Introduction

The Thermo Scientific EZ-Link Sulfo-NHS-SS-Biotinylation Kit provides the reagents required for labeling antibodies, proteins and other macromolecules containing primary amino groups. Besides the biotin reagent and reaction buffer, the kit includes desalting columns for purifying the labeled molecule and HABA and avidin for measuring the level of biotin incorporation. The kit is structured for labeling 1-10mg of protein in a 1mL reaction volume but is easily adapted to smaller or larger scales.

Biotin is a small, naturally occurring vitamin that binds with high affinity to avidin and streptavidin proteins. Because of its size (244Da), biotin can be conjugated to many proteins without altering their biological activities. The labeled molecule then can be detected by ELISA, dot blot or Western blot methods using streptavidin or avidin probes.
N-Hydroxysuccinimide (NHS) ester-activated biotins are the most popular type of biotinylation reagent. NHS esters react efficiently with primary amino groups (−NH₂) in pH 7-9 buffers to form stable amide bonds (Figure 1). Because antibodies and other proteins generally contain multiple lysine (K) residues in addition to the N-terminus of each polypeptide, they have multiple primary amines available as targets for labeling with NHS-activated biotin reagents. The sulfo-NHS ester reagent in this kit is water-soluble, enabling reactions to be performed in the absence of organic solvents such as DMSO or DMF.

Unlike other biotin-labeling reagents, EZ-Link Sulfo-NHS-SS-Biotin contains a disulfide bond in its spacer arm, enabling labeled proteins to be cleaved from the biotin group by treatment with dithiothreitol (DTT) or other reducing agents. This feature is especially useful in affinity purification experiments where it is necessary to elute the biotinylated protein from its bound state to avidin or streptavidin.

The EZ-Link Sulfo-NHS-SS-Biotinylation Kit combines the basic reagents, tools and easy-to-follow instructions for biotin-labeling amine-containing macromolecules. With this kit, even researchers who have never before labeled antibodies or other proteins can expect to obtain results comparable to those obtained in commercial laboratories.

![Chemical Structure](image)

Figure 1. Reaction of Sulfo-NHS-SS-Biotin with primary amine. If drawn to scale, the oval representing the protein would be many times larger than the reagent structures and would likely contain several amino groups. Note that Sulfo-NHS is a leaving group (byproduct) in the reaction. The leaving group and any non-reacted biotin reagent are removed during the desalting step.

Important Product Information

- Sulfo-NHS-SS-Biotin is moisture-sensitive. Store the vial of biotin reagent at 4°C with desiccant. To avoid moisture condensation onto the product, equilibrate vial to room temperature before opening.

- As directed in the procedure, dissolve the biotin reagent immediately before use. The NHS-ester moiety readily hydrolyzes and becomes non-reactive; therefore, weigh and dissolve only a small amount of the reagent at a time, and do not prepare stock solutions for storage. Discard any unused reconstituted reagent.

- Avoid buffers containing primary amines (e.g., Tris or glycine) as these compete with the intended reaction (see Figure 1). If necessary, dialyze or otherwise desalt to exchange the protein sample into an amine-free buffer such as phosphate-buffered saline (one packet is included in this kit).

- Avoid buffers containing reducing agents during the labeling reaction to prevent cleavage of the reagent disulfide bond. The desalting columns provided in this kit are best suited for processing reactions involving 1-10mg of protein in approximately 0.5-2mL. For smaller amounts of protein or smaller reaction volumes, perform both the biotinylation reaction and buffer exchanges in a single Thermo Scientific Slide-A-Lyzer MINI Dialysis Unit. For reaction volumes that are larger than can be processed with a desalting column, split the sample between two columns or use an appropriate Slide-A-Lyzer Dialysis Cassette for buffer exchanges. For processing small volumes (i.e. 10-150µL) of peptides and other low molecular weight molecules, Thermo Scientific Pierce C18 Spin Columns (Product No. 89870 or 89873) may be used.
Procedure for Biotinylating Proteins

A. Calculations

The extent of biotin labeling depends on the size and distribution of amino groups on the protein and the amount of reagent used. Compared to reactions involving concentrated protein solutions, labeling reactions with dilute protein solutions require a greater fold molar excess of biotin reagent to achieve the same incorporation level. Experiments that used a 20-fold molar excess of biotin reagent to label 1-10mg/mL antibody (IgG) resulted in 4-6 biotin groups per antibody molecule. Adjust the molar ratio of Sulfo-NHS-SS-Biotin to protein to obtain the desired level of incorporation.

