Invitrogen[™] Platinum[™] SuperFi[™] Green DNA Polymerase

Inv	ltrogen	Platinum SuperFill Green	i UNA Polymera				
USER	GUIDE	Pub. No. MAN0014884 Rev.	В				
	Package contents	Catalog number Size 12357-010 100 Units 12357-050 500 Units 12357-250 5 × 500 Units	Length:				
	Storage conditions	 Store all contents at -20°C. 	Fidelity vs. <i>Taq</i> : Format:				
	Required materials	 Template: gDNA, plasmid DNA, phage DNA, cDNA Forward and reverse gene-specific primers Invitrogen[™] 10 mM dNTP mix (Cat. No. 18427-088) Invitrogen[™] E-Gel[™] General Purpose Gels, 1.2% (Cat. No. G5018-01) Invitrogen[™] TrackIt[™] 1 kb Plus DNA Ladder 	PCR setup Component Water, nuclease-fre 5X SuperFi [™] Green				
		 (Cat. No. 10488-085) 0.2 or 0.5-mL nuclease-free microcentrifuge tubes Water, nuclease-free 	10 mM dNTP mix 10 μM forward pri 10 μM reverse prin				
	Timing	Varies depending on amplicon length.	Template DNA ²				
	Selection guide						
	Product description	 Platinum[™] SuperFi[™] DNA Polymerase is a proofreadin polymerase that combines fidelity with Platinum[™] hot- technology, and is ideally suited for cloning, mutagene other applications. 	Polymerase (2 U/ ¹ Includes 7.5 mM Mg				
Å		 Platinum[™] hot-start technology inhibits DNA polymera activity at ambient temperatures, allowing room temper reaction setup and storage of pre-assembled PCR react up to 24 hours prior to the PCR. Enzyme activity is rest after the initial denaturation step. 	ions for ³ Recommended for t				
		 5X SuperFi[™] Green Buffer is supplemented with two tr 	acking () See page 2 and				
		dyes and a density reagent for direct loading of PCR pa on gels. The dyes in the buffer do not interfere with PC performance and are compatible with downstream appl including DNA sequencing, ligation, and restriction di	CR Optimization str lications				
		 Platinum[™] SuperFi[™] DNA Polymerase has 5' to 3' polymand 3' to 5' exonuclease activities, but lacks 5' to 3' exonuclease activity. It produces blunt end DNA products. 					
	Important guidelines	Click here for important PCR guidelines.	👔 Click here for L				
	Online resources	Visit our product page for additional information and pre- For support, visit thermofisher.com/support.	otocols.				

cteristics

Antibody
Up to 20 kb
>100X
Separate components

Component	25-µL rxn	50-µL rxn	Custom	Final conc.	
Water, nuclease-free	to 25 µL	to 50 µL	to µL		
5X SuperFi [™] Green Buffer ¹	5 µL	10 µL	μL	1X	
10 mM dNTP mix	0.5 µL	1 µL	μL	0.2 mM each	
10 µM forward primer	1.25 µL	2.5 µL	μL	0.5 µM	
10 µM reverse primer	1.25 µL	2.5 µL	μL	0.5 µM	
Template DNA ²	varies	varies	μL	varies	
5X SuperFi [™] GC Enhancer (<i>optional</i>) ³	5 µL	10 µL	μL	1X	
Platinum [™] SuperFi [™] DNA Polymerase (2 U/ μL)	0.25 μL	0.5 µL	μL	0.02 U/µL	

IgCl₂.

pg-10 ng plasmid DNA (see "**Optimization strategies**", below, for

targets with >65% GC sequences.

page 3 to prepare and run your PCR experiment.

trategies and troubleshooting

- guidelines to optimize your PCR experiment.
- guidelines to troubleshoot your PCR experiment.

ification

Limited warranty, Disclaimer, and Licensing information.

For Research Use Only. Not for use in diagnostic procedures.

The example PCR procedure below shows appropriate volumes for a single **50-µL** reaction. For multiple reactions, prepare a master mix of components common to all reactions to minimize pipetting error, then dispense appropriate volumes into each 0.2–0.5 mL PCR tube before adding template DNA and primers.

Steps Ac		Action	Procedure details					
1		Thaw reagents	Thaw, mix, and briefly centrifuge each component before use.					
2			Add the following components to each PCR tube. Note: Consider the volumes for all components listed in steps 2 and 3 to determine the correct amount of water required to reach your final reaction volume.					
			Component	50-µL rxn	Final conc.			
			Water, nuclease-free	to 50 µL				
		Prepare PCR master mix	5X SuperFi [™] Green Buffer ¹	10 µL	1X			
			10 mM dNTP mix	1 µL	0.2 mM each			
	\bigcirc		5X SuperFi [™] GC Enhancer (<i>optional</i>) ²	10 µL	1X			
			Platinum [™] SuperFi [™] DNA Polymerase	0.5 µL	0.02 U/µL			
			 ¹ Includes 7.5 mM MgCl₂. ² Recommended for targets with >65% GC see Mix and then briefly centrifuge the compared to the second seco					
			Add your template DNA and primers to each tube for a final reaction volume of 50 μ L.					
			Component	50-µL rxn	Final conc.			
			10 μM forward primer	2.5 μL	0.5 µM			
	Š	Add template DNA and primers	10 µM reverse primer	2.5 μL	0.5 µM			
3			Template DNA ¹	varies	varies			
			¹ Optimal amount of low complexity DNA (p varied from 0.1 pg to 50 ng per 50 μ L reaction be varied from 0.1 ng to 250 ng per 50 μ L rea Cap each tube, mix, and then briefly cen	n. Optimal amount c ction.	of genomic DNA is $5-50$			

Steps	Action	Procedure details							
4	Incubate reactions in a thermal cycler	Initial de 25–35 PCR cycles Final ext ¹ IMPORTA primers and	NT! Always u I the recomme	Temp. 98°C 98°C — 72°C 72°C 4°C use T _m calculate nded annealin	g temperature.	Temp. 98°C 98°C varies 72°C 72°C 4°C at www.therm	to col (<10kb) Time 30 sec 5–10 sec 10 sec 15–30 sec/kb 5 min hold tofisher.com/tmca	Temp. 95°C 95°C varies 68°C 68°C 4°C lculator to calc	in -
5	Analyze with gel electrophoresis	 Analyze the sample using agarose gel electrophoresis. Note: PCR mixes prepared using the SuperFi[™] Green Buffer are ready for direct loading on the gels; addition of loading buffer is not needed. Use your PCR product immediately in down-stream applications, or store it at -20°C. 							

