then clean the components if excess liquid is present.

<table>
<thead>
<tr>
<th>Is liquid present?</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Proceed to “Start the cleaning” on page 58.</td>
</tr>
<tr>
<td>Yes</td>
<td>Clean the centrifuge bowl and buckets as described below. IMPORTANT! Clean the Recovery centrifuges occasionally, only when excess liquid is noticeable in the bowl and/or buckets. You do not need to clean the centrifuges after every run.</td>
</tr>
</tbody>
</table>

IMPORTANT! Wear powder-free, nitrile gloves when cleaning the Recovery centrifuge.
2. Remove the buckets from the Recovery centrifuges. Clean the inside and outside of each bucket using a lint-free wipe, then place the buckets on a clean, dry surface while you clean the centrifuge.

3. Use lint-free wipes to remove all fluid from inside the centrifuge bowl.

4. Use lint-free wipes treated with 70% isopropanol to clean the following parts.
 - Inside rim of the centrifuge.
 - Bottom of the centrifuge bowl.
 - Outside and inside of the centrifuge buckets.

5. Dry the centrifuge and buckets with lint-free wipes.

6. Install the centrifuge buckets, then close the Recovery centrifuge cover.
Start the cleaning

1. Close the instrument door by first lifting it up slightly to disengage the locking mechanism, then pushing down on the door until the locks engage.

 IMPORTANT! Before closing the door, ensure the covers of the Chip-loading and Recovery centrifuges are closed.

2. To start the cleaning, tap **Next** on the Ion Chef™ Instrument touchscreen that appears after run completion.

 ![Ion Chef™ Instrument Screen](image)

 Note: You can also clean the instrument at any time starting from the home touchscreen. Tap **Settings > Clean Ion Chef.**

3. Confirm that you have removed all consumables from the Ion Chef™ Instrument, except the empty pipette tip rack in the waste tip position, then tap **Next.**

4. With the door closed, tap **Start.** The instrument performs a Deck Scan before starting the cleaning routine. The Ion Chef™ Instrument stops ventilation, then illuminates the ultraviolet (UV) light in the instrument for ~1 minute.

 ![Clean Instrument Screen](image)
CAUTION! The Ion Chef™ Instrument emits UV light at 254 nm. Wear appropriate eye wear, protective clothing, and gloves when working near the instrument. Do not look directly at the UV light while it is illuminated during the cleaning routine.
Ion Chef™ System setup and operation

