PureLink™ Microbiome DNA Purification Kit

Purification of high-quality host DNA from stool samples

Catalog Number A29790

Pub. No. MAN0014334 **Rev.** A.0

WARNING! Read the Safety Data Sheets (SDSs) and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves. Safety Data Sheets (SDSs) are available from thermofisher.com/support.

Product description

The Invitrogen™ PureLink™ Microbiome DNA Purification Kit enables fast purification of high-quality microbial and host DNA from a wide variety of sample types. The kit uses proven PureLink™ spin-column technology for robust yields of purified DNA that is ready for downstream PCR, sequencing, or other applications.

Typical DNA recovery is 3–15 µg from 0.2 g of human stool. Host DNA comprises up to 20% of the recovered DNA; the balance is microbial DNA.

Procedure overview

This guide describes purification of DNA from stool samples with a rapid procedure that is optimized for recovery of host DNA. (For purification of microbial and host DNA from stool samples, refer to Pub. no. MAN0014266.)

Host cells are easier to lyse than the microorganisms present in stool, therefore this procedure takes less time and omits the heat lysis step required for recovery of microbial DNA. A combination of chemical and brief mechanical disruption with specialized beads efficiently lyses host cells (and a small portion of easier-to-lyse microorganisms). Inhibitors are eliminated by precipitation using a proprietary cleanup buffer. The sample is then applied to a PureLink™ spin column, and the DNA that is bound to the column undergoes a single wash step before elution.

Kit contents

Table 1 PureLink™ Microbiome DNA Purification Kit (Cat. no. A29790, 50 reactions)

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1—Lysis Buffer</td>
<td>40 mL</td>
<td>15°C to 30°C</td>
</tr>
<tr>
<td>S2—Lysis Enhancer</td>
<td>5 mL</td>
<td></td>
</tr>
<tr>
<td>S3—Cleanup Buffer</td>
<td>12.5 mL</td>
<td></td>
</tr>
<tr>
<td>S4—Binding Buffer</td>
<td>45 mL</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Required materials not included with the kit

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcentrifuge capable of 14,000 × g</td>
<td>MLS</td>
</tr>
<tr>
<td>Vortex mixers, 2[1]</td>
<td>MLS</td>
</tr>
<tr>
<td>For vortex bead homogenization: hands-free adapter for vortex mixer, with horizontal tube orientation</td>
<td>Fisher Scientific NC0070788[2]</td>
</tr>
<tr>
<td>Adjustable pipettors, 100–1000 µL</td>
<td>MLS</td>
</tr>
<tr>
<td>Microcentrifuge tubes, DNase-free, 1.5 mL or 2.0 mL</td>
<td>MLS</td>
</tr>
<tr>
<td>Ethanol, 96–100%</td>
<td>MLS</td>
</tr>
</tbody>
</table>

[1] For vortex bead homogenization: we recommend using two mixers, one dedicated to the hands-free adapter.

[2] Cat. no. AM10024 (not available for sale) can also be used.

Table 3 Additional materials required for stool samples

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corning™ Microspatula #3013</td>
<td>Fisher Scientific 14-245-102, or equivalent</td>
</tr>
<tr>
<td>Laboratory scale</td>
<td>MLS</td>
</tr>
</tbody>
</table>
Workflow

Prepare the lysate 15 min

Supernatant

Bead beat

Clean up

Supernatant

Bind the DNA to the column 5 min

Column

Bind

+ S4

Wash and elute the DNA 5 min

Column

Wash

+ S5

Flow-through

+ S6

Elute

Important procedural guidelines

Sample input requirements and handling

• Collect stool samples according to your laboratory guidelines and experimental needs.

• Depending on the size of the feces, mix stool samples thoroughly to create a homogenous sample before weighing and transferring a portion to the Bead Tube. The Corning™ Microspatula is recommended because it is sturdy enough for sample mixing, and it fits the opening of the Bead Tube.

• Recommended input amount:

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human or other medium to large animals</td>
<td>0.2±0.05 g</td>
</tr>
<tr>
<td>Rodent or other small animals</td>
<td>0.1±0.05 g</td>
</tr>
</tbody>
</table>

[1] Do not exceed 0.25 g.

• Ensure that samples are mixed thoroughly with S1—Lysis Buffer and S2—Lysis Enhancer to create a homogenous sample.

One way to ensure thorough mixing is to vortex the tube with the cap down.

Alternatives to the optimized procedure

• Horizontal bead-beating is most efficient for recovery of microbial DNA, but it is optional for recovery of host DNA (this procedure).

Note: If a hands-free vortex adapter is used, balance the adapter to ensure proper movement of the adapter and optimal homogenization. Vortexing without the adapter is an option for low-throughput needs.

• This procedure is optimized for centrifugations at 14,000 × g. The PureLink™ Spin Columns with Collection Tubes can withstand up to 16,000 × g.

If your microcentrifuge is not capable of 14,000 × g, adjust the centrifugation times to ensure that all of the sample passes through the column.

Options for elution

• The DNA can be eluted from the column with 50–200 µL of S6—Elution Buffer, to optimize the concentration of the recovered DNA.

• Two sequential elution steps with S6—Elution Buffer might increase the yield slightly. For example, for a total elution volume of 100 µL, either:
 - Perform two sequential elution steps with 50 µL of S6—Elution Buffer, or
 - Perform the first elution step with 100 µL of S6—Elution Buffer, then apply the flow-through (containing the eluted DNA) to the same column and repeat for a second elution.

• If desired, perform the final elution spin into nuclease-free 1.5-mL microcentrifuge tubes, instead of the collection tubes supplied with the kit, which do not have caps. Position the cap of the microcentrifuge tubes opposite the direction of rotation.