1. Calculate millimoles of Sulfo-NHS-SS-Biotin to add to the reaction for a 20-fold molar excess:

\[
\text{Biotin mmol} = \frac{\text{protein mmol} \times 20 \times \text{mmol protein} \times \text{mg protein}}{\text{mmol protein} \times \text{mg protein} \times \text{protein mmol}} = \text{mmol Biotin}
\]

- 20 = Recommended molar fold excess of biotin reagent per protein sample

2. Calculate microliters of 10mM Sulfo-NHS-SS-Biotin (prepared in Step B.3) to add to the reaction:

\[
\text{Solution Biotin} = \frac{607 \text{ mg}}{\text{mmol Biotin}} \times \frac{360 \mu\text{L}}{2.2 \text{ mg}} = \mu\text{L Biotin Solution}
\]

- 607 = Molecular weight of Sulfo-NHS-SS-Biotin
- 360 = Microliters of water in which 2.2mg of Sulfo-NHS-SS-Biotin is dissolved to make a 10mM solution

Example: For 1mL of a 2mg/mL IgG (150,000 MW) solution, ~27µL of 10mM Sulfo-NHS-SS-Biotin will be added.

\[
\text{1 mL IgG} \times \frac{2 \text{ mg IgG}}{1 \text{ mL IgG}} \times \frac{1 \text{ mmol IgG}}{150,000 \text{ mg IgG}} \times \frac{20 \text{ mmol Biotin}}{1 \text{ mmol IgG}} = 0.000266 \text{ mmol Biotin}
\]

\[
0.000266 \text{ mmol Biotin} \times \frac{607 \text{ mg}}{\text{mmol Biotin}} \times \frac{360 \mu\text{L}}{2.2 \text{ mg}} = 26.4 \mu\text{L Biotin Solution}
\]

B. Biotin Labeling Reaction

1. Remove the vial of Sulfo-NHS-SS-Biotin from freezer and equilibrate it to room temperature before opening in Step 3.

2. Dissolve 1-10mg protein in 0.5-2mL of phosphate buffered saline (PBS) according to the calculation made in Section A. Prepare the Thermo Scientific BupH PBS as directed on the package label.

 Note: Protein already dissolved in amine-free buffer at pH 7.2-8.0 may be used without buffer exchange. Proteins in Tris or other amine-containing buffers must be exchanged into PBS. Perform buffer exchange of 0.5-2.0mL samples by dialysis or using one of the desalting columns included in this kit, as described in Section C. Be aware that this kit contains only 10 single-use desalting columns, sufficient for 10 biotinylation procedures when used only for Section C.

3. Immediately before use, prepare 10mM of Sulfo-NHS-SS-Biotin by dissolving 2.2mg in 360µL ultrapure water.

4. Add the appropriate volume of Sulfo-NHS-SS-Biotin solution (see calculations in Section A) to the protein solution.
5. Incubate reaction on ice for two hours or at room temperature for 30-60 minutes.

 Note: There is no harm in reacting longer than the specified time other than the possibility of ordinary protein degradation or microbial growth.

 Note: Although excess non-reacted and hydrolyzed biotin reagent remains in the solution, it is often possible to perform preliminary tests of the labeled protein by ELISA or Western blot. Once function has been confirmed, buffer exchange the labeled protein for optimal performance and stability using the procedure in Section C: Buffer Exchange using a Desalting Column. If the HABA Assay will be performed to determine biotin incorporation, the protein must be purified by buffer exchange first.