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument does not display the home screen when powered on</td>
<td>Multiple causes are possible.</td>
<td>1. Power off the instrument, wait 30 seconds, then power on the instrument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. If the instrument fails again, contact Technical Support.</td>
</tr>
<tr>
<td>The instrument door cannot be opened</td>
<td>An obstruction was present on or around the door mechanism.</td>
<td>Remove the obstruction blocking the door, then operate the instrument normally.</td>
</tr>
<tr>
<td></td>
<td>A hardware or software error occurred.</td>
<td>Contact Technical Support to report the problem and for further assistance.</td>
</tr>
<tr>
<td>The instrument stops during a run</td>
<td>The instrument encountered an internal error.</td>
<td>1. Record the error displayed on the instrument display, then tap OK.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Contact Technical Support to report the problem and for further assistance.</td>
</tr>
<tr>
<td></td>
<td>A consumable was improperly loaded.</td>
<td>Ensure that all consumables are loaded according to the instructions provided.</td>
</tr>
<tr>
<td>Liquid residue is present in the Recovery centrifuges following a run</td>
<td>During normal instrument operation, a noticeable coating of liquid collected on the bowl and buckets of the Recovery centrifuges after repeated runs.</td>
<td>Remove the residue as instructed in “Inspect and clean the Recovery centrifuges and buckets” on page 56.</td>
</tr>
<tr>
<td>Observation</td>
<td>Possible cause</td>
<td>Recommended action</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Instrument will not begin a run | The instrument has encountered a Deck Scan error (one or more consumables are absent or loaded improperly). | 1. Confirm that the touchscreen does not display any Deck Scan warnings. If alarms are present, note the error(s) displayed, replace the missing consumable as directed, tap **No** when prompted then tap **Next** to cancel the run. After returning to the home screen, restart the run.
2. If the error persists, confirm that:
 - All buckets are seated correctly in the rotors of the Recovery and Chip-Loading Centrifuges.
 - All cartridges are loaded correctly and are level on the instrument deck.
 - The barcodes of the Library Sample Tubes are visible and positioned correctly.
 - All tubes are both present and uncapped on the Ion 540™ Chef Reagents [sample tubes, NaOH tube, and the empty tube].
3. If the error persists after you check the consumables on the instrument deck, do one of the following:
 - If you are confident that the Ion Chef™ Instrument is set up correctly and you are comfortable disregarding the warnings, tap **YES** following Deck Scan to proceed with the run.
 - If the instrument cannot begin the run, contact Technical Support for further assistance. |
| The instrument has encountered an internal error. | 1. Record the error displayed on the instrument display, then tap **OK**.
2. Contact Technical Support to report the problem and for further assistance. |
<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument displays one or more alerts during a run</td>
<td>The instrument detected one or more problems during the run.</td>
<td>After the instrument completes the run, contact Technical Support. If possible, capture an image of the alert or error message to help troubleshoot. IMPORTANT! The detected problem might impact the performance of the sequencing run.</td>
</tr>
<tr>
<td></td>
<td>• Network connection to the server was interrupted. • User name or password was incorrect.</td>
<td>1. Tap the Instrument status button to view the alert(s). 2. In the Instrument status screen, confirm that the name of the Ion Torrent™ Server connection is red. 3. Contact your network administrator to confirm that: • The Ion Torrent™ Server can be accessed from the network port used by the Ion Chef™ Instrument. If not, troubleshoot the network connection. • The user name and password used by the Ion Chef™ Instrument are valid. If not, contact the server administrator to renew the credentials. 4. If the alert persists, capture an image of the alert or error message, if possible, to help troubleshoot, then contact Technical Support for further assistance.</td>
</tr>
<tr>
<td>Planned Run status does not advance to “Planned”</td>
<td>Connectivity was temporarily lost or interrupted between the Ion Chef™ Instrument and Torrent Suite™ Software.</td>
<td>Manually change the status of the run to “Planned”. 1. Sign in to the Torrent Suite™ Software. 2. In the Plan tab, click Planned Runs. 3. For the Planned Run of interest, click 📊 Completed on Chef. The status changes to “Planned”.</td>
</tr>
</tbody>
</table>
Instrument alarms and events

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red "Alarms" and/or "Events" message in Main Menu</td>
<td>• Available software updates were detected.</td>
<td>Tap the red Alarms icon to see detailed messages.</td>
</tr>
<tr>
<td></td>
<td>• Connectivity issues were detected.</td>
<td>• If a message states “Newer Software Available”:</td>
</tr>
<tr>
<td></td>
<td>• Instrument did not detect required files or hardware.</td>
<td>IMPORTANT! After updates are installed, the instrument must be restarted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. In the main menu, tap Settings > Check for Updates.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Select the Released Updates checkbox, then tap Update.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. When installation is complete, follow the onscreen prompts to restart the instrument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: In some cases, the instrument restarts automatically after software installation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If a message states “No Connectivity to Torrent Server”, “No Connectivity to ftp server”, or “Network Manager not connected”, disconnect and re-connect the ethernet cable, confirm that the router is operational, and verify that the network is up and running.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For any other messages:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Wait 30 seconds, then press the button on the side of the instrument to power on the instrument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If the red "Alarms" and/or "Events" message still appears in the main menu, contact Technical Support.</td>
</tr>
</tbody>
</table>
Initialization—General errors

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottle leak check fails</td>
<td>• Bottle seal was not tight.</td>
<td>1. Finger-tighten the bottles.</td>
</tr>
<tr>
<td></td>
<td>• Bottle was damaged or defective.</td>
<td>2. If the bottle continues to leak, replace the bottle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. If leak check continues to fail, contact Technical Support.</td>
</tr>
</tbody>
</table>

Appendix A Troubleshooting
Ion S5™/Ion GeneStudio™ S5 Systems setup and operation

Ion 540™ Kit – Chef User Guide
Ion Sphere™ Assay troubleshooting table

The following table contains troubleshooting information for unenriched ISPs tested with the Ion Sphere™ Assay on a Qubit™ Fluorometer.