Before you begin

Before first use of the kit: prepare S5—Wash Buffer
Add 13 mL of 96–100% ethanol to S5—Wash Buffer Concentrate, mix well, and store at room temperature.

Before each use of the kit
If precipitate is visible in S1—Lysis Buffer or S4—Binding Buffer, warm the buffers at 37°C for 5 minutes and shake well to dissolve the precipitate.
Methods

Perform the procedure at room temperature (20–25°C), unless otherwise indicated.

1 Prepare the lysate

<table>
<thead>
<tr>
<th>Source</th>
<th>Sample</th>
<th>S1—Lysis Buffer[^1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human or other medium to large animals</td>
<td>0.2±0.05 g</td>
<td>600 μL</td>
</tr>
<tr>
<td>Rodent or other small animal</td>
<td>0.1±0.05 g</td>
<td>700 μL</td>
</tr>
</tbody>
</table>

[^1]: Adjust the volume of S1—Lysis Buffer to bring the total mixture to ~800 μL.

a. Add sample and S1—Lysis Buffer to the bead tube, according to the sample source.

b. Cap securely, then vortex.

Ensure that the sample is thoroughly dispersed in the liquid.

c. Add 100 μL of S2—Lysis Enhancer, cap securely, and vortex briefly.

d. Homogenize by bead beating for 1 minute at maximum speed on the vortex mixer.

e. Centrifuge at 14,000 × g for 5 minutes.

f. Transfer up to 400 μL of the supernatant to a clean microcentrifuge tube.

IMPORTANT! A layer of debris may be present on top of the bead pellet. Avoid transfer of this debris with the supernatant.

[^2]: Add 250 μL of S3—Cleanup Buffer, and vortex immediately.

Vortex immediately to ensure even dispersion of S3—Cleanup Buffer and uniform precipitation of inhibitors.

g. Centrifuge at 14,000 × g for 2 minutes.

h. Transfer up to 500 μL of the supernatant to a clean microcentrifuge tube, avoiding the pellet.

2 Bind the DNA to the column

a. Add 900 μL of S4—Binding Buffer, and vortex briefly.

b. Load 700 μL of the sample mixture onto a spin column-tube assembly, and centrifuge at 14,000 × g for 1 minute.

c. Discard the flow-through, and repeat step 2b with the remaining sample mixture.

Ensure that the entire sample mixture has passed into the collection tube by inspecting the column. If sample remains in the column, centrifuge again at 14,000 × g for 1 minute.

3 Wash and elute the DNA

a. Place the spin column in a clean collection tube, add 500 μL of S5—Wash Buffer, then centrifuge the spin column-tube assembly at 14,000 × g for 1 minute.

b. Discard the flow-through, then centrifuge the spin column-tube assembly at 14,000 × g for 30 seconds.

The second centrifugation optimizes removal of S5—Wash Buffer, which could interfere with downstream applications.

c. Place the spin column in a clean tube, add 100 μL of S6—Elution Buffer, then incubate at room temperature for 1 minute.

d. Centrifuge the spin column-tube assembly at 14,000 × g for 1 minute, then discard the column.

The purified DNA is in the tube.

The DNA is ready for immediate use. Alternatively, store the purified DNA:

- At 4°C for up to 1 week.
- At −20°C for long-term storage.
Troubleshooting

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is less than 400 µL of supernatant after lysis</td>
<td>For some samples, it can be difficult to withdraw 400 µL of supernatant at step 1f, while avoiding debris.</td>
<td>If <250 µL of supernatant is transferred, add S1—Lysis Buffer to the transferred supernatant to bring the volume to 400 µL.</td>
</tr>
<tr>
<td></td>
<td>Stools from some grass-eating animals (for example, horse) may have a larger debris field over the bead pellet.</td>
<td>It is acceptable to penetrate the debris layer in these cases, to maximize lysate recovery. If <250 µL of supernatant is transferred, add S1—Lysis Buffer to the transferred supernatant to bring the volume to 400 µL.</td>
</tr>
<tr>
<td>Low yield</td>
<td>Inefficient lysis.</td>
<td>After step 1c, heat samples at 65°C for 10 minutes.</td>
</tr>
<tr>
<td></td>
<td>Low levels of DNA in the sample. The recovered DNA is a mixture of host and microbial DNA; the host DNA typically comprises up to 20% of the total recovered DNA.</td>
<td>Repeat the purification with more starting material. Do not exceed 0.25 g.</td>
</tr>
<tr>
<td></td>
<td>For some challenging samples, too much starting material can result in low yield.</td>
<td>Repeat the purification with less starting material, and increase the volume of S1—Lysis Buffer so that the total volume of sample/S1—Lysis Buffer is 800 µL.</td>
</tr>
<tr>
<td>Inhibition of PCR or other downstream reactions</td>
<td>Presence of inhibitors in the recovered DNA.</td>
<td>Dilute the DNA 10- to 100-fold for PCR. After addition of S3—Cleanup Buffer, incubate the sample for 10 minutes on ice. Repeat the purification with less starting material. Increase the volume of S1—Lysis Buffer so that the total volume of sample/S1—Lysis Buffer is 800 µL.</td>
</tr>
</tbody>
</table>

Documentation and support

Revision history MAN0014334 (English)

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.0</td>
<td>September 2015</td>
<td>New document.</td>
</tr>
</tbody>
</table>

Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies’ General Terms and Conditions of Sale found on Life Technologies’ website at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have any questions, please contact Life Technologies at www.thermofisher.com/support.

The information in this guide is subject to change without notice.

DISCLAIMER

TO THE EXTENT ALLOWED BY LAW, LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Important Licensing Information: These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

©2015 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

For support visit thermofisher.com/support or email techsupport@lifetech.com
thermofisher.com

10 September 2015