Thermo scientific

PRODUCT INFORMATION Klenow Fragment

#EP0054 300 U Lot: Expiry Date:

Concentration:2 U/µLSupplied with:1 mL of 10X Reaction Buffer

Store at -20 °C

In total 2 vials.

www.thermoscientific.com/onebio

Description

Klenow Fragment is the Large Fragment of DNA Polymerase I, *E.coli*. It exhibits $5' \rightarrow 3'$ polymerase activity and $3' \rightarrow 5'$ exonuclease (proofreading) activity, but lacks $5' \rightarrow 3'$ exonuclease activity of DNA Polymerase I.

Applications

- DNA blunting by fill-in of 5'-overhangs or removal of 3'-overhangs. (1), *see* protocols on back page.
- Random-primed DNA labeling (2-4).
- Labeling by fill-in 5'-overhangs of dsDNA.
- DNA sequencing by the Sanger method (5).
- Site-specific mutagenesis of DNA with synthetic oligonucleotides (6).
- Second strand synthesis of cDNA (7).

Source

E.coli cells with a cloned fragment of the *polA* gene.

Molecular Weight

68 kDa monomer.

Definition of Activity Unit

One unit of the enzyme catalyzes the incorporation of 10 nmol of deoxyribonucleotides into a polynucleotide fraction (adsorbed on DE-81) in 30 min at 37°C. Enzyme activity is assayed in the following mixture: 50 mM Tris-HCl (pH 8.0 at 25°C), 5 mM MgCl₂, 1 mM DTT, 0.033 mM dNTP, 0.4 M Bq/mL [³H]-dTTP and 62.5 μ g/mL activated salmon milt DNA.

53

Storage Buffer

The enzyme is supplied in: 25 mM Tris-HCl (pH 7.5), 0.1 mM EDTA, 1 mM DTT and 50% (v/v) glycerol.

10X Reaction Buffer

500 mM Tris-HCl (pH 8.0 at 25°C), 50 mM MgCl $_{\rm 2}$, 10 mM DTT.

Inhibition and Inactivation

- Inhibitors: metal chelators, PP_i, P_i (at high concentrations) (8).
- Inactivated by heating at 75°C for 10 min or by addition of EDTA.

Note

• Activity of Klenow Fragment in Thermo Scientific buffers (in comparison to activity in assay buffer):

Buffers	Activity, %
for restriction enzymes:	
Thermo Scientific FastDigest, FastDigest [®] Green,	
O, R, 1x Thermo Scientific Tango, 2x Tango [™] ,	
BamHI, EcoRI	100
Ecl136II, Pacl, Sacl, Kpnl	50-75
В	25-50
G	20-50
for PCR buffers:	
<i>Taq</i> buffer with KCl,	100
Taq buffer with $(NH_{a})_{2}SO_{a}$,	100
<i>Pfu</i> buffer	
RT buffers	100

CERTIFICATE OF ANALYSIS

Endodeoxyribonuclease Assay

No conversion of covalently closed circular DNA to nicked DNA was detected after incubation of 20 units of Klenow Fragment with 1 μ g of pUC19 DNA for 4 hours at 37°C.

Quality authorized by:

Hurgita Zilinskiene

(continued on back page)

Protocol for DNA 3'-end labeling by fill-in of 5'-overhangs

1. Prepare the following reaction mixture:

Linear DNA	0.1-4 µg
10x reaction buffer for Klenow Fragment	2 µL
$[\alpha^{-32}P]$ -dNTP,	0.74 MBq
~15-30 TBq/mmol (400-800 Ci/mmol) or	(20 µCi)
$[\alpha^{-32}P]$ -dNTP	2.96 MBq
~110 TBq/mmol (3000 Ci/mmol)	(80 µCi)
3 dNTP Mix, 2 mM each	2.5 μL
(without a labeled dNTP)	(0.25 mM final
	concentration)
Klenow Fragment	0.1 µL (1 U)
Water, nuclease-free (#R0581)	to 20 µL
Total volume	20 µL

2. Incubate at 37°C for 15 min.

3. Stop the reaction by heating at 75°C for 10 min.

Note

This protocol is suitable for labeling of the following Onebio DNA markers, composed of DNA fragments with 5'-overhangs: Lambda DNA EcoRI Marker, #SM0281 Lambda DNA HindIII Marker, #SM0101 Lambda DNA EcoRI/HindIII Marker, #SM0191 Lambda DNA Eco91I Marker, #SM0111 ΦX174 DNA Hinfl Marker, #SM0261

• The modified version of this protocol can be used for nonradioactive labeling of DNA markers. Substitute a part of dTTP with a modified nucleotide (e.g. Biotin-11-dUTP or Fluorescein-12-dUTP) at a molar ratio of 1:2.

Protocol for DNA Blunting by fill-in of 5'-overhangs or removal of 3'-overhangs

1. Prepare the following reaction mixture:

Linear DNA	10-15 μL (0.1-4 μg)
10X reaction buffer for Klenow Fragment	2 µL
dNTP Mix, 2mM each (#R0241)	0.5 μL (0.05 mM
	final concentration)
Klenow Fragment	0.1-0.5 µL (1-5 U)
Water, nuclease-free (#R0581)	to 20 µL
Total volume	20 µL

2. Mix thoroughly, spin briefly and incubate at 37°C for 10 min.

3. Stop the reaction by heating at 75°C for 10 min.

Note

The enzyme incorporates modified nucleotides (e.g. biotin-, digoxigenin-, fluorescently-labeled nucleotides).

References

- Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). *Molecular Cloning: A Laboratory Manual*. (2nd ed.), 5.40-5.43. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
- 2. Feinberg, A.P., Vogelstein, B., A technique for radiolabeling DNA restriction endonucleases fragments to high specific activity, Anal. Biochem., 132, 6-13, 1983.
- 3. Feinberg, A.P., Vogelstein, B., Addendum to: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity, Anal. Biochem., 137, 266-267, 1984.
- 4. Yu, H., et al., Cyanine dye dUTP analogs for enzymatic labeling of DNA probes, Nucleic Acids Res., 22, 3226-3232, 1994.
- 5. Sanger, F., et al., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA, 74, 5463-5467, 1977.
- 6. Wallace, R.B., et al., Directed deletion of a yeast transfer RNA intervening sequence, Science, 209, 1396-1400, 1980.
- 7. Rougeon, F., et al., Insertion of rabbit β -globin gene sequence into an *E.coli* plasmid, Nucleic Acids Res., 2, 2365-2378, 1975.
- 8. Eun, H-M., Enzymology Primer for Recombinant DNA Technology, Academic Press, Inc., 1996.

PRODUCT USE LIMITATION

This product is developed, designed and sold exclusively *for research purposes and in vitro use only.* The product was not tested for use in diagnostics or for drug development, nor is it suitable for administration to humans or animals. Please refer to <u>www.thermoscientific.com/onebio</u> for Material Safety Data Sheet of the product.

© 2012 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.