Note: Successful runs that meet chip throughput specifications have been performed with lower (5%–10%) percentage of templated ISPs. Use the following recommendations as guidelines only to titrate library input for optimal results, or troubleshoot problems with library preparation.

<table>
<thead>
<tr>
<th>Qubit™ Fluorometer[1] observation</th>
<th>Ion S5™/Ion GeneStudio™ S5 Systems observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
</table>
| <10% Templated ISPs | • Lower loading | Too little library input into template preparation. | • Increase library input to target 10–25% templated ISPs.
 or | • Continue with sequencing; expect lower throughput. |
| >25% Templated ISPs, but <70% | Increased number of filtered out reads | Too much library input into template preparation. | • Decrease library input to target 10–25% templated ISPs.
 or | • Continue with sequencing; expect lower throughput. |
| >70% Templated ISPs | • Increased % primer dimer filtered out reads | Adapter dimer contaminating library, more likely in short amplicon libraries, Ion AmpliSeq™ libraries, or miRNA libraries. | • Check Agilent™ 2100 Bioanalyzer™ traces for adapter dimer peak (Amplicon library or Ion AmpliSeq™ library peak around 70 bp; miRNA library peak around 60bp).
 or | • Re-purify library using Agencourt™ AMPure® XP Kit clean-up steps as outlined in the appropriate user guides. |
| | • Lower throughput | Low loading | Troubleshoot with Technical Support or a Field Application Scientist.
 or | • Low % enriched |
| | • High % filtered out reads | Low throughput | |

[1] Qubit™ 2.0 Fluorometer or later.
Supplemental procedures

- Perform a manual cleaning of the sequencer .. 66
- Perform an instrument reset run with an initialized sequencer that is loaded with an unused Reagents cartridge ... 67
- Quality control of Ion 540™ ISPs ... 68
- Maintain the Ion Chef™ System ... 69

Perform a manual cleaning of the sequencer

A cleaning protocol is normally performed automatically at the completion of each sequencing run. If a cleaning is necessary, perform the following procedure.

1. On the home screen, select Settings ➤ Clean Instrument.
 The instrument door unlocks allowing access to the consumables.

2. Remove the W2 Solution bottle to access the waste reservoir, then remove and empty the waste reservoir.

3. Reinstall the empty waste reservoir and a used W2 Solution bottle.

4. Ensure that the Ion S5™ Sequencing Reagents cartridge and W2 Solution bottle are properly installed.

 IMPORTANT! Perform the cleaning with a used reagent cartridge and wash solution bottle installed. The cleaning procedure pumps cleaning solution into the wash solution bottle and reagent cartridge making them unsuitable for sequencing.

5. Place a used sequencing chip in the chip clamp, then push the chip clamp in all the way to engage.
6. Close the instrument door, then tap **Next**.
 Cleaning takes ~35 minutes to complete. On completion the instrument door automatically unlocks and the chip and cartridge clamps disengage.

7. Proceed to “Initialize the sequencer” on page 47.

Perform an instrument reset run with an initialized sequencer that is loaded with an unused Reagents cartridge

Cleaning is normally automatically performed at completion of a sequencing run. If an Ion S5™ Sequencer, Ion S5™ XL Sequencer, or Ion GeneStudio™ S5 Series Sequencer is initialized, an instrument reset run is required to ensure proper cleaning before reinitialization in one of the following situations.