C. **Buffer Exchange and Remove Excess Biotin Reagent Using a Desalting Column**

1. Prepare a Thermo Scientific Zeba Spin Desalting Column by breaking off the bottom plug and placing the column into a 15mL collection tube. Centrifuge the column at 1000 \(\times g \) for 2 minutes, discard the storage buffer, and return column to the same collection tube. Place a mark on the side of the column where the compacted resin is slanted upward. Place column in centrifuge with the mark facing outward in all subsequent centrifugation steps.

2. Equilibrate the column by adding 2.5mL of PBS to the top of the resin bed and centrifuging at 1000 \(\times g \) for 2 minutes. Discard the flow-through and repeat this step a total of 2-3 times.

3. Place column into a new 15mL collection tube and apply protein sample directly onto the center of the resin bed. Allow sample to absorb into the resin.

4. **Note:** For samples < 1000µL, add 100µL ultrapure water on top of the absorbed sample to increase protein recovery.

5. Centrifuge the column at 1000 \(\times g \) for 2 minutes. The collected flow-through solution is the purified protein sample. Store the protein solution in appropriate conditions.

HABA Assay for Measuring the Level of Biotin Incorporation

To estimate biotin incorporation, a solution containing the biotinylated protein is added to a mixture of HABA and avidin. Because of its higher affinity for avidin, biotin displaces the HABA from its interaction with avidin and the absorbance at 500nm decreases proportionately. An unknown amount of biotin present in a solution is estimated in a single cuvette by measuring the absorbance of the HABA-avidin solution before and after addition of the biotin-containing sample. The change in absorbance relates to the amount of biotin in the sample.

Note: The biotin-labeled protein sample must be desalted or dialyzed to remove all traces of non-reacted and hydrolyzed biotinylation reagent before the HABA assay is performed.

A. **Reagent Preparation**

 Phosphate-buffered Saline (PBS)

 100mM sodium phosphate, 150mM NaCl; pH 7.2; Product No. 28372

 Note: Avoid buffers containing potassium (e.g., Modified Dulbecco’s PBS), which will cause precipitation in the assay. Empirically determine if other buffers are compatible by comparing to results obtained using TBS or PBS.

 HABA/Avidin Solution

 Add 10mg of avidin and 600µL of 10mM HABA to 19.4mL of PBS. If prepared correctly, the A\(_{500}\) of this solution will be 0.9-1.3 in a 1cm cuvette. The solution is stable for two weeks at 4°C. If a precipitate forms in the HABA solution, it can be filtered and then used.

B. **Procedure for Estimating Biotin Incorporation**

 Procedure Option 1 – Cuvette Format

 1. Pipette 900µL of HABA/Avidin Solution into a 1mL cuvette.
 2. Measure the absorbance of the solution in the cuvette at 500nm and record the value as A\(_{500}\) HABA/Avidin.
 3. Add 100µL of biotinylated protein sample to the cuvette containing HABA/Avidin and mix well.
 4. Measure the absorbance of the solution in the cuvette at 500nm. Once the value remains fairly constant for at least 15 seconds, record the value as A\(_{500}\) HABA/Avidin/Biotin Sample. If the A\(_{500}\) HABA/Avidin/Biotin is < 0.3, dilute the biotinylated protein sample and repeat the assay, but remember to account for the dilution in subsequent calculations.

 5. Proceed to Section C: Calculation of Moles of Biotin per Mole of Protein.
Procedure Option 2 – Microplate Format

1. Pipette 180 µL of HABA/Avidin Solution into a microplate well.
2. Measure the absorbance at 500nm of the solution in the well and record the value as A_{500} HABA/Avidin.
3. Add 20 µL of biotinylated sample to the well containing the HABA/Avidin Solution. Mix the plate using an orbital shaker or plate mixer.
4. Measure the absorbance at 500nm of the solution in the well. Once the value remains fairly constant for at least 15 seconds, record the value as A_{500} HABA/Avidin/Biotin Sample.
5. Proceed to Section C: Calculation of Moles of Biotin Per Mole of Protein.