- A sequencing run is not started within 24 hours after initialization.
- A sequencing run is not completed due to a power failure or an abort, and <200 flows occurred before the stoppage.

Do **NOT** perform a manual cleaning with an unused, initialized Ion S5™ Sequencing Reagents cartridge.

Note:

- If a power failure or abort occurs during the second of two runs started after a single initialization, a manual cleaning is sufficient (see “Perform a manual cleaning of the sequencer” on page 66).
- If the number of flows that occurred before a power failure or abort is unknown, perform an instrument reset run.

To perform an instrument reset run, use the following procedure before reinitialization.

1. In the instrument touchscreen main menu, tap **Run**.
 The instrument door unlocks and the chip clamp disengages.

2. Ensure that a used sequencing chip is in the chip clamp, then push the chip clamp in all the way to engage.

3. Close the instrument door, then tap **Next**.

4. When prompted, select **Planned Run (none)**. Ensure that the **Enable post-run clean** checkbox is selected, then tap **Review**.

5. In the **Select Run** screen, tap **Edit**, then in the **Detail** screen set the number of flows to **200**. Ensure that the **Post-Run/Clean** checkbox is selected, then tap **Close**.

6. Tap **Start run**, then tap **Accept** to confirm that Post-Run Clean is enabled, and to start the run.

When the instrument reset run completes, the instrument automatically performs the cleaning procedure. After cleaning, the touchscreen returns to the main menu.
Quality control of Ion 540™ ISPs

Quality control using the Ion Sphere™ Assay on the Qubit™ Fluorometer

The Qubit™ Fluorometer can be used with the Ion Sphere™ Quality Control Kit (Cat. No. 4468656) to perform a quality assessment of unenriched Ion Sphere™ Particles generated for up to 200-base-read sequencing on an Ion S5™ Sequencer, Ion S5™ XL Sequencer, or Ion GeneStudio™ S5 Series Sequencer.

For detailed protocols, see the Ion Sphere™ Quality Control Kit User Guide (Pub. No. MAN0017531) available at thermofisher.com.

Note: This protocol supports the Qubit™ 2.0 Fluorometer or later.

Acceptance criteria for unenriched Ion 540™ ISPs

The optimal amount of library corresponds to the library dilution point that gives Percent Templated ISPs between 10–25%.

Samples that fall within the recommended range generally produce the most data; however, samples that fall outside of the recommended range can still meet the throughput specifications on the Ion Chips™.

The recommended optimal range is not intended to be a pass/fail criterion. The range provides guidance for the quality of the sample.

Note: If the results are outside the desired Percent Templated ISPs range, then increase or decrease the library input appropriately. For more information, see the “Ion Sphere™ Assay troubleshooting table” on page 65.

<table>
<thead>
<tr>
<th>Percent Templated ISPs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><10%</td>
<td>Sample contains an insufficient number of templated ISPs to achieve optimal loading density on the Ion Chip™.</td>
</tr>
<tr>
<td>10–25%</td>
<td>Optimal amount of library.</td>
</tr>
<tr>
<td>>25%</td>
<td>Sample will yield multi-templated ISPs [mixed reads].</td>
</tr>
</tbody>
</table>

Quality control using the Guava™ easyCyte 5 Benchtop Flow Cytometer

The Guava™ easyCyte 5 Benchtop Flow Cytometer can be used for quality assessment of unenriched and enriched Ion Sphere™ Particles generated for up to 200-base-read sequencing on an Ion S5™ Sequencer, Ion S5™ XL Sequencer, or Ion GeneStudio™ S5 Series Sequencer.

- **Unenriched samples** – Obtain the QC samples from the corresponding Ion Chef™ Library Sample Tubes on the Ion 540™ Chef Reagents cartridge (positions A and B).
- **Enriched samples** – Obtain sample 1 from position E and sample 2 from position A on the Enrichment Cartridge v2.

Maintain the Ion Chef™ System

For further information on the following Ion Chef™ System maintenance procedures, see the Ion Chef™ Instrument User Guide (Pub. No. MAN0018668), available at thermofisher.com.

- Install a firmware update
- Change the instrument name
- Replace the ultraviolet lamp
- Perform an XYΘ calibration
- Perform a Z calibration

Note: You must install the Ion Chef™ Instrument firmware update in Torrent Suite™ Software 5.12 or later to access the XYΘ calibration and Z calibration routines.
Symbols on this instrument

Symbols may be found on the instrument to warn against potential hazards or convey important safety information. In this document, the hazard symbol is used along with one of the following user attention words:

- **CAUTION!** – Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.
- **WARNING!** – Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.
- **DANGER!** – Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>English</th>
<th>Français</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Caution, risk of danger</td>
<td>Attention, risque de danger</td>
</tr>
<tr>
<td></td>
<td>Consult the manual for further safety information.</td>
<td>Consulter le manuel pour d’autres renseignements de sécurité.</td>
</tr>
<tr>
<td>⚠️ ⚠️</td>
<td>Moving parts</td>
<td>Parties mobiles</td>
</tr>
<tr>
<td>⚠️ ⚠️</td>
<td>Caution, hot surface</td>
<td>Attention, surface chaude</td>
</tr>
<tr>
<td>⚠️ ⚠️</td>
<td>Ultraviolet light</td>
<td>Rayonnement ultraviolet</td>
</tr>
<tr>
<td>⚠️ ⚠️</td>
<td>On/Off</td>
<td>0n/Off (marche/arrêt)</td>
</tr>
<tr>
<td>⚠️ ⚠️</td>
<td>Standby</td>
<td>En attente</td>
</tr>
<tr>
<td>⚠️ ⚠️</td>
<td>Protective conductor terminal (main ground)</td>
<td>Borne de conducteur de protection (mise à la terre principale)</td>
</tr>
<tr>
<td>⚠️ ⚠️</td>
<td>Terminal that can receive or supply alternating current or voltage</td>
<td>Borne pouvant recevoir ou envoyer une tension ou un courant de type alternatif</td>
</tr>
<tr>
<td>⚠️ ⚠️</td>
<td>Do not dispose of this product in unsorted municipal waste</td>
<td>Ne pas éliminer ce produit avec les déchets usuels non soumis au tri sélectif.</td>
</tr>
</tbody>
</table>

CAUTION! To minimize negative environmental impact from disposal of electronic waste, do not dispose of electronic waste in unsorted municipal waste. Follow local municipal waste ordinances for proper disposal provision and contact customer service for information about responsible disposal options.

MISE EN GARDE ! Pour minimiser les conséquences négatives sur l’environnement à la suite de l’élimination de déchets électroniques, ne pas éliminer ce déchet électronique avec les déchets usuels non soumis au tri sélectif. Se conformer aux ordonnances locales sur les déchets municipaux pour les dispositions d’élimination et communiquer avec le service à la clientèle pour des renseignements sur les options d’élimination responsable.
Conformity symbols

<table>
<thead>
<tr>
<th>Conformity mark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicates conformity with safety requirements for Canada and U.S.A.</td>
</tr>
<tr>
<td></td>
<td>Indicates conformity with European Union Low Voltage Directive 2006/95/EC,</td>
</tr>
<tr>
<td></td>
<td>Indicates conformity with Australian standards for electromagnetic</td>
</tr>
<tr>
<td></td>
<td>compatibility.</td>
</tr>
</tbody>
</table>

Location of safety labels on this instrument

![Safety labels on instrument](image)

Safety information for instruments not manufactured by Thermo Fisher Scientific

Some of the accessories provided as part of the instrument system are not designed or built by Thermo Fisher Scientific. Consult the manufacturer’s documentation for the information needed for the safe use of these products.

Instrument safety

General

⚠️ **CAUTION!** Do not remove instrument protective covers. If you remove the protective instrument panels or disable interlock devices, you may be exposed to serious hazards including, but not limited to, severe electrical shock, laser exposure, crushing, or chemical exposure.
Physical injury

CAUTION! Moving and Lifting Injury. Improper lifting can cause painful and permanent back injury.