C. Calculations for Moles of Biotin per Mole of Protein

Note: An automatic HABA Calculator is available at the website for performing these calculations.

These calculations are based on the Beer Lambert Law (Beer’s Law): $A_\lambda = \varepsilon_\lambda b C$

Where:

- A is the absorbance of the sample at a particular wavelength (λ). The wavelength for the HABA assay is 500nm. There are no units for absorbance.
- ε is the absorptivity or extinction coefficient at the wavelength (λ). For HABA/avidin samples at 500nm, pH 7.0 extinction coefficient is equal to 34,000M$^{-1}$cm$^{-1}$.
- b is the cell path length expressed in centimeters (cm). A 10mm square cuvette has a path length of 1.0cm. Using the recommended microplate format volumes, the path length is typically 0.5cm.
- C is the concentration of the sample expressed in molarity (= mol/L = mmol/mL).

The values needed for calculating the number of moles of biotin per mole of protein or sample are as follows:

- Concentration of the protein or sample used, expressed as mg/mL
- Molecular weight (MW) of the protein, expressed as grams per mole (e.g., HRP = 40,000; IgG =150,000)
- Absorbance at 500nm for HABA/Avidin Solution (A_{500} H/A)
- Absorbance at 500nm for HABA/Avidin/Biotin reaction mixture (A_{500} H/A/B)
- Dilution factor, if the sample is diluted before adding it to the HABA/Avidin Solution

1. Calculation #1 is for the concentration of biotinylated protein in mmol/mL (before any dilution for the assay procedure):

$$ \text{mmol protein per mL} = \frac{\text{protein concentration (mg/mL)}}{\text{MW of protein (mg/mmol)}} = \text{Calc#1} $$

2. Calculation #2 is for the change in absorbance at 500nm:

- **Cuvette:**
 $$ \Delta A_{500} = (0.9 \times A_{500} \text{ H/A}) - (A_{500} \text{ H/A\B}) = \text{Calc#2} $$
- **Microplate:**
 $$ \Delta A_{500} = (A_{500} \text{ H/A}) - (A_{500} \text{ H/A\B}) = \text{Calc#2} $$

Note: The cuvette format requires the 0.9 correction factor to adjust for dilution of the H/A Solution by the biotinylated protein sample. The microplate format does not require this correction factor because the dilution effect is exactly offset by the increased height and light path length of solution in the well.

3. Calculation #3 is for the concentration of biotin in mmol per mL of reaction mixture:

$$ \frac{\text{mmol biotin}}{\text{mL reaction mixture}} = \frac{\Delta A_{500}}{34,000 \times b} = \frac{\text{Calc#2}}{34,000 \times b} = \text{Calc#3} $$

Note: b is the light path length (cm) of the sample. Use $b = 1$ with the cuvette format. Use $b = 0.5$ with the microplate format when using a standard 96-well plate and the volumes specified in the procedure. The exact path length is the height of the solution through which the plate reader measures the absorbance.
4. Calculation #4 is for the mmol of biotin per mmol of protein:

\[
\text{mmol biotin in original sample} / \text{mmol protein in original sample}
\]

\[
= \frac{\text{mmol per mL biotin in reaction mixture} \times (10 \times \text{dilution factor})}{\text{mmol per mL protein in original sample}}
\]

\[
= \frac{(\text{Calc}\#3) \times 10 \times \text{dilution factor}}{\text{Calc}\#1}
\]

Note: The original biotinylated protein sample was diluted 10-fold in the reaction mixture. Therefore, a multiplier of 10 is used in this step to convert the biotin concentration in the reaction mixture to the biotin concentration in the original sample. If the original sample was diluted before performing the assay, then the dilution factor must be used as well. Calculation #4 yields the biotin:protein molar ratio (average # of biotin molecules per protein molecule).

Example HABA Assay calculation: In this example, the labeled protein is IgG (MW 150,000) at 0.69mg/mL. The absorbance measurements were \(A_{500}\text{H:A} = 0.904\) and \(A_{500}\text{H:A:B} = 0.771\).

1. \[
\text{mmol biotinylated protein per mL} = \frac{0.69 \text{mg/mL}}{150,000 \text{mg/mmol}} = 4.6 \times 10^{-6}
\]

2. \[
\Delta A_{500} = (0.9 \times 0.904) - 0.771 = 0.0426
\]

3. \[
\frac{\text{mmol biotin}}{\text{mL reaction mixture}} = \frac{0.0426}{34,000} = 1.25 \times 10^{-6}
\]

4. \[
\frac{\text{mmol biotin}}{\text{mmol protein}} = \frac{(1.25 \times 10^{-6}) \times 10}{4.6 \times 10^{-6}} = \frac{12.5 \times 10^{-6}}{4.6 \times 10^{-6}} = 2.72 \text{ biotin molecules per IgG molecule}
\]

Troubleshooting the HABA Assay

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta A_{500}) in HABA assay is (\leq 0)</td>
<td>The protein sample had no or a low level of biotinylation because of limited accessible functional groups on the protein</td>
<td>Repeat biotinylation with alternative chemistry (e.g., sulphydryl reactive) or use a higher molar ratio of biotinylation reagent</td>
</tr>
<tr>
<td></td>
<td>Incomplete mixing of reagent</td>
<td>Completely solubilize and mix HABA/Avidin before diluting</td>
</tr>
<tr>
<td></td>
<td>Particulate in sample contributed to absorbance</td>
<td>Filter protein sample to remove particulate</td>
</tr>
<tr>
<td></td>
<td>Nonreacted biotin was not removed</td>
<td>Dialyze or desalt sample before performing the assay</td>
</tr>
</tbody>
</table>

Additional Information Available on Our Website

- HABA Calculator for computing the results associated with the HABA Assay measurements
- Tech Tip #14: Perform labeling and other reactions in Slide-A-Lyzer Dialysis Cassettes

Related Thermo Scientific Products

- 21331 EZ-Link NHS-SS-Biotin, 100mg
- 69576 Slide-A-Lyzer MINI Dialysis Device Kit, 10K MWCO, 0.1mL
- 66382 Slide-A-Lyzer Dialysis Cassette Kit, 10K MWCO, 3mL
- 20347 Streptavidin Agarose Resin, 2mL
- 21126 Streptavidin, Horseradish Peroxidase Conjugated, 1mg
General References

This product (“Product”) is warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Product documentation, specifications and/or accompanying package inserts (“Documentation”) and to be free from defects in material and workmanship. Unless otherwise expressly authorized in writing, Products are supplied for research use only. No claim of suitability for use in applications regulated by FDA is made. The warranty provided herein is valid only when used by properly trained individuals. Unless otherwise stated in the Documentation, this warranty is limited to one year from date of shipment when the Product is subjected to normal, proper and intended usage. This warranty does not extend to anyone other than the original purchaser of the Product (“Buyer”).

No other warranties, express or implied, are granted, including without limitation, implied warranties of merchantability, fitness for any particular purpose, or non infringement. Buyer’s exclusive remedy for non-conforming Products during the warranty period is limited to replacement of or refund for the non-conforming Product(s).

There is no obligation to replace Products as the result of (i) accident, disaster or event of force majeure, (ii) misuse, fault or negligence of or by Buyer, (iii) improper storage and handling of the Products.

Current product instructions are available at www.thermoscientific.com/pierce. For a faxed copy, call 800-874-3723 or contact your local distributor.

© 2012 Thermo Fisher Scientific Inc. All rights reserved. Unless otherwise indicated, all trademarks are property of Thermo Fisher Scientific Inc. and its subsidiaries. Printed in the USA.