Things to consider before lifting or moving the instrument or accessories:
- Depending on the weight, moving or lifting may require two or more persons.
- If you decide to lift or move the instrument after it has been installed, do not attempt to do so without the assistance of others, the use of appropriate moving equipment, and proper lifting techniques.
- Ensure you have a secure, comfortable grip on the instrument or accessory.
- Make sure that the path from where the object is to where it is being moved is clear of obstructions.
- Do not lift an object and twist your torso at the same time. Keep your spine in a good neutral position while lifting with your legs.
- Participants should coordinate lift and move intentions with each other before lifting and carrying.
- For smaller packages, rather than lifting the object from the packing box, carefully tilt the box on its side and hold it stationary while someone else slides the contents out of the box.

CAUTION! Moving Parts. Moving parts can crush, pinch and cut. Keep hands clear of moving parts while operating the instrument. Disconnect power before servicing.

Electrical safety

WARNING! Ensure appropriate electrical supply. For safe operation of the instrument:
- Plug the system into a properly grounded receptacle with adequate current capacity.
- Ensure the electrical supply is of suitable voltage.
- Never operate the instrument with the ground disconnected. Grounding continuity is required for safe operation of the instrument.

WARNING! Power Supply Line Cords. Use properly configured and approved line cords for the power supply in your facility.

WARNING! Disconnecting Power. To fully disconnect power either detach or unplug the power cord, positioning the instrument such that the power cord is accessible.
Cleaning and decontamination

⚠️ **CAUTION! Cleaning and Decontamination.** Use only the cleaning and decontamination methods specified in the manufacturer’s user documentation. It is the responsibility of the operator (or other responsible person) to ensure the following requirements are met:

- No decontamination or cleaning agents are used that could cause a HAZARD as a result of a reaction with parts of the equipment or with material contained in the equipment.
- The instrument is properly decontaminated a) if hazardous material is spilled onto or into the equipment, and/or b) prior to having the instrument serviced at your facility or sending the instrument for repair, maintenance, trade-in, disposal, or termination of a loan (decontamination forms may be requested from customer service).
- Before using any cleaning or decontamination methods (except those recommended by the manufacturer), users should confirm with the manufacturer that the proposed method will not damage the equipment.

Ultraviolet (UV) Safety

The Ion Chef™ System uses a UV lamp which emits light at 254 nm. Under normal operating conditions, the UV lamp is powered on when performing the cleaning protocol. Safety interlocks are used to ensure that the UV lamp is not powered when the door is open.

Safety and electromagnetic compatibility (EMC) standards

The instrument design and manufacture complies with the following standards and requirements for safety and electromagnetic compatibility.

<table>
<thead>
<tr>
<th>Safety compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
</tr>
<tr>
<td>IEC 61010-1</td>
</tr>
<tr>
<td>EN 61010-1</td>
</tr>
<tr>
<td>UL 61010-1</td>
</tr>
<tr>
<td>CSA C22.2 No. 61010-1</td>
</tr>
<tr>
<td>IEC 61010-2-010</td>
</tr>
<tr>
<td>EN 61010-2-010</td>
</tr>
<tr>
<td>IEC/EN 61010-2-020</td>
</tr>
<tr>
<td>IEC 61010-2-081</td>
</tr>
<tr>
<td>EN 61010-2-081</td>
</tr>
</tbody>
</table>
EMC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directive 2014/30/EU</td>
<td>European Union "EMC Directive"</td>
</tr>
<tr>
<td>FCC Part 15</td>
<td>U.S. Standard "Industrial, Scientific, and Medical Equipment"</td>
</tr>
<tr>
<td>AS/NZS 2064</td>
<td>Limits and Methods of Measurement of Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical (ISM) Radiofrequency Equipment</td>
</tr>
<tr>
<td>ICES-001, Issue 3</td>
<td>Industrial, Scientific and Medical (ISM) Radio Frequency Generators</td>
</tr>
<tr>
<td>Industry Canada RSS 210, Issue 8</td>
<td>Licence-Exempt Radio Apparatus: Category I Equipment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>

Environmental design

Instrument safety — Ion S5™/Ion GeneStudio™ S5 Systems

WARNING! GENERAL CHEMICAL HANDLING. To minimize hazards, ensure laboratory personnel read and practice the general safety guidelines for chemical usage, storage, and waste provided below. Consult the relevant SDS for specific precautions and instructions:

- Read and understand the Safety Data Sheets (SDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. To obtain SDSs, see the “Documentation and Support” section in this document.
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing).
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood).
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer’s cleanup procedures as recommended in the SDS.
- Handle chemical wastes in a fume hood.
- Ensure use of primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- After emptying a waste container, seal it with the cap provided.
- Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure that the waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.
- IMPORTANT! Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

WARNING! HAZARDOUS WASTE (from instruments). Waste produced by the instrument is potentially hazardous. Follow the guidelines noted in the preceding General Chemical Handling warning.
WARNING! BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Conduct all work in properly equipped facilities with the appropriate safety equipment (for example, physical containment devices). Safety equipment can also include items for personal protection, such as gloves, coats, gowns, shoe covers, boots, respirators, face shields, safety glasses, or goggles. Individuals should be trained according to applicable regulatory and company/institution requirements before working with potentially biohazardous materials. Follow all applicable local, state/provincial, and/or national regulations. The following references provide general guidelines when handling biological samples in laboratory environment.

Documentation and support

Related documentation

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Chef™ Instrument User Guide</td>
<td>MAN0018668</td>
</tr>
<tr>
<td>Ion Chef™ Instrument Network Connection User Guide</td>
<td>MAN0013444</td>
</tr>
<tr>
<td>Ion Chef™ System Site Preparation Guide</td>
<td>MAN0007956</td>
</tr>
<tr>
<td>Ion GeneStudio™ S5 System Site Preparation Guide</td>
<td>MAN0017529</td>
</tr>
<tr>
<td>Ion S5™ and Ion S5™ XL System Site Preparation Guide</td>
<td>MAN0010810</td>
</tr>
<tr>
<td>Ion GeneStudio™ S5 Instrument User Guide</td>
<td>MAN0017528</td>
</tr>
<tr>
<td>Ion S5™ and Ion S5™ XL Instrument User Guide</td>
<td>MAN0010811</td>
</tr>
<tr>
<td>Ion S5™ Controls Kit Plus Product Information Sheet</td>
<td>MAN0016206</td>
</tr>
<tr>
<td>Ion Sphere™ Quality Control Kit User Guide</td>
<td>MAN0017531</td>
</tr>
<tr>
<td>Torrent Suite™ Software 5.12 User Guide</td>
<td>MAN0017972</td>
</tr>
<tr>
<td>Torrent Suite™ Software 5.12 Help</td>
<td>MAN0017973</td>
</tr>
<tr>
<td>Ion Sphere™ Particles Quality Assessment for the Ion Proton™ and Ion S5™ Systems Using the Guava™ easyCyte 5 Benchtop Flow Cytometer User Bulletin</td>
<td>MAN0007496</td>
</tr>
</tbody>
</table>

Note: For additional documentation, see “Customer and technical support”.
Customer and technical support

Visit thermofisher.com/support for the latest service and support information.

• Worldwide contact telephone numbers
• Product support information
 – Product FAQs
 – Software, patches, and updates
 – Training for many applications and instruments
• Order and web support
• Product documentation
 – User guides, manuals, and protocols
 – Certificates of Analysis
 – Safety Data Sheets (SDSs; also known as MSDSs)

Note: For SDSs for reagents and chemicals from other manufacturers, contact the manufacturer.

Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies’ General Terms and Conditions of Sale at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have any questions, please contact Life Technologies at www.thermofisher.com/support.